Btrfs: map the inode item when doing fill_inode_item
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, int *page_started,
93                                    unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96                                      struct inode *inode,  struct inode *dir)
97 {
98         int err;
99
100         err = btrfs_init_acl(trans, inode, dir);
101         if (!err)
102                 err = btrfs_xattr_security_init(trans, inode, dir);
103         return err;
104 }
105
106 /*
107  * this does all the hard work for inserting an inline extent into
108  * the btree.  The caller should have done a btrfs_drop_extents so that
109  * no overlapping inline items exist in the btree
110  */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112                                 struct btrfs_root *root, struct inode *inode,
113                                 u64 start, size_t size, size_t compressed_size,
114                                 int compress_type,
115                                 struct page **compressed_pages)
116 {
117         struct btrfs_key key;
118         struct btrfs_path *path;
119         struct extent_buffer *leaf;
120         struct page *page = NULL;
121         char *kaddr;
122         unsigned long ptr;
123         struct btrfs_file_extent_item *ei;
124         int err = 0;
125         int ret;
126         size_t cur_size = size;
127         size_t datasize;
128         unsigned long offset;
129
130         if (compressed_size && compressed_pages)
131                 cur_size = compressed_size;
132
133         path = btrfs_alloc_path();
134         if (!path)
135                 return -ENOMEM;
136
137         path->leave_spinning = 1;
138         btrfs_set_trans_block_group(trans, inode);
139
140         key.objectid = inode->i_ino;
141         key.offset = start;
142         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143         datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145         inode_add_bytes(inode, size);
146         ret = btrfs_insert_empty_item(trans, root, path, &key,
147                                       datasize);
148         BUG_ON(ret);
149         if (ret) {
150                 err = ret;
151                 goto fail;
152         }
153         leaf = path->nodes[0];
154         ei = btrfs_item_ptr(leaf, path->slots[0],
155                             struct btrfs_file_extent_item);
156         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158         btrfs_set_file_extent_encryption(leaf, ei, 0);
159         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161         ptr = btrfs_file_extent_inline_start(ei);
162
163         if (compress_type != BTRFS_COMPRESS_NONE) {
164                 struct page *cpage;
165                 int i = 0;
166                 while (compressed_size > 0) {
167                         cpage = compressed_pages[i];
168                         cur_size = min_t(unsigned long, compressed_size,
169                                        PAGE_CACHE_SIZE);
170
171                         kaddr = kmap_atomic(cpage, KM_USER0);
172                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
173                         kunmap_atomic(kaddr, KM_USER0);
174
175                         i++;
176                         ptr += cur_size;
177                         compressed_size -= cur_size;
178                 }
179                 btrfs_set_file_extent_compression(leaf, ei,
180                                                   compress_type);
181         } else {
182                 page = find_get_page(inode->i_mapping,
183                                      start >> PAGE_CACHE_SHIFT);
184                 btrfs_set_file_extent_compression(leaf, ei, 0);
185                 kaddr = kmap_atomic(page, KM_USER0);
186                 offset = start & (PAGE_CACHE_SIZE - 1);
187                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188                 kunmap_atomic(kaddr, KM_USER0);
189                 page_cache_release(page);
190         }
191         btrfs_mark_buffer_dirty(leaf);
192         btrfs_free_path(path);
193
194         /*
195          * we're an inline extent, so nobody can
196          * extend the file past i_size without locking
197          * a page we already have locked.
198          *
199          * We must do any isize and inode updates
200          * before we unlock the pages.  Otherwise we
201          * could end up racing with unlink.
202          */
203         BTRFS_I(inode)->disk_i_size = inode->i_size;
204         btrfs_update_inode(trans, root, inode);
205
206         return 0;
207 fail:
208         btrfs_free_path(path);
209         return err;
210 }
211
212
213 /*
214  * conditionally insert an inline extent into the file.  This
215  * does the checks required to make sure the data is small enough
216  * to fit as an inline extent.
217  */
218 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
219                                  struct btrfs_root *root,
220                                  struct inode *inode, u64 start, u64 end,
221                                  size_t compressed_size, int compress_type,
222                                  struct page **compressed_pages)
223 {
224         u64 isize = i_size_read(inode);
225         u64 actual_end = min(end + 1, isize);
226         u64 inline_len = actual_end - start;
227         u64 aligned_end = (end + root->sectorsize - 1) &
228                         ~((u64)root->sectorsize - 1);
229         u64 hint_byte;
230         u64 data_len = inline_len;
231         int ret;
232
233         if (compressed_size)
234                 data_len = compressed_size;
235
236         if (start > 0 ||
237             actual_end >= PAGE_CACHE_SIZE ||
238             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239             (!compressed_size &&
240             (actual_end & (root->sectorsize - 1)) == 0) ||
241             end + 1 < isize ||
242             data_len > root->fs_info->max_inline) {
243                 return 1;
244         }
245
246         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
247                                  &hint_byte, 1);
248         BUG_ON(ret);
249
250         if (isize > actual_end)
251                 inline_len = min_t(u64, isize, actual_end);
252         ret = insert_inline_extent(trans, root, inode, start,
253                                    inline_len, compressed_size,
254                                    compress_type, compressed_pages);
255         BUG_ON(ret);
256         btrfs_delalloc_release_metadata(inode, end + 1 - start);
257         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
258         return 0;
259 }
260
261 struct async_extent {
262         u64 start;
263         u64 ram_size;
264         u64 compressed_size;
265         struct page **pages;
266         unsigned long nr_pages;
267         int compress_type;
268         struct list_head list;
269 };
270
271 struct async_cow {
272         struct inode *inode;
273         struct btrfs_root *root;
274         struct page *locked_page;
275         u64 start;
276         u64 end;
277         struct list_head extents;
278         struct btrfs_work work;
279 };
280
281 static noinline int add_async_extent(struct async_cow *cow,
282                                      u64 start, u64 ram_size,
283                                      u64 compressed_size,
284                                      struct page **pages,
285                                      unsigned long nr_pages,
286                                      int compress_type)
287 {
288         struct async_extent *async_extent;
289
290         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
291         BUG_ON(!async_extent);
292         async_extent->start = start;
293         async_extent->ram_size = ram_size;
294         async_extent->compressed_size = compressed_size;
295         async_extent->pages = pages;
296         async_extent->nr_pages = nr_pages;
297         async_extent->compress_type = compress_type;
298         list_add_tail(&async_extent->list, &cow->extents);
299         return 0;
300 }
301
302 /*
303  * we create compressed extents in two phases.  The first
304  * phase compresses a range of pages that have already been
305  * locked (both pages and state bits are locked).
306  *
307  * This is done inside an ordered work queue, and the compression
308  * is spread across many cpus.  The actual IO submission is step
309  * two, and the ordered work queue takes care of making sure that
310  * happens in the same order things were put onto the queue by
311  * writepages and friends.
312  *
313  * If this code finds it can't get good compression, it puts an
314  * entry onto the work queue to write the uncompressed bytes.  This
315  * makes sure that both compressed inodes and uncompressed inodes
316  * are written in the same order that pdflush sent them down.
317  */
318 static noinline int compress_file_range(struct inode *inode,
319                                         struct page *locked_page,
320                                         u64 start, u64 end,
321                                         struct async_cow *async_cow,
322                                         int *num_added)
323 {
324         struct btrfs_root *root = BTRFS_I(inode)->root;
325         struct btrfs_trans_handle *trans;
326         u64 num_bytes;
327         u64 blocksize = root->sectorsize;
328         u64 actual_end;
329         u64 isize = i_size_read(inode);
330         int ret = 0;
331         struct page **pages = NULL;
332         unsigned long nr_pages;
333         unsigned long nr_pages_ret = 0;
334         unsigned long total_compressed = 0;
335         unsigned long total_in = 0;
336         unsigned long max_compressed = 128 * 1024;
337         unsigned long max_uncompressed = 128 * 1024;
338         int i;
339         int will_compress;
340         int compress_type = root->fs_info->compress_type;
341
342         actual_end = min_t(u64, isize, end + 1);
343 again:
344         will_compress = 0;
345         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
347
348         /*
349          * we don't want to send crud past the end of i_size through
350          * compression, that's just a waste of CPU time.  So, if the
351          * end of the file is before the start of our current
352          * requested range of bytes, we bail out to the uncompressed
353          * cleanup code that can deal with all of this.
354          *
355          * It isn't really the fastest way to fix things, but this is a
356          * very uncommon corner.
357          */
358         if (actual_end <= start)
359                 goto cleanup_and_bail_uncompressed;
360
361         total_compressed = actual_end - start;
362
363         /* we want to make sure that amount of ram required to uncompress
364          * an extent is reasonable, so we limit the total size in ram
365          * of a compressed extent to 128k.  This is a crucial number
366          * because it also controls how easily we can spread reads across
367          * cpus for decompression.
368          *
369          * We also want to make sure the amount of IO required to do
370          * a random read is reasonably small, so we limit the size of
371          * a compressed extent to 128k.
372          */
373         total_compressed = min(total_compressed, max_uncompressed);
374         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
375         num_bytes = max(blocksize,  num_bytes);
376         total_in = 0;
377         ret = 0;
378
379         /*
380          * we do compression for mount -o compress and when the
381          * inode has not been flagged as nocompress.  This flag can
382          * change at any time if we discover bad compression ratios.
383          */
384         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
385             (btrfs_test_opt(root, COMPRESS) ||
386              (BTRFS_I(inode)->force_compress) ||
387              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
388                 WARN_ON(pages);
389                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390                 BUG_ON(!pages);
391
392                 if (BTRFS_I(inode)->force_compress)
393                         compress_type = BTRFS_I(inode)->force_compress;
394
395                 ret = btrfs_compress_pages(compress_type,
396                                            inode->i_mapping, start,
397                                            total_compressed, pages,
398                                            nr_pages, &nr_pages_ret,
399                                            &total_in,
400                                            &total_compressed,
401                                            max_compressed);
402
403                 if (!ret) {
404                         unsigned long offset = total_compressed &
405                                 (PAGE_CACHE_SIZE - 1);
406                         struct page *page = pages[nr_pages_ret - 1];
407                         char *kaddr;
408
409                         /* zero the tail end of the last page, we might be
410                          * sending it down to disk
411                          */
412                         if (offset) {
413                                 kaddr = kmap_atomic(page, KM_USER0);
414                                 memset(kaddr + offset, 0,
415                                        PAGE_CACHE_SIZE - offset);
416                                 kunmap_atomic(kaddr, KM_USER0);
417                         }
418                         will_compress = 1;
419                 }
420         }
421         if (start == 0) {
422                 trans = btrfs_join_transaction(root, 1);
423                 BUG_ON(IS_ERR(trans));
424                 btrfs_set_trans_block_group(trans, inode);
425                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
426
427                 /* lets try to make an inline extent */
428                 if (ret || total_in < (actual_end - start)) {
429                         /* we didn't compress the entire range, try
430                          * to make an uncompressed inline extent.
431                          */
432                         ret = cow_file_range_inline(trans, root, inode,
433                                                     start, end, 0, 0, NULL);
434                 } else {
435                         /* try making a compressed inline extent */
436                         ret = cow_file_range_inline(trans, root, inode,
437                                                     start, end,
438                                                     total_compressed,
439                                                     compress_type, pages);
440                 }
441                 if (ret == 0) {
442                         /*
443                          * inline extent creation worked, we don't need
444                          * to create any more async work items.  Unlock
445                          * and free up our temp pages.
446                          */
447                         extent_clear_unlock_delalloc(inode,
448                              &BTRFS_I(inode)->io_tree,
449                              start, end, NULL,
450                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
451                              EXTENT_CLEAR_DELALLOC |
452                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
453
454                         btrfs_end_transaction(trans, root);
455                         goto free_pages_out;
456                 }
457                 btrfs_end_transaction(trans, root);
458         }
459
460         if (will_compress) {
461                 /*
462                  * we aren't doing an inline extent round the compressed size
463                  * up to a block size boundary so the allocator does sane
464                  * things
465                  */
466                 total_compressed = (total_compressed + blocksize - 1) &
467                         ~(blocksize - 1);
468
469                 /*
470                  * one last check to make sure the compression is really a
471                  * win, compare the page count read with the blocks on disk
472                  */
473                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
474                         ~(PAGE_CACHE_SIZE - 1);
475                 if (total_compressed >= total_in) {
476                         will_compress = 0;
477                 } else {
478                         num_bytes = total_in;
479                 }
480         }
481         if (!will_compress && pages) {
482                 /*
483                  * the compression code ran but failed to make things smaller,
484                  * free any pages it allocated and our page pointer array
485                  */
486                 for (i = 0; i < nr_pages_ret; i++) {
487                         WARN_ON(pages[i]->mapping);
488                         page_cache_release(pages[i]);
489                 }
490                 kfree(pages);
491                 pages = NULL;
492                 total_compressed = 0;
493                 nr_pages_ret = 0;
494
495                 /* flag the file so we don't compress in the future */
496                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
497                     !(BTRFS_I(inode)->force_compress)) {
498                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
499                 }
500         }
501         if (will_compress) {
502                 *num_added += 1;
503
504                 /* the async work queues will take care of doing actual
505                  * allocation on disk for these compressed pages,
506                  * and will submit them to the elevator.
507                  */
508                 add_async_extent(async_cow, start, num_bytes,
509                                  total_compressed, pages, nr_pages_ret,
510                                  compress_type);
511
512                 if (start + num_bytes < end) {
513                         start += num_bytes;
514                         pages = NULL;
515                         cond_resched();
516                         goto again;
517                 }
518         } else {
519 cleanup_and_bail_uncompressed:
520                 /*
521                  * No compression, but we still need to write the pages in
522                  * the file we've been given so far.  redirty the locked
523                  * page if it corresponds to our extent and set things up
524                  * for the async work queue to run cow_file_range to do
525                  * the normal delalloc dance
526                  */
527                 if (page_offset(locked_page) >= start &&
528                     page_offset(locked_page) <= end) {
529                         __set_page_dirty_nobuffers(locked_page);
530                         /* unlocked later on in the async handlers */
531                 }
532                 add_async_extent(async_cow, start, end - start + 1,
533                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
534                 *num_added += 1;
535         }
536
537 out:
538         return 0;
539
540 free_pages_out:
541         for (i = 0; i < nr_pages_ret; i++) {
542                 WARN_ON(pages[i]->mapping);
543                 page_cache_release(pages[i]);
544         }
545         kfree(pages);
546
547         goto out;
548 }
549
550 /*
551  * phase two of compressed writeback.  This is the ordered portion
552  * of the code, which only gets called in the order the work was
553  * queued.  We walk all the async extents created by compress_file_range
554  * and send them down to the disk.
555  */
556 static noinline int submit_compressed_extents(struct inode *inode,
557                                               struct async_cow *async_cow)
558 {
559         struct async_extent *async_extent;
560         u64 alloc_hint = 0;
561         struct btrfs_trans_handle *trans;
562         struct btrfs_key ins;
563         struct extent_map *em;
564         struct btrfs_root *root = BTRFS_I(inode)->root;
565         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566         struct extent_io_tree *io_tree;
567         int ret = 0;
568
569         if (list_empty(&async_cow->extents))
570                 return 0;
571
572
573         while (!list_empty(&async_cow->extents)) {
574                 async_extent = list_entry(async_cow->extents.next,
575                                           struct async_extent, list);
576                 list_del(&async_extent->list);
577
578                 io_tree = &BTRFS_I(inode)->io_tree;
579
580 retry:
581                 /* did the compression code fall back to uncompressed IO? */
582                 if (!async_extent->pages) {
583                         int page_started = 0;
584                         unsigned long nr_written = 0;
585
586                         lock_extent(io_tree, async_extent->start,
587                                          async_extent->start +
588                                          async_extent->ram_size - 1, GFP_NOFS);
589
590                         /* allocate blocks */
591                         ret = cow_file_range(inode, async_cow->locked_page,
592                                              async_extent->start,
593                                              async_extent->start +
594                                              async_extent->ram_size - 1,
595                                              &page_started, &nr_written, 0);
596
597                         /*
598                          * if page_started, cow_file_range inserted an
599                          * inline extent and took care of all the unlocking
600                          * and IO for us.  Otherwise, we need to submit
601                          * all those pages down to the drive.
602                          */
603                         if (!page_started && !ret)
604                                 extent_write_locked_range(io_tree,
605                                                   inode, async_extent->start,
606                                                   async_extent->start +
607                                                   async_extent->ram_size - 1,
608                                                   btrfs_get_extent,
609                                                   WB_SYNC_ALL);
610                         kfree(async_extent);
611                         cond_resched();
612                         continue;
613                 }
614
615                 lock_extent(io_tree, async_extent->start,
616                             async_extent->start + async_extent->ram_size - 1,
617                             GFP_NOFS);
618
619                 trans = btrfs_join_transaction(root, 1);
620                 BUG_ON(IS_ERR(trans));
621                 ret = btrfs_reserve_extent(trans, root,
622                                            async_extent->compressed_size,
623                                            async_extent->compressed_size,
624                                            0, alloc_hint,
625                                            (u64)-1, &ins, 1);
626                 btrfs_end_transaction(trans, root);
627
628                 if (ret) {
629                         int i;
630                         for (i = 0; i < async_extent->nr_pages; i++) {
631                                 WARN_ON(async_extent->pages[i]->mapping);
632                                 page_cache_release(async_extent->pages[i]);
633                         }
634                         kfree(async_extent->pages);
635                         async_extent->nr_pages = 0;
636                         async_extent->pages = NULL;
637                         unlock_extent(io_tree, async_extent->start,
638                                       async_extent->start +
639                                       async_extent->ram_size - 1, GFP_NOFS);
640                         goto retry;
641                 }
642
643                 /*
644                  * here we're doing allocation and writeback of the
645                  * compressed pages
646                  */
647                 btrfs_drop_extent_cache(inode, async_extent->start,
648                                         async_extent->start +
649                                         async_extent->ram_size - 1, 0);
650
651                 em = alloc_extent_map(GFP_NOFS);
652                 BUG_ON(!em);
653                 em->start = async_extent->start;
654                 em->len = async_extent->ram_size;
655                 em->orig_start = em->start;
656
657                 em->block_start = ins.objectid;
658                 em->block_len = ins.offset;
659                 em->bdev = root->fs_info->fs_devices->latest_bdev;
660                 em->compress_type = async_extent->compress_type;
661                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
662                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
663
664                 while (1) {
665                         write_lock(&em_tree->lock);
666                         ret = add_extent_mapping(em_tree, em);
667                         write_unlock(&em_tree->lock);
668                         if (ret != -EEXIST) {
669                                 free_extent_map(em);
670                                 break;
671                         }
672                         btrfs_drop_extent_cache(inode, async_extent->start,
673                                                 async_extent->start +
674                                                 async_extent->ram_size - 1, 0);
675                 }
676
677                 ret = btrfs_add_ordered_extent_compress(inode,
678                                                 async_extent->start,
679                                                 ins.objectid,
680                                                 async_extent->ram_size,
681                                                 ins.offset,
682                                                 BTRFS_ORDERED_COMPRESSED,
683                                                 async_extent->compress_type);
684                 BUG_ON(ret);
685
686                 /*
687                  * clear dirty, set writeback and unlock the pages.
688                  */
689                 extent_clear_unlock_delalloc(inode,
690                                 &BTRFS_I(inode)->io_tree,
691                                 async_extent->start,
692                                 async_extent->start +
693                                 async_extent->ram_size - 1,
694                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
695                                 EXTENT_CLEAR_UNLOCK |
696                                 EXTENT_CLEAR_DELALLOC |
697                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
698
699                 ret = btrfs_submit_compressed_write(inode,
700                                     async_extent->start,
701                                     async_extent->ram_size,
702                                     ins.objectid,
703                                     ins.offset, async_extent->pages,
704                                     async_extent->nr_pages);
705
706                 BUG_ON(ret);
707                 alloc_hint = ins.objectid + ins.offset;
708                 kfree(async_extent);
709                 cond_resched();
710         }
711
712         return 0;
713 }
714
715 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
716                                       u64 num_bytes)
717 {
718         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719         struct extent_map *em;
720         u64 alloc_hint = 0;
721
722         read_lock(&em_tree->lock);
723         em = search_extent_mapping(em_tree, start, num_bytes);
724         if (em) {
725                 /*
726                  * if block start isn't an actual block number then find the
727                  * first block in this inode and use that as a hint.  If that
728                  * block is also bogus then just don't worry about it.
729                  */
730                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
731                         free_extent_map(em);
732                         em = search_extent_mapping(em_tree, 0, 0);
733                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
734                                 alloc_hint = em->block_start;
735                         if (em)
736                                 free_extent_map(em);
737                 } else {
738                         alloc_hint = em->block_start;
739                         free_extent_map(em);
740                 }
741         }
742         read_unlock(&em_tree->lock);
743
744         return alloc_hint;
745 }
746
747 /*
748  * when extent_io.c finds a delayed allocation range in the file,
749  * the call backs end up in this code.  The basic idea is to
750  * allocate extents on disk for the range, and create ordered data structs
751  * in ram to track those extents.
752  *
753  * locked_page is the page that writepage had locked already.  We use
754  * it to make sure we don't do extra locks or unlocks.
755  *
756  * *page_started is set to one if we unlock locked_page and do everything
757  * required to start IO on it.  It may be clean and already done with
758  * IO when we return.
759  */
760 static noinline int cow_file_range(struct inode *inode,
761                                    struct page *locked_page,
762                                    u64 start, u64 end, int *page_started,
763                                    unsigned long *nr_written,
764                                    int unlock)
765 {
766         struct btrfs_root *root = BTRFS_I(inode)->root;
767         struct btrfs_trans_handle *trans;
768         u64 alloc_hint = 0;
769         u64 num_bytes;
770         unsigned long ram_size;
771         u64 disk_num_bytes;
772         u64 cur_alloc_size;
773         u64 blocksize = root->sectorsize;
774         struct btrfs_key ins;
775         struct extent_map *em;
776         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777         int ret = 0;
778
779         BUG_ON(root == root->fs_info->tree_root);
780         trans = btrfs_join_transaction(root, 1);
781         BUG_ON(IS_ERR(trans));
782         btrfs_set_trans_block_group(trans, inode);
783         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
784
785         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
786         num_bytes = max(blocksize,  num_bytes);
787         disk_num_bytes = num_bytes;
788         ret = 0;
789
790         if (start == 0) {
791                 /* lets try to make an inline extent */
792                 ret = cow_file_range_inline(trans, root, inode,
793                                             start, end, 0, 0, NULL);
794                 if (ret == 0) {
795                         extent_clear_unlock_delalloc(inode,
796                                      &BTRFS_I(inode)->io_tree,
797                                      start, end, NULL,
798                                      EXTENT_CLEAR_UNLOCK_PAGE |
799                                      EXTENT_CLEAR_UNLOCK |
800                                      EXTENT_CLEAR_DELALLOC |
801                                      EXTENT_CLEAR_DIRTY |
802                                      EXTENT_SET_WRITEBACK |
803                                      EXTENT_END_WRITEBACK);
804
805                         *nr_written = *nr_written +
806                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
807                         *page_started = 1;
808                         ret = 0;
809                         goto out;
810                 }
811         }
812
813         BUG_ON(disk_num_bytes >
814                btrfs_super_total_bytes(&root->fs_info->super_copy));
815
816         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
817         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
818
819         while (disk_num_bytes > 0) {
820                 unsigned long op;
821
822                 cur_alloc_size = disk_num_bytes;
823                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
824                                            root->sectorsize, 0, alloc_hint,
825                                            (u64)-1, &ins, 1);
826                 BUG_ON(ret);
827
828                 em = alloc_extent_map(GFP_NOFS);
829                 BUG_ON(!em);
830                 em->start = start;
831                 em->orig_start = em->start;
832                 ram_size = ins.offset;
833                 em->len = ins.offset;
834
835                 em->block_start = ins.objectid;
836                 em->block_len = ins.offset;
837                 em->bdev = root->fs_info->fs_devices->latest_bdev;
838                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
839
840                 while (1) {
841                         write_lock(&em_tree->lock);
842                         ret = add_extent_mapping(em_tree, em);
843                         write_unlock(&em_tree->lock);
844                         if (ret != -EEXIST) {
845                                 free_extent_map(em);
846                                 break;
847                         }
848                         btrfs_drop_extent_cache(inode, start,
849                                                 start + ram_size - 1, 0);
850                 }
851
852                 cur_alloc_size = ins.offset;
853                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
854                                                ram_size, cur_alloc_size, 0);
855                 BUG_ON(ret);
856
857                 if (root->root_key.objectid ==
858                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
859                         ret = btrfs_reloc_clone_csums(inode, start,
860                                                       cur_alloc_size);
861                         BUG_ON(ret);
862                 }
863
864                 if (disk_num_bytes < cur_alloc_size)
865                         break;
866
867                 /* we're not doing compressed IO, don't unlock the first
868                  * page (which the caller expects to stay locked), don't
869                  * clear any dirty bits and don't set any writeback bits
870                  *
871                  * Do set the Private2 bit so we know this page was properly
872                  * setup for writepage
873                  */
874                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
875                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
876                         EXTENT_SET_PRIVATE2;
877
878                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
879                                              start, start + ram_size - 1,
880                                              locked_page, op);
881                 disk_num_bytes -= cur_alloc_size;
882                 num_bytes -= cur_alloc_size;
883                 alloc_hint = ins.objectid + ins.offset;
884                 start += cur_alloc_size;
885         }
886 out:
887         ret = 0;
888         btrfs_end_transaction(trans, root);
889
890         return ret;
891 }
892
893 /*
894  * work queue call back to started compression on a file and pages
895  */
896 static noinline void async_cow_start(struct btrfs_work *work)
897 {
898         struct async_cow *async_cow;
899         int num_added = 0;
900         async_cow = container_of(work, struct async_cow, work);
901
902         compress_file_range(async_cow->inode, async_cow->locked_page,
903                             async_cow->start, async_cow->end, async_cow,
904                             &num_added);
905         if (num_added == 0)
906                 async_cow->inode = NULL;
907 }
908
909 /*
910  * work queue call back to submit previously compressed pages
911  */
912 static noinline void async_cow_submit(struct btrfs_work *work)
913 {
914         struct async_cow *async_cow;
915         struct btrfs_root *root;
916         unsigned long nr_pages;
917
918         async_cow = container_of(work, struct async_cow, work);
919
920         root = async_cow->root;
921         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
922                 PAGE_CACHE_SHIFT;
923
924         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
925
926         if (atomic_read(&root->fs_info->async_delalloc_pages) <
927             5 * 1042 * 1024 &&
928             waitqueue_active(&root->fs_info->async_submit_wait))
929                 wake_up(&root->fs_info->async_submit_wait);
930
931         if (async_cow->inode)
932                 submit_compressed_extents(async_cow->inode, async_cow);
933 }
934
935 static noinline void async_cow_free(struct btrfs_work *work)
936 {
937         struct async_cow *async_cow;
938         async_cow = container_of(work, struct async_cow, work);
939         kfree(async_cow);
940 }
941
942 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
943                                 u64 start, u64 end, int *page_started,
944                                 unsigned long *nr_written)
945 {
946         struct async_cow *async_cow;
947         struct btrfs_root *root = BTRFS_I(inode)->root;
948         unsigned long nr_pages;
949         u64 cur_end;
950         int limit = 10 * 1024 * 1042;
951
952         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
953                          1, 0, NULL, GFP_NOFS);
954         while (start < end) {
955                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
956                 async_cow->inode = inode;
957                 async_cow->root = root;
958                 async_cow->locked_page = locked_page;
959                 async_cow->start = start;
960
961                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
962                         cur_end = end;
963                 else
964                         cur_end = min(end, start + 512 * 1024 - 1);
965
966                 async_cow->end = cur_end;
967                 INIT_LIST_HEAD(&async_cow->extents);
968
969                 async_cow->work.func = async_cow_start;
970                 async_cow->work.ordered_func = async_cow_submit;
971                 async_cow->work.ordered_free = async_cow_free;
972                 async_cow->work.flags = 0;
973
974                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
975                         PAGE_CACHE_SHIFT;
976                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
977
978                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
979                                    &async_cow->work);
980
981                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
982                         wait_event(root->fs_info->async_submit_wait,
983                            (atomic_read(&root->fs_info->async_delalloc_pages) <
984                             limit));
985                 }
986
987                 while (atomic_read(&root->fs_info->async_submit_draining) &&
988                       atomic_read(&root->fs_info->async_delalloc_pages)) {
989                         wait_event(root->fs_info->async_submit_wait,
990                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
991                            0));
992                 }
993
994                 *nr_written += nr_pages;
995                 start = cur_end + 1;
996         }
997         *page_started = 1;
998         return 0;
999 }
1000
1001 static noinline int csum_exist_in_range(struct btrfs_root *root,
1002                                         u64 bytenr, u64 num_bytes)
1003 {
1004         int ret;
1005         struct btrfs_ordered_sum *sums;
1006         LIST_HEAD(list);
1007
1008         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1009                                        bytenr + num_bytes - 1, &list);
1010         if (ret == 0 && list_empty(&list))
1011                 return 0;
1012
1013         while (!list_empty(&list)) {
1014                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1015                 list_del(&sums->list);
1016                 kfree(sums);
1017         }
1018         return 1;
1019 }
1020
1021 /*
1022  * when nowcow writeback call back.  This checks for snapshots or COW copies
1023  * of the extents that exist in the file, and COWs the file as required.
1024  *
1025  * If no cow copies or snapshots exist, we write directly to the existing
1026  * blocks on disk
1027  */
1028 static noinline int run_delalloc_nocow(struct inode *inode,
1029                                        struct page *locked_page,
1030                               u64 start, u64 end, int *page_started, int force,
1031                               unsigned long *nr_written)
1032 {
1033         struct btrfs_root *root = BTRFS_I(inode)->root;
1034         struct btrfs_trans_handle *trans;
1035         struct extent_buffer *leaf;
1036         struct btrfs_path *path;
1037         struct btrfs_file_extent_item *fi;
1038         struct btrfs_key found_key;
1039         u64 cow_start;
1040         u64 cur_offset;
1041         u64 extent_end;
1042         u64 extent_offset;
1043         u64 disk_bytenr;
1044         u64 num_bytes;
1045         int extent_type;
1046         int ret;
1047         int type;
1048         int nocow;
1049         int check_prev = 1;
1050         bool nolock = false;
1051
1052         path = btrfs_alloc_path();
1053         BUG_ON(!path);
1054         if (root == root->fs_info->tree_root) {
1055                 nolock = true;
1056                 trans = btrfs_join_transaction_nolock(root, 1);
1057         } else {
1058                 trans = btrfs_join_transaction(root, 1);
1059         }
1060         BUG_ON(IS_ERR(trans));
1061
1062         cow_start = (u64)-1;
1063         cur_offset = start;
1064         while (1) {
1065                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1066                                                cur_offset, 0);
1067                 BUG_ON(ret < 0);
1068                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1069                         leaf = path->nodes[0];
1070                         btrfs_item_key_to_cpu(leaf, &found_key,
1071                                               path->slots[0] - 1);
1072                         if (found_key.objectid == inode->i_ino &&
1073                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1074                                 path->slots[0]--;
1075                 }
1076                 check_prev = 0;
1077 next_slot:
1078                 leaf = path->nodes[0];
1079                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1080                         ret = btrfs_next_leaf(root, path);
1081                         if (ret < 0)
1082                                 BUG_ON(1);
1083                         if (ret > 0)
1084                                 break;
1085                         leaf = path->nodes[0];
1086                 }
1087
1088                 nocow = 0;
1089                 disk_bytenr = 0;
1090                 num_bytes = 0;
1091                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1092
1093                 if (found_key.objectid > inode->i_ino ||
1094                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1095                     found_key.offset > end)
1096                         break;
1097
1098                 if (found_key.offset > cur_offset) {
1099                         extent_end = found_key.offset;
1100                         extent_type = 0;
1101                         goto out_check;
1102                 }
1103
1104                 fi = btrfs_item_ptr(leaf, path->slots[0],
1105                                     struct btrfs_file_extent_item);
1106                 extent_type = btrfs_file_extent_type(leaf, fi);
1107
1108                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1109                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1110                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1111                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1112                         extent_end = found_key.offset +
1113                                 btrfs_file_extent_num_bytes(leaf, fi);
1114                         if (extent_end <= start) {
1115                                 path->slots[0]++;
1116                                 goto next_slot;
1117                         }
1118                         if (disk_bytenr == 0)
1119                                 goto out_check;
1120                         if (btrfs_file_extent_compression(leaf, fi) ||
1121                             btrfs_file_extent_encryption(leaf, fi) ||
1122                             btrfs_file_extent_other_encoding(leaf, fi))
1123                                 goto out_check;
1124                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1125                                 goto out_check;
1126                         if (btrfs_extent_readonly(root, disk_bytenr))
1127                                 goto out_check;
1128                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1129                                                   found_key.offset -
1130                                                   extent_offset, disk_bytenr))
1131                                 goto out_check;
1132                         disk_bytenr += extent_offset;
1133                         disk_bytenr += cur_offset - found_key.offset;
1134                         num_bytes = min(end + 1, extent_end) - cur_offset;
1135                         /*
1136                          * force cow if csum exists in the range.
1137                          * this ensure that csum for a given extent are
1138                          * either valid or do not exist.
1139                          */
1140                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1141                                 goto out_check;
1142                         nocow = 1;
1143                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1144                         extent_end = found_key.offset +
1145                                 btrfs_file_extent_inline_len(leaf, fi);
1146                         extent_end = ALIGN(extent_end, root->sectorsize);
1147                 } else {
1148                         BUG_ON(1);
1149                 }
1150 out_check:
1151                 if (extent_end <= start) {
1152                         path->slots[0]++;
1153                         goto next_slot;
1154                 }
1155                 if (!nocow) {
1156                         if (cow_start == (u64)-1)
1157                                 cow_start = cur_offset;
1158                         cur_offset = extent_end;
1159                         if (cur_offset > end)
1160                                 break;
1161                         path->slots[0]++;
1162                         goto next_slot;
1163                 }
1164
1165                 btrfs_release_path(root, path);
1166                 if (cow_start != (u64)-1) {
1167                         ret = cow_file_range(inode, locked_page, cow_start,
1168                                         found_key.offset - 1, page_started,
1169                                         nr_written, 1);
1170                         BUG_ON(ret);
1171                         cow_start = (u64)-1;
1172                 }
1173
1174                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1175                         struct extent_map *em;
1176                         struct extent_map_tree *em_tree;
1177                         em_tree = &BTRFS_I(inode)->extent_tree;
1178                         em = alloc_extent_map(GFP_NOFS);
1179                         BUG_ON(!em);
1180                         em->start = cur_offset;
1181                         em->orig_start = em->start;
1182                         em->len = num_bytes;
1183                         em->block_len = num_bytes;
1184                         em->block_start = disk_bytenr;
1185                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1186                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1187                         while (1) {
1188                                 write_lock(&em_tree->lock);
1189                                 ret = add_extent_mapping(em_tree, em);
1190                                 write_unlock(&em_tree->lock);
1191                                 if (ret != -EEXIST) {
1192                                         free_extent_map(em);
1193                                         break;
1194                                 }
1195                                 btrfs_drop_extent_cache(inode, em->start,
1196                                                 em->start + em->len - 1, 0);
1197                         }
1198                         type = BTRFS_ORDERED_PREALLOC;
1199                 } else {
1200                         type = BTRFS_ORDERED_NOCOW;
1201                 }
1202
1203                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1204                                                num_bytes, num_bytes, type);
1205                 BUG_ON(ret);
1206
1207                 if (root->root_key.objectid ==
1208                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1209                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1210                                                       num_bytes);
1211                         BUG_ON(ret);
1212                 }
1213
1214                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1215                                 cur_offset, cur_offset + num_bytes - 1,
1216                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1217                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1218                                 EXTENT_SET_PRIVATE2);
1219                 cur_offset = extent_end;
1220                 if (cur_offset > end)
1221                         break;
1222         }
1223         btrfs_release_path(root, path);
1224
1225         if (cur_offset <= end && cow_start == (u64)-1)
1226                 cow_start = cur_offset;
1227         if (cow_start != (u64)-1) {
1228                 ret = cow_file_range(inode, locked_page, cow_start, end,
1229                                      page_started, nr_written, 1);
1230                 BUG_ON(ret);
1231         }
1232
1233         if (nolock) {
1234                 ret = btrfs_end_transaction_nolock(trans, root);
1235                 BUG_ON(ret);
1236         } else {
1237                 ret = btrfs_end_transaction(trans, root);
1238                 BUG_ON(ret);
1239         }
1240         btrfs_free_path(path);
1241         return 0;
1242 }
1243
1244 /*
1245  * extent_io.c call back to do delayed allocation processing
1246  */
1247 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1248                               u64 start, u64 end, int *page_started,
1249                               unsigned long *nr_written)
1250 {
1251         int ret;
1252         struct btrfs_root *root = BTRFS_I(inode)->root;
1253
1254         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1255                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1256                                          page_started, 1, nr_written);
1257         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1258                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1259                                          page_started, 0, nr_written);
1260         else if (!btrfs_test_opt(root, COMPRESS) &&
1261                  !(BTRFS_I(inode)->force_compress) &&
1262                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1263                 ret = cow_file_range(inode, locked_page, start, end,
1264                                       page_started, nr_written, 1);
1265         else
1266                 ret = cow_file_range_async(inode, locked_page, start, end,
1267                                            page_started, nr_written);
1268         return ret;
1269 }
1270
1271 static int btrfs_split_extent_hook(struct inode *inode,
1272                                    struct extent_state *orig, u64 split)
1273 {
1274         /* not delalloc, ignore it */
1275         if (!(orig->state & EXTENT_DELALLOC))
1276                 return 0;
1277
1278         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1279         return 0;
1280 }
1281
1282 /*
1283  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1284  * extents so we can keep track of new extents that are just merged onto old
1285  * extents, such as when we are doing sequential writes, so we can properly
1286  * account for the metadata space we'll need.
1287  */
1288 static int btrfs_merge_extent_hook(struct inode *inode,
1289                                    struct extent_state *new,
1290                                    struct extent_state *other)
1291 {
1292         /* not delalloc, ignore it */
1293         if (!(other->state & EXTENT_DELALLOC))
1294                 return 0;
1295
1296         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1297         return 0;
1298 }
1299
1300 /*
1301  * extent_io.c set_bit_hook, used to track delayed allocation
1302  * bytes in this file, and to maintain the list of inodes that
1303  * have pending delalloc work to be done.
1304  */
1305 static int btrfs_set_bit_hook(struct inode *inode,
1306                               struct extent_state *state, int *bits)
1307 {
1308
1309         /*
1310          * set_bit and clear bit hooks normally require _irqsave/restore
1311          * but in this case, we are only testeing for the DELALLOC
1312          * bit, which is only set or cleared with irqs on
1313          */
1314         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1315                 struct btrfs_root *root = BTRFS_I(inode)->root;
1316                 u64 len = state->end + 1 - state->start;
1317                 int do_list = (root->root_key.objectid !=
1318                                BTRFS_ROOT_TREE_OBJECTID);
1319
1320                 if (*bits & EXTENT_FIRST_DELALLOC)
1321                         *bits &= ~EXTENT_FIRST_DELALLOC;
1322                 else
1323                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1324
1325                 spin_lock(&root->fs_info->delalloc_lock);
1326                 BTRFS_I(inode)->delalloc_bytes += len;
1327                 root->fs_info->delalloc_bytes += len;
1328                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1329                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1330                                       &root->fs_info->delalloc_inodes);
1331                 }
1332                 spin_unlock(&root->fs_info->delalloc_lock);
1333         }
1334         return 0;
1335 }
1336
1337 /*
1338  * extent_io.c clear_bit_hook, see set_bit_hook for why
1339  */
1340 static int btrfs_clear_bit_hook(struct inode *inode,
1341                                 struct extent_state *state, int *bits)
1342 {
1343         /*
1344          * set_bit and clear bit hooks normally require _irqsave/restore
1345          * but in this case, we are only testeing for the DELALLOC
1346          * bit, which is only set or cleared with irqs on
1347          */
1348         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1349                 struct btrfs_root *root = BTRFS_I(inode)->root;
1350                 u64 len = state->end + 1 - state->start;
1351                 int do_list = (root->root_key.objectid !=
1352                                BTRFS_ROOT_TREE_OBJECTID);
1353
1354                 if (*bits & EXTENT_FIRST_DELALLOC)
1355                         *bits &= ~EXTENT_FIRST_DELALLOC;
1356                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1357                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1358
1359                 if (*bits & EXTENT_DO_ACCOUNTING)
1360                         btrfs_delalloc_release_metadata(inode, len);
1361
1362                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1363                     && do_list)
1364                         btrfs_free_reserved_data_space(inode, len);
1365
1366                 spin_lock(&root->fs_info->delalloc_lock);
1367                 root->fs_info->delalloc_bytes -= len;
1368                 BTRFS_I(inode)->delalloc_bytes -= len;
1369
1370                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1371                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1372                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1373                 }
1374                 spin_unlock(&root->fs_info->delalloc_lock);
1375         }
1376         return 0;
1377 }
1378
1379 /*
1380  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1381  * we don't create bios that span stripes or chunks
1382  */
1383 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1384                          size_t size, struct bio *bio,
1385                          unsigned long bio_flags)
1386 {
1387         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1388         struct btrfs_mapping_tree *map_tree;
1389         u64 logical = (u64)bio->bi_sector << 9;
1390         u64 length = 0;
1391         u64 map_length;
1392         int ret;
1393
1394         if (bio_flags & EXTENT_BIO_COMPRESSED)
1395                 return 0;
1396
1397         length = bio->bi_size;
1398         map_tree = &root->fs_info->mapping_tree;
1399         map_length = length;
1400         ret = btrfs_map_block(map_tree, READ, logical,
1401                               &map_length, NULL, 0);
1402
1403         if (map_length < length + size)
1404                 return 1;
1405         return ret;
1406 }
1407
1408 /*
1409  * in order to insert checksums into the metadata in large chunks,
1410  * we wait until bio submission time.   All the pages in the bio are
1411  * checksummed and sums are attached onto the ordered extent record.
1412  *
1413  * At IO completion time the cums attached on the ordered extent record
1414  * are inserted into the btree
1415  */
1416 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1417                                     struct bio *bio, int mirror_num,
1418                                     unsigned long bio_flags,
1419                                     u64 bio_offset)
1420 {
1421         struct btrfs_root *root = BTRFS_I(inode)->root;
1422         int ret = 0;
1423
1424         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1425         BUG_ON(ret);
1426         return 0;
1427 }
1428
1429 /*
1430  * in order to insert checksums into the metadata in large chunks,
1431  * we wait until bio submission time.   All the pages in the bio are
1432  * checksummed and sums are attached onto the ordered extent record.
1433  *
1434  * At IO completion time the cums attached on the ordered extent record
1435  * are inserted into the btree
1436  */
1437 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1438                           int mirror_num, unsigned long bio_flags,
1439                           u64 bio_offset)
1440 {
1441         struct btrfs_root *root = BTRFS_I(inode)->root;
1442         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1443 }
1444
1445 /*
1446  * extent_io.c submission hook. This does the right thing for csum calculation
1447  * on write, or reading the csums from the tree before a read
1448  */
1449 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1450                           int mirror_num, unsigned long bio_flags,
1451                           u64 bio_offset)
1452 {
1453         struct btrfs_root *root = BTRFS_I(inode)->root;
1454         int ret = 0;
1455         int skip_sum;
1456
1457         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1458
1459         if (root == root->fs_info->tree_root)
1460                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1461         else
1462                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1463         BUG_ON(ret);
1464
1465         if (!(rw & REQ_WRITE)) {
1466                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1467                         return btrfs_submit_compressed_read(inode, bio,
1468                                                     mirror_num, bio_flags);
1469                 } else if (!skip_sum) {
1470                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1471                         if (ret)
1472                                 return ret;
1473                 }
1474                 goto mapit;
1475         } else if (!skip_sum) {
1476                 /* csum items have already been cloned */
1477                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1478                         goto mapit;
1479                 /* we're doing a write, do the async checksumming */
1480                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1481                                    inode, rw, bio, mirror_num,
1482                                    bio_flags, bio_offset,
1483                                    __btrfs_submit_bio_start,
1484                                    __btrfs_submit_bio_done);
1485         }
1486
1487 mapit:
1488         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1489 }
1490
1491 /*
1492  * given a list of ordered sums record them in the inode.  This happens
1493  * at IO completion time based on sums calculated at bio submission time.
1494  */
1495 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1496                              struct inode *inode, u64 file_offset,
1497                              struct list_head *list)
1498 {
1499         struct btrfs_ordered_sum *sum;
1500
1501         btrfs_set_trans_block_group(trans, inode);
1502
1503         list_for_each_entry(sum, list, list) {
1504                 btrfs_csum_file_blocks(trans,
1505                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1506         }
1507         return 0;
1508 }
1509
1510 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1511                               struct extent_state **cached_state)
1512 {
1513         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514                 WARN_ON(1);
1515         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516                                    cached_state, GFP_NOFS);
1517 }
1518
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521         struct page *page;
1522         struct btrfs_work work;
1523 };
1524
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1526 {
1527         struct btrfs_writepage_fixup *fixup;
1528         struct btrfs_ordered_extent *ordered;
1529         struct extent_state *cached_state = NULL;
1530         struct page *page;
1531         struct inode *inode;
1532         u64 page_start;
1533         u64 page_end;
1534
1535         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1536         page = fixup->page;
1537 again:
1538         lock_page(page);
1539         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1540                 ClearPageChecked(page);
1541                 goto out_page;
1542         }
1543
1544         inode = page->mapping->host;
1545         page_start = page_offset(page);
1546         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1547
1548         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1549                          &cached_state, GFP_NOFS);
1550
1551         /* already ordered? We're done */
1552         if (PagePrivate2(page))
1553                 goto out;
1554
1555         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1556         if (ordered) {
1557                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1558                                      page_end, &cached_state, GFP_NOFS);
1559                 unlock_page(page);
1560                 btrfs_start_ordered_extent(inode, ordered, 1);
1561                 goto again;
1562         }
1563
1564         BUG();
1565         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1566         ClearPageChecked(page);
1567 out:
1568         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1569                              &cached_state, GFP_NOFS);
1570 out_page:
1571         unlock_page(page);
1572         page_cache_release(page);
1573         kfree(fixup);
1574 }
1575
1576 /*
1577  * There are a few paths in the higher layers of the kernel that directly
1578  * set the page dirty bit without asking the filesystem if it is a
1579  * good idea.  This causes problems because we want to make sure COW
1580  * properly happens and the data=ordered rules are followed.
1581  *
1582  * In our case any range that doesn't have the ORDERED bit set
1583  * hasn't been properly setup for IO.  We kick off an async process
1584  * to fix it up.  The async helper will wait for ordered extents, set
1585  * the delalloc bit and make it safe to write the page.
1586  */
1587 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1588 {
1589         struct inode *inode = page->mapping->host;
1590         struct btrfs_writepage_fixup *fixup;
1591         struct btrfs_root *root = BTRFS_I(inode)->root;
1592
1593         /* this page is properly in the ordered list */
1594         if (TestClearPagePrivate2(page))
1595                 return 0;
1596
1597         if (PageChecked(page))
1598                 return -EAGAIN;
1599
1600         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1601         if (!fixup)
1602                 return -EAGAIN;
1603
1604         SetPageChecked(page);
1605         page_cache_get(page);
1606         fixup->work.func = btrfs_writepage_fixup_worker;
1607         fixup->page = page;
1608         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1609         return -EAGAIN;
1610 }
1611
1612 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1613                                        struct inode *inode, u64 file_pos,
1614                                        u64 disk_bytenr, u64 disk_num_bytes,
1615                                        u64 num_bytes, u64 ram_bytes,
1616                                        u8 compression, u8 encryption,
1617                                        u16 other_encoding, int extent_type)
1618 {
1619         struct btrfs_root *root = BTRFS_I(inode)->root;
1620         struct btrfs_file_extent_item *fi;
1621         struct btrfs_path *path;
1622         struct extent_buffer *leaf;
1623         struct btrfs_key ins;
1624         u64 hint;
1625         int ret;
1626
1627         path = btrfs_alloc_path();
1628         BUG_ON(!path);
1629
1630         path->leave_spinning = 1;
1631
1632         /*
1633          * we may be replacing one extent in the tree with another.
1634          * The new extent is pinned in the extent map, and we don't want
1635          * to drop it from the cache until it is completely in the btree.
1636          *
1637          * So, tell btrfs_drop_extents to leave this extent in the cache.
1638          * the caller is expected to unpin it and allow it to be merged
1639          * with the others.
1640          */
1641         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1642                                  &hint, 0);
1643         BUG_ON(ret);
1644
1645         ins.objectid = inode->i_ino;
1646         ins.offset = file_pos;
1647         ins.type = BTRFS_EXTENT_DATA_KEY;
1648         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1649         BUG_ON(ret);
1650         leaf = path->nodes[0];
1651         fi = btrfs_item_ptr(leaf, path->slots[0],
1652                             struct btrfs_file_extent_item);
1653         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1654         btrfs_set_file_extent_type(leaf, fi, extent_type);
1655         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1656         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1657         btrfs_set_file_extent_offset(leaf, fi, 0);
1658         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1659         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1660         btrfs_set_file_extent_compression(leaf, fi, compression);
1661         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1662         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1663
1664         btrfs_unlock_up_safe(path, 1);
1665         btrfs_set_lock_blocking(leaf);
1666
1667         btrfs_mark_buffer_dirty(leaf);
1668
1669         inode_add_bytes(inode, num_bytes);
1670
1671         ins.objectid = disk_bytenr;
1672         ins.offset = disk_num_bytes;
1673         ins.type = BTRFS_EXTENT_ITEM_KEY;
1674         ret = btrfs_alloc_reserved_file_extent(trans, root,
1675                                         root->root_key.objectid,
1676                                         inode->i_ino, file_pos, &ins);
1677         BUG_ON(ret);
1678         btrfs_free_path(path);
1679
1680         return 0;
1681 }
1682
1683 /*
1684  * helper function for btrfs_finish_ordered_io, this
1685  * just reads in some of the csum leaves to prime them into ram
1686  * before we start the transaction.  It limits the amount of btree
1687  * reads required while inside the transaction.
1688  */
1689 /* as ordered data IO finishes, this gets called so we can finish
1690  * an ordered extent if the range of bytes in the file it covers are
1691  * fully written.
1692  */
1693 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1694 {
1695         struct btrfs_root *root = BTRFS_I(inode)->root;
1696         struct btrfs_trans_handle *trans = NULL;
1697         struct btrfs_ordered_extent *ordered_extent = NULL;
1698         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1699         struct extent_state *cached_state = NULL;
1700         int compress_type = 0;
1701         int ret;
1702         bool nolock = false;
1703
1704         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1705                                              end - start + 1);
1706         if (!ret)
1707                 return 0;
1708         BUG_ON(!ordered_extent);
1709
1710         nolock = (root == root->fs_info->tree_root);
1711
1712         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1713                 BUG_ON(!list_empty(&ordered_extent->list));
1714                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715                 if (!ret) {
1716                         if (nolock)
1717                                 trans = btrfs_join_transaction_nolock(root, 1);
1718                         else
1719                                 trans = btrfs_join_transaction(root, 1);
1720                         BUG_ON(IS_ERR(trans));
1721                         btrfs_set_trans_block_group(trans, inode);
1722                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1723                         ret = btrfs_update_inode(trans, root, inode);
1724                         BUG_ON(ret);
1725                 }
1726                 goto out;
1727         }
1728
1729         lock_extent_bits(io_tree, ordered_extent->file_offset,
1730                          ordered_extent->file_offset + ordered_extent->len - 1,
1731                          0, &cached_state, GFP_NOFS);
1732
1733         if (nolock)
1734                 trans = btrfs_join_transaction_nolock(root, 1);
1735         else
1736                 trans = btrfs_join_transaction(root, 1);
1737         BUG_ON(IS_ERR(trans));
1738         btrfs_set_trans_block_group(trans, inode);
1739         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1740
1741         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1742                 compress_type = ordered_extent->compress_type;
1743         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1744                 BUG_ON(compress_type);
1745                 ret = btrfs_mark_extent_written(trans, inode,
1746                                                 ordered_extent->file_offset,
1747                                                 ordered_extent->file_offset +
1748                                                 ordered_extent->len);
1749                 BUG_ON(ret);
1750         } else {
1751                 BUG_ON(root == root->fs_info->tree_root);
1752                 ret = insert_reserved_file_extent(trans, inode,
1753                                                 ordered_extent->file_offset,
1754                                                 ordered_extent->start,
1755                                                 ordered_extent->disk_len,
1756                                                 ordered_extent->len,
1757                                                 ordered_extent->len,
1758                                                 compress_type, 0, 0,
1759                                                 BTRFS_FILE_EXTENT_REG);
1760                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1761                                    ordered_extent->file_offset,
1762                                    ordered_extent->len);
1763                 BUG_ON(ret);
1764         }
1765         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1766                              ordered_extent->file_offset +
1767                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1768
1769         add_pending_csums(trans, inode, ordered_extent->file_offset,
1770                           &ordered_extent->list);
1771
1772         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1773         ret = btrfs_update_inode(trans, root, inode);
1774         BUG_ON(ret);
1775 out:
1776         if (nolock) {
1777                 if (trans)
1778                         btrfs_end_transaction_nolock(trans, root);
1779         } else {
1780                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1781                 if (trans)
1782                         btrfs_end_transaction(trans, root);
1783         }
1784
1785         /* once for us */
1786         btrfs_put_ordered_extent(ordered_extent);
1787         /* once for the tree */
1788         btrfs_put_ordered_extent(ordered_extent);
1789
1790         return 0;
1791 }
1792
1793 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1794                                 struct extent_state *state, int uptodate)
1795 {
1796         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1797
1798         ClearPagePrivate2(page);
1799         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1800 }
1801
1802 /*
1803  * When IO fails, either with EIO or csum verification fails, we
1804  * try other mirrors that might have a good copy of the data.  This
1805  * io_failure_record is used to record state as we go through all the
1806  * mirrors.  If another mirror has good data, the page is set up to date
1807  * and things continue.  If a good mirror can't be found, the original
1808  * bio end_io callback is called to indicate things have failed.
1809  */
1810 struct io_failure_record {
1811         struct page *page;
1812         u64 start;
1813         u64 len;
1814         u64 logical;
1815         unsigned long bio_flags;
1816         int last_mirror;
1817 };
1818
1819 static int btrfs_io_failed_hook(struct bio *failed_bio,
1820                          struct page *page, u64 start, u64 end,
1821                          struct extent_state *state)
1822 {
1823         struct io_failure_record *failrec = NULL;
1824         u64 private;
1825         struct extent_map *em;
1826         struct inode *inode = page->mapping->host;
1827         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1828         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1829         struct bio *bio;
1830         int num_copies;
1831         int ret;
1832         int rw;
1833         u64 logical;
1834
1835         ret = get_state_private(failure_tree, start, &private);
1836         if (ret) {
1837                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1838                 if (!failrec)
1839                         return -ENOMEM;
1840                 failrec->start = start;
1841                 failrec->len = end - start + 1;
1842                 failrec->last_mirror = 0;
1843                 failrec->bio_flags = 0;
1844
1845                 read_lock(&em_tree->lock);
1846                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1847                 if (em->start > start || em->start + em->len < start) {
1848                         free_extent_map(em);
1849                         em = NULL;
1850                 }
1851                 read_unlock(&em_tree->lock);
1852
1853                 if (!em || IS_ERR(em)) {
1854                         kfree(failrec);
1855                         return -EIO;
1856                 }
1857                 logical = start - em->start;
1858                 logical = em->block_start + logical;
1859                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1860                         logical = em->block_start;
1861                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1862                         extent_set_compress_type(&failrec->bio_flags,
1863                                                  em->compress_type);
1864                 }
1865                 failrec->logical = logical;
1866                 free_extent_map(em);
1867                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1868                                 EXTENT_DIRTY, GFP_NOFS);
1869                 set_state_private(failure_tree, start,
1870                                  (u64)(unsigned long)failrec);
1871         } else {
1872                 failrec = (struct io_failure_record *)(unsigned long)private;
1873         }
1874         num_copies = btrfs_num_copies(
1875                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1876                               failrec->logical, failrec->len);
1877         failrec->last_mirror++;
1878         if (!state) {
1879                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1880                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1881                                                     failrec->start,
1882                                                     EXTENT_LOCKED);
1883                 if (state && state->start != failrec->start)
1884                         state = NULL;
1885                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1886         }
1887         if (!state || failrec->last_mirror > num_copies) {
1888                 set_state_private(failure_tree, failrec->start, 0);
1889                 clear_extent_bits(failure_tree, failrec->start,
1890                                   failrec->start + failrec->len - 1,
1891                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1892                 kfree(failrec);
1893                 return -EIO;
1894         }
1895         bio = bio_alloc(GFP_NOFS, 1);
1896         bio->bi_private = state;
1897         bio->bi_end_io = failed_bio->bi_end_io;
1898         bio->bi_sector = failrec->logical >> 9;
1899         bio->bi_bdev = failed_bio->bi_bdev;
1900         bio->bi_size = 0;
1901
1902         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1903         if (failed_bio->bi_rw & REQ_WRITE)
1904                 rw = WRITE;
1905         else
1906                 rw = READ;
1907
1908         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1909                                                       failrec->last_mirror,
1910                                                       failrec->bio_flags, 0);
1911         return ret;
1912 }
1913
1914 /*
1915  * each time an IO finishes, we do a fast check in the IO failure tree
1916  * to see if we need to process or clean up an io_failure_record
1917  */
1918 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1919 {
1920         u64 private;
1921         u64 private_failure;
1922         struct io_failure_record *failure;
1923         int ret;
1924
1925         private = 0;
1926         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1927                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1928                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1929                                         start, &private_failure);
1930                 if (ret == 0) {
1931                         failure = (struct io_failure_record *)(unsigned long)
1932                                    private_failure;
1933                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1934                                           failure->start, 0);
1935                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1936                                           failure->start,
1937                                           failure->start + failure->len - 1,
1938                                           EXTENT_DIRTY | EXTENT_LOCKED,
1939                                           GFP_NOFS);
1940                         kfree(failure);
1941                 }
1942         }
1943         return 0;
1944 }
1945
1946 /*
1947  * when reads are done, we need to check csums to verify the data is correct
1948  * if there's a match, we allow the bio to finish.  If not, we go through
1949  * the io_failure_record routines to find good copies
1950  */
1951 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1952                                struct extent_state *state)
1953 {
1954         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1955         struct inode *inode = page->mapping->host;
1956         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1957         char *kaddr;
1958         u64 private = ~(u32)0;
1959         int ret;
1960         struct btrfs_root *root = BTRFS_I(inode)->root;
1961         u32 csum = ~(u32)0;
1962
1963         if (PageChecked(page)) {
1964                 ClearPageChecked(page);
1965                 goto good;
1966         }
1967
1968         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1969                 return 0;
1970
1971         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1972             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1973                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1974                                   GFP_NOFS);
1975                 return 0;
1976         }
1977
1978         if (state && state->start == start) {
1979                 private = state->private;
1980                 ret = 0;
1981         } else {
1982                 ret = get_state_private(io_tree, start, &private);
1983         }
1984         kaddr = kmap_atomic(page, KM_USER0);
1985         if (ret)
1986                 goto zeroit;
1987
1988         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1989         btrfs_csum_final(csum, (char *)&csum);
1990         if (csum != private)
1991                 goto zeroit;
1992
1993         kunmap_atomic(kaddr, KM_USER0);
1994 good:
1995         /* if the io failure tree for this inode is non-empty,
1996          * check to see if we've recovered from a failed IO
1997          */
1998         btrfs_clean_io_failures(inode, start);
1999         return 0;
2000
2001 zeroit:
2002         if (printk_ratelimit()) {
2003                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2004                        "private %llu\n", page->mapping->host->i_ino,
2005                        (unsigned long long)start, csum,
2006                        (unsigned long long)private);
2007         }
2008         memset(kaddr + offset, 1, end - start + 1);
2009         flush_dcache_page(page);
2010         kunmap_atomic(kaddr, KM_USER0);
2011         if (private == 0)
2012                 return 0;
2013         return -EIO;
2014 }
2015
2016 struct delayed_iput {
2017         struct list_head list;
2018         struct inode *inode;
2019 };
2020
2021 void btrfs_add_delayed_iput(struct inode *inode)
2022 {
2023         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2024         struct delayed_iput *delayed;
2025
2026         if (atomic_add_unless(&inode->i_count, -1, 1))
2027                 return;
2028
2029         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2030         delayed->inode = inode;
2031
2032         spin_lock(&fs_info->delayed_iput_lock);
2033         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2034         spin_unlock(&fs_info->delayed_iput_lock);
2035 }
2036
2037 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2038 {
2039         LIST_HEAD(list);
2040         struct btrfs_fs_info *fs_info = root->fs_info;
2041         struct delayed_iput *delayed;
2042         int empty;
2043
2044         spin_lock(&fs_info->delayed_iput_lock);
2045         empty = list_empty(&fs_info->delayed_iputs);
2046         spin_unlock(&fs_info->delayed_iput_lock);
2047         if (empty)
2048                 return;
2049
2050         down_read(&root->fs_info->cleanup_work_sem);
2051         spin_lock(&fs_info->delayed_iput_lock);
2052         list_splice_init(&fs_info->delayed_iputs, &list);
2053         spin_unlock(&fs_info->delayed_iput_lock);
2054
2055         while (!list_empty(&list)) {
2056                 delayed = list_entry(list.next, struct delayed_iput, list);
2057                 list_del(&delayed->list);
2058                 iput(delayed->inode);
2059                 kfree(delayed);
2060         }
2061         up_read(&root->fs_info->cleanup_work_sem);
2062 }
2063
2064 /*
2065  * calculate extra metadata reservation when snapshotting a subvolume
2066  * contains orphan files.
2067  */
2068 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2069                                 struct btrfs_pending_snapshot *pending,
2070                                 u64 *bytes_to_reserve)
2071 {
2072         struct btrfs_root *root;
2073         struct btrfs_block_rsv *block_rsv;
2074         u64 num_bytes;
2075         int index;
2076
2077         root = pending->root;
2078         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079                 return;
2080
2081         block_rsv = root->orphan_block_rsv;
2082
2083         /* orphan block reservation for the snapshot */
2084         num_bytes = block_rsv->size;
2085
2086         /*
2087          * after the snapshot is created, COWing tree blocks may use more
2088          * space than it frees. So we should make sure there is enough
2089          * reserved space.
2090          */
2091         index = trans->transid & 0x1;
2092         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2093                 num_bytes += block_rsv->size -
2094                              (block_rsv->reserved + block_rsv->freed[index]);
2095         }
2096
2097         *bytes_to_reserve += num_bytes;
2098 }
2099
2100 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2101                                 struct btrfs_pending_snapshot *pending)
2102 {
2103         struct btrfs_root *root = pending->root;
2104         struct btrfs_root *snap = pending->snap;
2105         struct btrfs_block_rsv *block_rsv;
2106         u64 num_bytes;
2107         int index;
2108         int ret;
2109
2110         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2111                 return;
2112
2113         /* refill source subvolume's orphan block reservation */
2114         block_rsv = root->orphan_block_rsv;
2115         index = trans->transid & 0x1;
2116         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2117                 num_bytes = block_rsv->size -
2118                             (block_rsv->reserved + block_rsv->freed[index]);
2119                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120                                               root->orphan_block_rsv,
2121                                               num_bytes);
2122                 BUG_ON(ret);
2123         }
2124
2125         /* setup orphan block reservation for the snapshot */
2126         block_rsv = btrfs_alloc_block_rsv(snap);
2127         BUG_ON(!block_rsv);
2128
2129         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2130         snap->orphan_block_rsv = block_rsv;
2131
2132         num_bytes = root->orphan_block_rsv->size;
2133         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2134                                       block_rsv, num_bytes);
2135         BUG_ON(ret);
2136
2137 #if 0
2138         /* insert orphan item for the snapshot */
2139         WARN_ON(!root->orphan_item_inserted);
2140         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2141                                        snap->root_key.objectid);
2142         BUG_ON(ret);
2143         snap->orphan_item_inserted = 1;
2144 #endif
2145 }
2146
2147 enum btrfs_orphan_cleanup_state {
2148         ORPHAN_CLEANUP_STARTED  = 1,
2149         ORPHAN_CLEANUP_DONE     = 2,
2150 };
2151
2152 /*
2153  * This is called in transaction commmit time. If there are no orphan
2154  * files in the subvolume, it removes orphan item and frees block_rsv
2155  * structure.
2156  */
2157 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2158                               struct btrfs_root *root)
2159 {
2160         int ret;
2161
2162         if (!list_empty(&root->orphan_list) ||
2163             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2164                 return;
2165
2166         if (root->orphan_item_inserted &&
2167             btrfs_root_refs(&root->root_item) > 0) {
2168                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2169                                             root->root_key.objectid);
2170                 BUG_ON(ret);
2171                 root->orphan_item_inserted = 0;
2172         }
2173
2174         if (root->orphan_block_rsv) {
2175                 WARN_ON(root->orphan_block_rsv->size > 0);
2176                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2177                 root->orphan_block_rsv = NULL;
2178         }
2179 }
2180
2181 /*
2182  * This creates an orphan entry for the given inode in case something goes
2183  * wrong in the middle of an unlink/truncate.
2184  *
2185  * NOTE: caller of this function should reserve 5 units of metadata for
2186  *       this function.
2187  */
2188 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2189 {
2190         struct btrfs_root *root = BTRFS_I(inode)->root;
2191         struct btrfs_block_rsv *block_rsv = NULL;
2192         int reserve = 0;
2193         int insert = 0;
2194         int ret;
2195
2196         if (!root->orphan_block_rsv) {
2197                 block_rsv = btrfs_alloc_block_rsv(root);
2198                 BUG_ON(!block_rsv);
2199         }
2200
2201         spin_lock(&root->orphan_lock);
2202         if (!root->orphan_block_rsv) {
2203                 root->orphan_block_rsv = block_rsv;
2204         } else if (block_rsv) {
2205                 btrfs_free_block_rsv(root, block_rsv);
2206                 block_rsv = NULL;
2207         }
2208
2209         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2210                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2211 #if 0
2212                 /*
2213                  * For proper ENOSPC handling, we should do orphan
2214                  * cleanup when mounting. But this introduces backward
2215                  * compatibility issue.
2216                  */
2217                 if (!xchg(&root->orphan_item_inserted, 1))
2218                         insert = 2;
2219                 else
2220                         insert = 1;
2221 #endif
2222                 insert = 1;
2223         }
2224
2225         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2226                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2227                 reserve = 1;
2228         }
2229         spin_unlock(&root->orphan_lock);
2230
2231         if (block_rsv)
2232                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2233
2234         /* grab metadata reservation from transaction handle */
2235         if (reserve) {
2236                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2237                 BUG_ON(ret);
2238         }
2239
2240         /* insert an orphan item to track this unlinked/truncated file */
2241         if (insert >= 1) {
2242                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2243                 BUG_ON(ret);
2244         }
2245
2246         /* insert an orphan item to track subvolume contains orphan files */
2247         if (insert >= 2) {
2248                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2249                                                root->root_key.objectid);
2250                 BUG_ON(ret);
2251         }
2252         return 0;
2253 }
2254
2255 /*
2256  * We have done the truncate/delete so we can go ahead and remove the orphan
2257  * item for this particular inode.
2258  */
2259 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2260 {
2261         struct btrfs_root *root = BTRFS_I(inode)->root;
2262         int delete_item = 0;
2263         int release_rsv = 0;
2264         int ret = 0;
2265
2266         spin_lock(&root->orphan_lock);
2267         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2268                 list_del_init(&BTRFS_I(inode)->i_orphan);
2269                 delete_item = 1;
2270         }
2271
2272         if (BTRFS_I(inode)->orphan_meta_reserved) {
2273                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2274                 release_rsv = 1;
2275         }
2276         spin_unlock(&root->orphan_lock);
2277
2278         if (trans && delete_item) {
2279                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2280                 BUG_ON(ret);
2281         }
2282
2283         if (release_rsv)
2284                 btrfs_orphan_release_metadata(inode);
2285
2286         return 0;
2287 }
2288
2289 /*
2290  * this cleans up any orphans that may be left on the list from the last use
2291  * of this root.
2292  */
2293 int btrfs_orphan_cleanup(struct btrfs_root *root)
2294 {
2295         struct btrfs_path *path;
2296         struct extent_buffer *leaf;
2297         struct btrfs_key key, found_key;
2298         struct btrfs_trans_handle *trans;
2299         struct inode *inode;
2300         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2301
2302         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2303                 return 0;
2304
2305         path = btrfs_alloc_path();
2306         if (!path) {
2307                 ret = -ENOMEM;
2308                 goto out;
2309         }
2310         path->reada = -1;
2311
2312         key.objectid = BTRFS_ORPHAN_OBJECTID;
2313         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2314         key.offset = (u64)-1;
2315
2316         while (1) {
2317                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2318                 if (ret < 0)
2319                         goto out;
2320
2321                 /*
2322                  * if ret == 0 means we found what we were searching for, which
2323                  * is weird, but possible, so only screw with path if we didnt
2324                  * find the key and see if we have stuff that matches
2325                  */
2326                 if (ret > 0) {
2327                         ret = 0;
2328                         if (path->slots[0] == 0)
2329                                 break;
2330                         path->slots[0]--;
2331                 }
2332
2333                 /* pull out the item */
2334                 leaf = path->nodes[0];
2335                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2336
2337                 /* make sure the item matches what we want */
2338                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2339                         break;
2340                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2341                         break;
2342
2343                 /* release the path since we're done with it */
2344                 btrfs_release_path(root, path);
2345
2346                 /*
2347                  * this is where we are basically btrfs_lookup, without the
2348                  * crossing root thing.  we store the inode number in the
2349                  * offset of the orphan item.
2350                  */
2351                 found_key.objectid = found_key.offset;
2352                 found_key.type = BTRFS_INODE_ITEM_KEY;
2353                 found_key.offset = 0;
2354                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2355                 if (IS_ERR(inode)) {
2356                         ret = PTR_ERR(inode);
2357                         goto out;
2358                 }
2359
2360                 /*
2361                  * add this inode to the orphan list so btrfs_orphan_del does
2362                  * the proper thing when we hit it
2363                  */
2364                 spin_lock(&root->orphan_lock);
2365                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2366                 spin_unlock(&root->orphan_lock);
2367
2368                 /*
2369                  * if this is a bad inode, means we actually succeeded in
2370                  * removing the inode, but not the orphan record, which means
2371                  * we need to manually delete the orphan since iput will just
2372                  * do a destroy_inode
2373                  */
2374                 if (is_bad_inode(inode)) {
2375                         trans = btrfs_start_transaction(root, 0);
2376                         if (IS_ERR(trans)) {
2377                                 ret = PTR_ERR(trans);
2378                                 goto out;
2379                         }
2380                         btrfs_orphan_del(trans, inode);
2381                         btrfs_end_transaction(trans, root);
2382                         iput(inode);
2383                         continue;
2384                 }
2385
2386                 /* if we have links, this was a truncate, lets do that */
2387                 if (inode->i_nlink) {
2388                         if (!S_ISREG(inode->i_mode)) {
2389                                 WARN_ON(1);
2390                                 iput(inode);
2391                                 continue;
2392                         }
2393                         nr_truncate++;
2394                         ret = btrfs_truncate(inode);
2395                 } else {
2396                         nr_unlink++;
2397                 }
2398
2399                 /* this will do delete_inode and everything for us */
2400                 iput(inode);
2401                 if (ret)
2402                         goto out;
2403         }
2404         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2405
2406         if (root->orphan_block_rsv)
2407                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2408                                         (u64)-1);
2409
2410         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2411                 trans = btrfs_join_transaction(root, 1);
2412                 if (!IS_ERR(trans))
2413                         btrfs_end_transaction(trans, root);
2414         }
2415
2416         if (nr_unlink)
2417                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2418         if (nr_truncate)
2419                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2420
2421 out:
2422         if (ret)
2423                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2424         btrfs_free_path(path);
2425         return ret;
2426 }
2427
2428 /*
2429  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2430  * don't find any xattrs, we know there can't be any acls.
2431  *
2432  * slot is the slot the inode is in, objectid is the objectid of the inode
2433  */
2434 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2435                                           int slot, u64 objectid)
2436 {
2437         u32 nritems = btrfs_header_nritems(leaf);
2438         struct btrfs_key found_key;
2439         int scanned = 0;
2440
2441         slot++;
2442         while (slot < nritems) {
2443                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2444
2445                 /* we found a different objectid, there must not be acls */
2446                 if (found_key.objectid != objectid)
2447                         return 0;
2448
2449                 /* we found an xattr, assume we've got an acl */
2450                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2451                         return 1;
2452
2453                 /*
2454                  * we found a key greater than an xattr key, there can't
2455                  * be any acls later on
2456                  */
2457                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2458                         return 0;
2459
2460                 slot++;
2461                 scanned++;
2462
2463                 /*
2464                  * it goes inode, inode backrefs, xattrs, extents,
2465                  * so if there are a ton of hard links to an inode there can
2466                  * be a lot of backrefs.  Don't waste time searching too hard,
2467                  * this is just an optimization
2468                  */
2469                 if (scanned >= 8)
2470                         break;
2471         }
2472         /* we hit the end of the leaf before we found an xattr or
2473          * something larger than an xattr.  We have to assume the inode
2474          * has acls
2475          */
2476         return 1;
2477 }
2478
2479 /*
2480  * read an inode from the btree into the in-memory inode
2481  */
2482 static void btrfs_read_locked_inode(struct inode *inode)
2483 {
2484         struct btrfs_path *path;
2485         struct extent_buffer *leaf;
2486         struct btrfs_inode_item *inode_item;
2487         struct btrfs_timespec *tspec;
2488         struct btrfs_root *root = BTRFS_I(inode)->root;
2489         struct btrfs_key location;
2490         int maybe_acls;
2491         u64 alloc_group_block;
2492         u32 rdev;
2493         int ret;
2494
2495         path = btrfs_alloc_path();
2496         BUG_ON(!path);
2497         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2498
2499         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2500         if (ret)
2501                 goto make_bad;
2502
2503         leaf = path->nodes[0];
2504         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2505                                     struct btrfs_inode_item);
2506
2507         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2508         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2509         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2510         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2511         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2512
2513         tspec = btrfs_inode_atime(inode_item);
2514         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2515         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2516
2517         tspec = btrfs_inode_mtime(inode_item);
2518         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
2521         tspec = btrfs_inode_ctime(inode_item);
2522         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524
2525         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2526         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2527         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2528         inode->i_generation = BTRFS_I(inode)->generation;
2529         inode->i_rdev = 0;
2530         rdev = btrfs_inode_rdev(leaf, inode_item);
2531
2532         BTRFS_I(inode)->index_cnt = (u64)-1;
2533         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2534
2535         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2536
2537         /*
2538          * try to precache a NULL acl entry for files that don't have
2539          * any xattrs or acls
2540          */
2541         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2542         if (!maybe_acls)
2543                 cache_no_acl(inode);
2544
2545         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2546                                                 alloc_group_block, 0);
2547         btrfs_free_path(path);
2548         inode_item = NULL;
2549
2550         switch (inode->i_mode & S_IFMT) {
2551         case S_IFREG:
2552                 inode->i_mapping->a_ops = &btrfs_aops;
2553                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2554                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2555                 inode->i_fop = &btrfs_file_operations;
2556                 inode->i_op = &btrfs_file_inode_operations;
2557                 break;
2558         case S_IFDIR:
2559                 inode->i_fop = &btrfs_dir_file_operations;
2560                 if (root == root->fs_info->tree_root)
2561                         inode->i_op = &btrfs_dir_ro_inode_operations;
2562                 else
2563                         inode->i_op = &btrfs_dir_inode_operations;
2564                 break;
2565         case S_IFLNK:
2566                 inode->i_op = &btrfs_symlink_inode_operations;
2567                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2568                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2569                 break;
2570         default:
2571                 inode->i_op = &btrfs_special_inode_operations;
2572                 init_special_inode(inode, inode->i_mode, rdev);
2573                 break;
2574         }
2575
2576         btrfs_update_iflags(inode);
2577         return;
2578
2579 make_bad:
2580         btrfs_free_path(path);
2581         make_bad_inode(inode);
2582 }
2583
2584 /*
2585  * given a leaf and an inode, copy the inode fields into the leaf
2586  */
2587 static void fill_inode_item(struct btrfs_trans_handle *trans,
2588                             struct extent_buffer *leaf,
2589                             struct btrfs_inode_item *item,
2590                             struct inode *inode)
2591 {
2592         if (!leaf->map_token)
2593                 map_private_extent_buffer(leaf, (unsigned long)item,
2594                                           sizeof(struct btrfs_inode_item),
2595                                           &leaf->map_token, &leaf->kaddr,
2596                                           &leaf->map_start, &leaf->map_len,
2597                                           KM_USER1);
2598
2599         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2600         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2601         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2602         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2603         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2604
2605         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2606                                inode->i_atime.tv_sec);
2607         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2608                                 inode->i_atime.tv_nsec);
2609
2610         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2611                                inode->i_mtime.tv_sec);
2612         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2613                                 inode->i_mtime.tv_nsec);
2614
2615         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2616                                inode->i_ctime.tv_sec);
2617         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2618                                 inode->i_ctime.tv_nsec);
2619
2620         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2621         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2622         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2623         btrfs_set_inode_transid(leaf, item, trans->transid);
2624         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2625         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2626         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2627
2628         if (leaf->map_token) {
2629                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2630                 leaf->map_token = NULL;
2631         }
2632 }
2633
2634 /*
2635  * copy everything in the in-memory inode into the btree.
2636  */
2637 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2638                                 struct btrfs_root *root, struct inode *inode)
2639 {
2640         struct btrfs_inode_item *inode_item;
2641         struct btrfs_path *path;
2642         struct extent_buffer *leaf;
2643         int ret;
2644
2645         path = btrfs_alloc_path();
2646         BUG_ON(!path);
2647         path->leave_spinning = 1;
2648         ret = btrfs_lookup_inode(trans, root, path,
2649                                  &BTRFS_I(inode)->location, 1);
2650         if (ret) {
2651                 if (ret > 0)
2652                         ret = -ENOENT;
2653                 goto failed;
2654         }
2655
2656         btrfs_unlock_up_safe(path, 1);
2657         leaf = path->nodes[0];
2658         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2659                                   struct btrfs_inode_item);
2660
2661         fill_inode_item(trans, leaf, inode_item, inode);
2662         btrfs_mark_buffer_dirty(leaf);
2663         btrfs_set_inode_last_trans(trans, inode);
2664         ret = 0;
2665 failed:
2666         btrfs_free_path(path);
2667         return ret;
2668 }
2669
2670
2671 /*
2672  * unlink helper that gets used here in inode.c and in the tree logging
2673  * recovery code.  It remove a link in a directory with a given name, and
2674  * also drops the back refs in the inode to the directory
2675  */
2676 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2677                                 struct btrfs_root *root,
2678                                 struct inode *dir, struct inode *inode,
2679                                 const char *name, int name_len)
2680 {
2681         struct btrfs_path *path;
2682         int ret = 0;
2683         struct extent_buffer *leaf;
2684         struct btrfs_dir_item *di;
2685         struct btrfs_key key;
2686         u64 index;
2687
2688         path = btrfs_alloc_path();
2689         if (!path) {
2690                 ret = -ENOMEM;
2691                 goto out;
2692         }
2693
2694         path->leave_spinning = 1;
2695         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2696                                     name, name_len, -1);
2697         if (IS_ERR(di)) {
2698                 ret = PTR_ERR(di);
2699                 goto err;
2700         }
2701         if (!di) {
2702                 ret = -ENOENT;
2703                 goto err;
2704         }
2705         leaf = path->nodes[0];
2706         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2707         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2708         if (ret)
2709                 goto err;
2710         btrfs_release_path(root, path);
2711
2712         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2713                                   inode->i_ino,
2714                                   dir->i_ino, &index);
2715         if (ret) {
2716                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2717                        "inode %lu parent %lu\n", name_len, name,
2718                        inode->i_ino, dir->i_ino);
2719                 goto err;
2720         }
2721
2722         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2723                                          index, name, name_len, -1);
2724         if (IS_ERR(di)) {
2725                 ret = PTR_ERR(di);
2726                 goto err;
2727         }
2728         if (!di) {
2729                 ret = -ENOENT;
2730                 goto err;
2731         }
2732         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2733         btrfs_release_path(root, path);
2734
2735         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2736                                          inode, dir->i_ino);
2737         BUG_ON(ret != 0 && ret != -ENOENT);
2738
2739         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2740                                            dir, index);
2741         if (ret == -ENOENT)
2742                 ret = 0;
2743 err:
2744         btrfs_free_path(path);
2745         if (ret)
2746                 goto out;
2747
2748         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2749         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2750         btrfs_update_inode(trans, root, dir);
2751 out:
2752         return ret;
2753 }
2754
2755 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2756                        struct btrfs_root *root,
2757                        struct inode *dir, struct inode *inode,
2758                        const char *name, int name_len)
2759 {
2760         int ret;
2761         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2762         if (!ret) {
2763                 btrfs_drop_nlink(inode);
2764                 ret = btrfs_update_inode(trans, root, inode);
2765         }
2766         return ret;
2767 }
2768                 
2769
2770 /* helper to check if there is any shared block in the path */
2771 static int check_path_shared(struct btrfs_root *root,
2772                              struct btrfs_path *path)
2773 {
2774         struct extent_buffer *eb;
2775         int level;
2776         u64 refs = 1;
2777
2778         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2779                 int ret;
2780
2781                 if (!path->nodes[level])
2782                         break;
2783                 eb = path->nodes[level];
2784                 if (!btrfs_block_can_be_shared(root, eb))
2785                         continue;
2786                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2787                                                &refs, NULL);
2788                 if (refs > 1)
2789                         return 1;
2790         }
2791         return 0;
2792 }
2793
2794 /*
2795  * helper to start transaction for unlink and rmdir.
2796  *
2797  * unlink and rmdir are special in btrfs, they do not always free space.
2798  * so in enospc case, we should make sure they will free space before
2799  * allowing them to use the global metadata reservation.
2800  */
2801 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2802                                                        struct dentry *dentry)
2803 {
2804         struct btrfs_trans_handle *trans;
2805         struct btrfs_root *root = BTRFS_I(dir)->root;
2806         struct btrfs_path *path;
2807         struct btrfs_inode_ref *ref;
2808         struct btrfs_dir_item *di;
2809         struct inode *inode = dentry->d_inode;
2810         u64 index;
2811         int check_link = 1;
2812         int err = -ENOSPC;
2813         int ret;
2814
2815         trans = btrfs_start_transaction(root, 10);
2816         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2817                 return trans;
2818
2819         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2820                 return ERR_PTR(-ENOSPC);
2821
2822         /* check if there is someone else holds reference */
2823         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2824                 return ERR_PTR(-ENOSPC);
2825
2826         if (atomic_read(&inode->i_count) > 2)
2827                 return ERR_PTR(-ENOSPC);
2828
2829         if (xchg(&root->fs_info->enospc_unlink, 1))
2830                 return ERR_PTR(-ENOSPC);
2831
2832         path = btrfs_alloc_path();
2833         if (!path) {
2834                 root->fs_info->enospc_unlink = 0;
2835                 return ERR_PTR(-ENOMEM);
2836         }
2837
2838         trans = btrfs_start_transaction(root, 0);
2839         if (IS_ERR(trans)) {
2840                 btrfs_free_path(path);
2841                 root->fs_info->enospc_unlink = 0;
2842                 return trans;
2843         }
2844
2845         path->skip_locking = 1;
2846         path->search_commit_root = 1;
2847
2848         ret = btrfs_lookup_inode(trans, root, path,
2849                                 &BTRFS_I(dir)->location, 0);
2850         if (ret < 0) {
2851                 err = ret;
2852                 goto out;
2853         }
2854         if (ret == 0) {
2855                 if (check_path_shared(root, path))
2856                         goto out;
2857         } else {
2858                 check_link = 0;
2859         }
2860         btrfs_release_path(root, path);
2861
2862         ret = btrfs_lookup_inode(trans, root, path,
2863                                 &BTRFS_I(inode)->location, 0);
2864         if (ret < 0) {
2865                 err = ret;
2866                 goto out;
2867         }
2868         if (ret == 0) {
2869                 if (check_path_shared(root, path))
2870                         goto out;
2871         } else {
2872                 check_link = 0;
2873         }
2874         btrfs_release_path(root, path);
2875
2876         if (ret == 0 && S_ISREG(inode->i_mode)) {
2877                 ret = btrfs_lookup_file_extent(trans, root, path,
2878                                                inode->i_ino, (u64)-1, 0);
2879                 if (ret < 0) {
2880                         err = ret;
2881                         goto out;
2882                 }
2883                 BUG_ON(ret == 0);
2884                 if (check_path_shared(root, path))
2885                         goto out;
2886                 btrfs_release_path(root, path);
2887         }
2888
2889         if (!check_link) {
2890                 err = 0;
2891                 goto out;
2892         }
2893
2894         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2895                                 dentry->d_name.name, dentry->d_name.len, 0);
2896         if (IS_ERR(di)) {
2897                 err = PTR_ERR(di);
2898                 goto out;
2899         }
2900         if (di) {
2901                 if (check_path_shared(root, path))
2902                         goto out;
2903         } else {
2904                 err = 0;
2905                 goto out;
2906         }
2907         btrfs_release_path(root, path);
2908
2909         ref = btrfs_lookup_inode_ref(trans, root, path,
2910                                 dentry->d_name.name, dentry->d_name.len,
2911                                 inode->i_ino, dir->i_ino, 0);
2912         if (IS_ERR(ref)) {
2913                 err = PTR_ERR(ref);
2914                 goto out;
2915         }
2916         BUG_ON(!ref);
2917         if (check_path_shared(root, path))
2918                 goto out;
2919         index = btrfs_inode_ref_index(path->nodes[0], ref);
2920         btrfs_release_path(root, path);
2921
2922         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2923                                 dentry->d_name.name, dentry->d_name.len, 0);
2924         if (IS_ERR(di)) {
2925                 err = PTR_ERR(di);
2926                 goto out;
2927         }
2928         BUG_ON(ret == -ENOENT);
2929         if (check_path_shared(root, path))
2930                 goto out;
2931
2932         err = 0;
2933 out:
2934         btrfs_free_path(path);
2935         if (err) {
2936                 btrfs_end_transaction(trans, root);
2937                 root->fs_info->enospc_unlink = 0;
2938                 return ERR_PTR(err);
2939         }
2940
2941         trans->block_rsv = &root->fs_info->global_block_rsv;
2942         return trans;
2943 }
2944
2945 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2946                                struct btrfs_root *root)
2947 {
2948         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2949                 BUG_ON(!root->fs_info->enospc_unlink);
2950                 root->fs_info->enospc_unlink = 0;
2951         }
2952         btrfs_end_transaction_throttle(trans, root);
2953 }
2954
2955 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2956 {
2957         struct btrfs_root *root = BTRFS_I(dir)->root;
2958         struct btrfs_trans_handle *trans;
2959         struct inode *inode = dentry->d_inode;
2960         int ret;
2961         unsigned long nr = 0;
2962
2963         trans = __unlink_start_trans(dir, dentry);
2964         if (IS_ERR(trans))
2965                 return PTR_ERR(trans);
2966
2967         btrfs_set_trans_block_group(trans, dir);
2968
2969         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2970
2971         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2972                                  dentry->d_name.name, dentry->d_name.len);
2973         BUG_ON(ret);
2974
2975         if (inode->i_nlink == 0) {
2976                 ret = btrfs_orphan_add(trans, inode);
2977                 BUG_ON(ret);
2978         }
2979
2980         nr = trans->blocks_used;
2981         __unlink_end_trans(trans, root);
2982         btrfs_btree_balance_dirty(root, nr);
2983         return ret;
2984 }
2985
2986 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2987                         struct btrfs_root *root,
2988                         struct inode *dir, u64 objectid,
2989                         const char *name, int name_len)
2990 {
2991         struct btrfs_path *path;
2992         struct extent_buffer *leaf;
2993         struct btrfs_dir_item *di;
2994         struct btrfs_key key;
2995         u64 index;
2996         int ret;
2997
2998         path = btrfs_alloc_path();
2999         if (!path)
3000                 return -ENOMEM;
3001
3002         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
3003                                    name, name_len, -1);
3004         BUG_ON(!di || IS_ERR(di));
3005
3006         leaf = path->nodes[0];
3007         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3008         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3009         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3010         BUG_ON(ret);
3011         btrfs_release_path(root, path);
3012
3013         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3014                                  objectid, root->root_key.objectid,
3015                                  dir->i_ino, &index, name, name_len);
3016         if (ret < 0) {
3017                 BUG_ON(ret != -ENOENT);
3018                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3019                                                  name, name_len);
3020                 BUG_ON(!di || IS_ERR(di));
3021
3022                 leaf = path->nodes[0];
3023                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3024                 btrfs_release_path(root, path);
3025                 index = key.offset;
3026         }
3027
3028         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3029                                          index, name, name_len, -1);
3030         BUG_ON(!di || IS_ERR(di));
3031
3032         leaf = path->nodes[0];
3033         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3034         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3035         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3036         BUG_ON(ret);
3037         btrfs_release_path(root, path);
3038
3039         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3040         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3041         ret = btrfs_update_inode(trans, root, dir);
3042         BUG_ON(ret);
3043
3044         btrfs_free_path(path);
3045         return 0;
3046 }
3047
3048 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3049 {
3050         struct inode *inode = dentry->d_inode;
3051         int err = 0;
3052         struct btrfs_root *root = BTRFS_I(dir)->root;
3053         struct btrfs_trans_handle *trans;
3054         unsigned long nr = 0;
3055
3056         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3057             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3058                 return -ENOTEMPTY;
3059
3060         trans = __unlink_start_trans(dir, dentry);
3061         if (IS_ERR(trans))
3062                 return PTR_ERR(trans);
3063
3064         btrfs_set_trans_block_group(trans, dir);
3065
3066         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3067                 err = btrfs_unlink_subvol(trans, root, dir,
3068                                           BTRFS_I(inode)->location.objectid,
3069                                           dentry->d_name.name,
3070                                           dentry->d_name.len);
3071                 goto out;
3072         }
3073
3074         err = btrfs_orphan_add(trans, inode);
3075         if (err)
3076                 goto out;
3077
3078         /* now the directory is empty */
3079         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3080                                  dentry->d_name.name, dentry->d_name.len);
3081         if (!err)
3082                 btrfs_i_size_write(inode, 0);
3083 out:
3084         nr = trans->blocks_used;
3085         __unlink_end_trans(trans, root);
3086         btrfs_btree_balance_dirty(root, nr);
3087
3088         return err;
3089 }
3090
3091 #if 0
3092 /*
3093  * when truncating bytes in a file, it is possible to avoid reading
3094  * the leaves that contain only checksum items.  This can be the
3095  * majority of the IO required to delete a large file, but it must
3096  * be done carefully.
3097  *
3098  * The keys in the level just above the leaves are checked to make sure
3099  * the lowest key in a given leaf is a csum key, and starts at an offset
3100  * after the new  size.
3101  *
3102  * Then the key for the next leaf is checked to make sure it also has
3103  * a checksum item for the same file.  If it does, we know our target leaf
3104  * contains only checksum items, and it can be safely freed without reading
3105  * it.
3106  *
3107  * This is just an optimization targeted at large files.  It may do
3108  * nothing.  It will return 0 unless things went badly.
3109  */
3110 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3111                                      struct btrfs_root *root,
3112                                      struct btrfs_path *path,
3113                                      struct inode *inode, u64 new_size)
3114 {
3115         struct btrfs_key key;
3116         int ret;
3117         int nritems;
3118         struct btrfs_key found_key;
3119         struct btrfs_key other_key;
3120         struct btrfs_leaf_ref *ref;
3121         u64 leaf_gen;
3122         u64 leaf_start;
3123
3124         path->lowest_level = 1;
3125         key.objectid = inode->i_ino;
3126         key.type = BTRFS_CSUM_ITEM_KEY;
3127         key.offset = new_size;
3128 again:
3129         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3130         if (ret < 0)
3131                 goto out;
3132
3133         if (path->nodes[1] == NULL) {
3134                 ret = 0;
3135                 goto out;
3136         }
3137         ret = 0;
3138         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3139         nritems = btrfs_header_nritems(path->nodes[1]);
3140
3141         if (!nritems)
3142                 goto out;
3143
3144         if (path->slots[1] >= nritems)
3145                 goto next_node;
3146
3147         /* did we find a key greater than anything we want to delete? */
3148         if (found_key.objectid > inode->i_ino ||
3149            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3150                 goto out;
3151
3152         /* we check the next key in the node to make sure the leave contains
3153          * only checksum items.  This comparison doesn't work if our
3154          * leaf is the last one in the node
3155          */
3156         if (path->slots[1] + 1 >= nritems) {
3157 next_node:
3158                 /* search forward from the last key in the node, this
3159                  * will bring us into the next node in the tree
3160                  */
3161                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3162
3163                 /* unlikely, but we inc below, so check to be safe */
3164                 if (found_key.offset == (u64)-1)
3165                         goto out;
3166
3167                 /* search_forward needs a path with locks held, do the
3168                  * search again for the original key.  It is possible
3169                  * this will race with a balance and return a path that
3170                  * we could modify, but this drop is just an optimization
3171                  * and is allowed to miss some leaves.
3172                  */
3173                 btrfs_release_path(root, path);
3174                 found_key.offset++;
3175
3176                 /* setup a max key for search_forward */
3177                 other_key.offset = (u64)-1;
3178                 other_key.type = key.type;
3179                 other_key.objectid = key.objectid;
3180
3181                 path->keep_locks = 1;
3182                 ret = btrfs_search_forward(root, &found_key, &other_key,
3183                                            path, 0, 0);
3184                 path->keep_locks = 0;
3185                 if (ret || found_key.objectid != key.objectid ||
3186                     found_key.type != key.type) {
3187                         ret = 0;
3188                         goto out;
3189                 }
3190
3191                 key.offset = found_key.offset;
3192                 btrfs_release_path(root, path);
3193                 cond_resched();
3194                 goto again;
3195         }
3196
3197         /* we know there's one more slot after us in the tree,
3198          * read that key so we can verify it is also a checksum item
3199          */
3200         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3201
3202         if (found_key.objectid < inode->i_ino)
3203                 goto next_key;
3204
3205         if (found_key.type != key.type || found_key.offset < new_size)
3206                 goto next_key;
3207
3208         /*
3209          * if the key for the next leaf isn't a csum key from this objectid,
3210          * we can't be sure there aren't good items inside this leaf.
3211          * Bail out
3212          */
3213         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3214                 goto out;
3215
3216         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3217         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3218         /*
3219          * it is safe to delete this leaf, it contains only
3220          * csum items from this inode at an offset >= new_size
3221          */
3222         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3223         BUG_ON(ret);
3224
3225         if (root->ref_cows && leaf_gen < trans->transid) {
3226                 ref = btrfs_alloc_leaf_ref(root, 0);
3227                 if (ref) {
3228                         ref->root_gen = root->root_key.offset;
3229                         ref->bytenr = leaf_start;
3230                         ref->owner = 0;
3231                         ref->generation = leaf_gen;
3232                         ref->nritems = 0;
3233
3234                         btrfs_sort_leaf_ref(ref);
3235
3236                         ret = btrfs_add_leaf_ref(root, ref, 0);
3237                         WARN_ON(ret);
3238                         btrfs_free_leaf_ref(root, ref);
3239                 } else {
3240                         WARN_ON(1);
3241                 }
3242         }
3243 next_key:
3244         btrfs_release_path(root, path);
3245
3246         if (other_key.objectid == inode->i_ino &&
3247             other_key.type == key.type && other_key.offset > key.offset) {
3248                 key.offset = other_key.offset;
3249                 cond_resched();
3250                 goto again;
3251         }
3252         ret = 0;
3253 out:
3254         /* fixup any changes we've made to the path */
3255         path->lowest_level = 0;
3256         path->keep_locks = 0;
3257         btrfs_release_path(root, path);
3258         return ret;
3259 }
3260
3261 #endif
3262
3263 /*
3264  * this can truncate away extent items, csum items and directory items.
3265  * It starts at a high offset and removes keys until it can't find
3266  * any higher than new_size
3267  *
3268  * csum items that cross the new i_size are truncated to the new size
3269  * as well.
3270  *
3271  * min_type is the minimum key type to truncate down to.  If set to 0, this
3272  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3273  */
3274 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3275                                struct btrfs_root *root,
3276                                struct inode *inode,
3277                                u64 new_size, u32 min_type)
3278 {
3279         struct btrfs_path *path;
3280         struct extent_buffer *leaf;
3281         struct btrfs_file_extent_item *fi;
3282         struct btrfs_key key;
3283         struct btrfs_key found_key;
3284         u64 extent_start = 0;
3285         u64 extent_num_bytes = 0;
3286         u64 extent_offset = 0;
3287         u64 item_end = 0;
3288         u64 mask = root->sectorsize - 1;
3289         u32 found_type = (u8)-1;
3290         int found_extent;
3291         int del_item;
3292         int pending_del_nr = 0;
3293         int pending_del_slot = 0;
3294         int extent_type = -1;
3295         int encoding;
3296         int ret;
3297         int err = 0;
3298
3299         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3300
3301         if (root->ref_cows || root == root->fs_info->tree_root)
3302                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3303
3304         path = btrfs_alloc_path();
3305         BUG_ON(!path);
3306         path->reada = -1;
3307
3308         key.objectid = inode->i_ino;
3309         key.offset = (u64)-1;
3310         key.type = (u8)-1;
3311
3312 search_again:
3313         path->leave_spinning = 1;
3314         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3315         if (ret < 0) {
3316                 err = ret;
3317                 goto out;
3318         }
3319
3320         if (ret > 0) {
3321                 /* there are no items in the tree for us to truncate, we're
3322                  * done
3323                  */
3324                 if (path->slots[0] == 0)
3325                         goto out;
3326                 path->slots[0]--;
3327         }
3328
3329         while (1) {
3330                 fi = NULL;
3331                 leaf = path->nodes[0];
3332                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3333                 found_type = btrfs_key_type(&found_key);
3334                 encoding = 0;
3335
3336                 if (found_key.objectid != inode->i_ino)
3337                         break;
3338
3339                 if (found_type < min_type)
3340                         break;
3341
3342                 item_end = found_key.offset;
3343                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3344                         fi = btrfs_item_ptr(leaf, path->slots[0],
3345                                             struct btrfs_file_extent_item);
3346                         extent_type = btrfs_file_extent_type(leaf, fi);
3347                         encoding = btrfs_file_extent_compression(leaf, fi);
3348                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3349                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3350
3351                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3352                                 item_end +=
3353                                     btrfs_file_extent_num_bytes(leaf, fi);
3354                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3355                                 item_end += btrfs_file_extent_inline_len(leaf,
3356                                                                          fi);
3357                         }
3358                         item_end--;
3359                 }
3360                 if (found_type > min_type) {
3361                         del_item = 1;
3362                 } else {
3363                         if (item_end < new_size)
3364                                 break;
3365                         if (found_key.offset >= new_size)
3366                                 del_item = 1;
3367                         else
3368                                 del_item = 0;
3369                 }
3370                 found_extent = 0;
3371                 /* FIXME, shrink the extent if the ref count is only 1 */
3372                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3373                         goto delete;
3374
3375                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3376                         u64 num_dec;
3377                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3378                         if (!del_item && !encoding) {
3379                                 u64 orig_num_bytes =
3380                                         btrfs_file_extent_num_bytes(leaf, fi);
3381                                 extent_num_bytes = new_size -
3382                                         found_key.offset + root->sectorsize - 1;
3383                                 extent_num_bytes = extent_num_bytes &
3384                                         ~((u64)root->sectorsize - 1);
3385                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3386                                                          extent_num_bytes);
3387                                 num_dec = (orig_num_bytes -
3388                                            extent_num_bytes);
3389                                 if (root->ref_cows && extent_start != 0)
3390                                         inode_sub_bytes(inode, num_dec);
3391                                 btrfs_mark_buffer_dirty(leaf);
3392                         } else {
3393                                 extent_num_bytes =
3394                                         btrfs_file_extent_disk_num_bytes(leaf,
3395                                                                          fi);
3396                                 extent_offset = found_key.offset -
3397                                         btrfs_file_extent_offset(leaf, fi);
3398
3399                                 /* FIXME blocksize != 4096 */
3400                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3401                                 if (extent_start != 0) {
3402                                         found_extent = 1;
3403                                         if (root->ref_cows)
3404                                                 inode_sub_bytes(inode, num_dec);
3405                                 }
3406                         }
3407                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3408                         /*
3409                          * we can't truncate inline items that have had
3410                          * special encodings
3411                          */
3412                         if (!del_item &&
3413                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3414                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3415                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3416                                 u32 size = new_size - found_key.offset;
3417
3418                                 if (root->ref_cows) {
3419                                         inode_sub_bytes(inode, item_end + 1 -
3420                                                         new_size);
3421                                 }
3422                                 size =
3423                                     btrfs_file_extent_calc_inline_size(size);
3424                                 ret = btrfs_truncate_item(trans, root, path,
3425                                                           size, 1);
3426                                 BUG_ON(ret);
3427                         } else if (root->ref_cows) {
3428                                 inode_sub_bytes(inode, item_end + 1 -
3429                                                 found_key.offset);
3430                         }
3431                 }
3432 delete:
3433                 if (del_item) {
3434                         if (!pending_del_nr) {
3435                                 /* no pending yet, add ourselves */
3436                                 pending_del_slot = path->slots[0];
3437                                 pending_del_nr = 1;
3438                         } else if (pending_del_nr &&
3439                                    path->slots[0] + 1 == pending_del_slot) {
3440                                 /* hop on the pending chunk */
3441                                 pending_del_nr++;
3442                                 pending_del_slot = path->slots[0];
3443                         } else {
3444                                 BUG();
3445                         }
3446                 } else {
3447                         break;
3448                 }
3449                 if (found_extent && (root->ref_cows ||
3450                                      root == root->fs_info->tree_root)) {
3451                         btrfs_set_path_blocking(path);
3452                         ret = btrfs_free_extent(trans, root, extent_start,
3453                                                 extent_num_bytes, 0,
3454                                                 btrfs_header_owner(leaf),
3455                                                 inode->i_ino, extent_offset);
3456                         BUG_ON(ret);
3457                 }
3458
3459                 if (found_type == BTRFS_INODE_ITEM_KEY)
3460                         break;
3461
3462                 if (path->slots[0] == 0 ||
3463                     path->slots[0] != pending_del_slot) {
3464                         if (root->ref_cows) {
3465                                 err = -EAGAIN;
3466                                 goto out;
3467                         }
3468                         if (pending_del_nr) {
3469                                 ret = btrfs_del_items(trans, root, path,
3470                                                 pending_del_slot,
3471                                                 pending_del_nr);
3472                                 BUG_ON(ret);
3473                                 pending_del_nr = 0;
3474                         }
3475                         btrfs_release_path(root, path);
3476                         goto search_again;
3477                 } else {
3478                         path->slots[0]--;
3479                 }
3480         }
3481 out:
3482         if (pending_del_nr) {
3483                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3484                                       pending_del_nr);
3485                 BUG_ON(ret);
3486         }
3487         btrfs_free_path(path);
3488         return err;
3489 }
3490
3491 /*
3492  * taken from block_truncate_page, but does cow as it zeros out
3493  * any bytes left in the last page in the file.
3494  */
3495 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3496 {
3497         struct inode *inode = mapping->host;
3498         struct btrfs_root *root = BTRFS_I(inode)->root;
3499         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3500         struct btrfs_ordered_extent *ordered;
3501         struct extent_state *cached_state = NULL;
3502         char *kaddr;
3503         u32 blocksize = root->sectorsize;
3504         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3505         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3506         struct page *page;
3507         int ret = 0;
3508         u64 page_start;
3509         u64 page_end;
3510
3511         if ((offset & (blocksize - 1)) == 0)
3512                 goto out;
3513         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3514         if (ret)
3515                 goto out;
3516
3517         ret = -ENOMEM;
3518 again:
3519         page = grab_cache_page(mapping, index);
3520         if (!page) {
3521                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3522                 goto out;
3523         }
3524
3525         page_start = page_offset(page);
3526         page_end = page_start + PAGE_CACHE_SIZE - 1;
3527
3528         if (!PageUptodate(page)) {
3529                 ret = btrfs_readpage(NULL, page);
3530                 lock_page(page);
3531                 if (page->mapping != mapping) {
3532                         unlock_page(page);
3533                         page_cache_release(page);
3534                         goto again;
3535                 }
3536                 if (!PageUptodate(page)) {
3537                         ret = -EIO;
3538                         goto out_unlock;
3539                 }
3540         }
3541         wait_on_page_writeback(page);
3542
3543         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3544                          GFP_NOFS);
3545         set_page_extent_mapped(page);
3546
3547         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3548         if (ordered) {
3549                 unlock_extent_cached(io_tree, page_start, page_end,
3550                                      &cached_state, GFP_NOFS);
3551                 unlock_page(page);
3552                 page_cache_release(page);
3553                 btrfs_start_ordered_extent(inode, ordered, 1);
3554                 btrfs_put_ordered_extent(ordered);
3555                 goto again;
3556         }
3557
3558         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3559                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3560                           0, 0, &cached_state, GFP_NOFS);
3561
3562         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3563                                         &cached_state);
3564         if (ret) {
3565                 unlock_extent_cached(io_tree, page_start, page_end,
3566                                      &cached_state, GFP_NOFS);
3567                 goto out_unlock;
3568         }
3569
3570         ret = 0;
3571         if (offset != PAGE_CACHE_SIZE) {
3572                 kaddr = kmap(page);
3573                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3574                 flush_dcache_page(page);
3575                 kunmap(page);
3576         }
3577         ClearPageChecked(page);
3578         set_page_dirty(page);
3579         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3580                              GFP_NOFS);
3581
3582 out_unlock:
3583         if (ret)
3584                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3585         unlock_page(page);
3586         page_cache_release(page);
3587 out:
3588         return ret;
3589 }
3590
3591 /*
3592  * This function puts in dummy file extents for the area we're creating a hole
3593  * for.  So if we are truncating this file to a larger size we need to insert
3594  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3595  * the range between oldsize and size
3596  */
3597 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3598 {
3599         struct btrfs_trans_handle *trans;
3600         struct btrfs_root *root = BTRFS_I(inode)->root;
3601         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3602         struct extent_map *em = NULL;
3603         struct extent_state *cached_state = NULL;
3604         u64 mask = root->sectorsize - 1;
3605         u64 hole_start = (oldsize + mask) & ~mask;
3606         u64 block_end = (size + mask) & ~mask;
3607         u64 last_byte;
3608         u64 cur_offset;
3609         u64 hole_size;
3610         int err = 0;
3611
3612         if (size <= hole_start)
3613                 return 0;
3614
3615         while (1) {
3616                 struct btrfs_ordered_extent *ordered;
3617                 btrfs_wait_ordered_range(inode, hole_start,
3618                                          block_end - hole_start);
3619                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3620                                  &cached_state, GFP_NOFS);
3621                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3622                 if (!ordered)
3623                         break;
3624                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3625                                      &cached_state, GFP_NOFS);
3626                 btrfs_put_ordered_extent(ordered);
3627         }
3628
3629         cur_offset = hole_start;
3630         while (1) {
3631                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3632                                 block_end - cur_offset, 0);
3633                 BUG_ON(IS_ERR(em) || !em);
3634                 last_byte = min(extent_map_end(em), block_end);
3635                 last_byte = (last_byte + mask) & ~mask;
3636                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3637                         u64 hint_byte = 0;
3638                         hole_size = last_byte - cur_offset;
3639
3640                         trans = btrfs_start_transaction(root, 2);
3641                         if (IS_ERR(trans)) {
3642                                 err = PTR_ERR(trans);
3643                                 break;
3644                         }
3645                         btrfs_set_trans_block_group(trans, inode);
3646
3647                         err = btrfs_drop_extents(trans, inode, cur_offset,
3648                                                  cur_offset + hole_size,
3649                                                  &hint_byte, 1);
3650                         if (err)
3651                                 break;
3652
3653                         err = btrfs_insert_file_extent(trans, root,
3654                                         inode->i_ino, cur_offset, 0,
3655                                         0, hole_size, 0, hole_size,
3656                                         0, 0, 0);
3657                         if (err)
3658                                 break;
3659
3660                         btrfs_drop_extent_cache(inode, hole_start,
3661                                         last_byte - 1, 0);
3662
3663                         btrfs_end_transaction(trans, root);
3664                 }
3665                 free_extent_map(em);
3666                 em = NULL;
3667                 cur_offset = last_byte;
3668                 if (cur_offset >= block_end)
3669                         break;
3670         }
3671
3672         free_extent_map(em);
3673         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3674                              GFP_NOFS);
3675         return err;
3676 }
3677
3678 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3679 {
3680         loff_t oldsize = i_size_read(inode);
3681         int ret;
3682
3683         if (newsize == oldsize)
3684                 return 0;
3685
3686         if (newsize > oldsize) {
3687                 i_size_write(inode, newsize);
3688                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3689                 truncate_pagecache(inode, oldsize, newsize);
3690                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3691                 if (ret) {
3692                         btrfs_setsize(inode, oldsize);
3693                         return ret;
3694                 }
3695
3696                 mark_inode_dirty(inode);
3697         } else {
3698
3699                 /*
3700                  * We're truncating a file that used to have good data down to
3701                  * zero. Make sure it gets into the ordered flush list so that
3702                  * any new writes get down to disk quickly.
3703                  */
3704                 if (newsize == 0)
3705                         BTRFS_I(inode)->ordered_data_close = 1;
3706
3707                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3708                 truncate_setsize(inode, newsize);
3709                 ret = btrfs_truncate(inode);
3710         }
3711
3712         return ret;
3713 }
3714
3715 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3716 {
3717         struct inode *inode = dentry->d_inode;
3718         struct btrfs_root *root = BTRFS_I(inode)->root;
3719         int err;
3720
3721         if (btrfs_root_readonly(root))
3722                 return -EROFS;
3723
3724         err = inode_change_ok(inode, attr);
3725         if (err)
3726                 return err;
3727
3728         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3729                 err = btrfs_setsize(inode, attr->ia_size);
3730                 if (err)
3731                         return err;
3732         }
3733
3734         if (attr->ia_valid) {
3735                 setattr_copy(inode, attr);
3736                 mark_inode_dirty(inode);
3737
3738                 if (attr->ia_valid & ATTR_MODE)
3739                         err = btrfs_acl_chmod(inode);
3740         }
3741
3742         return err;
3743 }
3744
3745 void btrfs_evict_inode(struct inode *inode)
3746 {
3747         struct btrfs_trans_handle *trans;
3748         struct btrfs_root *root = BTRFS_I(inode)->root;
3749         unsigned long nr;
3750         int ret;
3751
3752         trace_btrfs_inode_evict(inode);
3753
3754         truncate_inode_pages(&inode->i_data, 0);
3755         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3756                                root == root->fs_info->tree_root))
3757                 goto no_delete;
3758
3759         if (is_bad_inode(inode)) {
3760                 btrfs_orphan_del(NULL, inode);
3761                 goto no_delete;
3762         }
3763         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3764         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3765
3766         if (root->fs_info->log_root_recovering) {
3767                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3768                 goto no_delete;
3769         }
3770
3771         if (inode->i_nlink > 0) {
3772                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3773                 goto no_delete;
3774         }
3775
3776         btrfs_i_size_write(inode, 0);
3777
3778         while (1) {
3779                 trans = btrfs_start_transaction(root, 0);
3780                 BUG_ON(IS_ERR(trans));
3781                 btrfs_set_trans_block_group(trans, inode);
3782                 trans->block_rsv = root->orphan_block_rsv;
3783
3784                 ret = btrfs_block_rsv_check(trans, root,
3785                                             root->orphan_block_rsv, 0, 5);
3786                 if (ret) {
3787                         BUG_ON(ret != -EAGAIN);
3788                         ret = btrfs_commit_transaction(trans, root);
3789                         BUG_ON(ret);
3790                         continue;
3791                 }
3792
3793                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3794                 if (ret != -EAGAIN)
3795                         break;
3796
3797                 nr = trans->blocks_used;
3798                 btrfs_end_transaction(trans, root);
3799                 trans = NULL;
3800                 btrfs_btree_balance_dirty(root, nr);
3801
3802         }
3803
3804         if (ret == 0) {
3805                 ret = btrfs_orphan_del(trans, inode);
3806                 BUG_ON(ret);
3807         }
3808
3809         nr = trans->blocks_used;
3810         btrfs_end_transaction(trans, root);
3811         btrfs_btree_balance_dirty(root, nr);
3812 no_delete:
3813         end_writeback(inode);
3814         return;
3815 }
3816
3817 /*
3818  * this returns the key found in the dir entry in the location pointer.
3819  * If no dir entries were found, location->objectid is 0.
3820  */
3821 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3822                                struct btrfs_key *location)
3823 {
3824         const char *name = dentry->d_name.name;
3825         int namelen = dentry->d_name.len;
3826         struct btrfs_dir_item *di;
3827         struct btrfs_path *path;
3828         struct btrfs_root *root = BTRFS_I(dir)->root;
3829         int ret = 0;
3830
3831         path = btrfs_alloc_path();
3832         BUG_ON(!path);
3833
3834         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3835                                     namelen, 0);
3836         if (IS_ERR(di))
3837                 ret = PTR_ERR(di);
3838
3839         if (!di || IS_ERR(di))
3840                 goto out_err;
3841
3842         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3843 out:
3844         btrfs_free_path(path);
3845         return ret;
3846 out_err:
3847         location->objectid = 0;
3848         goto out;
3849 }
3850
3851 /*
3852  * when we hit a tree root in a directory, the btrfs part of the inode
3853  * needs to be changed to reflect the root directory of the tree root.  This
3854  * is kind of like crossing a mount point.
3855  */
3856 static int fixup_tree_root_location(struct btrfs_root *root,
3857                                     struct inode *dir,
3858                                     struct dentry *dentry,
3859                                     struct btrfs_key *location,
3860                                     struct btrfs_root **sub_root)
3861 {
3862         struct btrfs_path *path;
3863         struct btrfs_root *new_root;
3864         struct btrfs_root_ref *ref;
3865         struct extent_buffer *leaf;
3866         int ret;
3867         int err = 0;
3868
3869         path = btrfs_alloc_path();
3870         if (!path) {
3871                 err = -ENOMEM;
3872                 goto out;
3873         }
3874
3875         err = -ENOENT;
3876         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3877                                   BTRFS_I(dir)->root->root_key.objectid,
3878                                   location->objectid);
3879         if (ret) {
3880                 if (ret < 0)
3881                         err = ret;
3882                 goto out;
3883         }
3884
3885         leaf = path->nodes[0];
3886         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3887         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3888             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3889                 goto out;
3890
3891         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3892                                    (unsigned long)(ref + 1),
3893                                    dentry->d_name.len);
3894         if (ret)
3895                 goto out;
3896
3897         btrfs_release_path(root->fs_info->tree_root, path);
3898
3899         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3900         if (IS_ERR(new_root)) {
3901                 err = PTR_ERR(new_root);
3902                 goto out;
3903         }
3904
3905         if (btrfs_root_refs(&new_root->root_item) == 0) {
3906                 err = -ENOENT;
3907                 goto out;
3908         }
3909
3910         *sub_root = new_root;
3911         location->objectid = btrfs_root_dirid(&new_root->root_item);
3912         location->type = BTRFS_INODE_ITEM_KEY;
3913         location->offset = 0;
3914         err = 0;
3915 out:
3916         btrfs_free_path(path);
3917         return err;
3918 }
3919
3920 static void inode_tree_add(struct inode *inode)
3921 {
3922         struct btrfs_root *root = BTRFS_I(inode)->root;
3923         struct btrfs_inode *entry;
3924         struct rb_node **p;
3925         struct rb_node *parent;
3926 again:
3927         p = &root->inode_tree.rb_node;
3928         parent = NULL;
3929
3930         if (inode_unhashed(inode))
3931                 return;
3932
3933         spin_lock(&root->inode_lock);
3934         while (*p) {
3935                 parent = *p;
3936                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3937
3938                 if (inode->i_ino < entry->vfs_inode.i_ino)
3939                         p = &parent->rb_left;
3940                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3941                         p = &parent->rb_right;
3942                 else {
3943                         WARN_ON(!(entry->vfs_inode.i_state &
3944                                   (I_WILL_FREE | I_FREEING)));
3945                         rb_erase(parent, &root->inode_tree);
3946                         RB_CLEAR_NODE(parent);
3947                         spin_unlock(&root->inode_lock);
3948                         goto again;
3949                 }
3950         }
3951         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3952         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3953         spin_unlock(&root->inode_lock);
3954 }
3955
3956 static void inode_tree_del(struct inode *inode)
3957 {
3958         struct btrfs_root *root = BTRFS_I(inode)->root;
3959         int empty = 0;
3960
3961         spin_lock(&root->inode_lock);
3962         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3963                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3964                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3965                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3966         }
3967         spin_unlock(&root->inode_lock);
3968
3969         /*
3970          * Free space cache has inodes in the tree root, but the tree root has a
3971          * root_refs of 0, so this could end up dropping the tree root as a
3972          * snapshot, so we need the extra !root->fs_info->tree_root check to
3973          * make sure we don't drop it.
3974          */
3975         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3976             root != root->fs_info->tree_root) {
3977                 synchronize_srcu(&root->fs_info->subvol_srcu);
3978                 spin_lock(&root->inode_lock);
3979                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3980                 spin_unlock(&root->inode_lock);
3981                 if (empty)
3982                         btrfs_add_dead_root(root);
3983         }
3984 }
3985
3986 int btrfs_invalidate_inodes(struct btrfs_root *root)
3987 {
3988         struct rb_node *node;
3989         struct rb_node *prev;
3990         struct btrfs_inode *entry;
3991         struct inode *inode;
3992         u64 objectid = 0;
3993
3994         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3995
3996         spin_lock(&root->inode_lock);
3997 again:
3998         node = root->inode_tree.rb_node;
3999         prev = NULL;
4000         while (node) {
4001                 prev = node;
4002                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4003
4004                 if (objectid < entry->vfs_inode.i_ino)
4005                         node = node->rb_left;
4006                 else if (objectid > entry->vfs_inode.i_ino)
4007                         node = node->rb_right;
4008                 else
4009                         break;
4010         }
4011         if (!node) {
4012                 while (prev) {
4013                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4014                         if (objectid <= entry->vfs_inode.i_ino) {
4015                                 node = prev;
4016                                 break;
4017                         }
4018                         prev = rb_next(prev);
4019                 }
4020         }
4021         while (node) {
4022                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4023                 objectid = entry->vfs_inode.i_ino + 1;
4024                 inode = igrab(&entry->vfs_inode);
4025                 if (inode) {
4026                         spin_unlock(&root->inode_lock);
4027                         if (atomic_read(&inode->i_count) > 1)
4028                                 d_prune_aliases(inode);
4029                         /*
4030                          * btrfs_drop_inode will have it removed from
4031                          * the inode cache when its usage count
4032                          * hits zero.
4033                          */
4034                         iput(inode);
4035                         cond_resched();
4036                         spin_lock(&root->inode_lock);
4037                         goto again;
4038                 }
4039
4040                 if (cond_resched_lock(&root->inode_lock))
4041                         goto again;
4042
4043                 node = rb_next(node);
4044         }
4045         spin_unlock(&root->inode_lock);
4046         return 0;
4047 }
4048
4049 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4050 {
4051         struct btrfs_iget_args *args = p;
4052         inode->i_ino = args->ino;
4053         BTRFS_I(inode)->root = args->root;
4054         btrfs_set_inode_space_info(args->root, inode);
4055         return 0;
4056 }
4057
4058 static int btrfs_find_actor(struct inode *inode, void *opaque)
4059 {
4060         struct btrfs_iget_args *args = opaque;
4061         return args->ino == inode->i_ino &&
4062                 args->root == BTRFS_I(inode)->root;
4063 }
4064
4065 static struct inode *btrfs_iget_locked(struct super_block *s,
4066                                        u64 objectid,
4067                                        struct btrfs_root *root)
4068 {
4069         struct inode *inode;
4070         struct btrfs_iget_args args;
4071         args.ino = objectid;
4072         args.root = root;
4073
4074         inode = iget5_locked(s, objectid, btrfs_find_actor,
4075                              btrfs_init_locked_inode,
4076                              (void *)&args);
4077         return inode;
4078 }
4079
4080 /* Get an inode object given its location and corresponding root.
4081  * Returns in *is_new if the inode was read from disk
4082  */
4083 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4084                          struct btrfs_root *root, int *new)
4085 {
4086         struct inode *inode;
4087
4088         inode = btrfs_iget_locked(s, location->objectid, root);
4089         if (!inode)
4090                 return ERR_PTR(-ENOMEM);
4091
4092         if (inode->i_state & I_NEW) {
4093                 BTRFS_I(inode)->root = root;
4094                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4095                 btrfs_read_locked_inode(inode);
4096                 inode_tree_add(inode);
4097                 unlock_new_inode(inode);
4098                 if (new)
4099                         *new = 1;
4100         }
4101
4102         return inode;
4103 }
4104
4105 static struct inode *new_simple_dir(struct super_block *s,
4106                                     struct btrfs_key *key,
4107                                     struct btrfs_root *root)
4108 {
4109         struct inode *inode = new_inode(s);
4110
4111         if (!inode)
4112                 return ERR_PTR(-ENOMEM);
4113
4114         BTRFS_I(inode)->root = root;
4115         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4116         BTRFS_I(inode)->dummy_inode = 1;
4117
4118         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4119         inode->i_op = &simple_dir_inode_operations;
4120         inode->i_fop = &simple_dir_operations;
4121         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4122         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4123
4124         return inode;
4125 }
4126
4127 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4128 {
4129         struct inode *inode;
4130         struct btrfs_root *root = BTRFS_I(dir)->root;
4131         struct btrfs_root *sub_root = root;
4132         struct btrfs_key location;
4133         int index;
4134         int ret;
4135
4136         if (dentry->d_name.len > BTRFS_NAME_LEN)
4137                 return ERR_PTR(-ENAMETOOLONG);
4138
4139         ret = btrfs_inode_by_name(dir, dentry, &location);
4140
4141         if (ret < 0)
4142                 return ERR_PTR(ret);
4143
4144         if (location.objectid == 0)
4145                 return NULL;
4146
4147         if (location.type == BTRFS_INODE_ITEM_KEY) {
4148                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4149                 return inode;
4150         }
4151
4152         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4153
4154         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4155         ret = fixup_tree_root_location(root, dir, dentry,
4156                                        &location, &sub_root);
4157         if (ret < 0) {
4158                 if (ret != -ENOENT)
4159                         inode = ERR_PTR(ret);
4160                 else
4161                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4162         } else {
4163                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4164         }
4165         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4166
4167         if (!IS_ERR(inode) && root != sub_root) {
4168                 down_read(&root->fs_info->cleanup_work_sem);
4169                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4170                         ret = btrfs_orphan_cleanup(sub_root);
4171                 up_read(&root->fs_info->cleanup_work_sem);
4172                 if (ret)
4173                         inode = ERR_PTR(ret);
4174         }
4175
4176         return inode;
4177 }
4178
4179 static int btrfs_dentry_delete(const struct dentry *dentry)
4180 {
4181         struct btrfs_root *root;
4182
4183         if (!dentry->d_inode && !IS_ROOT(dentry))
4184                 dentry = dentry->d_parent;
4185
4186         if (dentry->d_inode) {
4187                 root = BTRFS_I(dentry->d_inode)->root;
4188                 if (btrfs_root_refs(&root->root_item) == 0)
4189                         return 1;
4190         }
4191         return 0;
4192 }
4193
4194 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4195                                    struct nameidata *nd)
4196 {
4197         struct inode *inode;
4198
4199         inode = btrfs_lookup_dentry(dir, dentry);
4200         if (IS_ERR(inode))
4201                 return ERR_CAST(inode);
4202
4203         return d_splice_alias(inode, dentry);
4204 }
4205
4206 static unsigned char btrfs_filetype_table[] = {
4207         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4208 };
4209
4210 static int btrfs_real_readdir(struct file *filp, void *dirent,
4211                               filldir_t filldir)
4212 {
4213         struct inode *inode = filp->f_dentry->d_inode;
4214         struct btrfs_root *root = BTRFS_I(inode)->root;
4215         struct btrfs_item *item;
4216         struct btrfs_dir_item *di;
4217         struct btrfs_key key;
4218         struct btrfs_key found_key;
4219         struct btrfs_path *path;
4220         int ret;
4221         u32 nritems;
4222         struct extent_buffer *leaf;
4223         int slot;
4224         int advance;
4225         unsigned char d_type;
4226         int over = 0;
4227         u32 di_cur;
4228         u32 di_total;
4229         u32 di_len;
4230         int key_type = BTRFS_DIR_INDEX_KEY;
4231         char tmp_name[32];
4232         char *name_ptr;
4233         int name_len;
4234
4235         /* FIXME, use a real flag for deciding about the key type */
4236         if (root->fs_info->tree_root == root)
4237                 key_type = BTRFS_DIR_ITEM_KEY;
4238
4239         /* special case for "." */
4240         if (filp->f_pos == 0) {
4241                 over = filldir(dirent, ".", 1,
4242                                1, inode->i_ino,
4243                                DT_DIR);
4244                 if (over)
4245                         return 0;
4246                 filp->f_pos = 1;
4247         }
4248         /* special case for .., just use the back ref */
4249         if (filp->f_pos == 1) {
4250                 u64 pino = parent_ino(filp->f_path.dentry);
4251                 over = filldir(dirent, "..", 2,
4252                                2, pino, DT_DIR);
4253                 if (over)
4254                         return 0;
4255                 filp->f_pos = 2;
4256         }
4257         path = btrfs_alloc_path();
4258         path->reada = 2;
4259
4260         btrfs_set_key_type(&key, key_type);
4261         key.offset = filp->f_pos;
4262         key.objectid = inode->i_ino;
4263
4264         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4265         if (ret < 0)
4266                 goto err;
4267         advance = 0;
4268
4269         while (1) {
4270                 leaf = path->nodes[0];
4271                 nritems = btrfs_header_nritems(leaf);
4272                 slot = path->slots[0];
4273                 if (advance || slot >= nritems) {
4274                         if (slot >= nritems - 1) {
4275                                 ret = btrfs_next_leaf(root, path);
4276                                 if (ret)
4277                                         break;
4278                                 leaf = path->nodes[0];
4279                                 nritems = btrfs_header_nritems(leaf);
4280                                 slot = path->slots[0];
4281                         } else {
4282                                 slot++;
4283                                 path->slots[0]++;
4284                         }
4285                 }
4286
4287                 advance = 1;
4288                 item = btrfs_item_nr(leaf, slot);
4289                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4290
4291                 if (found_key.objectid != key.objectid)
4292                         break;
4293                 if (btrfs_key_type(&found_key) != key_type)
4294                         break;
4295                 if (found_key.offset < filp->f_pos)
4296                         continue;
4297
4298                 filp->f_pos = found_key.offset;
4299
4300                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4301                 di_cur = 0;
4302                 di_total = btrfs_item_size(leaf, item);
4303
4304                 while (di_cur < di_total) {
4305                         struct btrfs_key location;
4306
4307                         if (verify_dir_item(root, leaf, di))
4308                                 break;
4309
4310                         name_len = btrfs_dir_name_len(leaf, di);
4311                         if (name_len <= sizeof(tmp_name)) {
4312                                 name_ptr = tmp_name;
4313                         } else {
4314                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4315                                 if (!name_ptr) {
4316                                         ret = -ENOMEM;
4317                                         goto err;
4318                                 }
4319                         }
4320                         read_extent_buffer(leaf, name_ptr,
4321                                            (unsigned long)(di + 1), name_len);
4322
4323                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4324                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4325
4326                         /* is this a reference to our own snapshot? If so
4327                          * skip it
4328                          */
4329                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4330                             location.objectid == root->root_key.objectid) {
4331                                 over = 0;
4332                                 goto skip;
4333                         }
4334                         over = filldir(dirent, name_ptr, name_len,
4335                                        found_key.offset, location.objectid,
4336                                        d_type);
4337
4338 skip:
4339                         if (name_ptr != tmp_name)
4340                                 kfree(name_ptr);
4341
4342                         if (over)
4343                                 goto nopos;
4344                         di_len = btrfs_dir_name_len(leaf, di) +
4345                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4346                         di_cur += di_len;
4347                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4348                 }
4349         }
4350
4351         /* Reached end of directory/root. Bump pos past the last item. */
4352         if (key_type == BTRFS_DIR_INDEX_KEY)
4353                 /*
4354                  * 32-bit glibc will use getdents64, but then strtol -
4355                  * so the last number we can serve is this.
4356                  */
4357                 filp->f_pos = 0x7fffffff;
4358         else
4359                 filp->f_pos++;
4360 nopos:
4361         ret = 0;
4362 err:
4363         btrfs_free_path(path);
4364         return ret;
4365 }
4366
4367 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4368 {
4369         struct btrfs_root *root = BTRFS_I(inode)->root;
4370         struct btrfs_trans_handle *trans;
4371         int ret = 0;
4372         bool nolock = false;
4373
4374         if (BTRFS_I(inode)->dummy_inode)
4375                 return 0;
4376
4377         smp_mb();
4378         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4379
4380         if (wbc->sync_mode == WB_SYNC_ALL) {
4381                 if (nolock)
4382                         trans = btrfs_join_transaction_nolock(root, 1);
4383                 else
4384                         trans = btrfs_join_transaction(root, 1);
4385                 if (IS_ERR(trans))
4386                         return PTR_ERR(trans);
4387                 btrfs_set_trans_block_group(trans, inode);
4388                 if (nolock)
4389                         ret = btrfs_end_transaction_nolock(trans, root);
4390                 else
4391                         ret = btrfs_commit_transaction(trans, root);
4392         }
4393         return ret;
4394 }
4395
4396 /*
4397  * This is somewhat expensive, updating the tree every time the
4398  * inode changes.  But, it is most likely to find the inode in cache.
4399  * FIXME, needs more benchmarking...there are no reasons other than performance
4400  * to keep or drop this code.
4401  */
4402 void btrfs_dirty_inode(struct inode *inode)
4403 {
4404         struct btrfs_root *root = BTRFS_I(inode)->root;
4405         struct btrfs_trans_handle *trans;
4406         int ret;
4407
4408         if (BTRFS_I(inode)->dummy_inode)
4409                 return;
4410
4411         trans = btrfs_join_transaction(root, 1);
4412         BUG_ON(IS_ERR(trans));
4413         btrfs_set_trans_block_group(trans, inode);
4414
4415         ret = btrfs_update_inode(trans, root, inode);
4416         if (ret && ret == -ENOSPC) {
4417                 /* whoops, lets try again with the full transaction */
4418                 btrfs_end_transaction(trans, root);
4419                 trans = btrfs_start_transaction(root, 1);
4420                 if (IS_ERR(trans)) {
4421                         if (printk_ratelimit()) {
4422                                 printk(KERN_ERR "btrfs: fail to "
4423                                        "dirty  inode %lu error %ld\n",
4424                                        inode->i_ino, PTR_ERR(trans));
4425                         }
4426                         return;
4427                 }
4428                 btrfs_set_trans_block_group(trans, inode);
4429
4430                 ret = btrfs_update_inode(trans, root, inode);
4431                 if (ret) {
4432                         if (printk_ratelimit()) {
4433                                 printk(KERN_ERR "btrfs: fail to "
4434                                        "dirty  inode %lu error %d\n",
4435                                        inode->i_ino, ret);
4436                         }
4437                 }
4438         }
4439         btrfs_end_transaction(trans, root);
4440 }
4441
4442 /*
4443  * find the highest existing sequence number in a directory
4444  * and then set the in-memory index_cnt variable to reflect
4445  * free sequence numbers
4446  */
4447 static int btrfs_set_inode_index_count(struct inode *inode)
4448 {
4449         struct btrfs_root *root = BTRFS_I(inode)->root;
4450         struct btrfs_key key, found_key;
4451         struct btrfs_path *path;
4452         struct extent_buffer *leaf;
4453         int ret;
4454
4455         key.objectid = inode->i_ino;
4456         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4457         key.offset = (u64)-1;
4458
4459         path = btrfs_alloc_path();
4460         if (!path)
4461                 return -ENOMEM;
4462
4463         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4464         if (ret < 0)
4465                 goto out;
4466         /* FIXME: we should be able to handle this */
4467         if (ret == 0)
4468                 goto out;
4469         ret = 0;
4470
4471         /*
4472          * MAGIC NUMBER EXPLANATION:
4473          * since we search a directory based on f_pos we have to start at 2
4474          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4475          * else has to start at 2
4476          */
4477         if (path->slots[0] == 0) {
4478                 BTRFS_I(inode)->index_cnt = 2;
4479                 goto out;
4480         }
4481
4482         path->slots[0]--;
4483
4484         leaf = path->nodes[0];
4485         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4486
4487         if (found_key.objectid != inode->i_ino ||
4488             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4489                 BTRFS_I(inode)->index_cnt = 2;
4490                 goto out;
4491         }
4492
4493         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4494 out:
4495         btrfs_free_path(path);
4496         return ret;
4497 }
4498
4499 /*
4500  * helper to find a free sequence number in a given directory.  This current
4501  * code is very simple, later versions will do smarter things in the btree
4502  */
4503 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4504 {
4505         int ret = 0;
4506
4507         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4508                 ret = btrfs_set_inode_index_count(dir);
4509                 if (ret)
4510                         return ret;
4511         }
4512
4513         *index = BTRFS_I(dir)->index_cnt;
4514         BTRFS_I(dir)->index_cnt++;
4515
4516         return ret;
4517 }
4518
4519 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4520                                      struct btrfs_root *root,
4521                                      struct inode *dir,
4522                                      const char *name, int name_len,
4523                                      u64 ref_objectid, u64 objectid,
4524                                      u64 alloc_hint, int mode, u64 *index)
4525 {
4526         struct inode *inode;
4527         struct btrfs_inode_item *inode_item;
4528         struct btrfs_key *location;
4529         struct btrfs_path *path;
4530         struct btrfs_inode_ref *ref;
4531         struct btrfs_key key[2];
4532         u32 sizes[2];
4533         unsigned long ptr;
4534         int ret;
4535         int owner;
4536
4537         path = btrfs_alloc_path();
4538         BUG_ON(!path);
4539
4540         inode = new_inode(root->fs_info->sb);
4541         if (!inode)
4542                 return ERR_PTR(-ENOMEM);
4543
4544         if (dir) {
4545                 trace_btrfs_inode_request(dir);
4546
4547                 ret = btrfs_set_inode_index(dir, index);
4548                 if (ret) {
4549                         iput(inode);
4550                         return ERR_PTR(ret);
4551                 }
4552         }
4553         /*
4554          * index_cnt is ignored for everything but a dir,
4555          * btrfs_get_inode_index_count has an explanation for the magic
4556          * number
4557          */
4558         BTRFS_I(inode)->index_cnt = 2;
4559         BTRFS_I(inode)->root = root;
4560         BTRFS_I(inode)->generation = trans->transid;
4561         inode->i_generation = BTRFS_I(inode)->generation;
4562         btrfs_set_inode_space_info(root, inode);
4563
4564         if (mode & S_IFDIR)
4565                 owner = 0;
4566         else
4567                 owner = 1;
4568         BTRFS_I(inode)->block_group =
4569                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4570
4571         key[0].objectid = objectid;
4572         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4573         key[0].offset = 0;
4574
4575         key[1].objectid = objectid;
4576         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4577         key[1].offset = ref_objectid;
4578
4579         sizes[0] = sizeof(struct btrfs_inode_item);
4580         sizes[1] = name_len + sizeof(*ref);
4581
4582         path->leave_spinning = 1;
4583         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4584         if (ret != 0)
4585                 goto fail;
4586
4587         inode_init_owner(inode, dir, mode);
4588         inode->i_ino = objectid;
4589         inode_set_bytes(inode, 0);
4590         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4591         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4592                                   struct btrfs_inode_item);
4593         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4594
4595         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4596                              struct btrfs_inode_ref);
4597         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4598         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4599         ptr = (unsigned long)(ref + 1);
4600         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4601
4602         btrfs_mark_buffer_dirty(path->nodes[0]);
4603         btrfs_free_path(path);
4604
4605         location = &BTRFS_I(inode)->location;
4606         location->objectid = objectid;
4607         location->offset = 0;
4608         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4609
4610         btrfs_inherit_iflags(inode, dir);
4611
4612         if ((mode & S_IFREG)) {
4613                 if (btrfs_test_opt(root, NODATASUM))
4614                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4615                 if (btrfs_test_opt(root, NODATACOW) ||
4616                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4617                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4618         }
4619
4620         insert_inode_hash(inode);
4621         inode_tree_add(inode);
4622
4623         trace_btrfs_inode_new(inode);
4624
4625         return inode;
4626 fail:
4627         if (dir)
4628                 BTRFS_I(dir)->index_cnt--;
4629         btrfs_free_path(path);
4630         iput(inode);
4631         return ERR_PTR(ret);
4632 }
4633
4634 static inline u8 btrfs_inode_type(struct inode *inode)
4635 {
4636         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4637 }
4638
4639 /*
4640  * utility function to add 'inode' into 'parent_inode' with
4641  * a give name and a given sequence number.
4642  * if 'add_backref' is true, also insert a backref from the
4643  * inode to the parent directory.
4644  */
4645 int btrfs_add_link(struct btrfs_trans_handle *trans,
4646                    struct inode *parent_inode, struct inode *inode,
4647                    const char *name, int name_len, int add_backref, u64 index)
4648 {
4649         int ret = 0;
4650         struct btrfs_key key;
4651         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4652
4653         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4654                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4655         } else {
4656                 key.objectid = inode->i_ino;
4657                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4658                 key.offset = 0;
4659         }
4660
4661         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4662                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4663                                          key.objectid, root->root_key.objectid,
4664                                          parent_inode->i_ino,
4665                                          index, name, name_len);
4666         } else if (add_backref) {
4667                 ret = btrfs_insert_inode_ref(trans, root,
4668                                              name, name_len, inode->i_ino,
4669                                              parent_inode->i_ino, index);
4670         }
4671
4672         if (ret == 0) {
4673                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4674                                             parent_inode->i_ino, &key,
4675                                             btrfs_inode_type(inode), index);
4676                 BUG_ON(ret);
4677
4678                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4679                                    name_len * 2);
4680                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4681                 ret = btrfs_update_inode(trans, root, parent_inode);
4682         }
4683         return ret;
4684 }
4685
4686 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4687                             struct inode *dir, struct dentry *dentry,
4688                             struct inode *inode, int backref, u64 index)
4689 {
4690         int err = btrfs_add_link(trans, dir, inode,
4691                                  dentry->d_name.name, dentry->d_name.len,
4692                                  backref, index);
4693         if (!err) {
4694                 d_instantiate(dentry, inode);
4695                 return 0;
4696         }
4697         if (err > 0)
4698                 err = -EEXIST;
4699         return err;
4700 }
4701
4702 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4703                         int mode, dev_t rdev)
4704 {
4705         struct btrfs_trans_handle *trans;
4706         struct btrfs_root *root = BTRFS_I(dir)->root;
4707         struct inode *inode = NULL;
4708         int err;
4709         int drop_inode = 0;
4710         u64 objectid;
4711         unsigned long nr = 0;
4712         u64 index = 0;
4713
4714         if (!new_valid_dev(rdev))
4715                 return -EINVAL;
4716
4717         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4718         if (err)
4719                 return err;
4720
4721         /*
4722          * 2 for inode item and ref
4723          * 2 for dir items
4724          * 1 for xattr if selinux is on
4725          */
4726         trans = btrfs_start_transaction(root, 5);
4727         if (IS_ERR(trans))
4728                 return PTR_ERR(trans);
4729
4730         btrfs_set_trans_block_group(trans, dir);
4731
4732         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4733                                 dentry->d_name.len, dir->i_ino, objectid,
4734                                 BTRFS_I(dir)->block_group, mode, &index);
4735         err = PTR_ERR(inode);
4736         if (IS_ERR(inode))
4737                 goto out_unlock;
4738
4739         err = btrfs_init_inode_security(trans, inode, dir);
4740         if (err) {
4741                 drop_inode = 1;
4742                 goto out_unlock;
4743         }
4744
4745         btrfs_set_trans_block_group(trans, inode);
4746         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4747         if (err)
4748                 drop_inode = 1;
4749         else {
4750                 inode->i_op = &btrfs_special_inode_operations;
4751                 init_special_inode(inode, inode->i_mode, rdev);
4752                 btrfs_update_inode(trans, root, inode);
4753         }
4754         btrfs_update_inode_block_group(trans, inode);
4755         btrfs_update_inode_block_group(trans, dir);
4756 out_unlock:
4757         nr = trans->blocks_used;
4758         btrfs_end_transaction_throttle(trans, root);
4759         btrfs_btree_balance_dirty(root, nr);
4760         if (drop_inode) {
4761                 inode_dec_link_count(inode);
4762                 iput(inode);
4763         }
4764         return err;
4765 }
4766
4767 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4768                         int mode, struct nameidata *nd)
4769 {
4770         struct btrfs_trans_handle *trans;
4771         struct btrfs_root *root = BTRFS_I(dir)->root;
4772         struct inode *inode = NULL;
4773         int drop_inode = 0;
4774         int err;
4775         unsigned long nr = 0;
4776         u64 objectid;
4777         u64 index = 0;
4778
4779         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4780         if (err)
4781                 return err;
4782         /*
4783          * 2 for inode item and ref
4784          * 2 for dir items
4785          * 1 for xattr if selinux is on
4786          */
4787         trans = btrfs_start_transaction(root, 5);
4788         if (IS_ERR(trans))
4789                 return PTR_ERR(trans);
4790
4791         btrfs_set_trans_block_group(trans, dir);
4792
4793         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4794                                 dentry->d_name.len, dir->i_ino, objectid,
4795                                 BTRFS_I(dir)->block_group, mode, &index);
4796         err = PTR_ERR(inode);
4797         if (IS_ERR(inode))
4798                 goto out_unlock;
4799
4800         err = btrfs_init_inode_security(trans, inode, dir);
4801         if (err) {
4802                 drop_inode = 1;
4803                 goto out_unlock;
4804         }
4805
4806         btrfs_set_trans_block_group(trans, inode);
4807         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4808         if (err)
4809                 drop_inode = 1;
4810         else {
4811                 inode->i_mapping->a_ops = &btrfs_aops;
4812                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4813                 inode->i_fop = &btrfs_file_operations;
4814                 inode->i_op = &btrfs_file_inode_operations;
4815                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4816         }
4817         btrfs_update_inode_block_group(trans, inode);
4818         btrfs_update_inode_block_group(trans, dir);
4819 out_unlock:
4820         nr = trans->blocks_used;
4821         btrfs_end_transaction_throttle(trans, root);
4822         if (drop_inode) {
4823                 inode_dec_link_count(inode);
4824                 iput(inode);
4825         }
4826         btrfs_btree_balance_dirty(root, nr);
4827         return err;
4828 }
4829
4830 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4831                       struct dentry *dentry)
4832 {
4833         struct btrfs_trans_handle *trans;
4834         struct btrfs_root *root = BTRFS_I(dir)->root;
4835         struct inode *inode = old_dentry->d_inode;
4836         u64 index;
4837         unsigned long nr = 0;
4838         int err;
4839         int drop_inode = 0;
4840
4841         if (inode->i_nlink == 0)
4842                 return -ENOENT;
4843
4844         /* do not allow sys_link's with other subvols of the same device */
4845         if (root->objectid != BTRFS_I(inode)->root->objectid)
4846                 return -EXDEV;
4847
4848         if (inode->i_nlink == ~0U)
4849                 return -EMLINK;
4850
4851         btrfs_inc_nlink(inode);
4852         inode->i_ctime = CURRENT_TIME;
4853
4854         err = btrfs_set_inode_index(dir, &index);
4855         if (err)
4856                 goto fail;
4857
4858         /*
4859          * 2 items for inode and inode ref
4860          * 2 items for dir items
4861          * 1 item for parent inode
4862          */
4863         trans = btrfs_start_transaction(root, 5);
4864         if (IS_ERR(trans)) {
4865                 err = PTR_ERR(trans);
4866                 goto fail;
4867         }
4868
4869         btrfs_set_trans_block_group(trans, dir);
4870         ihold(inode);
4871
4872         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4873
4874         if (err) {
4875                 drop_inode = 1;
4876         } else {
4877                 struct dentry *parent = dget_parent(dentry);
4878                 btrfs_update_inode_block_group(trans, dir);
4879                 err = btrfs_update_inode(trans, root, inode);
4880                 BUG_ON(err);
4881                 btrfs_log_new_name(trans, inode, NULL, parent);
4882                 dput(parent);
4883         }
4884
4885         nr = trans->blocks_used;
4886         btrfs_end_transaction_throttle(trans, root);
4887 fail:
4888         if (drop_inode) {
4889                 inode_dec_link_count(inode);
4890                 iput(inode);
4891         }
4892         btrfs_btree_balance_dirty(root, nr);
4893         return err;
4894 }
4895
4896 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4897 {
4898         struct inode *inode = NULL;
4899         struct btrfs_trans_handle *trans;
4900         struct btrfs_root *root = BTRFS_I(dir)->root;
4901         int err = 0;
4902         int drop_on_err = 0;
4903         u64 objectid = 0;
4904         u64 index = 0;
4905         unsigned long nr = 1;
4906
4907         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4908         if (err)
4909                 return err;
4910
4911         /*
4912          * 2 items for inode and ref
4913          * 2 items for dir items
4914          * 1 for xattr if selinux is on
4915          */
4916         trans = btrfs_start_transaction(root, 5);
4917         if (IS_ERR(trans))
4918                 return PTR_ERR(trans);
4919         btrfs_set_trans_block_group(trans, dir);
4920
4921         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4922                                 dentry->d_name.len, dir->i_ino, objectid,
4923                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4924                                 &index);
4925         if (IS_ERR(inode)) {
4926                 err = PTR_ERR(inode);
4927                 goto out_fail;
4928         }
4929
4930         drop_on_err = 1;
4931
4932         err = btrfs_init_inode_security(trans, inode, dir);
4933         if (err)
4934                 goto out_fail;
4935
4936         inode->i_op = &btrfs_dir_inode_operations;
4937         inode->i_fop = &btrfs_dir_file_operations;
4938         btrfs_set_trans_block_group(trans, inode);
4939
4940         btrfs_i_size_write(inode, 0);
4941         err = btrfs_update_inode(trans, root, inode);
4942         if (err)
4943                 goto out_fail;
4944
4945         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4946                              dentry->d_name.len, 0, index);
4947         if (err)
4948                 goto out_fail;
4949
4950         d_instantiate(dentry, inode);
4951         drop_on_err = 0;
4952         btrfs_update_inode_block_group(trans, inode);
4953         btrfs_update_inode_block_group(trans, dir);
4954
4955 out_fail:
4956         nr = trans->blocks_used;
4957         btrfs_end_transaction_throttle(trans, root);
4958         if (drop_on_err)
4959                 iput(inode);
4960         btrfs_btree_balance_dirty(root, nr);
4961         return err;
4962 }
4963
4964 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4965  * and an extent that you want to insert, deal with overlap and insert
4966  * the new extent into the tree.
4967  */
4968 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4969                                 struct extent_map *existing,
4970                                 struct extent_map *em,
4971                                 u64 map_start, u64 map_len)
4972 {
4973         u64 start_diff;
4974
4975         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4976         start_diff = map_start - em->start;
4977         em->start = map_start;
4978         em->len = map_len;
4979         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4980             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4981                 em->block_start += start_diff;
4982                 em->block_len -= start_diff;
4983         }
4984         return add_extent_mapping(em_tree, em);
4985 }
4986
4987 static noinline int uncompress_inline(struct btrfs_path *path,
4988                                       struct inode *inode, struct page *page,
4989                                       size_t pg_offset, u64 extent_offset,
4990                                       struct btrfs_file_extent_item *item)
4991 {
4992         int ret;
4993         struct extent_buffer *leaf = path->nodes[0];
4994         char *tmp;
4995         size_t max_size;
4996         unsigned long inline_size;
4997         unsigned long ptr;
4998         int compress_type;
4999
5000         WARN_ON(pg_offset != 0);
5001         compress_type = btrfs_file_extent_compression(leaf, item);
5002         max_size = btrfs_file_extent_ram_bytes(leaf, item);
5003         inline_size = btrfs_file_extent_inline_item_len(leaf,
5004                                         btrfs_item_nr(leaf, path->slots[0]));
5005         tmp = kmalloc(inline_size, GFP_NOFS);
5006         ptr = btrfs_file_extent_inline_start(item);
5007
5008         read_extent_buffer(leaf, tmp, ptr, inline_size);
5009
5010         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5011         ret = btrfs_decompress(compress_type, tmp, page,
5012                                extent_offset, inline_size, max_size);
5013         if (ret) {
5014                 char *kaddr = kmap_atomic(page, KM_USER0);
5015                 unsigned long copy_size = min_t(u64,
5016                                   PAGE_CACHE_SIZE - pg_offset,
5017                                   max_size - extent_offset);
5018                 memset(kaddr + pg_offset, 0, copy_size);
5019                 kunmap_atomic(kaddr, KM_USER0);
5020         }
5021         kfree(tmp);
5022         return 0;
5023 }
5024
5025 /*
5026  * a bit scary, this does extent mapping from logical file offset to the disk.
5027  * the ugly parts come from merging extents from the disk with the in-ram
5028  * representation.  This gets more complex because of the data=ordered code,
5029  * where the in-ram extents might be locked pending data=ordered completion.
5030  *
5031  * This also copies inline extents directly into the page.
5032  */
5033
5034 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5035                                     size_t pg_offset, u64 start, u64 len,
5036                                     int create)
5037 {
5038         int ret;
5039         int err = 0;
5040         u64 bytenr;
5041         u64 extent_start = 0;
5042         u64 extent_end = 0;
5043         u64 objectid = inode->i_ino;
5044         u32 found_type;
5045         struct btrfs_path *path = NULL;
5046         struct btrfs_root *root = BTRFS_I(inode)->root;
5047         struct btrfs_file_extent_item *item;
5048         struct extent_buffer *leaf;
5049         struct btrfs_key found_key;
5050         struct extent_map *em = NULL;
5051         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5052         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5053         struct btrfs_trans_handle *trans = NULL;
5054         int compress_type;
5055
5056 again:
5057         read_lock(&em_tree->lock);
5058         em = lookup_extent_mapping(em_tree, start, len);
5059         if (em)
5060                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5061         read_unlock(&em_tree->lock);
5062
5063         if (em) {
5064                 if (em->start > start || em->start + em->len <= start)
5065                         free_extent_map(em);
5066                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5067                         free_extent_map(em);
5068                 else
5069                         goto out;
5070         }
5071         em = alloc_extent_map(GFP_NOFS);
5072         if (!em) {
5073                 err = -ENOMEM;
5074                 goto out;
5075         }
5076         em->bdev = root->fs_info->fs_devices->latest_bdev;
5077         em->start = EXTENT_MAP_HOLE;
5078         em->orig_start = EXTENT_MAP_HOLE;
5079         em->len = (u64)-1;
5080         em->block_len = (u64)-1;
5081
5082         if (!path) {
5083                 path = btrfs_alloc_path();
5084                 BUG_ON(!path);
5085         }
5086
5087         ret = btrfs_lookup_file_extent(trans, root, path,
5088                                        objectid, start, trans != NULL);
5089         if (ret < 0) {
5090                 err = ret;
5091                 goto out;
5092         }
5093
5094         if (ret != 0) {
5095                 if (path->slots[0] == 0)
5096                         goto not_found;
5097                 path->slots[0]--;
5098         }
5099
5100         leaf = path->nodes[0];
5101         item = btrfs_item_ptr(leaf, path->slots[0],
5102                               struct btrfs_file_extent_item);
5103         /* are we inside the extent that was found? */
5104         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5105         found_type = btrfs_key_type(&found_key);
5106         if (found_key.objectid != objectid ||
5107             found_type != BTRFS_EXTENT_DATA_KEY) {
5108                 goto not_found;
5109         }
5110
5111         found_type = btrfs_file_extent_type(leaf, item);
5112         extent_start = found_key.offset;
5113         compress_type = btrfs_file_extent_compression(leaf, item);
5114         if (found_type == BTRFS_FILE_EXTENT_REG ||
5115             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5116                 extent_end = extent_start +
5117                        btrfs_file_extent_num_bytes(leaf, item);
5118         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5119                 size_t size;
5120                 size = btrfs_file_extent_inline_len(leaf, item);
5121                 extent_end = (extent_start + size + root->sectorsize - 1) &
5122                         ~((u64)root->sectorsize - 1);
5123         }
5124
5125         if (start >= extent_end) {
5126                 path->slots[0]++;
5127                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5128                         ret = btrfs_next_leaf(root, path);
5129                         if (ret < 0) {
5130                                 err = ret;
5131                                 goto out;
5132                         }
5133                         if (ret > 0)
5134                                 goto not_found;
5135                         leaf = path->nodes[0];
5136                 }
5137                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5138                 if (found_key.objectid != objectid ||
5139                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5140                         goto not_found;
5141                 if (start + len <= found_key.offset)
5142                         goto not_found;
5143                 em->start = start;
5144                 em->len = found_key.offset - start;
5145                 goto not_found_em;
5146         }
5147
5148         if (found_type == BTRFS_FILE_EXTENT_REG ||
5149             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5150                 em->start = extent_start;
5151                 em->len = extent_end - extent_start;
5152                 em->orig_start = extent_start -
5153                                  btrfs_file_extent_offset(leaf, item);
5154                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5155                 if (bytenr == 0) {
5156                         em->block_start = EXTENT_MAP_HOLE;
5157                         goto insert;
5158                 }
5159                 if (compress_type != BTRFS_COMPRESS_NONE) {
5160                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5161                         em->compress_type = compress_type;
5162                         em->block_start = bytenr;
5163                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5164                                                                          item);
5165                 } else {
5166                         bytenr += btrfs_file_extent_offset(leaf, item);
5167                         em->block_start = bytenr;
5168                         em->block_len = em->len;
5169                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5170                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5171                 }
5172                 goto insert;
5173         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5174                 unsigned long ptr;
5175                 char *map;
5176                 size_t size;
5177                 size_t extent_offset;
5178                 size_t copy_size;
5179
5180                 em->block_start = EXTENT_MAP_INLINE;
5181                 if (!page || create) {
5182                         em->start = extent_start;
5183                         em->len = extent_end - extent_start;
5184                         goto out;
5185                 }
5186
5187                 size = btrfs_file_extent_inline_len(leaf, item);
5188                 extent_offset = page_offset(page) + pg_offset - extent_start;
5189                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5190                                 size - extent_offset);
5191                 em->start = extent_start + extent_offset;
5192                 em->len = (copy_size + root->sectorsize - 1) &
5193                         ~((u64)root->sectorsize - 1);
5194                 em->orig_start = EXTENT_MAP_INLINE;
5195                 if (compress_type) {
5196                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5197                         em->compress_type = compress_type;
5198                 }
5199                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5200                 if (create == 0 && !PageUptodate(page)) {
5201                         if (btrfs_file_extent_compression(leaf, item) !=
5202                             BTRFS_COMPRESS_NONE) {
5203                                 ret = uncompress_inline(path, inode, page,
5204                                                         pg_offset,
5205                                                         extent_offset, item);
5206                                 BUG_ON(ret);
5207                         } else {
5208                                 map = kmap(page);
5209                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5210                                                    copy_size);
5211                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5212                                         memset(map + pg_offset + copy_size, 0,
5213                                                PAGE_CACHE_SIZE - pg_offset -
5214                                                copy_size);
5215                                 }
5216                                 kunmap(page);
5217                         }
5218                         flush_dcache_page(page);
5219                 } else if (create && PageUptodate(page)) {
5220                         WARN_ON(1);
5221                         if (!trans) {
5222                                 kunmap(page);
5223                                 free_extent_map(em);
5224                                 em = NULL;
5225                                 btrfs_release_path(root, path);
5226                                 trans = btrfs_join_transaction(root, 1);
5227                                 if (IS_ERR(trans))
5228                                         return ERR_CAST(trans);
5229                                 goto again;
5230                         }
5231                         map = kmap(page);
5232                         write_extent_buffer(leaf, map + pg_offset, ptr,
5233                                             copy_size);
5234                         kunmap(page);
5235                         btrfs_mark_buffer_dirty(leaf);
5236                 }
5237                 set_extent_uptodate(io_tree, em->start,
5238                                     extent_map_end(em) - 1, GFP_NOFS);
5239                 goto insert;
5240         } else {
5241                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5242                 WARN_ON(1);
5243         }
5244 not_found:
5245         em->start = start;
5246         em->len = len;
5247 not_found_em:
5248         em->block_start = EXTENT_MAP_HOLE;
5249         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5250 insert:
5251         btrfs_release_path(root, path);
5252         if (em->start > start || extent_map_end(em) <= start) {
5253                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5254                        "[%llu %llu]\n", (unsigned long long)em->start,
5255                        (unsigned long long)em->len,
5256                        (unsigned long long)start,
5257                        (unsigned long long)len);
5258                 err = -EIO;
5259                 goto out;
5260         }
5261
5262         err = 0;
5263         write_lock(&em_tree->lock);
5264         ret = add_extent_mapping(em_tree, em);
5265         /* it is possible that someone inserted the extent into the tree
5266          * while we had the lock dropped.  It is also possible that
5267          * an overlapping map exists in the tree
5268          */
5269         if (ret == -EEXIST) {
5270                 struct extent_map *existing;
5271
5272                 ret = 0;
5273
5274                 existing = lookup_extent_mapping(em_tree, start, len);
5275                 if (existing && (existing->start > start ||
5276                     existing->start + existing->len <= start)) {
5277                         free_extent_map(existing);
5278                         existing = NULL;
5279                 }
5280                 if (!existing) {
5281                         existing = lookup_extent_mapping(em_tree, em->start,
5282                                                          em->len);
5283                         if (existing) {
5284                                 err = merge_extent_mapping(em_tree, existing,
5285                                                            em, start,
5286                                                            root->sectorsize);
5287                                 free_extent_map(existing);
5288                                 if (err) {
5289                                         free_extent_map(em);
5290                                         em = NULL;
5291                                 }
5292                         } else {
5293                                 err = -EIO;
5294                                 free_extent_map(em);
5295                                 em = NULL;
5296                         }
5297                 } else {
5298                         free_extent_map(em);
5299                         em = existing;
5300                         err = 0;
5301                 }
5302         }
5303         write_unlock(&em_tree->lock);
5304 out:
5305
5306         trace_btrfs_get_extent(root, em);
5307
5308         if (path)
5309                 btrfs_free_path(path);
5310         if (trans) {
5311                 ret = btrfs_end_transaction(trans, root);
5312                 if (!err)
5313                         err = ret;
5314         }
5315         if (err) {
5316                 free_extent_map(em);
5317                 return ERR_PTR(err);
5318         }
5319         return em;
5320 }
5321
5322 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5323                                            size_t pg_offset, u64 start, u64 len,
5324                                            int create)
5325 {
5326         struct extent_map *em;
5327         struct extent_map *hole_em = NULL;
5328         u64 range_start = start;
5329         u64 end;
5330         u64 found;
5331         u64 found_end;
5332         int err = 0;
5333
5334         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5335         if (IS_ERR(em))
5336                 return em;
5337         if (em) {
5338                 /*
5339                  * if our em maps to a hole, there might
5340                  * actually be delalloc bytes behind it
5341                  */
5342                 if (em->block_start != EXTENT_MAP_HOLE)
5343                         return em;
5344                 else
5345                         hole_em = em;
5346         }
5347
5348         /* check to see if we've wrapped (len == -1 or similar) */
5349         end = start + len;
5350         if (end < start)
5351                 end = (u64)-1;
5352         else
5353                 end -= 1;
5354
5355         em = NULL;
5356
5357         /* ok, we didn't find anything, lets look for delalloc */
5358         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5359                                  end, len, EXTENT_DELALLOC, 1);
5360         found_end = range_start + found;
5361         if (found_end < range_start)
5362                 found_end = (u64)-1;
5363
5364         /*
5365          * we didn't find anything useful, return
5366          * the original results from get_extent()
5367          */
5368         if (range_start > end || found_end <= start) {
5369                 em = hole_em;
5370                 hole_em = NULL;
5371                 goto out;
5372         }
5373
5374         /* adjust the range_start to make sure it doesn't
5375          * go backwards from the start they passed in
5376          */
5377         range_start = max(start,range_start);
5378         found = found_end - range_start;
5379
5380         if (found > 0) {
5381                 u64 hole_start = start;
5382                 u64 hole_len = len;
5383
5384                 em = alloc_extent_map(GFP_NOFS);
5385                 if (!em) {
5386                         err = -ENOMEM;
5387                         goto out;
5388                 }
5389                 /*
5390                  * when btrfs_get_extent can't find anything it
5391                  * returns one huge hole
5392                  *
5393                  * make sure what it found really fits our range, and
5394                  * adjust to make sure it is based on the start from
5395                  * the caller
5396                  */
5397                 if (hole_em) {
5398                         u64 calc_end = extent_map_end(hole_em);
5399
5400                         if (calc_end <= start || (hole_em->start > end)) {
5401                                 free_extent_map(hole_em);
5402                                 hole_em = NULL;
5403                         } else {
5404                                 hole_start = max(hole_em->start, start);
5405                                 hole_len = calc_end - hole_start;
5406                         }
5407                 }
5408                 em->bdev = NULL;
5409                 if (hole_em && range_start > hole_start) {
5410                         /* our hole starts before our delalloc, so we
5411                          * have to return just the parts of the hole
5412                          * that go until  the delalloc starts
5413                          */
5414                         em->len = min(hole_len,
5415                                       range_start - hole_start);
5416                         em->start = hole_start;
5417                         em->orig_start = hole_start;
5418                         /*
5419                          * don't adjust block start at all,
5420                          * it is fixed at EXTENT_MAP_HOLE
5421                          */
5422                         em->block_start = hole_em->block_start;
5423                         em->block_len = hole_len;
5424                 } else {
5425                         em->start = range_start;
5426                         em->len = found;
5427                         em->orig_start = range_start;
5428                         em->block_start = EXTENT_MAP_DELALLOC;
5429                         em->block_len = found;
5430                 }
5431         } else if (hole_em) {
5432                 return hole_em;
5433         }
5434 out:
5435
5436         free_extent_map(hole_em);
5437         if (err) {
5438                 free_extent_map(em);
5439                 return ERR_PTR(err);
5440         }
5441         return em;
5442 }
5443
5444 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5445                                                   u64 start, u64 len)
5446 {
5447         struct btrfs_root *root = BTRFS_I(inode)->root;
5448         struct btrfs_trans_handle *trans;
5449         struct extent_map *em;
5450         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5451         struct btrfs_key ins;
5452         u64 alloc_hint;
5453         int ret;
5454
5455         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5456
5457         trans = btrfs_join_transaction(root, 0);
5458         if (IS_ERR(trans))
5459                 return ERR_CAST(trans);
5460
5461         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5462
5463         alloc_hint = get_extent_allocation_hint(inode, start, len);
5464         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5465                                    alloc_hint, (u64)-1, &ins, 1);
5466         if (ret) {
5467                 em = ERR_PTR(ret);
5468                 goto out;
5469         }
5470
5471         em = alloc_extent_map(GFP_NOFS);
5472         if (!em) {
5473                 em = ERR_PTR(-ENOMEM);
5474                 goto out;
5475         }
5476
5477         em->start = start;
5478         em->orig_start = em->start;
5479         em->len = ins.offset;
5480
5481         em->block_start = ins.objectid;
5482         em->block_len = ins.offset;
5483         em->bdev = root->fs_info->fs_devices->latest_bdev;
5484         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5485
5486         while (1) {
5487                 write_lock(&em_tree->lock);
5488                 ret = add_extent_mapping(em_tree, em);
5489                 write_unlock(&em_tree->lock);
5490                 if (ret != -EEXIST)
5491                         break;
5492                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5493         }
5494
5495         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5496                                            ins.offset, ins.offset, 0);
5497         if (ret) {
5498                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5499                 em = ERR_PTR(ret);
5500         }
5501 out:
5502         btrfs_end_transaction(trans, root);
5503         return em;
5504 }
5505
5506 /*
5507  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5508  * block must be cow'd
5509  */
5510 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5511                                       struct inode *inode, u64 offset, u64 len)
5512 {
5513         struct btrfs_path *path;
5514         int ret;
5515         struct extent_buffer *leaf;
5516         struct btrfs_root *root = BTRFS_I(inode)->root;
5517         struct btrfs_file_extent_item *fi;
5518         struct btrfs_key key;
5519         u64 disk_bytenr;
5520         u64 backref_offset;
5521         u64 extent_end;
5522         u64 num_bytes;
5523         int slot;
5524         int found_type;
5525
5526         path = btrfs_alloc_path();
5527         if (!path)
5528                 return -ENOMEM;
5529
5530         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5531                                        offset, 0);
5532         if (ret < 0)
5533                 goto out;
5534
5535         slot = path->slots[0];
5536         if (ret == 1) {
5537                 if (slot == 0) {
5538                         /* can't find the item, must cow */
5539                         ret = 0;
5540                         goto out;
5541                 }
5542                 slot--;
5543         }
5544         ret = 0;
5545         leaf = path->nodes[0];
5546         btrfs_item_key_to_cpu(leaf, &key, slot);
5547         if (key.objectid != inode->i_ino ||
5548             key.type != BTRFS_EXTENT_DATA_KEY) {
5549                 /* not our file or wrong item type, must cow */
5550                 goto out;
5551         }
5552
5553         if (key.offset > offset) {
5554                 /* Wrong offset, must cow */
5555                 goto out;
5556         }
5557
5558         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5559         found_type = btrfs_file_extent_type(leaf, fi);
5560         if (found_type != BTRFS_FILE_EXTENT_REG &&
5561             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5562                 /* not a regular extent, must cow */
5563                 goto out;
5564         }
5565         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5566         backref_offset = btrfs_file_extent_offset(leaf, fi);
5567
5568         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5569         if (extent_end < offset + len) {
5570                 /* extent doesn't include our full range, must cow */
5571                 goto out;
5572         }
5573
5574         if (btrfs_extent_readonly(root, disk_bytenr))
5575                 goto out;
5576
5577         /*
5578          * look for other files referencing this extent, if we
5579          * find any we must cow
5580          */
5581         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5582                                   key.offset - backref_offset, disk_bytenr))
5583                 goto out;
5584
5585         /*
5586          * adjust disk_bytenr and num_bytes to cover just the bytes
5587          * in this extent we are about to write.  If there
5588          * are any csums in that range we have to cow in order
5589          * to keep the csums correct
5590          */
5591         disk_bytenr += backref_offset;
5592         disk_bytenr += offset - key.offset;
5593         num_bytes = min(offset + len, extent_end) - offset;
5594         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5595                                 goto out;
5596         /*
5597          * all of the above have passed, it is safe to overwrite this extent
5598          * without cow
5599          */
5600         ret = 1;
5601 out:
5602         btrfs_free_path(path);
5603         return ret;
5604 }
5605
5606 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5607                                    struct buffer_head *bh_result, int create)
5608 {
5609         struct extent_map *em;
5610         struct btrfs_root *root = BTRFS_I(inode)->root;
5611         u64 start = iblock << inode->i_blkbits;
5612         u64 len = bh_result->b_size;
5613         struct btrfs_trans_handle *trans;
5614
5615         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5616         if (IS_ERR(em))
5617                 return PTR_ERR(em);
5618
5619         /*
5620          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5621          * io.  INLINE is special, and we could probably kludge it in here, but
5622          * it's still buffered so for safety lets just fall back to the generic
5623          * buffered path.
5624          *
5625          * For COMPRESSED we _have_ to read the entire extent in so we can
5626          * decompress it, so there will be buffering required no matter what we
5627          * do, so go ahead and fallback to buffered.
5628          *
5629          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5630          * to buffered IO.  Don't blame me, this is the price we pay for using
5631          * the generic code.
5632          */
5633         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5634             em->block_start == EXTENT_MAP_INLINE) {
5635                 free_extent_map(em);
5636                 return -ENOTBLK;
5637         }
5638
5639         /* Just a good old fashioned hole, return */
5640         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5641                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5642                 free_extent_map(em);
5643                 /* DIO will do one hole at a time, so just unlock a sector */
5644                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5645                               start + root->sectorsize - 1, GFP_NOFS);
5646                 return 0;
5647         }
5648
5649         /*
5650          * We don't allocate a new extent in the following cases
5651          *
5652          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5653          * existing extent.
5654          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5655          * just use the extent.
5656          *
5657          */
5658         if (!create) {
5659                 len = em->len - (start - em->start);
5660                 goto map;
5661         }
5662
5663         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5664             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5665              em->block_start != EXTENT_MAP_HOLE)) {
5666                 int type;
5667                 int ret;
5668                 u64 block_start;
5669
5670                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5671                         type = BTRFS_ORDERED_PREALLOC;
5672                 else
5673                         type = BTRFS_ORDERED_NOCOW;
5674                 len = min(len, em->len - (start - em->start));
5675                 block_start = em->block_start + (start - em->start);
5676
5677                 /*
5678                  * we're not going to log anything, but we do need
5679                  * to make sure the current transaction stays open
5680                  * while we look for nocow cross refs
5681                  */
5682                 trans = btrfs_join_transaction(root, 0);
5683                 if (IS_ERR(trans))
5684                         goto must_cow;
5685
5686                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5687                         ret = btrfs_add_ordered_extent_dio(inode, start,
5688                                            block_start, len, len, type);
5689                         btrfs_end_transaction(trans, root);
5690                         if (ret) {
5691                                 free_extent_map(em);
5692                                 return ret;
5693                         }
5694                         goto unlock;
5695                 }
5696                 btrfs_end_transaction(trans, root);
5697         }
5698 must_cow:
5699         /*
5700          * this will cow the extent, reset the len in case we changed
5701          * it above
5702          */
5703         len = bh_result->b_size;
5704         free_extent_map(em);
5705         em = btrfs_new_extent_direct(inode, start, len);
5706         if (IS_ERR(em))
5707                 return PTR_ERR(em);
5708         len = min(len, em->len - (start - em->start));
5709 unlock:
5710         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5711                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5712                           0, NULL, GFP_NOFS);
5713 map:
5714         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5715                 inode->i_blkbits;
5716         bh_result->b_size = len;
5717         bh_result->b_bdev = em->bdev;
5718         set_buffer_mapped(bh_result);
5719         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5720                 set_buffer_new(bh_result);
5721
5722         free_extent_map(em);
5723
5724         return 0;
5725 }
5726
5727 struct btrfs_dio_private {
5728         struct inode *inode;
5729         u64 logical_offset;
5730         u64 disk_bytenr;
5731         u64 bytes;
5732         u32 *csums;
5733         void *private;
5734
5735         /* number of bios pending for this dio */
5736         atomic_t pending_bios;
5737
5738         /* IO errors */
5739         int errors;
5740
5741         struct bio *orig_bio;
5742 };
5743
5744 static void btrfs_endio_direct_read(struct bio *bio, int err)
5745 {
5746         struct btrfs_dio_private *dip = bio->bi_private;
5747         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5748         struct bio_vec *bvec = bio->bi_io_vec;
5749         struct inode *inode = dip->inode;
5750         struct btrfs_root *root = BTRFS_I(inode)->root;
5751         u64 start;
5752         u32 *private = dip->csums;
5753
5754         start = dip->logical_offset;
5755         do {
5756                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5757                         struct page *page = bvec->bv_page;
5758                         char *kaddr;
5759                         u32 csum = ~(u32)0;
5760                         unsigned long flags;
5761
5762                         local_irq_save(flags);
5763                         kaddr = kmap_atomic(page, KM_IRQ0);
5764                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5765                                                csum, bvec->bv_len);
5766                         btrfs_csum_final(csum, (char *)&csum);
5767                         kunmap_atomic(kaddr, KM_IRQ0);
5768                         local_irq_restore(flags);
5769
5770                         flush_dcache_page(bvec->bv_page);
5771                         if (csum != *private) {
5772                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5773                                       " %llu csum %u private %u\n",
5774                                       inode->i_ino, (unsigned long long)start,
5775                                       csum, *private);
5776                                 err = -EIO;
5777                         }
5778                 }
5779
5780                 start += bvec->bv_len;
5781                 private++;
5782                 bvec++;
5783         } while (bvec <= bvec_end);
5784
5785         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5786                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5787         bio->bi_private = dip->private;
5788
5789         kfree(dip->csums);
5790         kfree(dip);
5791
5792         /* If we had a csum failure make sure to clear the uptodate flag */
5793         if (err)
5794                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5795         dio_end_io(bio, err);
5796 }
5797
5798 static void btrfs_endio_direct_write(struct bio *bio, int err)
5799 {
5800         struct btrfs_dio_private *dip = bio->bi_private;
5801         struct inode *inode = dip->inode;
5802         struct btrfs_root *root = BTRFS_I(inode)->root;
5803         struct btrfs_trans_handle *trans;
5804         struct btrfs_ordered_extent *ordered = NULL;
5805         struct extent_state *cached_state = NULL;
5806         u64 ordered_offset = dip->logical_offset;
5807         u64 ordered_bytes = dip->bytes;
5808         int ret;
5809
5810         if (err)
5811                 goto out_done;
5812 again:
5813         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5814                                                    &ordered_offset,
5815                                                    ordered_bytes);
5816         if (!ret)
5817                 goto out_test;
5818
5819         BUG_ON(!ordered);
5820
5821         trans = btrfs_join_transaction(root, 1);
5822         if (IS_ERR(trans)) {
5823                 err = -ENOMEM;
5824                 goto out;
5825         }
5826         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5827
5828         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5829                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5830                 if (!ret)
5831                         ret = btrfs_update_inode(trans, root, inode);
5832                 err = ret;
5833                 goto out;
5834         }
5835
5836         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5837                          ordered->file_offset + ordered->len - 1, 0,
5838                          &cached_state, GFP_NOFS);
5839
5840         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5841                 ret = btrfs_mark_extent_written(trans, inode,
5842                                                 ordered->file_offset,
5843                                                 ordered->file_offset +
5844                                                 ordered->len);
5845                 if (ret) {
5846                         err = ret;
5847                         goto out_unlock;
5848                 }
5849         } else {
5850                 ret = insert_reserved_file_extent(trans, inode,
5851                                                   ordered->file_offset,
5852                                                   ordered->start,
5853                                                   ordered->disk_len,
5854                                                   ordered->len,
5855                                                   ordered->len,
5856                                                   0, 0, 0,
5857                                                   BTRFS_FILE_EXTENT_REG);
5858                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5859                                    ordered->file_offset, ordered->len);
5860                 if (ret) {
5861                         err = ret;
5862                         WARN_ON(1);
5863                         goto out_unlock;
5864                 }
5865         }
5866
5867         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5868         btrfs_ordered_update_i_size(inode, 0, ordered);
5869         btrfs_update_inode(trans, root, inode);
5870 out_unlock:
5871         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5872                              ordered->file_offset + ordered->len - 1,
5873                              &cached_state, GFP_NOFS);
5874 out:
5875         btrfs_delalloc_release_metadata(inode, ordered->len);
5876         btrfs_end_transaction(trans, root);
5877         ordered_offset = ordered->file_offset + ordered->len;
5878         btrfs_put_ordered_extent(ordered);
5879         btrfs_put_ordered_extent(ordered);
5880
5881 out_test:
5882         /*
5883          * our bio might span multiple ordered extents.  If we haven't
5884          * completed the accounting for the whole dio, go back and try again
5885          */
5886         if (ordered_offset < dip->logical_offset + dip->bytes) {
5887                 ordered_bytes = dip->logical_offset + dip->bytes -
5888                         ordered_offset;
5889                 goto again;
5890         }
5891 out_done:
5892         bio->bi_private = dip->private;
5893
5894         kfree(dip->csums);
5895         kfree(dip);
5896
5897         /* If we had an error make sure to clear the uptodate flag */
5898         if (err)
5899                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5900         dio_end_io(bio, err);
5901 }
5902
5903 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5904                                     struct bio *bio, int mirror_num,
5905                                     unsigned long bio_flags, u64 offset)
5906 {
5907         int ret;
5908         struct btrfs_root *root = BTRFS_I(inode)->root;
5909         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5910         BUG_ON(ret);
5911         return 0;
5912 }
5913
5914 static void btrfs_end_dio_bio(struct bio *bio, int err)
5915 {
5916         struct btrfs_dio_private *dip = bio->bi_private;
5917
5918         if (err) {
5919                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5920                       "sector %#Lx len %u err no %d\n",
5921                       dip->inode->i_ino, bio->bi_rw,
5922                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5923                 dip->errors = 1;
5924
5925                 /*
5926                  * before atomic variable goto zero, we must make sure
5927                  * dip->errors is perceived to be set.
5928                  */
5929                 smp_mb__before_atomic_dec();
5930         }
5931
5932         /* if there are more bios still pending for this dio, just exit */
5933         if (!atomic_dec_and_test(&dip->pending_bios))
5934                 goto out;
5935
5936         if (dip->errors)
5937                 bio_io_error(dip->orig_bio);
5938         else {
5939                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5940                 bio_endio(dip->orig_bio, 0);
5941         }
5942 out:
5943         bio_put(bio);
5944 }
5945
5946 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5947                                        u64 first_sector, gfp_t gfp_flags)
5948 {
5949         int nr_vecs = bio_get_nr_vecs(bdev);
5950         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5951 }
5952
5953 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5954                                          int rw, u64 file_offset, int skip_sum,
5955                                          u32 *csums)
5956 {
5957         int write = rw & REQ_WRITE;
5958         struct btrfs_root *root = BTRFS_I(inode)->root;
5959         int ret;
5960
5961         bio_get(bio);
5962         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5963         if (ret)
5964                 goto err;
5965
5966         if (write && !skip_sum) {
5967                 ret = btrfs_wq_submit_bio(root->fs_info,
5968                                    inode, rw, bio, 0, 0,
5969                                    file_offset,
5970                                    __btrfs_submit_bio_start_direct_io,
5971                                    __btrfs_submit_bio_done);
5972                 goto err;
5973         } else if (!skip_sum) {
5974                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5975                                           file_offset, csums);
5976                 if (ret)
5977                         goto err;
5978         }
5979
5980         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5981 err:
5982         bio_put(bio);
5983         return ret;
5984 }
5985
5986 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5987                                     int skip_sum)
5988 {
5989         struct inode *inode = dip->inode;
5990         struct btrfs_root *root = BTRFS_I(inode)->root;
5991         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5992         struct bio *bio;
5993         struct bio *orig_bio = dip->orig_bio;
5994         struct bio_vec *bvec = orig_bio->bi_io_vec;
5995         u64 start_sector = orig_bio->bi_sector;
5996         u64 file_offset = dip->logical_offset;
5997         u64 submit_len = 0;
5998         u64 map_length;
5999         int nr_pages = 0;
6000         u32 *csums = dip->csums;
6001         int ret = 0;
6002         int write = rw & REQ_WRITE;
6003
6004         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6005         if (!bio)
6006                 return -ENOMEM;
6007         bio->bi_private = dip;
6008         bio->bi_end_io = btrfs_end_dio_bio;
6009         atomic_inc(&dip->pending_bios);
6010
6011         map_length = orig_bio->bi_size;
6012         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6013                               &map_length, NULL, 0);
6014         if (ret) {
6015                 bio_put(bio);
6016                 return -EIO;
6017         }
6018
6019         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6020                 if (unlikely(map_length < submit_len + bvec->bv_len ||
6021                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6022                                  bvec->bv_offset) < bvec->bv_len)) {
6023                         /*
6024                          * inc the count before we submit the bio so
6025                          * we know the end IO handler won't happen before
6026                          * we inc the count. Otherwise, the dip might get freed
6027                          * before we're done setting it up
6028                          */
6029                         atomic_inc(&dip->pending_bios);
6030                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
6031                                                      file_offset, skip_sum,
6032                                                      csums);
6033                         if (ret) {
6034                                 bio_put(bio);
6035                                 atomic_dec(&dip->pending_bios);
6036                                 goto out_err;
6037                         }
6038
6039                         /* Write's use the ordered csums */
6040                         if (!write && !skip_sum)
6041                                 csums = csums + nr_pages;
6042                         start_sector += submit_len >> 9;
6043                         file_offset += submit_len;
6044
6045                         submit_len = 0;
6046                         nr_pages = 0;
6047
6048                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6049                                                   start_sector, GFP_NOFS);
6050                         if (!bio)
6051                                 goto out_err;
6052                         bio->bi_private = dip;
6053                         bio->bi_end_io = btrfs_end_dio_bio;
6054
6055                         map_length = orig_bio->bi_size;
6056                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6057                                               &map_length, NULL, 0);
6058                         if (ret) {
6059                                 bio_put(bio);
6060                                 goto out_err;
6061                         }
6062                 } else {
6063                         submit_len += bvec->bv_len;
6064                         nr_pages ++;
6065                         bvec++;
6066                 }
6067         }
6068
6069         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6070                                      csums);
6071         if (!ret)
6072                 return 0;
6073
6074         bio_put(bio);
6075 out_err:
6076         dip->errors = 1;
6077         /*
6078          * before atomic variable goto zero, we must
6079          * make sure dip->errors is perceived to be set.
6080          */
6081         smp_mb__before_atomic_dec();
6082         if (atomic_dec_and_test(&dip->pending_bios))
6083                 bio_io_error(dip->orig_bio);
6084
6085         /* bio_end_io() will handle error, so we needn't return it */
6086         return 0;
6087 }
6088
6089 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6090                                 loff_t file_offset)
6091 {
6092         struct btrfs_root *root = BTRFS_I(inode)->root;
6093         struct btrfs_dio_private *dip;
6094         struct bio_vec *bvec = bio->bi_io_vec;
6095         int skip_sum;
6096         int write = rw & REQ_WRITE;
6097         int ret = 0;
6098
6099         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6100
6101         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6102         if (!dip) {
6103                 ret = -ENOMEM;
6104                 goto free_ordered;
6105         }
6106         dip->csums = NULL;
6107
6108         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6109         if (!write && !skip_sum) {
6110                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6111                 if (!dip->csums) {
6112                         kfree(dip);
6113                         ret = -ENOMEM;
6114                         goto free_ordered;
6115                 }
6116         }
6117
6118         dip->private = bio->bi_private;
6119         dip->inode = inode;
6120         dip->logical_offset = file_offset;
6121
6122         dip->bytes = 0;
6123         do {
6124                 dip->bytes += bvec->bv_len;
6125                 bvec++;
6126         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6127
6128         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6129         bio->bi_private = dip;
6130         dip->errors = 0;
6131         dip->orig_bio = bio;
6132         atomic_set(&dip->pending_bios, 0);
6133
6134         if (write)
6135                 bio->bi_end_io = btrfs_endio_direct_write;
6136         else
6137                 bio->bi_end_io = btrfs_endio_direct_read;
6138
6139         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6140         if (!ret)
6141                 return;
6142 free_ordered:
6143         /*
6144          * If this is a write, we need to clean up the reserved space and kill
6145          * the ordered extent.
6146          */
6147         if (write) {
6148                 struct btrfs_ordered_extent *ordered;
6149                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6150                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6151                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6152                         btrfs_free_reserved_extent(root, ordered->start,
6153                                                    ordered->disk_len);
6154                 btrfs_put_ordered_extent(ordered);
6155                 btrfs_put_ordered_extent(ordered);
6156         }
6157         bio_endio(bio, ret);
6158 }
6159
6160 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6161                         const struct iovec *iov, loff_t offset,
6162                         unsigned long nr_segs)
6163 {
6164         int seg;
6165         size_t size;
6166         unsigned long addr;
6167         unsigned blocksize_mask = root->sectorsize - 1;
6168         ssize_t retval = -EINVAL;
6169         loff_t end = offset;
6170
6171         if (offset & blocksize_mask)
6172                 goto out;
6173
6174         /* Check the memory alignment.  Blocks cannot straddle pages */
6175         for (seg = 0; seg < nr_segs; seg++) {
6176                 addr = (unsigned long)iov[seg].iov_base;
6177                 size = iov[seg].iov_len;
6178                 end += size;
6179                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6180                         goto out;
6181         }
6182         retval = 0;
6183 out:
6184         return retval;
6185 }
6186 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6187                         const struct iovec *iov, loff_t offset,
6188                         unsigned long nr_segs)
6189 {
6190         struct file *file = iocb->ki_filp;
6191         struct inode *inode = file->f_mapping->host;
6192         struct btrfs_ordered_extent *ordered;
6193         struct extent_state *cached_state = NULL;
6194         u64 lockstart, lockend;
6195         ssize_t ret;
6196         int writing = rw & WRITE;
6197         int write_bits = 0;
6198         size_t count = iov_length(iov, nr_segs);
6199
6200         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6201                             offset, nr_segs)) {
6202                 return 0;
6203         }
6204
6205         lockstart = offset;
6206         lockend = offset + count - 1;
6207
6208         if (writing) {
6209                 ret = btrfs_delalloc_reserve_space(inode, count);
6210                 if (ret)
6211                         goto out;
6212         }
6213
6214         while (1) {
6215                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6216                                  0, &cached_state, GFP_NOFS);
6217                 /*
6218                  * We're concerned with the entire range that we're going to be
6219                  * doing DIO to, so we need to make sure theres no ordered
6220                  * extents in this range.
6221                  */
6222                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6223                                                      lockend - lockstart + 1);
6224                 if (!ordered)
6225                         break;
6226                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6227                                      &cached_state, GFP_NOFS);
6228                 btrfs_start_ordered_extent(inode, ordered, 1);
6229                 btrfs_put_ordered_extent(ordered);
6230                 cond_resched();
6231         }
6232
6233         /*
6234          * we don't use btrfs_set_extent_delalloc because we don't want
6235          * the dirty or uptodate bits
6236          */
6237         if (writing) {
6238                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6239                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6240                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6241                                      GFP_NOFS);
6242                 if (ret) {
6243                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6244                                          lockend, EXTENT_LOCKED | write_bits,
6245                                          1, 0, &cached_state, GFP_NOFS);
6246                         goto out;
6247                 }
6248         }
6249
6250         free_extent_state(cached_state);
6251         cached_state = NULL;
6252
6253         ret = __blockdev_direct_IO(rw, iocb, inode,
6254                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6255                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6256                    btrfs_submit_direct, 0);
6257
6258         if (ret < 0 && ret != -EIOCBQUEUED) {
6259                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6260                               offset + iov_length(iov, nr_segs) - 1,
6261                               EXTENT_LOCKED | write_bits, 1, 0,
6262                               &cached_state, GFP_NOFS);
6263         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6264                 /*
6265                  * We're falling back to buffered, unlock the section we didn't
6266                  * do IO on.
6267                  */
6268                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6269                               offset + iov_length(iov, nr_segs) - 1,
6270                               EXTENT_LOCKED | write_bits, 1, 0,
6271                               &cached_state, GFP_NOFS);
6272         }
6273 out:
6274         free_extent_state(cached_state);
6275         return ret;
6276 }
6277
6278 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6279                 __u64 start, __u64 len)
6280 {
6281         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6282 }
6283
6284 int btrfs_readpage(struct file *file, struct page *page)
6285 {
6286         struct extent_io_tree *tree;
6287         tree = &BTRFS_I(page->mapping->host)->io_tree;
6288         return extent_read_full_page(tree, page, btrfs_get_extent);
6289 }
6290
6291 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6292 {
6293         struct extent_io_tree *tree;
6294
6295
6296         if (current->flags & PF_MEMALLOC) {
6297                 redirty_page_for_writepage(wbc, page);
6298                 unlock_page(page);
6299                 return 0;
6300         }
6301         tree = &BTRFS_I(page->mapping->host)->io_tree;
6302         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6303 }
6304
6305 int btrfs_writepages(struct address_space *mapping,
6306                      struct writeback_control *wbc)
6307 {
6308         struct extent_io_tree *tree;
6309
6310         tree = &BTRFS_I(mapping->host)->io_tree;
6311         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6312 }
6313
6314 static int
6315 btrfs_readpages(struct file *file, struct address_space *mapping,
6316                 struct list_head *pages, unsigned nr_pages)
6317 {
6318         struct extent_io_tree *tree;
6319         tree = &BTRFS_I(mapping->host)->io_tree;
6320         return extent_readpages(tree, mapping, pages, nr_pages,
6321                                 btrfs_get_extent);
6322 }
6323 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6324 {
6325         struct extent_io_tree *tree;
6326         struct extent_map_tree *map;
6327         int ret;
6328
6329         tree = &BTRFS_I(page->mapping->host)->io_tree;
6330         map = &BTRFS_I(page->mapping->host)->extent_tree;
6331         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6332         if (ret == 1) {
6333                 ClearPagePrivate(page);
6334                 set_page_private(page, 0);
6335                 page_cache_release(page);
6336         }
6337         return ret;
6338 }
6339
6340 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6341 {
6342         if (PageWriteback(page) || PageDirty(page))
6343                 return 0;
6344         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6345 }
6346
6347 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6348 {
6349         struct extent_io_tree *tree;
6350         struct btrfs_ordered_extent *ordered;
6351         struct extent_state *cached_state = NULL;
6352         u64 page_start = page_offset(page);
6353         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6354
6355
6356         /*
6357          * we have the page locked, so new writeback can't start,
6358          * and the dirty bit won't be cleared while we are here.
6359          *
6360          * Wait for IO on this page so that we can safely clear
6361          * the PagePrivate2 bit and do ordered accounting
6362          */
6363         wait_on_page_writeback(page);
6364
6365         tree = &BTRFS_I(page->mapping->host)->io_tree;
6366         if (offset) {
6367                 btrfs_releasepage(page, GFP_NOFS);
6368                 return;
6369         }
6370         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6371                          GFP_NOFS);
6372         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6373                                            page_offset(page));
6374         if (ordered) {
6375                 /*
6376                  * IO on this page will never be started, so we need
6377                  * to account for any ordered extents now
6378                  */
6379                 clear_extent_bit(tree, page_start, page_end,
6380                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6381                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6382                                  &cached_state, GFP_NOFS);
6383                 /*
6384                  * whoever cleared the private bit is responsible
6385                  * for the finish_ordered_io
6386                  */
6387                 if (TestClearPagePrivate2(page)) {
6388                         btrfs_finish_ordered_io(page->mapping->host,
6389                                                 page_start, page_end);
6390                 }
6391                 btrfs_put_ordered_extent(ordered);
6392                 cached_state = NULL;
6393                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6394                                  GFP_NOFS);
6395         }
6396         clear_extent_bit(tree, page_start, page_end,
6397                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6398                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6399         __btrfs_releasepage(page, GFP_NOFS);
6400
6401         ClearPageChecked(page);
6402         if (PagePrivate(page)) {
6403                 ClearPagePrivate(page);
6404                 set_page_private(page, 0);
6405                 page_cache_release(page);
6406         }
6407 }
6408
6409 /*
6410  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6411  * called from a page fault handler when a page is first dirtied. Hence we must
6412  * be careful to check for EOF conditions here. We set the page up correctly
6413  * for a written page which means we get ENOSPC checking when writing into
6414  * holes and correct delalloc and unwritten extent mapping on filesystems that
6415  * support these features.
6416  *
6417  * We are not allowed to take the i_mutex here so we have to play games to
6418  * protect against truncate races as the page could now be beyond EOF.  Because
6419  * vmtruncate() writes the inode size before removing pages, once we have the
6420  * page lock we can determine safely if the page is beyond EOF. If it is not
6421  * beyond EOF, then the page is guaranteed safe against truncation until we
6422  * unlock the page.
6423  */
6424 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6425 {
6426         struct page *page = vmf->page;
6427         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6428         struct btrfs_root *root = BTRFS_I(inode)->root;
6429         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6430         struct btrfs_ordered_extent *ordered;
6431         struct extent_state *cached_state = NULL;
6432         char *kaddr;
6433         unsigned long zero_start;
6434         loff_t size;
6435         int ret;
6436         u64 page_start;
6437         u64 page_end;
6438
6439         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6440         if (ret) {
6441                 if (ret == -ENOMEM)
6442                         ret = VM_FAULT_OOM;
6443                 else /* -ENOSPC, -EIO, etc */
6444                         ret = VM_FAULT_SIGBUS;
6445                 goto out;
6446         }
6447
6448         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6449 again:
6450         lock_page(page);
6451         size = i_size_read(inode);
6452         page_start = page_offset(page);
6453         page_end = page_start + PAGE_CACHE_SIZE - 1;
6454
6455         if ((page->mapping != inode->i_mapping) ||
6456             (page_start >= size)) {
6457                 /* page got truncated out from underneath us */
6458                 goto out_unlock;
6459         }
6460         wait_on_page_writeback(page);
6461
6462         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6463                          GFP_NOFS);
6464         set_page_extent_mapped(page);
6465
6466         /*
6467          * we can't set the delalloc bits if there are pending ordered
6468          * extents.  Drop our locks and wait for them to finish
6469          */
6470         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6471         if (ordered) {
6472                 unlock_extent_cached(io_tree, page_start, page_end,
6473                                      &cached_state, GFP_NOFS);
6474                 unlock_page(page);
6475                 btrfs_start_ordered_extent(inode, ordered, 1);
6476                 btrfs_put_ordered_extent(ordered);
6477                 goto again;
6478         }
6479
6480         /*
6481          * XXX - page_mkwrite gets called every time the page is dirtied, even
6482          * if it was already dirty, so for space accounting reasons we need to
6483          * clear any delalloc bits for the range we are fixing to save.  There
6484          * is probably a better way to do this, but for now keep consistent with
6485          * prepare_pages in the normal write path.
6486          */
6487         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6488                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6489                           0, 0, &cached_state, GFP_NOFS);
6490
6491         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6492                                         &cached_state);
6493         if (ret) {
6494                 unlock_extent_cached(io_tree, page_start, page_end,
6495                                      &cached_state, GFP_NOFS);
6496                 ret = VM_FAULT_SIGBUS;
6497                 goto out_unlock;
6498         }
6499         ret = 0;
6500
6501         /* page is wholly or partially inside EOF */
6502         if (page_start + PAGE_CACHE_SIZE > size)
6503                 zero_start = size & ~PAGE_CACHE_MASK;
6504         else
6505                 zero_start = PAGE_CACHE_SIZE;
6506
6507         if (zero_start != PAGE_CACHE_SIZE) {
6508                 kaddr = kmap(page);
6509                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6510                 flush_dcache_page(page);
6511                 kunmap(page);
6512         }
6513         ClearPageChecked(page);
6514         set_page_dirty(page);
6515         SetPageUptodate(page);
6516
6517         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6518         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6519
6520         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6521
6522 out_unlock:
6523         if (!ret)
6524                 return VM_FAULT_LOCKED;
6525         unlock_page(page);
6526         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6527 out:
6528         return ret;
6529 }
6530
6531 static int btrfs_truncate(struct inode *inode)
6532 {
6533         struct btrfs_root *root = BTRFS_I(inode)->root;
6534         int ret;
6535         int err = 0;
6536         struct btrfs_trans_handle *trans;
6537         unsigned long nr;
6538         u64 mask = root->sectorsize - 1;
6539
6540         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6541         if (ret)
6542                 return ret;
6543
6544         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6545         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6546
6547         trans = btrfs_start_transaction(root, 5);
6548         if (IS_ERR(trans))
6549                 return PTR_ERR(trans);
6550
6551         btrfs_set_trans_block_group(trans, inode);
6552
6553         ret = btrfs_orphan_add(trans, inode);
6554         if (ret) {
6555                 btrfs_end_transaction(trans, root);
6556                 return ret;
6557         }
6558
6559         nr = trans->blocks_used;
6560         btrfs_end_transaction(trans, root);
6561         btrfs_btree_balance_dirty(root, nr);
6562
6563         /* Now start a transaction for the truncate */
6564         trans = btrfs_start_transaction(root, 0);
6565         if (IS_ERR(trans))
6566                 return PTR_ERR(trans);
6567         btrfs_set_trans_block_group(trans, inode);
6568         trans->block_rsv = root->orphan_block_rsv;
6569
6570         /*
6571          * setattr is responsible for setting the ordered_data_close flag,
6572          * but that is only tested during the last file release.  That
6573          * could happen well after the next commit, leaving a great big
6574          * window where new writes may get lost if someone chooses to write
6575          * to this file after truncating to zero
6576          *
6577          * The inode doesn't have any dirty data here, and so if we commit
6578          * this is a noop.  If someone immediately starts writing to the inode
6579          * it is very likely we'll catch some of their writes in this
6580          * transaction, and the commit will find this file on the ordered
6581          * data list with good things to send down.
6582          *
6583          * This is a best effort solution, there is still a window where
6584          * using truncate to replace the contents of the file will
6585          * end up with a zero length file after a crash.
6586          */
6587         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6588                 btrfs_add_ordered_operation(trans, root, inode);
6589
6590         while (1) {
6591                 if (!trans) {
6592                         trans = btrfs_start_transaction(root, 0);
6593                         if (IS_ERR(trans))
6594                                 return PTR_ERR(trans);
6595                         btrfs_set_trans_block_group(trans, inode);
6596                         trans->block_rsv = root->orphan_block_rsv;
6597                 }
6598
6599                 ret = btrfs_block_rsv_check(trans, root,
6600                                             root->orphan_block_rsv, 0, 5);
6601                 if (ret == -EAGAIN) {
6602                         ret = btrfs_commit_transaction(trans, root);
6603                         if (ret)
6604                                 return ret;
6605                         trans = NULL;
6606                         continue;
6607                 } else if (ret) {
6608                         err = ret;
6609                         break;
6610                 }
6611
6612                 ret = btrfs_truncate_inode_items(trans, root, inode,
6613                                                  inode->i_size,
6614                                                  BTRFS_EXTENT_DATA_KEY);
6615                 if (ret != -EAGAIN) {
6616                         err = ret;
6617                         break;
6618                 }
6619
6620                 ret = btrfs_update_inode(trans, root, inode);
6621                 if (ret) {
6622                         err = ret;
6623                         break;
6624                 }
6625
6626                 nr = trans->blocks_used;
6627                 btrfs_end_transaction(trans, root);
6628                 trans = NULL;
6629                 btrfs_btree_balance_dirty(root, nr);
6630         }
6631
6632         if (ret == 0 && inode->i_nlink > 0) {
6633                 ret = btrfs_orphan_del(trans, inode);
6634                 if (ret)
6635                         err = ret;
6636         } else if (ret && inode->i_nlink > 0) {
6637                 /*
6638                  * Failed to do the truncate, remove us from the in memory
6639                  * orphan list.
6640                  */
6641                 ret = btrfs_orphan_del(NULL, inode);
6642         }
6643
6644         ret = btrfs_update_inode(trans, root, inode);
6645         if (ret && !err)
6646                 err = ret;
6647
6648         nr = trans->blocks_used;
6649         ret = btrfs_end_transaction_throttle(trans, root);
6650         if (ret && !err)
6651                 err = ret;
6652         btrfs_btree_balance_dirty(root, nr);
6653
6654         return err;
6655 }
6656
6657 /*
6658  * create a new subvolume directory/inode (helper for the ioctl).
6659  */
6660 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6661                              struct btrfs_root *new_root,
6662                              u64 new_dirid, u64 alloc_hint)
6663 {
6664         struct inode *inode;
6665         int err;
6666         u64 index = 0;
6667
6668         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6669                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6670         if (IS_ERR(inode))
6671                 return PTR_ERR(inode);
6672         inode->i_op = &btrfs_dir_inode_operations;
6673         inode->i_fop = &btrfs_dir_file_operations;
6674
6675         inode->i_nlink = 1;
6676         btrfs_i_size_write(inode, 0);
6677
6678         err = btrfs_update_inode(trans, new_root, inode);
6679         BUG_ON(err);
6680
6681         iput(inode);
6682         return 0;
6683 }
6684
6685 /* helper function for file defrag and space balancing.  This
6686  * forces readahead on a given range of bytes in an inode
6687  */
6688 unsigned long btrfs_force_ra(struct address_space *mapping,
6689                               struct file_ra_state *ra, struct file *file,
6690                               pgoff_t offset, pgoff_t last_index)
6691 {
6692         pgoff_t req_size = last_index - offset + 1;
6693
6694         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6695         return offset + req_size;
6696 }
6697
6698 struct inode *btrfs_alloc_inode(struct super_block *sb)
6699 {
6700         struct btrfs_inode *ei;
6701         struct inode *inode;
6702
6703         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6704         if (!ei)
6705                 return NULL;
6706
6707         ei->root = NULL;
6708         ei->space_info = NULL;
6709         ei->generation = 0;
6710         ei->sequence = 0;
6711         ei->last_trans = 0;
6712         ei->last_sub_trans = 0;
6713         ei->logged_trans = 0;
6714         ei->delalloc_bytes = 0;
6715         ei->reserved_bytes = 0;
6716         ei->disk_i_size = 0;
6717         ei->flags = 0;
6718         ei->index_cnt = (u64)-1;
6719         ei->last_unlink_trans = 0;
6720
6721         atomic_set(&ei->outstanding_extents, 0);
6722         atomic_set(&ei->reserved_extents, 0);
6723
6724         ei->ordered_data_close = 0;
6725         ei->orphan_meta_reserved = 0;
6726         ei->dummy_inode = 0;
6727         ei->force_compress = BTRFS_COMPRESS_NONE;
6728
6729         inode = &ei->vfs_inode;
6730         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6731         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6732         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6733         mutex_init(&ei->log_mutex);
6734         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6735         INIT_LIST_HEAD(&ei->i_orphan);
6736         INIT_LIST_HEAD(&ei->delalloc_inodes);
6737         INIT_LIST_HEAD(&ei->ordered_operations);
6738         RB_CLEAR_NODE(&ei->rb_node);
6739
6740         return inode;
6741 }
6742
6743 static void btrfs_i_callback(struct rcu_head *head)
6744 {
6745         struct inode *inode = container_of(head, struct inode, i_rcu);
6746         INIT_LIST_HEAD(&inode->i_dentry);
6747         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6748 }
6749
6750 void btrfs_destroy_inode(struct inode *inode)
6751 {
6752         struct btrfs_ordered_extent *ordered;
6753         struct btrfs_root *root = BTRFS_I(inode)->root;
6754
6755         WARN_ON(!list_empty(&inode->i_dentry));
6756         WARN_ON(inode->i_data.nrpages);
6757         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6758         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6759
6760         /*
6761          * This can happen where we create an inode, but somebody else also
6762          * created the same inode and we need to destroy the one we already
6763          * created.
6764          */
6765         if (!root)
6766                 goto free;
6767
6768         /*
6769          * Make sure we're properly removed from the ordered operation
6770          * lists.
6771          */
6772         smp_mb();
6773         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6774                 spin_lock(&root->fs_info->ordered_extent_lock);
6775                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6776                 spin_unlock(&root->fs_info->ordered_extent_lock);
6777         }
6778
6779         if (root == root->fs_info->tree_root) {
6780                 struct btrfs_block_group_cache *block_group;
6781
6782                 block_group = btrfs_lookup_block_group(root->fs_info,
6783                                                 BTRFS_I(inode)->block_group);
6784                 if (block_group && block_group->inode == inode) {
6785                         spin_lock(&block_group->lock);
6786                         block_group->inode = NULL;
6787                         spin_unlock(&block_group->lock);
6788                         btrfs_put_block_group(block_group);
6789                 } else if (block_group) {
6790                         btrfs_put_block_group(block_group);
6791                 }
6792         }
6793
6794         spin_lock(&root->orphan_lock);
6795         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6796                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6797                        inode->i_ino);
6798                 list_del_init(&BTRFS_I(inode)->i_orphan);
6799         }
6800         spin_unlock(&root->orphan_lock);
6801
6802         while (1) {
6803                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6804                 if (!ordered)
6805                         break;
6806                 else {
6807                         printk(KERN_ERR "btrfs found ordered "
6808                                "extent %llu %llu on inode cleanup\n",
6809                                (unsigned long long)ordered->file_offset,
6810                                (unsigned long long)ordered->len);
6811                         btrfs_remove_ordered_extent(inode, ordered);
6812                         btrfs_put_ordered_extent(ordered);
6813                         btrfs_put_ordered_extent(ordered);
6814                 }
6815         }
6816         inode_tree_del(inode);
6817         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6818 free:
6819         call_rcu(&inode->i_rcu, btrfs_i_callback);
6820 }
6821
6822 int btrfs_drop_inode(struct inode *inode)
6823 {
6824         struct btrfs_root *root = BTRFS_I(inode)->root;
6825
6826         if (btrfs_root_refs(&root->root_item) == 0 &&
6827             root != root->fs_info->tree_root)
6828                 return 1;
6829         else
6830                 return generic_drop_inode(inode);
6831 }
6832
6833 static void init_once(void *foo)
6834 {
6835         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6836
6837         inode_init_once(&ei->vfs_inode);
6838 }
6839
6840 void btrfs_destroy_cachep(void)
6841 {
6842         if (btrfs_inode_cachep)
6843                 kmem_cache_destroy(btrfs_inode_cachep);
6844         if (btrfs_trans_handle_cachep)
6845                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6846         if (btrfs_transaction_cachep)
6847                 kmem_cache_destroy(btrfs_transaction_cachep);
6848         if (btrfs_path_cachep)
6849                 kmem_cache_destroy(btrfs_path_cachep);
6850         if (btrfs_free_space_cachep)
6851                 kmem_cache_destroy(btrfs_free_space_cachep);
6852 }
6853
6854 int btrfs_init_cachep(void)
6855 {
6856         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6857                         sizeof(struct btrfs_inode), 0,
6858                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6859         if (!btrfs_inode_cachep)
6860                 goto fail;
6861
6862         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6863                         sizeof(struct btrfs_trans_handle), 0,
6864                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6865         if (!btrfs_trans_handle_cachep)
6866                 goto fail;
6867
6868         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6869                         sizeof(struct btrfs_transaction), 0,
6870                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6871         if (!btrfs_transaction_cachep)
6872                 goto fail;
6873
6874         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6875                         sizeof(struct btrfs_path), 0,
6876                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6877         if (!btrfs_path_cachep)
6878                 goto fail;
6879
6880         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6881                         sizeof(struct btrfs_free_space), 0,
6882                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6883         if (!btrfs_free_space_cachep)
6884                 goto fail;
6885
6886         return 0;
6887 fail:
6888         btrfs_destroy_cachep();
6889         return -ENOMEM;
6890 }
6891
6892 static int btrfs_getattr(struct vfsmount *mnt,
6893                          struct dentry *dentry, struct kstat *stat)
6894 {
6895         struct inode *inode = dentry->d_inode;
6896         generic_fillattr(inode, stat);
6897         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6898         stat->blksize = PAGE_CACHE_SIZE;
6899         stat->blocks = (inode_get_bytes(inode) +
6900                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6901         return 0;
6902 }
6903
6904 /*
6905  * If a file is moved, it will inherit the cow and compression flags of the new
6906  * directory.
6907  */
6908 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6909 {
6910         struct btrfs_inode *b_dir = BTRFS_I(dir);
6911         struct btrfs_inode *b_inode = BTRFS_I(inode);
6912
6913         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6914                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6915         else
6916                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6917
6918         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6919                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6920         else
6921                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6922 }
6923
6924 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6925                            struct inode *new_dir, struct dentry *new_dentry)
6926 {
6927         struct btrfs_trans_handle *trans;
6928         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6929         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6930         struct inode *new_inode = new_dentry->d_inode;
6931         struct inode *old_inode = old_dentry->d_inode;
6932         struct timespec ctime = CURRENT_TIME;
6933         u64 index = 0;
6934         u64 root_objectid;
6935         int ret;
6936
6937         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6938                 return -EPERM;
6939
6940         /* we only allow rename subvolume link between subvolumes */
6941         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6942                 return -EXDEV;
6943
6944         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6945             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6946                 return -ENOTEMPTY;
6947
6948         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6949             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6950                 return -ENOTEMPTY;
6951         /*
6952          * we're using rename to replace one file with another.
6953          * and the replacement file is large.  Start IO on it now so
6954          * we don't add too much work to the end of the transaction
6955          */
6956         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6957             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6958                 filemap_flush(old_inode->i_mapping);
6959
6960         /* close the racy window with snapshot create/destroy ioctl */
6961         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6962                 down_read(&root->fs_info->subvol_sem);
6963         /*
6964          * We want to reserve the absolute worst case amount of items.  So if
6965          * both inodes are subvols and we need to unlink them then that would
6966          * require 4 item modifications, but if they are both normal inodes it
6967          * would require 5 item modifications, so we'll assume their normal
6968          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6969          * should cover the worst case number of items we'll modify.
6970          */
6971         trans = btrfs_start_transaction(root, 20);
6972         if (IS_ERR(trans)) {
6973                 ret = PTR_ERR(trans);
6974                 goto out_notrans;
6975         }
6976
6977         btrfs_set_trans_block_group(trans, new_dir);
6978
6979         if (dest != root)
6980                 btrfs_record_root_in_trans(trans, dest);
6981
6982         ret = btrfs_set_inode_index(new_dir, &index);
6983         if (ret)
6984                 goto out_fail;
6985
6986         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6987                 /* force full log commit if subvolume involved. */
6988                 root->fs_info->last_trans_log_full_commit = trans->transid;
6989         } else {
6990                 ret = btrfs_insert_inode_ref(trans, dest,
6991                                              new_dentry->d_name.name,
6992                                              new_dentry->d_name.len,
6993                                              old_inode->i_ino,
6994                                              new_dir->i_ino, index);
6995                 if (ret)
6996                         goto out_fail;
6997                 /*
6998                  * this is an ugly little race, but the rename is required
6999                  * to make sure that if we crash, the inode is either at the
7000                  * old name or the new one.  pinning the log transaction lets
7001                  * us make sure we don't allow a log commit to come in after
7002                  * we unlink the name but before we add the new name back in.
7003                  */
7004                 btrfs_pin_log_trans(root);
7005         }
7006         /*
7007          * make sure the inode gets flushed if it is replacing
7008          * something.
7009          */
7010         if (new_inode && new_inode->i_size &&
7011             old_inode && S_ISREG(old_inode->i_mode)) {
7012                 btrfs_add_ordered_operation(trans, root, old_inode);
7013         }
7014
7015         old_dir->i_ctime = old_dir->i_mtime = ctime;
7016         new_dir->i_ctime = new_dir->i_mtime = ctime;
7017         old_inode->i_ctime = ctime;
7018
7019         if (old_dentry->d_parent != new_dentry->d_parent)
7020                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7021
7022         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7023                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7024                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7025                                         old_dentry->d_name.name,
7026                                         old_dentry->d_name.len);
7027         } else {
7028                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7029                                         old_dentry->d_inode,
7030                                         old_dentry->d_name.name,
7031                                         old_dentry->d_name.len);
7032                 if (!ret)
7033                         ret = btrfs_update_inode(trans, root, old_inode);
7034         }
7035         BUG_ON(ret);
7036
7037         if (new_inode) {
7038                 new_inode->i_ctime = CURRENT_TIME;
7039                 if (unlikely(new_inode->i_ino ==
7040                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7041                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7042                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7043                                                 root_objectid,
7044                                                 new_dentry->d_name.name,
7045                                                 new_dentry->d_name.len);
7046                         BUG_ON(new_inode->i_nlink == 0);
7047                 } else {
7048                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7049                                                  new_dentry->d_inode,
7050                                                  new_dentry->d_name.name,
7051                                                  new_dentry->d_name.len);
7052                 }
7053                 BUG_ON(ret);
7054                 if (new_inode->i_nlink == 0) {
7055                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7056                         BUG_ON(ret);
7057                 }
7058         }
7059
7060         fixup_inode_flags(new_dir, old_inode);
7061
7062         ret = btrfs_add_link(trans, new_dir, old_inode,
7063                              new_dentry->d_name.name,
7064                              new_dentry->d_name.len, 0, index);
7065         BUG_ON(ret);
7066
7067         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7068                 struct dentry *parent = dget_parent(new_dentry);
7069                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7070                 dput(parent);
7071                 btrfs_end_log_trans(root);
7072         }
7073 out_fail:
7074         btrfs_end_transaction_throttle(trans, root);
7075 out_notrans:
7076         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7077                 up_read(&root->fs_info->subvol_sem);
7078
7079         return ret;
7080 }
7081
7082 /*
7083  * some fairly slow code that needs optimization. This walks the list
7084  * of all the inodes with pending delalloc and forces them to disk.
7085  */
7086 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7087 {
7088         struct list_head *head = &root->fs_info->delalloc_inodes;
7089         struct btrfs_inode *binode;
7090         struct inode *inode;
7091
7092         if (root->fs_info->sb->s_flags & MS_RDONLY)
7093                 return -EROFS;
7094
7095         spin_lock(&root->fs_info->delalloc_lock);
7096         while (!list_empty(head)) {
7097                 binode = list_entry(head->next, struct btrfs_inode,
7098                                     delalloc_inodes);
7099                 inode = igrab(&binode->vfs_inode);
7100                 if (!inode)
7101                         list_del_init(&binode->delalloc_inodes);
7102                 spin_unlock(&root->fs_info->delalloc_lock);
7103                 if (inode) {
7104                         filemap_flush(inode->i_mapping);
7105                         if (delay_iput)
7106                                 btrfs_add_delayed_iput(inode);
7107                         else
7108                                 iput(inode);
7109                 }
7110                 cond_resched();
7111                 spin_lock(&root->fs_info->delalloc_lock);
7112         }
7113         spin_unlock(&root->fs_info->delalloc_lock);
7114
7115         /* the filemap_flush will queue IO into the worker threads, but
7116          * we have to make sure the IO is actually started and that
7117          * ordered extents get created before we return
7118          */
7119         atomic_inc(&root->fs_info->async_submit_draining);
7120         while (atomic_read(&root->fs_info->nr_async_submits) ||
7121               atomic_read(&root->fs_info->async_delalloc_pages)) {
7122                 wait_event(root->fs_info->async_submit_wait,
7123                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7124                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7125         }
7126         atomic_dec(&root->fs_info->async_submit_draining);
7127         return 0;
7128 }
7129
7130 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7131                                    int sync)
7132 {
7133         struct btrfs_inode *binode;
7134         struct inode *inode = NULL;
7135
7136         spin_lock(&root->fs_info->delalloc_lock);
7137         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7138                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7139                                     struct btrfs_inode, delalloc_inodes);
7140                 inode = igrab(&binode->vfs_inode);
7141                 if (inode) {
7142                         list_move_tail(&binode->delalloc_inodes,
7143                                        &root->fs_info->delalloc_inodes);
7144                         break;
7145                 }
7146
7147                 list_del_init(&binode->delalloc_inodes);
7148                 cond_resched_lock(&root->fs_info->delalloc_lock);
7149         }
7150         spin_unlock(&root->fs_info->delalloc_lock);
7151
7152         if (inode) {
7153                 if (sync) {
7154                         filemap_write_and_wait(inode->i_mapping);
7155                         /*
7156                          * We have to do this because compression doesn't
7157                          * actually set PG_writeback until it submits the pages
7158                          * for IO, which happens in an async thread, so we could
7159                          * race and not actually wait for any writeback pages
7160                          * because they've not been submitted yet.  Technically
7161                          * this could still be the case for the ordered stuff
7162                          * since the async thread may not have started to do its
7163                          * work yet.  If this becomes the case then we need to
7164                          * figure out a way to make sure that in writepage we
7165                          * wait for any async pages to be submitted before
7166                          * returning so that fdatawait does what its supposed to
7167                          * do.
7168                          */
7169                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7170                 } else {
7171                         filemap_flush(inode->i_mapping);
7172                 }
7173                 if (delay_iput)
7174                         btrfs_add_delayed_iput(inode);
7175                 else
7176                         iput(inode);
7177                 return 1;
7178         }
7179         return 0;
7180 }
7181
7182 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7183                          const char *symname)
7184 {
7185         struct btrfs_trans_handle *trans;
7186         struct btrfs_root *root = BTRFS_I(dir)->root;
7187         struct btrfs_path *path;
7188         struct btrfs_key key;
7189         struct inode *inode = NULL;
7190         int err;
7191         int drop_inode = 0;
7192         u64 objectid;
7193         u64 index = 0 ;
7194         int name_len;
7195         int datasize;
7196         unsigned long ptr;
7197         struct btrfs_file_extent_item *ei;
7198         struct extent_buffer *leaf;
7199         unsigned long nr = 0;
7200
7201         name_len = strlen(symname) + 1;
7202         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7203                 return -ENAMETOOLONG;
7204
7205         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7206         if (err)
7207                 return err;
7208         /*
7209          * 2 items for inode item and ref
7210          * 2 items for dir items
7211          * 1 item for xattr if selinux is on
7212          */
7213         trans = btrfs_start_transaction(root, 5);
7214         if (IS_ERR(trans))
7215                 return PTR_ERR(trans);
7216
7217         btrfs_set_trans_block_group(trans, dir);
7218
7219         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7220                                 dentry->d_name.len, dir->i_ino, objectid,
7221                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7222                                 &index);
7223         err = PTR_ERR(inode);
7224         if (IS_ERR(inode))
7225                 goto out_unlock;
7226
7227         err = btrfs_init_inode_security(trans, inode, dir);
7228         if (err) {
7229                 drop_inode = 1;
7230                 goto out_unlock;
7231         }
7232
7233         btrfs_set_trans_block_group(trans, inode);
7234         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7235         if (err)
7236                 drop_inode = 1;
7237         else {
7238                 inode->i_mapping->a_ops = &btrfs_aops;
7239                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7240                 inode->i_fop = &btrfs_file_operations;
7241                 inode->i_op = &btrfs_file_inode_operations;
7242                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7243         }
7244         btrfs_update_inode_block_group(trans, inode);
7245         btrfs_update_inode_block_group(trans, dir);
7246         if (drop_inode)
7247                 goto out_unlock;
7248
7249         path = btrfs_alloc_path();
7250         BUG_ON(!path);
7251         key.objectid = inode->i_ino;
7252         key.offset = 0;
7253         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7254         datasize = btrfs_file_extent_calc_inline_size(name_len);
7255         err = btrfs_insert_empty_item(trans, root, path, &key,
7256                                       datasize);
7257         if (err) {
7258                 drop_inode = 1;
7259                 goto out_unlock;
7260         }
7261         leaf = path->nodes[0];
7262         ei = btrfs_item_ptr(leaf, path->slots[0],
7263                             struct btrfs_file_extent_item);
7264         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7265         btrfs_set_file_extent_type(leaf, ei,
7266                                    BTRFS_FILE_EXTENT_INLINE);
7267         btrfs_set_file_extent_encryption(leaf, ei, 0);
7268         btrfs_set_file_extent_compression(leaf, ei, 0);
7269         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7270         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7271
7272         ptr = btrfs_file_extent_inline_start(ei);
7273         write_extent_buffer(leaf, symname, ptr, name_len);
7274         btrfs_mark_buffer_dirty(leaf);
7275         btrfs_free_path(path);
7276
7277         inode->i_op = &btrfs_symlink_inode_operations;
7278         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7279         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7280         inode_set_bytes(inode, name_len);
7281         btrfs_i_size_write(inode, name_len - 1);
7282         err = btrfs_update_inode(trans, root, inode);
7283         if (err)
7284                 drop_inode = 1;
7285
7286 out_unlock:
7287         nr = trans->blocks_used;
7288         btrfs_end_transaction_throttle(trans, root);
7289         if (drop_inode) {
7290                 inode_dec_link_count(inode);
7291                 iput(inode);
7292         }
7293         btrfs_btree_balance_dirty(root, nr);
7294         return err;
7295 }
7296
7297 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7298                                        u64 start, u64 num_bytes, u64 min_size,
7299                                        loff_t actual_len, u64 *alloc_hint,
7300                                        struct btrfs_trans_handle *trans)
7301 {
7302         struct btrfs_root *root = BTRFS_I(inode)->root;
7303         struct btrfs_key ins;
7304         u64 cur_offset = start;
7305         u64 i_size;
7306         int ret = 0;
7307         bool own_trans = true;
7308
7309         if (trans)
7310                 own_trans = false;
7311         while (num_bytes > 0) {
7312                 if (own_trans) {
7313                         trans = btrfs_start_transaction(root, 3);
7314                         if (IS_ERR(trans)) {
7315                                 ret = PTR_ERR(trans);
7316                                 break;
7317                         }
7318                 }
7319
7320                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7321                                            0, *alloc_hint, (u64)-1, &ins, 1);
7322                 if (ret) {
7323                         if (own_trans)
7324                                 btrfs_end_transaction(trans, root);
7325                         break;
7326                 }
7327
7328                 ret = insert_reserved_file_extent(trans, inode,
7329                                                   cur_offset, ins.objectid,
7330                                                   ins.offset, ins.offset,
7331                                                   ins.offset, 0, 0, 0,
7332                                                   BTRFS_FILE_EXTENT_PREALLOC);
7333                 BUG_ON(ret);
7334                 btrfs_drop_extent_cache(inode, cur_offset,
7335                                         cur_offset + ins.offset -1, 0);
7336
7337                 num_bytes -= ins.offset;
7338                 cur_offset += ins.offset;
7339                 *alloc_hint = ins.objectid + ins.offset;
7340
7341                 inode->i_ctime = CURRENT_TIME;
7342                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7343                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7344                     (actual_len > inode->i_size) &&
7345                     (cur_offset > inode->i_size)) {
7346                         if (cur_offset > actual_len)
7347                                 i_size = actual_len;
7348                         else
7349                                 i_size = cur_offset;
7350                         i_size_write(inode, i_size);
7351                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7352                 }
7353
7354                 ret = btrfs_update_inode(trans, root, inode);
7355                 BUG_ON(ret);
7356
7357                 if (own_trans)
7358                         btrfs_end_transaction(trans, root);
7359         }
7360         return ret;
7361 }
7362
7363 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7364                               u64 start, u64 num_bytes, u64 min_size,
7365                               loff_t actual_len, u64 *alloc_hint)
7366 {
7367         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7368                                            min_size, actual_len, alloc_hint,
7369                                            NULL);
7370 }
7371
7372 int btrfs_prealloc_file_range_trans(struct inode *inode,
7373                                     struct btrfs_trans_handle *trans, int mode,
7374                                     u64 start, u64 num_bytes, u64 min_size,
7375                                     loff_t actual_len, u64 *alloc_hint)
7376 {
7377         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7378                                            min_size, actual_len, alloc_hint, trans);
7379 }
7380
7381 static int btrfs_set_page_dirty(struct page *page)
7382 {
7383         return __set_page_dirty_nobuffers(page);
7384 }
7385
7386 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7387 {
7388         struct btrfs_root *root = BTRFS_I(inode)->root;
7389
7390         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7391                 return -EROFS;
7392         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7393                 return -EACCES;
7394         return generic_permission(inode, mask, flags, btrfs_check_acl);
7395 }
7396
7397 static const struct inode_operations btrfs_dir_inode_operations = {
7398         .getattr        = btrfs_getattr,
7399         .lookup         = btrfs_lookup,
7400         .create         = btrfs_create,
7401         .unlink         = btrfs_unlink,
7402         .link           = btrfs_link,
7403         .mkdir          = btrfs_mkdir,
7404         .rmdir          = btrfs_rmdir,
7405         .rename         = btrfs_rename,
7406         .symlink        = btrfs_symlink,
7407         .setattr        = btrfs_setattr,
7408         .mknod          = btrfs_mknod,
7409         .setxattr       = btrfs_setxattr,
7410         .getxattr       = btrfs_getxattr,
7411         .listxattr      = btrfs_listxattr,
7412         .removexattr    = btrfs_removexattr,
7413         .permission     = btrfs_permission,
7414 };
7415 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7416         .lookup         = btrfs_lookup,
7417         .permission     = btrfs_permission,
7418 };
7419
7420 static const struct file_operations btrfs_dir_file_operations = {
7421         .llseek         = generic_file_llseek,
7422         .read           = generic_read_dir,
7423         .readdir        = btrfs_real_readdir,
7424         .unlocked_ioctl = btrfs_ioctl,
7425 #ifdef CONFIG_COMPAT
7426         .compat_ioctl   = btrfs_ioctl,
7427 #endif
7428         .release        = btrfs_release_file,
7429         .fsync          = btrfs_sync_file,
7430 };
7431
7432 static struct extent_io_ops btrfs_extent_io_ops = {
7433         .fill_delalloc = run_delalloc_range,
7434         .submit_bio_hook = btrfs_submit_bio_hook,
7435         .merge_bio_hook = btrfs_merge_bio_hook,
7436         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7437         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7438         .writepage_start_hook = btrfs_writepage_start_hook,
7439         .readpage_io_failed_hook = btrfs_io_failed_hook,
7440         .set_bit_hook = btrfs_set_bit_hook,
7441         .clear_bit_hook = btrfs_clear_bit_hook,
7442         .merge_extent_hook = btrfs_merge_extent_hook,
7443         .split_extent_hook = btrfs_split_extent_hook,
7444 };
7445
7446 /*
7447  * btrfs doesn't support the bmap operation because swapfiles
7448  * use bmap to make a mapping of extents in the file.  They assume
7449  * these extents won't change over the life of the file and they
7450  * use the bmap result to do IO directly to the drive.
7451  *
7452  * the btrfs bmap call would return logical addresses that aren't
7453  * suitable for IO and they also will change frequently as COW
7454  * operations happen.  So, swapfile + btrfs == corruption.
7455  *
7456  * For now we're avoiding this by dropping bmap.
7457  */
7458 static const struct address_space_operations btrfs_aops = {
7459         .readpage       = btrfs_readpage,
7460         .writepage      = btrfs_writepage,
7461         .writepages     = btrfs_writepages,
7462         .readpages      = btrfs_readpages,
7463         .sync_page      = block_sync_page,
7464         .direct_IO      = btrfs_direct_IO,
7465         .invalidatepage = btrfs_invalidatepage,
7466         .releasepage    = btrfs_releasepage,
7467         .set_page_dirty = btrfs_set_page_dirty,
7468         .error_remove_page = generic_error_remove_page,
7469 };
7470
7471 static const struct address_space_operations btrfs_symlink_aops = {
7472         .readpage       = btrfs_readpage,
7473         .writepage      = btrfs_writepage,
7474         .invalidatepage = btrfs_invalidatepage,
7475         .releasepage    = btrfs_releasepage,
7476 };
7477
7478 static const struct inode_operations btrfs_file_inode_operations = {
7479         .getattr        = btrfs_getattr,
7480         .setattr        = btrfs_setattr,
7481         .setxattr       = btrfs_setxattr,
7482         .getxattr       = btrfs_getxattr,
7483         .listxattr      = btrfs_listxattr,
7484         .removexattr    = btrfs_removexattr,
7485         .permission     = btrfs_permission,
7486         .fiemap         = btrfs_fiemap,
7487 };
7488 static const struct inode_operations btrfs_special_inode_operations = {
7489         .getattr        = btrfs_getattr,
7490         .setattr        = btrfs_setattr,
7491         .permission     = btrfs_permission,
7492         .setxattr       = btrfs_setxattr,
7493         .getxattr       = btrfs_getxattr,
7494         .listxattr      = btrfs_listxattr,
7495         .removexattr    = btrfs_removexattr,
7496 };
7497 static const struct inode_operations btrfs_symlink_inode_operations = {
7498         .readlink       = generic_readlink,
7499         .follow_link    = page_follow_link_light,
7500         .put_link       = page_put_link,
7501         .getattr        = btrfs_getattr,
7502         .permission     = btrfs_permission,
7503         .setxattr       = btrfs_setxattr,
7504         .getxattr       = btrfs_getxattr,
7505         .listxattr      = btrfs_listxattr,
7506         .removexattr    = btrfs_removexattr,
7507 };
7508
7509 const struct dentry_operations btrfs_dentry_operations = {
7510         .d_delete       = btrfs_dentry_delete,
7511 };