Btrfs: fix memory leaks in btrfs_new_inode()
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, int *page_started,
93                                    unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96                                      struct inode *inode,  struct inode *dir)
97 {
98         int err;
99
100         err = btrfs_init_acl(trans, inode, dir);
101         if (!err)
102                 err = btrfs_xattr_security_init(trans, inode, dir);
103         return err;
104 }
105
106 /*
107  * this does all the hard work for inserting an inline extent into
108  * the btree.  The caller should have done a btrfs_drop_extents so that
109  * no overlapping inline items exist in the btree
110  */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112                                 struct btrfs_root *root, struct inode *inode,
113                                 u64 start, size_t size, size_t compressed_size,
114                                 int compress_type,
115                                 struct page **compressed_pages)
116 {
117         struct btrfs_key key;
118         struct btrfs_path *path;
119         struct extent_buffer *leaf;
120         struct page *page = NULL;
121         char *kaddr;
122         unsigned long ptr;
123         struct btrfs_file_extent_item *ei;
124         int err = 0;
125         int ret;
126         size_t cur_size = size;
127         size_t datasize;
128         unsigned long offset;
129
130         if (compressed_size && compressed_pages)
131                 cur_size = compressed_size;
132
133         path = btrfs_alloc_path();
134         if (!path)
135                 return -ENOMEM;
136
137         path->leave_spinning = 1;
138         btrfs_set_trans_block_group(trans, inode);
139
140         key.objectid = inode->i_ino;
141         key.offset = start;
142         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143         datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145         inode_add_bytes(inode, size);
146         ret = btrfs_insert_empty_item(trans, root, path, &key,
147                                       datasize);
148         BUG_ON(ret);
149         if (ret) {
150                 err = ret;
151                 goto fail;
152         }
153         leaf = path->nodes[0];
154         ei = btrfs_item_ptr(leaf, path->slots[0],
155                             struct btrfs_file_extent_item);
156         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158         btrfs_set_file_extent_encryption(leaf, ei, 0);
159         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161         ptr = btrfs_file_extent_inline_start(ei);
162
163         if (compress_type != BTRFS_COMPRESS_NONE) {
164                 struct page *cpage;
165                 int i = 0;
166                 while (compressed_size > 0) {
167                         cpage = compressed_pages[i];
168                         cur_size = min_t(unsigned long, compressed_size,
169                                        PAGE_CACHE_SIZE);
170
171                         kaddr = kmap_atomic(cpage, KM_USER0);
172                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
173                         kunmap_atomic(kaddr, KM_USER0);
174
175                         i++;
176                         ptr += cur_size;
177                         compressed_size -= cur_size;
178                 }
179                 btrfs_set_file_extent_compression(leaf, ei,
180                                                   compress_type);
181         } else {
182                 page = find_get_page(inode->i_mapping,
183                                      start >> PAGE_CACHE_SHIFT);
184                 btrfs_set_file_extent_compression(leaf, ei, 0);
185                 kaddr = kmap_atomic(page, KM_USER0);
186                 offset = start & (PAGE_CACHE_SIZE - 1);
187                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188                 kunmap_atomic(kaddr, KM_USER0);
189                 page_cache_release(page);
190         }
191         btrfs_mark_buffer_dirty(leaf);
192         btrfs_free_path(path);
193
194         /*
195          * we're an inline extent, so nobody can
196          * extend the file past i_size without locking
197          * a page we already have locked.
198          *
199          * We must do any isize and inode updates
200          * before we unlock the pages.  Otherwise we
201          * could end up racing with unlink.
202          */
203         BTRFS_I(inode)->disk_i_size = inode->i_size;
204         btrfs_update_inode(trans, root, inode);
205
206         return 0;
207 fail:
208         btrfs_free_path(path);
209         return err;
210 }
211
212
213 /*
214  * conditionally insert an inline extent into the file.  This
215  * does the checks required to make sure the data is small enough
216  * to fit as an inline extent.
217  */
218 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
219                                  struct btrfs_root *root,
220                                  struct inode *inode, u64 start, u64 end,
221                                  size_t compressed_size, int compress_type,
222                                  struct page **compressed_pages)
223 {
224         u64 isize = i_size_read(inode);
225         u64 actual_end = min(end + 1, isize);
226         u64 inline_len = actual_end - start;
227         u64 aligned_end = (end + root->sectorsize - 1) &
228                         ~((u64)root->sectorsize - 1);
229         u64 hint_byte;
230         u64 data_len = inline_len;
231         int ret;
232
233         if (compressed_size)
234                 data_len = compressed_size;
235
236         if (start > 0 ||
237             actual_end >= PAGE_CACHE_SIZE ||
238             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239             (!compressed_size &&
240             (actual_end & (root->sectorsize - 1)) == 0) ||
241             end + 1 < isize ||
242             data_len > root->fs_info->max_inline) {
243                 return 1;
244         }
245
246         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
247                                  &hint_byte, 1);
248         BUG_ON(ret);
249
250         if (isize > actual_end)
251                 inline_len = min_t(u64, isize, actual_end);
252         ret = insert_inline_extent(trans, root, inode, start,
253                                    inline_len, compressed_size,
254                                    compress_type, compressed_pages);
255         BUG_ON(ret);
256         btrfs_delalloc_release_metadata(inode, end + 1 - start);
257         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
258         return 0;
259 }
260
261 struct async_extent {
262         u64 start;
263         u64 ram_size;
264         u64 compressed_size;
265         struct page **pages;
266         unsigned long nr_pages;
267         int compress_type;
268         struct list_head list;
269 };
270
271 struct async_cow {
272         struct inode *inode;
273         struct btrfs_root *root;
274         struct page *locked_page;
275         u64 start;
276         u64 end;
277         struct list_head extents;
278         struct btrfs_work work;
279 };
280
281 static noinline int add_async_extent(struct async_cow *cow,
282                                      u64 start, u64 ram_size,
283                                      u64 compressed_size,
284                                      struct page **pages,
285                                      unsigned long nr_pages,
286                                      int compress_type)
287 {
288         struct async_extent *async_extent;
289
290         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
291         BUG_ON(!async_extent);
292         async_extent->start = start;
293         async_extent->ram_size = ram_size;
294         async_extent->compressed_size = compressed_size;
295         async_extent->pages = pages;
296         async_extent->nr_pages = nr_pages;
297         async_extent->compress_type = compress_type;
298         list_add_tail(&async_extent->list, &cow->extents);
299         return 0;
300 }
301
302 /*
303  * we create compressed extents in two phases.  The first
304  * phase compresses a range of pages that have already been
305  * locked (both pages and state bits are locked).
306  *
307  * This is done inside an ordered work queue, and the compression
308  * is spread across many cpus.  The actual IO submission is step
309  * two, and the ordered work queue takes care of making sure that
310  * happens in the same order things were put onto the queue by
311  * writepages and friends.
312  *
313  * If this code finds it can't get good compression, it puts an
314  * entry onto the work queue to write the uncompressed bytes.  This
315  * makes sure that both compressed inodes and uncompressed inodes
316  * are written in the same order that pdflush sent them down.
317  */
318 static noinline int compress_file_range(struct inode *inode,
319                                         struct page *locked_page,
320                                         u64 start, u64 end,
321                                         struct async_cow *async_cow,
322                                         int *num_added)
323 {
324         struct btrfs_root *root = BTRFS_I(inode)->root;
325         struct btrfs_trans_handle *trans;
326         u64 num_bytes;
327         u64 blocksize = root->sectorsize;
328         u64 actual_end;
329         u64 isize = i_size_read(inode);
330         int ret = 0;
331         struct page **pages = NULL;
332         unsigned long nr_pages;
333         unsigned long nr_pages_ret = 0;
334         unsigned long total_compressed = 0;
335         unsigned long total_in = 0;
336         unsigned long max_compressed = 128 * 1024;
337         unsigned long max_uncompressed = 128 * 1024;
338         int i;
339         int will_compress;
340         int compress_type = root->fs_info->compress_type;
341
342         actual_end = min_t(u64, isize, end + 1);
343 again:
344         will_compress = 0;
345         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
347
348         /*
349          * we don't want to send crud past the end of i_size through
350          * compression, that's just a waste of CPU time.  So, if the
351          * end of the file is before the start of our current
352          * requested range of bytes, we bail out to the uncompressed
353          * cleanup code that can deal with all of this.
354          *
355          * It isn't really the fastest way to fix things, but this is a
356          * very uncommon corner.
357          */
358         if (actual_end <= start)
359                 goto cleanup_and_bail_uncompressed;
360
361         total_compressed = actual_end - start;
362
363         /* we want to make sure that amount of ram required to uncompress
364          * an extent is reasonable, so we limit the total size in ram
365          * of a compressed extent to 128k.  This is a crucial number
366          * because it also controls how easily we can spread reads across
367          * cpus for decompression.
368          *
369          * We also want to make sure the amount of IO required to do
370          * a random read is reasonably small, so we limit the size of
371          * a compressed extent to 128k.
372          */
373         total_compressed = min(total_compressed, max_uncompressed);
374         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
375         num_bytes = max(blocksize,  num_bytes);
376         total_in = 0;
377         ret = 0;
378
379         /*
380          * we do compression for mount -o compress and when the
381          * inode has not been flagged as nocompress.  This flag can
382          * change at any time if we discover bad compression ratios.
383          */
384         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
385             (btrfs_test_opt(root, COMPRESS) ||
386              (BTRFS_I(inode)->force_compress) ||
387              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
388                 WARN_ON(pages);
389                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390                 BUG_ON(!pages);
391
392                 if (BTRFS_I(inode)->force_compress)
393                         compress_type = BTRFS_I(inode)->force_compress;
394
395                 ret = btrfs_compress_pages(compress_type,
396                                            inode->i_mapping, start,
397                                            total_compressed, pages,
398                                            nr_pages, &nr_pages_ret,
399                                            &total_in,
400                                            &total_compressed,
401                                            max_compressed);
402
403                 if (!ret) {
404                         unsigned long offset = total_compressed &
405                                 (PAGE_CACHE_SIZE - 1);
406                         struct page *page = pages[nr_pages_ret - 1];
407                         char *kaddr;
408
409                         /* zero the tail end of the last page, we might be
410                          * sending it down to disk
411                          */
412                         if (offset) {
413                                 kaddr = kmap_atomic(page, KM_USER0);
414                                 memset(kaddr + offset, 0,
415                                        PAGE_CACHE_SIZE - offset);
416                                 kunmap_atomic(kaddr, KM_USER0);
417                         }
418                         will_compress = 1;
419                 }
420         }
421         if (start == 0) {
422                 trans = btrfs_join_transaction(root, 1);
423                 BUG_ON(IS_ERR(trans));
424                 btrfs_set_trans_block_group(trans, inode);
425                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
426
427                 /* lets try to make an inline extent */
428                 if (ret || total_in < (actual_end - start)) {
429                         /* we didn't compress the entire range, try
430                          * to make an uncompressed inline extent.
431                          */
432                         ret = cow_file_range_inline(trans, root, inode,
433                                                     start, end, 0, 0, NULL);
434                 } else {
435                         /* try making a compressed inline extent */
436                         ret = cow_file_range_inline(trans, root, inode,
437                                                     start, end,
438                                                     total_compressed,
439                                                     compress_type, pages);
440                 }
441                 if (ret == 0) {
442                         /*
443                          * inline extent creation worked, we don't need
444                          * to create any more async work items.  Unlock
445                          * and free up our temp pages.
446                          */
447                         extent_clear_unlock_delalloc(inode,
448                              &BTRFS_I(inode)->io_tree,
449                              start, end, NULL,
450                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
451                              EXTENT_CLEAR_DELALLOC |
452                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
453
454                         btrfs_end_transaction(trans, root);
455                         goto free_pages_out;
456                 }
457                 btrfs_end_transaction(trans, root);
458         }
459
460         if (will_compress) {
461                 /*
462                  * we aren't doing an inline extent round the compressed size
463                  * up to a block size boundary so the allocator does sane
464                  * things
465                  */
466                 total_compressed = (total_compressed + blocksize - 1) &
467                         ~(blocksize - 1);
468
469                 /*
470                  * one last check to make sure the compression is really a
471                  * win, compare the page count read with the blocks on disk
472                  */
473                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
474                         ~(PAGE_CACHE_SIZE - 1);
475                 if (total_compressed >= total_in) {
476                         will_compress = 0;
477                 } else {
478                         num_bytes = total_in;
479                 }
480         }
481         if (!will_compress && pages) {
482                 /*
483                  * the compression code ran but failed to make things smaller,
484                  * free any pages it allocated and our page pointer array
485                  */
486                 for (i = 0; i < nr_pages_ret; i++) {
487                         WARN_ON(pages[i]->mapping);
488                         page_cache_release(pages[i]);
489                 }
490                 kfree(pages);
491                 pages = NULL;
492                 total_compressed = 0;
493                 nr_pages_ret = 0;
494
495                 /* flag the file so we don't compress in the future */
496                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
497                     !(BTRFS_I(inode)->force_compress)) {
498                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
499                 }
500         }
501         if (will_compress) {
502                 *num_added += 1;
503
504                 /* the async work queues will take care of doing actual
505                  * allocation on disk for these compressed pages,
506                  * and will submit them to the elevator.
507                  */
508                 add_async_extent(async_cow, start, num_bytes,
509                                  total_compressed, pages, nr_pages_ret,
510                                  compress_type);
511
512                 if (start + num_bytes < end) {
513                         start += num_bytes;
514                         pages = NULL;
515                         cond_resched();
516                         goto again;
517                 }
518         } else {
519 cleanup_and_bail_uncompressed:
520                 /*
521                  * No compression, but we still need to write the pages in
522                  * the file we've been given so far.  redirty the locked
523                  * page if it corresponds to our extent and set things up
524                  * for the async work queue to run cow_file_range to do
525                  * the normal delalloc dance
526                  */
527                 if (page_offset(locked_page) >= start &&
528                     page_offset(locked_page) <= end) {
529                         __set_page_dirty_nobuffers(locked_page);
530                         /* unlocked later on in the async handlers */
531                 }
532                 add_async_extent(async_cow, start, end - start + 1,
533                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
534                 *num_added += 1;
535         }
536
537 out:
538         return 0;
539
540 free_pages_out:
541         for (i = 0; i < nr_pages_ret; i++) {
542                 WARN_ON(pages[i]->mapping);
543                 page_cache_release(pages[i]);
544         }
545         kfree(pages);
546
547         goto out;
548 }
549
550 /*
551  * phase two of compressed writeback.  This is the ordered portion
552  * of the code, which only gets called in the order the work was
553  * queued.  We walk all the async extents created by compress_file_range
554  * and send them down to the disk.
555  */
556 static noinline int submit_compressed_extents(struct inode *inode,
557                                               struct async_cow *async_cow)
558 {
559         struct async_extent *async_extent;
560         u64 alloc_hint = 0;
561         struct btrfs_trans_handle *trans;
562         struct btrfs_key ins;
563         struct extent_map *em;
564         struct btrfs_root *root = BTRFS_I(inode)->root;
565         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566         struct extent_io_tree *io_tree;
567         int ret = 0;
568
569         if (list_empty(&async_cow->extents))
570                 return 0;
571
572
573         while (!list_empty(&async_cow->extents)) {
574                 async_extent = list_entry(async_cow->extents.next,
575                                           struct async_extent, list);
576                 list_del(&async_extent->list);
577
578                 io_tree = &BTRFS_I(inode)->io_tree;
579
580 retry:
581                 /* did the compression code fall back to uncompressed IO? */
582                 if (!async_extent->pages) {
583                         int page_started = 0;
584                         unsigned long nr_written = 0;
585
586                         lock_extent(io_tree, async_extent->start,
587                                          async_extent->start +
588                                          async_extent->ram_size - 1, GFP_NOFS);
589
590                         /* allocate blocks */
591                         ret = cow_file_range(inode, async_cow->locked_page,
592                                              async_extent->start,
593                                              async_extent->start +
594                                              async_extent->ram_size - 1,
595                                              &page_started, &nr_written, 0);
596
597                         /*
598                          * if page_started, cow_file_range inserted an
599                          * inline extent and took care of all the unlocking
600                          * and IO for us.  Otherwise, we need to submit
601                          * all those pages down to the drive.
602                          */
603                         if (!page_started && !ret)
604                                 extent_write_locked_range(io_tree,
605                                                   inode, async_extent->start,
606                                                   async_extent->start +
607                                                   async_extent->ram_size - 1,
608                                                   btrfs_get_extent,
609                                                   WB_SYNC_ALL);
610                         kfree(async_extent);
611                         cond_resched();
612                         continue;
613                 }
614
615                 lock_extent(io_tree, async_extent->start,
616                             async_extent->start + async_extent->ram_size - 1,
617                             GFP_NOFS);
618
619                 trans = btrfs_join_transaction(root, 1);
620                 BUG_ON(IS_ERR(trans));
621                 ret = btrfs_reserve_extent(trans, root,
622                                            async_extent->compressed_size,
623                                            async_extent->compressed_size,
624                                            0, alloc_hint,
625                                            (u64)-1, &ins, 1);
626                 btrfs_end_transaction(trans, root);
627
628                 if (ret) {
629                         int i;
630                         for (i = 0; i < async_extent->nr_pages; i++) {
631                                 WARN_ON(async_extent->pages[i]->mapping);
632                                 page_cache_release(async_extent->pages[i]);
633                         }
634                         kfree(async_extent->pages);
635                         async_extent->nr_pages = 0;
636                         async_extent->pages = NULL;
637                         unlock_extent(io_tree, async_extent->start,
638                                       async_extent->start +
639                                       async_extent->ram_size - 1, GFP_NOFS);
640                         goto retry;
641                 }
642
643                 /*
644                  * here we're doing allocation and writeback of the
645                  * compressed pages
646                  */
647                 btrfs_drop_extent_cache(inode, async_extent->start,
648                                         async_extent->start +
649                                         async_extent->ram_size - 1, 0);
650
651                 em = alloc_extent_map(GFP_NOFS);
652                 BUG_ON(!em);
653                 em->start = async_extent->start;
654                 em->len = async_extent->ram_size;
655                 em->orig_start = em->start;
656
657                 em->block_start = ins.objectid;
658                 em->block_len = ins.offset;
659                 em->bdev = root->fs_info->fs_devices->latest_bdev;
660                 em->compress_type = async_extent->compress_type;
661                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
662                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
663
664                 while (1) {
665                         write_lock(&em_tree->lock);
666                         ret = add_extent_mapping(em_tree, em);
667                         write_unlock(&em_tree->lock);
668                         if (ret != -EEXIST) {
669                                 free_extent_map(em);
670                                 break;
671                         }
672                         btrfs_drop_extent_cache(inode, async_extent->start,
673                                                 async_extent->start +
674                                                 async_extent->ram_size - 1, 0);
675                 }
676
677                 ret = btrfs_add_ordered_extent_compress(inode,
678                                                 async_extent->start,
679                                                 ins.objectid,
680                                                 async_extent->ram_size,
681                                                 ins.offset,
682                                                 BTRFS_ORDERED_COMPRESSED,
683                                                 async_extent->compress_type);
684                 BUG_ON(ret);
685
686                 /*
687                  * clear dirty, set writeback and unlock the pages.
688                  */
689                 extent_clear_unlock_delalloc(inode,
690                                 &BTRFS_I(inode)->io_tree,
691                                 async_extent->start,
692                                 async_extent->start +
693                                 async_extent->ram_size - 1,
694                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
695                                 EXTENT_CLEAR_UNLOCK |
696                                 EXTENT_CLEAR_DELALLOC |
697                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
698
699                 ret = btrfs_submit_compressed_write(inode,
700                                     async_extent->start,
701                                     async_extent->ram_size,
702                                     ins.objectid,
703                                     ins.offset, async_extent->pages,
704                                     async_extent->nr_pages);
705
706                 BUG_ON(ret);
707                 alloc_hint = ins.objectid + ins.offset;
708                 kfree(async_extent);
709                 cond_resched();
710         }
711
712         return 0;
713 }
714
715 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
716                                       u64 num_bytes)
717 {
718         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719         struct extent_map *em;
720         u64 alloc_hint = 0;
721
722         read_lock(&em_tree->lock);
723         em = search_extent_mapping(em_tree, start, num_bytes);
724         if (em) {
725                 /*
726                  * if block start isn't an actual block number then find the
727                  * first block in this inode and use that as a hint.  If that
728                  * block is also bogus then just don't worry about it.
729                  */
730                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
731                         free_extent_map(em);
732                         em = search_extent_mapping(em_tree, 0, 0);
733                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
734                                 alloc_hint = em->block_start;
735                         if (em)
736                                 free_extent_map(em);
737                 } else {
738                         alloc_hint = em->block_start;
739                         free_extent_map(em);
740                 }
741         }
742         read_unlock(&em_tree->lock);
743
744         return alloc_hint;
745 }
746
747 /*
748  * when extent_io.c finds a delayed allocation range in the file,
749  * the call backs end up in this code.  The basic idea is to
750  * allocate extents on disk for the range, and create ordered data structs
751  * in ram to track those extents.
752  *
753  * locked_page is the page that writepage had locked already.  We use
754  * it to make sure we don't do extra locks or unlocks.
755  *
756  * *page_started is set to one if we unlock locked_page and do everything
757  * required to start IO on it.  It may be clean and already done with
758  * IO when we return.
759  */
760 static noinline int cow_file_range(struct inode *inode,
761                                    struct page *locked_page,
762                                    u64 start, u64 end, int *page_started,
763                                    unsigned long *nr_written,
764                                    int unlock)
765 {
766         struct btrfs_root *root = BTRFS_I(inode)->root;
767         struct btrfs_trans_handle *trans;
768         u64 alloc_hint = 0;
769         u64 num_bytes;
770         unsigned long ram_size;
771         u64 disk_num_bytes;
772         u64 cur_alloc_size;
773         u64 blocksize = root->sectorsize;
774         struct btrfs_key ins;
775         struct extent_map *em;
776         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777         int ret = 0;
778
779         BUG_ON(root == root->fs_info->tree_root);
780         trans = btrfs_join_transaction(root, 1);
781         BUG_ON(IS_ERR(trans));
782         btrfs_set_trans_block_group(trans, inode);
783         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
784
785         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
786         num_bytes = max(blocksize,  num_bytes);
787         disk_num_bytes = num_bytes;
788         ret = 0;
789
790         if (start == 0) {
791                 /* lets try to make an inline extent */
792                 ret = cow_file_range_inline(trans, root, inode,
793                                             start, end, 0, 0, NULL);
794                 if (ret == 0) {
795                         extent_clear_unlock_delalloc(inode,
796                                      &BTRFS_I(inode)->io_tree,
797                                      start, end, NULL,
798                                      EXTENT_CLEAR_UNLOCK_PAGE |
799                                      EXTENT_CLEAR_UNLOCK |
800                                      EXTENT_CLEAR_DELALLOC |
801                                      EXTENT_CLEAR_DIRTY |
802                                      EXTENT_SET_WRITEBACK |
803                                      EXTENT_END_WRITEBACK);
804
805                         *nr_written = *nr_written +
806                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
807                         *page_started = 1;
808                         ret = 0;
809                         goto out;
810                 }
811         }
812
813         BUG_ON(disk_num_bytes >
814                btrfs_super_total_bytes(&root->fs_info->super_copy));
815
816         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
817         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
818
819         while (disk_num_bytes > 0) {
820                 unsigned long op;
821
822                 cur_alloc_size = disk_num_bytes;
823                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
824                                            root->sectorsize, 0, alloc_hint,
825                                            (u64)-1, &ins, 1);
826                 BUG_ON(ret);
827
828                 em = alloc_extent_map(GFP_NOFS);
829                 BUG_ON(!em);
830                 em->start = start;
831                 em->orig_start = em->start;
832                 ram_size = ins.offset;
833                 em->len = ins.offset;
834
835                 em->block_start = ins.objectid;
836                 em->block_len = ins.offset;
837                 em->bdev = root->fs_info->fs_devices->latest_bdev;
838                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
839
840                 while (1) {
841                         write_lock(&em_tree->lock);
842                         ret = add_extent_mapping(em_tree, em);
843                         write_unlock(&em_tree->lock);
844                         if (ret != -EEXIST) {
845                                 free_extent_map(em);
846                                 break;
847                         }
848                         btrfs_drop_extent_cache(inode, start,
849                                                 start + ram_size - 1, 0);
850                 }
851
852                 cur_alloc_size = ins.offset;
853                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
854                                                ram_size, cur_alloc_size, 0);
855                 BUG_ON(ret);
856
857                 if (root->root_key.objectid ==
858                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
859                         ret = btrfs_reloc_clone_csums(inode, start,
860                                                       cur_alloc_size);
861                         BUG_ON(ret);
862                 }
863
864                 if (disk_num_bytes < cur_alloc_size)
865                         break;
866
867                 /* we're not doing compressed IO, don't unlock the first
868                  * page (which the caller expects to stay locked), don't
869                  * clear any dirty bits and don't set any writeback bits
870                  *
871                  * Do set the Private2 bit so we know this page was properly
872                  * setup for writepage
873                  */
874                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
875                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
876                         EXTENT_SET_PRIVATE2;
877
878                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
879                                              start, start + ram_size - 1,
880                                              locked_page, op);
881                 disk_num_bytes -= cur_alloc_size;
882                 num_bytes -= cur_alloc_size;
883                 alloc_hint = ins.objectid + ins.offset;
884                 start += cur_alloc_size;
885         }
886 out:
887         ret = 0;
888         btrfs_end_transaction(trans, root);
889
890         return ret;
891 }
892
893 /*
894  * work queue call back to started compression on a file and pages
895  */
896 static noinline void async_cow_start(struct btrfs_work *work)
897 {
898         struct async_cow *async_cow;
899         int num_added = 0;
900         async_cow = container_of(work, struct async_cow, work);
901
902         compress_file_range(async_cow->inode, async_cow->locked_page,
903                             async_cow->start, async_cow->end, async_cow,
904                             &num_added);
905         if (num_added == 0)
906                 async_cow->inode = NULL;
907 }
908
909 /*
910  * work queue call back to submit previously compressed pages
911  */
912 static noinline void async_cow_submit(struct btrfs_work *work)
913 {
914         struct async_cow *async_cow;
915         struct btrfs_root *root;
916         unsigned long nr_pages;
917
918         async_cow = container_of(work, struct async_cow, work);
919
920         root = async_cow->root;
921         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
922                 PAGE_CACHE_SHIFT;
923
924         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
925
926         if (atomic_read(&root->fs_info->async_delalloc_pages) <
927             5 * 1042 * 1024 &&
928             waitqueue_active(&root->fs_info->async_submit_wait))
929                 wake_up(&root->fs_info->async_submit_wait);
930
931         if (async_cow->inode)
932                 submit_compressed_extents(async_cow->inode, async_cow);
933 }
934
935 static noinline void async_cow_free(struct btrfs_work *work)
936 {
937         struct async_cow *async_cow;
938         async_cow = container_of(work, struct async_cow, work);
939         kfree(async_cow);
940 }
941
942 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
943                                 u64 start, u64 end, int *page_started,
944                                 unsigned long *nr_written)
945 {
946         struct async_cow *async_cow;
947         struct btrfs_root *root = BTRFS_I(inode)->root;
948         unsigned long nr_pages;
949         u64 cur_end;
950         int limit = 10 * 1024 * 1042;
951
952         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
953                          1, 0, NULL, GFP_NOFS);
954         while (start < end) {
955                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
956                 async_cow->inode = inode;
957                 async_cow->root = root;
958                 async_cow->locked_page = locked_page;
959                 async_cow->start = start;
960
961                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
962                         cur_end = end;
963                 else
964                         cur_end = min(end, start + 512 * 1024 - 1);
965
966                 async_cow->end = cur_end;
967                 INIT_LIST_HEAD(&async_cow->extents);
968
969                 async_cow->work.func = async_cow_start;
970                 async_cow->work.ordered_func = async_cow_submit;
971                 async_cow->work.ordered_free = async_cow_free;
972                 async_cow->work.flags = 0;
973
974                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
975                         PAGE_CACHE_SHIFT;
976                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
977
978                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
979                                    &async_cow->work);
980
981                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
982                         wait_event(root->fs_info->async_submit_wait,
983                            (atomic_read(&root->fs_info->async_delalloc_pages) <
984                             limit));
985                 }
986
987                 while (atomic_read(&root->fs_info->async_submit_draining) &&
988                       atomic_read(&root->fs_info->async_delalloc_pages)) {
989                         wait_event(root->fs_info->async_submit_wait,
990                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
991                            0));
992                 }
993
994                 *nr_written += nr_pages;
995                 start = cur_end + 1;
996         }
997         *page_started = 1;
998         return 0;
999 }
1000
1001 static noinline int csum_exist_in_range(struct btrfs_root *root,
1002                                         u64 bytenr, u64 num_bytes)
1003 {
1004         int ret;
1005         struct btrfs_ordered_sum *sums;
1006         LIST_HEAD(list);
1007
1008         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1009                                        bytenr + num_bytes - 1, &list);
1010         if (ret == 0 && list_empty(&list))
1011                 return 0;
1012
1013         while (!list_empty(&list)) {
1014                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1015                 list_del(&sums->list);
1016                 kfree(sums);
1017         }
1018         return 1;
1019 }
1020
1021 /*
1022  * when nowcow writeback call back.  This checks for snapshots or COW copies
1023  * of the extents that exist in the file, and COWs the file as required.
1024  *
1025  * If no cow copies or snapshots exist, we write directly to the existing
1026  * blocks on disk
1027  */
1028 static noinline int run_delalloc_nocow(struct inode *inode,
1029                                        struct page *locked_page,
1030                               u64 start, u64 end, int *page_started, int force,
1031                               unsigned long *nr_written)
1032 {
1033         struct btrfs_root *root = BTRFS_I(inode)->root;
1034         struct btrfs_trans_handle *trans;
1035         struct extent_buffer *leaf;
1036         struct btrfs_path *path;
1037         struct btrfs_file_extent_item *fi;
1038         struct btrfs_key found_key;
1039         u64 cow_start;
1040         u64 cur_offset;
1041         u64 extent_end;
1042         u64 extent_offset;
1043         u64 disk_bytenr;
1044         u64 num_bytes;
1045         int extent_type;
1046         int ret;
1047         int type;
1048         int nocow;
1049         int check_prev = 1;
1050         bool nolock = false;
1051
1052         path = btrfs_alloc_path();
1053         BUG_ON(!path);
1054         if (root == root->fs_info->tree_root) {
1055                 nolock = true;
1056                 trans = btrfs_join_transaction_nolock(root, 1);
1057         } else {
1058                 trans = btrfs_join_transaction(root, 1);
1059         }
1060         BUG_ON(IS_ERR(trans));
1061
1062         cow_start = (u64)-1;
1063         cur_offset = start;
1064         while (1) {
1065                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1066                                                cur_offset, 0);
1067                 BUG_ON(ret < 0);
1068                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1069                         leaf = path->nodes[0];
1070                         btrfs_item_key_to_cpu(leaf, &found_key,
1071                                               path->slots[0] - 1);
1072                         if (found_key.objectid == inode->i_ino &&
1073                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1074                                 path->slots[0]--;
1075                 }
1076                 check_prev = 0;
1077 next_slot:
1078                 leaf = path->nodes[0];
1079                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1080                         ret = btrfs_next_leaf(root, path);
1081                         if (ret < 0)
1082                                 BUG_ON(1);
1083                         if (ret > 0)
1084                                 break;
1085                         leaf = path->nodes[0];
1086                 }
1087
1088                 nocow = 0;
1089                 disk_bytenr = 0;
1090                 num_bytes = 0;
1091                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1092
1093                 if (found_key.objectid > inode->i_ino ||
1094                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1095                     found_key.offset > end)
1096                         break;
1097
1098                 if (found_key.offset > cur_offset) {
1099                         extent_end = found_key.offset;
1100                         extent_type = 0;
1101                         goto out_check;
1102                 }
1103
1104                 fi = btrfs_item_ptr(leaf, path->slots[0],
1105                                     struct btrfs_file_extent_item);
1106                 extent_type = btrfs_file_extent_type(leaf, fi);
1107
1108                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1109                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1110                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1111                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1112                         extent_end = found_key.offset +
1113                                 btrfs_file_extent_num_bytes(leaf, fi);
1114                         if (extent_end <= start) {
1115                                 path->slots[0]++;
1116                                 goto next_slot;
1117                         }
1118                         if (disk_bytenr == 0)
1119                                 goto out_check;
1120                         if (btrfs_file_extent_compression(leaf, fi) ||
1121                             btrfs_file_extent_encryption(leaf, fi) ||
1122                             btrfs_file_extent_other_encoding(leaf, fi))
1123                                 goto out_check;
1124                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1125                                 goto out_check;
1126                         if (btrfs_extent_readonly(root, disk_bytenr))
1127                                 goto out_check;
1128                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1129                                                   found_key.offset -
1130                                                   extent_offset, disk_bytenr))
1131                                 goto out_check;
1132                         disk_bytenr += extent_offset;
1133                         disk_bytenr += cur_offset - found_key.offset;
1134                         num_bytes = min(end + 1, extent_end) - cur_offset;
1135                         /*
1136                          * force cow if csum exists in the range.
1137                          * this ensure that csum for a given extent are
1138                          * either valid or do not exist.
1139                          */
1140                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1141                                 goto out_check;
1142                         nocow = 1;
1143                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1144                         extent_end = found_key.offset +
1145                                 btrfs_file_extent_inline_len(leaf, fi);
1146                         extent_end = ALIGN(extent_end, root->sectorsize);
1147                 } else {
1148                         BUG_ON(1);
1149                 }
1150 out_check:
1151                 if (extent_end <= start) {
1152                         path->slots[0]++;
1153                         goto next_slot;
1154                 }
1155                 if (!nocow) {
1156                         if (cow_start == (u64)-1)
1157                                 cow_start = cur_offset;
1158                         cur_offset = extent_end;
1159                         if (cur_offset > end)
1160                                 break;
1161                         path->slots[0]++;
1162                         goto next_slot;
1163                 }
1164
1165                 btrfs_release_path(root, path);
1166                 if (cow_start != (u64)-1) {
1167                         ret = cow_file_range(inode, locked_page, cow_start,
1168                                         found_key.offset - 1, page_started,
1169                                         nr_written, 1);
1170                         BUG_ON(ret);
1171                         cow_start = (u64)-1;
1172                 }
1173
1174                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1175                         struct extent_map *em;
1176                         struct extent_map_tree *em_tree;
1177                         em_tree = &BTRFS_I(inode)->extent_tree;
1178                         em = alloc_extent_map(GFP_NOFS);
1179                         BUG_ON(!em);
1180                         em->start = cur_offset;
1181                         em->orig_start = em->start;
1182                         em->len = num_bytes;
1183                         em->block_len = num_bytes;
1184                         em->block_start = disk_bytenr;
1185                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1186                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1187                         while (1) {
1188                                 write_lock(&em_tree->lock);
1189                                 ret = add_extent_mapping(em_tree, em);
1190                                 write_unlock(&em_tree->lock);
1191                                 if (ret != -EEXIST) {
1192                                         free_extent_map(em);
1193                                         break;
1194                                 }
1195                                 btrfs_drop_extent_cache(inode, em->start,
1196                                                 em->start + em->len - 1, 0);
1197                         }
1198                         type = BTRFS_ORDERED_PREALLOC;
1199                 } else {
1200                         type = BTRFS_ORDERED_NOCOW;
1201                 }
1202
1203                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1204                                                num_bytes, num_bytes, type);
1205                 BUG_ON(ret);
1206
1207                 if (root->root_key.objectid ==
1208                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1209                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1210                                                       num_bytes);
1211                         BUG_ON(ret);
1212                 }
1213
1214                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1215                                 cur_offset, cur_offset + num_bytes - 1,
1216                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1217                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1218                                 EXTENT_SET_PRIVATE2);
1219                 cur_offset = extent_end;
1220                 if (cur_offset > end)
1221                         break;
1222         }
1223         btrfs_release_path(root, path);
1224
1225         if (cur_offset <= end && cow_start == (u64)-1)
1226                 cow_start = cur_offset;
1227         if (cow_start != (u64)-1) {
1228                 ret = cow_file_range(inode, locked_page, cow_start, end,
1229                                      page_started, nr_written, 1);
1230                 BUG_ON(ret);
1231         }
1232
1233         if (nolock) {
1234                 ret = btrfs_end_transaction_nolock(trans, root);
1235                 BUG_ON(ret);
1236         } else {
1237                 ret = btrfs_end_transaction(trans, root);
1238                 BUG_ON(ret);
1239         }
1240         btrfs_free_path(path);
1241         return 0;
1242 }
1243
1244 /*
1245  * extent_io.c call back to do delayed allocation processing
1246  */
1247 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1248                               u64 start, u64 end, int *page_started,
1249                               unsigned long *nr_written)
1250 {
1251         int ret;
1252         struct btrfs_root *root = BTRFS_I(inode)->root;
1253
1254         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1255                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1256                                          page_started, 1, nr_written);
1257         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1258                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1259                                          page_started, 0, nr_written);
1260         else if (!btrfs_test_opt(root, COMPRESS) &&
1261                  !(BTRFS_I(inode)->force_compress) &&
1262                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1263                 ret = cow_file_range(inode, locked_page, start, end,
1264                                       page_started, nr_written, 1);
1265         else
1266                 ret = cow_file_range_async(inode, locked_page, start, end,
1267                                            page_started, nr_written);
1268         return ret;
1269 }
1270
1271 static int btrfs_split_extent_hook(struct inode *inode,
1272                                    struct extent_state *orig, u64 split)
1273 {
1274         /* not delalloc, ignore it */
1275         if (!(orig->state & EXTENT_DELALLOC))
1276                 return 0;
1277
1278         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1279         return 0;
1280 }
1281
1282 /*
1283  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1284  * extents so we can keep track of new extents that are just merged onto old
1285  * extents, such as when we are doing sequential writes, so we can properly
1286  * account for the metadata space we'll need.
1287  */
1288 static int btrfs_merge_extent_hook(struct inode *inode,
1289                                    struct extent_state *new,
1290                                    struct extent_state *other)
1291 {
1292         /* not delalloc, ignore it */
1293         if (!(other->state & EXTENT_DELALLOC))
1294                 return 0;
1295
1296         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1297         return 0;
1298 }
1299
1300 /*
1301  * extent_io.c set_bit_hook, used to track delayed allocation
1302  * bytes in this file, and to maintain the list of inodes that
1303  * have pending delalloc work to be done.
1304  */
1305 static int btrfs_set_bit_hook(struct inode *inode,
1306                               struct extent_state *state, int *bits)
1307 {
1308
1309         /*
1310          * set_bit and clear bit hooks normally require _irqsave/restore
1311          * but in this case, we are only testeing for the DELALLOC
1312          * bit, which is only set or cleared with irqs on
1313          */
1314         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1315                 struct btrfs_root *root = BTRFS_I(inode)->root;
1316                 u64 len = state->end + 1 - state->start;
1317                 int do_list = (root->root_key.objectid !=
1318                                BTRFS_ROOT_TREE_OBJECTID);
1319
1320                 if (*bits & EXTENT_FIRST_DELALLOC)
1321                         *bits &= ~EXTENT_FIRST_DELALLOC;
1322                 else
1323                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1324
1325                 spin_lock(&root->fs_info->delalloc_lock);
1326                 BTRFS_I(inode)->delalloc_bytes += len;
1327                 root->fs_info->delalloc_bytes += len;
1328                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1329                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1330                                       &root->fs_info->delalloc_inodes);
1331                 }
1332                 spin_unlock(&root->fs_info->delalloc_lock);
1333         }
1334         return 0;
1335 }
1336
1337 /*
1338  * extent_io.c clear_bit_hook, see set_bit_hook for why
1339  */
1340 static int btrfs_clear_bit_hook(struct inode *inode,
1341                                 struct extent_state *state, int *bits)
1342 {
1343         /*
1344          * set_bit and clear bit hooks normally require _irqsave/restore
1345          * but in this case, we are only testeing for the DELALLOC
1346          * bit, which is only set or cleared with irqs on
1347          */
1348         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1349                 struct btrfs_root *root = BTRFS_I(inode)->root;
1350                 u64 len = state->end + 1 - state->start;
1351                 int do_list = (root->root_key.objectid !=
1352                                BTRFS_ROOT_TREE_OBJECTID);
1353
1354                 if (*bits & EXTENT_FIRST_DELALLOC)
1355                         *bits &= ~EXTENT_FIRST_DELALLOC;
1356                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1357                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1358
1359                 if (*bits & EXTENT_DO_ACCOUNTING)
1360                         btrfs_delalloc_release_metadata(inode, len);
1361
1362                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1363                     && do_list)
1364                         btrfs_free_reserved_data_space(inode, len);
1365
1366                 spin_lock(&root->fs_info->delalloc_lock);
1367                 root->fs_info->delalloc_bytes -= len;
1368                 BTRFS_I(inode)->delalloc_bytes -= len;
1369
1370                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1371                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1372                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1373                 }
1374                 spin_unlock(&root->fs_info->delalloc_lock);
1375         }
1376         return 0;
1377 }
1378
1379 /*
1380  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1381  * we don't create bios that span stripes or chunks
1382  */
1383 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1384                          size_t size, struct bio *bio,
1385                          unsigned long bio_flags)
1386 {
1387         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1388         struct btrfs_mapping_tree *map_tree;
1389         u64 logical = (u64)bio->bi_sector << 9;
1390         u64 length = 0;
1391         u64 map_length;
1392         int ret;
1393
1394         if (bio_flags & EXTENT_BIO_COMPRESSED)
1395                 return 0;
1396
1397         length = bio->bi_size;
1398         map_tree = &root->fs_info->mapping_tree;
1399         map_length = length;
1400         ret = btrfs_map_block(map_tree, READ, logical,
1401                               &map_length, NULL, 0);
1402
1403         if (map_length < length + size)
1404                 return 1;
1405         return ret;
1406 }
1407
1408 /*
1409  * in order to insert checksums into the metadata in large chunks,
1410  * we wait until bio submission time.   All the pages in the bio are
1411  * checksummed and sums are attached onto the ordered extent record.
1412  *
1413  * At IO completion time the cums attached on the ordered extent record
1414  * are inserted into the btree
1415  */
1416 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1417                                     struct bio *bio, int mirror_num,
1418                                     unsigned long bio_flags,
1419                                     u64 bio_offset)
1420 {
1421         struct btrfs_root *root = BTRFS_I(inode)->root;
1422         int ret = 0;
1423
1424         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1425         BUG_ON(ret);
1426         return 0;
1427 }
1428
1429 /*
1430  * in order to insert checksums into the metadata in large chunks,
1431  * we wait until bio submission time.   All the pages in the bio are
1432  * checksummed and sums are attached onto the ordered extent record.
1433  *
1434  * At IO completion time the cums attached on the ordered extent record
1435  * are inserted into the btree
1436  */
1437 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1438                           int mirror_num, unsigned long bio_flags,
1439                           u64 bio_offset)
1440 {
1441         struct btrfs_root *root = BTRFS_I(inode)->root;
1442         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1443 }
1444
1445 /*
1446  * extent_io.c submission hook. This does the right thing for csum calculation
1447  * on write, or reading the csums from the tree before a read
1448  */
1449 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1450                           int mirror_num, unsigned long bio_flags,
1451                           u64 bio_offset)
1452 {
1453         struct btrfs_root *root = BTRFS_I(inode)->root;
1454         int ret = 0;
1455         int skip_sum;
1456
1457         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1458
1459         if (root == root->fs_info->tree_root)
1460                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1461         else
1462                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1463         BUG_ON(ret);
1464
1465         if (!(rw & REQ_WRITE)) {
1466                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1467                         return btrfs_submit_compressed_read(inode, bio,
1468                                                     mirror_num, bio_flags);
1469                 } else if (!skip_sum) {
1470                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1471                         if (ret)
1472                                 return ret;
1473                 }
1474                 goto mapit;
1475         } else if (!skip_sum) {
1476                 /* csum items have already been cloned */
1477                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1478                         goto mapit;
1479                 /* we're doing a write, do the async checksumming */
1480                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1481                                    inode, rw, bio, mirror_num,
1482                                    bio_flags, bio_offset,
1483                                    __btrfs_submit_bio_start,
1484                                    __btrfs_submit_bio_done);
1485         }
1486
1487 mapit:
1488         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1489 }
1490
1491 /*
1492  * given a list of ordered sums record them in the inode.  This happens
1493  * at IO completion time based on sums calculated at bio submission time.
1494  */
1495 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1496                              struct inode *inode, u64 file_offset,
1497                              struct list_head *list)
1498 {
1499         struct btrfs_ordered_sum *sum;
1500
1501         btrfs_set_trans_block_group(trans, inode);
1502
1503         list_for_each_entry(sum, list, list) {
1504                 btrfs_csum_file_blocks(trans,
1505                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1506         }
1507         return 0;
1508 }
1509
1510 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1511                               struct extent_state **cached_state)
1512 {
1513         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514                 WARN_ON(1);
1515         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516                                    cached_state, GFP_NOFS);
1517 }
1518
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521         struct page *page;
1522         struct btrfs_work work;
1523 };
1524
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1526 {
1527         struct btrfs_writepage_fixup *fixup;
1528         struct btrfs_ordered_extent *ordered;
1529         struct extent_state *cached_state = NULL;
1530         struct page *page;
1531         struct inode *inode;
1532         u64 page_start;
1533         u64 page_end;
1534
1535         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1536         page = fixup->page;
1537 again:
1538         lock_page(page);
1539         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1540                 ClearPageChecked(page);
1541                 goto out_page;
1542         }
1543
1544         inode = page->mapping->host;
1545         page_start = page_offset(page);
1546         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1547
1548         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1549                          &cached_state, GFP_NOFS);
1550
1551         /* already ordered? We're done */
1552         if (PagePrivate2(page))
1553                 goto out;
1554
1555         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1556         if (ordered) {
1557                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1558                                      page_end, &cached_state, GFP_NOFS);
1559                 unlock_page(page);
1560                 btrfs_start_ordered_extent(inode, ordered, 1);
1561                 goto again;
1562         }
1563
1564         BUG();
1565         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1566         ClearPageChecked(page);
1567 out:
1568         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1569                              &cached_state, GFP_NOFS);
1570 out_page:
1571         unlock_page(page);
1572         page_cache_release(page);
1573         kfree(fixup);
1574 }
1575
1576 /*
1577  * There are a few paths in the higher layers of the kernel that directly
1578  * set the page dirty bit without asking the filesystem if it is a
1579  * good idea.  This causes problems because we want to make sure COW
1580  * properly happens and the data=ordered rules are followed.
1581  *
1582  * In our case any range that doesn't have the ORDERED bit set
1583  * hasn't been properly setup for IO.  We kick off an async process
1584  * to fix it up.  The async helper will wait for ordered extents, set
1585  * the delalloc bit and make it safe to write the page.
1586  */
1587 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1588 {
1589         struct inode *inode = page->mapping->host;
1590         struct btrfs_writepage_fixup *fixup;
1591         struct btrfs_root *root = BTRFS_I(inode)->root;
1592
1593         /* this page is properly in the ordered list */
1594         if (TestClearPagePrivate2(page))
1595                 return 0;
1596
1597         if (PageChecked(page))
1598                 return -EAGAIN;
1599
1600         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1601         if (!fixup)
1602                 return -EAGAIN;
1603
1604         SetPageChecked(page);
1605         page_cache_get(page);
1606         fixup->work.func = btrfs_writepage_fixup_worker;
1607         fixup->page = page;
1608         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1609         return -EAGAIN;
1610 }
1611
1612 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1613                                        struct inode *inode, u64 file_pos,
1614                                        u64 disk_bytenr, u64 disk_num_bytes,
1615                                        u64 num_bytes, u64 ram_bytes,
1616                                        u8 compression, u8 encryption,
1617                                        u16 other_encoding, int extent_type)
1618 {
1619         struct btrfs_root *root = BTRFS_I(inode)->root;
1620         struct btrfs_file_extent_item *fi;
1621         struct btrfs_path *path;
1622         struct extent_buffer *leaf;
1623         struct btrfs_key ins;
1624         u64 hint;
1625         int ret;
1626
1627         path = btrfs_alloc_path();
1628         BUG_ON(!path);
1629
1630         path->leave_spinning = 1;
1631
1632         /*
1633          * we may be replacing one extent in the tree with another.
1634          * The new extent is pinned in the extent map, and we don't want
1635          * to drop it from the cache until it is completely in the btree.
1636          *
1637          * So, tell btrfs_drop_extents to leave this extent in the cache.
1638          * the caller is expected to unpin it and allow it to be merged
1639          * with the others.
1640          */
1641         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1642                                  &hint, 0);
1643         BUG_ON(ret);
1644
1645         ins.objectid = inode->i_ino;
1646         ins.offset = file_pos;
1647         ins.type = BTRFS_EXTENT_DATA_KEY;
1648         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1649         BUG_ON(ret);
1650         leaf = path->nodes[0];
1651         fi = btrfs_item_ptr(leaf, path->slots[0],
1652                             struct btrfs_file_extent_item);
1653         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1654         btrfs_set_file_extent_type(leaf, fi, extent_type);
1655         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1656         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1657         btrfs_set_file_extent_offset(leaf, fi, 0);
1658         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1659         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1660         btrfs_set_file_extent_compression(leaf, fi, compression);
1661         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1662         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1663
1664         btrfs_unlock_up_safe(path, 1);
1665         btrfs_set_lock_blocking(leaf);
1666
1667         btrfs_mark_buffer_dirty(leaf);
1668
1669         inode_add_bytes(inode, num_bytes);
1670
1671         ins.objectid = disk_bytenr;
1672         ins.offset = disk_num_bytes;
1673         ins.type = BTRFS_EXTENT_ITEM_KEY;
1674         ret = btrfs_alloc_reserved_file_extent(trans, root,
1675                                         root->root_key.objectid,
1676                                         inode->i_ino, file_pos, &ins);
1677         BUG_ON(ret);
1678         btrfs_free_path(path);
1679
1680         return 0;
1681 }
1682
1683 /*
1684  * helper function for btrfs_finish_ordered_io, this
1685  * just reads in some of the csum leaves to prime them into ram
1686  * before we start the transaction.  It limits the amount of btree
1687  * reads required while inside the transaction.
1688  */
1689 /* as ordered data IO finishes, this gets called so we can finish
1690  * an ordered extent if the range of bytes in the file it covers are
1691  * fully written.
1692  */
1693 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1694 {
1695         struct btrfs_root *root = BTRFS_I(inode)->root;
1696         struct btrfs_trans_handle *trans = NULL;
1697         struct btrfs_ordered_extent *ordered_extent = NULL;
1698         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1699         struct extent_state *cached_state = NULL;
1700         int compress_type = 0;
1701         int ret;
1702         bool nolock = false;
1703
1704         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1705                                              end - start + 1);
1706         if (!ret)
1707                 return 0;
1708         BUG_ON(!ordered_extent);
1709
1710         nolock = (root == root->fs_info->tree_root);
1711
1712         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1713                 BUG_ON(!list_empty(&ordered_extent->list));
1714                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715                 if (!ret) {
1716                         if (nolock)
1717                                 trans = btrfs_join_transaction_nolock(root, 1);
1718                         else
1719                                 trans = btrfs_join_transaction(root, 1);
1720                         BUG_ON(IS_ERR(trans));
1721                         btrfs_set_trans_block_group(trans, inode);
1722                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1723                         ret = btrfs_update_inode(trans, root, inode);
1724                         BUG_ON(ret);
1725                 }
1726                 goto out;
1727         }
1728
1729         lock_extent_bits(io_tree, ordered_extent->file_offset,
1730                          ordered_extent->file_offset + ordered_extent->len - 1,
1731                          0, &cached_state, GFP_NOFS);
1732
1733         if (nolock)
1734                 trans = btrfs_join_transaction_nolock(root, 1);
1735         else
1736                 trans = btrfs_join_transaction(root, 1);
1737         BUG_ON(IS_ERR(trans));
1738         btrfs_set_trans_block_group(trans, inode);
1739         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1740
1741         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1742                 compress_type = ordered_extent->compress_type;
1743         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1744                 BUG_ON(compress_type);
1745                 ret = btrfs_mark_extent_written(trans, inode,
1746                                                 ordered_extent->file_offset,
1747                                                 ordered_extent->file_offset +
1748                                                 ordered_extent->len);
1749                 BUG_ON(ret);
1750         } else {
1751                 BUG_ON(root == root->fs_info->tree_root);
1752                 ret = insert_reserved_file_extent(trans, inode,
1753                                                 ordered_extent->file_offset,
1754                                                 ordered_extent->start,
1755                                                 ordered_extent->disk_len,
1756                                                 ordered_extent->len,
1757                                                 ordered_extent->len,
1758                                                 compress_type, 0, 0,
1759                                                 BTRFS_FILE_EXTENT_REG);
1760                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1761                                    ordered_extent->file_offset,
1762                                    ordered_extent->len);
1763                 BUG_ON(ret);
1764         }
1765         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1766                              ordered_extent->file_offset +
1767                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1768
1769         add_pending_csums(trans, inode, ordered_extent->file_offset,
1770                           &ordered_extent->list);
1771
1772         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1773         ret = btrfs_update_inode(trans, root, inode);
1774         BUG_ON(ret);
1775 out:
1776         if (nolock) {
1777                 if (trans)
1778                         btrfs_end_transaction_nolock(trans, root);
1779         } else {
1780                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1781                 if (trans)
1782                         btrfs_end_transaction(trans, root);
1783         }
1784
1785         /* once for us */
1786         btrfs_put_ordered_extent(ordered_extent);
1787         /* once for the tree */
1788         btrfs_put_ordered_extent(ordered_extent);
1789
1790         return 0;
1791 }
1792
1793 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1794                                 struct extent_state *state, int uptodate)
1795 {
1796         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1797
1798         ClearPagePrivate2(page);
1799         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1800 }
1801
1802 /*
1803  * When IO fails, either with EIO or csum verification fails, we
1804  * try other mirrors that might have a good copy of the data.  This
1805  * io_failure_record is used to record state as we go through all the
1806  * mirrors.  If another mirror has good data, the page is set up to date
1807  * and things continue.  If a good mirror can't be found, the original
1808  * bio end_io callback is called to indicate things have failed.
1809  */
1810 struct io_failure_record {
1811         struct page *page;
1812         u64 start;
1813         u64 len;
1814         u64 logical;
1815         unsigned long bio_flags;
1816         int last_mirror;
1817 };
1818
1819 static int btrfs_io_failed_hook(struct bio *failed_bio,
1820                          struct page *page, u64 start, u64 end,
1821                          struct extent_state *state)
1822 {
1823         struct io_failure_record *failrec = NULL;
1824         u64 private;
1825         struct extent_map *em;
1826         struct inode *inode = page->mapping->host;
1827         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1828         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1829         struct bio *bio;
1830         int num_copies;
1831         int ret;
1832         int rw;
1833         u64 logical;
1834
1835         ret = get_state_private(failure_tree, start, &private);
1836         if (ret) {
1837                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1838                 if (!failrec)
1839                         return -ENOMEM;
1840                 failrec->start = start;
1841                 failrec->len = end - start + 1;
1842                 failrec->last_mirror = 0;
1843                 failrec->bio_flags = 0;
1844
1845                 read_lock(&em_tree->lock);
1846                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1847                 if (em->start > start || em->start + em->len < start) {
1848                         free_extent_map(em);
1849                         em = NULL;
1850                 }
1851                 read_unlock(&em_tree->lock);
1852
1853                 if (!em || IS_ERR(em)) {
1854                         kfree(failrec);
1855                         return -EIO;
1856                 }
1857                 logical = start - em->start;
1858                 logical = em->block_start + logical;
1859                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1860                         logical = em->block_start;
1861                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1862                         extent_set_compress_type(&failrec->bio_flags,
1863                                                  em->compress_type);
1864                 }
1865                 failrec->logical = logical;
1866                 free_extent_map(em);
1867                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1868                                 EXTENT_DIRTY, GFP_NOFS);
1869                 set_state_private(failure_tree, start,
1870                                  (u64)(unsigned long)failrec);
1871         } else {
1872                 failrec = (struct io_failure_record *)(unsigned long)private;
1873         }
1874         num_copies = btrfs_num_copies(
1875                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1876                               failrec->logical, failrec->len);
1877         failrec->last_mirror++;
1878         if (!state) {
1879                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1880                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1881                                                     failrec->start,
1882                                                     EXTENT_LOCKED);
1883                 if (state && state->start != failrec->start)
1884                         state = NULL;
1885                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1886         }
1887         if (!state || failrec->last_mirror > num_copies) {
1888                 set_state_private(failure_tree, failrec->start, 0);
1889                 clear_extent_bits(failure_tree, failrec->start,
1890                                   failrec->start + failrec->len - 1,
1891                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1892                 kfree(failrec);
1893                 return -EIO;
1894         }
1895         bio = bio_alloc(GFP_NOFS, 1);
1896         bio->bi_private = state;
1897         bio->bi_end_io = failed_bio->bi_end_io;
1898         bio->bi_sector = failrec->logical >> 9;
1899         bio->bi_bdev = failed_bio->bi_bdev;
1900         bio->bi_size = 0;
1901
1902         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1903         if (failed_bio->bi_rw & REQ_WRITE)
1904                 rw = WRITE;
1905         else
1906                 rw = READ;
1907
1908         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1909                                                       failrec->last_mirror,
1910                                                       failrec->bio_flags, 0);
1911         return ret;
1912 }
1913
1914 /*
1915  * each time an IO finishes, we do a fast check in the IO failure tree
1916  * to see if we need to process or clean up an io_failure_record
1917  */
1918 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1919 {
1920         u64 private;
1921         u64 private_failure;
1922         struct io_failure_record *failure;
1923         int ret;
1924
1925         private = 0;
1926         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1927                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1928                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1929                                         start, &private_failure);
1930                 if (ret == 0) {
1931                         failure = (struct io_failure_record *)(unsigned long)
1932                                    private_failure;
1933                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1934                                           failure->start, 0);
1935                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1936                                           failure->start,
1937                                           failure->start + failure->len - 1,
1938                                           EXTENT_DIRTY | EXTENT_LOCKED,
1939                                           GFP_NOFS);
1940                         kfree(failure);
1941                 }
1942         }
1943         return 0;
1944 }
1945
1946 /*
1947  * when reads are done, we need to check csums to verify the data is correct
1948  * if there's a match, we allow the bio to finish.  If not, we go through
1949  * the io_failure_record routines to find good copies
1950  */
1951 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1952                                struct extent_state *state)
1953 {
1954         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1955         struct inode *inode = page->mapping->host;
1956         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1957         char *kaddr;
1958         u64 private = ~(u32)0;
1959         int ret;
1960         struct btrfs_root *root = BTRFS_I(inode)->root;
1961         u32 csum = ~(u32)0;
1962
1963         if (PageChecked(page)) {
1964                 ClearPageChecked(page);
1965                 goto good;
1966         }
1967
1968         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1969                 return 0;
1970
1971         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1972             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1973                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1974                                   GFP_NOFS);
1975                 return 0;
1976         }
1977
1978         if (state && state->start == start) {
1979                 private = state->private;
1980                 ret = 0;
1981         } else {
1982                 ret = get_state_private(io_tree, start, &private);
1983         }
1984         kaddr = kmap_atomic(page, KM_USER0);
1985         if (ret)
1986                 goto zeroit;
1987
1988         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1989         btrfs_csum_final(csum, (char *)&csum);
1990         if (csum != private)
1991                 goto zeroit;
1992
1993         kunmap_atomic(kaddr, KM_USER0);
1994 good:
1995         /* if the io failure tree for this inode is non-empty,
1996          * check to see if we've recovered from a failed IO
1997          */
1998         btrfs_clean_io_failures(inode, start);
1999         return 0;
2000
2001 zeroit:
2002         if (printk_ratelimit()) {
2003                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2004                        "private %llu\n", page->mapping->host->i_ino,
2005                        (unsigned long long)start, csum,
2006                        (unsigned long long)private);
2007         }
2008         memset(kaddr + offset, 1, end - start + 1);
2009         flush_dcache_page(page);
2010         kunmap_atomic(kaddr, KM_USER0);
2011         if (private == 0)
2012                 return 0;
2013         return -EIO;
2014 }
2015
2016 struct delayed_iput {
2017         struct list_head list;
2018         struct inode *inode;
2019 };
2020
2021 void btrfs_add_delayed_iput(struct inode *inode)
2022 {
2023         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2024         struct delayed_iput *delayed;
2025
2026         if (atomic_add_unless(&inode->i_count, -1, 1))
2027                 return;
2028
2029         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2030         delayed->inode = inode;
2031
2032         spin_lock(&fs_info->delayed_iput_lock);
2033         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2034         spin_unlock(&fs_info->delayed_iput_lock);
2035 }
2036
2037 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2038 {
2039         LIST_HEAD(list);
2040         struct btrfs_fs_info *fs_info = root->fs_info;
2041         struct delayed_iput *delayed;
2042         int empty;
2043
2044         spin_lock(&fs_info->delayed_iput_lock);
2045         empty = list_empty(&fs_info->delayed_iputs);
2046         spin_unlock(&fs_info->delayed_iput_lock);
2047         if (empty)
2048                 return;
2049
2050         down_read(&root->fs_info->cleanup_work_sem);
2051         spin_lock(&fs_info->delayed_iput_lock);
2052         list_splice_init(&fs_info->delayed_iputs, &list);
2053         spin_unlock(&fs_info->delayed_iput_lock);
2054
2055         while (!list_empty(&list)) {
2056                 delayed = list_entry(list.next, struct delayed_iput, list);
2057                 list_del(&delayed->list);
2058                 iput(delayed->inode);
2059                 kfree(delayed);
2060         }
2061         up_read(&root->fs_info->cleanup_work_sem);
2062 }
2063
2064 /*
2065  * calculate extra metadata reservation when snapshotting a subvolume
2066  * contains orphan files.
2067  */
2068 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2069                                 struct btrfs_pending_snapshot *pending,
2070                                 u64 *bytes_to_reserve)
2071 {
2072         struct btrfs_root *root;
2073         struct btrfs_block_rsv *block_rsv;
2074         u64 num_bytes;
2075         int index;
2076
2077         root = pending->root;
2078         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079                 return;
2080
2081         block_rsv = root->orphan_block_rsv;
2082
2083         /* orphan block reservation for the snapshot */
2084         num_bytes = block_rsv->size;
2085
2086         /*
2087          * after the snapshot is created, COWing tree blocks may use more
2088          * space than it frees. So we should make sure there is enough
2089          * reserved space.
2090          */
2091         index = trans->transid & 0x1;
2092         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2093                 num_bytes += block_rsv->size -
2094                              (block_rsv->reserved + block_rsv->freed[index]);
2095         }
2096
2097         *bytes_to_reserve += num_bytes;
2098 }
2099
2100 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2101                                 struct btrfs_pending_snapshot *pending)
2102 {
2103         struct btrfs_root *root = pending->root;
2104         struct btrfs_root *snap = pending->snap;
2105         struct btrfs_block_rsv *block_rsv;
2106         u64 num_bytes;
2107         int index;
2108         int ret;
2109
2110         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2111                 return;
2112
2113         /* refill source subvolume's orphan block reservation */
2114         block_rsv = root->orphan_block_rsv;
2115         index = trans->transid & 0x1;
2116         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2117                 num_bytes = block_rsv->size -
2118                             (block_rsv->reserved + block_rsv->freed[index]);
2119                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120                                               root->orphan_block_rsv,
2121                                               num_bytes);
2122                 BUG_ON(ret);
2123         }
2124
2125         /* setup orphan block reservation for the snapshot */
2126         block_rsv = btrfs_alloc_block_rsv(snap);
2127         BUG_ON(!block_rsv);
2128
2129         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2130         snap->orphan_block_rsv = block_rsv;
2131
2132         num_bytes = root->orphan_block_rsv->size;
2133         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2134                                       block_rsv, num_bytes);
2135         BUG_ON(ret);
2136
2137 #if 0
2138         /* insert orphan item for the snapshot */
2139         WARN_ON(!root->orphan_item_inserted);
2140         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2141                                        snap->root_key.objectid);
2142         BUG_ON(ret);
2143         snap->orphan_item_inserted = 1;
2144 #endif
2145 }
2146
2147 enum btrfs_orphan_cleanup_state {
2148         ORPHAN_CLEANUP_STARTED  = 1,
2149         ORPHAN_CLEANUP_DONE     = 2,
2150 };
2151
2152 /*
2153  * This is called in transaction commmit time. If there are no orphan
2154  * files in the subvolume, it removes orphan item and frees block_rsv
2155  * structure.
2156  */
2157 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2158                               struct btrfs_root *root)
2159 {
2160         int ret;
2161
2162         if (!list_empty(&root->orphan_list) ||
2163             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2164                 return;
2165
2166         if (root->orphan_item_inserted &&
2167             btrfs_root_refs(&root->root_item) > 0) {
2168                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2169                                             root->root_key.objectid);
2170                 BUG_ON(ret);
2171                 root->orphan_item_inserted = 0;
2172         }
2173
2174         if (root->orphan_block_rsv) {
2175                 WARN_ON(root->orphan_block_rsv->size > 0);
2176                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2177                 root->orphan_block_rsv = NULL;
2178         }
2179 }
2180
2181 /*
2182  * This creates an orphan entry for the given inode in case something goes
2183  * wrong in the middle of an unlink/truncate.
2184  *
2185  * NOTE: caller of this function should reserve 5 units of metadata for
2186  *       this function.
2187  */
2188 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2189 {
2190         struct btrfs_root *root = BTRFS_I(inode)->root;
2191         struct btrfs_block_rsv *block_rsv = NULL;
2192         int reserve = 0;
2193         int insert = 0;
2194         int ret;
2195
2196         if (!root->orphan_block_rsv) {
2197                 block_rsv = btrfs_alloc_block_rsv(root);
2198                 BUG_ON(!block_rsv);
2199         }
2200
2201         spin_lock(&root->orphan_lock);
2202         if (!root->orphan_block_rsv) {
2203                 root->orphan_block_rsv = block_rsv;
2204         } else if (block_rsv) {
2205                 btrfs_free_block_rsv(root, block_rsv);
2206                 block_rsv = NULL;
2207         }
2208
2209         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2210                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2211 #if 0
2212                 /*
2213                  * For proper ENOSPC handling, we should do orphan
2214                  * cleanup when mounting. But this introduces backward
2215                  * compatibility issue.
2216                  */
2217                 if (!xchg(&root->orphan_item_inserted, 1))
2218                         insert = 2;
2219                 else
2220                         insert = 1;
2221 #endif
2222                 insert = 1;
2223         }
2224
2225         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2226                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2227                 reserve = 1;
2228         }
2229         spin_unlock(&root->orphan_lock);
2230
2231         if (block_rsv)
2232                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2233
2234         /* grab metadata reservation from transaction handle */
2235         if (reserve) {
2236                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2237                 BUG_ON(ret);
2238         }
2239
2240         /* insert an orphan item to track this unlinked/truncated file */
2241         if (insert >= 1) {
2242                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2243                 BUG_ON(ret);
2244         }
2245
2246         /* insert an orphan item to track subvolume contains orphan files */
2247         if (insert >= 2) {
2248                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2249                                                root->root_key.objectid);
2250                 BUG_ON(ret);
2251         }
2252         return 0;
2253 }
2254
2255 /*
2256  * We have done the truncate/delete so we can go ahead and remove the orphan
2257  * item for this particular inode.
2258  */
2259 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2260 {
2261         struct btrfs_root *root = BTRFS_I(inode)->root;
2262         int delete_item = 0;
2263         int release_rsv = 0;
2264         int ret = 0;
2265
2266         spin_lock(&root->orphan_lock);
2267         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2268                 list_del_init(&BTRFS_I(inode)->i_orphan);
2269                 delete_item = 1;
2270         }
2271
2272         if (BTRFS_I(inode)->orphan_meta_reserved) {
2273                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2274                 release_rsv = 1;
2275         }
2276         spin_unlock(&root->orphan_lock);
2277
2278         if (trans && delete_item) {
2279                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2280                 BUG_ON(ret);
2281         }
2282
2283         if (release_rsv)
2284                 btrfs_orphan_release_metadata(inode);
2285
2286         return 0;
2287 }
2288
2289 /*
2290  * this cleans up any orphans that may be left on the list from the last use
2291  * of this root.
2292  */
2293 int btrfs_orphan_cleanup(struct btrfs_root *root)
2294 {
2295         struct btrfs_path *path;
2296         struct extent_buffer *leaf;
2297         struct btrfs_key key, found_key;
2298         struct btrfs_trans_handle *trans;
2299         struct inode *inode;
2300         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2301
2302         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2303                 return 0;
2304
2305         path = btrfs_alloc_path();
2306         if (!path) {
2307                 ret = -ENOMEM;
2308                 goto out;
2309         }
2310         path->reada = -1;
2311
2312         key.objectid = BTRFS_ORPHAN_OBJECTID;
2313         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2314         key.offset = (u64)-1;
2315
2316         while (1) {
2317                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2318                 if (ret < 0)
2319                         goto out;
2320
2321                 /*
2322                  * if ret == 0 means we found what we were searching for, which
2323                  * is weird, but possible, so only screw with path if we didnt
2324                  * find the key and see if we have stuff that matches
2325                  */
2326                 if (ret > 0) {
2327                         ret = 0;
2328                         if (path->slots[0] == 0)
2329                                 break;
2330                         path->slots[0]--;
2331                 }
2332
2333                 /* pull out the item */
2334                 leaf = path->nodes[0];
2335                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2336
2337                 /* make sure the item matches what we want */
2338                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2339                         break;
2340                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2341                         break;
2342
2343                 /* release the path since we're done with it */
2344                 btrfs_release_path(root, path);
2345
2346                 /*
2347                  * this is where we are basically btrfs_lookup, without the
2348                  * crossing root thing.  we store the inode number in the
2349                  * offset of the orphan item.
2350                  */
2351                 found_key.objectid = found_key.offset;
2352                 found_key.type = BTRFS_INODE_ITEM_KEY;
2353                 found_key.offset = 0;
2354                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2355                 if (IS_ERR(inode)) {
2356                         ret = PTR_ERR(inode);
2357                         goto out;
2358                 }
2359
2360                 /*
2361                  * add this inode to the orphan list so btrfs_orphan_del does
2362                  * the proper thing when we hit it
2363                  */
2364                 spin_lock(&root->orphan_lock);
2365                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2366                 spin_unlock(&root->orphan_lock);
2367
2368                 /*
2369                  * if this is a bad inode, means we actually succeeded in
2370                  * removing the inode, but not the orphan record, which means
2371                  * we need to manually delete the orphan since iput will just
2372                  * do a destroy_inode
2373                  */
2374                 if (is_bad_inode(inode)) {
2375                         trans = btrfs_start_transaction(root, 0);
2376                         if (IS_ERR(trans)) {
2377                                 ret = PTR_ERR(trans);
2378                                 goto out;
2379                         }
2380                         btrfs_orphan_del(trans, inode);
2381                         btrfs_end_transaction(trans, root);
2382                         iput(inode);
2383                         continue;
2384                 }
2385
2386                 /* if we have links, this was a truncate, lets do that */
2387                 if (inode->i_nlink) {
2388                         if (!S_ISREG(inode->i_mode)) {
2389                                 WARN_ON(1);
2390                                 iput(inode);
2391                                 continue;
2392                         }
2393                         nr_truncate++;
2394                         ret = btrfs_truncate(inode);
2395                 } else {
2396                         nr_unlink++;
2397                 }
2398
2399                 /* this will do delete_inode and everything for us */
2400                 iput(inode);
2401                 if (ret)
2402                         goto out;
2403         }
2404         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2405
2406         if (root->orphan_block_rsv)
2407                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2408                                         (u64)-1);
2409
2410         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2411                 trans = btrfs_join_transaction(root, 1);
2412                 if (!IS_ERR(trans))
2413                         btrfs_end_transaction(trans, root);
2414         }
2415
2416         if (nr_unlink)
2417                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2418         if (nr_truncate)
2419                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2420
2421 out:
2422         if (ret)
2423                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2424         btrfs_free_path(path);
2425         return ret;
2426 }
2427
2428 /*
2429  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2430  * don't find any xattrs, we know there can't be any acls.
2431  *
2432  * slot is the slot the inode is in, objectid is the objectid of the inode
2433  */
2434 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2435                                           int slot, u64 objectid)
2436 {
2437         u32 nritems = btrfs_header_nritems(leaf);
2438         struct btrfs_key found_key;
2439         int scanned = 0;
2440
2441         slot++;
2442         while (slot < nritems) {
2443                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2444
2445                 /* we found a different objectid, there must not be acls */
2446                 if (found_key.objectid != objectid)
2447                         return 0;
2448
2449                 /* we found an xattr, assume we've got an acl */
2450                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2451                         return 1;
2452
2453                 /*
2454                  * we found a key greater than an xattr key, there can't
2455                  * be any acls later on
2456                  */
2457                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2458                         return 0;
2459
2460                 slot++;
2461                 scanned++;
2462
2463                 /*
2464                  * it goes inode, inode backrefs, xattrs, extents,
2465                  * so if there are a ton of hard links to an inode there can
2466                  * be a lot of backrefs.  Don't waste time searching too hard,
2467                  * this is just an optimization
2468                  */
2469                 if (scanned >= 8)
2470                         break;
2471         }
2472         /* we hit the end of the leaf before we found an xattr or
2473          * something larger than an xattr.  We have to assume the inode
2474          * has acls
2475          */
2476         return 1;
2477 }
2478
2479 /*
2480  * read an inode from the btree into the in-memory inode
2481  */
2482 static void btrfs_read_locked_inode(struct inode *inode)
2483 {
2484         struct btrfs_path *path;
2485         struct extent_buffer *leaf;
2486         struct btrfs_inode_item *inode_item;
2487         struct btrfs_timespec *tspec;
2488         struct btrfs_root *root = BTRFS_I(inode)->root;
2489         struct btrfs_key location;
2490         int maybe_acls;
2491         u64 alloc_group_block;
2492         u32 rdev;
2493         int ret;
2494
2495         path = btrfs_alloc_path();
2496         BUG_ON(!path);
2497         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2498
2499         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2500         if (ret)
2501                 goto make_bad;
2502
2503         leaf = path->nodes[0];
2504         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2505                                     struct btrfs_inode_item);
2506
2507         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2508         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2509         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2510         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2511         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2512
2513         tspec = btrfs_inode_atime(inode_item);
2514         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2515         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2516
2517         tspec = btrfs_inode_mtime(inode_item);
2518         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
2521         tspec = btrfs_inode_ctime(inode_item);
2522         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524
2525         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2526         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2527         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2528         inode->i_generation = BTRFS_I(inode)->generation;
2529         inode->i_rdev = 0;
2530         rdev = btrfs_inode_rdev(leaf, inode_item);
2531
2532         BTRFS_I(inode)->index_cnt = (u64)-1;
2533         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2534
2535         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2536
2537         /*
2538          * try to precache a NULL acl entry for files that don't have
2539          * any xattrs or acls
2540          */
2541         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2542         if (!maybe_acls)
2543                 cache_no_acl(inode);
2544
2545         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2546                                                 alloc_group_block, 0);
2547         btrfs_free_path(path);
2548         inode_item = NULL;
2549
2550         switch (inode->i_mode & S_IFMT) {
2551         case S_IFREG:
2552                 inode->i_mapping->a_ops = &btrfs_aops;
2553                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2554                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2555                 inode->i_fop = &btrfs_file_operations;
2556                 inode->i_op = &btrfs_file_inode_operations;
2557                 break;
2558         case S_IFDIR:
2559                 inode->i_fop = &btrfs_dir_file_operations;
2560                 if (root == root->fs_info->tree_root)
2561                         inode->i_op = &btrfs_dir_ro_inode_operations;
2562                 else
2563                         inode->i_op = &btrfs_dir_inode_operations;
2564                 break;
2565         case S_IFLNK:
2566                 inode->i_op = &btrfs_symlink_inode_operations;
2567                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2568                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2569                 break;
2570         default:
2571                 inode->i_op = &btrfs_special_inode_operations;
2572                 init_special_inode(inode, inode->i_mode, rdev);
2573                 break;
2574         }
2575
2576         btrfs_update_iflags(inode);
2577         return;
2578
2579 make_bad:
2580         btrfs_free_path(path);
2581         make_bad_inode(inode);
2582 }
2583
2584 /*
2585  * given a leaf and an inode, copy the inode fields into the leaf
2586  */
2587 static void fill_inode_item(struct btrfs_trans_handle *trans,
2588                             struct extent_buffer *leaf,
2589                             struct btrfs_inode_item *item,
2590                             struct inode *inode)
2591 {
2592         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2593         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2594         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2595         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2596         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2597
2598         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2599                                inode->i_atime.tv_sec);
2600         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2601                                 inode->i_atime.tv_nsec);
2602
2603         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2604                                inode->i_mtime.tv_sec);
2605         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2606                                 inode->i_mtime.tv_nsec);
2607
2608         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2609                                inode->i_ctime.tv_sec);
2610         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2611                                 inode->i_ctime.tv_nsec);
2612
2613         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2614         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2615         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2616         btrfs_set_inode_transid(leaf, item, trans->transid);
2617         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2618         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2619         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2620 }
2621
2622 /*
2623  * copy everything in the in-memory inode into the btree.
2624  */
2625 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2626                                 struct btrfs_root *root, struct inode *inode)
2627 {
2628         struct btrfs_inode_item *inode_item;
2629         struct btrfs_path *path;
2630         struct extent_buffer *leaf;
2631         int ret;
2632
2633         path = btrfs_alloc_path();
2634         BUG_ON(!path);
2635         path->leave_spinning = 1;
2636         ret = btrfs_lookup_inode(trans, root, path,
2637                                  &BTRFS_I(inode)->location, 1);
2638         if (ret) {
2639                 if (ret > 0)
2640                         ret = -ENOENT;
2641                 goto failed;
2642         }
2643
2644         btrfs_unlock_up_safe(path, 1);
2645         leaf = path->nodes[0];
2646         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2647                                   struct btrfs_inode_item);
2648
2649         fill_inode_item(trans, leaf, inode_item, inode);
2650         btrfs_mark_buffer_dirty(leaf);
2651         btrfs_set_inode_last_trans(trans, inode);
2652         ret = 0;
2653 failed:
2654         btrfs_free_path(path);
2655         return ret;
2656 }
2657
2658
2659 /*
2660  * unlink helper that gets used here in inode.c and in the tree logging
2661  * recovery code.  It remove a link in a directory with a given name, and
2662  * also drops the back refs in the inode to the directory
2663  */
2664 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2665                                 struct btrfs_root *root,
2666                                 struct inode *dir, struct inode *inode,
2667                                 const char *name, int name_len)
2668 {
2669         struct btrfs_path *path;
2670         int ret = 0;
2671         struct extent_buffer *leaf;
2672         struct btrfs_dir_item *di;
2673         struct btrfs_key key;
2674         u64 index;
2675
2676         path = btrfs_alloc_path();
2677         if (!path) {
2678                 ret = -ENOMEM;
2679                 goto out;
2680         }
2681
2682         path->leave_spinning = 1;
2683         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2684                                     name, name_len, -1);
2685         if (IS_ERR(di)) {
2686                 ret = PTR_ERR(di);
2687                 goto err;
2688         }
2689         if (!di) {
2690                 ret = -ENOENT;
2691                 goto err;
2692         }
2693         leaf = path->nodes[0];
2694         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2695         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2696         if (ret)
2697                 goto err;
2698         btrfs_release_path(root, path);
2699
2700         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2701                                   inode->i_ino,
2702                                   dir->i_ino, &index);
2703         if (ret) {
2704                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2705                        "inode %lu parent %lu\n", name_len, name,
2706                        inode->i_ino, dir->i_ino);
2707                 goto err;
2708         }
2709
2710         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2711                                          index, name, name_len, -1);
2712         if (IS_ERR(di)) {
2713                 ret = PTR_ERR(di);
2714                 goto err;
2715         }
2716         if (!di) {
2717                 ret = -ENOENT;
2718                 goto err;
2719         }
2720         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2721         btrfs_release_path(root, path);
2722
2723         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2724                                          inode, dir->i_ino);
2725         BUG_ON(ret != 0 && ret != -ENOENT);
2726
2727         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2728                                            dir, index);
2729         if (ret == -ENOENT)
2730                 ret = 0;
2731 err:
2732         btrfs_free_path(path);
2733         if (ret)
2734                 goto out;
2735
2736         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2737         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2738         btrfs_update_inode(trans, root, dir);
2739 out:
2740         return ret;
2741 }
2742
2743 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2744                        struct btrfs_root *root,
2745                        struct inode *dir, struct inode *inode,
2746                        const char *name, int name_len)
2747 {
2748         int ret;
2749         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2750         if (!ret) {
2751                 btrfs_drop_nlink(inode);
2752                 ret = btrfs_update_inode(trans, root, inode);
2753         }
2754         return ret;
2755 }
2756                 
2757
2758 /* helper to check if there is any shared block in the path */
2759 static int check_path_shared(struct btrfs_root *root,
2760                              struct btrfs_path *path)
2761 {
2762         struct extent_buffer *eb;
2763         int level;
2764         u64 refs = 1;
2765
2766         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2767                 int ret;
2768
2769                 if (!path->nodes[level])
2770                         break;
2771                 eb = path->nodes[level];
2772                 if (!btrfs_block_can_be_shared(root, eb))
2773                         continue;
2774                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2775                                                &refs, NULL);
2776                 if (refs > 1)
2777                         return 1;
2778         }
2779         return 0;
2780 }
2781
2782 /*
2783  * helper to start transaction for unlink and rmdir.
2784  *
2785  * unlink and rmdir are special in btrfs, they do not always free space.
2786  * so in enospc case, we should make sure they will free space before
2787  * allowing them to use the global metadata reservation.
2788  */
2789 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2790                                                        struct dentry *dentry)
2791 {
2792         struct btrfs_trans_handle *trans;
2793         struct btrfs_root *root = BTRFS_I(dir)->root;
2794         struct btrfs_path *path;
2795         struct btrfs_inode_ref *ref;
2796         struct btrfs_dir_item *di;
2797         struct inode *inode = dentry->d_inode;
2798         u64 index;
2799         int check_link = 1;
2800         int err = -ENOSPC;
2801         int ret;
2802
2803         trans = btrfs_start_transaction(root, 10);
2804         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2805                 return trans;
2806
2807         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2808                 return ERR_PTR(-ENOSPC);
2809
2810         /* check if there is someone else holds reference */
2811         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2812                 return ERR_PTR(-ENOSPC);
2813
2814         if (atomic_read(&inode->i_count) > 2)
2815                 return ERR_PTR(-ENOSPC);
2816
2817         if (xchg(&root->fs_info->enospc_unlink, 1))
2818                 return ERR_PTR(-ENOSPC);
2819
2820         path = btrfs_alloc_path();
2821         if (!path) {
2822                 root->fs_info->enospc_unlink = 0;
2823                 return ERR_PTR(-ENOMEM);
2824         }
2825
2826         trans = btrfs_start_transaction(root, 0);
2827         if (IS_ERR(trans)) {
2828                 btrfs_free_path(path);
2829                 root->fs_info->enospc_unlink = 0;
2830                 return trans;
2831         }
2832
2833         path->skip_locking = 1;
2834         path->search_commit_root = 1;
2835
2836         ret = btrfs_lookup_inode(trans, root, path,
2837                                 &BTRFS_I(dir)->location, 0);
2838         if (ret < 0) {
2839                 err = ret;
2840                 goto out;
2841         }
2842         if (ret == 0) {
2843                 if (check_path_shared(root, path))
2844                         goto out;
2845         } else {
2846                 check_link = 0;
2847         }
2848         btrfs_release_path(root, path);
2849
2850         ret = btrfs_lookup_inode(trans, root, path,
2851                                 &BTRFS_I(inode)->location, 0);
2852         if (ret < 0) {
2853                 err = ret;
2854                 goto out;
2855         }
2856         if (ret == 0) {
2857                 if (check_path_shared(root, path))
2858                         goto out;
2859         } else {
2860                 check_link = 0;
2861         }
2862         btrfs_release_path(root, path);
2863
2864         if (ret == 0 && S_ISREG(inode->i_mode)) {
2865                 ret = btrfs_lookup_file_extent(trans, root, path,
2866                                                inode->i_ino, (u64)-1, 0);
2867                 if (ret < 0) {
2868                         err = ret;
2869                         goto out;
2870                 }
2871                 BUG_ON(ret == 0);
2872                 if (check_path_shared(root, path))
2873                         goto out;
2874                 btrfs_release_path(root, path);
2875         }
2876
2877         if (!check_link) {
2878                 err = 0;
2879                 goto out;
2880         }
2881
2882         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2883                                 dentry->d_name.name, dentry->d_name.len, 0);
2884         if (IS_ERR(di)) {
2885                 err = PTR_ERR(di);
2886                 goto out;
2887         }
2888         if (di) {
2889                 if (check_path_shared(root, path))
2890                         goto out;
2891         } else {
2892                 err = 0;
2893                 goto out;
2894         }
2895         btrfs_release_path(root, path);
2896
2897         ref = btrfs_lookup_inode_ref(trans, root, path,
2898                                 dentry->d_name.name, dentry->d_name.len,
2899                                 inode->i_ino, dir->i_ino, 0);
2900         if (IS_ERR(ref)) {
2901                 err = PTR_ERR(ref);
2902                 goto out;
2903         }
2904         BUG_ON(!ref);
2905         if (check_path_shared(root, path))
2906                 goto out;
2907         index = btrfs_inode_ref_index(path->nodes[0], ref);
2908         btrfs_release_path(root, path);
2909
2910         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2911                                 dentry->d_name.name, dentry->d_name.len, 0);
2912         if (IS_ERR(di)) {
2913                 err = PTR_ERR(di);
2914                 goto out;
2915         }
2916         BUG_ON(ret == -ENOENT);
2917         if (check_path_shared(root, path))
2918                 goto out;
2919
2920         err = 0;
2921 out:
2922         btrfs_free_path(path);
2923         if (err) {
2924                 btrfs_end_transaction(trans, root);
2925                 root->fs_info->enospc_unlink = 0;
2926                 return ERR_PTR(err);
2927         }
2928
2929         trans->block_rsv = &root->fs_info->global_block_rsv;
2930         return trans;
2931 }
2932
2933 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2934                                struct btrfs_root *root)
2935 {
2936         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2937                 BUG_ON(!root->fs_info->enospc_unlink);
2938                 root->fs_info->enospc_unlink = 0;
2939         }
2940         btrfs_end_transaction_throttle(trans, root);
2941 }
2942
2943 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2944 {
2945         struct btrfs_root *root = BTRFS_I(dir)->root;
2946         struct btrfs_trans_handle *trans;
2947         struct inode *inode = dentry->d_inode;
2948         int ret;
2949         unsigned long nr = 0;
2950
2951         trans = __unlink_start_trans(dir, dentry);
2952         if (IS_ERR(trans))
2953                 return PTR_ERR(trans);
2954
2955         btrfs_set_trans_block_group(trans, dir);
2956
2957         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2958
2959         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2960                                  dentry->d_name.name, dentry->d_name.len);
2961         BUG_ON(ret);
2962
2963         if (inode->i_nlink == 0) {
2964                 ret = btrfs_orphan_add(trans, inode);
2965                 BUG_ON(ret);
2966         }
2967
2968         nr = trans->blocks_used;
2969         __unlink_end_trans(trans, root);
2970         btrfs_btree_balance_dirty(root, nr);
2971         return ret;
2972 }
2973
2974 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2975                         struct btrfs_root *root,
2976                         struct inode *dir, u64 objectid,
2977                         const char *name, int name_len)
2978 {
2979         struct btrfs_path *path;
2980         struct extent_buffer *leaf;
2981         struct btrfs_dir_item *di;
2982         struct btrfs_key key;
2983         u64 index;
2984         int ret;
2985
2986         path = btrfs_alloc_path();
2987         if (!path)
2988                 return -ENOMEM;
2989
2990         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2991                                    name, name_len, -1);
2992         BUG_ON(!di || IS_ERR(di));
2993
2994         leaf = path->nodes[0];
2995         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2996         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2997         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2998         BUG_ON(ret);
2999         btrfs_release_path(root, path);
3000
3001         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3002                                  objectid, root->root_key.objectid,
3003                                  dir->i_ino, &index, name, name_len);
3004         if (ret < 0) {
3005                 BUG_ON(ret != -ENOENT);
3006                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3007                                                  name, name_len);
3008                 BUG_ON(!di || IS_ERR(di));
3009
3010                 leaf = path->nodes[0];
3011                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3012                 btrfs_release_path(root, path);
3013                 index = key.offset;
3014         }
3015
3016         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3017                                          index, name, name_len, -1);
3018         BUG_ON(!di || IS_ERR(di));
3019
3020         leaf = path->nodes[0];
3021         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3022         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3023         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3024         BUG_ON(ret);
3025         btrfs_release_path(root, path);
3026
3027         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3028         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3029         ret = btrfs_update_inode(trans, root, dir);
3030         BUG_ON(ret);
3031
3032         btrfs_free_path(path);
3033         return 0;
3034 }
3035
3036 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3037 {
3038         struct inode *inode = dentry->d_inode;
3039         int err = 0;
3040         struct btrfs_root *root = BTRFS_I(dir)->root;
3041         struct btrfs_trans_handle *trans;
3042         unsigned long nr = 0;
3043
3044         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3045             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3046                 return -ENOTEMPTY;
3047
3048         trans = __unlink_start_trans(dir, dentry);
3049         if (IS_ERR(trans))
3050                 return PTR_ERR(trans);
3051
3052         btrfs_set_trans_block_group(trans, dir);
3053
3054         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3055                 err = btrfs_unlink_subvol(trans, root, dir,
3056                                           BTRFS_I(inode)->location.objectid,
3057                                           dentry->d_name.name,
3058                                           dentry->d_name.len);
3059                 goto out;
3060         }
3061
3062         err = btrfs_orphan_add(trans, inode);
3063         if (err)
3064                 goto out;
3065
3066         /* now the directory is empty */
3067         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3068                                  dentry->d_name.name, dentry->d_name.len);
3069         if (!err)
3070                 btrfs_i_size_write(inode, 0);
3071 out:
3072         nr = trans->blocks_used;
3073         __unlink_end_trans(trans, root);
3074         btrfs_btree_balance_dirty(root, nr);
3075
3076         return err;
3077 }
3078
3079 #if 0
3080 /*
3081  * when truncating bytes in a file, it is possible to avoid reading
3082  * the leaves that contain only checksum items.  This can be the
3083  * majority of the IO required to delete a large file, but it must
3084  * be done carefully.
3085  *
3086  * The keys in the level just above the leaves are checked to make sure
3087  * the lowest key in a given leaf is a csum key, and starts at an offset
3088  * after the new  size.
3089  *
3090  * Then the key for the next leaf is checked to make sure it also has
3091  * a checksum item for the same file.  If it does, we know our target leaf
3092  * contains only checksum items, and it can be safely freed without reading
3093  * it.
3094  *
3095  * This is just an optimization targeted at large files.  It may do
3096  * nothing.  It will return 0 unless things went badly.
3097  */
3098 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3099                                      struct btrfs_root *root,
3100                                      struct btrfs_path *path,
3101                                      struct inode *inode, u64 new_size)
3102 {
3103         struct btrfs_key key;
3104         int ret;
3105         int nritems;
3106         struct btrfs_key found_key;
3107         struct btrfs_key other_key;
3108         struct btrfs_leaf_ref *ref;
3109         u64 leaf_gen;
3110         u64 leaf_start;
3111
3112         path->lowest_level = 1;
3113         key.objectid = inode->i_ino;
3114         key.type = BTRFS_CSUM_ITEM_KEY;
3115         key.offset = new_size;
3116 again:
3117         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3118         if (ret < 0)
3119                 goto out;
3120
3121         if (path->nodes[1] == NULL) {
3122                 ret = 0;
3123                 goto out;
3124         }
3125         ret = 0;
3126         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3127         nritems = btrfs_header_nritems(path->nodes[1]);
3128
3129         if (!nritems)
3130                 goto out;
3131
3132         if (path->slots[1] >= nritems)
3133                 goto next_node;
3134
3135         /* did we find a key greater than anything we want to delete? */
3136         if (found_key.objectid > inode->i_ino ||
3137            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3138                 goto out;
3139
3140         /* we check the next key in the node to make sure the leave contains
3141          * only checksum items.  This comparison doesn't work if our
3142          * leaf is the last one in the node
3143          */
3144         if (path->slots[1] + 1 >= nritems) {
3145 next_node:
3146                 /* search forward from the last key in the node, this
3147                  * will bring us into the next node in the tree
3148                  */
3149                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3150
3151                 /* unlikely, but we inc below, so check to be safe */
3152                 if (found_key.offset == (u64)-1)
3153                         goto out;
3154
3155                 /* search_forward needs a path with locks held, do the
3156                  * search again for the original key.  It is possible
3157                  * this will race with a balance and return a path that
3158                  * we could modify, but this drop is just an optimization
3159                  * and is allowed to miss some leaves.
3160                  */
3161                 btrfs_release_path(root, path);
3162                 found_key.offset++;
3163
3164                 /* setup a max key for search_forward */
3165                 other_key.offset = (u64)-1;
3166                 other_key.type = key.type;
3167                 other_key.objectid = key.objectid;
3168
3169                 path->keep_locks = 1;
3170                 ret = btrfs_search_forward(root, &found_key, &other_key,
3171                                            path, 0, 0);
3172                 path->keep_locks = 0;
3173                 if (ret || found_key.objectid != key.objectid ||
3174                     found_key.type != key.type) {
3175                         ret = 0;
3176                         goto out;
3177                 }
3178
3179                 key.offset = found_key.offset;
3180                 btrfs_release_path(root, path);
3181                 cond_resched();
3182                 goto again;
3183         }
3184
3185         /* we know there's one more slot after us in the tree,
3186          * read that key so we can verify it is also a checksum item
3187          */
3188         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3189
3190         if (found_key.objectid < inode->i_ino)
3191                 goto next_key;
3192
3193         if (found_key.type != key.type || found_key.offset < new_size)
3194                 goto next_key;
3195
3196         /*
3197          * if the key for the next leaf isn't a csum key from this objectid,
3198          * we can't be sure there aren't good items inside this leaf.
3199          * Bail out
3200          */
3201         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3202                 goto out;
3203
3204         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3205         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3206         /*
3207          * it is safe to delete this leaf, it contains only
3208          * csum items from this inode at an offset >= new_size
3209          */
3210         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3211         BUG_ON(ret);
3212
3213         if (root->ref_cows && leaf_gen < trans->transid) {
3214                 ref = btrfs_alloc_leaf_ref(root, 0);
3215                 if (ref) {
3216                         ref->root_gen = root->root_key.offset;
3217                         ref->bytenr = leaf_start;
3218                         ref->owner = 0;
3219                         ref->generation = leaf_gen;
3220                         ref->nritems = 0;
3221
3222                         btrfs_sort_leaf_ref(ref);
3223
3224                         ret = btrfs_add_leaf_ref(root, ref, 0);
3225                         WARN_ON(ret);
3226                         btrfs_free_leaf_ref(root, ref);
3227                 } else {
3228                         WARN_ON(1);
3229                 }
3230         }
3231 next_key:
3232         btrfs_release_path(root, path);
3233
3234         if (other_key.objectid == inode->i_ino &&
3235             other_key.type == key.type && other_key.offset > key.offset) {
3236                 key.offset = other_key.offset;
3237                 cond_resched();
3238                 goto again;
3239         }
3240         ret = 0;
3241 out:
3242         /* fixup any changes we've made to the path */
3243         path->lowest_level = 0;
3244         path->keep_locks = 0;
3245         btrfs_release_path(root, path);
3246         return ret;
3247 }
3248
3249 #endif
3250
3251 /*
3252  * this can truncate away extent items, csum items and directory items.
3253  * It starts at a high offset and removes keys until it can't find
3254  * any higher than new_size
3255  *
3256  * csum items that cross the new i_size are truncated to the new size
3257  * as well.
3258  *
3259  * min_type is the minimum key type to truncate down to.  If set to 0, this
3260  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3261  */
3262 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3263                                struct btrfs_root *root,
3264                                struct inode *inode,
3265                                u64 new_size, u32 min_type)
3266 {
3267         struct btrfs_path *path;
3268         struct extent_buffer *leaf;
3269         struct btrfs_file_extent_item *fi;
3270         struct btrfs_key key;
3271         struct btrfs_key found_key;
3272         u64 extent_start = 0;
3273         u64 extent_num_bytes = 0;
3274         u64 extent_offset = 0;
3275         u64 item_end = 0;
3276         u64 mask = root->sectorsize - 1;
3277         u32 found_type = (u8)-1;
3278         int found_extent;
3279         int del_item;
3280         int pending_del_nr = 0;
3281         int pending_del_slot = 0;
3282         int extent_type = -1;
3283         int encoding;
3284         int ret;
3285         int err = 0;
3286
3287         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3288
3289         if (root->ref_cows || root == root->fs_info->tree_root)
3290                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3291
3292         path = btrfs_alloc_path();
3293         BUG_ON(!path);
3294         path->reada = -1;
3295
3296         key.objectid = inode->i_ino;
3297         key.offset = (u64)-1;
3298         key.type = (u8)-1;
3299
3300 search_again:
3301         path->leave_spinning = 1;
3302         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3303         if (ret < 0) {
3304                 err = ret;
3305                 goto out;
3306         }
3307
3308         if (ret > 0) {
3309                 /* there are no items in the tree for us to truncate, we're
3310                  * done
3311                  */
3312                 if (path->slots[0] == 0)
3313                         goto out;
3314                 path->slots[0]--;
3315         }
3316
3317         while (1) {
3318                 fi = NULL;
3319                 leaf = path->nodes[0];
3320                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3321                 found_type = btrfs_key_type(&found_key);
3322                 encoding = 0;
3323
3324                 if (found_key.objectid != inode->i_ino)
3325                         break;
3326
3327                 if (found_type < min_type)
3328                         break;
3329
3330                 item_end = found_key.offset;
3331                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3332                         fi = btrfs_item_ptr(leaf, path->slots[0],
3333                                             struct btrfs_file_extent_item);
3334                         extent_type = btrfs_file_extent_type(leaf, fi);
3335                         encoding = btrfs_file_extent_compression(leaf, fi);
3336                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3337                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3338
3339                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3340                                 item_end +=
3341                                     btrfs_file_extent_num_bytes(leaf, fi);
3342                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3343                                 item_end += btrfs_file_extent_inline_len(leaf,
3344                                                                          fi);
3345                         }
3346                         item_end--;
3347                 }
3348                 if (found_type > min_type) {
3349                         del_item = 1;
3350                 } else {
3351                         if (item_end < new_size)
3352                                 break;
3353                         if (found_key.offset >= new_size)
3354                                 del_item = 1;
3355                         else
3356                                 del_item = 0;
3357                 }
3358                 found_extent = 0;
3359                 /* FIXME, shrink the extent if the ref count is only 1 */
3360                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3361                         goto delete;
3362
3363                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3364                         u64 num_dec;
3365                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3366                         if (!del_item && !encoding) {
3367                                 u64 orig_num_bytes =
3368                                         btrfs_file_extent_num_bytes(leaf, fi);
3369                                 extent_num_bytes = new_size -
3370                                         found_key.offset + root->sectorsize - 1;
3371                                 extent_num_bytes = extent_num_bytes &
3372                                         ~((u64)root->sectorsize - 1);
3373                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3374                                                          extent_num_bytes);
3375                                 num_dec = (orig_num_bytes -
3376                                            extent_num_bytes);
3377                                 if (root->ref_cows && extent_start != 0)
3378                                         inode_sub_bytes(inode, num_dec);
3379                                 btrfs_mark_buffer_dirty(leaf);
3380                         } else {
3381                                 extent_num_bytes =
3382                                         btrfs_file_extent_disk_num_bytes(leaf,
3383                                                                          fi);
3384                                 extent_offset = found_key.offset -
3385                                         btrfs_file_extent_offset(leaf, fi);
3386
3387                                 /* FIXME blocksize != 4096 */
3388                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3389                                 if (extent_start != 0) {
3390                                         found_extent = 1;
3391                                         if (root->ref_cows)
3392                                                 inode_sub_bytes(inode, num_dec);
3393                                 }
3394                         }
3395                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3396                         /*
3397                          * we can't truncate inline items that have had
3398                          * special encodings
3399                          */
3400                         if (!del_item &&
3401                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3402                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3403                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3404                                 u32 size = new_size - found_key.offset;
3405
3406                                 if (root->ref_cows) {
3407                                         inode_sub_bytes(inode, item_end + 1 -
3408                                                         new_size);
3409                                 }
3410                                 size =
3411                                     btrfs_file_extent_calc_inline_size(size);
3412                                 ret = btrfs_truncate_item(trans, root, path,
3413                                                           size, 1);
3414                                 BUG_ON(ret);
3415                         } else if (root->ref_cows) {
3416                                 inode_sub_bytes(inode, item_end + 1 -
3417                                                 found_key.offset);
3418                         }
3419                 }
3420 delete:
3421                 if (del_item) {
3422                         if (!pending_del_nr) {
3423                                 /* no pending yet, add ourselves */
3424                                 pending_del_slot = path->slots[0];
3425                                 pending_del_nr = 1;
3426                         } else if (pending_del_nr &&
3427                                    path->slots[0] + 1 == pending_del_slot) {
3428                                 /* hop on the pending chunk */
3429                                 pending_del_nr++;
3430                                 pending_del_slot = path->slots[0];
3431                         } else {
3432                                 BUG();
3433                         }
3434                 } else {
3435                         break;
3436                 }
3437                 if (found_extent && (root->ref_cows ||
3438                                      root == root->fs_info->tree_root)) {
3439                         btrfs_set_path_blocking(path);
3440                         ret = btrfs_free_extent(trans, root, extent_start,
3441                                                 extent_num_bytes, 0,
3442                                                 btrfs_header_owner(leaf),
3443                                                 inode->i_ino, extent_offset);
3444                         BUG_ON(ret);
3445                 }
3446
3447                 if (found_type == BTRFS_INODE_ITEM_KEY)
3448                         break;
3449
3450                 if (path->slots[0] == 0 ||
3451                     path->slots[0] != pending_del_slot) {
3452                         if (root->ref_cows) {
3453                                 err = -EAGAIN;
3454                                 goto out;
3455                         }
3456                         if (pending_del_nr) {
3457                                 ret = btrfs_del_items(trans, root, path,
3458                                                 pending_del_slot,
3459                                                 pending_del_nr);
3460                                 BUG_ON(ret);
3461                                 pending_del_nr = 0;
3462                         }
3463                         btrfs_release_path(root, path);
3464                         goto search_again;
3465                 } else {
3466                         path->slots[0]--;
3467                 }
3468         }
3469 out:
3470         if (pending_del_nr) {
3471                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3472                                       pending_del_nr);
3473                 BUG_ON(ret);
3474         }
3475         btrfs_free_path(path);
3476         return err;
3477 }
3478
3479 /*
3480  * taken from block_truncate_page, but does cow as it zeros out
3481  * any bytes left in the last page in the file.
3482  */
3483 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3484 {
3485         struct inode *inode = mapping->host;
3486         struct btrfs_root *root = BTRFS_I(inode)->root;
3487         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3488         struct btrfs_ordered_extent *ordered;
3489         struct extent_state *cached_state = NULL;
3490         char *kaddr;
3491         u32 blocksize = root->sectorsize;
3492         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3493         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3494         struct page *page;
3495         int ret = 0;
3496         u64 page_start;
3497         u64 page_end;
3498
3499         if ((offset & (blocksize - 1)) == 0)
3500                 goto out;
3501         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3502         if (ret)
3503                 goto out;
3504
3505         ret = -ENOMEM;
3506 again:
3507         page = grab_cache_page(mapping, index);
3508         if (!page) {
3509                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3510                 goto out;
3511         }
3512
3513         page_start = page_offset(page);
3514         page_end = page_start + PAGE_CACHE_SIZE - 1;
3515
3516         if (!PageUptodate(page)) {
3517                 ret = btrfs_readpage(NULL, page);
3518                 lock_page(page);
3519                 if (page->mapping != mapping) {
3520                         unlock_page(page);
3521                         page_cache_release(page);
3522                         goto again;
3523                 }
3524                 if (!PageUptodate(page)) {
3525                         ret = -EIO;
3526                         goto out_unlock;
3527                 }
3528         }
3529         wait_on_page_writeback(page);
3530
3531         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3532                          GFP_NOFS);
3533         set_page_extent_mapped(page);
3534
3535         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3536         if (ordered) {
3537                 unlock_extent_cached(io_tree, page_start, page_end,
3538                                      &cached_state, GFP_NOFS);
3539                 unlock_page(page);
3540                 page_cache_release(page);
3541                 btrfs_start_ordered_extent(inode, ordered, 1);
3542                 btrfs_put_ordered_extent(ordered);
3543                 goto again;
3544         }
3545
3546         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3547                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3548                           0, 0, &cached_state, GFP_NOFS);
3549
3550         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3551                                         &cached_state);
3552         if (ret) {
3553                 unlock_extent_cached(io_tree, page_start, page_end,
3554                                      &cached_state, GFP_NOFS);
3555                 goto out_unlock;
3556         }
3557
3558         ret = 0;
3559         if (offset != PAGE_CACHE_SIZE) {
3560                 kaddr = kmap(page);
3561                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3562                 flush_dcache_page(page);
3563                 kunmap(page);
3564         }
3565         ClearPageChecked(page);
3566         set_page_dirty(page);
3567         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3568                              GFP_NOFS);
3569
3570 out_unlock:
3571         if (ret)
3572                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3573         unlock_page(page);
3574         page_cache_release(page);
3575 out:
3576         return ret;
3577 }
3578
3579 /*
3580  * This function puts in dummy file extents for the area we're creating a hole
3581  * for.  So if we are truncating this file to a larger size we need to insert
3582  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3583  * the range between oldsize and size
3584  */
3585 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3586 {
3587         struct btrfs_trans_handle *trans;
3588         struct btrfs_root *root = BTRFS_I(inode)->root;
3589         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3590         struct extent_map *em = NULL;
3591         struct extent_state *cached_state = NULL;
3592         u64 mask = root->sectorsize - 1;
3593         u64 hole_start = (oldsize + mask) & ~mask;
3594         u64 block_end = (size + mask) & ~mask;
3595         u64 last_byte;
3596         u64 cur_offset;
3597         u64 hole_size;
3598         int err = 0;
3599
3600         if (size <= hole_start)
3601                 return 0;
3602
3603         while (1) {
3604                 struct btrfs_ordered_extent *ordered;
3605                 btrfs_wait_ordered_range(inode, hole_start,
3606                                          block_end - hole_start);
3607                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3608                                  &cached_state, GFP_NOFS);
3609                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3610                 if (!ordered)
3611                         break;
3612                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3613                                      &cached_state, GFP_NOFS);
3614                 btrfs_put_ordered_extent(ordered);
3615         }
3616
3617         cur_offset = hole_start;
3618         while (1) {
3619                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3620                                 block_end - cur_offset, 0);
3621                 BUG_ON(IS_ERR(em) || !em);
3622                 last_byte = min(extent_map_end(em), block_end);
3623                 last_byte = (last_byte + mask) & ~mask;
3624                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3625                         u64 hint_byte = 0;
3626                         hole_size = last_byte - cur_offset;
3627
3628                         trans = btrfs_start_transaction(root, 2);
3629                         if (IS_ERR(trans)) {
3630                                 err = PTR_ERR(trans);
3631                                 break;
3632                         }
3633                         btrfs_set_trans_block_group(trans, inode);
3634
3635                         err = btrfs_drop_extents(trans, inode, cur_offset,
3636                                                  cur_offset + hole_size,
3637                                                  &hint_byte, 1);
3638                         if (err)
3639                                 break;
3640
3641                         err = btrfs_insert_file_extent(trans, root,
3642                                         inode->i_ino, cur_offset, 0,
3643                                         0, hole_size, 0, hole_size,
3644                                         0, 0, 0);
3645                         if (err)
3646                                 break;
3647
3648                         btrfs_drop_extent_cache(inode, hole_start,
3649                                         last_byte - 1, 0);
3650
3651                         btrfs_end_transaction(trans, root);
3652                 }
3653                 free_extent_map(em);
3654                 em = NULL;
3655                 cur_offset = last_byte;
3656                 if (cur_offset >= block_end)
3657                         break;
3658         }
3659
3660         free_extent_map(em);
3661         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3662                              GFP_NOFS);
3663         return err;
3664 }
3665
3666 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3667 {
3668         loff_t oldsize = i_size_read(inode);
3669         int ret;
3670
3671         if (newsize == oldsize)
3672                 return 0;
3673
3674         if (newsize > oldsize) {
3675                 i_size_write(inode, newsize);
3676                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3677                 truncate_pagecache(inode, oldsize, newsize);
3678                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3679                 if (ret) {
3680                         btrfs_setsize(inode, oldsize);
3681                         return ret;
3682                 }
3683
3684                 mark_inode_dirty(inode);
3685         } else {
3686
3687                 /*
3688                  * We're truncating a file that used to have good data down to
3689                  * zero. Make sure it gets into the ordered flush list so that
3690                  * any new writes get down to disk quickly.
3691                  */
3692                 if (newsize == 0)
3693                         BTRFS_I(inode)->ordered_data_close = 1;
3694
3695                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3696                 truncate_setsize(inode, newsize);
3697                 ret = btrfs_truncate(inode);
3698         }
3699
3700         return ret;
3701 }
3702
3703 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3704 {
3705         struct inode *inode = dentry->d_inode;
3706         struct btrfs_root *root = BTRFS_I(inode)->root;
3707         int err;
3708
3709         if (btrfs_root_readonly(root))
3710                 return -EROFS;
3711
3712         err = inode_change_ok(inode, attr);
3713         if (err)
3714                 return err;
3715
3716         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3717                 err = btrfs_setsize(inode, attr->ia_size);
3718                 if (err)
3719                         return err;
3720         }
3721
3722         if (attr->ia_valid) {
3723                 setattr_copy(inode, attr);
3724                 mark_inode_dirty(inode);
3725
3726                 if (attr->ia_valid & ATTR_MODE)
3727                         err = btrfs_acl_chmod(inode);
3728         }
3729
3730         return err;
3731 }
3732
3733 void btrfs_evict_inode(struct inode *inode)
3734 {
3735         struct btrfs_trans_handle *trans;
3736         struct btrfs_root *root = BTRFS_I(inode)->root;
3737         unsigned long nr;
3738         int ret;
3739
3740         trace_btrfs_inode_evict(inode);
3741
3742         truncate_inode_pages(&inode->i_data, 0);
3743         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3744                                root == root->fs_info->tree_root))
3745                 goto no_delete;
3746
3747         if (is_bad_inode(inode)) {
3748                 btrfs_orphan_del(NULL, inode);
3749                 goto no_delete;
3750         }
3751         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3752         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3753
3754         if (root->fs_info->log_root_recovering) {
3755                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3756                 goto no_delete;
3757         }
3758
3759         if (inode->i_nlink > 0) {
3760                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3761                 goto no_delete;
3762         }
3763
3764         btrfs_i_size_write(inode, 0);
3765
3766         while (1) {
3767                 trans = btrfs_start_transaction(root, 0);
3768                 BUG_ON(IS_ERR(trans));
3769                 btrfs_set_trans_block_group(trans, inode);
3770                 trans->block_rsv = root->orphan_block_rsv;
3771
3772                 ret = btrfs_block_rsv_check(trans, root,
3773                                             root->orphan_block_rsv, 0, 5);
3774                 if (ret) {
3775                         BUG_ON(ret != -EAGAIN);
3776                         ret = btrfs_commit_transaction(trans, root);
3777                         BUG_ON(ret);
3778                         continue;
3779                 }
3780
3781                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3782                 if (ret != -EAGAIN)
3783                         break;
3784
3785                 nr = trans->blocks_used;
3786                 btrfs_end_transaction(trans, root);
3787                 trans = NULL;
3788                 btrfs_btree_balance_dirty(root, nr);
3789
3790         }
3791
3792         if (ret == 0) {
3793                 ret = btrfs_orphan_del(trans, inode);
3794                 BUG_ON(ret);
3795         }
3796
3797         nr = trans->blocks_used;
3798         btrfs_end_transaction(trans, root);
3799         btrfs_btree_balance_dirty(root, nr);
3800 no_delete:
3801         end_writeback(inode);
3802         return;
3803 }
3804
3805 /*
3806  * this returns the key found in the dir entry in the location pointer.
3807  * If no dir entries were found, location->objectid is 0.
3808  */
3809 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3810                                struct btrfs_key *location)
3811 {
3812         const char *name = dentry->d_name.name;
3813         int namelen = dentry->d_name.len;
3814         struct btrfs_dir_item *di;
3815         struct btrfs_path *path;
3816         struct btrfs_root *root = BTRFS_I(dir)->root;
3817         int ret = 0;
3818
3819         path = btrfs_alloc_path();
3820         BUG_ON(!path);
3821
3822         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3823                                     namelen, 0);
3824         if (IS_ERR(di))
3825                 ret = PTR_ERR(di);
3826
3827         if (!di || IS_ERR(di))
3828                 goto out_err;
3829
3830         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3831 out:
3832         btrfs_free_path(path);
3833         return ret;
3834 out_err:
3835         location->objectid = 0;
3836         goto out;
3837 }
3838
3839 /*
3840  * when we hit a tree root in a directory, the btrfs part of the inode
3841  * needs to be changed to reflect the root directory of the tree root.  This
3842  * is kind of like crossing a mount point.
3843  */
3844 static int fixup_tree_root_location(struct btrfs_root *root,
3845                                     struct inode *dir,
3846                                     struct dentry *dentry,
3847                                     struct btrfs_key *location,
3848                                     struct btrfs_root **sub_root)
3849 {
3850         struct btrfs_path *path;
3851         struct btrfs_root *new_root;
3852         struct btrfs_root_ref *ref;
3853         struct extent_buffer *leaf;
3854         int ret;
3855         int err = 0;
3856
3857         path = btrfs_alloc_path();
3858         if (!path) {
3859                 err = -ENOMEM;
3860                 goto out;
3861         }
3862
3863         err = -ENOENT;
3864         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3865                                   BTRFS_I(dir)->root->root_key.objectid,
3866                                   location->objectid);
3867         if (ret) {
3868                 if (ret < 0)
3869                         err = ret;
3870                 goto out;
3871         }
3872
3873         leaf = path->nodes[0];
3874         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3875         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3876             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3877                 goto out;
3878
3879         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3880                                    (unsigned long)(ref + 1),
3881                                    dentry->d_name.len);
3882         if (ret)
3883                 goto out;
3884
3885         btrfs_release_path(root->fs_info->tree_root, path);
3886
3887         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3888         if (IS_ERR(new_root)) {
3889                 err = PTR_ERR(new_root);
3890                 goto out;
3891         }
3892
3893         if (btrfs_root_refs(&new_root->root_item) == 0) {
3894                 err = -ENOENT;
3895                 goto out;
3896         }
3897
3898         *sub_root = new_root;
3899         location->objectid = btrfs_root_dirid(&new_root->root_item);
3900         location->type = BTRFS_INODE_ITEM_KEY;
3901         location->offset = 0;
3902         err = 0;
3903 out:
3904         btrfs_free_path(path);
3905         return err;
3906 }
3907
3908 static void inode_tree_add(struct inode *inode)
3909 {
3910         struct btrfs_root *root = BTRFS_I(inode)->root;
3911         struct btrfs_inode *entry;
3912         struct rb_node **p;
3913         struct rb_node *parent;
3914 again:
3915         p = &root->inode_tree.rb_node;
3916         parent = NULL;
3917
3918         if (inode_unhashed(inode))
3919                 return;
3920
3921         spin_lock(&root->inode_lock);
3922         while (*p) {
3923                 parent = *p;
3924                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3925
3926                 if (inode->i_ino < entry->vfs_inode.i_ino)
3927                         p = &parent->rb_left;
3928                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3929                         p = &parent->rb_right;
3930                 else {
3931                         WARN_ON(!(entry->vfs_inode.i_state &
3932                                   (I_WILL_FREE | I_FREEING)));
3933                         rb_erase(parent, &root->inode_tree);
3934                         RB_CLEAR_NODE(parent);
3935                         spin_unlock(&root->inode_lock);
3936                         goto again;
3937                 }
3938         }
3939         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3940         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3941         spin_unlock(&root->inode_lock);
3942 }
3943
3944 static void inode_tree_del(struct inode *inode)
3945 {
3946         struct btrfs_root *root = BTRFS_I(inode)->root;
3947         int empty = 0;
3948
3949         spin_lock(&root->inode_lock);
3950         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3951                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3952                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3953                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3954         }
3955         spin_unlock(&root->inode_lock);
3956
3957         /*
3958          * Free space cache has inodes in the tree root, but the tree root has a
3959          * root_refs of 0, so this could end up dropping the tree root as a
3960          * snapshot, so we need the extra !root->fs_info->tree_root check to
3961          * make sure we don't drop it.
3962          */
3963         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3964             root != root->fs_info->tree_root) {
3965                 synchronize_srcu(&root->fs_info->subvol_srcu);
3966                 spin_lock(&root->inode_lock);
3967                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3968                 spin_unlock(&root->inode_lock);
3969                 if (empty)
3970                         btrfs_add_dead_root(root);
3971         }
3972 }
3973
3974 int btrfs_invalidate_inodes(struct btrfs_root *root)
3975 {
3976         struct rb_node *node;
3977         struct rb_node *prev;
3978         struct btrfs_inode *entry;
3979         struct inode *inode;
3980         u64 objectid = 0;
3981
3982         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3983
3984         spin_lock(&root->inode_lock);
3985 again:
3986         node = root->inode_tree.rb_node;
3987         prev = NULL;
3988         while (node) {
3989                 prev = node;
3990                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3991
3992                 if (objectid < entry->vfs_inode.i_ino)
3993                         node = node->rb_left;
3994                 else if (objectid > entry->vfs_inode.i_ino)
3995                         node = node->rb_right;
3996                 else
3997                         break;
3998         }
3999         if (!node) {
4000                 while (prev) {
4001                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4002                         if (objectid <= entry->vfs_inode.i_ino) {
4003                                 node = prev;
4004                                 break;
4005                         }
4006                         prev = rb_next(prev);
4007                 }
4008         }
4009         while (node) {
4010                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4011                 objectid = entry->vfs_inode.i_ino + 1;
4012                 inode = igrab(&entry->vfs_inode);
4013                 if (inode) {
4014                         spin_unlock(&root->inode_lock);
4015                         if (atomic_read(&inode->i_count) > 1)
4016                                 d_prune_aliases(inode);
4017                         /*
4018                          * btrfs_drop_inode will have it removed from
4019                          * the inode cache when its usage count
4020                          * hits zero.
4021                          */
4022                         iput(inode);
4023                         cond_resched();
4024                         spin_lock(&root->inode_lock);
4025                         goto again;
4026                 }
4027
4028                 if (cond_resched_lock(&root->inode_lock))
4029                         goto again;
4030
4031                 node = rb_next(node);
4032         }
4033         spin_unlock(&root->inode_lock);
4034         return 0;
4035 }
4036
4037 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4038 {
4039         struct btrfs_iget_args *args = p;
4040         inode->i_ino = args->ino;
4041         BTRFS_I(inode)->root = args->root;
4042         btrfs_set_inode_space_info(args->root, inode);
4043         return 0;
4044 }
4045
4046 static int btrfs_find_actor(struct inode *inode, void *opaque)
4047 {
4048         struct btrfs_iget_args *args = opaque;
4049         return args->ino == inode->i_ino &&
4050                 args->root == BTRFS_I(inode)->root;
4051 }
4052
4053 static struct inode *btrfs_iget_locked(struct super_block *s,
4054                                        u64 objectid,
4055                                        struct btrfs_root *root)
4056 {
4057         struct inode *inode;
4058         struct btrfs_iget_args args;
4059         args.ino = objectid;
4060         args.root = root;
4061
4062         inode = iget5_locked(s, objectid, btrfs_find_actor,
4063                              btrfs_init_locked_inode,
4064                              (void *)&args);
4065         return inode;
4066 }
4067
4068 /* Get an inode object given its location and corresponding root.
4069  * Returns in *is_new if the inode was read from disk
4070  */
4071 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4072                          struct btrfs_root *root, int *new)
4073 {
4074         struct inode *inode;
4075
4076         inode = btrfs_iget_locked(s, location->objectid, root);
4077         if (!inode)
4078                 return ERR_PTR(-ENOMEM);
4079
4080         if (inode->i_state & I_NEW) {
4081                 BTRFS_I(inode)->root = root;
4082                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4083                 btrfs_read_locked_inode(inode);
4084                 inode_tree_add(inode);
4085                 unlock_new_inode(inode);
4086                 if (new)
4087                         *new = 1;
4088         }
4089
4090         return inode;
4091 }
4092
4093 static struct inode *new_simple_dir(struct super_block *s,
4094                                     struct btrfs_key *key,
4095                                     struct btrfs_root *root)
4096 {
4097         struct inode *inode = new_inode(s);
4098
4099         if (!inode)
4100                 return ERR_PTR(-ENOMEM);
4101
4102         BTRFS_I(inode)->root = root;
4103         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4104         BTRFS_I(inode)->dummy_inode = 1;
4105
4106         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4107         inode->i_op = &simple_dir_inode_operations;
4108         inode->i_fop = &simple_dir_operations;
4109         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4110         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4111
4112         return inode;
4113 }
4114
4115 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4116 {
4117         struct inode *inode;
4118         struct btrfs_root *root = BTRFS_I(dir)->root;
4119         struct btrfs_root *sub_root = root;
4120         struct btrfs_key location;
4121         int index;
4122         int ret;
4123
4124         if (dentry->d_name.len > BTRFS_NAME_LEN)
4125                 return ERR_PTR(-ENAMETOOLONG);
4126
4127         ret = btrfs_inode_by_name(dir, dentry, &location);
4128
4129         if (ret < 0)
4130                 return ERR_PTR(ret);
4131
4132         if (location.objectid == 0)
4133                 return NULL;
4134
4135         if (location.type == BTRFS_INODE_ITEM_KEY) {
4136                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4137                 return inode;
4138         }
4139
4140         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4141
4142         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4143         ret = fixup_tree_root_location(root, dir, dentry,
4144                                        &location, &sub_root);
4145         if (ret < 0) {
4146                 if (ret != -ENOENT)
4147                         inode = ERR_PTR(ret);
4148                 else
4149                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4150         } else {
4151                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4152         }
4153         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4154
4155         if (!IS_ERR(inode) && root != sub_root) {
4156                 down_read(&root->fs_info->cleanup_work_sem);
4157                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4158                         ret = btrfs_orphan_cleanup(sub_root);
4159                 up_read(&root->fs_info->cleanup_work_sem);
4160                 if (ret)
4161                         inode = ERR_PTR(ret);
4162         }
4163
4164         return inode;
4165 }
4166
4167 static int btrfs_dentry_delete(const struct dentry *dentry)
4168 {
4169         struct btrfs_root *root;
4170
4171         if (!dentry->d_inode && !IS_ROOT(dentry))
4172                 dentry = dentry->d_parent;
4173
4174         if (dentry->d_inode) {
4175                 root = BTRFS_I(dentry->d_inode)->root;
4176                 if (btrfs_root_refs(&root->root_item) == 0)
4177                         return 1;
4178         }
4179         return 0;
4180 }
4181
4182 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4183                                    struct nameidata *nd)
4184 {
4185         struct inode *inode;
4186
4187         inode = btrfs_lookup_dentry(dir, dentry);
4188         if (IS_ERR(inode))
4189                 return ERR_CAST(inode);
4190
4191         return d_splice_alias(inode, dentry);
4192 }
4193
4194 static unsigned char btrfs_filetype_table[] = {
4195         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4196 };
4197
4198 static int btrfs_real_readdir(struct file *filp, void *dirent,
4199                               filldir_t filldir)
4200 {
4201         struct inode *inode = filp->f_dentry->d_inode;
4202         struct btrfs_root *root = BTRFS_I(inode)->root;
4203         struct btrfs_item *item;
4204         struct btrfs_dir_item *di;
4205         struct btrfs_key key;
4206         struct btrfs_key found_key;
4207         struct btrfs_path *path;
4208         int ret;
4209         u32 nritems;
4210         struct extent_buffer *leaf;
4211         int slot;
4212         int advance;
4213         unsigned char d_type;
4214         int over = 0;
4215         u32 di_cur;
4216         u32 di_total;
4217         u32 di_len;
4218         int key_type = BTRFS_DIR_INDEX_KEY;
4219         char tmp_name[32];
4220         char *name_ptr;
4221         int name_len;
4222
4223         /* FIXME, use a real flag for deciding about the key type */
4224         if (root->fs_info->tree_root == root)
4225                 key_type = BTRFS_DIR_ITEM_KEY;
4226
4227         /* special case for "." */
4228         if (filp->f_pos == 0) {
4229                 over = filldir(dirent, ".", 1,
4230                                1, inode->i_ino,
4231                                DT_DIR);
4232                 if (over)
4233                         return 0;
4234                 filp->f_pos = 1;
4235         }
4236         /* special case for .., just use the back ref */
4237         if (filp->f_pos == 1) {
4238                 u64 pino = parent_ino(filp->f_path.dentry);
4239                 over = filldir(dirent, "..", 2,
4240                                2, pino, DT_DIR);
4241                 if (over)
4242                         return 0;
4243                 filp->f_pos = 2;
4244         }
4245         path = btrfs_alloc_path();
4246         path->reada = 2;
4247
4248         btrfs_set_key_type(&key, key_type);
4249         key.offset = filp->f_pos;
4250         key.objectid = inode->i_ino;
4251
4252         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4253         if (ret < 0)
4254                 goto err;
4255         advance = 0;
4256
4257         while (1) {
4258                 leaf = path->nodes[0];
4259                 nritems = btrfs_header_nritems(leaf);
4260                 slot = path->slots[0];
4261                 if (advance || slot >= nritems) {
4262                         if (slot >= nritems - 1) {
4263                                 ret = btrfs_next_leaf(root, path);
4264                                 if (ret)
4265                                         break;
4266                                 leaf = path->nodes[0];
4267                                 nritems = btrfs_header_nritems(leaf);
4268                                 slot = path->slots[0];
4269                         } else {
4270                                 slot++;
4271                                 path->slots[0]++;
4272                         }
4273                 }
4274
4275                 advance = 1;
4276                 item = btrfs_item_nr(leaf, slot);
4277                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4278
4279                 if (found_key.objectid != key.objectid)
4280                         break;
4281                 if (btrfs_key_type(&found_key) != key_type)
4282                         break;
4283                 if (found_key.offset < filp->f_pos)
4284                         continue;
4285
4286                 filp->f_pos = found_key.offset;
4287
4288                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4289                 di_cur = 0;
4290                 di_total = btrfs_item_size(leaf, item);
4291
4292                 while (di_cur < di_total) {
4293                         struct btrfs_key location;
4294
4295                         if (verify_dir_item(root, leaf, di))
4296                                 break;
4297
4298                         name_len = btrfs_dir_name_len(leaf, di);
4299                         if (name_len <= sizeof(tmp_name)) {
4300                                 name_ptr = tmp_name;
4301                         } else {
4302                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4303                                 if (!name_ptr) {
4304                                         ret = -ENOMEM;
4305                                         goto err;
4306                                 }
4307                         }
4308                         read_extent_buffer(leaf, name_ptr,
4309                                            (unsigned long)(di + 1), name_len);
4310
4311                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4312                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4313
4314                         /* is this a reference to our own snapshot? If so
4315                          * skip it
4316                          */
4317                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4318                             location.objectid == root->root_key.objectid) {
4319                                 over = 0;
4320                                 goto skip;
4321                         }
4322                         over = filldir(dirent, name_ptr, name_len,
4323                                        found_key.offset, location.objectid,
4324                                        d_type);
4325
4326 skip:
4327                         if (name_ptr != tmp_name)
4328                                 kfree(name_ptr);
4329
4330                         if (over)
4331                                 goto nopos;
4332                         di_len = btrfs_dir_name_len(leaf, di) +
4333                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4334                         di_cur += di_len;
4335                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4336                 }
4337         }
4338
4339         /* Reached end of directory/root. Bump pos past the last item. */
4340         if (key_type == BTRFS_DIR_INDEX_KEY)
4341                 /*
4342                  * 32-bit glibc will use getdents64, but then strtol -
4343                  * so the last number we can serve is this.
4344                  */
4345                 filp->f_pos = 0x7fffffff;
4346         else
4347                 filp->f_pos++;
4348 nopos:
4349         ret = 0;
4350 err:
4351         btrfs_free_path(path);
4352         return ret;
4353 }
4354
4355 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4356 {
4357         struct btrfs_root *root = BTRFS_I(inode)->root;
4358         struct btrfs_trans_handle *trans;
4359         int ret = 0;
4360         bool nolock = false;
4361
4362         if (BTRFS_I(inode)->dummy_inode)
4363                 return 0;
4364
4365         smp_mb();
4366         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4367
4368         if (wbc->sync_mode == WB_SYNC_ALL) {
4369                 if (nolock)
4370                         trans = btrfs_join_transaction_nolock(root, 1);
4371                 else
4372                         trans = btrfs_join_transaction(root, 1);
4373                 if (IS_ERR(trans))
4374                         return PTR_ERR(trans);
4375                 btrfs_set_trans_block_group(trans, inode);
4376                 if (nolock)
4377                         ret = btrfs_end_transaction_nolock(trans, root);
4378                 else
4379                         ret = btrfs_commit_transaction(trans, root);
4380         }
4381         return ret;
4382 }
4383
4384 /*
4385  * This is somewhat expensive, updating the tree every time the
4386  * inode changes.  But, it is most likely to find the inode in cache.
4387  * FIXME, needs more benchmarking...there are no reasons other than performance
4388  * to keep or drop this code.
4389  */
4390 void btrfs_dirty_inode(struct inode *inode)
4391 {
4392         struct btrfs_root *root = BTRFS_I(inode)->root;
4393         struct btrfs_trans_handle *trans;
4394         int ret;
4395
4396         if (BTRFS_I(inode)->dummy_inode)
4397                 return;
4398
4399         trans = btrfs_join_transaction(root, 1);
4400         BUG_ON(IS_ERR(trans));
4401         btrfs_set_trans_block_group(trans, inode);
4402
4403         ret = btrfs_update_inode(trans, root, inode);
4404         if (ret && ret == -ENOSPC) {
4405                 /* whoops, lets try again with the full transaction */
4406                 btrfs_end_transaction(trans, root);
4407                 trans = btrfs_start_transaction(root, 1);
4408                 if (IS_ERR(trans)) {
4409                         if (printk_ratelimit()) {
4410                                 printk(KERN_ERR "btrfs: fail to "
4411                                        "dirty  inode %lu error %ld\n",
4412                                        inode->i_ino, PTR_ERR(trans));
4413                         }
4414                         return;
4415                 }
4416                 btrfs_set_trans_block_group(trans, inode);
4417
4418                 ret = btrfs_update_inode(trans, root, inode);
4419                 if (ret) {
4420                         if (printk_ratelimit()) {
4421                                 printk(KERN_ERR "btrfs: fail to "
4422                                        "dirty  inode %lu error %d\n",
4423                                        inode->i_ino, ret);
4424                         }
4425                 }
4426         }
4427         btrfs_end_transaction(trans, root);
4428 }
4429
4430 /*
4431  * find the highest existing sequence number in a directory
4432  * and then set the in-memory index_cnt variable to reflect
4433  * free sequence numbers
4434  */
4435 static int btrfs_set_inode_index_count(struct inode *inode)
4436 {
4437         struct btrfs_root *root = BTRFS_I(inode)->root;
4438         struct btrfs_key key, found_key;
4439         struct btrfs_path *path;
4440         struct extent_buffer *leaf;
4441         int ret;
4442
4443         key.objectid = inode->i_ino;
4444         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4445         key.offset = (u64)-1;
4446
4447         path = btrfs_alloc_path();
4448         if (!path)
4449                 return -ENOMEM;
4450
4451         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4452         if (ret < 0)
4453                 goto out;
4454         /* FIXME: we should be able to handle this */
4455         if (ret == 0)
4456                 goto out;
4457         ret = 0;
4458
4459         /*
4460          * MAGIC NUMBER EXPLANATION:
4461          * since we search a directory based on f_pos we have to start at 2
4462          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4463          * else has to start at 2
4464          */
4465         if (path->slots[0] == 0) {
4466                 BTRFS_I(inode)->index_cnt = 2;
4467                 goto out;
4468         }
4469
4470         path->slots[0]--;
4471
4472         leaf = path->nodes[0];
4473         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4474
4475         if (found_key.objectid != inode->i_ino ||
4476             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4477                 BTRFS_I(inode)->index_cnt = 2;
4478                 goto out;
4479         }
4480
4481         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4482 out:
4483         btrfs_free_path(path);
4484         return ret;
4485 }
4486
4487 /*
4488  * helper to find a free sequence number in a given directory.  This current
4489  * code is very simple, later versions will do smarter things in the btree
4490  */
4491 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4492 {
4493         int ret = 0;
4494
4495         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4496                 ret = btrfs_set_inode_index_count(dir);
4497                 if (ret)
4498                         return ret;
4499         }
4500
4501         *index = BTRFS_I(dir)->index_cnt;
4502         BTRFS_I(dir)->index_cnt++;
4503
4504         return ret;
4505 }
4506
4507 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4508                                      struct btrfs_root *root,
4509                                      struct inode *dir,
4510                                      const char *name, int name_len,
4511                                      u64 ref_objectid, u64 objectid,
4512                                      u64 alloc_hint, int mode, u64 *index)
4513 {
4514         struct inode *inode;
4515         struct btrfs_inode_item *inode_item;
4516         struct btrfs_key *location;
4517         struct btrfs_path *path;
4518         struct btrfs_inode_ref *ref;
4519         struct btrfs_key key[2];
4520         u32 sizes[2];
4521         unsigned long ptr;
4522         int ret;
4523         int owner;
4524
4525         path = btrfs_alloc_path();
4526         BUG_ON(!path);
4527
4528         inode = new_inode(root->fs_info->sb);
4529         if (!inode) {
4530                 btrfs_free_path(path);
4531                 return ERR_PTR(-ENOMEM);
4532         }
4533
4534         if (dir) {
4535                 trace_btrfs_inode_request(dir);
4536
4537                 ret = btrfs_set_inode_index(dir, index);
4538                 if (ret) {
4539                         btrfs_free_path(path);
4540                         iput(inode);
4541                         return ERR_PTR(ret);
4542                 }
4543         }
4544         /*
4545          * index_cnt is ignored for everything but a dir,
4546          * btrfs_get_inode_index_count has an explanation for the magic
4547          * number
4548          */
4549         BTRFS_I(inode)->index_cnt = 2;
4550         BTRFS_I(inode)->root = root;
4551         BTRFS_I(inode)->generation = trans->transid;
4552         inode->i_generation = BTRFS_I(inode)->generation;
4553         btrfs_set_inode_space_info(root, inode);
4554
4555         if (mode & S_IFDIR)
4556                 owner = 0;
4557         else
4558                 owner = 1;
4559         BTRFS_I(inode)->block_group =
4560                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4561
4562         key[0].objectid = objectid;
4563         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4564         key[0].offset = 0;
4565
4566         key[1].objectid = objectid;
4567         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4568         key[1].offset = ref_objectid;
4569
4570         sizes[0] = sizeof(struct btrfs_inode_item);
4571         sizes[1] = name_len + sizeof(*ref);
4572
4573         path->leave_spinning = 1;
4574         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4575         if (ret != 0)
4576                 goto fail;
4577
4578         inode_init_owner(inode, dir, mode);
4579         inode->i_ino = objectid;
4580         inode_set_bytes(inode, 0);
4581         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4582         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4583                                   struct btrfs_inode_item);
4584         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4585
4586         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4587                              struct btrfs_inode_ref);
4588         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4589         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4590         ptr = (unsigned long)(ref + 1);
4591         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4592
4593         btrfs_mark_buffer_dirty(path->nodes[0]);
4594         btrfs_free_path(path);
4595
4596         location = &BTRFS_I(inode)->location;
4597         location->objectid = objectid;
4598         location->offset = 0;
4599         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4600
4601         btrfs_inherit_iflags(inode, dir);
4602
4603         if ((mode & S_IFREG)) {
4604                 if (btrfs_test_opt(root, NODATASUM))
4605                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4606                 if (btrfs_test_opt(root, NODATACOW) ||
4607                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4608                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4609         }
4610
4611         insert_inode_hash(inode);
4612         inode_tree_add(inode);
4613
4614         trace_btrfs_inode_new(inode);
4615
4616         return inode;
4617 fail:
4618         if (dir)
4619                 BTRFS_I(dir)->index_cnt--;
4620         btrfs_free_path(path);
4621         iput(inode);
4622         return ERR_PTR(ret);
4623 }
4624
4625 static inline u8 btrfs_inode_type(struct inode *inode)
4626 {
4627         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4628 }
4629
4630 /*
4631  * utility function to add 'inode' into 'parent_inode' with
4632  * a give name and a given sequence number.
4633  * if 'add_backref' is true, also insert a backref from the
4634  * inode to the parent directory.
4635  */
4636 int btrfs_add_link(struct btrfs_trans_handle *trans,
4637                    struct inode *parent_inode, struct inode *inode,
4638                    const char *name, int name_len, int add_backref, u64 index)
4639 {
4640         int ret = 0;
4641         struct btrfs_key key;
4642         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4643
4644         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4645                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4646         } else {
4647                 key.objectid = inode->i_ino;
4648                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4649                 key.offset = 0;
4650         }
4651
4652         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4653                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4654                                          key.objectid, root->root_key.objectid,
4655                                          parent_inode->i_ino,
4656                                          index, name, name_len);
4657         } else if (add_backref) {
4658                 ret = btrfs_insert_inode_ref(trans, root,
4659                                              name, name_len, inode->i_ino,
4660                                              parent_inode->i_ino, index);
4661         }
4662
4663         if (ret == 0) {
4664                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4665                                             parent_inode->i_ino, &key,
4666                                             btrfs_inode_type(inode), index);
4667                 BUG_ON(ret);
4668
4669                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4670                                    name_len * 2);
4671                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4672                 ret = btrfs_update_inode(trans, root, parent_inode);
4673         }
4674         return ret;
4675 }
4676
4677 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4678                             struct inode *dir, struct dentry *dentry,
4679                             struct inode *inode, int backref, u64 index)
4680 {
4681         int err = btrfs_add_link(trans, dir, inode,
4682                                  dentry->d_name.name, dentry->d_name.len,
4683                                  backref, index);
4684         if (!err) {
4685                 d_instantiate(dentry, inode);
4686                 return 0;
4687         }
4688         if (err > 0)
4689                 err = -EEXIST;
4690         return err;
4691 }
4692
4693 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4694                         int mode, dev_t rdev)
4695 {
4696         struct btrfs_trans_handle *trans;
4697         struct btrfs_root *root = BTRFS_I(dir)->root;
4698         struct inode *inode = NULL;
4699         int err;
4700         int drop_inode = 0;
4701         u64 objectid;
4702         unsigned long nr = 0;
4703         u64 index = 0;
4704
4705         if (!new_valid_dev(rdev))
4706                 return -EINVAL;
4707
4708         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4709         if (err)
4710                 return err;
4711
4712         /*
4713          * 2 for inode item and ref
4714          * 2 for dir items
4715          * 1 for xattr if selinux is on
4716          */
4717         trans = btrfs_start_transaction(root, 5);
4718         if (IS_ERR(trans))
4719                 return PTR_ERR(trans);
4720
4721         btrfs_set_trans_block_group(trans, dir);
4722
4723         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4724                                 dentry->d_name.len, dir->i_ino, objectid,
4725                                 BTRFS_I(dir)->block_group, mode, &index);
4726         err = PTR_ERR(inode);
4727         if (IS_ERR(inode))
4728                 goto out_unlock;
4729
4730         err = btrfs_init_inode_security(trans, inode, dir);
4731         if (err) {
4732                 drop_inode = 1;
4733                 goto out_unlock;
4734         }
4735
4736         btrfs_set_trans_block_group(trans, inode);
4737         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4738         if (err)
4739                 drop_inode = 1;
4740         else {
4741                 inode->i_op = &btrfs_special_inode_operations;
4742                 init_special_inode(inode, inode->i_mode, rdev);
4743                 btrfs_update_inode(trans, root, inode);
4744         }
4745         btrfs_update_inode_block_group(trans, inode);
4746         btrfs_update_inode_block_group(trans, dir);
4747 out_unlock:
4748         nr = trans->blocks_used;
4749         btrfs_end_transaction_throttle(trans, root);
4750         btrfs_btree_balance_dirty(root, nr);
4751         if (drop_inode) {
4752                 inode_dec_link_count(inode);
4753                 iput(inode);
4754         }
4755         return err;
4756 }
4757
4758 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4759                         int mode, struct nameidata *nd)
4760 {
4761         struct btrfs_trans_handle *trans;
4762         struct btrfs_root *root = BTRFS_I(dir)->root;
4763         struct inode *inode = NULL;
4764         int drop_inode = 0;
4765         int err;
4766         unsigned long nr = 0;
4767         u64 objectid;
4768         u64 index = 0;
4769
4770         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4771         if (err)
4772                 return err;
4773         /*
4774          * 2 for inode item and ref
4775          * 2 for dir items
4776          * 1 for xattr if selinux is on
4777          */
4778         trans = btrfs_start_transaction(root, 5);
4779         if (IS_ERR(trans))
4780                 return PTR_ERR(trans);
4781
4782         btrfs_set_trans_block_group(trans, dir);
4783
4784         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4785                                 dentry->d_name.len, dir->i_ino, objectid,
4786                                 BTRFS_I(dir)->block_group, mode, &index);
4787         err = PTR_ERR(inode);
4788         if (IS_ERR(inode))
4789                 goto out_unlock;
4790
4791         err = btrfs_init_inode_security(trans, inode, dir);
4792         if (err) {
4793                 drop_inode = 1;
4794                 goto out_unlock;
4795         }
4796
4797         btrfs_set_trans_block_group(trans, inode);
4798         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4799         if (err)
4800                 drop_inode = 1;
4801         else {
4802                 inode->i_mapping->a_ops = &btrfs_aops;
4803                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4804                 inode->i_fop = &btrfs_file_operations;
4805                 inode->i_op = &btrfs_file_inode_operations;
4806                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4807         }
4808         btrfs_update_inode_block_group(trans, inode);
4809         btrfs_update_inode_block_group(trans, dir);
4810 out_unlock:
4811         nr = trans->blocks_used;
4812         btrfs_end_transaction_throttle(trans, root);
4813         if (drop_inode) {
4814                 inode_dec_link_count(inode);
4815                 iput(inode);
4816         }
4817         btrfs_btree_balance_dirty(root, nr);
4818         return err;
4819 }
4820
4821 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4822                       struct dentry *dentry)
4823 {
4824         struct btrfs_trans_handle *trans;
4825         struct btrfs_root *root = BTRFS_I(dir)->root;
4826         struct inode *inode = old_dentry->d_inode;
4827         u64 index;
4828         unsigned long nr = 0;
4829         int err;
4830         int drop_inode = 0;
4831
4832         if (inode->i_nlink == 0)
4833                 return -ENOENT;
4834
4835         /* do not allow sys_link's with other subvols of the same device */
4836         if (root->objectid != BTRFS_I(inode)->root->objectid)
4837                 return -EXDEV;
4838
4839         if (inode->i_nlink == ~0U)
4840                 return -EMLINK;
4841
4842         btrfs_inc_nlink(inode);
4843         inode->i_ctime = CURRENT_TIME;
4844
4845         err = btrfs_set_inode_index(dir, &index);
4846         if (err)
4847                 goto fail;
4848
4849         /*
4850          * 2 items for inode and inode ref
4851          * 2 items for dir items
4852          * 1 item for parent inode
4853          */
4854         trans = btrfs_start_transaction(root, 5);
4855         if (IS_ERR(trans)) {
4856                 err = PTR_ERR(trans);
4857                 goto fail;
4858         }
4859
4860         btrfs_set_trans_block_group(trans, dir);
4861         ihold(inode);
4862
4863         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4864
4865         if (err) {
4866                 drop_inode = 1;
4867         } else {
4868                 struct dentry *parent = dget_parent(dentry);
4869                 btrfs_update_inode_block_group(trans, dir);
4870                 err = btrfs_update_inode(trans, root, inode);
4871                 BUG_ON(err);
4872                 btrfs_log_new_name(trans, inode, NULL, parent);
4873                 dput(parent);
4874         }
4875
4876         nr = trans->blocks_used;
4877         btrfs_end_transaction_throttle(trans, root);
4878 fail:
4879         if (drop_inode) {
4880                 inode_dec_link_count(inode);
4881                 iput(inode);
4882         }
4883         btrfs_btree_balance_dirty(root, nr);
4884         return err;
4885 }
4886
4887 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4888 {
4889         struct inode *inode = NULL;
4890         struct btrfs_trans_handle *trans;
4891         struct btrfs_root *root = BTRFS_I(dir)->root;
4892         int err = 0;
4893         int drop_on_err = 0;
4894         u64 objectid = 0;
4895         u64 index = 0;
4896         unsigned long nr = 1;
4897
4898         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4899         if (err)
4900                 return err;
4901
4902         /*
4903          * 2 items for inode and ref
4904          * 2 items for dir items
4905          * 1 for xattr if selinux is on
4906          */
4907         trans = btrfs_start_transaction(root, 5);
4908         if (IS_ERR(trans))
4909                 return PTR_ERR(trans);
4910         btrfs_set_trans_block_group(trans, dir);
4911
4912         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4913                                 dentry->d_name.len, dir->i_ino, objectid,
4914                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4915                                 &index);
4916         if (IS_ERR(inode)) {
4917                 err = PTR_ERR(inode);
4918                 goto out_fail;
4919         }
4920
4921         drop_on_err = 1;
4922
4923         err = btrfs_init_inode_security(trans, inode, dir);
4924         if (err)
4925                 goto out_fail;
4926
4927         inode->i_op = &btrfs_dir_inode_operations;
4928         inode->i_fop = &btrfs_dir_file_operations;
4929         btrfs_set_trans_block_group(trans, inode);
4930
4931         btrfs_i_size_write(inode, 0);
4932         err = btrfs_update_inode(trans, root, inode);
4933         if (err)
4934                 goto out_fail;
4935
4936         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4937                              dentry->d_name.len, 0, index);
4938         if (err)
4939                 goto out_fail;
4940
4941         d_instantiate(dentry, inode);
4942         drop_on_err = 0;
4943         btrfs_update_inode_block_group(trans, inode);
4944         btrfs_update_inode_block_group(trans, dir);
4945
4946 out_fail:
4947         nr = trans->blocks_used;
4948         btrfs_end_transaction_throttle(trans, root);
4949         if (drop_on_err)
4950                 iput(inode);
4951         btrfs_btree_balance_dirty(root, nr);
4952         return err;
4953 }
4954
4955 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4956  * and an extent that you want to insert, deal with overlap and insert
4957  * the new extent into the tree.
4958  */
4959 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4960                                 struct extent_map *existing,
4961                                 struct extent_map *em,
4962                                 u64 map_start, u64 map_len)
4963 {
4964         u64 start_diff;
4965
4966         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4967         start_diff = map_start - em->start;
4968         em->start = map_start;
4969         em->len = map_len;
4970         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4971             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4972                 em->block_start += start_diff;
4973                 em->block_len -= start_diff;
4974         }
4975         return add_extent_mapping(em_tree, em);
4976 }
4977
4978 static noinline int uncompress_inline(struct btrfs_path *path,
4979                                       struct inode *inode, struct page *page,
4980                                       size_t pg_offset, u64 extent_offset,
4981                                       struct btrfs_file_extent_item *item)
4982 {
4983         int ret;
4984         struct extent_buffer *leaf = path->nodes[0];
4985         char *tmp;
4986         size_t max_size;
4987         unsigned long inline_size;
4988         unsigned long ptr;
4989         int compress_type;
4990
4991         WARN_ON(pg_offset != 0);
4992         compress_type = btrfs_file_extent_compression(leaf, item);
4993         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4994         inline_size = btrfs_file_extent_inline_item_len(leaf,
4995                                         btrfs_item_nr(leaf, path->slots[0]));
4996         tmp = kmalloc(inline_size, GFP_NOFS);
4997         ptr = btrfs_file_extent_inline_start(item);
4998
4999         read_extent_buffer(leaf, tmp, ptr, inline_size);
5000
5001         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5002         ret = btrfs_decompress(compress_type, tmp, page,
5003                                extent_offset, inline_size, max_size);
5004         if (ret) {
5005                 char *kaddr = kmap_atomic(page, KM_USER0);
5006                 unsigned long copy_size = min_t(u64,
5007                                   PAGE_CACHE_SIZE - pg_offset,
5008                                   max_size - extent_offset);
5009                 memset(kaddr + pg_offset, 0, copy_size);
5010                 kunmap_atomic(kaddr, KM_USER0);
5011         }
5012         kfree(tmp);
5013         return 0;
5014 }
5015
5016 /*
5017  * a bit scary, this does extent mapping from logical file offset to the disk.
5018  * the ugly parts come from merging extents from the disk with the in-ram
5019  * representation.  This gets more complex because of the data=ordered code,
5020  * where the in-ram extents might be locked pending data=ordered completion.
5021  *
5022  * This also copies inline extents directly into the page.
5023  */
5024
5025 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5026                                     size_t pg_offset, u64 start, u64 len,
5027                                     int create)
5028 {
5029         int ret;
5030         int err = 0;
5031         u64 bytenr;
5032         u64 extent_start = 0;
5033         u64 extent_end = 0;
5034         u64 objectid = inode->i_ino;
5035         u32 found_type;
5036         struct btrfs_path *path = NULL;
5037         struct btrfs_root *root = BTRFS_I(inode)->root;
5038         struct btrfs_file_extent_item *item;
5039         struct extent_buffer *leaf;
5040         struct btrfs_key found_key;
5041         struct extent_map *em = NULL;
5042         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5043         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5044         struct btrfs_trans_handle *trans = NULL;
5045         int compress_type;
5046
5047 again:
5048         read_lock(&em_tree->lock);
5049         em = lookup_extent_mapping(em_tree, start, len);
5050         if (em)
5051                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5052         read_unlock(&em_tree->lock);
5053
5054         if (em) {
5055                 if (em->start > start || em->start + em->len <= start)
5056                         free_extent_map(em);
5057                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5058                         free_extent_map(em);
5059                 else
5060                         goto out;
5061         }
5062         em = alloc_extent_map(GFP_NOFS);
5063         if (!em) {
5064                 err = -ENOMEM;
5065                 goto out;
5066         }
5067         em->bdev = root->fs_info->fs_devices->latest_bdev;
5068         em->start = EXTENT_MAP_HOLE;
5069         em->orig_start = EXTENT_MAP_HOLE;
5070         em->len = (u64)-1;
5071         em->block_len = (u64)-1;
5072
5073         if (!path) {
5074                 path = btrfs_alloc_path();
5075                 BUG_ON(!path);
5076         }
5077
5078         ret = btrfs_lookup_file_extent(trans, root, path,
5079                                        objectid, start, trans != NULL);
5080         if (ret < 0) {
5081                 err = ret;
5082                 goto out;
5083         }
5084
5085         if (ret != 0) {
5086                 if (path->slots[0] == 0)
5087                         goto not_found;
5088                 path->slots[0]--;
5089         }
5090
5091         leaf = path->nodes[0];
5092         item = btrfs_item_ptr(leaf, path->slots[0],
5093                               struct btrfs_file_extent_item);
5094         /* are we inside the extent that was found? */
5095         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5096         found_type = btrfs_key_type(&found_key);
5097         if (found_key.objectid != objectid ||
5098             found_type != BTRFS_EXTENT_DATA_KEY) {
5099                 goto not_found;
5100         }
5101
5102         found_type = btrfs_file_extent_type(leaf, item);
5103         extent_start = found_key.offset;
5104         compress_type = btrfs_file_extent_compression(leaf, item);
5105         if (found_type == BTRFS_FILE_EXTENT_REG ||
5106             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5107                 extent_end = extent_start +
5108                        btrfs_file_extent_num_bytes(leaf, item);
5109         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5110                 size_t size;
5111                 size = btrfs_file_extent_inline_len(leaf, item);
5112                 extent_end = (extent_start + size + root->sectorsize - 1) &
5113                         ~((u64)root->sectorsize - 1);
5114         }
5115
5116         if (start >= extent_end) {
5117                 path->slots[0]++;
5118                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5119                         ret = btrfs_next_leaf(root, path);
5120                         if (ret < 0) {
5121                                 err = ret;
5122                                 goto out;
5123                         }
5124                         if (ret > 0)
5125                                 goto not_found;
5126                         leaf = path->nodes[0];
5127                 }
5128                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5129                 if (found_key.objectid != objectid ||
5130                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5131                         goto not_found;
5132                 if (start + len <= found_key.offset)
5133                         goto not_found;
5134                 em->start = start;
5135                 em->len = found_key.offset - start;
5136                 goto not_found_em;
5137         }
5138
5139         if (found_type == BTRFS_FILE_EXTENT_REG ||
5140             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5141                 em->start = extent_start;
5142                 em->len = extent_end - extent_start;
5143                 em->orig_start = extent_start -
5144                                  btrfs_file_extent_offset(leaf, item);
5145                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5146                 if (bytenr == 0) {
5147                         em->block_start = EXTENT_MAP_HOLE;
5148                         goto insert;
5149                 }
5150                 if (compress_type != BTRFS_COMPRESS_NONE) {
5151                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5152                         em->compress_type = compress_type;
5153                         em->block_start = bytenr;
5154                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5155                                                                          item);
5156                 } else {
5157                         bytenr += btrfs_file_extent_offset(leaf, item);
5158                         em->block_start = bytenr;
5159                         em->block_len = em->len;
5160                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5161                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5162                 }
5163                 goto insert;
5164         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5165                 unsigned long ptr;
5166                 char *map;
5167                 size_t size;
5168                 size_t extent_offset;
5169                 size_t copy_size;
5170
5171                 em->block_start = EXTENT_MAP_INLINE;
5172                 if (!page || create) {
5173                         em->start = extent_start;
5174                         em->len = extent_end - extent_start;
5175                         goto out;
5176                 }
5177
5178                 size = btrfs_file_extent_inline_len(leaf, item);
5179                 extent_offset = page_offset(page) + pg_offset - extent_start;
5180                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5181                                 size - extent_offset);
5182                 em->start = extent_start + extent_offset;
5183                 em->len = (copy_size + root->sectorsize - 1) &
5184                         ~((u64)root->sectorsize - 1);
5185                 em->orig_start = EXTENT_MAP_INLINE;
5186                 if (compress_type) {
5187                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5188                         em->compress_type = compress_type;
5189                 }
5190                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5191                 if (create == 0 && !PageUptodate(page)) {
5192                         if (btrfs_file_extent_compression(leaf, item) !=
5193                             BTRFS_COMPRESS_NONE) {
5194                                 ret = uncompress_inline(path, inode, page,
5195                                                         pg_offset,
5196                                                         extent_offset, item);
5197                                 BUG_ON(ret);
5198                         } else {
5199                                 map = kmap(page);
5200                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5201                                                    copy_size);
5202                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5203                                         memset(map + pg_offset + copy_size, 0,
5204                                                PAGE_CACHE_SIZE - pg_offset -
5205                                                copy_size);
5206                                 }
5207                                 kunmap(page);
5208                         }
5209                         flush_dcache_page(page);
5210                 } else if (create && PageUptodate(page)) {
5211                         WARN_ON(1);
5212                         if (!trans) {
5213                                 kunmap(page);
5214                                 free_extent_map(em);
5215                                 em = NULL;
5216                                 btrfs_release_path(root, path);
5217                                 trans = btrfs_join_transaction(root, 1);
5218                                 if (IS_ERR(trans))
5219                                         return ERR_CAST(trans);
5220                                 goto again;
5221                         }
5222                         map = kmap(page);
5223                         write_extent_buffer(leaf, map + pg_offset, ptr,
5224                                             copy_size);
5225                         kunmap(page);
5226                         btrfs_mark_buffer_dirty(leaf);
5227                 }
5228                 set_extent_uptodate(io_tree, em->start,
5229                                     extent_map_end(em) - 1, GFP_NOFS);
5230                 goto insert;
5231         } else {
5232                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5233                 WARN_ON(1);
5234         }
5235 not_found:
5236         em->start = start;
5237         em->len = len;
5238 not_found_em:
5239         em->block_start = EXTENT_MAP_HOLE;
5240         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5241 insert:
5242         btrfs_release_path(root, path);
5243         if (em->start > start || extent_map_end(em) <= start) {
5244                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5245                        "[%llu %llu]\n", (unsigned long long)em->start,
5246                        (unsigned long long)em->len,
5247                        (unsigned long long)start,
5248                        (unsigned long long)len);
5249                 err = -EIO;
5250                 goto out;
5251         }
5252
5253         err = 0;
5254         write_lock(&em_tree->lock);
5255         ret = add_extent_mapping(em_tree, em);
5256         /* it is possible that someone inserted the extent into the tree
5257          * while we had the lock dropped.  It is also possible that
5258          * an overlapping map exists in the tree
5259          */
5260         if (ret == -EEXIST) {
5261                 struct extent_map *existing;
5262
5263                 ret = 0;
5264
5265                 existing = lookup_extent_mapping(em_tree, start, len);
5266                 if (existing && (existing->start > start ||
5267                     existing->start + existing->len <= start)) {
5268                         free_extent_map(existing);
5269                         existing = NULL;
5270                 }
5271                 if (!existing) {
5272                         existing = lookup_extent_mapping(em_tree, em->start,
5273                                                          em->len);
5274                         if (existing) {
5275                                 err = merge_extent_mapping(em_tree, existing,
5276                                                            em, start,
5277                                                            root->sectorsize);
5278                                 free_extent_map(existing);
5279                                 if (err) {
5280                                         free_extent_map(em);
5281                                         em = NULL;
5282                                 }
5283                         } else {
5284                                 err = -EIO;
5285                                 free_extent_map(em);
5286                                 em = NULL;
5287                         }
5288                 } else {
5289                         free_extent_map(em);
5290                         em = existing;
5291                         err = 0;
5292                 }
5293         }
5294         write_unlock(&em_tree->lock);
5295 out:
5296
5297         trace_btrfs_get_extent(root, em);
5298
5299         if (path)
5300                 btrfs_free_path(path);
5301         if (trans) {
5302                 ret = btrfs_end_transaction(trans, root);
5303                 if (!err)
5304                         err = ret;
5305         }
5306         if (err) {
5307                 free_extent_map(em);
5308                 return ERR_PTR(err);
5309         }
5310         return em;
5311 }
5312
5313 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5314                                            size_t pg_offset, u64 start, u64 len,
5315                                            int create)
5316 {
5317         struct extent_map *em;
5318         struct extent_map *hole_em = NULL;
5319         u64 range_start = start;
5320         u64 end;
5321         u64 found;
5322         u64 found_end;
5323         int err = 0;
5324
5325         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5326         if (IS_ERR(em))
5327                 return em;
5328         if (em) {
5329                 /*
5330                  * if our em maps to a hole, there might
5331                  * actually be delalloc bytes behind it
5332                  */
5333                 if (em->block_start != EXTENT_MAP_HOLE)
5334                         return em;
5335                 else
5336                         hole_em = em;
5337         }
5338
5339         /* check to see if we've wrapped (len == -1 or similar) */
5340         end = start + len;
5341         if (end < start)
5342                 end = (u64)-1;
5343         else
5344                 end -= 1;
5345
5346         em = NULL;
5347
5348         /* ok, we didn't find anything, lets look for delalloc */
5349         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5350                                  end, len, EXTENT_DELALLOC, 1);
5351         found_end = range_start + found;
5352         if (found_end < range_start)
5353                 found_end = (u64)-1;
5354
5355         /*
5356          * we didn't find anything useful, return
5357          * the original results from get_extent()
5358          */
5359         if (range_start > end || found_end <= start) {
5360                 em = hole_em;
5361                 hole_em = NULL;
5362                 goto out;
5363         }
5364
5365         /* adjust the range_start to make sure it doesn't
5366          * go backwards from the start they passed in
5367          */
5368         range_start = max(start,range_start);
5369         found = found_end - range_start;
5370
5371         if (found > 0) {
5372                 u64 hole_start = start;
5373                 u64 hole_len = len;
5374
5375                 em = alloc_extent_map(GFP_NOFS);
5376                 if (!em) {
5377                         err = -ENOMEM;
5378                         goto out;
5379                 }
5380                 /*
5381                  * when btrfs_get_extent can't find anything it
5382                  * returns one huge hole
5383                  *
5384                  * make sure what it found really fits our range, and
5385                  * adjust to make sure it is based on the start from
5386                  * the caller
5387                  */
5388                 if (hole_em) {
5389                         u64 calc_end = extent_map_end(hole_em);
5390
5391                         if (calc_end <= start || (hole_em->start > end)) {
5392                                 free_extent_map(hole_em);
5393                                 hole_em = NULL;
5394                         } else {
5395                                 hole_start = max(hole_em->start, start);
5396                                 hole_len = calc_end - hole_start;
5397                         }
5398                 }
5399                 em->bdev = NULL;
5400                 if (hole_em && range_start > hole_start) {
5401                         /* our hole starts before our delalloc, so we
5402                          * have to return just the parts of the hole
5403                          * that go until  the delalloc starts
5404                          */
5405                         em->len = min(hole_len,
5406                                       range_start - hole_start);
5407                         em->start = hole_start;
5408                         em->orig_start = hole_start;
5409                         /*
5410                          * don't adjust block start at all,
5411                          * it is fixed at EXTENT_MAP_HOLE
5412                          */
5413                         em->block_start = hole_em->block_start;
5414                         em->block_len = hole_len;
5415                 } else {
5416                         em->start = range_start;
5417                         em->len = found;
5418                         em->orig_start = range_start;
5419                         em->block_start = EXTENT_MAP_DELALLOC;
5420                         em->block_len = found;
5421                 }
5422         } else if (hole_em) {
5423                 return hole_em;
5424         }
5425 out:
5426
5427         free_extent_map(hole_em);
5428         if (err) {
5429                 free_extent_map(em);
5430                 return ERR_PTR(err);
5431         }
5432         return em;
5433 }
5434
5435 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5436                                                   u64 start, u64 len)
5437 {
5438         struct btrfs_root *root = BTRFS_I(inode)->root;
5439         struct btrfs_trans_handle *trans;
5440         struct extent_map *em;
5441         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5442         struct btrfs_key ins;
5443         u64 alloc_hint;
5444         int ret;
5445
5446         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5447
5448         trans = btrfs_join_transaction(root, 0);
5449         if (IS_ERR(trans))
5450                 return ERR_CAST(trans);
5451
5452         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5453
5454         alloc_hint = get_extent_allocation_hint(inode, start, len);
5455         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5456                                    alloc_hint, (u64)-1, &ins, 1);
5457         if (ret) {
5458                 em = ERR_PTR(ret);
5459                 goto out;
5460         }
5461
5462         em = alloc_extent_map(GFP_NOFS);
5463         if (!em) {
5464                 em = ERR_PTR(-ENOMEM);
5465                 goto out;
5466         }
5467
5468         em->start = start;
5469         em->orig_start = em->start;
5470         em->len = ins.offset;
5471
5472         em->block_start = ins.objectid;
5473         em->block_len = ins.offset;
5474         em->bdev = root->fs_info->fs_devices->latest_bdev;
5475         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5476
5477         while (1) {
5478                 write_lock(&em_tree->lock);
5479                 ret = add_extent_mapping(em_tree, em);
5480                 write_unlock(&em_tree->lock);
5481                 if (ret != -EEXIST)
5482                         break;
5483                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5484         }
5485
5486         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5487                                            ins.offset, ins.offset, 0);
5488         if (ret) {
5489                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5490                 em = ERR_PTR(ret);
5491         }
5492 out:
5493         btrfs_end_transaction(trans, root);
5494         return em;
5495 }
5496
5497 /*
5498  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5499  * block must be cow'd
5500  */
5501 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5502                                       struct inode *inode, u64 offset, u64 len)
5503 {
5504         struct btrfs_path *path;
5505         int ret;
5506         struct extent_buffer *leaf;
5507         struct btrfs_root *root = BTRFS_I(inode)->root;
5508         struct btrfs_file_extent_item *fi;
5509         struct btrfs_key key;
5510         u64 disk_bytenr;
5511         u64 backref_offset;
5512         u64 extent_end;
5513         u64 num_bytes;
5514         int slot;
5515         int found_type;
5516
5517         path = btrfs_alloc_path();
5518         if (!path)
5519                 return -ENOMEM;
5520
5521         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5522                                        offset, 0);
5523         if (ret < 0)
5524                 goto out;
5525
5526         slot = path->slots[0];
5527         if (ret == 1) {
5528                 if (slot == 0) {
5529                         /* can't find the item, must cow */
5530                         ret = 0;
5531                         goto out;
5532                 }
5533                 slot--;
5534         }
5535         ret = 0;
5536         leaf = path->nodes[0];
5537         btrfs_item_key_to_cpu(leaf, &key, slot);
5538         if (key.objectid != inode->i_ino ||
5539             key.type != BTRFS_EXTENT_DATA_KEY) {
5540                 /* not our file or wrong item type, must cow */
5541                 goto out;
5542         }
5543
5544         if (key.offset > offset) {
5545                 /* Wrong offset, must cow */
5546                 goto out;
5547         }
5548
5549         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5550         found_type = btrfs_file_extent_type(leaf, fi);
5551         if (found_type != BTRFS_FILE_EXTENT_REG &&
5552             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5553                 /* not a regular extent, must cow */
5554                 goto out;
5555         }
5556         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5557         backref_offset = btrfs_file_extent_offset(leaf, fi);
5558
5559         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5560         if (extent_end < offset + len) {
5561                 /* extent doesn't include our full range, must cow */
5562                 goto out;
5563         }
5564
5565         if (btrfs_extent_readonly(root, disk_bytenr))
5566                 goto out;
5567
5568         /*
5569          * look for other files referencing this extent, if we
5570          * find any we must cow
5571          */
5572         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5573                                   key.offset - backref_offset, disk_bytenr))
5574                 goto out;
5575
5576         /*
5577          * adjust disk_bytenr and num_bytes to cover just the bytes
5578          * in this extent we are about to write.  If there
5579          * are any csums in that range we have to cow in order
5580          * to keep the csums correct
5581          */
5582         disk_bytenr += backref_offset;
5583         disk_bytenr += offset - key.offset;
5584         num_bytes = min(offset + len, extent_end) - offset;
5585         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5586                                 goto out;
5587         /*
5588          * all of the above have passed, it is safe to overwrite this extent
5589          * without cow
5590          */
5591         ret = 1;
5592 out:
5593         btrfs_free_path(path);
5594         return ret;
5595 }
5596
5597 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5598                                    struct buffer_head *bh_result, int create)
5599 {
5600         struct extent_map *em;
5601         struct btrfs_root *root = BTRFS_I(inode)->root;
5602         u64 start = iblock << inode->i_blkbits;
5603         u64 len = bh_result->b_size;
5604         struct btrfs_trans_handle *trans;
5605
5606         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5607         if (IS_ERR(em))
5608                 return PTR_ERR(em);
5609
5610         /*
5611          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5612          * io.  INLINE is special, and we could probably kludge it in here, but
5613          * it's still buffered so for safety lets just fall back to the generic
5614          * buffered path.
5615          *
5616          * For COMPRESSED we _have_ to read the entire extent in so we can
5617          * decompress it, so there will be buffering required no matter what we
5618          * do, so go ahead and fallback to buffered.
5619          *
5620          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5621          * to buffered IO.  Don't blame me, this is the price we pay for using
5622          * the generic code.
5623          */
5624         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5625             em->block_start == EXTENT_MAP_INLINE) {
5626                 free_extent_map(em);
5627                 return -ENOTBLK;
5628         }
5629
5630         /* Just a good old fashioned hole, return */
5631         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5632                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5633                 free_extent_map(em);
5634                 /* DIO will do one hole at a time, so just unlock a sector */
5635                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5636                               start + root->sectorsize - 1, GFP_NOFS);
5637                 return 0;
5638         }
5639
5640         /*
5641          * We don't allocate a new extent in the following cases
5642          *
5643          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5644          * existing extent.
5645          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5646          * just use the extent.
5647          *
5648          */
5649         if (!create) {
5650                 len = em->len - (start - em->start);
5651                 goto map;
5652         }
5653
5654         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5655             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5656              em->block_start != EXTENT_MAP_HOLE)) {
5657                 int type;
5658                 int ret;
5659                 u64 block_start;
5660
5661                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5662                         type = BTRFS_ORDERED_PREALLOC;
5663                 else
5664                         type = BTRFS_ORDERED_NOCOW;
5665                 len = min(len, em->len - (start - em->start));
5666                 block_start = em->block_start + (start - em->start);
5667
5668                 /*
5669                  * we're not going to log anything, but we do need
5670                  * to make sure the current transaction stays open
5671                  * while we look for nocow cross refs
5672                  */
5673                 trans = btrfs_join_transaction(root, 0);
5674                 if (IS_ERR(trans))
5675                         goto must_cow;
5676
5677                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5678                         ret = btrfs_add_ordered_extent_dio(inode, start,
5679                                            block_start, len, len, type);
5680                         btrfs_end_transaction(trans, root);
5681                         if (ret) {
5682                                 free_extent_map(em);
5683                                 return ret;
5684                         }
5685                         goto unlock;
5686                 }
5687                 btrfs_end_transaction(trans, root);
5688         }
5689 must_cow:
5690         /*
5691          * this will cow the extent, reset the len in case we changed
5692          * it above
5693          */
5694         len = bh_result->b_size;
5695         free_extent_map(em);
5696         em = btrfs_new_extent_direct(inode, start, len);
5697         if (IS_ERR(em))
5698                 return PTR_ERR(em);
5699         len = min(len, em->len - (start - em->start));
5700 unlock:
5701         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5702                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5703                           0, NULL, GFP_NOFS);
5704 map:
5705         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5706                 inode->i_blkbits;
5707         bh_result->b_size = len;
5708         bh_result->b_bdev = em->bdev;
5709         set_buffer_mapped(bh_result);
5710         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5711                 set_buffer_new(bh_result);
5712
5713         free_extent_map(em);
5714
5715         return 0;
5716 }
5717
5718 struct btrfs_dio_private {
5719         struct inode *inode;
5720         u64 logical_offset;
5721         u64 disk_bytenr;
5722         u64 bytes;
5723         u32 *csums;
5724         void *private;
5725
5726         /* number of bios pending for this dio */
5727         atomic_t pending_bios;
5728
5729         /* IO errors */
5730         int errors;
5731
5732         struct bio *orig_bio;
5733 };
5734
5735 static void btrfs_endio_direct_read(struct bio *bio, int err)
5736 {
5737         struct btrfs_dio_private *dip = bio->bi_private;
5738         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5739         struct bio_vec *bvec = bio->bi_io_vec;
5740         struct inode *inode = dip->inode;
5741         struct btrfs_root *root = BTRFS_I(inode)->root;
5742         u64 start;
5743         u32 *private = dip->csums;
5744
5745         start = dip->logical_offset;
5746         do {
5747                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5748                         struct page *page = bvec->bv_page;
5749                         char *kaddr;
5750                         u32 csum = ~(u32)0;
5751                         unsigned long flags;
5752
5753                         local_irq_save(flags);
5754                         kaddr = kmap_atomic(page, KM_IRQ0);
5755                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5756                                                csum, bvec->bv_len);
5757                         btrfs_csum_final(csum, (char *)&csum);
5758                         kunmap_atomic(kaddr, KM_IRQ0);
5759                         local_irq_restore(flags);
5760
5761                         flush_dcache_page(bvec->bv_page);
5762                         if (csum != *private) {
5763                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5764                                       " %llu csum %u private %u\n",
5765                                       inode->i_ino, (unsigned long long)start,
5766                                       csum, *private);
5767                                 err = -EIO;
5768                         }
5769                 }
5770
5771                 start += bvec->bv_len;
5772                 private++;
5773                 bvec++;
5774         } while (bvec <= bvec_end);
5775
5776         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5777                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5778         bio->bi_private = dip->private;
5779
5780         kfree(dip->csums);
5781         kfree(dip);
5782
5783         /* If we had a csum failure make sure to clear the uptodate flag */
5784         if (err)
5785                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5786         dio_end_io(bio, err);
5787 }
5788
5789 static void btrfs_endio_direct_write(struct bio *bio, int err)
5790 {
5791         struct btrfs_dio_private *dip = bio->bi_private;
5792         struct inode *inode = dip->inode;
5793         struct btrfs_root *root = BTRFS_I(inode)->root;
5794         struct btrfs_trans_handle *trans;
5795         struct btrfs_ordered_extent *ordered = NULL;
5796         struct extent_state *cached_state = NULL;
5797         u64 ordered_offset = dip->logical_offset;
5798         u64 ordered_bytes = dip->bytes;
5799         int ret;
5800
5801         if (err)
5802                 goto out_done;
5803 again:
5804         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5805                                                    &ordered_offset,
5806                                                    ordered_bytes);
5807         if (!ret)
5808                 goto out_test;
5809
5810         BUG_ON(!ordered);
5811
5812         trans = btrfs_join_transaction(root, 1);
5813         if (IS_ERR(trans)) {
5814                 err = -ENOMEM;
5815                 goto out;
5816         }
5817         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5818
5819         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5820                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5821                 if (!ret)
5822                         ret = btrfs_update_inode(trans, root, inode);
5823                 err = ret;
5824                 goto out;
5825         }
5826
5827         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5828                          ordered->file_offset + ordered->len - 1, 0,
5829                          &cached_state, GFP_NOFS);
5830
5831         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5832                 ret = btrfs_mark_extent_written(trans, inode,
5833                                                 ordered->file_offset,
5834                                                 ordered->file_offset +
5835                                                 ordered->len);
5836                 if (ret) {
5837                         err = ret;
5838                         goto out_unlock;
5839                 }
5840         } else {
5841                 ret = insert_reserved_file_extent(trans, inode,
5842                                                   ordered->file_offset,
5843                                                   ordered->start,
5844                                                   ordered->disk_len,
5845                                                   ordered->len,
5846                                                   ordered->len,
5847                                                   0, 0, 0,
5848                                                   BTRFS_FILE_EXTENT_REG);
5849                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5850                                    ordered->file_offset, ordered->len);
5851                 if (ret) {
5852                         err = ret;
5853                         WARN_ON(1);
5854                         goto out_unlock;
5855                 }
5856         }
5857
5858         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5859         btrfs_ordered_update_i_size(inode, 0, ordered);
5860         btrfs_update_inode(trans, root, inode);
5861 out_unlock:
5862         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5863                              ordered->file_offset + ordered->len - 1,
5864                              &cached_state, GFP_NOFS);
5865 out:
5866         btrfs_delalloc_release_metadata(inode, ordered->len);
5867         btrfs_end_transaction(trans, root);
5868         ordered_offset = ordered->file_offset + ordered->len;
5869         btrfs_put_ordered_extent(ordered);
5870         btrfs_put_ordered_extent(ordered);
5871
5872 out_test:
5873         /*
5874          * our bio might span multiple ordered extents.  If we haven't
5875          * completed the accounting for the whole dio, go back and try again
5876          */
5877         if (ordered_offset < dip->logical_offset + dip->bytes) {
5878                 ordered_bytes = dip->logical_offset + dip->bytes -
5879                         ordered_offset;
5880                 goto again;
5881         }
5882 out_done:
5883         bio->bi_private = dip->private;
5884
5885         kfree(dip->csums);
5886         kfree(dip);
5887
5888         /* If we had an error make sure to clear the uptodate flag */
5889         if (err)
5890                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5891         dio_end_io(bio, err);
5892 }
5893
5894 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5895                                     struct bio *bio, int mirror_num,
5896                                     unsigned long bio_flags, u64 offset)
5897 {
5898         int ret;
5899         struct btrfs_root *root = BTRFS_I(inode)->root;
5900         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5901         BUG_ON(ret);
5902         return 0;
5903 }
5904
5905 static void btrfs_end_dio_bio(struct bio *bio, int err)
5906 {
5907         struct btrfs_dio_private *dip = bio->bi_private;
5908
5909         if (err) {
5910                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5911                       "sector %#Lx len %u err no %d\n",
5912                       dip->inode->i_ino, bio->bi_rw,
5913                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5914                 dip->errors = 1;
5915
5916                 /*
5917                  * before atomic variable goto zero, we must make sure
5918                  * dip->errors is perceived to be set.
5919                  */
5920                 smp_mb__before_atomic_dec();
5921         }
5922
5923         /* if there are more bios still pending for this dio, just exit */
5924         if (!atomic_dec_and_test(&dip->pending_bios))
5925                 goto out;
5926
5927         if (dip->errors)
5928                 bio_io_error(dip->orig_bio);
5929         else {
5930                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5931                 bio_endio(dip->orig_bio, 0);
5932         }
5933 out:
5934         bio_put(bio);
5935 }
5936
5937 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5938                                        u64 first_sector, gfp_t gfp_flags)
5939 {
5940         int nr_vecs = bio_get_nr_vecs(bdev);
5941         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5942 }
5943
5944 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5945                                          int rw, u64 file_offset, int skip_sum,
5946                                          u32 *csums)
5947 {
5948         int write = rw & REQ_WRITE;
5949         struct btrfs_root *root = BTRFS_I(inode)->root;
5950         int ret;
5951
5952         bio_get(bio);
5953         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5954         if (ret)
5955                 goto err;
5956
5957         if (write && !skip_sum) {
5958                 ret = btrfs_wq_submit_bio(root->fs_info,
5959                                    inode, rw, bio, 0, 0,
5960                                    file_offset,
5961                                    __btrfs_submit_bio_start_direct_io,
5962                                    __btrfs_submit_bio_done);
5963                 goto err;
5964         } else if (!skip_sum) {
5965                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5966                                           file_offset, csums);
5967                 if (ret)
5968                         goto err;
5969         }
5970
5971         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5972 err:
5973         bio_put(bio);
5974         return ret;
5975 }
5976
5977 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5978                                     int skip_sum)
5979 {
5980         struct inode *inode = dip->inode;
5981         struct btrfs_root *root = BTRFS_I(inode)->root;
5982         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5983         struct bio *bio;
5984         struct bio *orig_bio = dip->orig_bio;
5985         struct bio_vec *bvec = orig_bio->bi_io_vec;
5986         u64 start_sector = orig_bio->bi_sector;
5987         u64 file_offset = dip->logical_offset;
5988         u64 submit_len = 0;
5989         u64 map_length;
5990         int nr_pages = 0;
5991         u32 *csums = dip->csums;
5992         int ret = 0;
5993         int write = rw & REQ_WRITE;
5994
5995         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5996         if (!bio)
5997                 return -ENOMEM;
5998         bio->bi_private = dip;
5999         bio->bi_end_io = btrfs_end_dio_bio;
6000         atomic_inc(&dip->pending_bios);
6001
6002         map_length = orig_bio->bi_size;
6003         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6004                               &map_length, NULL, 0);
6005         if (ret) {
6006                 bio_put(bio);
6007                 return -EIO;
6008         }
6009
6010         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6011                 if (unlikely(map_length < submit_len + bvec->bv_len ||
6012                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6013                                  bvec->bv_offset) < bvec->bv_len)) {
6014                         /*
6015                          * inc the count before we submit the bio so
6016                          * we know the end IO handler won't happen before
6017                          * we inc the count. Otherwise, the dip might get freed
6018                          * before we're done setting it up
6019                          */
6020                         atomic_inc(&dip->pending_bios);
6021                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
6022                                                      file_offset, skip_sum,
6023                                                      csums);
6024                         if (ret) {
6025                                 bio_put(bio);
6026                                 atomic_dec(&dip->pending_bios);
6027                                 goto out_err;
6028                         }
6029
6030                         /* Write's use the ordered csums */
6031                         if (!write && !skip_sum)
6032                                 csums = csums + nr_pages;
6033                         start_sector += submit_len >> 9;
6034                         file_offset += submit_len;
6035
6036                         submit_len = 0;
6037                         nr_pages = 0;
6038
6039                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6040                                                   start_sector, GFP_NOFS);
6041                         if (!bio)
6042                                 goto out_err;
6043                         bio->bi_private = dip;
6044                         bio->bi_end_io = btrfs_end_dio_bio;
6045
6046                         map_length = orig_bio->bi_size;
6047                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6048                                               &map_length, NULL, 0);
6049                         if (ret) {
6050                                 bio_put(bio);
6051                                 goto out_err;
6052                         }
6053                 } else {
6054                         submit_len += bvec->bv_len;
6055                         nr_pages ++;
6056                         bvec++;
6057                 }
6058         }
6059
6060         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6061                                      csums);
6062         if (!ret)
6063                 return 0;
6064
6065         bio_put(bio);
6066 out_err:
6067         dip->errors = 1;
6068         /*
6069          * before atomic variable goto zero, we must
6070          * make sure dip->errors is perceived to be set.
6071          */
6072         smp_mb__before_atomic_dec();
6073         if (atomic_dec_and_test(&dip->pending_bios))
6074                 bio_io_error(dip->orig_bio);
6075
6076         /* bio_end_io() will handle error, so we needn't return it */
6077         return 0;
6078 }
6079
6080 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6081                                 loff_t file_offset)
6082 {
6083         struct btrfs_root *root = BTRFS_I(inode)->root;
6084         struct btrfs_dio_private *dip;
6085         struct bio_vec *bvec = bio->bi_io_vec;
6086         int skip_sum;
6087         int write = rw & REQ_WRITE;
6088         int ret = 0;
6089
6090         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6091
6092         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6093         if (!dip) {
6094                 ret = -ENOMEM;
6095                 goto free_ordered;
6096         }
6097         dip->csums = NULL;
6098
6099         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6100         if (!write && !skip_sum) {
6101                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6102                 if (!dip->csums) {
6103                         kfree(dip);
6104                         ret = -ENOMEM;
6105                         goto free_ordered;
6106                 }
6107         }
6108
6109         dip->private = bio->bi_private;
6110         dip->inode = inode;
6111         dip->logical_offset = file_offset;
6112
6113         dip->bytes = 0;
6114         do {
6115                 dip->bytes += bvec->bv_len;
6116                 bvec++;
6117         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6118
6119         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6120         bio->bi_private = dip;
6121         dip->errors = 0;
6122         dip->orig_bio = bio;
6123         atomic_set(&dip->pending_bios, 0);
6124
6125         if (write)
6126                 bio->bi_end_io = btrfs_endio_direct_write;
6127         else
6128                 bio->bi_end_io = btrfs_endio_direct_read;
6129
6130         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6131         if (!ret)
6132                 return;
6133 free_ordered:
6134         /*
6135          * If this is a write, we need to clean up the reserved space and kill
6136          * the ordered extent.
6137          */
6138         if (write) {
6139                 struct btrfs_ordered_extent *ordered;
6140                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6141                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6142                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6143                         btrfs_free_reserved_extent(root, ordered->start,
6144                                                    ordered->disk_len);
6145                 btrfs_put_ordered_extent(ordered);
6146                 btrfs_put_ordered_extent(ordered);
6147         }
6148         bio_endio(bio, ret);
6149 }
6150
6151 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6152                         const struct iovec *iov, loff_t offset,
6153                         unsigned long nr_segs)
6154 {
6155         int seg;
6156         size_t size;
6157         unsigned long addr;
6158         unsigned blocksize_mask = root->sectorsize - 1;
6159         ssize_t retval = -EINVAL;
6160         loff_t end = offset;
6161
6162         if (offset & blocksize_mask)
6163                 goto out;
6164
6165         /* Check the memory alignment.  Blocks cannot straddle pages */
6166         for (seg = 0; seg < nr_segs; seg++) {
6167                 addr = (unsigned long)iov[seg].iov_base;
6168                 size = iov[seg].iov_len;
6169                 end += size;
6170                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6171                         goto out;
6172         }
6173         retval = 0;
6174 out:
6175         return retval;
6176 }
6177 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6178                         const struct iovec *iov, loff_t offset,
6179                         unsigned long nr_segs)
6180 {
6181         struct file *file = iocb->ki_filp;
6182         struct inode *inode = file->f_mapping->host;
6183         struct btrfs_ordered_extent *ordered;
6184         struct extent_state *cached_state = NULL;
6185         u64 lockstart, lockend;
6186         ssize_t ret;
6187         int writing = rw & WRITE;
6188         int write_bits = 0;
6189         size_t count = iov_length(iov, nr_segs);
6190
6191         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6192                             offset, nr_segs)) {
6193                 return 0;
6194         }
6195
6196         lockstart = offset;
6197         lockend = offset + count - 1;
6198
6199         if (writing) {
6200                 ret = btrfs_delalloc_reserve_space(inode, count);
6201                 if (ret)
6202                         goto out;
6203         }
6204
6205         while (1) {
6206                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6207                                  0, &cached_state, GFP_NOFS);
6208                 /*
6209                  * We're concerned with the entire range that we're going to be
6210                  * doing DIO to, so we need to make sure theres no ordered
6211                  * extents in this range.
6212                  */
6213                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6214                                                      lockend - lockstart + 1);
6215                 if (!ordered)
6216                         break;
6217                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6218                                      &cached_state, GFP_NOFS);
6219                 btrfs_start_ordered_extent(inode, ordered, 1);
6220                 btrfs_put_ordered_extent(ordered);
6221                 cond_resched();
6222         }
6223
6224         /*
6225          * we don't use btrfs_set_extent_delalloc because we don't want
6226          * the dirty or uptodate bits
6227          */
6228         if (writing) {
6229                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6230                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6231                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6232                                      GFP_NOFS);
6233                 if (ret) {
6234                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6235                                          lockend, EXTENT_LOCKED | write_bits,
6236                                          1, 0, &cached_state, GFP_NOFS);
6237                         goto out;
6238                 }
6239         }
6240
6241         free_extent_state(cached_state);
6242         cached_state = NULL;
6243
6244         ret = __blockdev_direct_IO(rw, iocb, inode,
6245                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6246                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6247                    btrfs_submit_direct, 0);
6248
6249         if (ret < 0 && ret != -EIOCBQUEUED) {
6250                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6251                               offset + iov_length(iov, nr_segs) - 1,
6252                               EXTENT_LOCKED | write_bits, 1, 0,
6253                               &cached_state, GFP_NOFS);
6254         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6255                 /*
6256                  * We're falling back to buffered, unlock the section we didn't
6257                  * do IO on.
6258                  */
6259                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6260                               offset + iov_length(iov, nr_segs) - 1,
6261                               EXTENT_LOCKED | write_bits, 1, 0,
6262                               &cached_state, GFP_NOFS);
6263         }
6264 out:
6265         free_extent_state(cached_state);
6266         return ret;
6267 }
6268
6269 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6270                 __u64 start, __u64 len)
6271 {
6272         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6273 }
6274
6275 int btrfs_readpage(struct file *file, struct page *page)
6276 {
6277         struct extent_io_tree *tree;
6278         tree = &BTRFS_I(page->mapping->host)->io_tree;
6279         return extent_read_full_page(tree, page, btrfs_get_extent);
6280 }
6281
6282 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6283 {
6284         struct extent_io_tree *tree;
6285
6286
6287         if (current->flags & PF_MEMALLOC) {
6288                 redirty_page_for_writepage(wbc, page);
6289                 unlock_page(page);
6290                 return 0;
6291         }
6292         tree = &BTRFS_I(page->mapping->host)->io_tree;
6293         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6294 }
6295
6296 int btrfs_writepages(struct address_space *mapping,
6297                      struct writeback_control *wbc)
6298 {
6299         struct extent_io_tree *tree;
6300
6301         tree = &BTRFS_I(mapping->host)->io_tree;
6302         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6303 }
6304
6305 static int
6306 btrfs_readpages(struct file *file, struct address_space *mapping,
6307                 struct list_head *pages, unsigned nr_pages)
6308 {
6309         struct extent_io_tree *tree;
6310         tree = &BTRFS_I(mapping->host)->io_tree;
6311         return extent_readpages(tree, mapping, pages, nr_pages,
6312                                 btrfs_get_extent);
6313 }
6314 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6315 {
6316         struct extent_io_tree *tree;
6317         struct extent_map_tree *map;
6318         int ret;
6319
6320         tree = &BTRFS_I(page->mapping->host)->io_tree;
6321         map = &BTRFS_I(page->mapping->host)->extent_tree;
6322         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6323         if (ret == 1) {
6324                 ClearPagePrivate(page);
6325                 set_page_private(page, 0);
6326                 page_cache_release(page);
6327         }
6328         return ret;
6329 }
6330
6331 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6332 {
6333         if (PageWriteback(page) || PageDirty(page))
6334                 return 0;
6335         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6336 }
6337
6338 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6339 {
6340         struct extent_io_tree *tree;
6341         struct btrfs_ordered_extent *ordered;
6342         struct extent_state *cached_state = NULL;
6343         u64 page_start = page_offset(page);
6344         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6345
6346
6347         /*
6348          * we have the page locked, so new writeback can't start,
6349          * and the dirty bit won't be cleared while we are here.
6350          *
6351          * Wait for IO on this page so that we can safely clear
6352          * the PagePrivate2 bit and do ordered accounting
6353          */
6354         wait_on_page_writeback(page);
6355
6356         tree = &BTRFS_I(page->mapping->host)->io_tree;
6357         if (offset) {
6358                 btrfs_releasepage(page, GFP_NOFS);
6359                 return;
6360         }
6361         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6362                          GFP_NOFS);
6363         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6364                                            page_offset(page));
6365         if (ordered) {
6366                 /*
6367                  * IO on this page will never be started, so we need
6368                  * to account for any ordered extents now
6369                  */
6370                 clear_extent_bit(tree, page_start, page_end,
6371                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6372                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6373                                  &cached_state, GFP_NOFS);
6374                 /*
6375                  * whoever cleared the private bit is responsible
6376                  * for the finish_ordered_io
6377                  */
6378                 if (TestClearPagePrivate2(page)) {
6379                         btrfs_finish_ordered_io(page->mapping->host,
6380                                                 page_start, page_end);
6381                 }
6382                 btrfs_put_ordered_extent(ordered);
6383                 cached_state = NULL;
6384                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6385                                  GFP_NOFS);
6386         }
6387         clear_extent_bit(tree, page_start, page_end,
6388                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6389                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6390         __btrfs_releasepage(page, GFP_NOFS);
6391
6392         ClearPageChecked(page);
6393         if (PagePrivate(page)) {
6394                 ClearPagePrivate(page);
6395                 set_page_private(page, 0);
6396                 page_cache_release(page);
6397         }
6398 }
6399
6400 /*
6401  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6402  * called from a page fault handler when a page is first dirtied. Hence we must
6403  * be careful to check for EOF conditions here. We set the page up correctly
6404  * for a written page which means we get ENOSPC checking when writing into
6405  * holes and correct delalloc and unwritten extent mapping on filesystems that
6406  * support these features.
6407  *
6408  * We are not allowed to take the i_mutex here so we have to play games to
6409  * protect against truncate races as the page could now be beyond EOF.  Because
6410  * vmtruncate() writes the inode size before removing pages, once we have the
6411  * page lock we can determine safely if the page is beyond EOF. If it is not
6412  * beyond EOF, then the page is guaranteed safe against truncation until we
6413  * unlock the page.
6414  */
6415 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6416 {
6417         struct page *page = vmf->page;
6418         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6419         struct btrfs_root *root = BTRFS_I(inode)->root;
6420         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6421         struct btrfs_ordered_extent *ordered;
6422         struct extent_state *cached_state = NULL;
6423         char *kaddr;
6424         unsigned long zero_start;
6425         loff_t size;
6426         int ret;
6427         u64 page_start;
6428         u64 page_end;
6429
6430         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6431         if (ret) {
6432                 if (ret == -ENOMEM)
6433                         ret = VM_FAULT_OOM;
6434                 else /* -ENOSPC, -EIO, etc */
6435                         ret = VM_FAULT_SIGBUS;
6436                 goto out;
6437         }
6438
6439         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6440 again:
6441         lock_page(page);
6442         size = i_size_read(inode);
6443         page_start = page_offset(page);
6444         page_end = page_start + PAGE_CACHE_SIZE - 1;
6445
6446         if ((page->mapping != inode->i_mapping) ||
6447             (page_start >= size)) {
6448                 /* page got truncated out from underneath us */
6449                 goto out_unlock;
6450         }
6451         wait_on_page_writeback(page);
6452
6453         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6454                          GFP_NOFS);
6455         set_page_extent_mapped(page);
6456
6457         /*
6458          * we can't set the delalloc bits if there are pending ordered
6459          * extents.  Drop our locks and wait for them to finish
6460          */
6461         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6462         if (ordered) {
6463                 unlock_extent_cached(io_tree, page_start, page_end,
6464                                      &cached_state, GFP_NOFS);
6465                 unlock_page(page);
6466                 btrfs_start_ordered_extent(inode, ordered, 1);
6467                 btrfs_put_ordered_extent(ordered);
6468                 goto again;
6469         }
6470
6471         /*
6472          * XXX - page_mkwrite gets called every time the page is dirtied, even
6473          * if it was already dirty, so for space accounting reasons we need to
6474          * clear any delalloc bits for the range we are fixing to save.  There
6475          * is probably a better way to do this, but for now keep consistent with
6476          * prepare_pages in the normal write path.
6477          */
6478         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6479                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6480                           0, 0, &cached_state, GFP_NOFS);
6481
6482         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6483                                         &cached_state);
6484         if (ret) {
6485                 unlock_extent_cached(io_tree, page_start, page_end,
6486                                      &cached_state, GFP_NOFS);
6487                 ret = VM_FAULT_SIGBUS;
6488                 goto out_unlock;
6489         }
6490         ret = 0;
6491
6492         /* page is wholly or partially inside EOF */
6493         if (page_start + PAGE_CACHE_SIZE > size)
6494                 zero_start = size & ~PAGE_CACHE_MASK;
6495         else
6496                 zero_start = PAGE_CACHE_SIZE;
6497
6498         if (zero_start != PAGE_CACHE_SIZE) {
6499                 kaddr = kmap(page);
6500                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6501                 flush_dcache_page(page);
6502                 kunmap(page);
6503         }
6504         ClearPageChecked(page);
6505         set_page_dirty(page);
6506         SetPageUptodate(page);
6507
6508         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6509         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6510
6511         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6512
6513 out_unlock:
6514         if (!ret)
6515                 return VM_FAULT_LOCKED;
6516         unlock_page(page);
6517         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6518 out:
6519         return ret;
6520 }
6521
6522 static int btrfs_truncate(struct inode *inode)
6523 {
6524         struct btrfs_root *root = BTRFS_I(inode)->root;
6525         int ret;
6526         int err = 0;
6527         struct btrfs_trans_handle *trans;
6528         unsigned long nr;
6529         u64 mask = root->sectorsize - 1;
6530
6531         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6532         if (ret)
6533                 return ret;
6534
6535         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6536         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6537
6538         trans = btrfs_start_transaction(root, 5);
6539         if (IS_ERR(trans))
6540                 return PTR_ERR(trans);
6541
6542         btrfs_set_trans_block_group(trans, inode);
6543
6544         ret = btrfs_orphan_add(trans, inode);
6545         if (ret) {
6546                 btrfs_end_transaction(trans, root);
6547                 return ret;
6548         }
6549
6550         nr = trans->blocks_used;
6551         btrfs_end_transaction(trans, root);
6552         btrfs_btree_balance_dirty(root, nr);
6553
6554         /* Now start a transaction for the truncate */
6555         trans = btrfs_start_transaction(root, 0);
6556         if (IS_ERR(trans))
6557                 return PTR_ERR(trans);
6558         btrfs_set_trans_block_group(trans, inode);
6559         trans->block_rsv = root->orphan_block_rsv;
6560
6561         /*
6562          * setattr is responsible for setting the ordered_data_close flag,
6563          * but that is only tested during the last file release.  That
6564          * could happen well after the next commit, leaving a great big
6565          * window where new writes may get lost if someone chooses to write
6566          * to this file after truncating to zero
6567          *
6568          * The inode doesn't have any dirty data here, and so if we commit
6569          * this is a noop.  If someone immediately starts writing to the inode
6570          * it is very likely we'll catch some of their writes in this
6571          * transaction, and the commit will find this file on the ordered
6572          * data list with good things to send down.
6573          *
6574          * This is a best effort solution, there is still a window where
6575          * using truncate to replace the contents of the file will
6576          * end up with a zero length file after a crash.
6577          */
6578         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6579                 btrfs_add_ordered_operation(trans, root, inode);
6580
6581         while (1) {
6582                 if (!trans) {
6583                         trans = btrfs_start_transaction(root, 0);
6584                         if (IS_ERR(trans))
6585                                 return PTR_ERR(trans);
6586                         btrfs_set_trans_block_group(trans, inode);
6587                         trans->block_rsv = root->orphan_block_rsv;
6588                 }
6589
6590                 ret = btrfs_block_rsv_check(trans, root,
6591                                             root->orphan_block_rsv, 0, 5);
6592                 if (ret == -EAGAIN) {
6593                         ret = btrfs_commit_transaction(trans, root);
6594                         if (ret)
6595                                 return ret;
6596                         trans = NULL;
6597                         continue;
6598                 } else if (ret) {
6599                         err = ret;
6600                         break;
6601                 }
6602
6603                 ret = btrfs_truncate_inode_items(trans, root, inode,
6604                                                  inode->i_size,
6605                                                  BTRFS_EXTENT_DATA_KEY);
6606                 if (ret != -EAGAIN) {
6607                         err = ret;
6608                         break;
6609                 }
6610
6611                 ret = btrfs_update_inode(trans, root, inode);
6612                 if (ret) {
6613                         err = ret;
6614                         break;
6615                 }
6616
6617                 nr = trans->blocks_used;
6618                 btrfs_end_transaction(trans, root);
6619                 trans = NULL;
6620                 btrfs_btree_balance_dirty(root, nr);
6621         }
6622
6623         if (ret == 0 && inode->i_nlink > 0) {
6624                 ret = btrfs_orphan_del(trans, inode);
6625                 if (ret)
6626                         err = ret;
6627         } else if (ret && inode->i_nlink > 0) {
6628                 /*
6629                  * Failed to do the truncate, remove us from the in memory
6630                  * orphan list.
6631                  */
6632                 ret = btrfs_orphan_del(NULL, inode);
6633         }
6634
6635         ret = btrfs_update_inode(trans, root, inode);
6636         if (ret && !err)
6637                 err = ret;
6638
6639         nr = trans->blocks_used;
6640         ret = btrfs_end_transaction_throttle(trans, root);
6641         if (ret && !err)
6642                 err = ret;
6643         btrfs_btree_balance_dirty(root, nr);
6644
6645         return err;
6646 }
6647
6648 /*
6649  * create a new subvolume directory/inode (helper for the ioctl).
6650  */
6651 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6652                              struct btrfs_root *new_root,
6653                              u64 new_dirid, u64 alloc_hint)
6654 {
6655         struct inode *inode;
6656         int err;
6657         u64 index = 0;
6658
6659         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6660                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6661         if (IS_ERR(inode))
6662                 return PTR_ERR(inode);
6663         inode->i_op = &btrfs_dir_inode_operations;
6664         inode->i_fop = &btrfs_dir_file_operations;
6665
6666         inode->i_nlink = 1;
6667         btrfs_i_size_write(inode, 0);
6668
6669         err = btrfs_update_inode(trans, new_root, inode);
6670         BUG_ON(err);
6671
6672         iput(inode);
6673         return 0;
6674 }
6675
6676 /* helper function for file defrag and space balancing.  This
6677  * forces readahead on a given range of bytes in an inode
6678  */
6679 unsigned long btrfs_force_ra(struct address_space *mapping,
6680                               struct file_ra_state *ra, struct file *file,
6681                               pgoff_t offset, pgoff_t last_index)
6682 {
6683         pgoff_t req_size = last_index - offset + 1;
6684
6685         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6686         return offset + req_size;
6687 }
6688
6689 struct inode *btrfs_alloc_inode(struct super_block *sb)
6690 {
6691         struct btrfs_inode *ei;
6692         struct inode *inode;
6693
6694         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6695         if (!ei)
6696                 return NULL;
6697
6698         ei->root = NULL;
6699         ei->space_info = NULL;
6700         ei->generation = 0;
6701         ei->sequence = 0;
6702         ei->last_trans = 0;
6703         ei->last_sub_trans = 0;
6704         ei->logged_trans = 0;
6705         ei->delalloc_bytes = 0;
6706         ei->reserved_bytes = 0;
6707         ei->disk_i_size = 0;
6708         ei->flags = 0;
6709         ei->index_cnt = (u64)-1;
6710         ei->last_unlink_trans = 0;
6711
6712         atomic_set(&ei->outstanding_extents, 0);
6713         atomic_set(&ei->reserved_extents, 0);
6714
6715         ei->ordered_data_close = 0;
6716         ei->orphan_meta_reserved = 0;
6717         ei->dummy_inode = 0;
6718         ei->force_compress = BTRFS_COMPRESS_NONE;
6719
6720         inode = &ei->vfs_inode;
6721         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6722         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6723         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6724         mutex_init(&ei->log_mutex);
6725         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6726         INIT_LIST_HEAD(&ei->i_orphan);
6727         INIT_LIST_HEAD(&ei->delalloc_inodes);
6728         INIT_LIST_HEAD(&ei->ordered_operations);
6729         RB_CLEAR_NODE(&ei->rb_node);
6730
6731         return inode;
6732 }
6733
6734 static void btrfs_i_callback(struct rcu_head *head)
6735 {
6736         struct inode *inode = container_of(head, struct inode, i_rcu);
6737         INIT_LIST_HEAD(&inode->i_dentry);
6738         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6739 }
6740
6741 void btrfs_destroy_inode(struct inode *inode)
6742 {
6743         struct btrfs_ordered_extent *ordered;
6744         struct btrfs_root *root = BTRFS_I(inode)->root;
6745
6746         WARN_ON(!list_empty(&inode->i_dentry));
6747         WARN_ON(inode->i_data.nrpages);
6748         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6749         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6750
6751         /*
6752          * This can happen where we create an inode, but somebody else also
6753          * created the same inode and we need to destroy the one we already
6754          * created.
6755          */
6756         if (!root)
6757                 goto free;
6758
6759         /*
6760          * Make sure we're properly removed from the ordered operation
6761          * lists.
6762          */
6763         smp_mb();
6764         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6765                 spin_lock(&root->fs_info->ordered_extent_lock);
6766                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6767                 spin_unlock(&root->fs_info->ordered_extent_lock);
6768         }
6769
6770         if (root == root->fs_info->tree_root) {
6771                 struct btrfs_block_group_cache *block_group;
6772
6773                 block_group = btrfs_lookup_block_group(root->fs_info,
6774                                                 BTRFS_I(inode)->block_group);
6775                 if (block_group && block_group->inode == inode) {
6776                         spin_lock(&block_group->lock);
6777                         block_group->inode = NULL;
6778                         spin_unlock(&block_group->lock);
6779                         btrfs_put_block_group(block_group);
6780                 } else if (block_group) {
6781                         btrfs_put_block_group(block_group);
6782                 }
6783         }
6784
6785         spin_lock(&root->orphan_lock);
6786         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6787                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6788                        inode->i_ino);
6789                 list_del_init(&BTRFS_I(inode)->i_orphan);
6790         }
6791         spin_unlock(&root->orphan_lock);
6792
6793         while (1) {
6794                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6795                 if (!ordered)
6796                         break;
6797                 else {
6798                         printk(KERN_ERR "btrfs found ordered "
6799                                "extent %llu %llu on inode cleanup\n",
6800                                (unsigned long long)ordered->file_offset,
6801                                (unsigned long long)ordered->len);
6802                         btrfs_remove_ordered_extent(inode, ordered);
6803                         btrfs_put_ordered_extent(ordered);
6804                         btrfs_put_ordered_extent(ordered);
6805                 }
6806         }
6807         inode_tree_del(inode);
6808         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6809 free:
6810         call_rcu(&inode->i_rcu, btrfs_i_callback);
6811 }
6812
6813 int btrfs_drop_inode(struct inode *inode)
6814 {
6815         struct btrfs_root *root = BTRFS_I(inode)->root;
6816
6817         if (btrfs_root_refs(&root->root_item) == 0 &&
6818             root != root->fs_info->tree_root)
6819                 return 1;
6820         else
6821                 return generic_drop_inode(inode);
6822 }
6823
6824 static void init_once(void *foo)
6825 {
6826         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6827
6828         inode_init_once(&ei->vfs_inode);
6829 }
6830
6831 void btrfs_destroy_cachep(void)
6832 {
6833         if (btrfs_inode_cachep)
6834                 kmem_cache_destroy(btrfs_inode_cachep);
6835         if (btrfs_trans_handle_cachep)
6836                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6837         if (btrfs_transaction_cachep)
6838                 kmem_cache_destroy(btrfs_transaction_cachep);
6839         if (btrfs_path_cachep)
6840                 kmem_cache_destroy(btrfs_path_cachep);
6841         if (btrfs_free_space_cachep)
6842                 kmem_cache_destroy(btrfs_free_space_cachep);
6843 }
6844
6845 int btrfs_init_cachep(void)
6846 {
6847         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6848                         sizeof(struct btrfs_inode), 0,
6849                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6850         if (!btrfs_inode_cachep)
6851                 goto fail;
6852
6853         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6854                         sizeof(struct btrfs_trans_handle), 0,
6855                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6856         if (!btrfs_trans_handle_cachep)
6857                 goto fail;
6858
6859         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6860                         sizeof(struct btrfs_transaction), 0,
6861                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6862         if (!btrfs_transaction_cachep)
6863                 goto fail;
6864
6865         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6866                         sizeof(struct btrfs_path), 0,
6867                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6868         if (!btrfs_path_cachep)
6869                 goto fail;
6870
6871         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6872                         sizeof(struct btrfs_free_space), 0,
6873                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6874         if (!btrfs_free_space_cachep)
6875                 goto fail;
6876
6877         return 0;
6878 fail:
6879         btrfs_destroy_cachep();
6880         return -ENOMEM;
6881 }
6882
6883 static int btrfs_getattr(struct vfsmount *mnt,
6884                          struct dentry *dentry, struct kstat *stat)
6885 {
6886         struct inode *inode = dentry->d_inode;
6887         generic_fillattr(inode, stat);
6888         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6889         stat->blksize = PAGE_CACHE_SIZE;
6890         stat->blocks = (inode_get_bytes(inode) +
6891                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6892         return 0;
6893 }
6894
6895 /*
6896  * If a file is moved, it will inherit the cow and compression flags of the new
6897  * directory.
6898  */
6899 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6900 {
6901         struct btrfs_inode *b_dir = BTRFS_I(dir);
6902         struct btrfs_inode *b_inode = BTRFS_I(inode);
6903
6904         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6905                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6906         else
6907                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6908
6909         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6910                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6911         else
6912                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6913 }
6914
6915 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6916                            struct inode *new_dir, struct dentry *new_dentry)
6917 {
6918         struct btrfs_trans_handle *trans;
6919         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6920         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6921         struct inode *new_inode = new_dentry->d_inode;
6922         struct inode *old_inode = old_dentry->d_inode;
6923         struct timespec ctime = CURRENT_TIME;
6924         u64 index = 0;
6925         u64 root_objectid;
6926         int ret;
6927
6928         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6929                 return -EPERM;
6930
6931         /* we only allow rename subvolume link between subvolumes */
6932         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6933                 return -EXDEV;
6934
6935         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6936             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6937                 return -ENOTEMPTY;
6938
6939         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6940             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6941                 return -ENOTEMPTY;
6942         /*
6943          * we're using rename to replace one file with another.
6944          * and the replacement file is large.  Start IO on it now so
6945          * we don't add too much work to the end of the transaction
6946          */
6947         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6948             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6949                 filemap_flush(old_inode->i_mapping);
6950
6951         /* close the racy window with snapshot create/destroy ioctl */
6952         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6953                 down_read(&root->fs_info->subvol_sem);
6954         /*
6955          * We want to reserve the absolute worst case amount of items.  So if
6956          * both inodes are subvols and we need to unlink them then that would
6957          * require 4 item modifications, but if they are both normal inodes it
6958          * would require 5 item modifications, so we'll assume their normal
6959          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6960          * should cover the worst case number of items we'll modify.
6961          */
6962         trans = btrfs_start_transaction(root, 20);
6963         if (IS_ERR(trans)) {
6964                 ret = PTR_ERR(trans);
6965                 goto out_notrans;
6966         }
6967
6968         btrfs_set_trans_block_group(trans, new_dir);
6969
6970         if (dest != root)
6971                 btrfs_record_root_in_trans(trans, dest);
6972
6973         ret = btrfs_set_inode_index(new_dir, &index);
6974         if (ret)
6975                 goto out_fail;
6976
6977         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6978                 /* force full log commit if subvolume involved. */
6979                 root->fs_info->last_trans_log_full_commit = trans->transid;
6980         } else {
6981                 ret = btrfs_insert_inode_ref(trans, dest,
6982                                              new_dentry->d_name.name,
6983                                              new_dentry->d_name.len,
6984                                              old_inode->i_ino,
6985                                              new_dir->i_ino, index);
6986                 if (ret)
6987                         goto out_fail;
6988                 /*
6989                  * this is an ugly little race, but the rename is required
6990                  * to make sure that if we crash, the inode is either at the
6991                  * old name or the new one.  pinning the log transaction lets
6992                  * us make sure we don't allow a log commit to come in after
6993                  * we unlink the name but before we add the new name back in.
6994                  */
6995                 btrfs_pin_log_trans(root);
6996         }
6997         /*
6998          * make sure the inode gets flushed if it is replacing
6999          * something.
7000          */
7001         if (new_inode && new_inode->i_size &&
7002             old_inode && S_ISREG(old_inode->i_mode)) {
7003                 btrfs_add_ordered_operation(trans, root, old_inode);
7004         }
7005
7006         old_dir->i_ctime = old_dir->i_mtime = ctime;
7007         new_dir->i_ctime = new_dir->i_mtime = ctime;
7008         old_inode->i_ctime = ctime;
7009
7010         if (old_dentry->d_parent != new_dentry->d_parent)
7011                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7012
7013         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7014                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7015                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7016                                         old_dentry->d_name.name,
7017                                         old_dentry->d_name.len);
7018         } else {
7019                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7020                                         old_dentry->d_inode,
7021                                         old_dentry->d_name.name,
7022                                         old_dentry->d_name.len);
7023                 if (!ret)
7024                         ret = btrfs_update_inode(trans, root, old_inode);
7025         }
7026         BUG_ON(ret);
7027
7028         if (new_inode) {
7029                 new_inode->i_ctime = CURRENT_TIME;
7030                 if (unlikely(new_inode->i_ino ==
7031                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7032                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7033                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7034                                                 root_objectid,
7035                                                 new_dentry->d_name.name,
7036                                                 new_dentry->d_name.len);
7037                         BUG_ON(new_inode->i_nlink == 0);
7038                 } else {
7039                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7040                                                  new_dentry->d_inode,
7041                                                  new_dentry->d_name.name,
7042                                                  new_dentry->d_name.len);
7043                 }
7044                 BUG_ON(ret);
7045                 if (new_inode->i_nlink == 0) {
7046                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7047                         BUG_ON(ret);
7048                 }
7049         }
7050
7051         fixup_inode_flags(new_dir, old_inode);
7052
7053         ret = btrfs_add_link(trans, new_dir, old_inode,
7054                              new_dentry->d_name.name,
7055                              new_dentry->d_name.len, 0, index);
7056         BUG_ON(ret);
7057
7058         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7059                 struct dentry *parent = dget_parent(new_dentry);
7060                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7061                 dput(parent);
7062                 btrfs_end_log_trans(root);
7063         }
7064 out_fail:
7065         btrfs_end_transaction_throttle(trans, root);
7066 out_notrans:
7067         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7068                 up_read(&root->fs_info->subvol_sem);
7069
7070         return ret;
7071 }
7072
7073 /*
7074  * some fairly slow code that needs optimization. This walks the list
7075  * of all the inodes with pending delalloc and forces them to disk.
7076  */
7077 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7078 {
7079         struct list_head *head = &root->fs_info->delalloc_inodes;
7080         struct btrfs_inode *binode;
7081         struct inode *inode;
7082
7083         if (root->fs_info->sb->s_flags & MS_RDONLY)
7084                 return -EROFS;
7085
7086         spin_lock(&root->fs_info->delalloc_lock);
7087         while (!list_empty(head)) {
7088                 binode = list_entry(head->next, struct btrfs_inode,
7089                                     delalloc_inodes);
7090                 inode = igrab(&binode->vfs_inode);
7091                 if (!inode)
7092                         list_del_init(&binode->delalloc_inodes);
7093                 spin_unlock(&root->fs_info->delalloc_lock);
7094                 if (inode) {
7095                         filemap_flush(inode->i_mapping);
7096                         if (delay_iput)
7097                                 btrfs_add_delayed_iput(inode);
7098                         else
7099                                 iput(inode);
7100                 }
7101                 cond_resched();
7102                 spin_lock(&root->fs_info->delalloc_lock);
7103         }
7104         spin_unlock(&root->fs_info->delalloc_lock);
7105
7106         /* the filemap_flush will queue IO into the worker threads, but
7107          * we have to make sure the IO is actually started and that
7108          * ordered extents get created before we return
7109          */
7110         atomic_inc(&root->fs_info->async_submit_draining);
7111         while (atomic_read(&root->fs_info->nr_async_submits) ||
7112               atomic_read(&root->fs_info->async_delalloc_pages)) {
7113                 wait_event(root->fs_info->async_submit_wait,
7114                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7115                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7116         }
7117         atomic_dec(&root->fs_info->async_submit_draining);
7118         return 0;
7119 }
7120
7121 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7122                                    int sync)
7123 {
7124         struct btrfs_inode *binode;
7125         struct inode *inode = NULL;
7126
7127         spin_lock(&root->fs_info->delalloc_lock);
7128         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7129                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7130                                     struct btrfs_inode, delalloc_inodes);
7131                 inode = igrab(&binode->vfs_inode);
7132                 if (inode) {
7133                         list_move_tail(&binode->delalloc_inodes,
7134                                        &root->fs_info->delalloc_inodes);
7135                         break;
7136                 }
7137
7138                 list_del_init(&binode->delalloc_inodes);
7139                 cond_resched_lock(&root->fs_info->delalloc_lock);
7140         }
7141         spin_unlock(&root->fs_info->delalloc_lock);
7142
7143         if (inode) {
7144                 if (sync) {
7145                         filemap_write_and_wait(inode->i_mapping);
7146                         /*
7147                          * We have to do this because compression doesn't
7148                          * actually set PG_writeback until it submits the pages
7149                          * for IO, which happens in an async thread, so we could
7150                          * race and not actually wait for any writeback pages
7151                          * because they've not been submitted yet.  Technically
7152                          * this could still be the case for the ordered stuff
7153                          * since the async thread may not have started to do its
7154                          * work yet.  If this becomes the case then we need to
7155                          * figure out a way to make sure that in writepage we
7156                          * wait for any async pages to be submitted before
7157                          * returning so that fdatawait does what its supposed to
7158                          * do.
7159                          */
7160                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7161                 } else {
7162                         filemap_flush(inode->i_mapping);
7163                 }
7164                 if (delay_iput)
7165                         btrfs_add_delayed_iput(inode);
7166                 else
7167                         iput(inode);
7168                 return 1;
7169         }
7170         return 0;
7171 }
7172
7173 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7174                          const char *symname)
7175 {
7176         struct btrfs_trans_handle *trans;
7177         struct btrfs_root *root = BTRFS_I(dir)->root;
7178         struct btrfs_path *path;
7179         struct btrfs_key key;
7180         struct inode *inode = NULL;
7181         int err;
7182         int drop_inode = 0;
7183         u64 objectid;
7184         u64 index = 0 ;
7185         int name_len;
7186         int datasize;
7187         unsigned long ptr;
7188         struct btrfs_file_extent_item *ei;
7189         struct extent_buffer *leaf;
7190         unsigned long nr = 0;
7191
7192         name_len = strlen(symname) + 1;
7193         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7194                 return -ENAMETOOLONG;
7195
7196         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7197         if (err)
7198                 return err;
7199         /*
7200          * 2 items for inode item and ref
7201          * 2 items for dir items
7202          * 1 item for xattr if selinux is on
7203          */
7204         trans = btrfs_start_transaction(root, 5);
7205         if (IS_ERR(trans))
7206                 return PTR_ERR(trans);
7207
7208         btrfs_set_trans_block_group(trans, dir);
7209
7210         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7211                                 dentry->d_name.len, dir->i_ino, objectid,
7212                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7213                                 &index);
7214         err = PTR_ERR(inode);
7215         if (IS_ERR(inode))
7216                 goto out_unlock;
7217
7218         err = btrfs_init_inode_security(trans, inode, dir);
7219         if (err) {
7220                 drop_inode = 1;
7221                 goto out_unlock;
7222         }
7223
7224         btrfs_set_trans_block_group(trans, inode);
7225         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7226         if (err)
7227                 drop_inode = 1;
7228         else {
7229                 inode->i_mapping->a_ops = &btrfs_aops;
7230                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7231                 inode->i_fop = &btrfs_file_operations;
7232                 inode->i_op = &btrfs_file_inode_operations;
7233                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7234         }
7235         btrfs_update_inode_block_group(trans, inode);
7236         btrfs_update_inode_block_group(trans, dir);
7237         if (drop_inode)
7238                 goto out_unlock;
7239
7240         path = btrfs_alloc_path();
7241         BUG_ON(!path);
7242         key.objectid = inode->i_ino;
7243         key.offset = 0;
7244         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7245         datasize = btrfs_file_extent_calc_inline_size(name_len);
7246         err = btrfs_insert_empty_item(trans, root, path, &key,
7247                                       datasize);
7248         if (err) {
7249                 drop_inode = 1;
7250                 goto out_unlock;
7251         }
7252         leaf = path->nodes[0];
7253         ei = btrfs_item_ptr(leaf, path->slots[0],
7254                             struct btrfs_file_extent_item);
7255         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7256         btrfs_set_file_extent_type(leaf, ei,
7257                                    BTRFS_FILE_EXTENT_INLINE);
7258         btrfs_set_file_extent_encryption(leaf, ei, 0);
7259         btrfs_set_file_extent_compression(leaf, ei, 0);
7260         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7261         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7262
7263         ptr = btrfs_file_extent_inline_start(ei);
7264         write_extent_buffer(leaf, symname, ptr, name_len);
7265         btrfs_mark_buffer_dirty(leaf);
7266         btrfs_free_path(path);
7267
7268         inode->i_op = &btrfs_symlink_inode_operations;
7269         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7270         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7271         inode_set_bytes(inode, name_len);
7272         btrfs_i_size_write(inode, name_len - 1);
7273         err = btrfs_update_inode(trans, root, inode);
7274         if (err)
7275                 drop_inode = 1;
7276
7277 out_unlock:
7278         nr = trans->blocks_used;
7279         btrfs_end_transaction_throttle(trans, root);
7280         if (drop_inode) {
7281                 inode_dec_link_count(inode);
7282                 iput(inode);
7283         }
7284         btrfs_btree_balance_dirty(root, nr);
7285         return err;
7286 }
7287
7288 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7289                                        u64 start, u64 num_bytes, u64 min_size,
7290                                        loff_t actual_len, u64 *alloc_hint,
7291                                        struct btrfs_trans_handle *trans)
7292 {
7293         struct btrfs_root *root = BTRFS_I(inode)->root;
7294         struct btrfs_key ins;
7295         u64 cur_offset = start;
7296         u64 i_size;
7297         int ret = 0;
7298         bool own_trans = true;
7299
7300         if (trans)
7301                 own_trans = false;
7302         while (num_bytes > 0) {
7303                 if (own_trans) {
7304                         trans = btrfs_start_transaction(root, 3);
7305                         if (IS_ERR(trans)) {
7306                                 ret = PTR_ERR(trans);
7307                                 break;
7308                         }
7309                 }
7310
7311                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7312                                            0, *alloc_hint, (u64)-1, &ins, 1);
7313                 if (ret) {
7314                         if (own_trans)
7315                                 btrfs_end_transaction(trans, root);
7316                         break;
7317                 }
7318
7319                 ret = insert_reserved_file_extent(trans, inode,
7320                                                   cur_offset, ins.objectid,
7321                                                   ins.offset, ins.offset,
7322                                                   ins.offset, 0, 0, 0,
7323                                                   BTRFS_FILE_EXTENT_PREALLOC);
7324                 BUG_ON(ret);
7325                 btrfs_drop_extent_cache(inode, cur_offset,
7326                                         cur_offset + ins.offset -1, 0);
7327
7328                 num_bytes -= ins.offset;
7329                 cur_offset += ins.offset;
7330                 *alloc_hint = ins.objectid + ins.offset;
7331
7332                 inode->i_ctime = CURRENT_TIME;
7333                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7334                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7335                     (actual_len > inode->i_size) &&
7336                     (cur_offset > inode->i_size)) {
7337                         if (cur_offset > actual_len)
7338                                 i_size = actual_len;
7339                         else
7340                                 i_size = cur_offset;
7341                         i_size_write(inode, i_size);
7342                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7343                 }
7344
7345                 ret = btrfs_update_inode(trans, root, inode);
7346                 BUG_ON(ret);
7347
7348                 if (own_trans)
7349                         btrfs_end_transaction(trans, root);
7350         }
7351         return ret;
7352 }
7353
7354 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7355                               u64 start, u64 num_bytes, u64 min_size,
7356                               loff_t actual_len, u64 *alloc_hint)
7357 {
7358         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7359                                            min_size, actual_len, alloc_hint,
7360                                            NULL);
7361 }
7362
7363 int btrfs_prealloc_file_range_trans(struct inode *inode,
7364                                     struct btrfs_trans_handle *trans, int mode,
7365                                     u64 start, u64 num_bytes, u64 min_size,
7366                                     loff_t actual_len, u64 *alloc_hint)
7367 {
7368         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7369                                            min_size, actual_len, alloc_hint, trans);
7370 }
7371
7372 static int btrfs_set_page_dirty(struct page *page)
7373 {
7374         return __set_page_dirty_nobuffers(page);
7375 }
7376
7377 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7378 {
7379         struct btrfs_root *root = BTRFS_I(inode)->root;
7380
7381         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7382                 return -EROFS;
7383         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7384                 return -EACCES;
7385         return generic_permission(inode, mask, flags, btrfs_check_acl);
7386 }
7387
7388 static const struct inode_operations btrfs_dir_inode_operations = {
7389         .getattr        = btrfs_getattr,
7390         .lookup         = btrfs_lookup,
7391         .create         = btrfs_create,
7392         .unlink         = btrfs_unlink,
7393         .link           = btrfs_link,
7394         .mkdir          = btrfs_mkdir,
7395         .rmdir          = btrfs_rmdir,
7396         .rename         = btrfs_rename,
7397         .symlink        = btrfs_symlink,
7398         .setattr        = btrfs_setattr,
7399         .mknod          = btrfs_mknod,
7400         .setxattr       = btrfs_setxattr,
7401         .getxattr       = btrfs_getxattr,
7402         .listxattr      = btrfs_listxattr,
7403         .removexattr    = btrfs_removexattr,
7404         .permission     = btrfs_permission,
7405 };
7406 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7407         .lookup         = btrfs_lookup,
7408         .permission     = btrfs_permission,
7409 };
7410
7411 static const struct file_operations btrfs_dir_file_operations = {
7412         .llseek         = generic_file_llseek,
7413         .read           = generic_read_dir,
7414         .readdir        = btrfs_real_readdir,
7415         .unlocked_ioctl = btrfs_ioctl,
7416 #ifdef CONFIG_COMPAT
7417         .compat_ioctl   = btrfs_ioctl,
7418 #endif
7419         .release        = btrfs_release_file,
7420         .fsync          = btrfs_sync_file,
7421 };
7422
7423 static struct extent_io_ops btrfs_extent_io_ops = {
7424         .fill_delalloc = run_delalloc_range,
7425         .submit_bio_hook = btrfs_submit_bio_hook,
7426         .merge_bio_hook = btrfs_merge_bio_hook,
7427         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7428         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7429         .writepage_start_hook = btrfs_writepage_start_hook,
7430         .readpage_io_failed_hook = btrfs_io_failed_hook,
7431         .set_bit_hook = btrfs_set_bit_hook,
7432         .clear_bit_hook = btrfs_clear_bit_hook,
7433         .merge_extent_hook = btrfs_merge_extent_hook,
7434         .split_extent_hook = btrfs_split_extent_hook,
7435 };
7436
7437 /*
7438  * btrfs doesn't support the bmap operation because swapfiles
7439  * use bmap to make a mapping of extents in the file.  They assume
7440  * these extents won't change over the life of the file and they
7441  * use the bmap result to do IO directly to the drive.
7442  *
7443  * the btrfs bmap call would return logical addresses that aren't
7444  * suitable for IO and they also will change frequently as COW
7445  * operations happen.  So, swapfile + btrfs == corruption.
7446  *
7447  * For now we're avoiding this by dropping bmap.
7448  */
7449 static const struct address_space_operations btrfs_aops = {
7450         .readpage       = btrfs_readpage,
7451         .writepage      = btrfs_writepage,
7452         .writepages     = btrfs_writepages,
7453         .readpages      = btrfs_readpages,
7454         .sync_page      = block_sync_page,
7455         .direct_IO      = btrfs_direct_IO,
7456         .invalidatepage = btrfs_invalidatepage,
7457         .releasepage    = btrfs_releasepage,
7458         .set_page_dirty = btrfs_set_page_dirty,
7459         .error_remove_page = generic_error_remove_page,
7460 };
7461
7462 static const struct address_space_operations btrfs_symlink_aops = {
7463         .readpage       = btrfs_readpage,
7464         .writepage      = btrfs_writepage,
7465         .invalidatepage = btrfs_invalidatepage,
7466         .releasepage    = btrfs_releasepage,
7467 };
7468
7469 static const struct inode_operations btrfs_file_inode_operations = {
7470         .getattr        = btrfs_getattr,
7471         .setattr        = btrfs_setattr,
7472         .setxattr       = btrfs_setxattr,
7473         .getxattr       = btrfs_getxattr,
7474         .listxattr      = btrfs_listxattr,
7475         .removexattr    = btrfs_removexattr,
7476         .permission     = btrfs_permission,
7477         .fiemap         = btrfs_fiemap,
7478 };
7479 static const struct inode_operations btrfs_special_inode_operations = {
7480         .getattr        = btrfs_getattr,
7481         .setattr        = btrfs_setattr,
7482         .permission     = btrfs_permission,
7483         .setxattr       = btrfs_setxattr,
7484         .getxattr       = btrfs_getxattr,
7485         .listxattr      = btrfs_listxattr,
7486         .removexattr    = btrfs_removexattr,
7487 };
7488 static const struct inode_operations btrfs_symlink_inode_operations = {
7489         .readlink       = generic_readlink,
7490         .follow_link    = page_follow_link_light,
7491         .put_link       = page_put_link,
7492         .getattr        = btrfs_getattr,
7493         .permission     = btrfs_permission,
7494         .setxattr       = btrfs_setxattr,
7495         .getxattr       = btrfs_getxattr,
7496         .listxattr      = btrfs_listxattr,
7497         .removexattr    = btrfs_removexattr,
7498 };
7499
7500 const struct dentry_operations btrfs_dentry_operations = {
7501         .d_delete       = btrfs_dentry_delete,
7502 };