Merge branch 'rc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuil...
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
77         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
78         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
79         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
80         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
81         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
82         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88                                    struct page *locked_page,
89                                    u64 start, u64 end, int *page_started,
90                                    unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93                                      struct inode *inode,  struct inode *dir)
94 {
95         int err;
96
97         err = btrfs_init_acl(trans, inode, dir);
98         if (!err)
99                 err = btrfs_xattr_security_init(trans, inode, dir);
100         return err;
101 }
102
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109                                 struct btrfs_root *root, struct inode *inode,
110                                 u64 start, size_t size, size_t compressed_size,
111                                 struct page **compressed_pages)
112 {
113         struct btrfs_key key;
114         struct btrfs_path *path;
115         struct extent_buffer *leaf;
116         struct page *page = NULL;
117         char *kaddr;
118         unsigned long ptr;
119         struct btrfs_file_extent_item *ei;
120         int err = 0;
121         int ret;
122         size_t cur_size = size;
123         size_t datasize;
124         unsigned long offset;
125         int compress_type = BTRFS_COMPRESS_NONE;
126
127         if (compressed_size && compressed_pages) {
128                 compress_type = root->fs_info->compress_type;
129                 cur_size = compressed_size;
130         }
131
132         path = btrfs_alloc_path();
133         if (!path)
134                 return -ENOMEM;
135
136         path->leave_spinning = 1;
137         btrfs_set_trans_block_group(trans, inode);
138
139         key.objectid = inode->i_ino;
140         key.offset = start;
141         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142         datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144         inode_add_bytes(inode, size);
145         ret = btrfs_insert_empty_item(trans, root, path, &key,
146                                       datasize);
147         BUG_ON(ret);
148         if (ret) {
149                 err = ret;
150                 goto fail;
151         }
152         leaf = path->nodes[0];
153         ei = btrfs_item_ptr(leaf, path->slots[0],
154                             struct btrfs_file_extent_item);
155         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157         btrfs_set_file_extent_encryption(leaf, ei, 0);
158         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160         ptr = btrfs_file_extent_inline_start(ei);
161
162         if (compress_type != BTRFS_COMPRESS_NONE) {
163                 struct page *cpage;
164                 int i = 0;
165                 while (compressed_size > 0) {
166                         cpage = compressed_pages[i];
167                         cur_size = min_t(unsigned long, compressed_size,
168                                        PAGE_CACHE_SIZE);
169
170                         kaddr = kmap_atomic(cpage, KM_USER0);
171                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
172                         kunmap_atomic(kaddr, KM_USER0);
173
174                         i++;
175                         ptr += cur_size;
176                         compressed_size -= cur_size;
177                 }
178                 btrfs_set_file_extent_compression(leaf, ei,
179                                                   compress_type);
180         } else {
181                 page = find_get_page(inode->i_mapping,
182                                      start >> PAGE_CACHE_SHIFT);
183                 btrfs_set_file_extent_compression(leaf, ei, 0);
184                 kaddr = kmap_atomic(page, KM_USER0);
185                 offset = start & (PAGE_CACHE_SIZE - 1);
186                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187                 kunmap_atomic(kaddr, KM_USER0);
188                 page_cache_release(page);
189         }
190         btrfs_mark_buffer_dirty(leaf);
191         btrfs_free_path(path);
192
193         /*
194          * we're an inline extent, so nobody can
195          * extend the file past i_size without locking
196          * a page we already have locked.
197          *
198          * We must do any isize and inode updates
199          * before we unlock the pages.  Otherwise we
200          * could end up racing with unlink.
201          */
202         BTRFS_I(inode)->disk_i_size = inode->i_size;
203         btrfs_update_inode(trans, root, inode);
204
205         return 0;
206 fail:
207         btrfs_free_path(path);
208         return err;
209 }
210
211
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218                                  struct btrfs_root *root,
219                                  struct inode *inode, u64 start, u64 end,
220                                  size_t compressed_size,
221                                  struct page **compressed_pages)
222 {
223         u64 isize = i_size_read(inode);
224         u64 actual_end = min(end + 1, isize);
225         u64 inline_len = actual_end - start;
226         u64 aligned_end = (end + root->sectorsize - 1) &
227                         ~((u64)root->sectorsize - 1);
228         u64 hint_byte;
229         u64 data_len = inline_len;
230         int ret;
231
232         if (compressed_size)
233                 data_len = compressed_size;
234
235         if (start > 0 ||
236             actual_end >= PAGE_CACHE_SIZE ||
237             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238             (!compressed_size &&
239             (actual_end & (root->sectorsize - 1)) == 0) ||
240             end + 1 < isize ||
241             data_len > root->fs_info->max_inline) {
242                 return 1;
243         }
244
245         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246                                  &hint_byte, 1);
247         BUG_ON(ret);
248
249         if (isize > actual_end)
250                 inline_len = min_t(u64, isize, actual_end);
251         ret = insert_inline_extent(trans, root, inode, start,
252                                    inline_len, compressed_size,
253                                    compressed_pages);
254         BUG_ON(ret);
255         btrfs_delalloc_release_metadata(inode, end + 1 - start);
256         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257         return 0;
258 }
259
260 struct async_extent {
261         u64 start;
262         u64 ram_size;
263         u64 compressed_size;
264         struct page **pages;
265         unsigned long nr_pages;
266         int compress_type;
267         struct list_head list;
268 };
269
270 struct async_cow {
271         struct inode *inode;
272         struct btrfs_root *root;
273         struct page *locked_page;
274         u64 start;
275         u64 end;
276         struct list_head extents;
277         struct btrfs_work work;
278 };
279
280 static noinline int add_async_extent(struct async_cow *cow,
281                                      u64 start, u64 ram_size,
282                                      u64 compressed_size,
283                                      struct page **pages,
284                                      unsigned long nr_pages,
285                                      int compress_type)
286 {
287         struct async_extent *async_extent;
288
289         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290         async_extent->start = start;
291         async_extent->ram_size = ram_size;
292         async_extent->compressed_size = compressed_size;
293         async_extent->pages = pages;
294         async_extent->nr_pages = nr_pages;
295         async_extent->compress_type = compress_type;
296         list_add_tail(&async_extent->list, &cow->extents);
297         return 0;
298 }
299
300 /*
301  * we create compressed extents in two phases.  The first
302  * phase compresses a range of pages that have already been
303  * locked (both pages and state bits are locked).
304  *
305  * This is done inside an ordered work queue, and the compression
306  * is spread across many cpus.  The actual IO submission is step
307  * two, and the ordered work queue takes care of making sure that
308  * happens in the same order things were put onto the queue by
309  * writepages and friends.
310  *
311  * If this code finds it can't get good compression, it puts an
312  * entry onto the work queue to write the uncompressed bytes.  This
313  * makes sure that both compressed inodes and uncompressed inodes
314  * are written in the same order that pdflush sent them down.
315  */
316 static noinline int compress_file_range(struct inode *inode,
317                                         struct page *locked_page,
318                                         u64 start, u64 end,
319                                         struct async_cow *async_cow,
320                                         int *num_added)
321 {
322         struct btrfs_root *root = BTRFS_I(inode)->root;
323         struct btrfs_trans_handle *trans;
324         u64 num_bytes;
325         u64 blocksize = root->sectorsize;
326         u64 actual_end;
327         u64 isize = i_size_read(inode);
328         int ret = 0;
329         struct page **pages = NULL;
330         unsigned long nr_pages;
331         unsigned long nr_pages_ret = 0;
332         unsigned long total_compressed = 0;
333         unsigned long total_in = 0;
334         unsigned long max_compressed = 128 * 1024;
335         unsigned long max_uncompressed = 128 * 1024;
336         int i;
337         int will_compress;
338         int compress_type = root->fs_info->compress_type;
339
340         actual_end = min_t(u64, isize, end + 1);
341 again:
342         will_compress = 0;
343         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346         /*
347          * we don't want to send crud past the end of i_size through
348          * compression, that's just a waste of CPU time.  So, if the
349          * end of the file is before the start of our current
350          * requested range of bytes, we bail out to the uncompressed
351          * cleanup code that can deal with all of this.
352          *
353          * It isn't really the fastest way to fix things, but this is a
354          * very uncommon corner.
355          */
356         if (actual_end <= start)
357                 goto cleanup_and_bail_uncompressed;
358
359         total_compressed = actual_end - start;
360
361         /* we want to make sure that amount of ram required to uncompress
362          * an extent is reasonable, so we limit the total size in ram
363          * of a compressed extent to 128k.  This is a crucial number
364          * because it also controls how easily we can spread reads across
365          * cpus for decompression.
366          *
367          * We also want to make sure the amount of IO required to do
368          * a random read is reasonably small, so we limit the size of
369          * a compressed extent to 128k.
370          */
371         total_compressed = min(total_compressed, max_uncompressed);
372         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373         num_bytes = max(blocksize,  num_bytes);
374         total_in = 0;
375         ret = 0;
376
377         /*
378          * we do compression for mount -o compress and when the
379          * inode has not been flagged as nocompress.  This flag can
380          * change at any time if we discover bad compression ratios.
381          */
382         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383             (btrfs_test_opt(root, COMPRESS) ||
384              (BTRFS_I(inode)->force_compress))) {
385                 WARN_ON(pages);
386                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387
388                 if (BTRFS_I(inode)->force_compress)
389                         compress_type = BTRFS_I(inode)->force_compress;
390
391                 ret = btrfs_compress_pages(compress_type,
392                                            inode->i_mapping, start,
393                                            total_compressed, pages,
394                                            nr_pages, &nr_pages_ret,
395                                            &total_in,
396                                            &total_compressed,
397                                            max_compressed);
398
399                 if (!ret) {
400                         unsigned long offset = total_compressed &
401                                 (PAGE_CACHE_SIZE - 1);
402                         struct page *page = pages[nr_pages_ret - 1];
403                         char *kaddr;
404
405                         /* zero the tail end of the last page, we might be
406                          * sending it down to disk
407                          */
408                         if (offset) {
409                                 kaddr = kmap_atomic(page, KM_USER0);
410                                 memset(kaddr + offset, 0,
411                                        PAGE_CACHE_SIZE - offset);
412                                 kunmap_atomic(kaddr, KM_USER0);
413                         }
414                         will_compress = 1;
415                 }
416         }
417         if (start == 0) {
418                 trans = btrfs_join_transaction(root, 1);
419                 BUG_ON(IS_ERR(trans));
420                 btrfs_set_trans_block_group(trans, inode);
421                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
422
423                 /* lets try to make an inline extent */
424                 if (ret || total_in < (actual_end - start)) {
425                         /* we didn't compress the entire range, try
426                          * to make an uncompressed inline extent.
427                          */
428                         ret = cow_file_range_inline(trans, root, inode,
429                                                     start, end, 0, NULL);
430                 } else {
431                         /* try making a compressed inline extent */
432                         ret = cow_file_range_inline(trans, root, inode,
433                                                     start, end,
434                                                     total_compressed, pages);
435                 }
436                 if (ret == 0) {
437                         /*
438                          * inline extent creation worked, we don't need
439                          * to create any more async work items.  Unlock
440                          * and free up our temp pages.
441                          */
442                         extent_clear_unlock_delalloc(inode,
443                              &BTRFS_I(inode)->io_tree,
444                              start, end, NULL,
445                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446                              EXTENT_CLEAR_DELALLOC |
447                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
448
449                         btrfs_end_transaction(trans, root);
450                         goto free_pages_out;
451                 }
452                 btrfs_end_transaction(trans, root);
453         }
454
455         if (will_compress) {
456                 /*
457                  * we aren't doing an inline extent round the compressed size
458                  * up to a block size boundary so the allocator does sane
459                  * things
460                  */
461                 total_compressed = (total_compressed + blocksize - 1) &
462                         ~(blocksize - 1);
463
464                 /*
465                  * one last check to make sure the compression is really a
466                  * win, compare the page count read with the blocks on disk
467                  */
468                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469                         ~(PAGE_CACHE_SIZE - 1);
470                 if (total_compressed >= total_in) {
471                         will_compress = 0;
472                 } else {
473                         num_bytes = total_in;
474                 }
475         }
476         if (!will_compress && pages) {
477                 /*
478                  * the compression code ran but failed to make things smaller,
479                  * free any pages it allocated and our page pointer array
480                  */
481                 for (i = 0; i < nr_pages_ret; i++) {
482                         WARN_ON(pages[i]->mapping);
483                         page_cache_release(pages[i]);
484                 }
485                 kfree(pages);
486                 pages = NULL;
487                 total_compressed = 0;
488                 nr_pages_ret = 0;
489
490                 /* flag the file so we don't compress in the future */
491                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492                     !(BTRFS_I(inode)->force_compress)) {
493                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
494                 }
495         }
496         if (will_compress) {
497                 *num_added += 1;
498
499                 /* the async work queues will take care of doing actual
500                  * allocation on disk for these compressed pages,
501                  * and will submit them to the elevator.
502                  */
503                 add_async_extent(async_cow, start, num_bytes,
504                                  total_compressed, pages, nr_pages_ret,
505                                  compress_type);
506
507                 if (start + num_bytes < end) {
508                         start += num_bytes;
509                         pages = NULL;
510                         cond_resched();
511                         goto again;
512                 }
513         } else {
514 cleanup_and_bail_uncompressed:
515                 /*
516                  * No compression, but we still need to write the pages in
517                  * the file we've been given so far.  redirty the locked
518                  * page if it corresponds to our extent and set things up
519                  * for the async work queue to run cow_file_range to do
520                  * the normal delalloc dance
521                  */
522                 if (page_offset(locked_page) >= start &&
523                     page_offset(locked_page) <= end) {
524                         __set_page_dirty_nobuffers(locked_page);
525                         /* unlocked later on in the async handlers */
526                 }
527                 add_async_extent(async_cow, start, end - start + 1,
528                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
529                 *num_added += 1;
530         }
531
532 out:
533         return 0;
534
535 free_pages_out:
536         for (i = 0; i < nr_pages_ret; i++) {
537                 WARN_ON(pages[i]->mapping);
538                 page_cache_release(pages[i]);
539         }
540         kfree(pages);
541
542         goto out;
543 }
544
545 /*
546  * phase two of compressed writeback.  This is the ordered portion
547  * of the code, which only gets called in the order the work was
548  * queued.  We walk all the async extents created by compress_file_range
549  * and send them down to the disk.
550  */
551 static noinline int submit_compressed_extents(struct inode *inode,
552                                               struct async_cow *async_cow)
553 {
554         struct async_extent *async_extent;
555         u64 alloc_hint = 0;
556         struct btrfs_trans_handle *trans;
557         struct btrfs_key ins;
558         struct extent_map *em;
559         struct btrfs_root *root = BTRFS_I(inode)->root;
560         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561         struct extent_io_tree *io_tree;
562         int ret = 0;
563
564         if (list_empty(&async_cow->extents))
565                 return 0;
566
567
568         while (!list_empty(&async_cow->extents)) {
569                 async_extent = list_entry(async_cow->extents.next,
570                                           struct async_extent, list);
571                 list_del(&async_extent->list);
572
573                 io_tree = &BTRFS_I(inode)->io_tree;
574
575 retry:
576                 /* did the compression code fall back to uncompressed IO? */
577                 if (!async_extent->pages) {
578                         int page_started = 0;
579                         unsigned long nr_written = 0;
580
581                         lock_extent(io_tree, async_extent->start,
582                                          async_extent->start +
583                                          async_extent->ram_size - 1, GFP_NOFS);
584
585                         /* allocate blocks */
586                         ret = cow_file_range(inode, async_cow->locked_page,
587                                              async_extent->start,
588                                              async_extent->start +
589                                              async_extent->ram_size - 1,
590                                              &page_started, &nr_written, 0);
591
592                         /*
593                          * if page_started, cow_file_range inserted an
594                          * inline extent and took care of all the unlocking
595                          * and IO for us.  Otherwise, we need to submit
596                          * all those pages down to the drive.
597                          */
598                         if (!page_started && !ret)
599                                 extent_write_locked_range(io_tree,
600                                                   inode, async_extent->start,
601                                                   async_extent->start +
602                                                   async_extent->ram_size - 1,
603                                                   btrfs_get_extent,
604                                                   WB_SYNC_ALL);
605                         kfree(async_extent);
606                         cond_resched();
607                         continue;
608                 }
609
610                 lock_extent(io_tree, async_extent->start,
611                             async_extent->start + async_extent->ram_size - 1,
612                             GFP_NOFS);
613
614                 trans = btrfs_join_transaction(root, 1);
615                 BUG_ON(IS_ERR(trans));
616                 ret = btrfs_reserve_extent(trans, root,
617                                            async_extent->compressed_size,
618                                            async_extent->compressed_size,
619                                            0, alloc_hint,
620                                            (u64)-1, &ins, 1);
621                 btrfs_end_transaction(trans, root);
622
623                 if (ret) {
624                         int i;
625                         for (i = 0; i < async_extent->nr_pages; i++) {
626                                 WARN_ON(async_extent->pages[i]->mapping);
627                                 page_cache_release(async_extent->pages[i]);
628                         }
629                         kfree(async_extent->pages);
630                         async_extent->nr_pages = 0;
631                         async_extent->pages = NULL;
632                         unlock_extent(io_tree, async_extent->start,
633                                       async_extent->start +
634                                       async_extent->ram_size - 1, GFP_NOFS);
635                         goto retry;
636                 }
637
638                 /*
639                  * here we're doing allocation and writeback of the
640                  * compressed pages
641                  */
642                 btrfs_drop_extent_cache(inode, async_extent->start,
643                                         async_extent->start +
644                                         async_extent->ram_size - 1, 0);
645
646                 em = alloc_extent_map(GFP_NOFS);
647                 em->start = async_extent->start;
648                 em->len = async_extent->ram_size;
649                 em->orig_start = em->start;
650
651                 em->block_start = ins.objectid;
652                 em->block_len = ins.offset;
653                 em->bdev = root->fs_info->fs_devices->latest_bdev;
654                 em->compress_type = async_extent->compress_type;
655                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
656                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
657
658                 while (1) {
659                         write_lock(&em_tree->lock);
660                         ret = add_extent_mapping(em_tree, em);
661                         write_unlock(&em_tree->lock);
662                         if (ret != -EEXIST) {
663                                 free_extent_map(em);
664                                 break;
665                         }
666                         btrfs_drop_extent_cache(inode, async_extent->start,
667                                                 async_extent->start +
668                                                 async_extent->ram_size - 1, 0);
669                 }
670
671                 ret = btrfs_add_ordered_extent_compress(inode,
672                                                 async_extent->start,
673                                                 ins.objectid,
674                                                 async_extent->ram_size,
675                                                 ins.offset,
676                                                 BTRFS_ORDERED_COMPRESSED,
677                                                 async_extent->compress_type);
678                 BUG_ON(ret);
679
680                 /*
681                  * clear dirty, set writeback and unlock the pages.
682                  */
683                 extent_clear_unlock_delalloc(inode,
684                                 &BTRFS_I(inode)->io_tree,
685                                 async_extent->start,
686                                 async_extent->start +
687                                 async_extent->ram_size - 1,
688                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
689                                 EXTENT_CLEAR_UNLOCK |
690                                 EXTENT_CLEAR_DELALLOC |
691                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
692
693                 ret = btrfs_submit_compressed_write(inode,
694                                     async_extent->start,
695                                     async_extent->ram_size,
696                                     ins.objectid,
697                                     ins.offset, async_extent->pages,
698                                     async_extent->nr_pages);
699
700                 BUG_ON(ret);
701                 alloc_hint = ins.objectid + ins.offset;
702                 kfree(async_extent);
703                 cond_resched();
704         }
705
706         return 0;
707 }
708
709 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
710                                       u64 num_bytes)
711 {
712         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
713         struct extent_map *em;
714         u64 alloc_hint = 0;
715
716         read_lock(&em_tree->lock);
717         em = search_extent_mapping(em_tree, start, num_bytes);
718         if (em) {
719                 /*
720                  * if block start isn't an actual block number then find the
721                  * first block in this inode and use that as a hint.  If that
722                  * block is also bogus then just don't worry about it.
723                  */
724                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
725                         free_extent_map(em);
726                         em = search_extent_mapping(em_tree, 0, 0);
727                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
728                                 alloc_hint = em->block_start;
729                         if (em)
730                                 free_extent_map(em);
731                 } else {
732                         alloc_hint = em->block_start;
733                         free_extent_map(em);
734                 }
735         }
736         read_unlock(&em_tree->lock);
737
738         return alloc_hint;
739 }
740
741 /*
742  * when extent_io.c finds a delayed allocation range in the file,
743  * the call backs end up in this code.  The basic idea is to
744  * allocate extents on disk for the range, and create ordered data structs
745  * in ram to track those extents.
746  *
747  * locked_page is the page that writepage had locked already.  We use
748  * it to make sure we don't do extra locks or unlocks.
749  *
750  * *page_started is set to one if we unlock locked_page and do everything
751  * required to start IO on it.  It may be clean and already done with
752  * IO when we return.
753  */
754 static noinline int cow_file_range(struct inode *inode,
755                                    struct page *locked_page,
756                                    u64 start, u64 end, int *page_started,
757                                    unsigned long *nr_written,
758                                    int unlock)
759 {
760         struct btrfs_root *root = BTRFS_I(inode)->root;
761         struct btrfs_trans_handle *trans;
762         u64 alloc_hint = 0;
763         u64 num_bytes;
764         unsigned long ram_size;
765         u64 disk_num_bytes;
766         u64 cur_alloc_size;
767         u64 blocksize = root->sectorsize;
768         struct btrfs_key ins;
769         struct extent_map *em;
770         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
771         int ret = 0;
772
773         BUG_ON(root == root->fs_info->tree_root);
774         trans = btrfs_join_transaction(root, 1);
775         BUG_ON(IS_ERR(trans));
776         btrfs_set_trans_block_group(trans, inode);
777         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
778
779         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
780         num_bytes = max(blocksize,  num_bytes);
781         disk_num_bytes = num_bytes;
782         ret = 0;
783
784         if (start == 0) {
785                 /* lets try to make an inline extent */
786                 ret = cow_file_range_inline(trans, root, inode,
787                                             start, end, 0, NULL);
788                 if (ret == 0) {
789                         extent_clear_unlock_delalloc(inode,
790                                      &BTRFS_I(inode)->io_tree,
791                                      start, end, NULL,
792                                      EXTENT_CLEAR_UNLOCK_PAGE |
793                                      EXTENT_CLEAR_UNLOCK |
794                                      EXTENT_CLEAR_DELALLOC |
795                                      EXTENT_CLEAR_DIRTY |
796                                      EXTENT_SET_WRITEBACK |
797                                      EXTENT_END_WRITEBACK);
798
799                         *nr_written = *nr_written +
800                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
801                         *page_started = 1;
802                         ret = 0;
803                         goto out;
804                 }
805         }
806
807         BUG_ON(disk_num_bytes >
808                btrfs_super_total_bytes(&root->fs_info->super_copy));
809
810         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
811         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
812
813         while (disk_num_bytes > 0) {
814                 unsigned long op;
815
816                 cur_alloc_size = disk_num_bytes;
817                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
818                                            root->sectorsize, 0, alloc_hint,
819                                            (u64)-1, &ins, 1);
820                 BUG_ON(ret);
821
822                 em = alloc_extent_map(GFP_NOFS);
823                 em->start = start;
824                 em->orig_start = em->start;
825                 ram_size = ins.offset;
826                 em->len = ins.offset;
827
828                 em->block_start = ins.objectid;
829                 em->block_len = ins.offset;
830                 em->bdev = root->fs_info->fs_devices->latest_bdev;
831                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
832
833                 while (1) {
834                         write_lock(&em_tree->lock);
835                         ret = add_extent_mapping(em_tree, em);
836                         write_unlock(&em_tree->lock);
837                         if (ret != -EEXIST) {
838                                 free_extent_map(em);
839                                 break;
840                         }
841                         btrfs_drop_extent_cache(inode, start,
842                                                 start + ram_size - 1, 0);
843                 }
844
845                 cur_alloc_size = ins.offset;
846                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
847                                                ram_size, cur_alloc_size, 0);
848                 BUG_ON(ret);
849
850                 if (root->root_key.objectid ==
851                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
852                         ret = btrfs_reloc_clone_csums(inode, start,
853                                                       cur_alloc_size);
854                         BUG_ON(ret);
855                 }
856
857                 if (disk_num_bytes < cur_alloc_size)
858                         break;
859
860                 /* we're not doing compressed IO, don't unlock the first
861                  * page (which the caller expects to stay locked), don't
862                  * clear any dirty bits and don't set any writeback bits
863                  *
864                  * Do set the Private2 bit so we know this page was properly
865                  * setup for writepage
866                  */
867                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
868                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
869                         EXTENT_SET_PRIVATE2;
870
871                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
872                                              start, start + ram_size - 1,
873                                              locked_page, op);
874                 disk_num_bytes -= cur_alloc_size;
875                 num_bytes -= cur_alloc_size;
876                 alloc_hint = ins.objectid + ins.offset;
877                 start += cur_alloc_size;
878         }
879 out:
880         ret = 0;
881         btrfs_end_transaction(trans, root);
882
883         return ret;
884 }
885
886 /*
887  * work queue call back to started compression on a file and pages
888  */
889 static noinline void async_cow_start(struct btrfs_work *work)
890 {
891         struct async_cow *async_cow;
892         int num_added = 0;
893         async_cow = container_of(work, struct async_cow, work);
894
895         compress_file_range(async_cow->inode, async_cow->locked_page,
896                             async_cow->start, async_cow->end, async_cow,
897                             &num_added);
898         if (num_added == 0)
899                 async_cow->inode = NULL;
900 }
901
902 /*
903  * work queue call back to submit previously compressed pages
904  */
905 static noinline void async_cow_submit(struct btrfs_work *work)
906 {
907         struct async_cow *async_cow;
908         struct btrfs_root *root;
909         unsigned long nr_pages;
910
911         async_cow = container_of(work, struct async_cow, work);
912
913         root = async_cow->root;
914         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
915                 PAGE_CACHE_SHIFT;
916
917         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
918
919         if (atomic_read(&root->fs_info->async_delalloc_pages) <
920             5 * 1042 * 1024 &&
921             waitqueue_active(&root->fs_info->async_submit_wait))
922                 wake_up(&root->fs_info->async_submit_wait);
923
924         if (async_cow->inode)
925                 submit_compressed_extents(async_cow->inode, async_cow);
926 }
927
928 static noinline void async_cow_free(struct btrfs_work *work)
929 {
930         struct async_cow *async_cow;
931         async_cow = container_of(work, struct async_cow, work);
932         kfree(async_cow);
933 }
934
935 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
936                                 u64 start, u64 end, int *page_started,
937                                 unsigned long *nr_written)
938 {
939         struct async_cow *async_cow;
940         struct btrfs_root *root = BTRFS_I(inode)->root;
941         unsigned long nr_pages;
942         u64 cur_end;
943         int limit = 10 * 1024 * 1042;
944
945         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
946                          1, 0, NULL, GFP_NOFS);
947         while (start < end) {
948                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
949                 async_cow->inode = inode;
950                 async_cow->root = root;
951                 async_cow->locked_page = locked_page;
952                 async_cow->start = start;
953
954                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
955                         cur_end = end;
956                 else
957                         cur_end = min(end, start + 512 * 1024 - 1);
958
959                 async_cow->end = cur_end;
960                 INIT_LIST_HEAD(&async_cow->extents);
961
962                 async_cow->work.func = async_cow_start;
963                 async_cow->work.ordered_func = async_cow_submit;
964                 async_cow->work.ordered_free = async_cow_free;
965                 async_cow->work.flags = 0;
966
967                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
968                         PAGE_CACHE_SHIFT;
969                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
970
971                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
972                                    &async_cow->work);
973
974                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
975                         wait_event(root->fs_info->async_submit_wait,
976                            (atomic_read(&root->fs_info->async_delalloc_pages) <
977                             limit));
978                 }
979
980                 while (atomic_read(&root->fs_info->async_submit_draining) &&
981                       atomic_read(&root->fs_info->async_delalloc_pages)) {
982                         wait_event(root->fs_info->async_submit_wait,
983                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
984                            0));
985                 }
986
987                 *nr_written += nr_pages;
988                 start = cur_end + 1;
989         }
990         *page_started = 1;
991         return 0;
992 }
993
994 static noinline int csum_exist_in_range(struct btrfs_root *root,
995                                         u64 bytenr, u64 num_bytes)
996 {
997         int ret;
998         struct btrfs_ordered_sum *sums;
999         LIST_HEAD(list);
1000
1001         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1002                                        bytenr + num_bytes - 1, &list);
1003         if (ret == 0 && list_empty(&list))
1004                 return 0;
1005
1006         while (!list_empty(&list)) {
1007                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1008                 list_del(&sums->list);
1009                 kfree(sums);
1010         }
1011         return 1;
1012 }
1013
1014 /*
1015  * when nowcow writeback call back.  This checks for snapshots or COW copies
1016  * of the extents that exist in the file, and COWs the file as required.
1017  *
1018  * If no cow copies or snapshots exist, we write directly to the existing
1019  * blocks on disk
1020  */
1021 static noinline int run_delalloc_nocow(struct inode *inode,
1022                                        struct page *locked_page,
1023                               u64 start, u64 end, int *page_started, int force,
1024                               unsigned long *nr_written)
1025 {
1026         struct btrfs_root *root = BTRFS_I(inode)->root;
1027         struct btrfs_trans_handle *trans;
1028         struct extent_buffer *leaf;
1029         struct btrfs_path *path;
1030         struct btrfs_file_extent_item *fi;
1031         struct btrfs_key found_key;
1032         u64 cow_start;
1033         u64 cur_offset;
1034         u64 extent_end;
1035         u64 extent_offset;
1036         u64 disk_bytenr;
1037         u64 num_bytes;
1038         int extent_type;
1039         int ret;
1040         int type;
1041         int nocow;
1042         int check_prev = 1;
1043         bool nolock = false;
1044
1045         path = btrfs_alloc_path();
1046         BUG_ON(!path);
1047         if (root == root->fs_info->tree_root) {
1048                 nolock = true;
1049                 trans = btrfs_join_transaction_nolock(root, 1);
1050         } else {
1051                 trans = btrfs_join_transaction(root, 1);
1052         }
1053         BUG_ON(IS_ERR(trans));
1054
1055         cow_start = (u64)-1;
1056         cur_offset = start;
1057         while (1) {
1058                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1059                                                cur_offset, 0);
1060                 BUG_ON(ret < 0);
1061                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1062                         leaf = path->nodes[0];
1063                         btrfs_item_key_to_cpu(leaf, &found_key,
1064                                               path->slots[0] - 1);
1065                         if (found_key.objectid == inode->i_ino &&
1066                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1067                                 path->slots[0]--;
1068                 }
1069                 check_prev = 0;
1070 next_slot:
1071                 leaf = path->nodes[0];
1072                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073                         ret = btrfs_next_leaf(root, path);
1074                         if (ret < 0)
1075                                 BUG_ON(1);
1076                         if (ret > 0)
1077                                 break;
1078                         leaf = path->nodes[0];
1079                 }
1080
1081                 nocow = 0;
1082                 disk_bytenr = 0;
1083                 num_bytes = 0;
1084                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1085
1086                 if (found_key.objectid > inode->i_ino ||
1087                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1088                     found_key.offset > end)
1089                         break;
1090
1091                 if (found_key.offset > cur_offset) {
1092                         extent_end = found_key.offset;
1093                         extent_type = 0;
1094                         goto out_check;
1095                 }
1096
1097                 fi = btrfs_item_ptr(leaf, path->slots[0],
1098                                     struct btrfs_file_extent_item);
1099                 extent_type = btrfs_file_extent_type(leaf, fi);
1100
1101                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1102                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1103                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1104                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1105                         extent_end = found_key.offset +
1106                                 btrfs_file_extent_num_bytes(leaf, fi);
1107                         if (extent_end <= start) {
1108                                 path->slots[0]++;
1109                                 goto next_slot;
1110                         }
1111                         if (disk_bytenr == 0)
1112                                 goto out_check;
1113                         if (btrfs_file_extent_compression(leaf, fi) ||
1114                             btrfs_file_extent_encryption(leaf, fi) ||
1115                             btrfs_file_extent_other_encoding(leaf, fi))
1116                                 goto out_check;
1117                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1118                                 goto out_check;
1119                         if (btrfs_extent_readonly(root, disk_bytenr))
1120                                 goto out_check;
1121                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1122                                                   found_key.offset -
1123                                                   extent_offset, disk_bytenr))
1124                                 goto out_check;
1125                         disk_bytenr += extent_offset;
1126                         disk_bytenr += cur_offset - found_key.offset;
1127                         num_bytes = min(end + 1, extent_end) - cur_offset;
1128                         /*
1129                          * force cow if csum exists in the range.
1130                          * this ensure that csum for a given extent are
1131                          * either valid or do not exist.
1132                          */
1133                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1134                                 goto out_check;
1135                         nocow = 1;
1136                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1137                         extent_end = found_key.offset +
1138                                 btrfs_file_extent_inline_len(leaf, fi);
1139                         extent_end = ALIGN(extent_end, root->sectorsize);
1140                 } else {
1141                         BUG_ON(1);
1142                 }
1143 out_check:
1144                 if (extent_end <= start) {
1145                         path->slots[0]++;
1146                         goto next_slot;
1147                 }
1148                 if (!nocow) {
1149                         if (cow_start == (u64)-1)
1150                                 cow_start = cur_offset;
1151                         cur_offset = extent_end;
1152                         if (cur_offset > end)
1153                                 break;
1154                         path->slots[0]++;
1155                         goto next_slot;
1156                 }
1157
1158                 btrfs_release_path(root, path);
1159                 if (cow_start != (u64)-1) {
1160                         ret = cow_file_range(inode, locked_page, cow_start,
1161                                         found_key.offset - 1, page_started,
1162                                         nr_written, 1);
1163                         BUG_ON(ret);
1164                         cow_start = (u64)-1;
1165                 }
1166
1167                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1168                         struct extent_map *em;
1169                         struct extent_map_tree *em_tree;
1170                         em_tree = &BTRFS_I(inode)->extent_tree;
1171                         em = alloc_extent_map(GFP_NOFS);
1172                         em->start = cur_offset;
1173                         em->orig_start = em->start;
1174                         em->len = num_bytes;
1175                         em->block_len = num_bytes;
1176                         em->block_start = disk_bytenr;
1177                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1178                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1179                         while (1) {
1180                                 write_lock(&em_tree->lock);
1181                                 ret = add_extent_mapping(em_tree, em);
1182                                 write_unlock(&em_tree->lock);
1183                                 if (ret != -EEXIST) {
1184                                         free_extent_map(em);
1185                                         break;
1186                                 }
1187                                 btrfs_drop_extent_cache(inode, em->start,
1188                                                 em->start + em->len - 1, 0);
1189                         }
1190                         type = BTRFS_ORDERED_PREALLOC;
1191                 } else {
1192                         type = BTRFS_ORDERED_NOCOW;
1193                 }
1194
1195                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1196                                                num_bytes, num_bytes, type);
1197                 BUG_ON(ret);
1198
1199                 if (root->root_key.objectid ==
1200                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1201                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1202                                                       num_bytes);
1203                         BUG_ON(ret);
1204                 }
1205
1206                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1207                                 cur_offset, cur_offset + num_bytes - 1,
1208                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1209                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1210                                 EXTENT_SET_PRIVATE2);
1211                 cur_offset = extent_end;
1212                 if (cur_offset > end)
1213                         break;
1214         }
1215         btrfs_release_path(root, path);
1216
1217         if (cur_offset <= end && cow_start == (u64)-1)
1218                 cow_start = cur_offset;
1219         if (cow_start != (u64)-1) {
1220                 ret = cow_file_range(inode, locked_page, cow_start, end,
1221                                      page_started, nr_written, 1);
1222                 BUG_ON(ret);
1223         }
1224
1225         if (nolock) {
1226                 ret = btrfs_end_transaction_nolock(trans, root);
1227                 BUG_ON(ret);
1228         } else {
1229                 ret = btrfs_end_transaction(trans, root);
1230                 BUG_ON(ret);
1231         }
1232         btrfs_free_path(path);
1233         return 0;
1234 }
1235
1236 /*
1237  * extent_io.c call back to do delayed allocation processing
1238  */
1239 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1240                               u64 start, u64 end, int *page_started,
1241                               unsigned long *nr_written)
1242 {
1243         int ret;
1244         struct btrfs_root *root = BTRFS_I(inode)->root;
1245
1246         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1247                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1248                                          page_started, 1, nr_written);
1249         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1250                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1251                                          page_started, 0, nr_written);
1252         else if (!btrfs_test_opt(root, COMPRESS) &&
1253                  !(BTRFS_I(inode)->force_compress))
1254                 ret = cow_file_range(inode, locked_page, start, end,
1255                                       page_started, nr_written, 1);
1256         else
1257                 ret = cow_file_range_async(inode, locked_page, start, end,
1258                                            page_started, nr_written);
1259         return ret;
1260 }
1261
1262 static int btrfs_split_extent_hook(struct inode *inode,
1263                                    struct extent_state *orig, u64 split)
1264 {
1265         /* not delalloc, ignore it */
1266         if (!(orig->state & EXTENT_DELALLOC))
1267                 return 0;
1268
1269         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1270         return 0;
1271 }
1272
1273 /*
1274  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1275  * extents so we can keep track of new extents that are just merged onto old
1276  * extents, such as when we are doing sequential writes, so we can properly
1277  * account for the metadata space we'll need.
1278  */
1279 static int btrfs_merge_extent_hook(struct inode *inode,
1280                                    struct extent_state *new,
1281                                    struct extent_state *other)
1282 {
1283         /* not delalloc, ignore it */
1284         if (!(other->state & EXTENT_DELALLOC))
1285                 return 0;
1286
1287         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1288         return 0;
1289 }
1290
1291 /*
1292  * extent_io.c set_bit_hook, used to track delayed allocation
1293  * bytes in this file, and to maintain the list of inodes that
1294  * have pending delalloc work to be done.
1295  */
1296 static int btrfs_set_bit_hook(struct inode *inode,
1297                               struct extent_state *state, int *bits)
1298 {
1299
1300         /*
1301          * set_bit and clear bit hooks normally require _irqsave/restore
1302          * but in this case, we are only testeing for the DELALLOC
1303          * bit, which is only set or cleared with irqs on
1304          */
1305         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1306                 struct btrfs_root *root = BTRFS_I(inode)->root;
1307                 u64 len = state->end + 1 - state->start;
1308                 int do_list = (root->root_key.objectid !=
1309                                BTRFS_ROOT_TREE_OBJECTID);
1310
1311                 if (*bits & EXTENT_FIRST_DELALLOC)
1312                         *bits &= ~EXTENT_FIRST_DELALLOC;
1313                 else
1314                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1315
1316                 spin_lock(&root->fs_info->delalloc_lock);
1317                 BTRFS_I(inode)->delalloc_bytes += len;
1318                 root->fs_info->delalloc_bytes += len;
1319                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1320                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1321                                       &root->fs_info->delalloc_inodes);
1322                 }
1323                 spin_unlock(&root->fs_info->delalloc_lock);
1324         }
1325         return 0;
1326 }
1327
1328 /*
1329  * extent_io.c clear_bit_hook, see set_bit_hook for why
1330  */
1331 static int btrfs_clear_bit_hook(struct inode *inode,
1332                                 struct extent_state *state, int *bits)
1333 {
1334         /*
1335          * set_bit and clear bit hooks normally require _irqsave/restore
1336          * but in this case, we are only testeing for the DELALLOC
1337          * bit, which is only set or cleared with irqs on
1338          */
1339         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1340                 struct btrfs_root *root = BTRFS_I(inode)->root;
1341                 u64 len = state->end + 1 - state->start;
1342                 int do_list = (root->root_key.objectid !=
1343                                BTRFS_ROOT_TREE_OBJECTID);
1344
1345                 if (*bits & EXTENT_FIRST_DELALLOC)
1346                         *bits &= ~EXTENT_FIRST_DELALLOC;
1347                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1348                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1349
1350                 if (*bits & EXTENT_DO_ACCOUNTING)
1351                         btrfs_delalloc_release_metadata(inode, len);
1352
1353                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1354                     && do_list)
1355                         btrfs_free_reserved_data_space(inode, len);
1356
1357                 spin_lock(&root->fs_info->delalloc_lock);
1358                 root->fs_info->delalloc_bytes -= len;
1359                 BTRFS_I(inode)->delalloc_bytes -= len;
1360
1361                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1362                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1363                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1364                 }
1365                 spin_unlock(&root->fs_info->delalloc_lock);
1366         }
1367         return 0;
1368 }
1369
1370 /*
1371  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1372  * we don't create bios that span stripes or chunks
1373  */
1374 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1375                          size_t size, struct bio *bio,
1376                          unsigned long bio_flags)
1377 {
1378         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1379         struct btrfs_mapping_tree *map_tree;
1380         u64 logical = (u64)bio->bi_sector << 9;
1381         u64 length = 0;
1382         u64 map_length;
1383         int ret;
1384
1385         if (bio_flags & EXTENT_BIO_COMPRESSED)
1386                 return 0;
1387
1388         length = bio->bi_size;
1389         map_tree = &root->fs_info->mapping_tree;
1390         map_length = length;
1391         ret = btrfs_map_block(map_tree, READ, logical,
1392                               &map_length, NULL, 0);
1393
1394         if (map_length < length + size)
1395                 return 1;
1396         return ret;
1397 }
1398
1399 /*
1400  * in order to insert checksums into the metadata in large chunks,
1401  * we wait until bio submission time.   All the pages in the bio are
1402  * checksummed and sums are attached onto the ordered extent record.
1403  *
1404  * At IO completion time the cums attached on the ordered extent record
1405  * are inserted into the btree
1406  */
1407 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1408                                     struct bio *bio, int mirror_num,
1409                                     unsigned long bio_flags,
1410                                     u64 bio_offset)
1411 {
1412         struct btrfs_root *root = BTRFS_I(inode)->root;
1413         int ret = 0;
1414
1415         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1416         BUG_ON(ret);
1417         return 0;
1418 }
1419
1420 /*
1421  * in order to insert checksums into the metadata in large chunks,
1422  * we wait until bio submission time.   All the pages in the bio are
1423  * checksummed and sums are attached onto the ordered extent record.
1424  *
1425  * At IO completion time the cums attached on the ordered extent record
1426  * are inserted into the btree
1427  */
1428 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1429                           int mirror_num, unsigned long bio_flags,
1430                           u64 bio_offset)
1431 {
1432         struct btrfs_root *root = BTRFS_I(inode)->root;
1433         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1434 }
1435
1436 /*
1437  * extent_io.c submission hook. This does the right thing for csum calculation
1438  * on write, or reading the csums from the tree before a read
1439  */
1440 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1441                           int mirror_num, unsigned long bio_flags,
1442                           u64 bio_offset)
1443 {
1444         struct btrfs_root *root = BTRFS_I(inode)->root;
1445         int ret = 0;
1446         int skip_sum;
1447
1448         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1449
1450         if (root == root->fs_info->tree_root)
1451                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1452         else
1453                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1454         BUG_ON(ret);
1455
1456         if (!(rw & REQ_WRITE)) {
1457                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1458                         return btrfs_submit_compressed_read(inode, bio,
1459                                                     mirror_num, bio_flags);
1460                 } else if (!skip_sum)
1461                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1462                 goto mapit;
1463         } else if (!skip_sum) {
1464                 /* csum items have already been cloned */
1465                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1466                         goto mapit;
1467                 /* we're doing a write, do the async checksumming */
1468                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1469                                    inode, rw, bio, mirror_num,
1470                                    bio_flags, bio_offset,
1471                                    __btrfs_submit_bio_start,
1472                                    __btrfs_submit_bio_done);
1473         }
1474
1475 mapit:
1476         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1477 }
1478
1479 /*
1480  * given a list of ordered sums record them in the inode.  This happens
1481  * at IO completion time based on sums calculated at bio submission time.
1482  */
1483 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1484                              struct inode *inode, u64 file_offset,
1485                              struct list_head *list)
1486 {
1487         struct btrfs_ordered_sum *sum;
1488
1489         btrfs_set_trans_block_group(trans, inode);
1490
1491         list_for_each_entry(sum, list, list) {
1492                 btrfs_csum_file_blocks(trans,
1493                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1494         }
1495         return 0;
1496 }
1497
1498 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1499                               struct extent_state **cached_state)
1500 {
1501         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1502                 WARN_ON(1);
1503         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1504                                    cached_state, GFP_NOFS);
1505 }
1506
1507 /* see btrfs_writepage_start_hook for details on why this is required */
1508 struct btrfs_writepage_fixup {
1509         struct page *page;
1510         struct btrfs_work work;
1511 };
1512
1513 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1514 {
1515         struct btrfs_writepage_fixup *fixup;
1516         struct btrfs_ordered_extent *ordered;
1517         struct extent_state *cached_state = NULL;
1518         struct page *page;
1519         struct inode *inode;
1520         u64 page_start;
1521         u64 page_end;
1522
1523         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1524         page = fixup->page;
1525 again:
1526         lock_page(page);
1527         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1528                 ClearPageChecked(page);
1529                 goto out_page;
1530         }
1531
1532         inode = page->mapping->host;
1533         page_start = page_offset(page);
1534         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1535
1536         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1537                          &cached_state, GFP_NOFS);
1538
1539         /* already ordered? We're done */
1540         if (PagePrivate2(page))
1541                 goto out;
1542
1543         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1544         if (ordered) {
1545                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1546                                      page_end, &cached_state, GFP_NOFS);
1547                 unlock_page(page);
1548                 btrfs_start_ordered_extent(inode, ordered, 1);
1549                 goto again;
1550         }
1551
1552         BUG();
1553         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1554         ClearPageChecked(page);
1555 out:
1556         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1557                              &cached_state, GFP_NOFS);
1558 out_page:
1559         unlock_page(page);
1560         page_cache_release(page);
1561         kfree(fixup);
1562 }
1563
1564 /*
1565  * There are a few paths in the higher layers of the kernel that directly
1566  * set the page dirty bit without asking the filesystem if it is a
1567  * good idea.  This causes problems because we want to make sure COW
1568  * properly happens and the data=ordered rules are followed.
1569  *
1570  * In our case any range that doesn't have the ORDERED bit set
1571  * hasn't been properly setup for IO.  We kick off an async process
1572  * to fix it up.  The async helper will wait for ordered extents, set
1573  * the delalloc bit and make it safe to write the page.
1574  */
1575 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1576 {
1577         struct inode *inode = page->mapping->host;
1578         struct btrfs_writepage_fixup *fixup;
1579         struct btrfs_root *root = BTRFS_I(inode)->root;
1580
1581         /* this page is properly in the ordered list */
1582         if (TestClearPagePrivate2(page))
1583                 return 0;
1584
1585         if (PageChecked(page))
1586                 return -EAGAIN;
1587
1588         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1589         if (!fixup)
1590                 return -EAGAIN;
1591
1592         SetPageChecked(page);
1593         page_cache_get(page);
1594         fixup->work.func = btrfs_writepage_fixup_worker;
1595         fixup->page = page;
1596         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1597         return -EAGAIN;
1598 }
1599
1600 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1601                                        struct inode *inode, u64 file_pos,
1602                                        u64 disk_bytenr, u64 disk_num_bytes,
1603                                        u64 num_bytes, u64 ram_bytes,
1604                                        u8 compression, u8 encryption,
1605                                        u16 other_encoding, int extent_type)
1606 {
1607         struct btrfs_root *root = BTRFS_I(inode)->root;
1608         struct btrfs_file_extent_item *fi;
1609         struct btrfs_path *path;
1610         struct extent_buffer *leaf;
1611         struct btrfs_key ins;
1612         u64 hint;
1613         int ret;
1614
1615         path = btrfs_alloc_path();
1616         BUG_ON(!path);
1617
1618         path->leave_spinning = 1;
1619
1620         /*
1621          * we may be replacing one extent in the tree with another.
1622          * The new extent is pinned in the extent map, and we don't want
1623          * to drop it from the cache until it is completely in the btree.
1624          *
1625          * So, tell btrfs_drop_extents to leave this extent in the cache.
1626          * the caller is expected to unpin it and allow it to be merged
1627          * with the others.
1628          */
1629         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1630                                  &hint, 0);
1631         BUG_ON(ret);
1632
1633         ins.objectid = inode->i_ino;
1634         ins.offset = file_pos;
1635         ins.type = BTRFS_EXTENT_DATA_KEY;
1636         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1637         BUG_ON(ret);
1638         leaf = path->nodes[0];
1639         fi = btrfs_item_ptr(leaf, path->slots[0],
1640                             struct btrfs_file_extent_item);
1641         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1642         btrfs_set_file_extent_type(leaf, fi, extent_type);
1643         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1644         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1645         btrfs_set_file_extent_offset(leaf, fi, 0);
1646         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1647         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1648         btrfs_set_file_extent_compression(leaf, fi, compression);
1649         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1650         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1651
1652         btrfs_unlock_up_safe(path, 1);
1653         btrfs_set_lock_blocking(leaf);
1654
1655         btrfs_mark_buffer_dirty(leaf);
1656
1657         inode_add_bytes(inode, num_bytes);
1658
1659         ins.objectid = disk_bytenr;
1660         ins.offset = disk_num_bytes;
1661         ins.type = BTRFS_EXTENT_ITEM_KEY;
1662         ret = btrfs_alloc_reserved_file_extent(trans, root,
1663                                         root->root_key.objectid,
1664                                         inode->i_ino, file_pos, &ins);
1665         BUG_ON(ret);
1666         btrfs_free_path(path);
1667
1668         return 0;
1669 }
1670
1671 /*
1672  * helper function for btrfs_finish_ordered_io, this
1673  * just reads in some of the csum leaves to prime them into ram
1674  * before we start the transaction.  It limits the amount of btree
1675  * reads required while inside the transaction.
1676  */
1677 /* as ordered data IO finishes, this gets called so we can finish
1678  * an ordered extent if the range of bytes in the file it covers are
1679  * fully written.
1680  */
1681 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1682 {
1683         struct btrfs_root *root = BTRFS_I(inode)->root;
1684         struct btrfs_trans_handle *trans = NULL;
1685         struct btrfs_ordered_extent *ordered_extent = NULL;
1686         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1687         struct extent_state *cached_state = NULL;
1688         int compress_type = 0;
1689         int ret;
1690         bool nolock = false;
1691
1692         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1693                                              end - start + 1);
1694         if (!ret)
1695                 return 0;
1696         BUG_ON(!ordered_extent);
1697
1698         nolock = (root == root->fs_info->tree_root);
1699
1700         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1701                 BUG_ON(!list_empty(&ordered_extent->list));
1702                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1703                 if (!ret) {
1704                         if (nolock)
1705                                 trans = btrfs_join_transaction_nolock(root, 1);
1706                         else
1707                                 trans = btrfs_join_transaction(root, 1);
1708                         BUG_ON(IS_ERR(trans));
1709                         btrfs_set_trans_block_group(trans, inode);
1710                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1711                         ret = btrfs_update_inode(trans, root, inode);
1712                         BUG_ON(ret);
1713                 }
1714                 goto out;
1715         }
1716
1717         lock_extent_bits(io_tree, ordered_extent->file_offset,
1718                          ordered_extent->file_offset + ordered_extent->len - 1,
1719                          0, &cached_state, GFP_NOFS);
1720
1721         if (nolock)
1722                 trans = btrfs_join_transaction_nolock(root, 1);
1723         else
1724                 trans = btrfs_join_transaction(root, 1);
1725         BUG_ON(IS_ERR(trans));
1726         btrfs_set_trans_block_group(trans, inode);
1727         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1728
1729         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1730                 compress_type = ordered_extent->compress_type;
1731         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1732                 BUG_ON(compress_type);
1733                 ret = btrfs_mark_extent_written(trans, inode,
1734                                                 ordered_extent->file_offset,
1735                                                 ordered_extent->file_offset +
1736                                                 ordered_extent->len);
1737                 BUG_ON(ret);
1738         } else {
1739                 BUG_ON(root == root->fs_info->tree_root);
1740                 ret = insert_reserved_file_extent(trans, inode,
1741                                                 ordered_extent->file_offset,
1742                                                 ordered_extent->start,
1743                                                 ordered_extent->disk_len,
1744                                                 ordered_extent->len,
1745                                                 ordered_extent->len,
1746                                                 compress_type, 0, 0,
1747                                                 BTRFS_FILE_EXTENT_REG);
1748                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1749                                    ordered_extent->file_offset,
1750                                    ordered_extent->len);
1751                 BUG_ON(ret);
1752         }
1753         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1754                              ordered_extent->file_offset +
1755                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1756
1757         add_pending_csums(trans, inode, ordered_extent->file_offset,
1758                           &ordered_extent->list);
1759
1760         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1761         ret = btrfs_update_inode(trans, root, inode);
1762         BUG_ON(ret);
1763 out:
1764         if (nolock) {
1765                 if (trans)
1766                         btrfs_end_transaction_nolock(trans, root);
1767         } else {
1768                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1769                 if (trans)
1770                         btrfs_end_transaction(trans, root);
1771         }
1772
1773         /* once for us */
1774         btrfs_put_ordered_extent(ordered_extent);
1775         /* once for the tree */
1776         btrfs_put_ordered_extent(ordered_extent);
1777
1778         return 0;
1779 }
1780
1781 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1782                                 struct extent_state *state, int uptodate)
1783 {
1784         ClearPagePrivate2(page);
1785         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1786 }
1787
1788 /*
1789  * When IO fails, either with EIO or csum verification fails, we
1790  * try other mirrors that might have a good copy of the data.  This
1791  * io_failure_record is used to record state as we go through all the
1792  * mirrors.  If another mirror has good data, the page is set up to date
1793  * and things continue.  If a good mirror can't be found, the original
1794  * bio end_io callback is called to indicate things have failed.
1795  */
1796 struct io_failure_record {
1797         struct page *page;
1798         u64 start;
1799         u64 len;
1800         u64 logical;
1801         unsigned long bio_flags;
1802         int last_mirror;
1803 };
1804
1805 static int btrfs_io_failed_hook(struct bio *failed_bio,
1806                          struct page *page, u64 start, u64 end,
1807                          struct extent_state *state)
1808 {
1809         struct io_failure_record *failrec = NULL;
1810         u64 private;
1811         struct extent_map *em;
1812         struct inode *inode = page->mapping->host;
1813         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1814         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1815         struct bio *bio;
1816         int num_copies;
1817         int ret;
1818         int rw;
1819         u64 logical;
1820
1821         ret = get_state_private(failure_tree, start, &private);
1822         if (ret) {
1823                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1824                 if (!failrec)
1825                         return -ENOMEM;
1826                 failrec->start = start;
1827                 failrec->len = end - start + 1;
1828                 failrec->last_mirror = 0;
1829                 failrec->bio_flags = 0;
1830
1831                 read_lock(&em_tree->lock);
1832                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1833                 if (em->start > start || em->start + em->len < start) {
1834                         free_extent_map(em);
1835                         em = NULL;
1836                 }
1837                 read_unlock(&em_tree->lock);
1838
1839                 if (!em || IS_ERR(em)) {
1840                         kfree(failrec);
1841                         return -EIO;
1842                 }
1843                 logical = start - em->start;
1844                 logical = em->block_start + logical;
1845                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1846                         logical = em->block_start;
1847                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1848                         extent_set_compress_type(&failrec->bio_flags,
1849                                                  em->compress_type);
1850                 }
1851                 failrec->logical = logical;
1852                 free_extent_map(em);
1853                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1854                                 EXTENT_DIRTY, GFP_NOFS);
1855                 set_state_private(failure_tree, start,
1856                                  (u64)(unsigned long)failrec);
1857         } else {
1858                 failrec = (struct io_failure_record *)(unsigned long)private;
1859         }
1860         num_copies = btrfs_num_copies(
1861                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1862                               failrec->logical, failrec->len);
1863         failrec->last_mirror++;
1864         if (!state) {
1865                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1866                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1867                                                     failrec->start,
1868                                                     EXTENT_LOCKED);
1869                 if (state && state->start != failrec->start)
1870                         state = NULL;
1871                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1872         }
1873         if (!state || failrec->last_mirror > num_copies) {
1874                 set_state_private(failure_tree, failrec->start, 0);
1875                 clear_extent_bits(failure_tree, failrec->start,
1876                                   failrec->start + failrec->len - 1,
1877                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1878                 kfree(failrec);
1879                 return -EIO;
1880         }
1881         bio = bio_alloc(GFP_NOFS, 1);
1882         bio->bi_private = state;
1883         bio->bi_end_io = failed_bio->bi_end_io;
1884         bio->bi_sector = failrec->logical >> 9;
1885         bio->bi_bdev = failed_bio->bi_bdev;
1886         bio->bi_size = 0;
1887
1888         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1889         if (failed_bio->bi_rw & REQ_WRITE)
1890                 rw = WRITE;
1891         else
1892                 rw = READ;
1893
1894         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1895                                                       failrec->last_mirror,
1896                                                       failrec->bio_flags, 0);
1897         return 0;
1898 }
1899
1900 /*
1901  * each time an IO finishes, we do a fast check in the IO failure tree
1902  * to see if we need to process or clean up an io_failure_record
1903  */
1904 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1905 {
1906         u64 private;
1907         u64 private_failure;
1908         struct io_failure_record *failure;
1909         int ret;
1910
1911         private = 0;
1912         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1913                              (u64)-1, 1, EXTENT_DIRTY)) {
1914                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1915                                         start, &private_failure);
1916                 if (ret == 0) {
1917                         failure = (struct io_failure_record *)(unsigned long)
1918                                    private_failure;
1919                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1920                                           failure->start, 0);
1921                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1922                                           failure->start,
1923                                           failure->start + failure->len - 1,
1924                                           EXTENT_DIRTY | EXTENT_LOCKED,
1925                                           GFP_NOFS);
1926                         kfree(failure);
1927                 }
1928         }
1929         return 0;
1930 }
1931
1932 /*
1933  * when reads are done, we need to check csums to verify the data is correct
1934  * if there's a match, we allow the bio to finish.  If not, we go through
1935  * the io_failure_record routines to find good copies
1936  */
1937 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1938                                struct extent_state *state)
1939 {
1940         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1941         struct inode *inode = page->mapping->host;
1942         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1943         char *kaddr;
1944         u64 private = ~(u32)0;
1945         int ret;
1946         struct btrfs_root *root = BTRFS_I(inode)->root;
1947         u32 csum = ~(u32)0;
1948
1949         if (PageChecked(page)) {
1950                 ClearPageChecked(page);
1951                 goto good;
1952         }
1953
1954         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1955                 return 0;
1956
1957         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1958             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1959                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1960                                   GFP_NOFS);
1961                 return 0;
1962         }
1963
1964         if (state && state->start == start) {
1965                 private = state->private;
1966                 ret = 0;
1967         } else {
1968                 ret = get_state_private(io_tree, start, &private);
1969         }
1970         kaddr = kmap_atomic(page, KM_USER0);
1971         if (ret)
1972                 goto zeroit;
1973
1974         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1975         btrfs_csum_final(csum, (char *)&csum);
1976         if (csum != private)
1977                 goto zeroit;
1978
1979         kunmap_atomic(kaddr, KM_USER0);
1980 good:
1981         /* if the io failure tree for this inode is non-empty,
1982          * check to see if we've recovered from a failed IO
1983          */
1984         btrfs_clean_io_failures(inode, start);
1985         return 0;
1986
1987 zeroit:
1988         if (printk_ratelimit()) {
1989                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1990                        "private %llu\n", page->mapping->host->i_ino,
1991                        (unsigned long long)start, csum,
1992                        (unsigned long long)private);
1993         }
1994         memset(kaddr + offset, 1, end - start + 1);
1995         flush_dcache_page(page);
1996         kunmap_atomic(kaddr, KM_USER0);
1997         if (private == 0)
1998                 return 0;
1999         return -EIO;
2000 }
2001
2002 struct delayed_iput {
2003         struct list_head list;
2004         struct inode *inode;
2005 };
2006
2007 void btrfs_add_delayed_iput(struct inode *inode)
2008 {
2009         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2010         struct delayed_iput *delayed;
2011
2012         if (atomic_add_unless(&inode->i_count, -1, 1))
2013                 return;
2014
2015         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2016         delayed->inode = inode;
2017
2018         spin_lock(&fs_info->delayed_iput_lock);
2019         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2020         spin_unlock(&fs_info->delayed_iput_lock);
2021 }
2022
2023 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2024 {
2025         LIST_HEAD(list);
2026         struct btrfs_fs_info *fs_info = root->fs_info;
2027         struct delayed_iput *delayed;
2028         int empty;
2029
2030         spin_lock(&fs_info->delayed_iput_lock);
2031         empty = list_empty(&fs_info->delayed_iputs);
2032         spin_unlock(&fs_info->delayed_iput_lock);
2033         if (empty)
2034                 return;
2035
2036         down_read(&root->fs_info->cleanup_work_sem);
2037         spin_lock(&fs_info->delayed_iput_lock);
2038         list_splice_init(&fs_info->delayed_iputs, &list);
2039         spin_unlock(&fs_info->delayed_iput_lock);
2040
2041         while (!list_empty(&list)) {
2042                 delayed = list_entry(list.next, struct delayed_iput, list);
2043                 list_del(&delayed->list);
2044                 iput(delayed->inode);
2045                 kfree(delayed);
2046         }
2047         up_read(&root->fs_info->cleanup_work_sem);
2048 }
2049
2050 /*
2051  * calculate extra metadata reservation when snapshotting a subvolume
2052  * contains orphan files.
2053  */
2054 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2055                                 struct btrfs_pending_snapshot *pending,
2056                                 u64 *bytes_to_reserve)
2057 {
2058         struct btrfs_root *root;
2059         struct btrfs_block_rsv *block_rsv;
2060         u64 num_bytes;
2061         int index;
2062
2063         root = pending->root;
2064         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2065                 return;
2066
2067         block_rsv = root->orphan_block_rsv;
2068
2069         /* orphan block reservation for the snapshot */
2070         num_bytes = block_rsv->size;
2071
2072         /*
2073          * after the snapshot is created, COWing tree blocks may use more
2074          * space than it frees. So we should make sure there is enough
2075          * reserved space.
2076          */
2077         index = trans->transid & 0x1;
2078         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2079                 num_bytes += block_rsv->size -
2080                              (block_rsv->reserved + block_rsv->freed[index]);
2081         }
2082
2083         *bytes_to_reserve += num_bytes;
2084 }
2085
2086 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2087                                 struct btrfs_pending_snapshot *pending)
2088 {
2089         struct btrfs_root *root = pending->root;
2090         struct btrfs_root *snap = pending->snap;
2091         struct btrfs_block_rsv *block_rsv;
2092         u64 num_bytes;
2093         int index;
2094         int ret;
2095
2096         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2097                 return;
2098
2099         /* refill source subvolume's orphan block reservation */
2100         block_rsv = root->orphan_block_rsv;
2101         index = trans->transid & 0x1;
2102         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2103                 num_bytes = block_rsv->size -
2104                             (block_rsv->reserved + block_rsv->freed[index]);
2105                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2106                                               root->orphan_block_rsv,
2107                                               num_bytes);
2108                 BUG_ON(ret);
2109         }
2110
2111         /* setup orphan block reservation for the snapshot */
2112         block_rsv = btrfs_alloc_block_rsv(snap);
2113         BUG_ON(!block_rsv);
2114
2115         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2116         snap->orphan_block_rsv = block_rsv;
2117
2118         num_bytes = root->orphan_block_rsv->size;
2119         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120                                       block_rsv, num_bytes);
2121         BUG_ON(ret);
2122
2123 #if 0
2124         /* insert orphan item for the snapshot */
2125         WARN_ON(!root->orphan_item_inserted);
2126         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2127                                        snap->root_key.objectid);
2128         BUG_ON(ret);
2129         snap->orphan_item_inserted = 1;
2130 #endif
2131 }
2132
2133 enum btrfs_orphan_cleanup_state {
2134         ORPHAN_CLEANUP_STARTED  = 1,
2135         ORPHAN_CLEANUP_DONE     = 2,
2136 };
2137
2138 /*
2139  * This is called in transaction commmit time. If there are no orphan
2140  * files in the subvolume, it removes orphan item and frees block_rsv
2141  * structure.
2142  */
2143 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2144                               struct btrfs_root *root)
2145 {
2146         int ret;
2147
2148         if (!list_empty(&root->orphan_list) ||
2149             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2150                 return;
2151
2152         if (root->orphan_item_inserted &&
2153             btrfs_root_refs(&root->root_item) > 0) {
2154                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2155                                             root->root_key.objectid);
2156                 BUG_ON(ret);
2157                 root->orphan_item_inserted = 0;
2158         }
2159
2160         if (root->orphan_block_rsv) {
2161                 WARN_ON(root->orphan_block_rsv->size > 0);
2162                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2163                 root->orphan_block_rsv = NULL;
2164         }
2165 }
2166
2167 /*
2168  * This creates an orphan entry for the given inode in case something goes
2169  * wrong in the middle of an unlink/truncate.
2170  *
2171  * NOTE: caller of this function should reserve 5 units of metadata for
2172  *       this function.
2173  */
2174 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2175 {
2176         struct btrfs_root *root = BTRFS_I(inode)->root;
2177         struct btrfs_block_rsv *block_rsv = NULL;
2178         int reserve = 0;
2179         int insert = 0;
2180         int ret;
2181
2182         if (!root->orphan_block_rsv) {
2183                 block_rsv = btrfs_alloc_block_rsv(root);
2184                 BUG_ON(!block_rsv);
2185         }
2186
2187         spin_lock(&root->orphan_lock);
2188         if (!root->orphan_block_rsv) {
2189                 root->orphan_block_rsv = block_rsv;
2190         } else if (block_rsv) {
2191                 btrfs_free_block_rsv(root, block_rsv);
2192                 block_rsv = NULL;
2193         }
2194
2195         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2196                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2197 #if 0
2198                 /*
2199                  * For proper ENOSPC handling, we should do orphan
2200                  * cleanup when mounting. But this introduces backward
2201                  * compatibility issue.
2202                  */
2203                 if (!xchg(&root->orphan_item_inserted, 1))
2204                         insert = 2;
2205                 else
2206                         insert = 1;
2207 #endif
2208                 insert = 1;
2209         } else {
2210                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2211         }
2212
2213         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2214                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2215                 reserve = 1;
2216         }
2217         spin_unlock(&root->orphan_lock);
2218
2219         if (block_rsv)
2220                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2221
2222         /* grab metadata reservation from transaction handle */
2223         if (reserve) {
2224                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2225                 BUG_ON(ret);
2226         }
2227
2228         /* insert an orphan item to track this unlinked/truncated file */
2229         if (insert >= 1) {
2230                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2231                 BUG_ON(ret);
2232         }
2233
2234         /* insert an orphan item to track subvolume contains orphan files */
2235         if (insert >= 2) {
2236                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2237                                                root->root_key.objectid);
2238                 BUG_ON(ret);
2239         }
2240         return 0;
2241 }
2242
2243 /*
2244  * We have done the truncate/delete so we can go ahead and remove the orphan
2245  * item for this particular inode.
2246  */
2247 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2248 {
2249         struct btrfs_root *root = BTRFS_I(inode)->root;
2250         int delete_item = 0;
2251         int release_rsv = 0;
2252         int ret = 0;
2253
2254         spin_lock(&root->orphan_lock);
2255         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2256                 list_del_init(&BTRFS_I(inode)->i_orphan);
2257                 delete_item = 1;
2258         }
2259
2260         if (BTRFS_I(inode)->orphan_meta_reserved) {
2261                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2262                 release_rsv = 1;
2263         }
2264         spin_unlock(&root->orphan_lock);
2265
2266         if (trans && delete_item) {
2267                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2268                 BUG_ON(ret);
2269         }
2270
2271         if (release_rsv)
2272                 btrfs_orphan_release_metadata(inode);
2273
2274         return 0;
2275 }
2276
2277 /*
2278  * this cleans up any orphans that may be left on the list from the last use
2279  * of this root.
2280  */
2281 void btrfs_orphan_cleanup(struct btrfs_root *root)
2282 {
2283         struct btrfs_path *path;
2284         struct extent_buffer *leaf;
2285         struct btrfs_key key, found_key;
2286         struct btrfs_trans_handle *trans;
2287         struct inode *inode;
2288         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2289
2290         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2291                 return;
2292
2293         path = btrfs_alloc_path();
2294         BUG_ON(!path);
2295         path->reada = -1;
2296
2297         key.objectid = BTRFS_ORPHAN_OBJECTID;
2298         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2299         key.offset = (u64)-1;
2300
2301         while (1) {
2302                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2303                 if (ret < 0) {
2304                         printk(KERN_ERR "Error searching slot for orphan: %d"
2305                                "\n", ret);
2306                         break;
2307                 }
2308
2309                 /*
2310                  * if ret == 0 means we found what we were searching for, which
2311                  * is weird, but possible, so only screw with path if we didnt
2312                  * find the key and see if we have stuff that matches
2313                  */
2314                 if (ret > 0) {
2315                         if (path->slots[0] == 0)
2316                                 break;
2317                         path->slots[0]--;
2318                 }
2319
2320                 /* pull out the item */
2321                 leaf = path->nodes[0];
2322                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2323
2324                 /* make sure the item matches what we want */
2325                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2326                         break;
2327                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2328                         break;
2329
2330                 /* release the path since we're done with it */
2331                 btrfs_release_path(root, path);
2332
2333                 /*
2334                  * this is where we are basically btrfs_lookup, without the
2335                  * crossing root thing.  we store the inode number in the
2336                  * offset of the orphan item.
2337                  */
2338                 found_key.objectid = found_key.offset;
2339                 found_key.type = BTRFS_INODE_ITEM_KEY;
2340                 found_key.offset = 0;
2341                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2342                 BUG_ON(IS_ERR(inode));
2343
2344                 /*
2345                  * add this inode to the orphan list so btrfs_orphan_del does
2346                  * the proper thing when we hit it
2347                  */
2348                 spin_lock(&root->orphan_lock);
2349                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2350                 spin_unlock(&root->orphan_lock);
2351
2352                 /*
2353                  * if this is a bad inode, means we actually succeeded in
2354                  * removing the inode, but not the orphan record, which means
2355                  * we need to manually delete the orphan since iput will just
2356                  * do a destroy_inode
2357                  */
2358                 if (is_bad_inode(inode)) {
2359                         trans = btrfs_start_transaction(root, 0);
2360                         BUG_ON(IS_ERR(trans));
2361                         btrfs_orphan_del(trans, inode);
2362                         btrfs_end_transaction(trans, root);
2363                         iput(inode);
2364                         continue;
2365                 }
2366
2367                 /* if we have links, this was a truncate, lets do that */
2368                 if (inode->i_nlink) {
2369                         nr_truncate++;
2370                         btrfs_truncate(inode);
2371                 } else {
2372                         nr_unlink++;
2373                 }
2374
2375                 /* this will do delete_inode and everything for us */
2376                 iput(inode);
2377         }
2378         btrfs_free_path(path);
2379
2380         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2381
2382         if (root->orphan_block_rsv)
2383                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2384                                         (u64)-1);
2385
2386         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2387                 trans = btrfs_join_transaction(root, 1);
2388                 BUG_ON(IS_ERR(trans));
2389                 btrfs_end_transaction(trans, root);
2390         }
2391
2392         if (nr_unlink)
2393                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2394         if (nr_truncate)
2395                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2396 }
2397
2398 /*
2399  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2400  * don't find any xattrs, we know there can't be any acls.
2401  *
2402  * slot is the slot the inode is in, objectid is the objectid of the inode
2403  */
2404 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2405                                           int slot, u64 objectid)
2406 {
2407         u32 nritems = btrfs_header_nritems(leaf);
2408         struct btrfs_key found_key;
2409         int scanned = 0;
2410
2411         slot++;
2412         while (slot < nritems) {
2413                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2414
2415                 /* we found a different objectid, there must not be acls */
2416                 if (found_key.objectid != objectid)
2417                         return 0;
2418
2419                 /* we found an xattr, assume we've got an acl */
2420                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2421                         return 1;
2422
2423                 /*
2424                  * we found a key greater than an xattr key, there can't
2425                  * be any acls later on
2426                  */
2427                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2428                         return 0;
2429
2430                 slot++;
2431                 scanned++;
2432
2433                 /*
2434                  * it goes inode, inode backrefs, xattrs, extents,
2435                  * so if there are a ton of hard links to an inode there can
2436                  * be a lot of backrefs.  Don't waste time searching too hard,
2437                  * this is just an optimization
2438                  */
2439                 if (scanned >= 8)
2440                         break;
2441         }
2442         /* we hit the end of the leaf before we found an xattr or
2443          * something larger than an xattr.  We have to assume the inode
2444          * has acls
2445          */
2446         return 1;
2447 }
2448
2449 /*
2450  * read an inode from the btree into the in-memory inode
2451  */
2452 static void btrfs_read_locked_inode(struct inode *inode)
2453 {
2454         struct btrfs_path *path;
2455         struct extent_buffer *leaf;
2456         struct btrfs_inode_item *inode_item;
2457         struct btrfs_timespec *tspec;
2458         struct btrfs_root *root = BTRFS_I(inode)->root;
2459         struct btrfs_key location;
2460         int maybe_acls;
2461         u64 alloc_group_block;
2462         u32 rdev;
2463         int ret;
2464
2465         path = btrfs_alloc_path();
2466         BUG_ON(!path);
2467         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2468
2469         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2470         if (ret)
2471                 goto make_bad;
2472
2473         leaf = path->nodes[0];
2474         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2475                                     struct btrfs_inode_item);
2476
2477         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2478         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2479         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2480         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2481         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2482
2483         tspec = btrfs_inode_atime(inode_item);
2484         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2485         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2486
2487         tspec = btrfs_inode_mtime(inode_item);
2488         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2489         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2490
2491         tspec = btrfs_inode_ctime(inode_item);
2492         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2493         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2494
2495         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2496         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2497         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2498         inode->i_generation = BTRFS_I(inode)->generation;
2499         inode->i_rdev = 0;
2500         rdev = btrfs_inode_rdev(leaf, inode_item);
2501
2502         BTRFS_I(inode)->index_cnt = (u64)-1;
2503         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2504
2505         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2506
2507         /*
2508          * try to precache a NULL acl entry for files that don't have
2509          * any xattrs or acls
2510          */
2511         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2512         if (!maybe_acls)
2513                 cache_no_acl(inode);
2514
2515         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2516                                                 alloc_group_block, 0);
2517         btrfs_free_path(path);
2518         inode_item = NULL;
2519
2520         switch (inode->i_mode & S_IFMT) {
2521         case S_IFREG:
2522                 inode->i_mapping->a_ops = &btrfs_aops;
2523                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2524                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2525                 inode->i_fop = &btrfs_file_operations;
2526                 inode->i_op = &btrfs_file_inode_operations;
2527                 break;
2528         case S_IFDIR:
2529                 inode->i_fop = &btrfs_dir_file_operations;
2530                 if (root == root->fs_info->tree_root)
2531                         inode->i_op = &btrfs_dir_ro_inode_operations;
2532                 else
2533                         inode->i_op = &btrfs_dir_inode_operations;
2534                 break;
2535         case S_IFLNK:
2536                 inode->i_op = &btrfs_symlink_inode_operations;
2537                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2538                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2539                 break;
2540         default:
2541                 inode->i_op = &btrfs_special_inode_operations;
2542                 init_special_inode(inode, inode->i_mode, rdev);
2543                 break;
2544         }
2545
2546         btrfs_update_iflags(inode);
2547         return;
2548
2549 make_bad:
2550         btrfs_free_path(path);
2551         make_bad_inode(inode);
2552 }
2553
2554 /*
2555  * given a leaf and an inode, copy the inode fields into the leaf
2556  */
2557 static void fill_inode_item(struct btrfs_trans_handle *trans,
2558                             struct extent_buffer *leaf,
2559                             struct btrfs_inode_item *item,
2560                             struct inode *inode)
2561 {
2562         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2563         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2564         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2565         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2566         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2567
2568         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2569                                inode->i_atime.tv_sec);
2570         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2571                                 inode->i_atime.tv_nsec);
2572
2573         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2574                                inode->i_mtime.tv_sec);
2575         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2576                                 inode->i_mtime.tv_nsec);
2577
2578         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2579                                inode->i_ctime.tv_sec);
2580         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2581                                 inode->i_ctime.tv_nsec);
2582
2583         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2584         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2585         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2586         btrfs_set_inode_transid(leaf, item, trans->transid);
2587         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2588         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2589         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2590 }
2591
2592 /*
2593  * copy everything in the in-memory inode into the btree.
2594  */
2595 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2596                                 struct btrfs_root *root, struct inode *inode)
2597 {
2598         struct btrfs_inode_item *inode_item;
2599         struct btrfs_path *path;
2600         struct extent_buffer *leaf;
2601         int ret;
2602
2603         path = btrfs_alloc_path();
2604         BUG_ON(!path);
2605         path->leave_spinning = 1;
2606         ret = btrfs_lookup_inode(trans, root, path,
2607                                  &BTRFS_I(inode)->location, 1);
2608         if (ret) {
2609                 if (ret > 0)
2610                         ret = -ENOENT;
2611                 goto failed;
2612         }
2613
2614         btrfs_unlock_up_safe(path, 1);
2615         leaf = path->nodes[0];
2616         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2617                                   struct btrfs_inode_item);
2618
2619         fill_inode_item(trans, leaf, inode_item, inode);
2620         btrfs_mark_buffer_dirty(leaf);
2621         btrfs_set_inode_last_trans(trans, inode);
2622         ret = 0;
2623 failed:
2624         btrfs_free_path(path);
2625         return ret;
2626 }
2627
2628
2629 /*
2630  * unlink helper that gets used here in inode.c and in the tree logging
2631  * recovery code.  It remove a link in a directory with a given name, and
2632  * also drops the back refs in the inode to the directory
2633  */
2634 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2635                        struct btrfs_root *root,
2636                        struct inode *dir, struct inode *inode,
2637                        const char *name, int name_len)
2638 {
2639         struct btrfs_path *path;
2640         int ret = 0;
2641         struct extent_buffer *leaf;
2642         struct btrfs_dir_item *di;
2643         struct btrfs_key key;
2644         u64 index;
2645
2646         path = btrfs_alloc_path();
2647         if (!path) {
2648                 ret = -ENOMEM;
2649                 goto out;
2650         }
2651
2652         path->leave_spinning = 1;
2653         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2654                                     name, name_len, -1);
2655         if (IS_ERR(di)) {
2656                 ret = PTR_ERR(di);
2657                 goto err;
2658         }
2659         if (!di) {
2660                 ret = -ENOENT;
2661                 goto err;
2662         }
2663         leaf = path->nodes[0];
2664         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2665         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2666         if (ret)
2667                 goto err;
2668         btrfs_release_path(root, path);
2669
2670         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2671                                   inode->i_ino,
2672                                   dir->i_ino, &index);
2673         if (ret) {
2674                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2675                        "inode %lu parent %lu\n", name_len, name,
2676                        inode->i_ino, dir->i_ino);
2677                 goto err;
2678         }
2679
2680         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2681                                          index, name, name_len, -1);
2682         if (IS_ERR(di)) {
2683                 ret = PTR_ERR(di);
2684                 goto err;
2685         }
2686         if (!di) {
2687                 ret = -ENOENT;
2688                 goto err;
2689         }
2690         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2691         btrfs_release_path(root, path);
2692
2693         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2694                                          inode, dir->i_ino);
2695         BUG_ON(ret != 0 && ret != -ENOENT);
2696
2697         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2698                                            dir, index);
2699         if (ret == -ENOENT)
2700                 ret = 0;
2701 err:
2702         btrfs_free_path(path);
2703         if (ret)
2704                 goto out;
2705
2706         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2707         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2708         btrfs_update_inode(trans, root, dir);
2709         btrfs_drop_nlink(inode);
2710         ret = btrfs_update_inode(trans, root, inode);
2711 out:
2712         return ret;
2713 }
2714
2715 /* helper to check if there is any shared block in the path */
2716 static int check_path_shared(struct btrfs_root *root,
2717                              struct btrfs_path *path)
2718 {
2719         struct extent_buffer *eb;
2720         int level;
2721         u64 refs = 1;
2722
2723         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2724                 int ret;
2725
2726                 if (!path->nodes[level])
2727                         break;
2728                 eb = path->nodes[level];
2729                 if (!btrfs_block_can_be_shared(root, eb))
2730                         continue;
2731                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2732                                                &refs, NULL);
2733                 if (refs > 1)
2734                         return 1;
2735         }
2736         return 0;
2737 }
2738
2739 /*
2740  * helper to start transaction for unlink and rmdir.
2741  *
2742  * unlink and rmdir are special in btrfs, they do not always free space.
2743  * so in enospc case, we should make sure they will free space before
2744  * allowing them to use the global metadata reservation.
2745  */
2746 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2747                                                        struct dentry *dentry)
2748 {
2749         struct btrfs_trans_handle *trans;
2750         struct btrfs_root *root = BTRFS_I(dir)->root;
2751         struct btrfs_path *path;
2752         struct btrfs_inode_ref *ref;
2753         struct btrfs_dir_item *di;
2754         struct inode *inode = dentry->d_inode;
2755         u64 index;
2756         int check_link = 1;
2757         int err = -ENOSPC;
2758         int ret;
2759
2760         trans = btrfs_start_transaction(root, 10);
2761         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2762                 return trans;
2763
2764         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2765                 return ERR_PTR(-ENOSPC);
2766
2767         /* check if there is someone else holds reference */
2768         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2769                 return ERR_PTR(-ENOSPC);
2770
2771         if (atomic_read(&inode->i_count) > 2)
2772                 return ERR_PTR(-ENOSPC);
2773
2774         if (xchg(&root->fs_info->enospc_unlink, 1))
2775                 return ERR_PTR(-ENOSPC);
2776
2777         path = btrfs_alloc_path();
2778         if (!path) {
2779                 root->fs_info->enospc_unlink = 0;
2780                 return ERR_PTR(-ENOMEM);
2781         }
2782
2783         trans = btrfs_start_transaction(root, 0);
2784         if (IS_ERR(trans)) {
2785                 btrfs_free_path(path);
2786                 root->fs_info->enospc_unlink = 0;
2787                 return trans;
2788         }
2789
2790         path->skip_locking = 1;
2791         path->search_commit_root = 1;
2792
2793         ret = btrfs_lookup_inode(trans, root, path,
2794                                 &BTRFS_I(dir)->location, 0);
2795         if (ret < 0) {
2796                 err = ret;
2797                 goto out;
2798         }
2799         if (ret == 0) {
2800                 if (check_path_shared(root, path))
2801                         goto out;
2802         } else {
2803                 check_link = 0;
2804         }
2805         btrfs_release_path(root, path);
2806
2807         ret = btrfs_lookup_inode(trans, root, path,
2808                                 &BTRFS_I(inode)->location, 0);
2809         if (ret < 0) {
2810                 err = ret;
2811                 goto out;
2812         }
2813         if (ret == 0) {
2814                 if (check_path_shared(root, path))
2815                         goto out;
2816         } else {
2817                 check_link = 0;
2818         }
2819         btrfs_release_path(root, path);
2820
2821         if (ret == 0 && S_ISREG(inode->i_mode)) {
2822                 ret = btrfs_lookup_file_extent(trans, root, path,
2823                                                inode->i_ino, (u64)-1, 0);
2824                 if (ret < 0) {
2825                         err = ret;
2826                         goto out;
2827                 }
2828                 BUG_ON(ret == 0);
2829                 if (check_path_shared(root, path))
2830                         goto out;
2831                 btrfs_release_path(root, path);
2832         }
2833
2834         if (!check_link) {
2835                 err = 0;
2836                 goto out;
2837         }
2838
2839         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2840                                 dentry->d_name.name, dentry->d_name.len, 0);
2841         if (IS_ERR(di)) {
2842                 err = PTR_ERR(di);
2843                 goto out;
2844         }
2845         if (di) {
2846                 if (check_path_shared(root, path))
2847                         goto out;
2848         } else {
2849                 err = 0;
2850                 goto out;
2851         }
2852         btrfs_release_path(root, path);
2853
2854         ref = btrfs_lookup_inode_ref(trans, root, path,
2855                                 dentry->d_name.name, dentry->d_name.len,
2856                                 inode->i_ino, dir->i_ino, 0);
2857         if (IS_ERR(ref)) {
2858                 err = PTR_ERR(ref);
2859                 goto out;
2860         }
2861         BUG_ON(!ref);
2862         if (check_path_shared(root, path))
2863                 goto out;
2864         index = btrfs_inode_ref_index(path->nodes[0], ref);
2865         btrfs_release_path(root, path);
2866
2867         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2868                                 dentry->d_name.name, dentry->d_name.len, 0);
2869         if (IS_ERR(di)) {
2870                 err = PTR_ERR(di);
2871                 goto out;
2872         }
2873         BUG_ON(ret == -ENOENT);
2874         if (check_path_shared(root, path))
2875                 goto out;
2876
2877         err = 0;
2878 out:
2879         btrfs_free_path(path);
2880         if (err) {
2881                 btrfs_end_transaction(trans, root);
2882                 root->fs_info->enospc_unlink = 0;
2883                 return ERR_PTR(err);
2884         }
2885
2886         trans->block_rsv = &root->fs_info->global_block_rsv;
2887         return trans;
2888 }
2889
2890 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2891                                struct btrfs_root *root)
2892 {
2893         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2894                 BUG_ON(!root->fs_info->enospc_unlink);
2895                 root->fs_info->enospc_unlink = 0;
2896         }
2897         btrfs_end_transaction_throttle(trans, root);
2898 }
2899
2900 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2901 {
2902         struct btrfs_root *root = BTRFS_I(dir)->root;
2903         struct btrfs_trans_handle *trans;
2904         struct inode *inode = dentry->d_inode;
2905         int ret;
2906         unsigned long nr = 0;
2907
2908         trans = __unlink_start_trans(dir, dentry);
2909         if (IS_ERR(trans))
2910                 return PTR_ERR(trans);
2911
2912         btrfs_set_trans_block_group(trans, dir);
2913
2914         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2915
2916         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2917                                  dentry->d_name.name, dentry->d_name.len);
2918         BUG_ON(ret);
2919
2920         if (inode->i_nlink == 0) {
2921                 ret = btrfs_orphan_add(trans, inode);
2922                 BUG_ON(ret);
2923         }
2924
2925         nr = trans->blocks_used;
2926         __unlink_end_trans(trans, root);
2927         btrfs_btree_balance_dirty(root, nr);
2928         return ret;
2929 }
2930
2931 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2932                         struct btrfs_root *root,
2933                         struct inode *dir, u64 objectid,
2934                         const char *name, int name_len)
2935 {
2936         struct btrfs_path *path;
2937         struct extent_buffer *leaf;
2938         struct btrfs_dir_item *di;
2939         struct btrfs_key key;
2940         u64 index;
2941         int ret;
2942
2943         path = btrfs_alloc_path();
2944         if (!path)
2945                 return -ENOMEM;
2946
2947         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2948                                    name, name_len, -1);
2949         BUG_ON(!di || IS_ERR(di));
2950
2951         leaf = path->nodes[0];
2952         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2953         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2954         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2955         BUG_ON(ret);
2956         btrfs_release_path(root, path);
2957
2958         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2959                                  objectid, root->root_key.objectid,
2960                                  dir->i_ino, &index, name, name_len);
2961         if (ret < 0) {
2962                 BUG_ON(ret != -ENOENT);
2963                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2964                                                  name, name_len);
2965                 BUG_ON(!di || IS_ERR(di));
2966
2967                 leaf = path->nodes[0];
2968                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2969                 btrfs_release_path(root, path);
2970                 index = key.offset;
2971         }
2972
2973         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2974                                          index, name, name_len, -1);
2975         BUG_ON(!di || IS_ERR(di));
2976
2977         leaf = path->nodes[0];
2978         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2979         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2980         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2981         BUG_ON(ret);
2982         btrfs_release_path(root, path);
2983
2984         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2985         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2986         ret = btrfs_update_inode(trans, root, dir);
2987         BUG_ON(ret);
2988
2989         btrfs_free_path(path);
2990         return 0;
2991 }
2992
2993 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2994 {
2995         struct inode *inode = dentry->d_inode;
2996         int err = 0;
2997         struct btrfs_root *root = BTRFS_I(dir)->root;
2998         struct btrfs_trans_handle *trans;
2999         unsigned long nr = 0;
3000
3001         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3002             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3003                 return -ENOTEMPTY;
3004
3005         trans = __unlink_start_trans(dir, dentry);
3006         if (IS_ERR(trans))
3007                 return PTR_ERR(trans);
3008
3009         btrfs_set_trans_block_group(trans, dir);
3010
3011         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3012                 err = btrfs_unlink_subvol(trans, root, dir,
3013                                           BTRFS_I(inode)->location.objectid,
3014                                           dentry->d_name.name,
3015                                           dentry->d_name.len);
3016                 goto out;
3017         }
3018
3019         err = btrfs_orphan_add(trans, inode);
3020         if (err)
3021                 goto out;
3022
3023         /* now the directory is empty */
3024         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3025                                  dentry->d_name.name, dentry->d_name.len);
3026         if (!err)
3027                 btrfs_i_size_write(inode, 0);
3028 out:
3029         nr = trans->blocks_used;
3030         __unlink_end_trans(trans, root);
3031         btrfs_btree_balance_dirty(root, nr);
3032
3033         return err;
3034 }
3035
3036 #if 0
3037 /*
3038  * when truncating bytes in a file, it is possible to avoid reading
3039  * the leaves that contain only checksum items.  This can be the
3040  * majority of the IO required to delete a large file, but it must
3041  * be done carefully.
3042  *
3043  * The keys in the level just above the leaves are checked to make sure
3044  * the lowest key in a given leaf is a csum key, and starts at an offset
3045  * after the new  size.
3046  *
3047  * Then the key for the next leaf is checked to make sure it also has
3048  * a checksum item for the same file.  If it does, we know our target leaf
3049  * contains only checksum items, and it can be safely freed without reading
3050  * it.
3051  *
3052  * This is just an optimization targeted at large files.  It may do
3053  * nothing.  It will return 0 unless things went badly.
3054  */
3055 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3056                                      struct btrfs_root *root,
3057                                      struct btrfs_path *path,
3058                                      struct inode *inode, u64 new_size)
3059 {
3060         struct btrfs_key key;
3061         int ret;
3062         int nritems;
3063         struct btrfs_key found_key;
3064         struct btrfs_key other_key;
3065         struct btrfs_leaf_ref *ref;
3066         u64 leaf_gen;
3067         u64 leaf_start;
3068
3069         path->lowest_level = 1;
3070         key.objectid = inode->i_ino;
3071         key.type = BTRFS_CSUM_ITEM_KEY;
3072         key.offset = new_size;
3073 again:
3074         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3075         if (ret < 0)
3076                 goto out;
3077
3078         if (path->nodes[1] == NULL) {
3079                 ret = 0;
3080                 goto out;
3081         }
3082         ret = 0;
3083         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3084         nritems = btrfs_header_nritems(path->nodes[1]);
3085
3086         if (!nritems)
3087                 goto out;
3088
3089         if (path->slots[1] >= nritems)
3090                 goto next_node;
3091
3092         /* did we find a key greater than anything we want to delete? */
3093         if (found_key.objectid > inode->i_ino ||
3094            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3095                 goto out;
3096
3097         /* we check the next key in the node to make sure the leave contains
3098          * only checksum items.  This comparison doesn't work if our
3099          * leaf is the last one in the node
3100          */
3101         if (path->slots[1] + 1 >= nritems) {
3102 next_node:
3103                 /* search forward from the last key in the node, this
3104                  * will bring us into the next node in the tree
3105                  */
3106                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3107
3108                 /* unlikely, but we inc below, so check to be safe */
3109                 if (found_key.offset == (u64)-1)
3110                         goto out;
3111
3112                 /* search_forward needs a path with locks held, do the
3113                  * search again for the original key.  It is possible
3114                  * this will race with a balance and return a path that
3115                  * we could modify, but this drop is just an optimization
3116                  * and is allowed to miss some leaves.
3117                  */
3118                 btrfs_release_path(root, path);
3119                 found_key.offset++;
3120
3121                 /* setup a max key for search_forward */
3122                 other_key.offset = (u64)-1;
3123                 other_key.type = key.type;
3124                 other_key.objectid = key.objectid;
3125
3126                 path->keep_locks = 1;
3127                 ret = btrfs_search_forward(root, &found_key, &other_key,
3128                                            path, 0, 0);
3129                 path->keep_locks = 0;
3130                 if (ret || found_key.objectid != key.objectid ||
3131                     found_key.type != key.type) {
3132                         ret = 0;
3133                         goto out;
3134                 }
3135
3136                 key.offset = found_key.offset;
3137                 btrfs_release_path(root, path);
3138                 cond_resched();
3139                 goto again;
3140         }
3141
3142         /* we know there's one more slot after us in the tree,
3143          * read that key so we can verify it is also a checksum item
3144          */
3145         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3146
3147         if (found_key.objectid < inode->i_ino)
3148                 goto next_key;
3149
3150         if (found_key.type != key.type || found_key.offset < new_size)
3151                 goto next_key;
3152
3153         /*
3154          * if the key for the next leaf isn't a csum key from this objectid,
3155          * we can't be sure there aren't good items inside this leaf.
3156          * Bail out
3157          */
3158         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3159                 goto out;
3160
3161         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3162         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3163         /*
3164          * it is safe to delete this leaf, it contains only
3165          * csum items from this inode at an offset >= new_size
3166          */
3167         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3168         BUG_ON(ret);
3169
3170         if (root->ref_cows && leaf_gen < trans->transid) {
3171                 ref = btrfs_alloc_leaf_ref(root, 0);
3172                 if (ref) {
3173                         ref->root_gen = root->root_key.offset;
3174                         ref->bytenr = leaf_start;
3175                         ref->owner = 0;
3176                         ref->generation = leaf_gen;
3177                         ref->nritems = 0;
3178
3179                         btrfs_sort_leaf_ref(ref);
3180
3181                         ret = btrfs_add_leaf_ref(root, ref, 0);
3182                         WARN_ON(ret);
3183                         btrfs_free_leaf_ref(root, ref);
3184                 } else {
3185                         WARN_ON(1);
3186                 }
3187         }
3188 next_key:
3189         btrfs_release_path(root, path);
3190
3191         if (other_key.objectid == inode->i_ino &&
3192             other_key.type == key.type && other_key.offset > key.offset) {
3193                 key.offset = other_key.offset;
3194                 cond_resched();
3195                 goto again;
3196         }
3197         ret = 0;
3198 out:
3199         /* fixup any changes we've made to the path */
3200         path->lowest_level = 0;
3201         path->keep_locks = 0;
3202         btrfs_release_path(root, path);
3203         return ret;
3204 }
3205
3206 #endif
3207
3208 /*
3209  * this can truncate away extent items, csum items and directory items.
3210  * It starts at a high offset and removes keys until it can't find
3211  * any higher than new_size
3212  *
3213  * csum items that cross the new i_size are truncated to the new size
3214  * as well.
3215  *
3216  * min_type is the minimum key type to truncate down to.  If set to 0, this
3217  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3218  */
3219 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3220                                struct btrfs_root *root,
3221                                struct inode *inode,
3222                                u64 new_size, u32 min_type)
3223 {
3224         struct btrfs_path *path;
3225         struct extent_buffer *leaf;
3226         struct btrfs_file_extent_item *fi;
3227         struct btrfs_key key;
3228         struct btrfs_key found_key;
3229         u64 extent_start = 0;
3230         u64 extent_num_bytes = 0;
3231         u64 extent_offset = 0;
3232         u64 item_end = 0;
3233         u64 mask = root->sectorsize - 1;
3234         u32 found_type = (u8)-1;
3235         int found_extent;
3236         int del_item;
3237         int pending_del_nr = 0;
3238         int pending_del_slot = 0;
3239         int extent_type = -1;
3240         int encoding;
3241         int ret;
3242         int err = 0;
3243
3244         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3245
3246         if (root->ref_cows || root == root->fs_info->tree_root)
3247                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3248
3249         path = btrfs_alloc_path();
3250         BUG_ON(!path);
3251         path->reada = -1;
3252
3253         key.objectid = inode->i_ino;
3254         key.offset = (u64)-1;
3255         key.type = (u8)-1;
3256
3257 search_again:
3258         path->leave_spinning = 1;
3259         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3260         if (ret < 0) {
3261                 err = ret;
3262                 goto out;
3263         }
3264
3265         if (ret > 0) {
3266                 /* there are no items in the tree for us to truncate, we're
3267                  * done
3268                  */
3269                 if (path->slots[0] == 0)
3270                         goto out;
3271                 path->slots[0]--;
3272         }
3273
3274         while (1) {
3275                 fi = NULL;
3276                 leaf = path->nodes[0];
3277                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3278                 found_type = btrfs_key_type(&found_key);
3279                 encoding = 0;
3280
3281                 if (found_key.objectid != inode->i_ino)
3282                         break;
3283
3284                 if (found_type < min_type)
3285                         break;
3286
3287                 item_end = found_key.offset;
3288                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3289                         fi = btrfs_item_ptr(leaf, path->slots[0],
3290                                             struct btrfs_file_extent_item);
3291                         extent_type = btrfs_file_extent_type(leaf, fi);
3292                         encoding = btrfs_file_extent_compression(leaf, fi);
3293                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3294                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3295
3296                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3297                                 item_end +=
3298                                     btrfs_file_extent_num_bytes(leaf, fi);
3299                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3300                                 item_end += btrfs_file_extent_inline_len(leaf,
3301                                                                          fi);
3302                         }
3303                         item_end--;
3304                 }
3305                 if (found_type > min_type) {
3306                         del_item = 1;
3307                 } else {
3308                         if (item_end < new_size)
3309                                 break;
3310                         if (found_key.offset >= new_size)
3311                                 del_item = 1;
3312                         else
3313                                 del_item = 0;
3314                 }
3315                 found_extent = 0;
3316                 /* FIXME, shrink the extent if the ref count is only 1 */
3317                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3318                         goto delete;
3319
3320                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3321                         u64 num_dec;
3322                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3323                         if (!del_item && !encoding) {
3324                                 u64 orig_num_bytes =
3325                                         btrfs_file_extent_num_bytes(leaf, fi);
3326                                 extent_num_bytes = new_size -
3327                                         found_key.offset + root->sectorsize - 1;
3328                                 extent_num_bytes = extent_num_bytes &
3329                                         ~((u64)root->sectorsize - 1);
3330                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3331                                                          extent_num_bytes);
3332                                 num_dec = (orig_num_bytes -
3333                                            extent_num_bytes);
3334                                 if (root->ref_cows && extent_start != 0)
3335                                         inode_sub_bytes(inode, num_dec);
3336                                 btrfs_mark_buffer_dirty(leaf);
3337                         } else {
3338                                 extent_num_bytes =
3339                                         btrfs_file_extent_disk_num_bytes(leaf,
3340                                                                          fi);
3341                                 extent_offset = found_key.offset -
3342                                         btrfs_file_extent_offset(leaf, fi);
3343
3344                                 /* FIXME blocksize != 4096 */
3345                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3346                                 if (extent_start != 0) {
3347                                         found_extent = 1;
3348                                         if (root->ref_cows)
3349                                                 inode_sub_bytes(inode, num_dec);
3350                                 }
3351                         }
3352                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3353                         /*
3354                          * we can't truncate inline items that have had
3355                          * special encodings
3356                          */
3357                         if (!del_item &&
3358                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3359                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3360                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3361                                 u32 size = new_size - found_key.offset;
3362
3363                                 if (root->ref_cows) {
3364                                         inode_sub_bytes(inode, item_end + 1 -
3365                                                         new_size);
3366                                 }
3367                                 size =
3368                                     btrfs_file_extent_calc_inline_size(size);
3369                                 ret = btrfs_truncate_item(trans, root, path,
3370                                                           size, 1);
3371                                 BUG_ON(ret);
3372                         } else if (root->ref_cows) {
3373                                 inode_sub_bytes(inode, item_end + 1 -
3374                                                 found_key.offset);
3375                         }
3376                 }
3377 delete:
3378                 if (del_item) {
3379                         if (!pending_del_nr) {
3380                                 /* no pending yet, add ourselves */
3381                                 pending_del_slot = path->slots[0];
3382                                 pending_del_nr = 1;
3383                         } else if (pending_del_nr &&
3384                                    path->slots[0] + 1 == pending_del_slot) {
3385                                 /* hop on the pending chunk */
3386                                 pending_del_nr++;
3387                                 pending_del_slot = path->slots[0];
3388                         } else {
3389                                 BUG();
3390                         }
3391                 } else {
3392                         break;
3393                 }
3394                 if (found_extent && (root->ref_cows ||
3395                                      root == root->fs_info->tree_root)) {
3396                         btrfs_set_path_blocking(path);
3397                         ret = btrfs_free_extent(trans, root, extent_start,
3398                                                 extent_num_bytes, 0,
3399                                                 btrfs_header_owner(leaf),
3400                                                 inode->i_ino, extent_offset);
3401                         BUG_ON(ret);
3402                 }
3403
3404                 if (found_type == BTRFS_INODE_ITEM_KEY)
3405                         break;
3406
3407                 if (path->slots[0] == 0 ||
3408                     path->slots[0] != pending_del_slot) {
3409                         if (root->ref_cows) {
3410                                 err = -EAGAIN;
3411                                 goto out;
3412                         }
3413                         if (pending_del_nr) {
3414                                 ret = btrfs_del_items(trans, root, path,
3415                                                 pending_del_slot,
3416                                                 pending_del_nr);
3417                                 BUG_ON(ret);
3418                                 pending_del_nr = 0;
3419                         }
3420                         btrfs_release_path(root, path);
3421                         goto search_again;
3422                 } else {
3423                         path->slots[0]--;
3424                 }
3425         }
3426 out:
3427         if (pending_del_nr) {
3428                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3429                                       pending_del_nr);
3430                 BUG_ON(ret);
3431         }
3432         btrfs_free_path(path);
3433         return err;
3434 }
3435
3436 /*
3437  * taken from block_truncate_page, but does cow as it zeros out
3438  * any bytes left in the last page in the file.
3439  */
3440 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3441 {
3442         struct inode *inode = mapping->host;
3443         struct btrfs_root *root = BTRFS_I(inode)->root;
3444         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3445         struct btrfs_ordered_extent *ordered;
3446         struct extent_state *cached_state = NULL;
3447         char *kaddr;
3448         u32 blocksize = root->sectorsize;
3449         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3450         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3451         struct page *page;
3452         int ret = 0;
3453         u64 page_start;
3454         u64 page_end;
3455
3456         if ((offset & (blocksize - 1)) == 0)
3457                 goto out;
3458         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3459         if (ret)
3460                 goto out;
3461
3462         ret = -ENOMEM;
3463 again:
3464         page = grab_cache_page(mapping, index);
3465         if (!page) {
3466                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3467                 goto out;
3468         }
3469
3470         page_start = page_offset(page);
3471         page_end = page_start + PAGE_CACHE_SIZE - 1;
3472
3473         if (!PageUptodate(page)) {
3474                 ret = btrfs_readpage(NULL, page);
3475                 lock_page(page);
3476                 if (page->mapping != mapping) {
3477                         unlock_page(page);
3478                         page_cache_release(page);
3479                         goto again;
3480                 }
3481                 if (!PageUptodate(page)) {
3482                         ret = -EIO;
3483                         goto out_unlock;
3484                 }
3485         }
3486         wait_on_page_writeback(page);
3487
3488         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3489                          GFP_NOFS);
3490         set_page_extent_mapped(page);
3491
3492         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3493         if (ordered) {
3494                 unlock_extent_cached(io_tree, page_start, page_end,
3495                                      &cached_state, GFP_NOFS);
3496                 unlock_page(page);
3497                 page_cache_release(page);
3498                 btrfs_start_ordered_extent(inode, ordered, 1);
3499                 btrfs_put_ordered_extent(ordered);
3500                 goto again;
3501         }
3502
3503         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3504                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3505                           0, 0, &cached_state, GFP_NOFS);
3506
3507         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3508                                         &cached_state);
3509         if (ret) {
3510                 unlock_extent_cached(io_tree, page_start, page_end,
3511                                      &cached_state, GFP_NOFS);
3512                 goto out_unlock;
3513         }
3514
3515         ret = 0;
3516         if (offset != PAGE_CACHE_SIZE) {
3517                 kaddr = kmap(page);
3518                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3519                 flush_dcache_page(page);
3520                 kunmap(page);
3521         }
3522         ClearPageChecked(page);
3523         set_page_dirty(page);
3524         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3525                              GFP_NOFS);
3526
3527 out_unlock:
3528         if (ret)
3529                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3530         unlock_page(page);
3531         page_cache_release(page);
3532 out:
3533         return ret;
3534 }
3535
3536 int btrfs_cont_expand(struct inode *inode, loff_t size)
3537 {
3538         struct btrfs_trans_handle *trans;
3539         struct btrfs_root *root = BTRFS_I(inode)->root;
3540         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3541         struct extent_map *em = NULL;
3542         struct extent_state *cached_state = NULL;
3543         u64 mask = root->sectorsize - 1;
3544         u64 hole_start = (inode->i_size + mask) & ~mask;
3545         u64 block_end = (size + mask) & ~mask;
3546         u64 last_byte;
3547         u64 cur_offset;
3548         u64 hole_size;
3549         int err = 0;
3550
3551         if (size <= hole_start)
3552                 return 0;
3553
3554         while (1) {
3555                 struct btrfs_ordered_extent *ordered;
3556                 btrfs_wait_ordered_range(inode, hole_start,
3557                                          block_end - hole_start);
3558                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3559                                  &cached_state, GFP_NOFS);
3560                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3561                 if (!ordered)
3562                         break;
3563                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3564                                      &cached_state, GFP_NOFS);
3565                 btrfs_put_ordered_extent(ordered);
3566         }
3567
3568         cur_offset = hole_start;
3569         while (1) {
3570                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3571                                 block_end - cur_offset, 0);
3572                 BUG_ON(IS_ERR(em) || !em);
3573                 last_byte = min(extent_map_end(em), block_end);
3574                 last_byte = (last_byte + mask) & ~mask;
3575                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3576                         u64 hint_byte = 0;
3577                         hole_size = last_byte - cur_offset;
3578
3579                         trans = btrfs_start_transaction(root, 2);
3580                         if (IS_ERR(trans)) {
3581                                 err = PTR_ERR(trans);
3582                                 break;
3583                         }
3584                         btrfs_set_trans_block_group(trans, inode);
3585
3586                         err = btrfs_drop_extents(trans, inode, cur_offset,
3587                                                  cur_offset + hole_size,
3588                                                  &hint_byte, 1);
3589                         BUG_ON(err);
3590
3591                         err = btrfs_insert_file_extent(trans, root,
3592                                         inode->i_ino, cur_offset, 0,
3593                                         0, hole_size, 0, hole_size,
3594                                         0, 0, 0);
3595                         BUG_ON(err);
3596
3597                         btrfs_drop_extent_cache(inode, hole_start,
3598                                         last_byte - 1, 0);
3599
3600                         btrfs_end_transaction(trans, root);
3601                 }
3602                 free_extent_map(em);
3603                 em = NULL;
3604                 cur_offset = last_byte;
3605                 if (cur_offset >= block_end)
3606                         break;
3607         }
3608
3609         free_extent_map(em);
3610         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3611                              GFP_NOFS);
3612         return err;
3613 }
3614
3615 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3616 {
3617         struct btrfs_root *root = BTRFS_I(inode)->root;
3618         struct btrfs_trans_handle *trans;
3619         unsigned long nr;
3620         int ret;
3621
3622         if (attr->ia_size == inode->i_size)
3623                 return 0;
3624
3625         if (attr->ia_size > inode->i_size) {
3626                 unsigned long limit;
3627                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3628                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3629                         return -EFBIG;
3630                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3631                         send_sig(SIGXFSZ, current, 0);
3632                         return -EFBIG;
3633                 }
3634         }
3635
3636         trans = btrfs_start_transaction(root, 5);
3637         if (IS_ERR(trans))
3638                 return PTR_ERR(trans);
3639
3640         btrfs_set_trans_block_group(trans, inode);
3641
3642         ret = btrfs_orphan_add(trans, inode);
3643         BUG_ON(ret);
3644
3645         nr = trans->blocks_used;
3646         btrfs_end_transaction(trans, root);
3647         btrfs_btree_balance_dirty(root, nr);
3648
3649         if (attr->ia_size > inode->i_size) {
3650                 ret = btrfs_cont_expand(inode, attr->ia_size);
3651                 if (ret) {
3652                         btrfs_truncate(inode);
3653                         return ret;
3654                 }
3655
3656                 i_size_write(inode, attr->ia_size);
3657                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3658
3659                 trans = btrfs_start_transaction(root, 0);
3660                 BUG_ON(IS_ERR(trans));
3661                 btrfs_set_trans_block_group(trans, inode);
3662                 trans->block_rsv = root->orphan_block_rsv;
3663                 BUG_ON(!trans->block_rsv);
3664
3665                 ret = btrfs_update_inode(trans, root, inode);
3666                 BUG_ON(ret);
3667                 if (inode->i_nlink > 0) {
3668                         ret = btrfs_orphan_del(trans, inode);
3669                         BUG_ON(ret);
3670                 }
3671                 nr = trans->blocks_used;
3672                 btrfs_end_transaction(trans, root);
3673                 btrfs_btree_balance_dirty(root, nr);
3674                 return 0;
3675         }
3676
3677         /*
3678          * We're truncating a file that used to have good data down to
3679          * zero. Make sure it gets into the ordered flush list so that
3680          * any new writes get down to disk quickly.
3681          */
3682         if (attr->ia_size == 0)
3683                 BTRFS_I(inode)->ordered_data_close = 1;
3684
3685         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3686         ret = vmtruncate(inode, attr->ia_size);
3687         BUG_ON(ret);
3688
3689         return 0;
3690 }
3691
3692 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3693 {
3694         struct inode *inode = dentry->d_inode;
3695         struct btrfs_root *root = BTRFS_I(inode)->root;
3696         int err;
3697
3698         if (btrfs_root_readonly(root))
3699                 return -EROFS;
3700
3701         err = inode_change_ok(inode, attr);
3702         if (err)
3703                 return err;
3704
3705         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3706                 err = btrfs_setattr_size(inode, attr);
3707                 if (err)
3708                         return err;
3709         }
3710
3711         if (attr->ia_valid) {
3712                 setattr_copy(inode, attr);
3713                 mark_inode_dirty(inode);
3714
3715                 if (attr->ia_valid & ATTR_MODE)
3716                         err = btrfs_acl_chmod(inode);
3717         }
3718
3719         return err;
3720 }
3721
3722 void btrfs_evict_inode(struct inode *inode)
3723 {
3724         struct btrfs_trans_handle *trans;
3725         struct btrfs_root *root = BTRFS_I(inode)->root;
3726         unsigned long nr;
3727         int ret;
3728
3729         truncate_inode_pages(&inode->i_data, 0);
3730         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3731                                root == root->fs_info->tree_root))
3732                 goto no_delete;
3733
3734         if (is_bad_inode(inode)) {
3735                 btrfs_orphan_del(NULL, inode);
3736                 goto no_delete;
3737         }
3738         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3739         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3740
3741         if (root->fs_info->log_root_recovering) {
3742                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3743                 goto no_delete;
3744         }
3745
3746         if (inode->i_nlink > 0) {
3747                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3748                 goto no_delete;
3749         }
3750
3751         btrfs_i_size_write(inode, 0);
3752
3753         while (1) {
3754                 trans = btrfs_start_transaction(root, 0);
3755                 BUG_ON(IS_ERR(trans));
3756                 btrfs_set_trans_block_group(trans, inode);
3757                 trans->block_rsv = root->orphan_block_rsv;
3758
3759                 ret = btrfs_block_rsv_check(trans, root,
3760                                             root->orphan_block_rsv, 0, 5);
3761                 if (ret) {
3762                         BUG_ON(ret != -EAGAIN);
3763                         ret = btrfs_commit_transaction(trans, root);
3764                         BUG_ON(ret);
3765                         continue;
3766                 }
3767
3768                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3769                 if (ret != -EAGAIN)
3770                         break;
3771
3772                 nr = trans->blocks_used;
3773                 btrfs_end_transaction(trans, root);
3774                 trans = NULL;
3775                 btrfs_btree_balance_dirty(root, nr);
3776
3777         }
3778
3779         if (ret == 0) {
3780                 ret = btrfs_orphan_del(trans, inode);
3781                 BUG_ON(ret);
3782         }
3783
3784         nr = trans->blocks_used;
3785         btrfs_end_transaction(trans, root);
3786         btrfs_btree_balance_dirty(root, nr);
3787 no_delete:
3788         end_writeback(inode);
3789         return;
3790 }
3791
3792 /*
3793  * this returns the key found in the dir entry in the location pointer.
3794  * If no dir entries were found, location->objectid is 0.
3795  */
3796 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3797                                struct btrfs_key *location)
3798 {
3799         const char *name = dentry->d_name.name;
3800         int namelen = dentry->d_name.len;
3801         struct btrfs_dir_item *di;
3802         struct btrfs_path *path;
3803         struct btrfs_root *root = BTRFS_I(dir)->root;
3804         int ret = 0;
3805
3806         path = btrfs_alloc_path();
3807         BUG_ON(!path);
3808
3809         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3810                                     namelen, 0);
3811         if (IS_ERR(di))
3812                 ret = PTR_ERR(di);
3813
3814         if (!di || IS_ERR(di))
3815                 goto out_err;
3816
3817         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3818 out:
3819         btrfs_free_path(path);
3820         return ret;
3821 out_err:
3822         location->objectid = 0;
3823         goto out;
3824 }
3825
3826 /*
3827  * when we hit a tree root in a directory, the btrfs part of the inode
3828  * needs to be changed to reflect the root directory of the tree root.  This
3829  * is kind of like crossing a mount point.
3830  */
3831 static int fixup_tree_root_location(struct btrfs_root *root,
3832                                     struct inode *dir,
3833                                     struct dentry *dentry,
3834                                     struct btrfs_key *location,
3835                                     struct btrfs_root **sub_root)
3836 {
3837         struct btrfs_path *path;
3838         struct btrfs_root *new_root;
3839         struct btrfs_root_ref *ref;
3840         struct extent_buffer *leaf;
3841         int ret;
3842         int err = 0;
3843
3844         path = btrfs_alloc_path();
3845         if (!path) {
3846                 err = -ENOMEM;
3847                 goto out;
3848         }
3849
3850         err = -ENOENT;
3851         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3852                                   BTRFS_I(dir)->root->root_key.objectid,
3853                                   location->objectid);
3854         if (ret) {
3855                 if (ret < 0)
3856                         err = ret;
3857                 goto out;
3858         }
3859
3860         leaf = path->nodes[0];
3861         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3862         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3863             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3864                 goto out;
3865
3866         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3867                                    (unsigned long)(ref + 1),
3868                                    dentry->d_name.len);
3869         if (ret)
3870                 goto out;
3871
3872         btrfs_release_path(root->fs_info->tree_root, path);
3873
3874         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3875         if (IS_ERR(new_root)) {
3876                 err = PTR_ERR(new_root);
3877                 goto out;
3878         }
3879
3880         if (btrfs_root_refs(&new_root->root_item) == 0) {
3881                 err = -ENOENT;
3882                 goto out;
3883         }
3884
3885         *sub_root = new_root;
3886         location->objectid = btrfs_root_dirid(&new_root->root_item);
3887         location->type = BTRFS_INODE_ITEM_KEY;
3888         location->offset = 0;
3889         err = 0;
3890 out:
3891         btrfs_free_path(path);
3892         return err;
3893 }
3894
3895 static void inode_tree_add(struct inode *inode)
3896 {
3897         struct btrfs_root *root = BTRFS_I(inode)->root;
3898         struct btrfs_inode *entry;
3899         struct rb_node **p;
3900         struct rb_node *parent;
3901 again:
3902         p = &root->inode_tree.rb_node;
3903         parent = NULL;
3904
3905         if (inode_unhashed(inode))
3906                 return;
3907
3908         spin_lock(&root->inode_lock);
3909         while (*p) {
3910                 parent = *p;
3911                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3912
3913                 if (inode->i_ino < entry->vfs_inode.i_ino)
3914                         p = &parent->rb_left;
3915                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3916                         p = &parent->rb_right;
3917                 else {
3918                         WARN_ON(!(entry->vfs_inode.i_state &
3919                                   (I_WILL_FREE | I_FREEING)));
3920                         rb_erase(parent, &root->inode_tree);
3921                         RB_CLEAR_NODE(parent);
3922                         spin_unlock(&root->inode_lock);
3923                         goto again;
3924                 }
3925         }
3926         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3927         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3928         spin_unlock(&root->inode_lock);
3929 }
3930
3931 static void inode_tree_del(struct inode *inode)
3932 {
3933         struct btrfs_root *root = BTRFS_I(inode)->root;
3934         int empty = 0;
3935
3936         spin_lock(&root->inode_lock);
3937         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3938                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3939                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3940                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3941         }
3942         spin_unlock(&root->inode_lock);
3943
3944         /*
3945          * Free space cache has inodes in the tree root, but the tree root has a
3946          * root_refs of 0, so this could end up dropping the tree root as a
3947          * snapshot, so we need the extra !root->fs_info->tree_root check to
3948          * make sure we don't drop it.
3949          */
3950         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3951             root != root->fs_info->tree_root) {
3952                 synchronize_srcu(&root->fs_info->subvol_srcu);
3953                 spin_lock(&root->inode_lock);
3954                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3955                 spin_unlock(&root->inode_lock);
3956                 if (empty)
3957                         btrfs_add_dead_root(root);
3958         }
3959 }
3960
3961 int btrfs_invalidate_inodes(struct btrfs_root *root)
3962 {
3963         struct rb_node *node;
3964         struct rb_node *prev;
3965         struct btrfs_inode *entry;
3966         struct inode *inode;
3967         u64 objectid = 0;
3968
3969         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3970
3971         spin_lock(&root->inode_lock);
3972 again:
3973         node = root->inode_tree.rb_node;
3974         prev = NULL;
3975         while (node) {
3976                 prev = node;
3977                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3978
3979                 if (objectid < entry->vfs_inode.i_ino)
3980                         node = node->rb_left;
3981                 else if (objectid > entry->vfs_inode.i_ino)
3982                         node = node->rb_right;
3983                 else
3984                         break;
3985         }
3986         if (!node) {
3987                 while (prev) {
3988                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3989                         if (objectid <= entry->vfs_inode.i_ino) {
3990                                 node = prev;
3991                                 break;
3992                         }
3993                         prev = rb_next(prev);
3994                 }
3995         }
3996         while (node) {
3997                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3998                 objectid = entry->vfs_inode.i_ino + 1;
3999                 inode = igrab(&entry->vfs_inode);
4000                 if (inode) {
4001                         spin_unlock(&root->inode_lock);
4002                         if (atomic_read(&inode->i_count) > 1)
4003                                 d_prune_aliases(inode);
4004                         /*
4005                          * btrfs_drop_inode will have it removed from
4006                          * the inode cache when its usage count
4007                          * hits zero.
4008                          */
4009                         iput(inode);
4010                         cond_resched();
4011                         spin_lock(&root->inode_lock);
4012                         goto again;
4013                 }
4014
4015                 if (cond_resched_lock(&root->inode_lock))
4016                         goto again;
4017
4018                 node = rb_next(node);
4019         }
4020         spin_unlock(&root->inode_lock);
4021         return 0;
4022 }
4023
4024 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4025 {
4026         struct btrfs_iget_args *args = p;
4027         inode->i_ino = args->ino;
4028         BTRFS_I(inode)->root = args->root;
4029         btrfs_set_inode_space_info(args->root, inode);
4030         return 0;
4031 }
4032
4033 static int btrfs_find_actor(struct inode *inode, void *opaque)
4034 {
4035         struct btrfs_iget_args *args = opaque;
4036         return args->ino == inode->i_ino &&
4037                 args->root == BTRFS_I(inode)->root;
4038 }
4039
4040 static struct inode *btrfs_iget_locked(struct super_block *s,
4041                                        u64 objectid,
4042                                        struct btrfs_root *root)
4043 {
4044         struct inode *inode;
4045         struct btrfs_iget_args args;
4046         args.ino = objectid;
4047         args.root = root;
4048
4049         inode = iget5_locked(s, objectid, btrfs_find_actor,
4050                              btrfs_init_locked_inode,
4051                              (void *)&args);
4052         return inode;
4053 }
4054
4055 /* Get an inode object given its location and corresponding root.
4056  * Returns in *is_new if the inode was read from disk
4057  */
4058 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4059                          struct btrfs_root *root, int *new)
4060 {
4061         struct inode *inode;
4062
4063         inode = btrfs_iget_locked(s, location->objectid, root);
4064         if (!inode)
4065                 return ERR_PTR(-ENOMEM);
4066
4067         if (inode->i_state & I_NEW) {
4068                 BTRFS_I(inode)->root = root;
4069                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4070                 btrfs_read_locked_inode(inode);
4071
4072                 inode_tree_add(inode);
4073                 unlock_new_inode(inode);
4074                 if (new)
4075                         *new = 1;
4076         }
4077
4078         return inode;
4079 }
4080
4081 static struct inode *new_simple_dir(struct super_block *s,
4082                                     struct btrfs_key *key,
4083                                     struct btrfs_root *root)
4084 {
4085         struct inode *inode = new_inode(s);
4086
4087         if (!inode)
4088                 return ERR_PTR(-ENOMEM);
4089
4090         BTRFS_I(inode)->root = root;
4091         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4092         BTRFS_I(inode)->dummy_inode = 1;
4093
4094         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4095         inode->i_op = &simple_dir_inode_operations;
4096         inode->i_fop = &simple_dir_operations;
4097         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4098         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4099
4100         return inode;
4101 }
4102
4103 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4104 {
4105         struct inode *inode;
4106         struct btrfs_root *root = BTRFS_I(dir)->root;
4107         struct btrfs_root *sub_root = root;
4108         struct btrfs_key location;
4109         int index;
4110         int ret;
4111
4112         if (dentry->d_name.len > BTRFS_NAME_LEN)
4113                 return ERR_PTR(-ENAMETOOLONG);
4114
4115         ret = btrfs_inode_by_name(dir, dentry, &location);
4116
4117         if (ret < 0)
4118                 return ERR_PTR(ret);
4119
4120         if (location.objectid == 0)
4121                 return NULL;
4122
4123         if (location.type == BTRFS_INODE_ITEM_KEY) {
4124                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4125                 return inode;
4126         }
4127
4128         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4129
4130         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4131         ret = fixup_tree_root_location(root, dir, dentry,
4132                                        &location, &sub_root);
4133         if (ret < 0) {
4134                 if (ret != -ENOENT)
4135                         inode = ERR_PTR(ret);
4136                 else
4137                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4138         } else {
4139                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4140         }
4141         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4142
4143         if (!IS_ERR(inode) && root != sub_root) {
4144                 down_read(&root->fs_info->cleanup_work_sem);
4145                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4146                         btrfs_orphan_cleanup(sub_root);
4147                 up_read(&root->fs_info->cleanup_work_sem);
4148         }
4149
4150         return inode;
4151 }
4152
4153 static int btrfs_dentry_delete(const struct dentry *dentry)
4154 {
4155         struct btrfs_root *root;
4156
4157         if (!dentry->d_inode && !IS_ROOT(dentry))
4158                 dentry = dentry->d_parent;
4159
4160         if (dentry->d_inode) {
4161                 root = BTRFS_I(dentry->d_inode)->root;
4162                 if (btrfs_root_refs(&root->root_item) == 0)
4163                         return 1;
4164         }
4165         return 0;
4166 }
4167
4168 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4169                                    struct nameidata *nd)
4170 {
4171         struct inode *inode;
4172
4173         inode = btrfs_lookup_dentry(dir, dentry);
4174         if (IS_ERR(inode))
4175                 return ERR_CAST(inode);
4176
4177         return d_splice_alias(inode, dentry);
4178 }
4179
4180 static unsigned char btrfs_filetype_table[] = {
4181         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4182 };
4183
4184 static int btrfs_real_readdir(struct file *filp, void *dirent,
4185                               filldir_t filldir)
4186 {
4187         struct inode *inode = filp->f_dentry->d_inode;
4188         struct btrfs_root *root = BTRFS_I(inode)->root;
4189         struct btrfs_item *item;
4190         struct btrfs_dir_item *di;
4191         struct btrfs_key key;
4192         struct btrfs_key found_key;
4193         struct btrfs_path *path;
4194         int ret;
4195         u32 nritems;
4196         struct extent_buffer *leaf;
4197         int slot;
4198         int advance;
4199         unsigned char d_type;
4200         int over = 0;
4201         u32 di_cur;
4202         u32 di_total;
4203         u32 di_len;
4204         int key_type = BTRFS_DIR_INDEX_KEY;
4205         char tmp_name[32];
4206         char *name_ptr;
4207         int name_len;
4208
4209         /* FIXME, use a real flag for deciding about the key type */
4210         if (root->fs_info->tree_root == root)
4211                 key_type = BTRFS_DIR_ITEM_KEY;
4212
4213         /* special case for "." */
4214         if (filp->f_pos == 0) {
4215                 over = filldir(dirent, ".", 1,
4216                                1, inode->i_ino,
4217                                DT_DIR);
4218                 if (over)
4219                         return 0;
4220                 filp->f_pos = 1;
4221         }
4222         /* special case for .., just use the back ref */
4223         if (filp->f_pos == 1) {
4224                 u64 pino = parent_ino(filp->f_path.dentry);
4225                 over = filldir(dirent, "..", 2,
4226                                2, pino, DT_DIR);
4227                 if (over)
4228                         return 0;
4229                 filp->f_pos = 2;
4230         }
4231         path = btrfs_alloc_path();
4232         path->reada = 2;
4233
4234         btrfs_set_key_type(&key, key_type);
4235         key.offset = filp->f_pos;
4236         key.objectid = inode->i_ino;
4237
4238         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4239         if (ret < 0)
4240                 goto err;
4241         advance = 0;
4242
4243         while (1) {
4244                 leaf = path->nodes[0];
4245                 nritems = btrfs_header_nritems(leaf);
4246                 slot = path->slots[0];
4247                 if (advance || slot >= nritems) {
4248                         if (slot >= nritems - 1) {
4249                                 ret = btrfs_next_leaf(root, path);
4250                                 if (ret)
4251                                         break;
4252                                 leaf = path->nodes[0];
4253                                 nritems = btrfs_header_nritems(leaf);
4254                                 slot = path->slots[0];
4255                         } else {
4256                                 slot++;
4257                                 path->slots[0]++;
4258                         }
4259                 }
4260
4261                 advance = 1;
4262                 item = btrfs_item_nr(leaf, slot);
4263                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4264
4265                 if (found_key.objectid != key.objectid)
4266                         break;
4267                 if (btrfs_key_type(&found_key) != key_type)
4268                         break;
4269                 if (found_key.offset < filp->f_pos)
4270                         continue;
4271
4272                 filp->f_pos = found_key.offset;
4273
4274                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4275                 di_cur = 0;
4276                 di_total = btrfs_item_size(leaf, item);
4277
4278                 while (di_cur < di_total) {
4279                         struct btrfs_key location;
4280
4281                         name_len = btrfs_dir_name_len(leaf, di);
4282                         if (name_len <= sizeof(tmp_name)) {
4283                                 name_ptr = tmp_name;
4284                         } else {
4285                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4286                                 if (!name_ptr) {
4287                                         ret = -ENOMEM;
4288                                         goto err;
4289                                 }
4290                         }
4291                         read_extent_buffer(leaf, name_ptr,
4292                                            (unsigned long)(di + 1), name_len);
4293
4294                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4295                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4296
4297                         /* is this a reference to our own snapshot? If so
4298                          * skip it
4299                          */
4300                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4301                             location.objectid == root->root_key.objectid) {
4302                                 over = 0;
4303                                 goto skip;
4304                         }
4305                         over = filldir(dirent, name_ptr, name_len,
4306                                        found_key.offset, location.objectid,
4307                                        d_type);
4308
4309 skip:
4310                         if (name_ptr != tmp_name)
4311                                 kfree(name_ptr);
4312
4313                         if (over)
4314                                 goto nopos;
4315                         di_len = btrfs_dir_name_len(leaf, di) +
4316                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4317                         di_cur += di_len;
4318                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4319                 }
4320         }
4321
4322         /* Reached end of directory/root. Bump pos past the last item. */
4323         if (key_type == BTRFS_DIR_INDEX_KEY)
4324                 /*
4325                  * 32-bit glibc will use getdents64, but then strtol -
4326                  * so the last number we can serve is this.
4327                  */
4328                 filp->f_pos = 0x7fffffff;
4329         else
4330                 filp->f_pos++;
4331 nopos:
4332         ret = 0;
4333 err:
4334         btrfs_free_path(path);
4335         return ret;
4336 }
4337
4338 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4339 {
4340         struct btrfs_root *root = BTRFS_I(inode)->root;
4341         struct btrfs_trans_handle *trans;
4342         int ret = 0;
4343         bool nolock = false;
4344
4345         if (BTRFS_I(inode)->dummy_inode)
4346                 return 0;
4347
4348         smp_mb();
4349         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4350
4351         if (wbc->sync_mode == WB_SYNC_ALL) {
4352                 if (nolock)
4353                         trans = btrfs_join_transaction_nolock(root, 1);
4354                 else
4355                         trans = btrfs_join_transaction(root, 1);
4356                 if (IS_ERR(trans))
4357                         return PTR_ERR(trans);
4358                 btrfs_set_trans_block_group(trans, inode);
4359                 if (nolock)
4360                         ret = btrfs_end_transaction_nolock(trans, root);
4361                 else
4362                         ret = btrfs_commit_transaction(trans, root);
4363         }
4364         return ret;
4365 }
4366
4367 /*
4368  * This is somewhat expensive, updating the tree every time the
4369  * inode changes.  But, it is most likely to find the inode in cache.
4370  * FIXME, needs more benchmarking...there are no reasons other than performance
4371  * to keep or drop this code.
4372  */
4373 void btrfs_dirty_inode(struct inode *inode)
4374 {
4375         struct btrfs_root *root = BTRFS_I(inode)->root;
4376         struct btrfs_trans_handle *trans;
4377         int ret;
4378
4379         if (BTRFS_I(inode)->dummy_inode)
4380                 return;
4381
4382         trans = btrfs_join_transaction(root, 1);
4383         BUG_ON(IS_ERR(trans));
4384         btrfs_set_trans_block_group(trans, inode);
4385
4386         ret = btrfs_update_inode(trans, root, inode);
4387         if (ret && ret == -ENOSPC) {
4388                 /* whoops, lets try again with the full transaction */
4389                 btrfs_end_transaction(trans, root);
4390                 trans = btrfs_start_transaction(root, 1);
4391                 if (IS_ERR(trans)) {
4392                         if (printk_ratelimit()) {
4393                                 printk(KERN_ERR "btrfs: fail to "
4394                                        "dirty  inode %lu error %ld\n",
4395                                        inode->i_ino, PTR_ERR(trans));
4396                         }
4397                         return;
4398                 }
4399                 btrfs_set_trans_block_group(trans, inode);
4400
4401                 ret = btrfs_update_inode(trans, root, inode);
4402                 if (ret) {
4403                         if (printk_ratelimit()) {
4404                                 printk(KERN_ERR "btrfs: fail to "
4405                                        "dirty  inode %lu error %d\n",
4406                                        inode->i_ino, ret);
4407                         }
4408                 }
4409         }
4410         btrfs_end_transaction(trans, root);
4411 }
4412
4413 /*
4414  * find the highest existing sequence number in a directory
4415  * and then set the in-memory index_cnt variable to reflect
4416  * free sequence numbers
4417  */
4418 static int btrfs_set_inode_index_count(struct inode *inode)
4419 {
4420         struct btrfs_root *root = BTRFS_I(inode)->root;
4421         struct btrfs_key key, found_key;
4422         struct btrfs_path *path;
4423         struct extent_buffer *leaf;
4424         int ret;
4425
4426         key.objectid = inode->i_ino;
4427         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4428         key.offset = (u64)-1;
4429
4430         path = btrfs_alloc_path();
4431         if (!path)
4432                 return -ENOMEM;
4433
4434         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4435         if (ret < 0)
4436                 goto out;
4437         /* FIXME: we should be able to handle this */
4438         if (ret == 0)
4439                 goto out;
4440         ret = 0;
4441
4442         /*
4443          * MAGIC NUMBER EXPLANATION:
4444          * since we search a directory based on f_pos we have to start at 2
4445          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4446          * else has to start at 2
4447          */
4448         if (path->slots[0] == 0) {
4449                 BTRFS_I(inode)->index_cnt = 2;
4450                 goto out;
4451         }
4452
4453         path->slots[0]--;
4454
4455         leaf = path->nodes[0];
4456         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4457
4458         if (found_key.objectid != inode->i_ino ||
4459             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4460                 BTRFS_I(inode)->index_cnt = 2;
4461                 goto out;
4462         }
4463
4464         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4465 out:
4466         btrfs_free_path(path);
4467         return ret;
4468 }
4469
4470 /*
4471  * helper to find a free sequence number in a given directory.  This current
4472  * code is very simple, later versions will do smarter things in the btree
4473  */
4474 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4475 {
4476         int ret = 0;
4477
4478         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4479                 ret = btrfs_set_inode_index_count(dir);
4480                 if (ret)
4481                         return ret;
4482         }
4483
4484         *index = BTRFS_I(dir)->index_cnt;
4485         BTRFS_I(dir)->index_cnt++;
4486
4487         return ret;
4488 }
4489
4490 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4491                                      struct btrfs_root *root,
4492                                      struct inode *dir,
4493                                      const char *name, int name_len,
4494                                      u64 ref_objectid, u64 objectid,
4495                                      u64 alloc_hint, int mode, u64 *index)
4496 {
4497         struct inode *inode;
4498         struct btrfs_inode_item *inode_item;
4499         struct btrfs_key *location;
4500         struct btrfs_path *path;
4501         struct btrfs_inode_ref *ref;
4502         struct btrfs_key key[2];
4503         u32 sizes[2];
4504         unsigned long ptr;
4505         int ret;
4506         int owner;
4507
4508         path = btrfs_alloc_path();
4509         BUG_ON(!path);
4510
4511         inode = new_inode(root->fs_info->sb);
4512         if (!inode)
4513                 return ERR_PTR(-ENOMEM);
4514
4515         if (dir) {
4516                 ret = btrfs_set_inode_index(dir, index);
4517                 if (ret) {
4518                         iput(inode);
4519                         return ERR_PTR(ret);
4520                 }
4521         }
4522         /*
4523          * index_cnt is ignored for everything but a dir,
4524          * btrfs_get_inode_index_count has an explanation for the magic
4525          * number
4526          */
4527         BTRFS_I(inode)->index_cnt = 2;
4528         BTRFS_I(inode)->root = root;
4529         BTRFS_I(inode)->generation = trans->transid;
4530         inode->i_generation = BTRFS_I(inode)->generation;
4531         btrfs_set_inode_space_info(root, inode);
4532
4533         if (mode & S_IFDIR)
4534                 owner = 0;
4535         else
4536                 owner = 1;
4537         BTRFS_I(inode)->block_group =
4538                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4539
4540         key[0].objectid = objectid;
4541         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4542         key[0].offset = 0;
4543
4544         key[1].objectid = objectid;
4545         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4546         key[1].offset = ref_objectid;
4547
4548         sizes[0] = sizeof(struct btrfs_inode_item);
4549         sizes[1] = name_len + sizeof(*ref);
4550
4551         path->leave_spinning = 1;
4552         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4553         if (ret != 0)
4554                 goto fail;
4555
4556         inode_init_owner(inode, dir, mode);
4557         inode->i_ino = objectid;
4558         inode_set_bytes(inode, 0);
4559         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4560         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4561                                   struct btrfs_inode_item);
4562         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4563
4564         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4565                              struct btrfs_inode_ref);
4566         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4567         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4568         ptr = (unsigned long)(ref + 1);
4569         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4570
4571         btrfs_mark_buffer_dirty(path->nodes[0]);
4572         btrfs_free_path(path);
4573
4574         location = &BTRFS_I(inode)->location;
4575         location->objectid = objectid;
4576         location->offset = 0;
4577         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4578
4579         btrfs_inherit_iflags(inode, dir);
4580
4581         if ((mode & S_IFREG)) {
4582                 if (btrfs_test_opt(root, NODATASUM))
4583                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4584                 if (btrfs_test_opt(root, NODATACOW))
4585                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4586         }
4587
4588         insert_inode_hash(inode);
4589         inode_tree_add(inode);
4590         return inode;
4591 fail:
4592         if (dir)
4593                 BTRFS_I(dir)->index_cnt--;
4594         btrfs_free_path(path);
4595         iput(inode);
4596         return ERR_PTR(ret);
4597 }
4598
4599 static inline u8 btrfs_inode_type(struct inode *inode)
4600 {
4601         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4602 }
4603
4604 /*
4605  * utility function to add 'inode' into 'parent_inode' with
4606  * a give name and a given sequence number.
4607  * if 'add_backref' is true, also insert a backref from the
4608  * inode to the parent directory.
4609  */
4610 int btrfs_add_link(struct btrfs_trans_handle *trans,
4611                    struct inode *parent_inode, struct inode *inode,
4612                    const char *name, int name_len, int add_backref, u64 index)
4613 {
4614         int ret = 0;
4615         struct btrfs_key key;
4616         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4617
4618         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4619                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4620         } else {
4621                 key.objectid = inode->i_ino;
4622                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4623                 key.offset = 0;
4624         }
4625
4626         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4627                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4628                                          key.objectid, root->root_key.objectid,
4629                                          parent_inode->i_ino,
4630                                          index, name, name_len);
4631         } else if (add_backref) {
4632                 ret = btrfs_insert_inode_ref(trans, root,
4633                                              name, name_len, inode->i_ino,
4634                                              parent_inode->i_ino, index);
4635         }
4636
4637         if (ret == 0) {
4638                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4639                                             parent_inode->i_ino, &key,
4640                                             btrfs_inode_type(inode), index);
4641                 BUG_ON(ret);
4642
4643                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4644                                    name_len * 2);
4645                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4646                 ret = btrfs_update_inode(trans, root, parent_inode);
4647         }
4648         return ret;
4649 }
4650
4651 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4652                             struct inode *dir, struct dentry *dentry,
4653                             struct inode *inode, int backref, u64 index)
4654 {
4655         int err = btrfs_add_link(trans, dir, inode,
4656                                  dentry->d_name.name, dentry->d_name.len,
4657                                  backref, index);
4658         if (!err) {
4659                 d_instantiate(dentry, inode);
4660                 return 0;
4661         }
4662         if (err > 0)
4663                 err = -EEXIST;
4664         return err;
4665 }
4666
4667 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4668                         int mode, dev_t rdev)
4669 {
4670         struct btrfs_trans_handle *trans;
4671         struct btrfs_root *root = BTRFS_I(dir)->root;
4672         struct inode *inode = NULL;
4673         int err;
4674         int drop_inode = 0;
4675         u64 objectid;
4676         unsigned long nr = 0;
4677         u64 index = 0;
4678
4679         if (!new_valid_dev(rdev))
4680                 return -EINVAL;
4681
4682         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4683         if (err)
4684                 return err;
4685
4686         /*
4687          * 2 for inode item and ref
4688          * 2 for dir items
4689          * 1 for xattr if selinux is on
4690          */
4691         trans = btrfs_start_transaction(root, 5);
4692         if (IS_ERR(trans))
4693                 return PTR_ERR(trans);
4694
4695         btrfs_set_trans_block_group(trans, dir);
4696
4697         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4698                                 dentry->d_name.len, dir->i_ino, objectid,
4699                                 BTRFS_I(dir)->block_group, mode, &index);
4700         err = PTR_ERR(inode);
4701         if (IS_ERR(inode))
4702                 goto out_unlock;
4703
4704         err = btrfs_init_inode_security(trans, inode, dir);
4705         if (err) {
4706                 drop_inode = 1;
4707                 goto out_unlock;
4708         }
4709
4710         btrfs_set_trans_block_group(trans, inode);
4711         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4712         if (err)
4713                 drop_inode = 1;
4714         else {
4715                 inode->i_op = &btrfs_special_inode_operations;
4716                 init_special_inode(inode, inode->i_mode, rdev);
4717                 btrfs_update_inode(trans, root, inode);
4718         }
4719         btrfs_update_inode_block_group(trans, inode);
4720         btrfs_update_inode_block_group(trans, dir);
4721 out_unlock:
4722         nr = trans->blocks_used;
4723         btrfs_end_transaction_throttle(trans, root);
4724         btrfs_btree_balance_dirty(root, nr);
4725         if (drop_inode) {
4726                 inode_dec_link_count(inode);
4727                 iput(inode);
4728         }
4729         return err;
4730 }
4731
4732 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4733                         int mode, struct nameidata *nd)
4734 {
4735         struct btrfs_trans_handle *trans;
4736         struct btrfs_root *root = BTRFS_I(dir)->root;
4737         struct inode *inode = NULL;
4738         int drop_inode = 0;
4739         int err;
4740         unsigned long nr = 0;
4741         u64 objectid;
4742         u64 index = 0;
4743
4744         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4745         if (err)
4746                 return err;
4747         /*
4748          * 2 for inode item and ref
4749          * 2 for dir items
4750          * 1 for xattr if selinux is on
4751          */
4752         trans = btrfs_start_transaction(root, 5);
4753         if (IS_ERR(trans))
4754                 return PTR_ERR(trans);
4755
4756         btrfs_set_trans_block_group(trans, dir);
4757
4758         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4759                                 dentry->d_name.len, dir->i_ino, objectid,
4760                                 BTRFS_I(dir)->block_group, mode, &index);
4761         err = PTR_ERR(inode);
4762         if (IS_ERR(inode))
4763                 goto out_unlock;
4764
4765         err = btrfs_init_inode_security(trans, inode, dir);
4766         if (err) {
4767                 drop_inode = 1;
4768                 goto out_unlock;
4769         }
4770
4771         btrfs_set_trans_block_group(trans, inode);
4772         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4773         if (err)
4774                 drop_inode = 1;
4775         else {
4776                 inode->i_mapping->a_ops = &btrfs_aops;
4777                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4778                 inode->i_fop = &btrfs_file_operations;
4779                 inode->i_op = &btrfs_file_inode_operations;
4780                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4781         }
4782         btrfs_update_inode_block_group(trans, inode);
4783         btrfs_update_inode_block_group(trans, dir);
4784 out_unlock:
4785         nr = trans->blocks_used;
4786         btrfs_end_transaction_throttle(trans, root);
4787         if (drop_inode) {
4788                 inode_dec_link_count(inode);
4789                 iput(inode);
4790         }
4791         btrfs_btree_balance_dirty(root, nr);
4792         return err;
4793 }
4794
4795 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4796                       struct dentry *dentry)
4797 {
4798         struct btrfs_trans_handle *trans;
4799         struct btrfs_root *root = BTRFS_I(dir)->root;
4800         struct inode *inode = old_dentry->d_inode;
4801         u64 index;
4802         unsigned long nr = 0;
4803         int err;
4804         int drop_inode = 0;
4805
4806         if (inode->i_nlink == 0)
4807                 return -ENOENT;
4808
4809         /* do not allow sys_link's with other subvols of the same device */
4810         if (root->objectid != BTRFS_I(inode)->root->objectid)
4811                 return -EPERM;
4812
4813         btrfs_inc_nlink(inode);
4814         inode->i_ctime = CURRENT_TIME;
4815
4816         err = btrfs_set_inode_index(dir, &index);
4817         if (err)
4818                 goto fail;
4819
4820         /*
4821          * 1 item for inode ref
4822          * 2 items for dir items
4823          */
4824         trans = btrfs_start_transaction(root, 3);
4825         if (IS_ERR(trans)) {
4826                 err = PTR_ERR(trans);
4827                 goto fail;
4828         }
4829
4830         btrfs_set_trans_block_group(trans, dir);
4831         ihold(inode);
4832
4833         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4834
4835         if (err) {
4836                 drop_inode = 1;
4837         } else {
4838                 struct dentry *parent = dget_parent(dentry);
4839                 btrfs_update_inode_block_group(trans, dir);
4840                 err = btrfs_update_inode(trans, root, inode);
4841                 BUG_ON(err);
4842                 btrfs_log_new_name(trans, inode, NULL, parent);
4843                 dput(parent);
4844         }
4845
4846         nr = trans->blocks_used;
4847         btrfs_end_transaction_throttle(trans, root);
4848 fail:
4849         if (drop_inode) {
4850                 inode_dec_link_count(inode);
4851                 iput(inode);
4852         }
4853         btrfs_btree_balance_dirty(root, nr);
4854         return err;
4855 }
4856
4857 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4858 {
4859         struct inode *inode = NULL;
4860         struct btrfs_trans_handle *trans;
4861         struct btrfs_root *root = BTRFS_I(dir)->root;
4862         int err = 0;
4863         int drop_on_err = 0;
4864         u64 objectid = 0;
4865         u64 index = 0;
4866         unsigned long nr = 1;
4867
4868         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4869         if (err)
4870                 return err;
4871
4872         /*
4873          * 2 items for inode and ref
4874          * 2 items for dir items
4875          * 1 for xattr if selinux is on
4876          */
4877         trans = btrfs_start_transaction(root, 5);
4878         if (IS_ERR(trans))
4879                 return PTR_ERR(trans);
4880         btrfs_set_trans_block_group(trans, dir);
4881
4882         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4883                                 dentry->d_name.len, dir->i_ino, objectid,
4884                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4885                                 &index);
4886         if (IS_ERR(inode)) {
4887                 err = PTR_ERR(inode);
4888                 goto out_fail;
4889         }
4890
4891         drop_on_err = 1;
4892
4893         err = btrfs_init_inode_security(trans, inode, dir);
4894         if (err)
4895                 goto out_fail;
4896
4897         inode->i_op = &btrfs_dir_inode_operations;
4898         inode->i_fop = &btrfs_dir_file_operations;
4899         btrfs_set_trans_block_group(trans, inode);
4900
4901         btrfs_i_size_write(inode, 0);
4902         err = btrfs_update_inode(trans, root, inode);
4903         if (err)
4904                 goto out_fail;
4905
4906         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4907                              dentry->d_name.len, 0, index);
4908         if (err)
4909                 goto out_fail;
4910
4911         d_instantiate(dentry, inode);
4912         drop_on_err = 0;
4913         btrfs_update_inode_block_group(trans, inode);
4914         btrfs_update_inode_block_group(trans, dir);
4915
4916 out_fail:
4917         nr = trans->blocks_used;
4918         btrfs_end_transaction_throttle(trans, root);
4919         if (drop_on_err)
4920                 iput(inode);
4921         btrfs_btree_balance_dirty(root, nr);
4922         return err;
4923 }
4924
4925 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4926  * and an extent that you want to insert, deal with overlap and insert
4927  * the new extent into the tree.
4928  */
4929 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4930                                 struct extent_map *existing,
4931                                 struct extent_map *em,
4932                                 u64 map_start, u64 map_len)
4933 {
4934         u64 start_diff;
4935
4936         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4937         start_diff = map_start - em->start;
4938         em->start = map_start;
4939         em->len = map_len;
4940         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4941             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4942                 em->block_start += start_diff;
4943                 em->block_len -= start_diff;
4944         }
4945         return add_extent_mapping(em_tree, em);
4946 }
4947
4948 static noinline int uncompress_inline(struct btrfs_path *path,
4949                                       struct inode *inode, struct page *page,
4950                                       size_t pg_offset, u64 extent_offset,
4951                                       struct btrfs_file_extent_item *item)
4952 {
4953         int ret;
4954         struct extent_buffer *leaf = path->nodes[0];
4955         char *tmp;
4956         size_t max_size;
4957         unsigned long inline_size;
4958         unsigned long ptr;
4959         int compress_type;
4960
4961         WARN_ON(pg_offset != 0);
4962         compress_type = btrfs_file_extent_compression(leaf, item);
4963         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4964         inline_size = btrfs_file_extent_inline_item_len(leaf,
4965                                         btrfs_item_nr(leaf, path->slots[0]));
4966         tmp = kmalloc(inline_size, GFP_NOFS);
4967         ptr = btrfs_file_extent_inline_start(item);
4968
4969         read_extent_buffer(leaf, tmp, ptr, inline_size);
4970
4971         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4972         ret = btrfs_decompress(compress_type, tmp, page,
4973                                extent_offset, inline_size, max_size);
4974         if (ret) {
4975                 char *kaddr = kmap_atomic(page, KM_USER0);
4976                 unsigned long copy_size = min_t(u64,
4977                                   PAGE_CACHE_SIZE - pg_offset,
4978                                   max_size - extent_offset);
4979                 memset(kaddr + pg_offset, 0, copy_size);
4980                 kunmap_atomic(kaddr, KM_USER0);
4981         }
4982         kfree(tmp);
4983         return 0;
4984 }
4985
4986 /*
4987  * a bit scary, this does extent mapping from logical file offset to the disk.
4988  * the ugly parts come from merging extents from the disk with the in-ram
4989  * representation.  This gets more complex because of the data=ordered code,
4990  * where the in-ram extents might be locked pending data=ordered completion.
4991  *
4992  * This also copies inline extents directly into the page.
4993  */
4994
4995 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4996                                     size_t pg_offset, u64 start, u64 len,
4997                                     int create)
4998 {
4999         int ret;
5000         int err = 0;
5001         u64 bytenr;
5002         u64 extent_start = 0;
5003         u64 extent_end = 0;
5004         u64 objectid = inode->i_ino;
5005         u32 found_type;
5006         struct btrfs_path *path = NULL;
5007         struct btrfs_root *root = BTRFS_I(inode)->root;
5008         struct btrfs_file_extent_item *item;
5009         struct extent_buffer *leaf;
5010         struct btrfs_key found_key;
5011         struct extent_map *em = NULL;
5012         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5013         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5014         struct btrfs_trans_handle *trans = NULL;
5015         int compress_type;
5016
5017 again:
5018         read_lock(&em_tree->lock);
5019         em = lookup_extent_mapping(em_tree, start, len);
5020         if (em)
5021                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5022         read_unlock(&em_tree->lock);
5023
5024         if (em) {
5025                 if (em->start > start || em->start + em->len <= start)
5026                         free_extent_map(em);
5027                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5028                         free_extent_map(em);
5029                 else
5030                         goto out;
5031         }
5032         em = alloc_extent_map(GFP_NOFS);
5033         if (!em) {
5034                 err = -ENOMEM;
5035                 goto out;
5036         }
5037         em->bdev = root->fs_info->fs_devices->latest_bdev;
5038         em->start = EXTENT_MAP_HOLE;
5039         em->orig_start = EXTENT_MAP_HOLE;
5040         em->len = (u64)-1;
5041         em->block_len = (u64)-1;
5042
5043         if (!path) {
5044                 path = btrfs_alloc_path();
5045                 BUG_ON(!path);
5046         }
5047
5048         ret = btrfs_lookup_file_extent(trans, root, path,
5049                                        objectid, start, trans != NULL);
5050         if (ret < 0) {
5051                 err = ret;
5052                 goto out;
5053         }
5054
5055         if (ret != 0) {
5056                 if (path->slots[0] == 0)
5057                         goto not_found;
5058                 path->slots[0]--;
5059         }
5060
5061         leaf = path->nodes[0];
5062         item = btrfs_item_ptr(leaf, path->slots[0],
5063                               struct btrfs_file_extent_item);
5064         /* are we inside the extent that was found? */
5065         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5066         found_type = btrfs_key_type(&found_key);
5067         if (found_key.objectid != objectid ||
5068             found_type != BTRFS_EXTENT_DATA_KEY) {
5069                 goto not_found;
5070         }
5071
5072         found_type = btrfs_file_extent_type(leaf, item);
5073         extent_start = found_key.offset;
5074         compress_type = btrfs_file_extent_compression(leaf, item);
5075         if (found_type == BTRFS_FILE_EXTENT_REG ||
5076             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5077                 extent_end = extent_start +
5078                        btrfs_file_extent_num_bytes(leaf, item);
5079         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5080                 size_t size;
5081                 size = btrfs_file_extent_inline_len(leaf, item);
5082                 extent_end = (extent_start + size + root->sectorsize - 1) &
5083                         ~((u64)root->sectorsize - 1);
5084         }
5085
5086         if (start >= extent_end) {
5087                 path->slots[0]++;
5088                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5089                         ret = btrfs_next_leaf(root, path);
5090                         if (ret < 0) {
5091                                 err = ret;
5092                                 goto out;
5093                         }
5094                         if (ret > 0)
5095                                 goto not_found;
5096                         leaf = path->nodes[0];
5097                 }
5098                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5099                 if (found_key.objectid != objectid ||
5100                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5101                         goto not_found;
5102                 if (start + len <= found_key.offset)
5103                         goto not_found;
5104                 em->start = start;
5105                 em->len = found_key.offset - start;
5106                 goto not_found_em;
5107         }
5108
5109         if (found_type == BTRFS_FILE_EXTENT_REG ||
5110             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5111                 em->start = extent_start;
5112                 em->len = extent_end - extent_start;
5113                 em->orig_start = extent_start -
5114                                  btrfs_file_extent_offset(leaf, item);
5115                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5116                 if (bytenr == 0) {
5117                         em->block_start = EXTENT_MAP_HOLE;
5118                         goto insert;
5119                 }
5120                 if (compress_type != BTRFS_COMPRESS_NONE) {
5121                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5122                         em->compress_type = compress_type;
5123                         em->block_start = bytenr;
5124                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5125                                                                          item);
5126                 } else {
5127                         bytenr += btrfs_file_extent_offset(leaf, item);
5128                         em->block_start = bytenr;
5129                         em->block_len = em->len;
5130                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5131                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5132                 }
5133                 goto insert;
5134         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5135                 unsigned long ptr;
5136                 char *map;
5137                 size_t size;
5138                 size_t extent_offset;
5139                 size_t copy_size;
5140
5141                 em->block_start = EXTENT_MAP_INLINE;
5142                 if (!page || create) {
5143                         em->start = extent_start;
5144                         em->len = extent_end - extent_start;
5145                         goto out;
5146                 }
5147
5148                 size = btrfs_file_extent_inline_len(leaf, item);
5149                 extent_offset = page_offset(page) + pg_offset - extent_start;
5150                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5151                                 size - extent_offset);
5152                 em->start = extent_start + extent_offset;
5153                 em->len = (copy_size + root->sectorsize - 1) &
5154                         ~((u64)root->sectorsize - 1);
5155                 em->orig_start = EXTENT_MAP_INLINE;
5156                 if (compress_type) {
5157                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5158                         em->compress_type = compress_type;
5159                 }
5160                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5161                 if (create == 0 && !PageUptodate(page)) {
5162                         if (btrfs_file_extent_compression(leaf, item) !=
5163                             BTRFS_COMPRESS_NONE) {
5164                                 ret = uncompress_inline(path, inode, page,
5165                                                         pg_offset,
5166                                                         extent_offset, item);
5167                                 BUG_ON(ret);
5168                         } else {
5169                                 map = kmap(page);
5170                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5171                                                    copy_size);
5172                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5173                                         memset(map + pg_offset + copy_size, 0,
5174                                                PAGE_CACHE_SIZE - pg_offset -
5175                                                copy_size);
5176                                 }
5177                                 kunmap(page);
5178                         }
5179                         flush_dcache_page(page);
5180                 } else if (create && PageUptodate(page)) {
5181                         WARN_ON(1);
5182                         if (!trans) {
5183                                 kunmap(page);
5184                                 free_extent_map(em);
5185                                 em = NULL;
5186                                 btrfs_release_path(root, path);
5187                                 trans = btrfs_join_transaction(root, 1);
5188                                 if (IS_ERR(trans))
5189                                         return ERR_CAST(trans);
5190                                 goto again;
5191                         }
5192                         map = kmap(page);
5193                         write_extent_buffer(leaf, map + pg_offset, ptr,
5194                                             copy_size);
5195                         kunmap(page);
5196                         btrfs_mark_buffer_dirty(leaf);
5197                 }
5198                 set_extent_uptodate(io_tree, em->start,
5199                                     extent_map_end(em) - 1, GFP_NOFS);
5200                 goto insert;
5201         } else {
5202                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5203                 WARN_ON(1);
5204         }
5205 not_found:
5206         em->start = start;
5207         em->len = len;
5208 not_found_em:
5209         em->block_start = EXTENT_MAP_HOLE;
5210         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5211 insert:
5212         btrfs_release_path(root, path);
5213         if (em->start > start || extent_map_end(em) <= start) {
5214                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5215                        "[%llu %llu]\n", (unsigned long long)em->start,
5216                        (unsigned long long)em->len,
5217                        (unsigned long long)start,
5218                        (unsigned long long)len);
5219                 err = -EIO;
5220                 goto out;
5221         }
5222
5223         err = 0;
5224         write_lock(&em_tree->lock);
5225         ret = add_extent_mapping(em_tree, em);
5226         /* it is possible that someone inserted the extent into the tree
5227          * while we had the lock dropped.  It is also possible that
5228          * an overlapping map exists in the tree
5229          */
5230         if (ret == -EEXIST) {
5231                 struct extent_map *existing;
5232
5233                 ret = 0;
5234
5235                 existing = lookup_extent_mapping(em_tree, start, len);
5236                 if (existing && (existing->start > start ||
5237                     existing->start + existing->len <= start)) {
5238                         free_extent_map(existing);
5239                         existing = NULL;
5240                 }
5241                 if (!existing) {
5242                         existing = lookup_extent_mapping(em_tree, em->start,
5243                                                          em->len);
5244                         if (existing) {
5245                                 err = merge_extent_mapping(em_tree, existing,
5246                                                            em, start,
5247                                                            root->sectorsize);
5248                                 free_extent_map(existing);
5249                                 if (err) {
5250                                         free_extent_map(em);
5251                                         em = NULL;
5252                                 }
5253                         } else {
5254                                 err = -EIO;
5255                                 free_extent_map(em);
5256                                 em = NULL;
5257                         }
5258                 } else {
5259                         free_extent_map(em);
5260                         em = existing;
5261                         err = 0;
5262                 }
5263         }
5264         write_unlock(&em_tree->lock);
5265 out:
5266         if (path)
5267                 btrfs_free_path(path);
5268         if (trans) {
5269                 ret = btrfs_end_transaction(trans, root);
5270                 if (!err)
5271                         err = ret;
5272         }
5273         if (err) {
5274                 free_extent_map(em);
5275                 return ERR_PTR(err);
5276         }
5277         return em;
5278 }
5279
5280 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5281                                                   u64 start, u64 len)
5282 {
5283         struct btrfs_root *root = BTRFS_I(inode)->root;
5284         struct btrfs_trans_handle *trans;
5285         struct extent_map *em;
5286         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5287         struct btrfs_key ins;
5288         u64 alloc_hint;
5289         int ret;
5290
5291         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5292
5293         trans = btrfs_join_transaction(root, 0);
5294         if (IS_ERR(trans))
5295                 return ERR_CAST(trans);
5296
5297         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5298
5299         alloc_hint = get_extent_allocation_hint(inode, start, len);
5300         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5301                                    alloc_hint, (u64)-1, &ins, 1);
5302         if (ret) {
5303                 em = ERR_PTR(ret);
5304                 goto out;
5305         }
5306
5307         em = alloc_extent_map(GFP_NOFS);
5308         if (!em) {
5309                 em = ERR_PTR(-ENOMEM);
5310                 goto out;
5311         }
5312
5313         em->start = start;
5314         em->orig_start = em->start;
5315         em->len = ins.offset;
5316
5317         em->block_start = ins.objectid;
5318         em->block_len = ins.offset;
5319         em->bdev = root->fs_info->fs_devices->latest_bdev;
5320         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5321
5322         while (1) {
5323                 write_lock(&em_tree->lock);
5324                 ret = add_extent_mapping(em_tree, em);
5325                 write_unlock(&em_tree->lock);
5326                 if (ret != -EEXIST)
5327                         break;
5328                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5329         }
5330
5331         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5332                                            ins.offset, ins.offset, 0);
5333         if (ret) {
5334                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5335                 em = ERR_PTR(ret);
5336         }
5337 out:
5338         btrfs_end_transaction(trans, root);
5339         return em;
5340 }
5341
5342 /*
5343  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5344  * block must be cow'd
5345  */
5346 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5347                                       struct inode *inode, u64 offset, u64 len)
5348 {
5349         struct btrfs_path *path;
5350         int ret;
5351         struct extent_buffer *leaf;
5352         struct btrfs_root *root = BTRFS_I(inode)->root;
5353         struct btrfs_file_extent_item *fi;
5354         struct btrfs_key key;
5355         u64 disk_bytenr;
5356         u64 backref_offset;
5357         u64 extent_end;
5358         u64 num_bytes;
5359         int slot;
5360         int found_type;
5361
5362         path = btrfs_alloc_path();
5363         if (!path)
5364                 return -ENOMEM;
5365
5366         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5367                                        offset, 0);
5368         if (ret < 0)
5369                 goto out;
5370
5371         slot = path->slots[0];
5372         if (ret == 1) {
5373                 if (slot == 0) {
5374                         /* can't find the item, must cow */
5375                         ret = 0;
5376                         goto out;
5377                 }
5378                 slot--;
5379         }
5380         ret = 0;
5381         leaf = path->nodes[0];
5382         btrfs_item_key_to_cpu(leaf, &key, slot);
5383         if (key.objectid != inode->i_ino ||
5384             key.type != BTRFS_EXTENT_DATA_KEY) {
5385                 /* not our file or wrong item type, must cow */
5386                 goto out;
5387         }
5388
5389         if (key.offset > offset) {
5390                 /* Wrong offset, must cow */
5391                 goto out;
5392         }
5393
5394         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5395         found_type = btrfs_file_extent_type(leaf, fi);
5396         if (found_type != BTRFS_FILE_EXTENT_REG &&
5397             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5398                 /* not a regular extent, must cow */
5399                 goto out;
5400         }
5401         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5402         backref_offset = btrfs_file_extent_offset(leaf, fi);
5403
5404         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5405         if (extent_end < offset + len) {
5406                 /* extent doesn't include our full range, must cow */
5407                 goto out;
5408         }
5409
5410         if (btrfs_extent_readonly(root, disk_bytenr))
5411                 goto out;
5412
5413         /*
5414          * look for other files referencing this extent, if we
5415          * find any we must cow
5416          */
5417         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5418                                   key.offset - backref_offset, disk_bytenr))
5419                 goto out;
5420
5421         /*
5422          * adjust disk_bytenr and num_bytes to cover just the bytes
5423          * in this extent we are about to write.  If there
5424          * are any csums in that range we have to cow in order
5425          * to keep the csums correct
5426          */
5427         disk_bytenr += backref_offset;
5428         disk_bytenr += offset - key.offset;
5429         num_bytes = min(offset + len, extent_end) - offset;
5430         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5431                                 goto out;
5432         /*
5433          * all of the above have passed, it is safe to overwrite this extent
5434          * without cow
5435          */
5436         ret = 1;
5437 out:
5438         btrfs_free_path(path);
5439         return ret;
5440 }
5441
5442 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5443                                    struct buffer_head *bh_result, int create)
5444 {
5445         struct extent_map *em;
5446         struct btrfs_root *root = BTRFS_I(inode)->root;
5447         u64 start = iblock << inode->i_blkbits;
5448         u64 len = bh_result->b_size;
5449         struct btrfs_trans_handle *trans;
5450
5451         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5452         if (IS_ERR(em))
5453                 return PTR_ERR(em);
5454
5455         /*
5456          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5457          * io.  INLINE is special, and we could probably kludge it in here, but
5458          * it's still buffered so for safety lets just fall back to the generic
5459          * buffered path.
5460          *
5461          * For COMPRESSED we _have_ to read the entire extent in so we can
5462          * decompress it, so there will be buffering required no matter what we
5463          * do, so go ahead and fallback to buffered.
5464          *
5465          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5466          * to buffered IO.  Don't blame me, this is the price we pay for using
5467          * the generic code.
5468          */
5469         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5470             em->block_start == EXTENT_MAP_INLINE) {
5471                 free_extent_map(em);
5472                 return -ENOTBLK;
5473         }
5474
5475         /* Just a good old fashioned hole, return */
5476         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5477                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5478                 free_extent_map(em);
5479                 /* DIO will do one hole at a time, so just unlock a sector */
5480                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5481                               start + root->sectorsize - 1, GFP_NOFS);
5482                 return 0;
5483         }
5484
5485         /*
5486          * We don't allocate a new extent in the following cases
5487          *
5488          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5489          * existing extent.
5490          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5491          * just use the extent.
5492          *
5493          */
5494         if (!create) {
5495                 len = em->len - (start - em->start);
5496                 goto map;
5497         }
5498
5499         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5500             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5501              em->block_start != EXTENT_MAP_HOLE)) {
5502                 int type;
5503                 int ret;
5504                 u64 block_start;
5505
5506                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5507                         type = BTRFS_ORDERED_PREALLOC;
5508                 else
5509                         type = BTRFS_ORDERED_NOCOW;
5510                 len = min(len, em->len - (start - em->start));
5511                 block_start = em->block_start + (start - em->start);
5512
5513                 /*
5514                  * we're not going to log anything, but we do need
5515                  * to make sure the current transaction stays open
5516                  * while we look for nocow cross refs
5517                  */
5518                 trans = btrfs_join_transaction(root, 0);
5519                 if (IS_ERR(trans))
5520                         goto must_cow;
5521
5522                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5523                         ret = btrfs_add_ordered_extent_dio(inode, start,
5524                                            block_start, len, len, type);
5525                         btrfs_end_transaction(trans, root);
5526                         if (ret) {
5527                                 free_extent_map(em);
5528                                 return ret;
5529                         }
5530                         goto unlock;
5531                 }
5532                 btrfs_end_transaction(trans, root);
5533         }
5534 must_cow:
5535         /*
5536          * this will cow the extent, reset the len in case we changed
5537          * it above
5538          */
5539         len = bh_result->b_size;
5540         free_extent_map(em);
5541         em = btrfs_new_extent_direct(inode, start, len);
5542         if (IS_ERR(em))
5543                 return PTR_ERR(em);
5544         len = min(len, em->len - (start - em->start));
5545 unlock:
5546         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5547                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5548                           0, NULL, GFP_NOFS);
5549 map:
5550         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5551                 inode->i_blkbits;
5552         bh_result->b_size = len;
5553         bh_result->b_bdev = em->bdev;
5554         set_buffer_mapped(bh_result);
5555         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5556                 set_buffer_new(bh_result);
5557
5558         free_extent_map(em);
5559
5560         return 0;
5561 }
5562
5563 struct btrfs_dio_private {
5564         struct inode *inode;
5565         u64 logical_offset;
5566         u64 disk_bytenr;
5567         u64 bytes;
5568         u32 *csums;
5569         void *private;
5570
5571         /* number of bios pending for this dio */
5572         atomic_t pending_bios;
5573
5574         /* IO errors */
5575         int errors;
5576
5577         struct bio *orig_bio;
5578 };
5579
5580 static void btrfs_endio_direct_read(struct bio *bio, int err)
5581 {
5582         struct btrfs_dio_private *dip = bio->bi_private;
5583         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5584         struct bio_vec *bvec = bio->bi_io_vec;
5585         struct inode *inode = dip->inode;
5586         struct btrfs_root *root = BTRFS_I(inode)->root;
5587         u64 start;
5588         u32 *private = dip->csums;
5589
5590         start = dip->logical_offset;
5591         do {
5592                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5593                         struct page *page = bvec->bv_page;
5594                         char *kaddr;
5595                         u32 csum = ~(u32)0;
5596                         unsigned long flags;
5597
5598                         local_irq_save(flags);
5599                         kaddr = kmap_atomic(page, KM_IRQ0);
5600                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5601                                                csum, bvec->bv_len);
5602                         btrfs_csum_final(csum, (char *)&csum);
5603                         kunmap_atomic(kaddr, KM_IRQ0);
5604                         local_irq_restore(flags);
5605
5606                         flush_dcache_page(bvec->bv_page);
5607                         if (csum != *private) {
5608                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5609                                       " %llu csum %u private %u\n",
5610                                       inode->i_ino, (unsigned long long)start,
5611                                       csum, *private);
5612                                 err = -EIO;
5613                         }
5614                 }
5615
5616                 start += bvec->bv_len;
5617                 private++;
5618                 bvec++;
5619         } while (bvec <= bvec_end);
5620
5621         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5622                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5623         bio->bi_private = dip->private;
5624
5625         kfree(dip->csums);
5626         kfree(dip);
5627         dio_end_io(bio, err);
5628 }
5629
5630 static void btrfs_endio_direct_write(struct bio *bio, int err)
5631 {
5632         struct btrfs_dio_private *dip = bio->bi_private;
5633         struct inode *inode = dip->inode;
5634         struct btrfs_root *root = BTRFS_I(inode)->root;
5635         struct btrfs_trans_handle *trans;
5636         struct btrfs_ordered_extent *ordered = NULL;
5637         struct extent_state *cached_state = NULL;
5638         u64 ordered_offset = dip->logical_offset;
5639         u64 ordered_bytes = dip->bytes;
5640         int ret;
5641
5642         if (err)
5643                 goto out_done;
5644 again:
5645         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5646                                                    &ordered_offset,
5647                                                    ordered_bytes);
5648         if (!ret)
5649                 goto out_test;
5650
5651         BUG_ON(!ordered);
5652
5653         trans = btrfs_join_transaction(root, 1);
5654         if (IS_ERR(trans)) {
5655                 err = -ENOMEM;
5656                 goto out;
5657         }
5658         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5659
5660         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5661                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5662                 if (!ret)
5663                         ret = btrfs_update_inode(trans, root, inode);
5664                 err = ret;
5665                 goto out;
5666         }
5667
5668         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5669                          ordered->file_offset + ordered->len - 1, 0,
5670                          &cached_state, GFP_NOFS);
5671
5672         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5673                 ret = btrfs_mark_extent_written(trans, inode,
5674                                                 ordered->file_offset,
5675                                                 ordered->file_offset +
5676                                                 ordered->len);
5677                 if (ret) {
5678                         err = ret;
5679                         goto out_unlock;
5680                 }
5681         } else {
5682                 ret = insert_reserved_file_extent(trans, inode,
5683                                                   ordered->file_offset,
5684                                                   ordered->start,
5685                                                   ordered->disk_len,
5686                                                   ordered->len,
5687                                                   ordered->len,
5688                                                   0, 0, 0,
5689                                                   BTRFS_FILE_EXTENT_REG);
5690                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5691                                    ordered->file_offset, ordered->len);
5692                 if (ret) {
5693                         err = ret;
5694                         WARN_ON(1);
5695                         goto out_unlock;
5696                 }
5697         }
5698
5699         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5700         btrfs_ordered_update_i_size(inode, 0, ordered);
5701         btrfs_update_inode(trans, root, inode);
5702 out_unlock:
5703         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5704                              ordered->file_offset + ordered->len - 1,
5705                              &cached_state, GFP_NOFS);
5706 out:
5707         btrfs_delalloc_release_metadata(inode, ordered->len);
5708         btrfs_end_transaction(trans, root);
5709         ordered_offset = ordered->file_offset + ordered->len;
5710         btrfs_put_ordered_extent(ordered);
5711         btrfs_put_ordered_extent(ordered);
5712
5713 out_test:
5714         /*
5715          * our bio might span multiple ordered extents.  If we haven't
5716          * completed the accounting for the whole dio, go back and try again
5717          */
5718         if (ordered_offset < dip->logical_offset + dip->bytes) {
5719                 ordered_bytes = dip->logical_offset + dip->bytes -
5720                         ordered_offset;
5721                 goto again;
5722         }
5723 out_done:
5724         bio->bi_private = dip->private;
5725
5726         kfree(dip->csums);
5727         kfree(dip);
5728         dio_end_io(bio, err);
5729 }
5730
5731 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5732                                     struct bio *bio, int mirror_num,
5733                                     unsigned long bio_flags, u64 offset)
5734 {
5735         int ret;
5736         struct btrfs_root *root = BTRFS_I(inode)->root;
5737         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5738         BUG_ON(ret);
5739         return 0;
5740 }
5741
5742 static void btrfs_end_dio_bio(struct bio *bio, int err)
5743 {
5744         struct btrfs_dio_private *dip = bio->bi_private;
5745
5746         if (err) {
5747                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5748                       "sector %#Lx len %u err no %d\n",
5749                       dip->inode->i_ino, bio->bi_rw,
5750                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5751                 dip->errors = 1;
5752
5753                 /*
5754                  * before atomic variable goto zero, we must make sure
5755                  * dip->errors is perceived to be set.
5756                  */
5757                 smp_mb__before_atomic_dec();
5758         }
5759
5760         /* if there are more bios still pending for this dio, just exit */
5761         if (!atomic_dec_and_test(&dip->pending_bios))
5762                 goto out;
5763
5764         if (dip->errors)
5765                 bio_io_error(dip->orig_bio);
5766         else {
5767                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5768                 bio_endio(dip->orig_bio, 0);
5769         }
5770 out:
5771         bio_put(bio);
5772 }
5773
5774 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5775                                        u64 first_sector, gfp_t gfp_flags)
5776 {
5777         int nr_vecs = bio_get_nr_vecs(bdev);
5778         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5779 }
5780
5781 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5782                                          int rw, u64 file_offset, int skip_sum,
5783                                          u32 *csums)
5784 {
5785         int write = rw & REQ_WRITE;
5786         struct btrfs_root *root = BTRFS_I(inode)->root;
5787         int ret;
5788
5789         bio_get(bio);
5790         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5791         if (ret)
5792                 goto err;
5793
5794         if (write && !skip_sum) {
5795                 ret = btrfs_wq_submit_bio(root->fs_info,
5796                                    inode, rw, bio, 0, 0,
5797                                    file_offset,
5798                                    __btrfs_submit_bio_start_direct_io,
5799                                    __btrfs_submit_bio_done);
5800                 goto err;
5801         } else if (!skip_sum)
5802                 btrfs_lookup_bio_sums_dio(root, inode, bio,
5803                                           file_offset, csums);
5804
5805         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5806 err:
5807         bio_put(bio);
5808         return ret;
5809 }
5810
5811 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5812                                     int skip_sum)
5813 {
5814         struct inode *inode = dip->inode;
5815         struct btrfs_root *root = BTRFS_I(inode)->root;
5816         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5817         struct bio *bio;
5818         struct bio *orig_bio = dip->orig_bio;
5819         struct bio_vec *bvec = orig_bio->bi_io_vec;
5820         u64 start_sector = orig_bio->bi_sector;
5821         u64 file_offset = dip->logical_offset;
5822         u64 submit_len = 0;
5823         u64 map_length;
5824         int nr_pages = 0;
5825         u32 *csums = dip->csums;
5826         int ret = 0;
5827
5828         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5829         if (!bio)
5830                 return -ENOMEM;
5831         bio->bi_private = dip;
5832         bio->bi_end_io = btrfs_end_dio_bio;
5833         atomic_inc(&dip->pending_bios);
5834
5835         map_length = orig_bio->bi_size;
5836         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5837                               &map_length, NULL, 0);
5838         if (ret) {
5839                 bio_put(bio);
5840                 return -EIO;
5841         }
5842
5843         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5844                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5845                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5846                                  bvec->bv_offset) < bvec->bv_len)) {
5847                         /*
5848                          * inc the count before we submit the bio so
5849                          * we know the end IO handler won't happen before
5850                          * we inc the count. Otherwise, the dip might get freed
5851                          * before we're done setting it up
5852                          */
5853                         atomic_inc(&dip->pending_bios);
5854                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5855                                                      file_offset, skip_sum,
5856                                                      csums);
5857                         if (ret) {
5858                                 bio_put(bio);
5859                                 atomic_dec(&dip->pending_bios);
5860                                 goto out_err;
5861                         }
5862
5863                         if (!skip_sum)
5864                                 csums = csums + nr_pages;
5865                         start_sector += submit_len >> 9;
5866                         file_offset += submit_len;
5867
5868                         submit_len = 0;
5869                         nr_pages = 0;
5870
5871                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5872                                                   start_sector, GFP_NOFS);
5873                         if (!bio)
5874                                 goto out_err;
5875                         bio->bi_private = dip;
5876                         bio->bi_end_io = btrfs_end_dio_bio;
5877
5878                         map_length = orig_bio->bi_size;
5879                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5880                                               &map_length, NULL, 0);
5881                         if (ret) {
5882                                 bio_put(bio);
5883                                 goto out_err;
5884                         }
5885                 } else {
5886                         submit_len += bvec->bv_len;
5887                         nr_pages ++;
5888                         bvec++;
5889                 }
5890         }
5891
5892         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5893                                      csums);
5894         if (!ret)
5895                 return 0;
5896
5897         bio_put(bio);
5898 out_err:
5899         dip->errors = 1;
5900         /*
5901          * before atomic variable goto zero, we must
5902          * make sure dip->errors is perceived to be set.
5903          */
5904         smp_mb__before_atomic_dec();
5905         if (atomic_dec_and_test(&dip->pending_bios))
5906                 bio_io_error(dip->orig_bio);
5907
5908         /* bio_end_io() will handle error, so we needn't return it */
5909         return 0;
5910 }
5911
5912 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5913                                 loff_t file_offset)
5914 {
5915         struct btrfs_root *root = BTRFS_I(inode)->root;
5916         struct btrfs_dio_private *dip;
5917         struct bio_vec *bvec = bio->bi_io_vec;
5918         int skip_sum;
5919         int write = rw & REQ_WRITE;
5920         int ret = 0;
5921
5922         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5923
5924         dip = kmalloc(sizeof(*dip), GFP_NOFS);
5925         if (!dip) {
5926                 ret = -ENOMEM;
5927                 goto free_ordered;
5928         }
5929         dip->csums = NULL;
5930
5931         if (!skip_sum) {
5932                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5933                 if (!dip->csums) {
5934                         ret = -ENOMEM;
5935                         goto free_ordered;
5936                 }
5937         }
5938
5939         dip->private = bio->bi_private;
5940         dip->inode = inode;
5941         dip->logical_offset = file_offset;
5942
5943         dip->bytes = 0;
5944         do {
5945                 dip->bytes += bvec->bv_len;
5946                 bvec++;
5947         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5948
5949         dip->disk_bytenr = (u64)bio->bi_sector << 9;
5950         bio->bi_private = dip;
5951         dip->errors = 0;
5952         dip->orig_bio = bio;
5953         atomic_set(&dip->pending_bios, 0);
5954
5955         if (write)
5956                 bio->bi_end_io = btrfs_endio_direct_write;
5957         else
5958                 bio->bi_end_io = btrfs_endio_direct_read;
5959
5960         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5961         if (!ret)
5962                 return;
5963 free_ordered:
5964         /*
5965          * If this is a write, we need to clean up the reserved space and kill
5966          * the ordered extent.
5967          */
5968         if (write) {
5969                 struct btrfs_ordered_extent *ordered;
5970                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5971                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5972                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5973                         btrfs_free_reserved_extent(root, ordered->start,
5974                                                    ordered->disk_len);
5975                 btrfs_put_ordered_extent(ordered);
5976                 btrfs_put_ordered_extent(ordered);
5977         }
5978         bio_endio(bio, ret);
5979 }
5980
5981 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5982                         const struct iovec *iov, loff_t offset,
5983                         unsigned long nr_segs)
5984 {
5985         int seg;
5986         size_t size;
5987         unsigned long addr;
5988         unsigned blocksize_mask = root->sectorsize - 1;
5989         ssize_t retval = -EINVAL;
5990         loff_t end = offset;
5991
5992         if (offset & blocksize_mask)
5993                 goto out;
5994
5995         /* Check the memory alignment.  Blocks cannot straddle pages */
5996         for (seg = 0; seg < nr_segs; seg++) {
5997                 addr = (unsigned long)iov[seg].iov_base;
5998                 size = iov[seg].iov_len;
5999                 end += size;
6000                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6001                         goto out;
6002         }
6003         retval = 0;
6004 out:
6005         return retval;
6006 }
6007 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6008                         const struct iovec *iov, loff_t offset,
6009                         unsigned long nr_segs)
6010 {
6011         struct file *file = iocb->ki_filp;
6012         struct inode *inode = file->f_mapping->host;
6013         struct btrfs_ordered_extent *ordered;
6014         struct extent_state *cached_state = NULL;
6015         u64 lockstart, lockend;
6016         ssize_t ret;
6017         int writing = rw & WRITE;
6018         int write_bits = 0;
6019         size_t count = iov_length(iov, nr_segs);
6020
6021         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6022                             offset, nr_segs)) {
6023                 return 0;
6024         }
6025
6026         lockstart = offset;
6027         lockend = offset + count - 1;
6028
6029         if (writing) {
6030                 ret = btrfs_delalloc_reserve_space(inode, count);
6031                 if (ret)
6032                         goto out;
6033         }
6034
6035         while (1) {
6036                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6037                                  0, &cached_state, GFP_NOFS);
6038                 /*
6039                  * We're concerned with the entire range that we're going to be
6040                  * doing DIO to, so we need to make sure theres no ordered
6041                  * extents in this range.
6042                  */
6043                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6044                                                      lockend - lockstart + 1);
6045                 if (!ordered)
6046                         break;
6047                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6048                                      &cached_state, GFP_NOFS);
6049                 btrfs_start_ordered_extent(inode, ordered, 1);
6050                 btrfs_put_ordered_extent(ordered);
6051                 cond_resched();
6052         }
6053
6054         /*
6055          * we don't use btrfs_set_extent_delalloc because we don't want
6056          * the dirty or uptodate bits
6057          */
6058         if (writing) {
6059                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6060                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6061                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6062                                      GFP_NOFS);
6063                 if (ret) {
6064                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6065                                          lockend, EXTENT_LOCKED | write_bits,
6066                                          1, 0, &cached_state, GFP_NOFS);
6067                         goto out;
6068                 }
6069         }
6070
6071         free_extent_state(cached_state);
6072         cached_state = NULL;
6073
6074         ret = __blockdev_direct_IO(rw, iocb, inode,
6075                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6076                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6077                    btrfs_submit_direct, 0);
6078
6079         if (ret < 0 && ret != -EIOCBQUEUED) {
6080                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6081                               offset + iov_length(iov, nr_segs) - 1,
6082                               EXTENT_LOCKED | write_bits, 1, 0,
6083                               &cached_state, GFP_NOFS);
6084         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6085                 /*
6086                  * We're falling back to buffered, unlock the section we didn't
6087                  * do IO on.
6088                  */
6089                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6090                               offset + iov_length(iov, nr_segs) - 1,
6091                               EXTENT_LOCKED | write_bits, 1, 0,
6092                               &cached_state, GFP_NOFS);
6093         }
6094 out:
6095         free_extent_state(cached_state);
6096         return ret;
6097 }
6098
6099 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6100                 __u64 start, __u64 len)
6101 {
6102         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6103 }
6104
6105 int btrfs_readpage(struct file *file, struct page *page)
6106 {
6107         struct extent_io_tree *tree;
6108         tree = &BTRFS_I(page->mapping->host)->io_tree;
6109         return extent_read_full_page(tree, page, btrfs_get_extent);
6110 }
6111
6112 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6113 {
6114         struct extent_io_tree *tree;
6115
6116
6117         if (current->flags & PF_MEMALLOC) {
6118                 redirty_page_for_writepage(wbc, page);
6119                 unlock_page(page);
6120                 return 0;
6121         }
6122         tree = &BTRFS_I(page->mapping->host)->io_tree;
6123         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6124 }
6125
6126 int btrfs_writepages(struct address_space *mapping,
6127                      struct writeback_control *wbc)
6128 {
6129         struct extent_io_tree *tree;
6130
6131         tree = &BTRFS_I(mapping->host)->io_tree;
6132         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6133 }
6134
6135 static int
6136 btrfs_readpages(struct file *file, struct address_space *mapping,
6137                 struct list_head *pages, unsigned nr_pages)
6138 {
6139         struct extent_io_tree *tree;
6140         tree = &BTRFS_I(mapping->host)->io_tree;
6141         return extent_readpages(tree, mapping, pages, nr_pages,
6142                                 btrfs_get_extent);
6143 }
6144 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6145 {
6146         struct extent_io_tree *tree;
6147         struct extent_map_tree *map;
6148         int ret;
6149
6150         tree = &BTRFS_I(page->mapping->host)->io_tree;
6151         map = &BTRFS_I(page->mapping->host)->extent_tree;
6152         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6153         if (ret == 1) {
6154                 ClearPagePrivate(page);
6155                 set_page_private(page, 0);
6156                 page_cache_release(page);
6157         }
6158         return ret;
6159 }
6160
6161 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6162 {
6163         if (PageWriteback(page) || PageDirty(page))
6164                 return 0;
6165         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6166 }
6167
6168 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6169 {
6170         struct extent_io_tree *tree;
6171         struct btrfs_ordered_extent *ordered;
6172         struct extent_state *cached_state = NULL;
6173         u64 page_start = page_offset(page);
6174         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6175
6176
6177         /*
6178          * we have the page locked, so new writeback can't start,
6179          * and the dirty bit won't be cleared while we are here.
6180          *
6181          * Wait for IO on this page so that we can safely clear
6182          * the PagePrivate2 bit and do ordered accounting
6183          */
6184         wait_on_page_writeback(page);
6185
6186         tree = &BTRFS_I(page->mapping->host)->io_tree;
6187         if (offset) {
6188                 btrfs_releasepage(page, GFP_NOFS);
6189                 return;
6190         }
6191         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6192                          GFP_NOFS);
6193         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6194                                            page_offset(page));
6195         if (ordered) {
6196                 /*
6197                  * IO on this page will never be started, so we need
6198                  * to account for any ordered extents now
6199                  */
6200                 clear_extent_bit(tree, page_start, page_end,
6201                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6202                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6203                                  &cached_state, GFP_NOFS);
6204                 /*
6205                  * whoever cleared the private bit is responsible
6206                  * for the finish_ordered_io
6207                  */
6208                 if (TestClearPagePrivate2(page)) {
6209                         btrfs_finish_ordered_io(page->mapping->host,
6210                                                 page_start, page_end);
6211                 }
6212                 btrfs_put_ordered_extent(ordered);
6213                 cached_state = NULL;
6214                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6215                                  GFP_NOFS);
6216         }
6217         clear_extent_bit(tree, page_start, page_end,
6218                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6219                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6220         __btrfs_releasepage(page, GFP_NOFS);
6221
6222         ClearPageChecked(page);
6223         if (PagePrivate(page)) {
6224                 ClearPagePrivate(page);
6225                 set_page_private(page, 0);
6226                 page_cache_release(page);
6227         }
6228 }
6229
6230 /*
6231  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6232  * called from a page fault handler when a page is first dirtied. Hence we must
6233  * be careful to check for EOF conditions here. We set the page up correctly
6234  * for a written page which means we get ENOSPC checking when writing into
6235  * holes and correct delalloc and unwritten extent mapping on filesystems that
6236  * support these features.
6237  *
6238  * We are not allowed to take the i_mutex here so we have to play games to
6239  * protect against truncate races as the page could now be beyond EOF.  Because
6240  * vmtruncate() writes the inode size before removing pages, once we have the
6241  * page lock we can determine safely if the page is beyond EOF. If it is not
6242  * beyond EOF, then the page is guaranteed safe against truncation until we
6243  * unlock the page.
6244  */
6245 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6246 {
6247         struct page *page = vmf->page;
6248         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6249         struct btrfs_root *root = BTRFS_I(inode)->root;
6250         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6251         struct btrfs_ordered_extent *ordered;
6252         struct extent_state *cached_state = NULL;
6253         char *kaddr;
6254         unsigned long zero_start;
6255         loff_t size;
6256         int ret;
6257         u64 page_start;
6258         u64 page_end;
6259
6260         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6261         if (ret) {
6262                 if (ret == -ENOMEM)
6263                         ret = VM_FAULT_OOM;
6264                 else /* -ENOSPC, -EIO, etc */
6265                         ret = VM_FAULT_SIGBUS;
6266                 goto out;
6267         }
6268
6269         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6270 again:
6271         lock_page(page);
6272         size = i_size_read(inode);
6273         page_start = page_offset(page);
6274         page_end = page_start + PAGE_CACHE_SIZE - 1;
6275
6276         if ((page->mapping != inode->i_mapping) ||
6277             (page_start >= size)) {
6278                 /* page got truncated out from underneath us */
6279                 goto out_unlock;
6280         }
6281         wait_on_page_writeback(page);
6282
6283         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6284                          GFP_NOFS);
6285         set_page_extent_mapped(page);
6286
6287         /*
6288          * we can't set the delalloc bits if there are pending ordered
6289          * extents.  Drop our locks and wait for them to finish
6290          */
6291         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6292         if (ordered) {
6293                 unlock_extent_cached(io_tree, page_start, page_end,
6294                                      &cached_state, GFP_NOFS);
6295                 unlock_page(page);
6296                 btrfs_start_ordered_extent(inode, ordered, 1);
6297                 btrfs_put_ordered_extent(ordered);
6298                 goto again;
6299         }
6300
6301         /*
6302          * XXX - page_mkwrite gets called every time the page is dirtied, even
6303          * if it was already dirty, so for space accounting reasons we need to
6304          * clear any delalloc bits for the range we are fixing to save.  There
6305          * is probably a better way to do this, but for now keep consistent with
6306          * prepare_pages in the normal write path.
6307          */
6308         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6309                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6310                           0, 0, &cached_state, GFP_NOFS);
6311
6312         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6313                                         &cached_state);
6314         if (ret) {
6315                 unlock_extent_cached(io_tree, page_start, page_end,
6316                                      &cached_state, GFP_NOFS);
6317                 ret = VM_FAULT_SIGBUS;
6318                 goto out_unlock;
6319         }
6320         ret = 0;
6321
6322         /* page is wholly or partially inside EOF */
6323         if (page_start + PAGE_CACHE_SIZE > size)
6324                 zero_start = size & ~PAGE_CACHE_MASK;
6325         else
6326                 zero_start = PAGE_CACHE_SIZE;
6327
6328         if (zero_start != PAGE_CACHE_SIZE) {
6329                 kaddr = kmap(page);
6330                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6331                 flush_dcache_page(page);
6332                 kunmap(page);
6333         }
6334         ClearPageChecked(page);
6335         set_page_dirty(page);
6336         SetPageUptodate(page);
6337
6338         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6339         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6340
6341         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6342
6343 out_unlock:
6344         if (!ret)
6345                 return VM_FAULT_LOCKED;
6346         unlock_page(page);
6347         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6348 out:
6349         return ret;
6350 }
6351
6352 static void btrfs_truncate(struct inode *inode)
6353 {
6354         struct btrfs_root *root = BTRFS_I(inode)->root;
6355         int ret;
6356         struct btrfs_trans_handle *trans;
6357         unsigned long nr;
6358         u64 mask = root->sectorsize - 1;
6359
6360         if (!S_ISREG(inode->i_mode)) {
6361                 WARN_ON(1);
6362                 return;
6363         }
6364
6365         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6366         if (ret)
6367                 return;
6368
6369         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6370         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6371
6372         trans = btrfs_start_transaction(root, 0);
6373         BUG_ON(IS_ERR(trans));
6374         btrfs_set_trans_block_group(trans, inode);
6375         trans->block_rsv = root->orphan_block_rsv;
6376
6377         /*
6378          * setattr is responsible for setting the ordered_data_close flag,
6379          * but that is only tested during the last file release.  That
6380          * could happen well after the next commit, leaving a great big
6381          * window where new writes may get lost if someone chooses to write
6382          * to this file after truncating to zero
6383          *
6384          * The inode doesn't have any dirty data here, and so if we commit
6385          * this is a noop.  If someone immediately starts writing to the inode
6386          * it is very likely we'll catch some of their writes in this
6387          * transaction, and the commit will find this file on the ordered
6388          * data list with good things to send down.
6389          *
6390          * This is a best effort solution, there is still a window where
6391          * using truncate to replace the contents of the file will
6392          * end up with a zero length file after a crash.
6393          */
6394         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6395                 btrfs_add_ordered_operation(trans, root, inode);
6396
6397         while (1) {
6398                 if (!trans) {
6399                         trans = btrfs_start_transaction(root, 0);
6400                         BUG_ON(IS_ERR(trans));
6401                         btrfs_set_trans_block_group(trans, inode);
6402                         trans->block_rsv = root->orphan_block_rsv;
6403                 }
6404
6405                 ret = btrfs_block_rsv_check(trans, root,
6406                                             root->orphan_block_rsv, 0, 5);
6407                 if (ret) {
6408                         BUG_ON(ret != -EAGAIN);
6409                         ret = btrfs_commit_transaction(trans, root);
6410                         BUG_ON(ret);
6411                         trans = NULL;
6412                         continue;
6413                 }
6414
6415                 ret = btrfs_truncate_inode_items(trans, root, inode,
6416                                                  inode->i_size,
6417                                                  BTRFS_EXTENT_DATA_KEY);
6418                 if (ret != -EAGAIN)
6419                         break;
6420
6421                 ret = btrfs_update_inode(trans, root, inode);
6422                 BUG_ON(ret);
6423
6424                 nr = trans->blocks_used;
6425                 btrfs_end_transaction(trans, root);
6426                 trans = NULL;
6427                 btrfs_btree_balance_dirty(root, nr);
6428         }
6429
6430         if (ret == 0 && inode->i_nlink > 0) {
6431                 ret = btrfs_orphan_del(trans, inode);
6432                 BUG_ON(ret);
6433         }
6434
6435         ret = btrfs_update_inode(trans, root, inode);
6436         BUG_ON(ret);
6437
6438         nr = trans->blocks_used;
6439         ret = btrfs_end_transaction_throttle(trans, root);
6440         BUG_ON(ret);
6441         btrfs_btree_balance_dirty(root, nr);
6442 }
6443
6444 /*
6445  * create a new subvolume directory/inode (helper for the ioctl).
6446  */
6447 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6448                              struct btrfs_root *new_root,
6449                              u64 new_dirid, u64 alloc_hint)
6450 {
6451         struct inode *inode;
6452         int err;
6453         u64 index = 0;
6454
6455         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6456                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6457         if (IS_ERR(inode))
6458                 return PTR_ERR(inode);
6459         inode->i_op = &btrfs_dir_inode_operations;
6460         inode->i_fop = &btrfs_dir_file_operations;
6461
6462         inode->i_nlink = 1;
6463         btrfs_i_size_write(inode, 0);
6464
6465         err = btrfs_update_inode(trans, new_root, inode);
6466         BUG_ON(err);
6467
6468         iput(inode);
6469         return 0;
6470 }
6471
6472 /* helper function for file defrag and space balancing.  This
6473  * forces readahead on a given range of bytes in an inode
6474  */
6475 unsigned long btrfs_force_ra(struct address_space *mapping,
6476                               struct file_ra_state *ra, struct file *file,
6477                               pgoff_t offset, pgoff_t last_index)
6478 {
6479         pgoff_t req_size = last_index - offset + 1;
6480
6481         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6482         return offset + req_size;
6483 }
6484
6485 struct inode *btrfs_alloc_inode(struct super_block *sb)
6486 {
6487         struct btrfs_inode *ei;
6488         struct inode *inode;
6489
6490         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6491         if (!ei)
6492                 return NULL;
6493
6494         ei->root = NULL;
6495         ei->space_info = NULL;
6496         ei->generation = 0;
6497         ei->sequence = 0;
6498         ei->last_trans = 0;
6499         ei->last_sub_trans = 0;
6500         ei->logged_trans = 0;
6501         ei->delalloc_bytes = 0;
6502         ei->reserved_bytes = 0;
6503         ei->disk_i_size = 0;
6504         ei->flags = 0;
6505         ei->index_cnt = (u64)-1;
6506         ei->last_unlink_trans = 0;
6507
6508         spin_lock_init(&ei->accounting_lock);
6509         atomic_set(&ei->outstanding_extents, 0);
6510         ei->reserved_extents = 0;
6511
6512         ei->ordered_data_close = 0;
6513         ei->orphan_meta_reserved = 0;
6514         ei->dummy_inode = 0;
6515         ei->force_compress = BTRFS_COMPRESS_NONE;
6516
6517         inode = &ei->vfs_inode;
6518         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6519         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6520         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6521         mutex_init(&ei->log_mutex);
6522         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6523         INIT_LIST_HEAD(&ei->i_orphan);
6524         INIT_LIST_HEAD(&ei->delalloc_inodes);
6525         INIT_LIST_HEAD(&ei->ordered_operations);
6526         RB_CLEAR_NODE(&ei->rb_node);
6527
6528         return inode;
6529 }
6530
6531 static void btrfs_i_callback(struct rcu_head *head)
6532 {
6533         struct inode *inode = container_of(head, struct inode, i_rcu);
6534         INIT_LIST_HEAD(&inode->i_dentry);
6535         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6536 }
6537
6538 void btrfs_destroy_inode(struct inode *inode)
6539 {
6540         struct btrfs_ordered_extent *ordered;
6541         struct btrfs_root *root = BTRFS_I(inode)->root;
6542
6543         WARN_ON(!list_empty(&inode->i_dentry));
6544         WARN_ON(inode->i_data.nrpages);
6545         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6546         WARN_ON(BTRFS_I(inode)->reserved_extents);
6547
6548         /*
6549          * This can happen where we create an inode, but somebody else also
6550          * created the same inode and we need to destroy the one we already
6551          * created.
6552          */
6553         if (!root)
6554                 goto free;
6555
6556         /*
6557          * Make sure we're properly removed from the ordered operation
6558          * lists.
6559          */
6560         smp_mb();
6561         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6562                 spin_lock(&root->fs_info->ordered_extent_lock);
6563                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6564                 spin_unlock(&root->fs_info->ordered_extent_lock);
6565         }
6566
6567         if (root == root->fs_info->tree_root) {
6568                 struct btrfs_block_group_cache *block_group;
6569
6570                 block_group = btrfs_lookup_block_group(root->fs_info,
6571                                                 BTRFS_I(inode)->block_group);
6572                 if (block_group && block_group->inode == inode) {
6573                         spin_lock(&block_group->lock);
6574                         block_group->inode = NULL;
6575                         spin_unlock(&block_group->lock);
6576                         btrfs_put_block_group(block_group);
6577                 } else if (block_group) {
6578                         btrfs_put_block_group(block_group);
6579                 }
6580         }
6581
6582         spin_lock(&root->orphan_lock);
6583         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6584                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6585                        inode->i_ino);
6586                 list_del_init(&BTRFS_I(inode)->i_orphan);
6587         }
6588         spin_unlock(&root->orphan_lock);
6589
6590         while (1) {
6591                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6592                 if (!ordered)
6593                         break;
6594                 else {
6595                         printk(KERN_ERR "btrfs found ordered "
6596                                "extent %llu %llu on inode cleanup\n",
6597                                (unsigned long long)ordered->file_offset,
6598                                (unsigned long long)ordered->len);
6599                         btrfs_remove_ordered_extent(inode, ordered);
6600                         btrfs_put_ordered_extent(ordered);
6601                         btrfs_put_ordered_extent(ordered);
6602                 }
6603         }
6604         inode_tree_del(inode);
6605         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6606 free:
6607         call_rcu(&inode->i_rcu, btrfs_i_callback);
6608 }
6609
6610 int btrfs_drop_inode(struct inode *inode)
6611 {
6612         struct btrfs_root *root = BTRFS_I(inode)->root;
6613
6614         if (btrfs_root_refs(&root->root_item) == 0 &&
6615             root != root->fs_info->tree_root)
6616                 return 1;
6617         else
6618                 return generic_drop_inode(inode);
6619 }
6620
6621 static void init_once(void *foo)
6622 {
6623         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6624
6625         inode_init_once(&ei->vfs_inode);
6626 }
6627
6628 void btrfs_destroy_cachep(void)
6629 {
6630         if (btrfs_inode_cachep)
6631                 kmem_cache_destroy(btrfs_inode_cachep);
6632         if (btrfs_trans_handle_cachep)
6633                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6634         if (btrfs_transaction_cachep)
6635                 kmem_cache_destroy(btrfs_transaction_cachep);
6636         if (btrfs_path_cachep)
6637                 kmem_cache_destroy(btrfs_path_cachep);
6638 }
6639
6640 int btrfs_init_cachep(void)
6641 {
6642         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6643                         sizeof(struct btrfs_inode), 0,
6644                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6645         if (!btrfs_inode_cachep)
6646                 goto fail;
6647
6648         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6649                         sizeof(struct btrfs_trans_handle), 0,
6650                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6651         if (!btrfs_trans_handle_cachep)
6652                 goto fail;
6653
6654         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6655                         sizeof(struct btrfs_transaction), 0,
6656                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6657         if (!btrfs_transaction_cachep)
6658                 goto fail;
6659
6660         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6661                         sizeof(struct btrfs_path), 0,
6662                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6663         if (!btrfs_path_cachep)
6664                 goto fail;
6665
6666         return 0;
6667 fail:
6668         btrfs_destroy_cachep();
6669         return -ENOMEM;
6670 }
6671
6672 static int btrfs_getattr(struct vfsmount *mnt,
6673                          struct dentry *dentry, struct kstat *stat)
6674 {
6675         struct inode *inode = dentry->d_inode;
6676         generic_fillattr(inode, stat);
6677         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6678         stat->blksize = PAGE_CACHE_SIZE;
6679         stat->blocks = (inode_get_bytes(inode) +
6680                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6681         return 0;
6682 }
6683
6684 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6685                            struct inode *new_dir, struct dentry *new_dentry)
6686 {
6687         struct btrfs_trans_handle *trans;
6688         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6689         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6690         struct inode *new_inode = new_dentry->d_inode;
6691         struct inode *old_inode = old_dentry->d_inode;
6692         struct timespec ctime = CURRENT_TIME;
6693         u64 index = 0;
6694         u64 root_objectid;
6695         int ret;
6696
6697         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6698                 return -EPERM;
6699
6700         /* we only allow rename subvolume link between subvolumes */
6701         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6702                 return -EXDEV;
6703
6704         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6705             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6706                 return -ENOTEMPTY;
6707
6708         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6709             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6710                 return -ENOTEMPTY;
6711         /*
6712          * we're using rename to replace one file with another.
6713          * and the replacement file is large.  Start IO on it now so
6714          * we don't add too much work to the end of the transaction
6715          */
6716         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6717             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6718                 filemap_flush(old_inode->i_mapping);
6719
6720         /* close the racy window with snapshot create/destroy ioctl */
6721         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6722                 down_read(&root->fs_info->subvol_sem);
6723         /*
6724          * We want to reserve the absolute worst case amount of items.  So if
6725          * both inodes are subvols and we need to unlink them then that would
6726          * require 4 item modifications, but if they are both normal inodes it
6727          * would require 5 item modifications, so we'll assume their normal
6728          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6729          * should cover the worst case number of items we'll modify.
6730          */
6731         trans = btrfs_start_transaction(root, 20);
6732         if (IS_ERR(trans))
6733                 return PTR_ERR(trans);
6734
6735         btrfs_set_trans_block_group(trans, new_dir);
6736
6737         if (dest != root)
6738                 btrfs_record_root_in_trans(trans, dest);
6739
6740         ret = btrfs_set_inode_index(new_dir, &index);
6741         if (ret)
6742                 goto out_fail;
6743
6744         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6745                 /* force full log commit if subvolume involved. */
6746                 root->fs_info->last_trans_log_full_commit = trans->transid;
6747         } else {
6748                 ret = btrfs_insert_inode_ref(trans, dest,
6749                                              new_dentry->d_name.name,
6750                                              new_dentry->d_name.len,
6751                                              old_inode->i_ino,
6752                                              new_dir->i_ino, index);
6753                 if (ret)
6754                         goto out_fail;
6755                 /*
6756                  * this is an ugly little race, but the rename is required
6757                  * to make sure that if we crash, the inode is either at the
6758                  * old name or the new one.  pinning the log transaction lets
6759                  * us make sure we don't allow a log commit to come in after
6760                  * we unlink the name but before we add the new name back in.
6761                  */
6762                 btrfs_pin_log_trans(root);
6763         }
6764         /*
6765          * make sure the inode gets flushed if it is replacing
6766          * something.
6767          */
6768         if (new_inode && new_inode->i_size &&
6769             old_inode && S_ISREG(old_inode->i_mode)) {
6770                 btrfs_add_ordered_operation(trans, root, old_inode);
6771         }
6772
6773         old_dir->i_ctime = old_dir->i_mtime = ctime;
6774         new_dir->i_ctime = new_dir->i_mtime = ctime;
6775         old_inode->i_ctime = ctime;
6776
6777         if (old_dentry->d_parent != new_dentry->d_parent)
6778                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6779
6780         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6781                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6782                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6783                                         old_dentry->d_name.name,
6784                                         old_dentry->d_name.len);
6785         } else {
6786                 btrfs_inc_nlink(old_dentry->d_inode);
6787                 ret = btrfs_unlink_inode(trans, root, old_dir,
6788                                          old_dentry->d_inode,
6789                                          old_dentry->d_name.name,
6790                                          old_dentry->d_name.len);
6791         }
6792         BUG_ON(ret);
6793
6794         if (new_inode) {
6795                 new_inode->i_ctime = CURRENT_TIME;
6796                 if (unlikely(new_inode->i_ino ==
6797                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6798                         root_objectid = BTRFS_I(new_inode)->location.objectid;
6799                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
6800                                                 root_objectid,
6801                                                 new_dentry->d_name.name,
6802                                                 new_dentry->d_name.len);
6803                         BUG_ON(new_inode->i_nlink == 0);
6804                 } else {
6805                         ret = btrfs_unlink_inode(trans, dest, new_dir,
6806                                                  new_dentry->d_inode,
6807                                                  new_dentry->d_name.name,
6808                                                  new_dentry->d_name.len);
6809                 }
6810                 BUG_ON(ret);
6811                 if (new_inode->i_nlink == 0) {
6812                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6813                         BUG_ON(ret);
6814                 }
6815         }
6816
6817         ret = btrfs_add_link(trans, new_dir, old_inode,
6818                              new_dentry->d_name.name,
6819                              new_dentry->d_name.len, 0, index);
6820         BUG_ON(ret);
6821
6822         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6823                 struct dentry *parent = dget_parent(new_dentry);
6824                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6825                 dput(parent);
6826                 btrfs_end_log_trans(root);
6827         }
6828 out_fail:
6829         btrfs_end_transaction_throttle(trans, root);
6830
6831         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6832                 up_read(&root->fs_info->subvol_sem);
6833
6834         return ret;
6835 }
6836
6837 /*
6838  * some fairly slow code that needs optimization. This walks the list
6839  * of all the inodes with pending delalloc and forces them to disk.
6840  */
6841 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6842 {
6843         struct list_head *head = &root->fs_info->delalloc_inodes;
6844         struct btrfs_inode *binode;
6845         struct inode *inode;
6846
6847         if (root->fs_info->sb->s_flags & MS_RDONLY)
6848                 return -EROFS;
6849
6850         spin_lock(&root->fs_info->delalloc_lock);
6851         while (!list_empty(head)) {
6852                 binode = list_entry(head->next, struct btrfs_inode,
6853                                     delalloc_inodes);
6854                 inode = igrab(&binode->vfs_inode);
6855                 if (!inode)
6856                         list_del_init(&binode->delalloc_inodes);
6857                 spin_unlock(&root->fs_info->delalloc_lock);
6858                 if (inode) {
6859                         filemap_flush(inode->i_mapping);
6860                         if (delay_iput)
6861                                 btrfs_add_delayed_iput(inode);
6862                         else
6863                                 iput(inode);
6864                 }
6865                 cond_resched();
6866                 spin_lock(&root->fs_info->delalloc_lock);
6867         }
6868         spin_unlock(&root->fs_info->delalloc_lock);
6869
6870         /* the filemap_flush will queue IO into the worker threads, but
6871          * we have to make sure the IO is actually started and that
6872          * ordered extents get created before we return
6873          */
6874         atomic_inc(&root->fs_info->async_submit_draining);
6875         while (atomic_read(&root->fs_info->nr_async_submits) ||
6876               atomic_read(&root->fs_info->async_delalloc_pages)) {
6877                 wait_event(root->fs_info->async_submit_wait,
6878                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6879                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6880         }
6881         atomic_dec(&root->fs_info->async_submit_draining);
6882         return 0;
6883 }
6884
6885 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6886                                    int sync)
6887 {
6888         struct btrfs_inode *binode;
6889         struct inode *inode = NULL;
6890
6891         spin_lock(&root->fs_info->delalloc_lock);
6892         while (!list_empty(&root->fs_info->delalloc_inodes)) {
6893                 binode = list_entry(root->fs_info->delalloc_inodes.next,
6894                                     struct btrfs_inode, delalloc_inodes);
6895                 inode = igrab(&binode->vfs_inode);
6896                 if (inode) {
6897                         list_move_tail(&binode->delalloc_inodes,
6898                                        &root->fs_info->delalloc_inodes);
6899                         break;
6900                 }
6901
6902                 list_del_init(&binode->delalloc_inodes);
6903                 cond_resched_lock(&root->fs_info->delalloc_lock);
6904         }
6905         spin_unlock(&root->fs_info->delalloc_lock);
6906
6907         if (inode) {
6908                 if (sync) {
6909                         filemap_write_and_wait(inode->i_mapping);
6910                         /*
6911                          * We have to do this because compression doesn't
6912                          * actually set PG_writeback until it submits the pages
6913                          * for IO, which happens in an async thread, so we could
6914                          * race and not actually wait for any writeback pages
6915                          * because they've not been submitted yet.  Technically
6916                          * this could still be the case for the ordered stuff
6917                          * since the async thread may not have started to do its
6918                          * work yet.  If this becomes the case then we need to
6919                          * figure out a way to make sure that in writepage we
6920                          * wait for any async pages to be submitted before
6921                          * returning so that fdatawait does what its supposed to
6922                          * do.
6923                          */
6924                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
6925                 } else {
6926                         filemap_flush(inode->i_mapping);
6927                 }
6928                 if (delay_iput)
6929                         btrfs_add_delayed_iput(inode);
6930                 else
6931                         iput(inode);
6932                 return 1;
6933         }
6934         return 0;
6935 }
6936
6937 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6938                          const char *symname)
6939 {
6940         struct btrfs_trans_handle *trans;
6941         struct btrfs_root *root = BTRFS_I(dir)->root;
6942         struct btrfs_path *path;
6943         struct btrfs_key key;
6944         struct inode *inode = NULL;
6945         int err;
6946         int drop_inode = 0;
6947         u64 objectid;
6948         u64 index = 0 ;
6949         int name_len;
6950         int datasize;
6951         unsigned long ptr;
6952         struct btrfs_file_extent_item *ei;
6953         struct extent_buffer *leaf;
6954         unsigned long nr = 0;
6955
6956         name_len = strlen(symname) + 1;
6957         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6958                 return -ENAMETOOLONG;
6959
6960         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6961         if (err)
6962                 return err;
6963         /*
6964          * 2 items for inode item and ref
6965          * 2 items for dir items
6966          * 1 item for xattr if selinux is on
6967          */
6968         trans = btrfs_start_transaction(root, 5);
6969         if (IS_ERR(trans))
6970                 return PTR_ERR(trans);
6971
6972         btrfs_set_trans_block_group(trans, dir);
6973
6974         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6975                                 dentry->d_name.len, dir->i_ino, objectid,
6976                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6977                                 &index);
6978         err = PTR_ERR(inode);
6979         if (IS_ERR(inode))
6980                 goto out_unlock;
6981
6982         err = btrfs_init_inode_security(trans, inode, dir);
6983         if (err) {
6984                 drop_inode = 1;
6985                 goto out_unlock;
6986         }
6987
6988         btrfs_set_trans_block_group(trans, inode);
6989         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6990         if (err)
6991                 drop_inode = 1;
6992         else {
6993                 inode->i_mapping->a_ops = &btrfs_aops;
6994                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6995                 inode->i_fop = &btrfs_file_operations;
6996                 inode->i_op = &btrfs_file_inode_operations;
6997                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6998         }
6999         btrfs_update_inode_block_group(trans, inode);
7000         btrfs_update_inode_block_group(trans, dir);
7001         if (drop_inode)
7002                 goto out_unlock;
7003
7004         path = btrfs_alloc_path();
7005         BUG_ON(!path);
7006         key.objectid = inode->i_ino;
7007         key.offset = 0;
7008         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7009         datasize = btrfs_file_extent_calc_inline_size(name_len);
7010         err = btrfs_insert_empty_item(trans, root, path, &key,
7011                                       datasize);
7012         if (err) {
7013                 drop_inode = 1;
7014                 goto out_unlock;
7015         }
7016         leaf = path->nodes[0];
7017         ei = btrfs_item_ptr(leaf, path->slots[0],
7018                             struct btrfs_file_extent_item);
7019         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7020         btrfs_set_file_extent_type(leaf, ei,
7021                                    BTRFS_FILE_EXTENT_INLINE);
7022         btrfs_set_file_extent_encryption(leaf, ei, 0);
7023         btrfs_set_file_extent_compression(leaf, ei, 0);
7024         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7025         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7026
7027         ptr = btrfs_file_extent_inline_start(ei);
7028         write_extent_buffer(leaf, symname, ptr, name_len);
7029         btrfs_mark_buffer_dirty(leaf);
7030         btrfs_free_path(path);
7031
7032         inode->i_op = &btrfs_symlink_inode_operations;
7033         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7034         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7035         inode_set_bytes(inode, name_len);
7036         btrfs_i_size_write(inode, name_len - 1);
7037         err = btrfs_update_inode(trans, root, inode);
7038         if (err)
7039                 drop_inode = 1;
7040
7041 out_unlock:
7042         nr = trans->blocks_used;
7043         btrfs_end_transaction_throttle(trans, root);
7044         if (drop_inode) {
7045                 inode_dec_link_count(inode);
7046                 iput(inode);
7047         }
7048         btrfs_btree_balance_dirty(root, nr);
7049         return err;
7050 }
7051
7052 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7053                                        u64 start, u64 num_bytes, u64 min_size,
7054                                        loff_t actual_len, u64 *alloc_hint,
7055                                        struct btrfs_trans_handle *trans)
7056 {
7057         struct btrfs_root *root = BTRFS_I(inode)->root;
7058         struct btrfs_key ins;
7059         u64 cur_offset = start;
7060         u64 i_size;
7061         int ret = 0;
7062         bool own_trans = true;
7063
7064         if (trans)
7065                 own_trans = false;
7066         while (num_bytes > 0) {
7067                 if (own_trans) {
7068                         trans = btrfs_start_transaction(root, 3);
7069                         if (IS_ERR(trans)) {
7070                                 ret = PTR_ERR(trans);
7071                                 break;
7072                         }
7073                 }
7074
7075                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7076                                            0, *alloc_hint, (u64)-1, &ins, 1);
7077                 if (ret) {
7078                         if (own_trans)
7079                                 btrfs_end_transaction(trans, root);
7080                         break;
7081                 }
7082
7083                 ret = insert_reserved_file_extent(trans, inode,
7084                                                   cur_offset, ins.objectid,
7085                                                   ins.offset, ins.offset,
7086                                                   ins.offset, 0, 0, 0,
7087                                                   BTRFS_FILE_EXTENT_PREALLOC);
7088                 BUG_ON(ret);
7089                 btrfs_drop_extent_cache(inode, cur_offset,
7090                                         cur_offset + ins.offset -1, 0);
7091
7092                 num_bytes -= ins.offset;
7093                 cur_offset += ins.offset;
7094                 *alloc_hint = ins.objectid + ins.offset;
7095
7096                 inode->i_ctime = CURRENT_TIME;
7097                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7098                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7099                     (actual_len > inode->i_size) &&
7100                     (cur_offset > inode->i_size)) {
7101                         if (cur_offset > actual_len)
7102                                 i_size = actual_len;
7103                         else
7104                                 i_size = cur_offset;
7105                         i_size_write(inode, i_size);
7106                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7107                 }
7108
7109                 ret = btrfs_update_inode(trans, root, inode);
7110                 BUG_ON(ret);
7111
7112                 if (own_trans)
7113                         btrfs_end_transaction(trans, root);
7114         }
7115         return ret;
7116 }
7117
7118 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7119                               u64 start, u64 num_bytes, u64 min_size,
7120                               loff_t actual_len, u64 *alloc_hint)
7121 {
7122         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7123                                            min_size, actual_len, alloc_hint,
7124                                            NULL);
7125 }
7126
7127 int btrfs_prealloc_file_range_trans(struct inode *inode,
7128                                     struct btrfs_trans_handle *trans, int mode,
7129                                     u64 start, u64 num_bytes, u64 min_size,
7130                                     loff_t actual_len, u64 *alloc_hint)
7131 {
7132         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7133                                            min_size, actual_len, alloc_hint, trans);
7134 }
7135
7136 static int btrfs_set_page_dirty(struct page *page)
7137 {
7138         return __set_page_dirty_nobuffers(page);
7139 }
7140
7141 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7142 {
7143         struct btrfs_root *root = BTRFS_I(inode)->root;
7144
7145         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7146                 return -EROFS;
7147         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7148                 return -EACCES;
7149         return generic_permission(inode, mask, flags, btrfs_check_acl);
7150 }
7151
7152 static const struct inode_operations btrfs_dir_inode_operations = {
7153         .getattr        = btrfs_getattr,
7154         .lookup         = btrfs_lookup,
7155         .create         = btrfs_create,
7156         .unlink         = btrfs_unlink,
7157         .link           = btrfs_link,
7158         .mkdir          = btrfs_mkdir,
7159         .rmdir          = btrfs_rmdir,
7160         .rename         = btrfs_rename,
7161         .symlink        = btrfs_symlink,
7162         .setattr        = btrfs_setattr,
7163         .mknod          = btrfs_mknod,
7164         .setxattr       = btrfs_setxattr,
7165         .getxattr       = btrfs_getxattr,
7166         .listxattr      = btrfs_listxattr,
7167         .removexattr    = btrfs_removexattr,
7168         .permission     = btrfs_permission,
7169 };
7170 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7171         .lookup         = btrfs_lookup,
7172         .permission     = btrfs_permission,
7173 };
7174
7175 static const struct file_operations btrfs_dir_file_operations = {
7176         .llseek         = generic_file_llseek,
7177         .read           = generic_read_dir,
7178         .readdir        = btrfs_real_readdir,
7179         .unlocked_ioctl = btrfs_ioctl,
7180 #ifdef CONFIG_COMPAT
7181         .compat_ioctl   = btrfs_ioctl,
7182 #endif
7183         .release        = btrfs_release_file,
7184         .fsync          = btrfs_sync_file,
7185 };
7186
7187 static struct extent_io_ops btrfs_extent_io_ops = {
7188         .fill_delalloc = run_delalloc_range,
7189         .submit_bio_hook = btrfs_submit_bio_hook,
7190         .merge_bio_hook = btrfs_merge_bio_hook,
7191         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7192         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7193         .writepage_start_hook = btrfs_writepage_start_hook,
7194         .readpage_io_failed_hook = btrfs_io_failed_hook,
7195         .set_bit_hook = btrfs_set_bit_hook,
7196         .clear_bit_hook = btrfs_clear_bit_hook,
7197         .merge_extent_hook = btrfs_merge_extent_hook,
7198         .split_extent_hook = btrfs_split_extent_hook,
7199 };
7200
7201 /*
7202  * btrfs doesn't support the bmap operation because swapfiles
7203  * use bmap to make a mapping of extents in the file.  They assume
7204  * these extents won't change over the life of the file and they
7205  * use the bmap result to do IO directly to the drive.
7206  *
7207  * the btrfs bmap call would return logical addresses that aren't
7208  * suitable for IO and they also will change frequently as COW
7209  * operations happen.  So, swapfile + btrfs == corruption.
7210  *
7211  * For now we're avoiding this by dropping bmap.
7212  */
7213 static const struct address_space_operations btrfs_aops = {
7214         .readpage       = btrfs_readpage,
7215         .writepage      = btrfs_writepage,
7216         .writepages     = btrfs_writepages,
7217         .readpages      = btrfs_readpages,
7218         .sync_page      = block_sync_page,
7219         .direct_IO      = btrfs_direct_IO,
7220         .invalidatepage = btrfs_invalidatepage,
7221         .releasepage    = btrfs_releasepage,
7222         .set_page_dirty = btrfs_set_page_dirty,
7223         .error_remove_page = generic_error_remove_page,
7224 };
7225
7226 static const struct address_space_operations btrfs_symlink_aops = {
7227         .readpage       = btrfs_readpage,
7228         .writepage      = btrfs_writepage,
7229         .invalidatepage = btrfs_invalidatepage,
7230         .releasepage    = btrfs_releasepage,
7231 };
7232
7233 static const struct inode_operations btrfs_file_inode_operations = {
7234         .truncate       = btrfs_truncate,
7235         .getattr        = btrfs_getattr,
7236         .setattr        = btrfs_setattr,
7237         .setxattr       = btrfs_setxattr,
7238         .getxattr       = btrfs_getxattr,
7239         .listxattr      = btrfs_listxattr,
7240         .removexattr    = btrfs_removexattr,
7241         .permission     = btrfs_permission,
7242         .fiemap         = btrfs_fiemap,
7243 };
7244 static const struct inode_operations btrfs_special_inode_operations = {
7245         .getattr        = btrfs_getattr,
7246         .setattr        = btrfs_setattr,
7247         .permission     = btrfs_permission,
7248         .setxattr       = btrfs_setxattr,
7249         .getxattr       = btrfs_getxattr,
7250         .listxattr      = btrfs_listxattr,
7251         .removexattr    = btrfs_removexattr,
7252 };
7253 static const struct inode_operations btrfs_symlink_inode_operations = {
7254         .readlink       = generic_readlink,
7255         .follow_link    = page_follow_link_light,
7256         .put_link       = page_put_link,
7257         .getattr        = btrfs_getattr,
7258         .permission     = btrfs_permission,
7259         .setxattr       = btrfs_setxattr,
7260         .getxattr       = btrfs_getxattr,
7261         .listxattr      = btrfs_listxattr,
7262         .removexattr    = btrfs_removexattr,
7263 };
7264
7265 const struct dentry_operations btrfs_dentry_operations = {
7266         .d_delete       = btrfs_dentry_delete,
7267 };