Btrfs: fix uninit compiler warning in cow_file_range_nocow
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93         int err;
94
95         err = btrfs_init_acl(inode, dir);
96         if (!err)
97                 err = btrfs_xattr_security_init(inode, dir);
98         return err;
99 }
100
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107                                 struct btrfs_root *root, struct inode *inode,
108                                 u64 start, size_t size, size_t compressed_size,
109                                 struct page **compressed_pages)
110 {
111         struct btrfs_key key;
112         struct btrfs_path *path;
113         struct extent_buffer *leaf;
114         struct page *page = NULL;
115         char *kaddr;
116         unsigned long ptr;
117         struct btrfs_file_extent_item *ei;
118         int err = 0;
119         int ret;
120         size_t cur_size = size;
121         size_t datasize;
122         unsigned long offset;
123         int use_compress = 0;
124
125         if (compressed_size && compressed_pages) {
126                 use_compress = 1;
127                 cur_size = compressed_size;
128         }
129
130         path = btrfs_alloc_path();
131         if (!path)
132                 return -ENOMEM;
133
134         path->leave_spinning = 1;
135         btrfs_set_trans_block_group(trans, inode);
136
137         key.objectid = inode->i_ino;
138         key.offset = start;
139         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140         datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142         inode_add_bytes(inode, size);
143         ret = btrfs_insert_empty_item(trans, root, path, &key,
144                                       datasize);
145         BUG_ON(ret);
146         if (ret) {
147                 err = ret;
148                 goto fail;
149         }
150         leaf = path->nodes[0];
151         ei = btrfs_item_ptr(leaf, path->slots[0],
152                             struct btrfs_file_extent_item);
153         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155         btrfs_set_file_extent_encryption(leaf, ei, 0);
156         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158         ptr = btrfs_file_extent_inline_start(ei);
159
160         if (use_compress) {
161                 struct page *cpage;
162                 int i = 0;
163                 while (compressed_size > 0) {
164                         cpage = compressed_pages[i];
165                         cur_size = min_t(unsigned long, compressed_size,
166                                        PAGE_CACHE_SIZE);
167
168                         kaddr = kmap_atomic(cpage, KM_USER0);
169                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
170                         kunmap_atomic(kaddr, KM_USER0);
171
172                         i++;
173                         ptr += cur_size;
174                         compressed_size -= cur_size;
175                 }
176                 btrfs_set_file_extent_compression(leaf, ei,
177                                                   BTRFS_COMPRESS_ZLIB);
178         } else {
179                 page = find_get_page(inode->i_mapping,
180                                      start >> PAGE_CACHE_SHIFT);
181                 btrfs_set_file_extent_compression(leaf, ei, 0);
182                 kaddr = kmap_atomic(page, KM_USER0);
183                 offset = start & (PAGE_CACHE_SIZE - 1);
184                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185                 kunmap_atomic(kaddr, KM_USER0);
186                 page_cache_release(page);
187         }
188         btrfs_mark_buffer_dirty(leaf);
189         btrfs_free_path(path);
190
191         BTRFS_I(inode)->disk_i_size = inode->i_size;
192         btrfs_update_inode(trans, root, inode);
193         return 0;
194 fail:
195         btrfs_free_path(path);
196         return err;
197 }
198
199
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206                                  struct btrfs_root *root,
207                                  struct inode *inode, u64 start, u64 end,
208                                  size_t compressed_size,
209                                  struct page **compressed_pages)
210 {
211         u64 isize = i_size_read(inode);
212         u64 actual_end = min(end + 1, isize);
213         u64 inline_len = actual_end - start;
214         u64 aligned_end = (end + root->sectorsize - 1) &
215                         ~((u64)root->sectorsize - 1);
216         u64 hint_byte;
217         u64 data_len = inline_len;
218         int ret;
219
220         if (compressed_size)
221                 data_len = compressed_size;
222
223         if (start > 0 ||
224             actual_end >= PAGE_CACHE_SIZE ||
225             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226             (!compressed_size &&
227             (actual_end & (root->sectorsize - 1)) == 0) ||
228             end + 1 < isize ||
229             data_len > root->fs_info->max_inline) {
230                 return 1;
231         }
232
233         ret = btrfs_drop_extents(trans, root, inode, start,
234                                  aligned_end, aligned_end, start,
235                                  &hint_byte, 1);
236         BUG_ON(ret);
237
238         if (isize > actual_end)
239                 inline_len = min_t(u64, isize, actual_end);
240         ret = insert_inline_extent(trans, root, inode, start,
241                                    inline_len, compressed_size,
242                                    compressed_pages);
243         BUG_ON(ret);
244         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245         return 0;
246 }
247
248 struct async_extent {
249         u64 start;
250         u64 ram_size;
251         u64 compressed_size;
252         struct page **pages;
253         unsigned long nr_pages;
254         struct list_head list;
255 };
256
257 struct async_cow {
258         struct inode *inode;
259         struct btrfs_root *root;
260         struct page *locked_page;
261         u64 start;
262         u64 end;
263         struct list_head extents;
264         struct btrfs_work work;
265 };
266
267 static noinline int add_async_extent(struct async_cow *cow,
268                                      u64 start, u64 ram_size,
269                                      u64 compressed_size,
270                                      struct page **pages,
271                                      unsigned long nr_pages)
272 {
273         struct async_extent *async_extent;
274
275         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276         async_extent->start = start;
277         async_extent->ram_size = ram_size;
278         async_extent->compressed_size = compressed_size;
279         async_extent->pages = pages;
280         async_extent->nr_pages = nr_pages;
281         list_add_tail(&async_extent->list, &cow->extents);
282         return 0;
283 }
284
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302                                         struct page *locked_page,
303                                         u64 start, u64 end,
304                                         struct async_cow *async_cow,
305                                         int *num_added)
306 {
307         struct btrfs_root *root = BTRFS_I(inode)->root;
308         struct btrfs_trans_handle *trans;
309         u64 num_bytes;
310         u64 orig_start;
311         u64 disk_num_bytes;
312         u64 blocksize = root->sectorsize;
313         u64 actual_end;
314         u64 isize = i_size_read(inode);
315         int ret = 0;
316         struct page **pages = NULL;
317         unsigned long nr_pages;
318         unsigned long nr_pages_ret = 0;
319         unsigned long total_compressed = 0;
320         unsigned long total_in = 0;
321         unsigned long max_compressed = 128 * 1024;
322         unsigned long max_uncompressed = 128 * 1024;
323         int i;
324         int will_compress;
325
326         orig_start = start;
327
328         actual_end = min_t(u64, isize, end + 1);
329 again:
330         will_compress = 0;
331         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333
334         /*
335          * we don't want to send crud past the end of i_size through
336          * compression, that's just a waste of CPU time.  So, if the
337          * end of the file is before the start of our current
338          * requested range of bytes, we bail out to the uncompressed
339          * cleanup code that can deal with all of this.
340          *
341          * It isn't really the fastest way to fix things, but this is a
342          * very uncommon corner.
343          */
344         if (actual_end <= start)
345                 goto cleanup_and_bail_uncompressed;
346
347         total_compressed = actual_end - start;
348
349         /* we want to make sure that amount of ram required to uncompress
350          * an extent is reasonable, so we limit the total size in ram
351          * of a compressed extent to 128k.  This is a crucial number
352          * because it also controls how easily we can spread reads across
353          * cpus for decompression.
354          *
355          * We also want to make sure the amount of IO required to do
356          * a random read is reasonably small, so we limit the size of
357          * a compressed extent to 128k.
358          */
359         total_compressed = min(total_compressed, max_uncompressed);
360         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361         num_bytes = max(blocksize,  num_bytes);
362         disk_num_bytes = num_bytes;
363         total_in = 0;
364         ret = 0;
365
366         /*
367          * we do compression for mount -o compress and when the
368          * inode has not been flagged as nocompress.  This flag can
369          * change at any time if we discover bad compression ratios.
370          */
371         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372             btrfs_test_opt(root, COMPRESS)) {
373                 WARN_ON(pages);
374                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375
376                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377                                                 total_compressed, pages,
378                                                 nr_pages, &nr_pages_ret,
379                                                 &total_in,
380                                                 &total_compressed,
381                                                 max_compressed);
382
383                 if (!ret) {
384                         unsigned long offset = total_compressed &
385                                 (PAGE_CACHE_SIZE - 1);
386                         struct page *page = pages[nr_pages_ret - 1];
387                         char *kaddr;
388
389                         /* zero the tail end of the last page, we might be
390                          * sending it down to disk
391                          */
392                         if (offset) {
393                                 kaddr = kmap_atomic(page, KM_USER0);
394                                 memset(kaddr + offset, 0,
395                                        PAGE_CACHE_SIZE - offset);
396                                 kunmap_atomic(kaddr, KM_USER0);
397                         }
398                         will_compress = 1;
399                 }
400         }
401         if (start == 0) {
402                 trans = btrfs_join_transaction(root, 1);
403                 BUG_ON(!trans);
404                 btrfs_set_trans_block_group(trans, inode);
405
406                 /* lets try to make an inline extent */
407                 if (ret || total_in < (actual_end - start)) {
408                         /* we didn't compress the entire range, try
409                          * to make an uncompressed inline extent.
410                          */
411                         ret = cow_file_range_inline(trans, root, inode,
412                                                     start, end, 0, NULL);
413                 } else {
414                         /* try making a compressed inline extent */
415                         ret = cow_file_range_inline(trans, root, inode,
416                                                     start, end,
417                                                     total_compressed, pages);
418                 }
419                 btrfs_end_transaction(trans, root);
420                 if (ret == 0) {
421                         /*
422                          * inline extent creation worked, we don't need
423                          * to create any more async work items.  Unlock
424                          * and free up our temp pages.
425                          */
426                         extent_clear_unlock_delalloc(inode,
427                              &BTRFS_I(inode)->io_tree,
428                              start, end, NULL,
429                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430                              EXTENT_CLEAR_DELALLOC |
431                              EXTENT_CLEAR_ACCOUNTING |
432                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
433                         ret = 0;
434                         goto free_pages_out;
435                 }
436         }
437
438         if (will_compress) {
439                 /*
440                  * we aren't doing an inline extent round the compressed size
441                  * up to a block size boundary so the allocator does sane
442                  * things
443                  */
444                 total_compressed = (total_compressed + blocksize - 1) &
445                         ~(blocksize - 1);
446
447                 /*
448                  * one last check to make sure the compression is really a
449                  * win, compare the page count read with the blocks on disk
450                  */
451                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452                         ~(PAGE_CACHE_SIZE - 1);
453                 if (total_compressed >= total_in) {
454                         will_compress = 0;
455                 } else {
456                         disk_num_bytes = total_compressed;
457                         num_bytes = total_in;
458                 }
459         }
460         if (!will_compress && pages) {
461                 /*
462                  * the compression code ran but failed to make things smaller,
463                  * free any pages it allocated and our page pointer array
464                  */
465                 for (i = 0; i < nr_pages_ret; i++) {
466                         WARN_ON(pages[i]->mapping);
467                         page_cache_release(pages[i]);
468                 }
469                 kfree(pages);
470                 pages = NULL;
471                 total_compressed = 0;
472                 nr_pages_ret = 0;
473
474                 /* flag the file so we don't compress in the future */
475                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
476         }
477         if (will_compress) {
478                 *num_added += 1;
479
480                 /* the async work queues will take care of doing actual
481                  * allocation on disk for these compressed pages,
482                  * and will submit them to the elevator.
483                  */
484                 add_async_extent(async_cow, start, num_bytes,
485                                  total_compressed, pages, nr_pages_ret);
486
487                 if (start + num_bytes < end && start + num_bytes < actual_end) {
488                         start += num_bytes;
489                         pages = NULL;
490                         cond_resched();
491                         goto again;
492                 }
493         } else {
494 cleanup_and_bail_uncompressed:
495                 /*
496                  * No compression, but we still need to write the pages in
497                  * the file we've been given so far.  redirty the locked
498                  * page if it corresponds to our extent and set things up
499                  * for the async work queue to run cow_file_range to do
500                  * the normal delalloc dance
501                  */
502                 if (page_offset(locked_page) >= start &&
503                     page_offset(locked_page) <= end) {
504                         __set_page_dirty_nobuffers(locked_page);
505                         /* unlocked later on in the async handlers */
506                 }
507                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
508                 *num_added += 1;
509         }
510
511 out:
512         return 0;
513
514 free_pages_out:
515         for (i = 0; i < nr_pages_ret; i++) {
516                 WARN_ON(pages[i]->mapping);
517                 page_cache_release(pages[i]);
518         }
519         kfree(pages);
520
521         goto out;
522 }
523
524 /*
525  * phase two of compressed writeback.  This is the ordered portion
526  * of the code, which only gets called in the order the work was
527  * queued.  We walk all the async extents created by compress_file_range
528  * and send them down to the disk.
529  */
530 static noinline int submit_compressed_extents(struct inode *inode,
531                                               struct async_cow *async_cow)
532 {
533         struct async_extent *async_extent;
534         u64 alloc_hint = 0;
535         struct btrfs_trans_handle *trans;
536         struct btrfs_key ins;
537         struct extent_map *em;
538         struct btrfs_root *root = BTRFS_I(inode)->root;
539         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540         struct extent_io_tree *io_tree;
541         int ret;
542
543         if (list_empty(&async_cow->extents))
544                 return 0;
545
546         trans = btrfs_join_transaction(root, 1);
547
548         while (!list_empty(&async_cow->extents)) {
549                 async_extent = list_entry(async_cow->extents.next,
550                                           struct async_extent, list);
551                 list_del(&async_extent->list);
552
553                 io_tree = &BTRFS_I(inode)->io_tree;
554
555                 /* did the compression code fall back to uncompressed IO? */
556                 if (!async_extent->pages) {
557                         int page_started = 0;
558                         unsigned long nr_written = 0;
559
560                         lock_extent(io_tree, async_extent->start,
561                                     async_extent->start +
562                                     async_extent->ram_size - 1, GFP_NOFS);
563
564                         /* allocate blocks */
565                         cow_file_range(inode, async_cow->locked_page,
566                                        async_extent->start,
567                                        async_extent->start +
568                                        async_extent->ram_size - 1,
569                                        &page_started, &nr_written, 0);
570
571                         /*
572                          * if page_started, cow_file_range inserted an
573                          * inline extent and took care of all the unlocking
574                          * and IO for us.  Otherwise, we need to submit
575                          * all those pages down to the drive.
576                          */
577                         if (!page_started)
578                                 extent_write_locked_range(io_tree,
579                                                   inode, async_extent->start,
580                                                   async_extent->start +
581                                                   async_extent->ram_size - 1,
582                                                   btrfs_get_extent,
583                                                   WB_SYNC_ALL);
584                         kfree(async_extent);
585                         cond_resched();
586                         continue;
587                 }
588
589                 lock_extent(io_tree, async_extent->start,
590                             async_extent->start + async_extent->ram_size - 1,
591                             GFP_NOFS);
592                 /*
593                  * here we're doing allocation and writeback of the
594                  * compressed pages
595                  */
596                 btrfs_drop_extent_cache(inode, async_extent->start,
597                                         async_extent->start +
598                                         async_extent->ram_size - 1, 0);
599
600                 ret = btrfs_reserve_extent(trans, root,
601                                            async_extent->compressed_size,
602                                            async_extent->compressed_size,
603                                            0, alloc_hint,
604                                            (u64)-1, &ins, 1);
605                 BUG_ON(ret);
606                 em = alloc_extent_map(GFP_NOFS);
607                 em->start = async_extent->start;
608                 em->len = async_extent->ram_size;
609                 em->orig_start = em->start;
610
611                 em->block_start = ins.objectid;
612                 em->block_len = ins.offset;
613                 em->bdev = root->fs_info->fs_devices->latest_bdev;
614                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
615                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
616
617                 while (1) {
618                         write_lock(&em_tree->lock);
619                         ret = add_extent_mapping(em_tree, em);
620                         write_unlock(&em_tree->lock);
621                         if (ret != -EEXIST) {
622                                 free_extent_map(em);
623                                 break;
624                         }
625                         btrfs_drop_extent_cache(inode, async_extent->start,
626                                                 async_extent->start +
627                                                 async_extent->ram_size - 1, 0);
628                 }
629
630                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
631                                                ins.objectid,
632                                                async_extent->ram_size,
633                                                ins.offset,
634                                                BTRFS_ORDERED_COMPRESSED);
635                 BUG_ON(ret);
636
637                 btrfs_end_transaction(trans, root);
638
639                 /*
640                  * clear dirty, set writeback and unlock the pages.
641                  */
642                 extent_clear_unlock_delalloc(inode,
643                                 &BTRFS_I(inode)->io_tree,
644                                 async_extent->start,
645                                 async_extent->start +
646                                 async_extent->ram_size - 1,
647                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
648                                 EXTENT_CLEAR_UNLOCK |
649                                 EXTENT_CLEAR_DELALLOC |
650                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
651
652                 ret = btrfs_submit_compressed_write(inode,
653                                     async_extent->start,
654                                     async_extent->ram_size,
655                                     ins.objectid,
656                                     ins.offset, async_extent->pages,
657                                     async_extent->nr_pages);
658
659                 BUG_ON(ret);
660                 trans = btrfs_join_transaction(root, 1);
661                 alloc_hint = ins.objectid + ins.offset;
662                 kfree(async_extent);
663                 cond_resched();
664         }
665
666         btrfs_end_transaction(trans, root);
667         return 0;
668 }
669
670 /*
671  * when extent_io.c finds a delayed allocation range in the file,
672  * the call backs end up in this code.  The basic idea is to
673  * allocate extents on disk for the range, and create ordered data structs
674  * in ram to track those extents.
675  *
676  * locked_page is the page that writepage had locked already.  We use
677  * it to make sure we don't do extra locks or unlocks.
678  *
679  * *page_started is set to one if we unlock locked_page and do everything
680  * required to start IO on it.  It may be clean and already done with
681  * IO when we return.
682  */
683 static noinline int cow_file_range(struct inode *inode,
684                                    struct page *locked_page,
685                                    u64 start, u64 end, int *page_started,
686                                    unsigned long *nr_written,
687                                    int unlock)
688 {
689         struct btrfs_root *root = BTRFS_I(inode)->root;
690         struct btrfs_trans_handle *trans;
691         u64 alloc_hint = 0;
692         u64 num_bytes;
693         unsigned long ram_size;
694         u64 disk_num_bytes;
695         u64 cur_alloc_size;
696         u64 blocksize = root->sectorsize;
697         u64 actual_end;
698         u64 isize = i_size_read(inode);
699         struct btrfs_key ins;
700         struct extent_map *em;
701         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702         int ret = 0;
703
704         trans = btrfs_join_transaction(root, 1);
705         BUG_ON(!trans);
706         btrfs_set_trans_block_group(trans, inode);
707
708         actual_end = min_t(u64, isize, end + 1);
709
710         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711         num_bytes = max(blocksize,  num_bytes);
712         disk_num_bytes = num_bytes;
713         ret = 0;
714
715         if (start == 0) {
716                 /* lets try to make an inline extent */
717                 ret = cow_file_range_inline(trans, root, inode,
718                                             start, end, 0, NULL);
719                 if (ret == 0) {
720                         extent_clear_unlock_delalloc(inode,
721                                      &BTRFS_I(inode)->io_tree,
722                                      start, end, NULL,
723                                      EXTENT_CLEAR_UNLOCK_PAGE |
724                                      EXTENT_CLEAR_UNLOCK |
725                                      EXTENT_CLEAR_DELALLOC |
726                                      EXTENT_CLEAR_ACCOUNTING |
727                                      EXTENT_CLEAR_DIRTY |
728                                      EXTENT_SET_WRITEBACK |
729                                      EXTENT_END_WRITEBACK);
730                         *nr_written = *nr_written +
731                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
732                         *page_started = 1;
733                         ret = 0;
734                         goto out;
735                 }
736         }
737
738         BUG_ON(disk_num_bytes >
739                btrfs_super_total_bytes(&root->fs_info->super_copy));
740
741
742         read_lock(&BTRFS_I(inode)->extent_tree.lock);
743         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
744                                    start, num_bytes);
745         if (em) {
746                 alloc_hint = em->block_start;
747                 free_extent_map(em);
748         }
749         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
750         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
751
752         while (disk_num_bytes > 0) {
753                 unsigned long op;
754
755                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
756                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
757                                            root->sectorsize, 0, alloc_hint,
758                                            (u64)-1, &ins, 1);
759                 BUG_ON(ret);
760
761                 em = alloc_extent_map(GFP_NOFS);
762                 em->start = start;
763                 em->orig_start = em->start;
764                 ram_size = ins.offset;
765                 em->len = ins.offset;
766
767                 em->block_start = ins.objectid;
768                 em->block_len = ins.offset;
769                 em->bdev = root->fs_info->fs_devices->latest_bdev;
770                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
771
772                 while (1) {
773                         write_lock(&em_tree->lock);
774                         ret = add_extent_mapping(em_tree, em);
775                         write_unlock(&em_tree->lock);
776                         if (ret != -EEXIST) {
777                                 free_extent_map(em);
778                                 break;
779                         }
780                         btrfs_drop_extent_cache(inode, start,
781                                                 start + ram_size - 1, 0);
782                 }
783
784                 cur_alloc_size = ins.offset;
785                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
786                                                ram_size, cur_alloc_size, 0);
787                 BUG_ON(ret);
788
789                 if (root->root_key.objectid ==
790                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
791                         ret = btrfs_reloc_clone_csums(inode, start,
792                                                       cur_alloc_size);
793                         BUG_ON(ret);
794                 }
795
796                 if (disk_num_bytes < cur_alloc_size)
797                         break;
798
799                 /* we're not doing compressed IO, don't unlock the first
800                  * page (which the caller expects to stay locked), don't
801                  * clear any dirty bits and don't set any writeback bits
802                  *
803                  * Do set the Private2 bit so we know this page was properly
804                  * setup for writepage
805                  */
806                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
807                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
808                         EXTENT_SET_PRIVATE2;
809
810                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
811                                              start, start + ram_size - 1,
812                                              locked_page, op);
813                 disk_num_bytes -= cur_alloc_size;
814                 num_bytes -= cur_alloc_size;
815                 alloc_hint = ins.objectid + ins.offset;
816                 start += cur_alloc_size;
817         }
818 out:
819         ret = 0;
820         btrfs_end_transaction(trans, root);
821
822         return ret;
823 }
824
825 /*
826  * work queue call back to started compression on a file and pages
827  */
828 static noinline void async_cow_start(struct btrfs_work *work)
829 {
830         struct async_cow *async_cow;
831         int num_added = 0;
832         async_cow = container_of(work, struct async_cow, work);
833
834         compress_file_range(async_cow->inode, async_cow->locked_page,
835                             async_cow->start, async_cow->end, async_cow,
836                             &num_added);
837         if (num_added == 0)
838                 async_cow->inode = NULL;
839 }
840
841 /*
842  * work queue call back to submit previously compressed pages
843  */
844 static noinline void async_cow_submit(struct btrfs_work *work)
845 {
846         struct async_cow *async_cow;
847         struct btrfs_root *root;
848         unsigned long nr_pages;
849
850         async_cow = container_of(work, struct async_cow, work);
851
852         root = async_cow->root;
853         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
854                 PAGE_CACHE_SHIFT;
855
856         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
857
858         if (atomic_read(&root->fs_info->async_delalloc_pages) <
859             5 * 1042 * 1024 &&
860             waitqueue_active(&root->fs_info->async_submit_wait))
861                 wake_up(&root->fs_info->async_submit_wait);
862
863         if (async_cow->inode)
864                 submit_compressed_extents(async_cow->inode, async_cow);
865 }
866
867 static noinline void async_cow_free(struct btrfs_work *work)
868 {
869         struct async_cow *async_cow;
870         async_cow = container_of(work, struct async_cow, work);
871         kfree(async_cow);
872 }
873
874 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
875                                 u64 start, u64 end, int *page_started,
876                                 unsigned long *nr_written)
877 {
878         struct async_cow *async_cow;
879         struct btrfs_root *root = BTRFS_I(inode)->root;
880         unsigned long nr_pages;
881         u64 cur_end;
882         int limit = 10 * 1024 * 1042;
883
884         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
885                          1, 0, NULL, GFP_NOFS);
886         while (start < end) {
887                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
888                 async_cow->inode = inode;
889                 async_cow->root = root;
890                 async_cow->locked_page = locked_page;
891                 async_cow->start = start;
892
893                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
894                         cur_end = end;
895                 else
896                         cur_end = min(end, start + 512 * 1024 - 1);
897
898                 async_cow->end = cur_end;
899                 INIT_LIST_HEAD(&async_cow->extents);
900
901                 async_cow->work.func = async_cow_start;
902                 async_cow->work.ordered_func = async_cow_submit;
903                 async_cow->work.ordered_free = async_cow_free;
904                 async_cow->work.flags = 0;
905
906                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
907                         PAGE_CACHE_SHIFT;
908                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
909
910                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
911                                    &async_cow->work);
912
913                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
914                         wait_event(root->fs_info->async_submit_wait,
915                            (atomic_read(&root->fs_info->async_delalloc_pages) <
916                             limit));
917                 }
918
919                 while (atomic_read(&root->fs_info->async_submit_draining) &&
920                       atomic_read(&root->fs_info->async_delalloc_pages)) {
921                         wait_event(root->fs_info->async_submit_wait,
922                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
923                            0));
924                 }
925
926                 *nr_written += nr_pages;
927                 start = cur_end + 1;
928         }
929         *page_started = 1;
930         return 0;
931 }
932
933 static noinline int csum_exist_in_range(struct btrfs_root *root,
934                                         u64 bytenr, u64 num_bytes)
935 {
936         int ret;
937         struct btrfs_ordered_sum *sums;
938         LIST_HEAD(list);
939
940         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
941                                        bytenr + num_bytes - 1, &list);
942         if (ret == 0 && list_empty(&list))
943                 return 0;
944
945         while (!list_empty(&list)) {
946                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
947                 list_del(&sums->list);
948                 kfree(sums);
949         }
950         return 1;
951 }
952
953 /*
954  * when nowcow writeback call back.  This checks for snapshots or COW copies
955  * of the extents that exist in the file, and COWs the file as required.
956  *
957  * If no cow copies or snapshots exist, we write directly to the existing
958  * blocks on disk
959  */
960 static noinline int run_delalloc_nocow(struct inode *inode,
961                                        struct page *locked_page,
962                               u64 start, u64 end, int *page_started, int force,
963                               unsigned long *nr_written)
964 {
965         struct btrfs_root *root = BTRFS_I(inode)->root;
966         struct btrfs_trans_handle *trans;
967         struct extent_buffer *leaf;
968         struct btrfs_path *path;
969         struct btrfs_file_extent_item *fi;
970         struct btrfs_key found_key;
971         u64 cow_start;
972         u64 cur_offset;
973         u64 extent_end;
974         u64 extent_offset;
975         u64 disk_bytenr;
976         u64 num_bytes;
977         int extent_type;
978         int ret;
979         int type;
980         int nocow;
981         int check_prev = 1;
982
983         path = btrfs_alloc_path();
984         BUG_ON(!path);
985         trans = btrfs_join_transaction(root, 1);
986         BUG_ON(!trans);
987
988         cow_start = (u64)-1;
989         cur_offset = start;
990         while (1) {
991                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
992                                                cur_offset, 0);
993                 BUG_ON(ret < 0);
994                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
995                         leaf = path->nodes[0];
996                         btrfs_item_key_to_cpu(leaf, &found_key,
997                                               path->slots[0] - 1);
998                         if (found_key.objectid == inode->i_ino &&
999                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1000                                 path->slots[0]--;
1001                 }
1002                 check_prev = 0;
1003 next_slot:
1004                 leaf = path->nodes[0];
1005                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006                         ret = btrfs_next_leaf(root, path);
1007                         if (ret < 0)
1008                                 BUG_ON(1);
1009                         if (ret > 0)
1010                                 break;
1011                         leaf = path->nodes[0];
1012                 }
1013
1014                 nocow = 0;
1015                 disk_bytenr = 0;
1016                 num_bytes = 0;
1017                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018
1019                 if (found_key.objectid > inode->i_ino ||
1020                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1021                     found_key.offset > end)
1022                         break;
1023
1024                 if (found_key.offset > cur_offset) {
1025                         extent_end = found_key.offset;
1026                         extent_type = 0;
1027                         goto out_check;
1028                 }
1029
1030                 fi = btrfs_item_ptr(leaf, path->slots[0],
1031                                     struct btrfs_file_extent_item);
1032                 extent_type = btrfs_file_extent_type(leaf, fi);
1033
1034                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1035                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1036                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1037                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1038                         extent_end = found_key.offset +
1039                                 btrfs_file_extent_num_bytes(leaf, fi);
1040                         if (extent_end <= start) {
1041                                 path->slots[0]++;
1042                                 goto next_slot;
1043                         }
1044                         if (disk_bytenr == 0)
1045                                 goto out_check;
1046                         if (btrfs_file_extent_compression(leaf, fi) ||
1047                             btrfs_file_extent_encryption(leaf, fi) ||
1048                             btrfs_file_extent_other_encoding(leaf, fi))
1049                                 goto out_check;
1050                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1051                                 goto out_check;
1052                         if (btrfs_extent_readonly(root, disk_bytenr))
1053                                 goto out_check;
1054                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1055                                                   found_key.offset -
1056                                                   extent_offset, disk_bytenr))
1057                                 goto out_check;
1058                         disk_bytenr += extent_offset;
1059                         disk_bytenr += cur_offset - found_key.offset;
1060                         num_bytes = min(end + 1, extent_end) - cur_offset;
1061                         /*
1062                          * force cow if csum exists in the range.
1063                          * this ensure that csum for a given extent are
1064                          * either valid or do not exist.
1065                          */
1066                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1067                                 goto out_check;
1068                         nocow = 1;
1069                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1070                         extent_end = found_key.offset +
1071                                 btrfs_file_extent_inline_len(leaf, fi);
1072                         extent_end = ALIGN(extent_end, root->sectorsize);
1073                 } else {
1074                         BUG_ON(1);
1075                 }
1076 out_check:
1077                 if (extent_end <= start) {
1078                         path->slots[0]++;
1079                         goto next_slot;
1080                 }
1081                 if (!nocow) {
1082                         if (cow_start == (u64)-1)
1083                                 cow_start = cur_offset;
1084                         cur_offset = extent_end;
1085                         if (cur_offset > end)
1086                                 break;
1087                         path->slots[0]++;
1088                         goto next_slot;
1089                 }
1090
1091                 btrfs_release_path(root, path);
1092                 if (cow_start != (u64)-1) {
1093                         ret = cow_file_range(inode, locked_page, cow_start,
1094                                         found_key.offset - 1, page_started,
1095                                         nr_written, 1);
1096                         BUG_ON(ret);
1097                         cow_start = (u64)-1;
1098                 }
1099
1100                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1101                         struct extent_map *em;
1102                         struct extent_map_tree *em_tree;
1103                         em_tree = &BTRFS_I(inode)->extent_tree;
1104                         em = alloc_extent_map(GFP_NOFS);
1105                         em->start = cur_offset;
1106                         em->orig_start = em->start;
1107                         em->len = num_bytes;
1108                         em->block_len = num_bytes;
1109                         em->block_start = disk_bytenr;
1110                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1111                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1112                         while (1) {
1113                                 write_lock(&em_tree->lock);
1114                                 ret = add_extent_mapping(em_tree, em);
1115                                 write_unlock(&em_tree->lock);
1116                                 if (ret != -EEXIST) {
1117                                         free_extent_map(em);
1118                                         break;
1119                                 }
1120                                 btrfs_drop_extent_cache(inode, em->start,
1121                                                 em->start + em->len - 1, 0);
1122                         }
1123                         type = BTRFS_ORDERED_PREALLOC;
1124                 } else {
1125                         type = BTRFS_ORDERED_NOCOW;
1126                 }
1127
1128                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1129                                                num_bytes, num_bytes, type);
1130                 BUG_ON(ret);
1131
1132                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1133                                 cur_offset, cur_offset + num_bytes - 1,
1134                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1135                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1136                                 EXTENT_SET_PRIVATE2);
1137                 cur_offset = extent_end;
1138                 if (cur_offset > end)
1139                         break;
1140         }
1141         btrfs_release_path(root, path);
1142
1143         if (cur_offset <= end && cow_start == (u64)-1)
1144                 cow_start = cur_offset;
1145         if (cow_start != (u64)-1) {
1146                 ret = cow_file_range(inode, locked_page, cow_start, end,
1147                                      page_started, nr_written, 1);
1148                 BUG_ON(ret);
1149         }
1150
1151         ret = btrfs_end_transaction(trans, root);
1152         BUG_ON(ret);
1153         btrfs_free_path(path);
1154         return 0;
1155 }
1156
1157 /*
1158  * extent_io.c call back to do delayed allocation processing
1159  */
1160 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1161                               u64 start, u64 end, int *page_started,
1162                               unsigned long *nr_written)
1163 {
1164         int ret;
1165         struct btrfs_root *root = BTRFS_I(inode)->root;
1166
1167         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1168                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1169                                          page_started, 1, nr_written);
1170         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1171                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1172                                          page_started, 0, nr_written);
1173         else if (!btrfs_test_opt(root, COMPRESS))
1174                 ret = cow_file_range(inode, locked_page, start, end,
1175                                       page_started, nr_written, 1);
1176         else
1177                 ret = cow_file_range_async(inode, locked_page, start, end,
1178                                            page_started, nr_written);
1179         return ret;
1180 }
1181
1182 static int btrfs_split_extent_hook(struct inode *inode,
1183                                     struct extent_state *orig, u64 split)
1184 {
1185         struct btrfs_root *root = BTRFS_I(inode)->root;
1186         u64 size;
1187
1188         if (!(orig->state & EXTENT_DELALLOC))
1189                 return 0;
1190
1191         size = orig->end - orig->start + 1;
1192         if (size > root->fs_info->max_extent) {
1193                 u64 num_extents;
1194                 u64 new_size;
1195
1196                 new_size = orig->end - split + 1;
1197                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1198                                         root->fs_info->max_extent);
1199
1200                 /*
1201                  * if we break a large extent up then leave oustanding_extents
1202                  * be, since we've already accounted for the large extent.
1203                  */
1204                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1205                               root->fs_info->max_extent) < num_extents)
1206                         return 0;
1207         }
1208
1209         spin_lock(&BTRFS_I(inode)->accounting_lock);
1210         BTRFS_I(inode)->outstanding_extents++;
1211         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1212
1213         return 0;
1214 }
1215
1216 /*
1217  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1218  * extents so we can keep track of new extents that are just merged onto old
1219  * extents, such as when we are doing sequential writes, so we can properly
1220  * account for the metadata space we'll need.
1221  */
1222 static int btrfs_merge_extent_hook(struct inode *inode,
1223                                    struct extent_state *new,
1224                                    struct extent_state *other)
1225 {
1226         struct btrfs_root *root = BTRFS_I(inode)->root;
1227         u64 new_size, old_size;
1228         u64 num_extents;
1229
1230         /* not delalloc, ignore it */
1231         if (!(other->state & EXTENT_DELALLOC))
1232                 return 0;
1233
1234         old_size = other->end - other->start + 1;
1235         if (new->start < other->start)
1236                 new_size = other->end - new->start + 1;
1237         else
1238                 new_size = new->end - other->start + 1;
1239
1240         /* we're not bigger than the max, unreserve the space and go */
1241         if (new_size <= root->fs_info->max_extent) {
1242                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1243                 BTRFS_I(inode)->outstanding_extents--;
1244                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1245                 return 0;
1246         }
1247
1248         /*
1249          * If we grew by another max_extent, just return, we want to keep that
1250          * reserved amount.
1251          */
1252         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1253                                 root->fs_info->max_extent);
1254         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1255                       root->fs_info->max_extent) > num_extents)
1256                 return 0;
1257
1258         spin_lock(&BTRFS_I(inode)->accounting_lock);
1259         BTRFS_I(inode)->outstanding_extents--;
1260         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1261
1262         return 0;
1263 }
1264
1265 /*
1266  * extent_io.c set_bit_hook, used to track delayed allocation
1267  * bytes in this file, and to maintain the list of inodes that
1268  * have pending delalloc work to be done.
1269  */
1270 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1271                        unsigned long old, unsigned long bits)
1272 {
1273
1274         /*
1275          * set_bit and clear bit hooks normally require _irqsave/restore
1276          * but in this case, we are only testeing for the DELALLOC
1277          * bit, which is only set or cleared with irqs on
1278          */
1279         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1280                 struct btrfs_root *root = BTRFS_I(inode)->root;
1281
1282                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1283                 BTRFS_I(inode)->outstanding_extents++;
1284                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1285                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1286                 spin_lock(&root->fs_info->delalloc_lock);
1287                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1288                 root->fs_info->delalloc_bytes += end - start + 1;
1289                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1290                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1291                                       &root->fs_info->delalloc_inodes);
1292                 }
1293                 spin_unlock(&root->fs_info->delalloc_lock);
1294         }
1295         return 0;
1296 }
1297
1298 /*
1299  * extent_io.c clear_bit_hook, see set_bit_hook for why
1300  */
1301 static int btrfs_clear_bit_hook(struct inode *inode,
1302                                 struct extent_state *state, unsigned long bits)
1303 {
1304         /*
1305          * set_bit and clear bit hooks normally require _irqsave/restore
1306          * but in this case, we are only testeing for the DELALLOC
1307          * bit, which is only set or cleared with irqs on
1308          */
1309         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1310                 struct btrfs_root *root = BTRFS_I(inode)->root;
1311
1312                 if (bits & EXTENT_DO_ACCOUNTING) {
1313                         spin_lock(&BTRFS_I(inode)->accounting_lock);
1314                         BTRFS_I(inode)->outstanding_extents--;
1315                         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1316                         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1317                 }
1318
1319                 spin_lock(&root->fs_info->delalloc_lock);
1320                 if (state->end - state->start + 1 >
1321                     root->fs_info->delalloc_bytes) {
1322                         printk(KERN_INFO "btrfs warning: delalloc account "
1323                                "%llu %llu\n",
1324                                (unsigned long long)
1325                                state->end - state->start + 1,
1326                                (unsigned long long)
1327                                root->fs_info->delalloc_bytes);
1328                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1329                         root->fs_info->delalloc_bytes = 0;
1330                         BTRFS_I(inode)->delalloc_bytes = 0;
1331                 } else {
1332                         btrfs_delalloc_free_space(root, inode,
1333                                                   state->end -
1334                                                   state->start + 1);
1335                         root->fs_info->delalloc_bytes -= state->end -
1336                                 state->start + 1;
1337                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1338                                 state->start + 1;
1339                 }
1340                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1341                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1342                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1343                 }
1344                 spin_unlock(&root->fs_info->delalloc_lock);
1345         }
1346         return 0;
1347 }
1348
1349 /*
1350  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1351  * we don't create bios that span stripes or chunks
1352  */
1353 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1354                          size_t size, struct bio *bio,
1355                          unsigned long bio_flags)
1356 {
1357         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1358         struct btrfs_mapping_tree *map_tree;
1359         u64 logical = (u64)bio->bi_sector << 9;
1360         u64 length = 0;
1361         u64 map_length;
1362         int ret;
1363
1364         if (bio_flags & EXTENT_BIO_COMPRESSED)
1365                 return 0;
1366
1367         length = bio->bi_size;
1368         map_tree = &root->fs_info->mapping_tree;
1369         map_length = length;
1370         ret = btrfs_map_block(map_tree, READ, logical,
1371                               &map_length, NULL, 0);
1372
1373         if (map_length < length + size)
1374                 return 1;
1375         return 0;
1376 }
1377
1378 /*
1379  * in order to insert checksums into the metadata in large chunks,
1380  * we wait until bio submission time.   All the pages in the bio are
1381  * checksummed and sums are attached onto the ordered extent record.
1382  *
1383  * At IO completion time the cums attached on the ordered extent record
1384  * are inserted into the btree
1385  */
1386 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1387                                     struct bio *bio, int mirror_num,
1388                                     unsigned long bio_flags)
1389 {
1390         struct btrfs_root *root = BTRFS_I(inode)->root;
1391         int ret = 0;
1392
1393         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1394         BUG_ON(ret);
1395         return 0;
1396 }
1397
1398 /*
1399  * in order to insert checksums into the metadata in large chunks,
1400  * we wait until bio submission time.   All the pages in the bio are
1401  * checksummed and sums are attached onto the ordered extent record.
1402  *
1403  * At IO completion time the cums attached on the ordered extent record
1404  * are inserted into the btree
1405  */
1406 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1407                           int mirror_num, unsigned long bio_flags)
1408 {
1409         struct btrfs_root *root = BTRFS_I(inode)->root;
1410         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1411 }
1412
1413 /*
1414  * extent_io.c submission hook. This does the right thing for csum calculation
1415  * on write, or reading the csums from the tree before a read
1416  */
1417 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1418                           int mirror_num, unsigned long bio_flags)
1419 {
1420         struct btrfs_root *root = BTRFS_I(inode)->root;
1421         int ret = 0;
1422         int skip_sum;
1423
1424         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1425
1426         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1427         BUG_ON(ret);
1428
1429         if (!(rw & (1 << BIO_RW))) {
1430                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1431                         return btrfs_submit_compressed_read(inode, bio,
1432                                                     mirror_num, bio_flags);
1433                 } else if (!skip_sum)
1434                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1435                 goto mapit;
1436         } else if (!skip_sum) {
1437                 /* csum items have already been cloned */
1438                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1439                         goto mapit;
1440                 /* we're doing a write, do the async checksumming */
1441                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1442                                    inode, rw, bio, mirror_num,
1443                                    bio_flags, __btrfs_submit_bio_start,
1444                                    __btrfs_submit_bio_done);
1445         }
1446
1447 mapit:
1448         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1449 }
1450
1451 /*
1452  * given a list of ordered sums record them in the inode.  This happens
1453  * at IO completion time based on sums calculated at bio submission time.
1454  */
1455 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1456                              struct inode *inode, u64 file_offset,
1457                              struct list_head *list)
1458 {
1459         struct btrfs_ordered_sum *sum;
1460
1461         btrfs_set_trans_block_group(trans, inode);
1462
1463         list_for_each_entry(sum, list, list) {
1464                 btrfs_csum_file_blocks(trans,
1465                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1466         }
1467         return 0;
1468 }
1469
1470 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1471 {
1472         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1473                 WARN_ON(1);
1474         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1475                                    GFP_NOFS);
1476 }
1477
1478 /* see btrfs_writepage_start_hook for details on why this is required */
1479 struct btrfs_writepage_fixup {
1480         struct page *page;
1481         struct btrfs_work work;
1482 };
1483
1484 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1485 {
1486         struct btrfs_writepage_fixup *fixup;
1487         struct btrfs_ordered_extent *ordered;
1488         struct page *page;
1489         struct inode *inode;
1490         u64 page_start;
1491         u64 page_end;
1492
1493         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1494         page = fixup->page;
1495 again:
1496         lock_page(page);
1497         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1498                 ClearPageChecked(page);
1499                 goto out_page;
1500         }
1501
1502         inode = page->mapping->host;
1503         page_start = page_offset(page);
1504         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1505
1506         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1507
1508         /* already ordered? We're done */
1509         if (PagePrivate2(page))
1510                 goto out;
1511
1512         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1513         if (ordered) {
1514                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1515                               page_end, GFP_NOFS);
1516                 unlock_page(page);
1517                 btrfs_start_ordered_extent(inode, ordered, 1);
1518                 goto again;
1519         }
1520
1521         btrfs_set_extent_delalloc(inode, page_start, page_end);
1522         ClearPageChecked(page);
1523 out:
1524         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1525 out_page:
1526         unlock_page(page);
1527         page_cache_release(page);
1528 }
1529
1530 /*
1531  * There are a few paths in the higher layers of the kernel that directly
1532  * set the page dirty bit without asking the filesystem if it is a
1533  * good idea.  This causes problems because we want to make sure COW
1534  * properly happens and the data=ordered rules are followed.
1535  *
1536  * In our case any range that doesn't have the ORDERED bit set
1537  * hasn't been properly setup for IO.  We kick off an async process
1538  * to fix it up.  The async helper will wait for ordered extents, set
1539  * the delalloc bit and make it safe to write the page.
1540  */
1541 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1542 {
1543         struct inode *inode = page->mapping->host;
1544         struct btrfs_writepage_fixup *fixup;
1545         struct btrfs_root *root = BTRFS_I(inode)->root;
1546
1547         /* this page is properly in the ordered list */
1548         if (TestClearPagePrivate2(page))
1549                 return 0;
1550
1551         if (PageChecked(page))
1552                 return -EAGAIN;
1553
1554         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1555         if (!fixup)
1556                 return -EAGAIN;
1557
1558         SetPageChecked(page);
1559         page_cache_get(page);
1560         fixup->work.func = btrfs_writepage_fixup_worker;
1561         fixup->page = page;
1562         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1563         return -EAGAIN;
1564 }
1565
1566 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1567                                        struct inode *inode, u64 file_pos,
1568                                        u64 disk_bytenr, u64 disk_num_bytes,
1569                                        u64 num_bytes, u64 ram_bytes,
1570                                        u64 locked_end,
1571                                        u8 compression, u8 encryption,
1572                                        u16 other_encoding, int extent_type)
1573 {
1574         struct btrfs_root *root = BTRFS_I(inode)->root;
1575         struct btrfs_file_extent_item *fi;
1576         struct btrfs_path *path;
1577         struct extent_buffer *leaf;
1578         struct btrfs_key ins;
1579         u64 hint;
1580         int ret;
1581
1582         path = btrfs_alloc_path();
1583         BUG_ON(!path);
1584
1585         path->leave_spinning = 1;
1586
1587         /*
1588          * we may be replacing one extent in the tree with another.
1589          * The new extent is pinned in the extent map, and we don't want
1590          * to drop it from the cache until it is completely in the btree.
1591          *
1592          * So, tell btrfs_drop_extents to leave this extent in the cache.
1593          * the caller is expected to unpin it and allow it to be merged
1594          * with the others.
1595          */
1596         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1597                                  file_pos + num_bytes, locked_end,
1598                                  file_pos, &hint, 0);
1599         BUG_ON(ret);
1600
1601         ins.objectid = inode->i_ino;
1602         ins.offset = file_pos;
1603         ins.type = BTRFS_EXTENT_DATA_KEY;
1604         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1605         BUG_ON(ret);
1606         leaf = path->nodes[0];
1607         fi = btrfs_item_ptr(leaf, path->slots[0],
1608                             struct btrfs_file_extent_item);
1609         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1610         btrfs_set_file_extent_type(leaf, fi, extent_type);
1611         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1612         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1613         btrfs_set_file_extent_offset(leaf, fi, 0);
1614         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1615         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1616         btrfs_set_file_extent_compression(leaf, fi, compression);
1617         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1618         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1619
1620         btrfs_unlock_up_safe(path, 1);
1621         btrfs_set_lock_blocking(leaf);
1622
1623         btrfs_mark_buffer_dirty(leaf);
1624
1625         inode_add_bytes(inode, num_bytes);
1626
1627         ins.objectid = disk_bytenr;
1628         ins.offset = disk_num_bytes;
1629         ins.type = BTRFS_EXTENT_ITEM_KEY;
1630         ret = btrfs_alloc_reserved_file_extent(trans, root,
1631                                         root->root_key.objectid,
1632                                         inode->i_ino, file_pos, &ins);
1633         BUG_ON(ret);
1634         btrfs_free_path(path);
1635
1636         return 0;
1637 }
1638
1639 /*
1640  * helper function for btrfs_finish_ordered_io, this
1641  * just reads in some of the csum leaves to prime them into ram
1642  * before we start the transaction.  It limits the amount of btree
1643  * reads required while inside the transaction.
1644  */
1645 static noinline void reada_csum(struct btrfs_root *root,
1646                                 struct btrfs_path *path,
1647                                 struct btrfs_ordered_extent *ordered_extent)
1648 {
1649         struct btrfs_ordered_sum *sum;
1650         u64 bytenr;
1651
1652         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1653                          list);
1654         bytenr = sum->sums[0].bytenr;
1655
1656         /*
1657          * we don't care about the results, the point of this search is
1658          * just to get the btree leaves into ram
1659          */
1660         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1661 }
1662
1663 /* as ordered data IO finishes, this gets called so we can finish
1664  * an ordered extent if the range of bytes in the file it covers are
1665  * fully written.
1666  */
1667 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1668 {
1669         struct btrfs_root *root = BTRFS_I(inode)->root;
1670         struct btrfs_trans_handle *trans;
1671         struct btrfs_ordered_extent *ordered_extent = NULL;
1672         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1673         struct btrfs_path *path;
1674         int compressed = 0;
1675         int ret;
1676
1677         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1678         if (!ret)
1679                 return 0;
1680
1681         /*
1682          * before we join the transaction, try to do some of our IO.
1683          * This will limit the amount of IO that we have to do with
1684          * the transaction running.  We're unlikely to need to do any
1685          * IO if the file extents are new, the disk_i_size checks
1686          * covers the most common case.
1687          */
1688         if (start < BTRFS_I(inode)->disk_i_size) {
1689                 path = btrfs_alloc_path();
1690                 if (path) {
1691                         ret = btrfs_lookup_file_extent(NULL, root, path,
1692                                                        inode->i_ino,
1693                                                        start, 0);
1694                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1695                                                                      start);
1696                         if (!list_empty(&ordered_extent->list)) {
1697                                 btrfs_release_path(root, path);
1698                                 reada_csum(root, path, ordered_extent);
1699                         }
1700                         btrfs_free_path(path);
1701                 }
1702         }
1703
1704         trans = btrfs_join_transaction(root, 1);
1705
1706         if (!ordered_extent)
1707                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1708         BUG_ON(!ordered_extent);
1709         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1710                 goto nocow;
1711
1712         lock_extent(io_tree, ordered_extent->file_offset,
1713                     ordered_extent->file_offset + ordered_extent->len - 1,
1714                     GFP_NOFS);
1715
1716         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1717                 compressed = 1;
1718         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1719                 BUG_ON(compressed);
1720                 ret = btrfs_mark_extent_written(trans, root, inode,
1721                                                 ordered_extent->file_offset,
1722                                                 ordered_extent->file_offset +
1723                                                 ordered_extent->len);
1724                 BUG_ON(ret);
1725         } else {
1726                 ret = insert_reserved_file_extent(trans, inode,
1727                                                 ordered_extent->file_offset,
1728                                                 ordered_extent->start,
1729                                                 ordered_extent->disk_len,
1730                                                 ordered_extent->len,
1731                                                 ordered_extent->len,
1732                                                 ordered_extent->file_offset +
1733                                                 ordered_extent->len,
1734                                                 compressed, 0, 0,
1735                                                 BTRFS_FILE_EXTENT_REG);
1736                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1737                                    ordered_extent->file_offset,
1738                                    ordered_extent->len);
1739                 BUG_ON(ret);
1740         }
1741         unlock_extent(io_tree, ordered_extent->file_offset,
1742                     ordered_extent->file_offset + ordered_extent->len - 1,
1743                     GFP_NOFS);
1744 nocow:
1745         add_pending_csums(trans, inode, ordered_extent->file_offset,
1746                           &ordered_extent->list);
1747
1748         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1749         btrfs_ordered_update_i_size(inode, ordered_extent);
1750         btrfs_update_inode(trans, root, inode);
1751         btrfs_remove_ordered_extent(inode, ordered_extent);
1752         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1753
1754         /* once for us */
1755         btrfs_put_ordered_extent(ordered_extent);
1756         /* once for the tree */
1757         btrfs_put_ordered_extent(ordered_extent);
1758
1759         btrfs_end_transaction(trans, root);
1760         return 0;
1761 }
1762
1763 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1764                                 struct extent_state *state, int uptodate)
1765 {
1766         ClearPagePrivate2(page);
1767         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1768 }
1769
1770 /*
1771  * When IO fails, either with EIO or csum verification fails, we
1772  * try other mirrors that might have a good copy of the data.  This
1773  * io_failure_record is used to record state as we go through all the
1774  * mirrors.  If another mirror has good data, the page is set up to date
1775  * and things continue.  If a good mirror can't be found, the original
1776  * bio end_io callback is called to indicate things have failed.
1777  */
1778 struct io_failure_record {
1779         struct page *page;
1780         u64 start;
1781         u64 len;
1782         u64 logical;
1783         unsigned long bio_flags;
1784         int last_mirror;
1785 };
1786
1787 static int btrfs_io_failed_hook(struct bio *failed_bio,
1788                          struct page *page, u64 start, u64 end,
1789                          struct extent_state *state)
1790 {
1791         struct io_failure_record *failrec = NULL;
1792         u64 private;
1793         struct extent_map *em;
1794         struct inode *inode = page->mapping->host;
1795         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1796         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1797         struct bio *bio;
1798         int num_copies;
1799         int ret;
1800         int rw;
1801         u64 logical;
1802
1803         ret = get_state_private(failure_tree, start, &private);
1804         if (ret) {
1805                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1806                 if (!failrec)
1807                         return -ENOMEM;
1808                 failrec->start = start;
1809                 failrec->len = end - start + 1;
1810                 failrec->last_mirror = 0;
1811                 failrec->bio_flags = 0;
1812
1813                 read_lock(&em_tree->lock);
1814                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1815                 if (em->start > start || em->start + em->len < start) {
1816                         free_extent_map(em);
1817                         em = NULL;
1818                 }
1819                 read_unlock(&em_tree->lock);
1820
1821                 if (!em || IS_ERR(em)) {
1822                         kfree(failrec);
1823                         return -EIO;
1824                 }
1825                 logical = start - em->start;
1826                 logical = em->block_start + logical;
1827                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1828                         logical = em->block_start;
1829                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1830                 }
1831                 failrec->logical = logical;
1832                 free_extent_map(em);
1833                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1834                                 EXTENT_DIRTY, GFP_NOFS);
1835                 set_state_private(failure_tree, start,
1836                                  (u64)(unsigned long)failrec);
1837         } else {
1838                 failrec = (struct io_failure_record *)(unsigned long)private;
1839         }
1840         num_copies = btrfs_num_copies(
1841                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1842                               failrec->logical, failrec->len);
1843         failrec->last_mirror++;
1844         if (!state) {
1845                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1846                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1847                                                     failrec->start,
1848                                                     EXTENT_LOCKED);
1849                 if (state && state->start != failrec->start)
1850                         state = NULL;
1851                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1852         }
1853         if (!state || failrec->last_mirror > num_copies) {
1854                 set_state_private(failure_tree, failrec->start, 0);
1855                 clear_extent_bits(failure_tree, failrec->start,
1856                                   failrec->start + failrec->len - 1,
1857                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1858                 kfree(failrec);
1859                 return -EIO;
1860         }
1861         bio = bio_alloc(GFP_NOFS, 1);
1862         bio->bi_private = state;
1863         bio->bi_end_io = failed_bio->bi_end_io;
1864         bio->bi_sector = failrec->logical >> 9;
1865         bio->bi_bdev = failed_bio->bi_bdev;
1866         bio->bi_size = 0;
1867
1868         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1869         if (failed_bio->bi_rw & (1 << BIO_RW))
1870                 rw = WRITE;
1871         else
1872                 rw = READ;
1873
1874         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1875                                                       failrec->last_mirror,
1876                                                       failrec->bio_flags);
1877         return 0;
1878 }
1879
1880 /*
1881  * each time an IO finishes, we do a fast check in the IO failure tree
1882  * to see if we need to process or clean up an io_failure_record
1883  */
1884 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1885 {
1886         u64 private;
1887         u64 private_failure;
1888         struct io_failure_record *failure;
1889         int ret;
1890
1891         private = 0;
1892         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1893                              (u64)-1, 1, EXTENT_DIRTY)) {
1894                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1895                                         start, &private_failure);
1896                 if (ret == 0) {
1897                         failure = (struct io_failure_record *)(unsigned long)
1898                                    private_failure;
1899                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1900                                           failure->start, 0);
1901                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1902                                           failure->start,
1903                                           failure->start + failure->len - 1,
1904                                           EXTENT_DIRTY | EXTENT_LOCKED,
1905                                           GFP_NOFS);
1906                         kfree(failure);
1907                 }
1908         }
1909         return 0;
1910 }
1911
1912 /*
1913  * when reads are done, we need to check csums to verify the data is correct
1914  * if there's a match, we allow the bio to finish.  If not, we go through
1915  * the io_failure_record routines to find good copies
1916  */
1917 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1918                                struct extent_state *state)
1919 {
1920         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1921         struct inode *inode = page->mapping->host;
1922         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1923         char *kaddr;
1924         u64 private = ~(u32)0;
1925         int ret;
1926         struct btrfs_root *root = BTRFS_I(inode)->root;
1927         u32 csum = ~(u32)0;
1928
1929         if (PageChecked(page)) {
1930                 ClearPageChecked(page);
1931                 goto good;
1932         }
1933
1934         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1935                 return 0;
1936
1937         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1938             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1939                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1940                                   GFP_NOFS);
1941                 return 0;
1942         }
1943
1944         if (state && state->start == start) {
1945                 private = state->private;
1946                 ret = 0;
1947         } else {
1948                 ret = get_state_private(io_tree, start, &private);
1949         }
1950         kaddr = kmap_atomic(page, KM_USER0);
1951         if (ret)
1952                 goto zeroit;
1953
1954         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1955         btrfs_csum_final(csum, (char *)&csum);
1956         if (csum != private)
1957                 goto zeroit;
1958
1959         kunmap_atomic(kaddr, KM_USER0);
1960 good:
1961         /* if the io failure tree for this inode is non-empty,
1962          * check to see if we've recovered from a failed IO
1963          */
1964         btrfs_clean_io_failures(inode, start);
1965         return 0;
1966
1967 zeroit:
1968         if (printk_ratelimit()) {
1969                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1970                        "private %llu\n", page->mapping->host->i_ino,
1971                        (unsigned long long)start, csum,
1972                        (unsigned long long)private);
1973         }
1974         memset(kaddr + offset, 1, end - start + 1);
1975         flush_dcache_page(page);
1976         kunmap_atomic(kaddr, KM_USER0);
1977         if (private == 0)
1978                 return 0;
1979         return -EIO;
1980 }
1981
1982 /*
1983  * This creates an orphan entry for the given inode in case something goes
1984  * wrong in the middle of an unlink/truncate.
1985  */
1986 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1987 {
1988         struct btrfs_root *root = BTRFS_I(inode)->root;
1989         int ret = 0;
1990
1991         spin_lock(&root->list_lock);
1992
1993         /* already on the orphan list, we're good */
1994         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1995                 spin_unlock(&root->list_lock);
1996                 return 0;
1997         }
1998
1999         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2000
2001         spin_unlock(&root->list_lock);
2002
2003         /*
2004          * insert an orphan item to track this unlinked/truncated file
2005          */
2006         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2007
2008         return ret;
2009 }
2010
2011 /*
2012  * We have done the truncate/delete so we can go ahead and remove the orphan
2013  * item for this particular inode.
2014  */
2015 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2016 {
2017         struct btrfs_root *root = BTRFS_I(inode)->root;
2018         int ret = 0;
2019
2020         spin_lock(&root->list_lock);
2021
2022         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2023                 spin_unlock(&root->list_lock);
2024                 return 0;
2025         }
2026
2027         list_del_init(&BTRFS_I(inode)->i_orphan);
2028         if (!trans) {
2029                 spin_unlock(&root->list_lock);
2030                 return 0;
2031         }
2032
2033         spin_unlock(&root->list_lock);
2034
2035         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2036
2037         return ret;
2038 }
2039
2040 /*
2041  * this cleans up any orphans that may be left on the list from the last use
2042  * of this root.
2043  */
2044 void btrfs_orphan_cleanup(struct btrfs_root *root)
2045 {
2046         struct btrfs_path *path;
2047         struct extent_buffer *leaf;
2048         struct btrfs_item *item;
2049         struct btrfs_key key, found_key;
2050         struct btrfs_trans_handle *trans;
2051         struct inode *inode;
2052         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2053
2054         path = btrfs_alloc_path();
2055         if (!path)
2056                 return;
2057         path->reada = -1;
2058
2059         key.objectid = BTRFS_ORPHAN_OBJECTID;
2060         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2061         key.offset = (u64)-1;
2062
2063
2064         while (1) {
2065                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2066                 if (ret < 0) {
2067                         printk(KERN_ERR "Error searching slot for orphan: %d"
2068                                "\n", ret);
2069                         break;
2070                 }
2071
2072                 /*
2073                  * if ret == 0 means we found what we were searching for, which
2074                  * is weird, but possible, so only screw with path if we didnt
2075                  * find the key and see if we have stuff that matches
2076                  */
2077                 if (ret > 0) {
2078                         if (path->slots[0] == 0)
2079                                 break;
2080                         path->slots[0]--;
2081                 }
2082
2083                 /* pull out the item */
2084                 leaf = path->nodes[0];
2085                 item = btrfs_item_nr(leaf, path->slots[0]);
2086                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2087
2088                 /* make sure the item matches what we want */
2089                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2090                         break;
2091                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2092                         break;
2093
2094                 /* release the path since we're done with it */
2095                 btrfs_release_path(root, path);
2096
2097                 /*
2098                  * this is where we are basically btrfs_lookup, without the
2099                  * crossing root thing.  we store the inode number in the
2100                  * offset of the orphan item.
2101                  */
2102                 found_key.objectid = found_key.offset;
2103                 found_key.type = BTRFS_INODE_ITEM_KEY;
2104                 found_key.offset = 0;
2105                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2106                 if (IS_ERR(inode))
2107                         break;
2108
2109                 /*
2110                  * add this inode to the orphan list so btrfs_orphan_del does
2111                  * the proper thing when we hit it
2112                  */
2113                 spin_lock(&root->list_lock);
2114                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2115                 spin_unlock(&root->list_lock);
2116
2117                 /*
2118                  * if this is a bad inode, means we actually succeeded in
2119                  * removing the inode, but not the orphan record, which means
2120                  * we need to manually delete the orphan since iput will just
2121                  * do a destroy_inode
2122                  */
2123                 if (is_bad_inode(inode)) {
2124                         trans = btrfs_start_transaction(root, 1);
2125                         btrfs_orphan_del(trans, inode);
2126                         btrfs_end_transaction(trans, root);
2127                         iput(inode);
2128                         continue;
2129                 }
2130
2131                 /* if we have links, this was a truncate, lets do that */
2132                 if (inode->i_nlink) {
2133                         nr_truncate++;
2134                         btrfs_truncate(inode);
2135                 } else {
2136                         nr_unlink++;
2137                 }
2138
2139                 /* this will do delete_inode and everything for us */
2140                 iput(inode);
2141         }
2142
2143         if (nr_unlink)
2144                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2145         if (nr_truncate)
2146                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2147
2148         btrfs_free_path(path);
2149 }
2150
2151 /*
2152  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2153  * don't find any xattrs, we know there can't be any acls.
2154  *
2155  * slot is the slot the inode is in, objectid is the objectid of the inode
2156  */
2157 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2158                                           int slot, u64 objectid)
2159 {
2160         u32 nritems = btrfs_header_nritems(leaf);
2161         struct btrfs_key found_key;
2162         int scanned = 0;
2163
2164         slot++;
2165         while (slot < nritems) {
2166                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2167
2168                 /* we found a different objectid, there must not be acls */
2169                 if (found_key.objectid != objectid)
2170                         return 0;
2171
2172                 /* we found an xattr, assume we've got an acl */
2173                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2174                         return 1;
2175
2176                 /*
2177                  * we found a key greater than an xattr key, there can't
2178                  * be any acls later on
2179                  */
2180                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2181                         return 0;
2182
2183                 slot++;
2184                 scanned++;
2185
2186                 /*
2187                  * it goes inode, inode backrefs, xattrs, extents,
2188                  * so if there are a ton of hard links to an inode there can
2189                  * be a lot of backrefs.  Don't waste time searching too hard,
2190                  * this is just an optimization
2191                  */
2192                 if (scanned >= 8)
2193                         break;
2194         }
2195         /* we hit the end of the leaf before we found an xattr or
2196          * something larger than an xattr.  We have to assume the inode
2197          * has acls
2198          */
2199         return 1;
2200 }
2201
2202 /*
2203  * read an inode from the btree into the in-memory inode
2204  */
2205 static void btrfs_read_locked_inode(struct inode *inode)
2206 {
2207         struct btrfs_path *path;
2208         struct extent_buffer *leaf;
2209         struct btrfs_inode_item *inode_item;
2210         struct btrfs_timespec *tspec;
2211         struct btrfs_root *root = BTRFS_I(inode)->root;
2212         struct btrfs_key location;
2213         int maybe_acls;
2214         u64 alloc_group_block;
2215         u32 rdev;
2216         int ret;
2217
2218         path = btrfs_alloc_path();
2219         BUG_ON(!path);
2220         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2221
2222         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2223         if (ret)
2224                 goto make_bad;
2225
2226         leaf = path->nodes[0];
2227         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2228                                     struct btrfs_inode_item);
2229
2230         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2231         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2232         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2233         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2234         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2235
2236         tspec = btrfs_inode_atime(inode_item);
2237         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2238         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2239
2240         tspec = btrfs_inode_mtime(inode_item);
2241         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2242         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2243
2244         tspec = btrfs_inode_ctime(inode_item);
2245         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2246         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2247
2248         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2249         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2250         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2251         inode->i_generation = BTRFS_I(inode)->generation;
2252         inode->i_rdev = 0;
2253         rdev = btrfs_inode_rdev(leaf, inode_item);
2254
2255         BTRFS_I(inode)->index_cnt = (u64)-1;
2256         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2257
2258         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2259
2260         /*
2261          * try to precache a NULL acl entry for files that don't have
2262          * any xattrs or acls
2263          */
2264         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2265         if (!maybe_acls)
2266                 cache_no_acl(inode);
2267
2268         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2269                                                 alloc_group_block, 0);
2270         btrfs_free_path(path);
2271         inode_item = NULL;
2272
2273         switch (inode->i_mode & S_IFMT) {
2274         case S_IFREG:
2275                 inode->i_mapping->a_ops = &btrfs_aops;
2276                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2277                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2278                 inode->i_fop = &btrfs_file_operations;
2279                 inode->i_op = &btrfs_file_inode_operations;
2280                 break;
2281         case S_IFDIR:
2282                 inode->i_fop = &btrfs_dir_file_operations;
2283                 if (root == root->fs_info->tree_root)
2284                         inode->i_op = &btrfs_dir_ro_inode_operations;
2285                 else
2286                         inode->i_op = &btrfs_dir_inode_operations;
2287                 break;
2288         case S_IFLNK:
2289                 inode->i_op = &btrfs_symlink_inode_operations;
2290                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2291                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2292                 break;
2293         default:
2294                 inode->i_op = &btrfs_special_inode_operations;
2295                 init_special_inode(inode, inode->i_mode, rdev);
2296                 break;
2297         }
2298
2299         btrfs_update_iflags(inode);
2300         return;
2301
2302 make_bad:
2303         btrfs_free_path(path);
2304         make_bad_inode(inode);
2305 }
2306
2307 /*
2308  * given a leaf and an inode, copy the inode fields into the leaf
2309  */
2310 static void fill_inode_item(struct btrfs_trans_handle *trans,
2311                             struct extent_buffer *leaf,
2312                             struct btrfs_inode_item *item,
2313                             struct inode *inode)
2314 {
2315         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2316         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2317         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2318         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2319         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2320
2321         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2322                                inode->i_atime.tv_sec);
2323         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2324                                 inode->i_atime.tv_nsec);
2325
2326         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2327                                inode->i_mtime.tv_sec);
2328         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2329                                 inode->i_mtime.tv_nsec);
2330
2331         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2332                                inode->i_ctime.tv_sec);
2333         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2334                                 inode->i_ctime.tv_nsec);
2335
2336         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2337         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2338         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2339         btrfs_set_inode_transid(leaf, item, trans->transid);
2340         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2341         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2342         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2343 }
2344
2345 /*
2346  * copy everything in the in-memory inode into the btree.
2347  */
2348 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2349                                 struct btrfs_root *root, struct inode *inode)
2350 {
2351         struct btrfs_inode_item *inode_item;
2352         struct btrfs_path *path;
2353         struct extent_buffer *leaf;
2354         int ret;
2355
2356         path = btrfs_alloc_path();
2357         BUG_ON(!path);
2358         path->leave_spinning = 1;
2359         ret = btrfs_lookup_inode(trans, root, path,
2360                                  &BTRFS_I(inode)->location, 1);
2361         if (ret) {
2362                 if (ret > 0)
2363                         ret = -ENOENT;
2364                 goto failed;
2365         }
2366
2367         btrfs_unlock_up_safe(path, 1);
2368         leaf = path->nodes[0];
2369         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2370                                   struct btrfs_inode_item);
2371
2372         fill_inode_item(trans, leaf, inode_item, inode);
2373         btrfs_mark_buffer_dirty(leaf);
2374         btrfs_set_inode_last_trans(trans, inode);
2375         ret = 0;
2376 failed:
2377         btrfs_free_path(path);
2378         return ret;
2379 }
2380
2381
2382 /*
2383  * unlink helper that gets used here in inode.c and in the tree logging
2384  * recovery code.  It remove a link in a directory with a given name, and
2385  * also drops the back refs in the inode to the directory
2386  */
2387 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2388                        struct btrfs_root *root,
2389                        struct inode *dir, struct inode *inode,
2390                        const char *name, int name_len)
2391 {
2392         struct btrfs_path *path;
2393         int ret = 0;
2394         struct extent_buffer *leaf;
2395         struct btrfs_dir_item *di;
2396         struct btrfs_key key;
2397         u64 index;
2398
2399         path = btrfs_alloc_path();
2400         if (!path) {
2401                 ret = -ENOMEM;
2402                 goto err;
2403         }
2404
2405         path->leave_spinning = 1;
2406         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2407                                     name, name_len, -1);
2408         if (IS_ERR(di)) {
2409                 ret = PTR_ERR(di);
2410                 goto err;
2411         }
2412         if (!di) {
2413                 ret = -ENOENT;
2414                 goto err;
2415         }
2416         leaf = path->nodes[0];
2417         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2418         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2419         if (ret)
2420                 goto err;
2421         btrfs_release_path(root, path);
2422
2423         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2424                                   inode->i_ino,
2425                                   dir->i_ino, &index);
2426         if (ret) {
2427                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2428                        "inode %lu parent %lu\n", name_len, name,
2429                        inode->i_ino, dir->i_ino);
2430                 goto err;
2431         }
2432
2433         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2434                                          index, name, name_len, -1);
2435         if (IS_ERR(di)) {
2436                 ret = PTR_ERR(di);
2437                 goto err;
2438         }
2439         if (!di) {
2440                 ret = -ENOENT;
2441                 goto err;
2442         }
2443         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2444         btrfs_release_path(root, path);
2445
2446         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2447                                          inode, dir->i_ino);
2448         BUG_ON(ret != 0 && ret != -ENOENT);
2449
2450         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2451                                            dir, index);
2452         BUG_ON(ret);
2453 err:
2454         btrfs_free_path(path);
2455         if (ret)
2456                 goto out;
2457
2458         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2459         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2460         btrfs_update_inode(trans, root, dir);
2461         btrfs_drop_nlink(inode);
2462         ret = btrfs_update_inode(trans, root, inode);
2463 out:
2464         return ret;
2465 }
2466
2467 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2468 {
2469         struct btrfs_root *root;
2470         struct btrfs_trans_handle *trans;
2471         struct inode *inode = dentry->d_inode;
2472         int ret;
2473         unsigned long nr = 0;
2474
2475         root = BTRFS_I(dir)->root;
2476
2477         trans = btrfs_start_transaction(root, 1);
2478
2479         btrfs_set_trans_block_group(trans, dir);
2480
2481         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2482
2483         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2484                                  dentry->d_name.name, dentry->d_name.len);
2485
2486         if (inode->i_nlink == 0)
2487                 ret = btrfs_orphan_add(trans, inode);
2488
2489         nr = trans->blocks_used;
2490
2491         btrfs_end_transaction_throttle(trans, root);
2492         btrfs_btree_balance_dirty(root, nr);
2493         return ret;
2494 }
2495
2496 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2497                         struct btrfs_root *root,
2498                         struct inode *dir, u64 objectid,
2499                         const char *name, int name_len)
2500 {
2501         struct btrfs_path *path;
2502         struct extent_buffer *leaf;
2503         struct btrfs_dir_item *di;
2504         struct btrfs_key key;
2505         u64 index;
2506         int ret;
2507
2508         path = btrfs_alloc_path();
2509         if (!path)
2510                 return -ENOMEM;
2511
2512         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2513                                    name, name_len, -1);
2514         BUG_ON(!di || IS_ERR(di));
2515
2516         leaf = path->nodes[0];
2517         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2518         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2519         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2520         BUG_ON(ret);
2521         btrfs_release_path(root, path);
2522
2523         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2524                                  objectid, root->root_key.objectid,
2525                                  dir->i_ino, &index, name, name_len);
2526         if (ret < 0) {
2527                 BUG_ON(ret != -ENOENT);
2528                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2529                                                  name, name_len);
2530                 BUG_ON(!di || IS_ERR(di));
2531
2532                 leaf = path->nodes[0];
2533                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2534                 btrfs_release_path(root, path);
2535                 index = key.offset;
2536         }
2537
2538         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2539                                          index, name, name_len, -1);
2540         BUG_ON(!di || IS_ERR(di));
2541
2542         leaf = path->nodes[0];
2543         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2544         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2545         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2546         BUG_ON(ret);
2547         btrfs_release_path(root, path);
2548
2549         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2550         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2551         ret = btrfs_update_inode(trans, root, dir);
2552         BUG_ON(ret);
2553         dir->i_sb->s_dirt = 1;
2554
2555         btrfs_free_path(path);
2556         return 0;
2557 }
2558
2559 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2560 {
2561         struct inode *inode = dentry->d_inode;
2562         int err = 0;
2563         int ret;
2564         struct btrfs_root *root = BTRFS_I(dir)->root;
2565         struct btrfs_trans_handle *trans;
2566         unsigned long nr = 0;
2567
2568         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2569             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2570                 return -ENOTEMPTY;
2571
2572         trans = btrfs_start_transaction(root, 1);
2573         btrfs_set_trans_block_group(trans, dir);
2574
2575         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2576                 err = btrfs_unlink_subvol(trans, root, dir,
2577                                           BTRFS_I(inode)->location.objectid,
2578                                           dentry->d_name.name,
2579                                           dentry->d_name.len);
2580                 goto out;
2581         }
2582
2583         err = btrfs_orphan_add(trans, inode);
2584         if (err)
2585                 goto out;
2586
2587         /* now the directory is empty */
2588         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2589                                  dentry->d_name.name, dentry->d_name.len);
2590         if (!err)
2591                 btrfs_i_size_write(inode, 0);
2592 out:
2593         nr = trans->blocks_used;
2594         ret = btrfs_end_transaction_throttle(trans, root);
2595         btrfs_btree_balance_dirty(root, nr);
2596
2597         if (ret && !err)
2598                 err = ret;
2599         return err;
2600 }
2601
2602 #if 0
2603 /*
2604  * when truncating bytes in a file, it is possible to avoid reading
2605  * the leaves that contain only checksum items.  This can be the
2606  * majority of the IO required to delete a large file, but it must
2607  * be done carefully.
2608  *
2609  * The keys in the level just above the leaves are checked to make sure
2610  * the lowest key in a given leaf is a csum key, and starts at an offset
2611  * after the new  size.
2612  *
2613  * Then the key for the next leaf is checked to make sure it also has
2614  * a checksum item for the same file.  If it does, we know our target leaf
2615  * contains only checksum items, and it can be safely freed without reading
2616  * it.
2617  *
2618  * This is just an optimization targeted at large files.  It may do
2619  * nothing.  It will return 0 unless things went badly.
2620  */
2621 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2622                                      struct btrfs_root *root,
2623                                      struct btrfs_path *path,
2624                                      struct inode *inode, u64 new_size)
2625 {
2626         struct btrfs_key key;
2627         int ret;
2628         int nritems;
2629         struct btrfs_key found_key;
2630         struct btrfs_key other_key;
2631         struct btrfs_leaf_ref *ref;
2632         u64 leaf_gen;
2633         u64 leaf_start;
2634
2635         path->lowest_level = 1;
2636         key.objectid = inode->i_ino;
2637         key.type = BTRFS_CSUM_ITEM_KEY;
2638         key.offset = new_size;
2639 again:
2640         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2641         if (ret < 0)
2642                 goto out;
2643
2644         if (path->nodes[1] == NULL) {
2645                 ret = 0;
2646                 goto out;
2647         }
2648         ret = 0;
2649         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2650         nritems = btrfs_header_nritems(path->nodes[1]);
2651
2652         if (!nritems)
2653                 goto out;
2654
2655         if (path->slots[1] >= nritems)
2656                 goto next_node;
2657
2658         /* did we find a key greater than anything we want to delete? */
2659         if (found_key.objectid > inode->i_ino ||
2660            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2661                 goto out;
2662
2663         /* we check the next key in the node to make sure the leave contains
2664          * only checksum items.  This comparison doesn't work if our
2665          * leaf is the last one in the node
2666          */
2667         if (path->slots[1] + 1 >= nritems) {
2668 next_node:
2669                 /* search forward from the last key in the node, this
2670                  * will bring us into the next node in the tree
2671                  */
2672                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2673
2674                 /* unlikely, but we inc below, so check to be safe */
2675                 if (found_key.offset == (u64)-1)
2676                         goto out;
2677
2678                 /* search_forward needs a path with locks held, do the
2679                  * search again for the original key.  It is possible
2680                  * this will race with a balance and return a path that
2681                  * we could modify, but this drop is just an optimization
2682                  * and is allowed to miss some leaves.
2683                  */
2684                 btrfs_release_path(root, path);
2685                 found_key.offset++;
2686
2687                 /* setup a max key for search_forward */
2688                 other_key.offset = (u64)-1;
2689                 other_key.type = key.type;
2690                 other_key.objectid = key.objectid;
2691
2692                 path->keep_locks = 1;
2693                 ret = btrfs_search_forward(root, &found_key, &other_key,
2694                                            path, 0, 0);
2695                 path->keep_locks = 0;
2696                 if (ret || found_key.objectid != key.objectid ||
2697                     found_key.type != key.type) {
2698                         ret = 0;
2699                         goto out;
2700                 }
2701
2702                 key.offset = found_key.offset;
2703                 btrfs_release_path(root, path);
2704                 cond_resched();
2705                 goto again;
2706         }
2707
2708         /* we know there's one more slot after us in the tree,
2709          * read that key so we can verify it is also a checksum item
2710          */
2711         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2712
2713         if (found_key.objectid < inode->i_ino)
2714                 goto next_key;
2715
2716         if (found_key.type != key.type || found_key.offset < new_size)
2717                 goto next_key;
2718
2719         /*
2720          * if the key for the next leaf isn't a csum key from this objectid,
2721          * we can't be sure there aren't good items inside this leaf.
2722          * Bail out
2723          */
2724         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2725                 goto out;
2726
2727         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2728         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2729         /*
2730          * it is safe to delete this leaf, it contains only
2731          * csum items from this inode at an offset >= new_size
2732          */
2733         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2734         BUG_ON(ret);
2735
2736         if (root->ref_cows && leaf_gen < trans->transid) {
2737                 ref = btrfs_alloc_leaf_ref(root, 0);
2738                 if (ref) {
2739                         ref->root_gen = root->root_key.offset;
2740                         ref->bytenr = leaf_start;
2741                         ref->owner = 0;
2742                         ref->generation = leaf_gen;
2743                         ref->nritems = 0;
2744
2745                         btrfs_sort_leaf_ref(ref);
2746
2747                         ret = btrfs_add_leaf_ref(root, ref, 0);
2748                         WARN_ON(ret);
2749                         btrfs_free_leaf_ref(root, ref);
2750                 } else {
2751                         WARN_ON(1);
2752                 }
2753         }
2754 next_key:
2755         btrfs_release_path(root, path);
2756
2757         if (other_key.objectid == inode->i_ino &&
2758             other_key.type == key.type && other_key.offset > key.offset) {
2759                 key.offset = other_key.offset;
2760                 cond_resched();
2761                 goto again;
2762         }
2763         ret = 0;
2764 out:
2765         /* fixup any changes we've made to the path */
2766         path->lowest_level = 0;
2767         path->keep_locks = 0;
2768         btrfs_release_path(root, path);
2769         return ret;
2770 }
2771
2772 #endif
2773
2774 /*
2775  * this can truncate away extent items, csum items and directory items.
2776  * It starts at a high offset and removes keys until it can't find
2777  * any higher than new_size
2778  *
2779  * csum items that cross the new i_size are truncated to the new size
2780  * as well.
2781  *
2782  * min_type is the minimum key type to truncate down to.  If set to 0, this
2783  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2784  */
2785 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2786                                         struct btrfs_root *root,
2787                                         struct inode *inode,
2788                                         u64 new_size, u32 min_type)
2789 {
2790         int ret;
2791         struct btrfs_path *path;
2792         struct btrfs_key key;
2793         struct btrfs_key found_key;
2794         u32 found_type = (u8)-1;
2795         struct extent_buffer *leaf;
2796         struct btrfs_file_extent_item *fi;
2797         u64 extent_start = 0;
2798         u64 extent_num_bytes = 0;
2799         u64 extent_offset = 0;
2800         u64 item_end = 0;
2801         int found_extent;
2802         int del_item;
2803         int pending_del_nr = 0;
2804         int pending_del_slot = 0;
2805         int extent_type = -1;
2806         int encoding;
2807         u64 mask = root->sectorsize - 1;
2808
2809         if (root->ref_cows)
2810                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2811         path = btrfs_alloc_path();
2812         BUG_ON(!path);
2813         path->reada = -1;
2814
2815         /* FIXME, add redo link to tree so we don't leak on crash */
2816         key.objectid = inode->i_ino;
2817         key.offset = (u64)-1;
2818         key.type = (u8)-1;
2819
2820 search_again:
2821         path->leave_spinning = 1;
2822         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2823         if (ret < 0)
2824                 goto error;
2825
2826         if (ret > 0) {
2827                 /* there are no items in the tree for us to truncate, we're
2828                  * done
2829                  */
2830                 if (path->slots[0] == 0) {
2831                         ret = 0;
2832                         goto error;
2833                 }
2834                 path->slots[0]--;
2835         }
2836
2837         while (1) {
2838                 fi = NULL;
2839                 leaf = path->nodes[0];
2840                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2841                 found_type = btrfs_key_type(&found_key);
2842                 encoding = 0;
2843
2844                 if (found_key.objectid != inode->i_ino)
2845                         break;
2846
2847                 if (found_type < min_type)
2848                         break;
2849
2850                 item_end = found_key.offset;
2851                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2852                         fi = btrfs_item_ptr(leaf, path->slots[0],
2853                                             struct btrfs_file_extent_item);
2854                         extent_type = btrfs_file_extent_type(leaf, fi);
2855                         encoding = btrfs_file_extent_compression(leaf, fi);
2856                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2857                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2858
2859                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2860                                 item_end +=
2861                                     btrfs_file_extent_num_bytes(leaf, fi);
2862                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2863                                 item_end += btrfs_file_extent_inline_len(leaf,
2864                                                                          fi);
2865                         }
2866                         item_end--;
2867                 }
2868                 if (item_end < new_size) {
2869                         if (found_type == BTRFS_DIR_ITEM_KEY)
2870                                 found_type = BTRFS_INODE_ITEM_KEY;
2871                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2872                                 found_type = BTRFS_EXTENT_DATA_KEY;
2873                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2874                                 found_type = BTRFS_XATTR_ITEM_KEY;
2875                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2876                                 found_type = BTRFS_INODE_REF_KEY;
2877                         else if (found_type)
2878                                 found_type--;
2879                         else
2880                                 break;
2881                         btrfs_set_key_type(&key, found_type);
2882                         goto next;
2883                 }
2884                 if (found_key.offset >= new_size)
2885                         del_item = 1;
2886                 else
2887                         del_item = 0;
2888                 found_extent = 0;
2889
2890                 /* FIXME, shrink the extent if the ref count is only 1 */
2891                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2892                         goto delete;
2893
2894                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2895                         u64 num_dec;
2896                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2897                         if (!del_item && !encoding) {
2898                                 u64 orig_num_bytes =
2899                                         btrfs_file_extent_num_bytes(leaf, fi);
2900                                 extent_num_bytes = new_size -
2901                                         found_key.offset + root->sectorsize - 1;
2902                                 extent_num_bytes = extent_num_bytes &
2903                                         ~((u64)root->sectorsize - 1);
2904                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2905                                                          extent_num_bytes);
2906                                 num_dec = (orig_num_bytes -
2907                                            extent_num_bytes);
2908                                 if (root->ref_cows && extent_start != 0)
2909                                         inode_sub_bytes(inode, num_dec);
2910                                 btrfs_mark_buffer_dirty(leaf);
2911                         } else {
2912                                 extent_num_bytes =
2913                                         btrfs_file_extent_disk_num_bytes(leaf,
2914                                                                          fi);
2915                                 extent_offset = found_key.offset -
2916                                         btrfs_file_extent_offset(leaf, fi);
2917
2918                                 /* FIXME blocksize != 4096 */
2919                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2920                                 if (extent_start != 0) {
2921                                         found_extent = 1;
2922                                         if (root->ref_cows)
2923                                                 inode_sub_bytes(inode, num_dec);
2924                                 }
2925                         }
2926                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2927                         /*
2928                          * we can't truncate inline items that have had
2929                          * special encodings
2930                          */
2931                         if (!del_item &&
2932                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2933                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2934                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2935                                 u32 size = new_size - found_key.offset;
2936
2937                                 if (root->ref_cows) {
2938                                         inode_sub_bytes(inode, item_end + 1 -
2939                                                         new_size);
2940                                 }
2941                                 size =
2942                                     btrfs_file_extent_calc_inline_size(size);
2943                                 ret = btrfs_truncate_item(trans, root, path,
2944                                                           size, 1);
2945                                 BUG_ON(ret);
2946                         } else if (root->ref_cows) {
2947                                 inode_sub_bytes(inode, item_end + 1 -
2948                                                 found_key.offset);
2949                         }
2950                 }
2951 delete:
2952                 if (del_item) {
2953                         if (!pending_del_nr) {
2954                                 /* no pending yet, add ourselves */
2955                                 pending_del_slot = path->slots[0];
2956                                 pending_del_nr = 1;
2957                         } else if (pending_del_nr &&
2958                                    path->slots[0] + 1 == pending_del_slot) {
2959                                 /* hop on the pending chunk */
2960                                 pending_del_nr++;
2961                                 pending_del_slot = path->slots[0];
2962                         } else {
2963                                 BUG();
2964                         }
2965                 } else {
2966                         break;
2967                 }
2968                 if (found_extent && root->ref_cows) {
2969                         btrfs_set_path_blocking(path);
2970                         ret = btrfs_free_extent(trans, root, extent_start,
2971                                                 extent_num_bytes, 0,
2972                                                 btrfs_header_owner(leaf),
2973                                                 inode->i_ino, extent_offset);
2974                         BUG_ON(ret);
2975                 }
2976 next:
2977                 if (path->slots[0] == 0) {
2978                         if (pending_del_nr)
2979                                 goto del_pending;
2980                         btrfs_release_path(root, path);
2981                         if (found_type == BTRFS_INODE_ITEM_KEY)
2982                                 break;
2983                         goto search_again;
2984                 }
2985
2986                 path->slots[0]--;
2987                 if (pending_del_nr &&
2988                     path->slots[0] + 1 != pending_del_slot) {
2989                         struct btrfs_key debug;
2990 del_pending:
2991                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2992                                               pending_del_slot);
2993                         ret = btrfs_del_items(trans, root, path,
2994                                               pending_del_slot,
2995                                               pending_del_nr);
2996                         BUG_ON(ret);
2997                         pending_del_nr = 0;
2998                         btrfs_release_path(root, path);
2999                         if (found_type == BTRFS_INODE_ITEM_KEY)
3000                                 break;
3001                         goto search_again;
3002                 }
3003         }
3004         ret = 0;
3005 error:
3006         if (pending_del_nr) {
3007                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3008                                       pending_del_nr);
3009         }
3010         btrfs_free_path(path);
3011         return ret;
3012 }
3013
3014 /*
3015  * taken from block_truncate_page, but does cow as it zeros out
3016  * any bytes left in the last page in the file.
3017  */
3018 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3019 {
3020         struct inode *inode = mapping->host;
3021         struct btrfs_root *root = BTRFS_I(inode)->root;
3022         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3023         struct btrfs_ordered_extent *ordered;
3024         char *kaddr;
3025         u32 blocksize = root->sectorsize;
3026         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3027         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3028         struct page *page;
3029         int ret = 0;
3030         u64 page_start;
3031         u64 page_end;
3032
3033         if ((offset & (blocksize - 1)) == 0)
3034                 goto out;
3035
3036         ret = -ENOMEM;
3037 again:
3038         page = grab_cache_page(mapping, index);
3039         if (!page)
3040                 goto out;
3041
3042         page_start = page_offset(page);
3043         page_end = page_start + PAGE_CACHE_SIZE - 1;
3044
3045         if (!PageUptodate(page)) {
3046                 ret = btrfs_readpage(NULL, page);
3047                 lock_page(page);
3048                 if (page->mapping != mapping) {
3049                         unlock_page(page);
3050                         page_cache_release(page);
3051                         goto again;
3052                 }
3053                 if (!PageUptodate(page)) {
3054                         ret = -EIO;
3055                         goto out_unlock;
3056                 }
3057         }
3058         wait_on_page_writeback(page);
3059
3060         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3061         set_page_extent_mapped(page);
3062
3063         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3064         if (ordered) {
3065                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3066                 unlock_page(page);
3067                 page_cache_release(page);
3068                 btrfs_start_ordered_extent(inode, ordered, 1);
3069                 btrfs_put_ordered_extent(ordered);
3070                 goto again;
3071         }
3072
3073         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3074         if (ret) {
3075                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3076                 goto out_unlock;
3077         }
3078
3079         ret = 0;
3080         if (offset != PAGE_CACHE_SIZE) {
3081                 kaddr = kmap(page);
3082                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3083                 flush_dcache_page(page);
3084                 kunmap(page);
3085         }
3086         ClearPageChecked(page);
3087         set_page_dirty(page);
3088         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3089
3090 out_unlock:
3091         unlock_page(page);
3092         page_cache_release(page);
3093 out:
3094         return ret;
3095 }
3096
3097 int btrfs_cont_expand(struct inode *inode, loff_t size)
3098 {
3099         struct btrfs_trans_handle *trans;
3100         struct btrfs_root *root = BTRFS_I(inode)->root;
3101         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3102         struct extent_map *em;
3103         u64 mask = root->sectorsize - 1;
3104         u64 hole_start = (inode->i_size + mask) & ~mask;
3105         u64 block_end = (size + mask) & ~mask;
3106         u64 last_byte;
3107         u64 cur_offset;
3108         u64 hole_size;
3109         int err = 0;
3110
3111         if (size <= hole_start)
3112                 return 0;
3113
3114         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3115
3116         while (1) {
3117                 struct btrfs_ordered_extent *ordered;
3118                 btrfs_wait_ordered_range(inode, hole_start,
3119                                          block_end - hole_start);
3120                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3121                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3122                 if (!ordered)
3123                         break;
3124                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3125                 btrfs_put_ordered_extent(ordered);
3126         }
3127
3128         trans = btrfs_start_transaction(root, 1);
3129         btrfs_set_trans_block_group(trans, inode);
3130
3131         cur_offset = hole_start;
3132         while (1) {
3133                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3134                                 block_end - cur_offset, 0);
3135                 BUG_ON(IS_ERR(em) || !em);
3136                 last_byte = min(extent_map_end(em), block_end);
3137                 last_byte = (last_byte + mask) & ~mask;
3138                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3139                         u64 hint_byte = 0;
3140                         hole_size = last_byte - cur_offset;
3141                         err = btrfs_drop_extents(trans, root, inode,
3142                                                  cur_offset,
3143                                                  cur_offset + hole_size,
3144                                                  block_end,
3145                                                  cur_offset, &hint_byte, 1);
3146                         if (err)
3147                                 break;
3148
3149                         err = btrfs_reserve_metadata_space(root, 1);
3150                         if (err)
3151                                 break;
3152
3153                         err = btrfs_insert_file_extent(trans, root,
3154                                         inode->i_ino, cur_offset, 0,
3155                                         0, hole_size, 0, hole_size,
3156                                         0, 0, 0);
3157                         btrfs_drop_extent_cache(inode, hole_start,
3158                                         last_byte - 1, 0);
3159                         btrfs_unreserve_metadata_space(root, 1);
3160                 }
3161                 free_extent_map(em);
3162                 cur_offset = last_byte;
3163                 if (err || cur_offset >= block_end)
3164                         break;
3165         }
3166
3167         btrfs_end_transaction(trans, root);
3168         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3169         return err;
3170 }
3171
3172 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3173 {
3174         struct inode *inode = dentry->d_inode;
3175         int err;
3176
3177         err = inode_change_ok(inode, attr);
3178         if (err)
3179                 return err;
3180
3181         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3182                 if (attr->ia_size > inode->i_size) {
3183                         err = btrfs_cont_expand(inode, attr->ia_size);
3184                         if (err)
3185                                 return err;
3186                 } else if (inode->i_size > 0 &&
3187                            attr->ia_size == 0) {
3188
3189                         /* we're truncating a file that used to have good
3190                          * data down to zero.  Make sure it gets into
3191                          * the ordered flush list so that any new writes
3192                          * get down to disk quickly.
3193                          */
3194                         BTRFS_I(inode)->ordered_data_close = 1;
3195                 }
3196         }
3197
3198         err = inode_setattr(inode, attr);
3199
3200         if (!err && ((attr->ia_valid & ATTR_MODE)))
3201                 err = btrfs_acl_chmod(inode);
3202         return err;
3203 }
3204
3205 void btrfs_delete_inode(struct inode *inode)
3206 {
3207         struct btrfs_trans_handle *trans;
3208         struct btrfs_root *root = BTRFS_I(inode)->root;
3209         unsigned long nr;
3210         int ret;
3211
3212         truncate_inode_pages(&inode->i_data, 0);
3213         if (is_bad_inode(inode)) {
3214                 btrfs_orphan_del(NULL, inode);
3215                 goto no_delete;
3216         }
3217         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3218
3219         if (inode->i_nlink > 0) {
3220                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3221                 goto no_delete;
3222         }
3223
3224         btrfs_i_size_write(inode, 0);
3225         trans = btrfs_join_transaction(root, 1);
3226
3227         btrfs_set_trans_block_group(trans, inode);
3228         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3229         if (ret) {
3230                 btrfs_orphan_del(NULL, inode);
3231                 goto no_delete_lock;
3232         }
3233
3234         btrfs_orphan_del(trans, inode);
3235
3236         nr = trans->blocks_used;
3237         clear_inode(inode);
3238
3239         btrfs_end_transaction(trans, root);
3240         btrfs_btree_balance_dirty(root, nr);
3241         return;
3242
3243 no_delete_lock:
3244         nr = trans->blocks_used;
3245         btrfs_end_transaction(trans, root);
3246         btrfs_btree_balance_dirty(root, nr);
3247 no_delete:
3248         clear_inode(inode);
3249 }
3250
3251 /*
3252  * this returns the key found in the dir entry in the location pointer.
3253  * If no dir entries were found, location->objectid is 0.
3254  */
3255 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3256                                struct btrfs_key *location)
3257 {
3258         const char *name = dentry->d_name.name;
3259         int namelen = dentry->d_name.len;
3260         struct btrfs_dir_item *di;
3261         struct btrfs_path *path;
3262         struct btrfs_root *root = BTRFS_I(dir)->root;
3263         int ret = 0;
3264
3265         path = btrfs_alloc_path();
3266         BUG_ON(!path);
3267
3268         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3269                                     namelen, 0);
3270         if (IS_ERR(di))
3271                 ret = PTR_ERR(di);
3272
3273         if (!di || IS_ERR(di))
3274                 goto out_err;
3275
3276         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3277 out:
3278         btrfs_free_path(path);
3279         return ret;
3280 out_err:
3281         location->objectid = 0;
3282         goto out;
3283 }
3284
3285 /*
3286  * when we hit a tree root in a directory, the btrfs part of the inode
3287  * needs to be changed to reflect the root directory of the tree root.  This
3288  * is kind of like crossing a mount point.
3289  */
3290 static int fixup_tree_root_location(struct btrfs_root *root,
3291                                     struct inode *dir,
3292                                     struct dentry *dentry,
3293                                     struct btrfs_key *location,
3294                                     struct btrfs_root **sub_root)
3295 {
3296         struct btrfs_path *path;
3297         struct btrfs_root *new_root;
3298         struct btrfs_root_ref *ref;
3299         struct extent_buffer *leaf;
3300         int ret;
3301         int err = 0;
3302
3303         path = btrfs_alloc_path();
3304         if (!path) {
3305                 err = -ENOMEM;
3306                 goto out;
3307         }
3308
3309         err = -ENOENT;
3310         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3311                                   BTRFS_I(dir)->root->root_key.objectid,
3312                                   location->objectid);
3313         if (ret) {
3314                 if (ret < 0)
3315                         err = ret;
3316                 goto out;
3317         }
3318
3319         leaf = path->nodes[0];
3320         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3321         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3322             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3323                 goto out;
3324
3325         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3326                                    (unsigned long)(ref + 1),
3327                                    dentry->d_name.len);
3328         if (ret)
3329                 goto out;
3330
3331         btrfs_release_path(root->fs_info->tree_root, path);
3332
3333         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3334         if (IS_ERR(new_root)) {
3335                 err = PTR_ERR(new_root);
3336                 goto out;
3337         }
3338
3339         if (btrfs_root_refs(&new_root->root_item) == 0) {
3340                 err = -ENOENT;
3341                 goto out;
3342         }
3343
3344         *sub_root = new_root;
3345         location->objectid = btrfs_root_dirid(&new_root->root_item);
3346         location->type = BTRFS_INODE_ITEM_KEY;
3347         location->offset = 0;
3348         err = 0;
3349 out:
3350         btrfs_free_path(path);
3351         return err;
3352 }
3353
3354 static void inode_tree_add(struct inode *inode)
3355 {
3356         struct btrfs_root *root = BTRFS_I(inode)->root;
3357         struct btrfs_inode *entry;
3358         struct rb_node **p;
3359         struct rb_node *parent;
3360 again:
3361         p = &root->inode_tree.rb_node;
3362         parent = NULL;
3363
3364         if (hlist_unhashed(&inode->i_hash))
3365                 return;
3366
3367         spin_lock(&root->inode_lock);
3368         while (*p) {
3369                 parent = *p;
3370                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3371
3372                 if (inode->i_ino < entry->vfs_inode.i_ino)
3373                         p = &parent->rb_left;
3374                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3375                         p = &parent->rb_right;
3376                 else {
3377                         WARN_ON(!(entry->vfs_inode.i_state &
3378                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3379                         rb_erase(parent, &root->inode_tree);
3380                         RB_CLEAR_NODE(parent);
3381                         spin_unlock(&root->inode_lock);
3382                         goto again;
3383                 }
3384         }
3385         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3386         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3387         spin_unlock(&root->inode_lock);
3388 }
3389
3390 static void inode_tree_del(struct inode *inode)
3391 {
3392         struct btrfs_root *root = BTRFS_I(inode)->root;
3393         int empty = 0;
3394
3395         spin_lock(&root->inode_lock);
3396         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3397                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3398                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3399                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3400         }
3401         spin_unlock(&root->inode_lock);
3402
3403         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3404                 synchronize_srcu(&root->fs_info->subvol_srcu);
3405                 spin_lock(&root->inode_lock);
3406                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3407                 spin_unlock(&root->inode_lock);
3408                 if (empty)
3409                         btrfs_add_dead_root(root);
3410         }
3411 }
3412
3413 int btrfs_invalidate_inodes(struct btrfs_root *root)
3414 {
3415         struct rb_node *node;
3416         struct rb_node *prev;
3417         struct btrfs_inode *entry;
3418         struct inode *inode;
3419         u64 objectid = 0;
3420
3421         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3422
3423         spin_lock(&root->inode_lock);
3424 again:
3425         node = root->inode_tree.rb_node;
3426         prev = NULL;
3427         while (node) {
3428                 prev = node;
3429                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3430
3431                 if (objectid < entry->vfs_inode.i_ino)
3432                         node = node->rb_left;
3433                 else if (objectid > entry->vfs_inode.i_ino)
3434                         node = node->rb_right;
3435                 else
3436                         break;
3437         }
3438         if (!node) {
3439                 while (prev) {
3440                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3441                         if (objectid <= entry->vfs_inode.i_ino) {
3442                                 node = prev;
3443                                 break;
3444                         }
3445                         prev = rb_next(prev);
3446                 }
3447         }
3448         while (node) {
3449                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3450                 objectid = entry->vfs_inode.i_ino + 1;
3451                 inode = igrab(&entry->vfs_inode);
3452                 if (inode) {
3453                         spin_unlock(&root->inode_lock);
3454                         if (atomic_read(&inode->i_count) > 1)
3455                                 d_prune_aliases(inode);
3456                         /*
3457                          * btrfs_drop_inode will remove it from
3458                          * the inode cache when its usage count
3459                          * hits zero.
3460                          */
3461                         iput(inode);
3462                         cond_resched();
3463                         spin_lock(&root->inode_lock);
3464                         goto again;
3465                 }
3466
3467                 if (cond_resched_lock(&root->inode_lock))
3468                         goto again;
3469
3470                 node = rb_next(node);
3471         }
3472         spin_unlock(&root->inode_lock);
3473         return 0;
3474 }
3475
3476 static noinline void init_btrfs_i(struct inode *inode)
3477 {
3478         struct btrfs_inode *bi = BTRFS_I(inode);
3479
3480         bi->generation = 0;
3481         bi->sequence = 0;
3482         bi->last_trans = 0;
3483         bi->logged_trans = 0;
3484         bi->delalloc_bytes = 0;
3485         bi->reserved_bytes = 0;
3486         bi->disk_i_size = 0;
3487         bi->flags = 0;
3488         bi->index_cnt = (u64)-1;
3489         bi->last_unlink_trans = 0;
3490         bi->ordered_data_close = 0;
3491         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3492         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3493                              inode->i_mapping, GFP_NOFS);
3494         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3495                              inode->i_mapping, GFP_NOFS);
3496         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3497         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3498         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3499         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3500         mutex_init(&BTRFS_I(inode)->extent_mutex);
3501         mutex_init(&BTRFS_I(inode)->log_mutex);
3502 }
3503
3504 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3505 {
3506         struct btrfs_iget_args *args = p;
3507         inode->i_ino = args->ino;
3508         init_btrfs_i(inode);
3509         BTRFS_I(inode)->root = args->root;
3510         btrfs_set_inode_space_info(args->root, inode);
3511         return 0;
3512 }
3513
3514 static int btrfs_find_actor(struct inode *inode, void *opaque)
3515 {
3516         struct btrfs_iget_args *args = opaque;
3517         return args->ino == inode->i_ino &&
3518                 args->root == BTRFS_I(inode)->root;
3519 }
3520
3521 static struct inode *btrfs_iget_locked(struct super_block *s,
3522                                        u64 objectid,
3523                                        struct btrfs_root *root)
3524 {
3525         struct inode *inode;
3526         struct btrfs_iget_args args;
3527         args.ino = objectid;
3528         args.root = root;
3529
3530         inode = iget5_locked(s, objectid, btrfs_find_actor,
3531                              btrfs_init_locked_inode,
3532                              (void *)&args);
3533         return inode;
3534 }
3535
3536 /* Get an inode object given its location and corresponding root.
3537  * Returns in *is_new if the inode was read from disk
3538  */
3539 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3540                          struct btrfs_root *root)
3541 {
3542         struct inode *inode;
3543
3544         inode = btrfs_iget_locked(s, location->objectid, root);
3545         if (!inode)
3546                 return ERR_PTR(-ENOMEM);
3547
3548         if (inode->i_state & I_NEW) {
3549                 BTRFS_I(inode)->root = root;
3550                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3551                 btrfs_read_locked_inode(inode);
3552
3553                 inode_tree_add(inode);
3554                 unlock_new_inode(inode);
3555         }
3556
3557         return inode;
3558 }
3559
3560 static struct inode *new_simple_dir(struct super_block *s,
3561                                     struct btrfs_key *key,
3562                                     struct btrfs_root *root)
3563 {
3564         struct inode *inode = new_inode(s);
3565
3566         if (!inode)
3567                 return ERR_PTR(-ENOMEM);
3568
3569         init_btrfs_i(inode);
3570
3571         BTRFS_I(inode)->root = root;
3572         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3573         BTRFS_I(inode)->dummy_inode = 1;
3574
3575         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3576         inode->i_op = &simple_dir_inode_operations;
3577         inode->i_fop = &simple_dir_operations;
3578         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3579         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3580
3581         return inode;
3582 }
3583
3584 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3585 {
3586         struct inode *inode;
3587         struct btrfs_root *root = BTRFS_I(dir)->root;
3588         struct btrfs_root *sub_root = root;
3589         struct btrfs_key location;
3590         int index;
3591         int ret;
3592
3593         dentry->d_op = &btrfs_dentry_operations;
3594
3595         if (dentry->d_name.len > BTRFS_NAME_LEN)
3596                 return ERR_PTR(-ENAMETOOLONG);
3597
3598         ret = btrfs_inode_by_name(dir, dentry, &location);
3599
3600         if (ret < 0)
3601                 return ERR_PTR(ret);
3602
3603         if (location.objectid == 0)
3604                 return NULL;
3605
3606         if (location.type == BTRFS_INODE_ITEM_KEY) {
3607                 inode = btrfs_iget(dir->i_sb, &location, root);
3608                 return inode;
3609         }
3610
3611         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3612
3613         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3614         ret = fixup_tree_root_location(root, dir, dentry,
3615                                        &location, &sub_root);
3616         if (ret < 0) {
3617                 if (ret != -ENOENT)
3618                         inode = ERR_PTR(ret);
3619                 else
3620                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3621         } else {
3622                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3623         }
3624         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3625
3626         return inode;
3627 }
3628
3629 static int btrfs_dentry_delete(struct dentry *dentry)
3630 {
3631         struct btrfs_root *root;
3632
3633         if (!dentry->d_inode && !IS_ROOT(dentry))
3634                 dentry = dentry->d_parent;
3635
3636         if (dentry->d_inode) {
3637                 root = BTRFS_I(dentry->d_inode)->root;
3638                 if (btrfs_root_refs(&root->root_item) == 0)
3639                         return 1;
3640         }
3641         return 0;
3642 }
3643
3644 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3645                                    struct nameidata *nd)
3646 {
3647         struct inode *inode;
3648
3649         inode = btrfs_lookup_dentry(dir, dentry);
3650         if (IS_ERR(inode))
3651                 return ERR_CAST(inode);
3652
3653         return d_splice_alias(inode, dentry);
3654 }
3655
3656 static unsigned char btrfs_filetype_table[] = {
3657         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3658 };
3659
3660 static int btrfs_real_readdir(struct file *filp, void *dirent,
3661                               filldir_t filldir)
3662 {
3663         struct inode *inode = filp->f_dentry->d_inode;
3664         struct btrfs_root *root = BTRFS_I(inode)->root;
3665         struct btrfs_item *item;
3666         struct btrfs_dir_item *di;
3667         struct btrfs_key key;
3668         struct btrfs_key found_key;
3669         struct btrfs_path *path;
3670         int ret;
3671         u32 nritems;
3672         struct extent_buffer *leaf;
3673         int slot;
3674         int advance;
3675         unsigned char d_type;
3676         int over = 0;
3677         u32 di_cur;
3678         u32 di_total;
3679         u32 di_len;
3680         int key_type = BTRFS_DIR_INDEX_KEY;
3681         char tmp_name[32];
3682         char *name_ptr;
3683         int name_len;
3684
3685         /* FIXME, use a real flag for deciding about the key type */
3686         if (root->fs_info->tree_root == root)
3687                 key_type = BTRFS_DIR_ITEM_KEY;
3688
3689         /* special case for "." */
3690         if (filp->f_pos == 0) {
3691                 over = filldir(dirent, ".", 1,
3692                                1, inode->i_ino,
3693                                DT_DIR);
3694                 if (over)
3695                         return 0;
3696                 filp->f_pos = 1;
3697         }
3698         /* special case for .., just use the back ref */
3699         if (filp->f_pos == 1) {
3700                 u64 pino = parent_ino(filp->f_path.dentry);
3701                 over = filldir(dirent, "..", 2,
3702                                2, pino, DT_DIR);
3703                 if (over)
3704                         return 0;
3705                 filp->f_pos = 2;
3706         }
3707         path = btrfs_alloc_path();
3708         path->reada = 2;
3709
3710         btrfs_set_key_type(&key, key_type);
3711         key.offset = filp->f_pos;
3712         key.objectid = inode->i_ino;
3713
3714         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3715         if (ret < 0)
3716                 goto err;
3717         advance = 0;
3718
3719         while (1) {
3720                 leaf = path->nodes[0];
3721                 nritems = btrfs_header_nritems(leaf);
3722                 slot = path->slots[0];
3723                 if (advance || slot >= nritems) {
3724                         if (slot >= nritems - 1) {
3725                                 ret = btrfs_next_leaf(root, path);
3726                                 if (ret)
3727                                         break;
3728                                 leaf = path->nodes[0];
3729                                 nritems = btrfs_header_nritems(leaf);
3730                                 slot = path->slots[0];
3731                         } else {
3732                                 slot++;
3733                                 path->slots[0]++;
3734                         }
3735                 }
3736
3737                 advance = 1;
3738                 item = btrfs_item_nr(leaf, slot);
3739                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3740
3741                 if (found_key.objectid != key.objectid)
3742                         break;
3743                 if (btrfs_key_type(&found_key) != key_type)
3744                         break;
3745                 if (found_key.offset < filp->f_pos)
3746                         continue;
3747
3748                 filp->f_pos = found_key.offset;
3749
3750                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3751                 di_cur = 0;
3752                 di_total = btrfs_item_size(leaf, item);
3753
3754                 while (di_cur < di_total) {
3755                         struct btrfs_key location;
3756
3757                         name_len = btrfs_dir_name_len(leaf, di);
3758                         if (name_len <= sizeof(tmp_name)) {
3759                                 name_ptr = tmp_name;
3760                         } else {
3761                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3762                                 if (!name_ptr) {
3763                                         ret = -ENOMEM;
3764                                         goto err;
3765                                 }
3766                         }
3767                         read_extent_buffer(leaf, name_ptr,
3768                                            (unsigned long)(di + 1), name_len);
3769
3770                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3771                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3772
3773                         /* is this a reference to our own snapshot? If so
3774                          * skip it
3775                          */
3776                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3777                             location.objectid == root->root_key.objectid) {
3778                                 over = 0;
3779                                 goto skip;
3780                         }
3781                         over = filldir(dirent, name_ptr, name_len,
3782                                        found_key.offset, location.objectid,
3783                                        d_type);
3784
3785 skip:
3786                         if (name_ptr != tmp_name)
3787                                 kfree(name_ptr);
3788
3789                         if (over)
3790                                 goto nopos;
3791                         di_len = btrfs_dir_name_len(leaf, di) +
3792                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3793                         di_cur += di_len;
3794                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3795                 }
3796         }
3797
3798         /* Reached end of directory/root. Bump pos past the last item. */
3799         if (key_type == BTRFS_DIR_INDEX_KEY)
3800                 filp->f_pos = INT_LIMIT(off_t);
3801         else
3802                 filp->f_pos++;
3803 nopos:
3804         ret = 0;
3805 err:
3806         btrfs_free_path(path);
3807         return ret;
3808 }
3809
3810 int btrfs_write_inode(struct inode *inode, int wait)
3811 {
3812         struct btrfs_root *root = BTRFS_I(inode)->root;
3813         struct btrfs_trans_handle *trans;
3814         int ret = 0;
3815
3816         if (root->fs_info->btree_inode == inode)
3817                 return 0;
3818
3819         if (wait) {
3820                 trans = btrfs_join_transaction(root, 1);
3821                 btrfs_set_trans_block_group(trans, inode);
3822                 ret = btrfs_commit_transaction(trans, root);
3823         }
3824         return ret;
3825 }
3826
3827 /*
3828  * This is somewhat expensive, updating the tree every time the
3829  * inode changes.  But, it is most likely to find the inode in cache.
3830  * FIXME, needs more benchmarking...there are no reasons other than performance
3831  * to keep or drop this code.
3832  */
3833 void btrfs_dirty_inode(struct inode *inode)
3834 {
3835         struct btrfs_root *root = BTRFS_I(inode)->root;
3836         struct btrfs_trans_handle *trans;
3837
3838         trans = btrfs_join_transaction(root, 1);
3839         btrfs_set_trans_block_group(trans, inode);
3840         btrfs_update_inode(trans, root, inode);
3841         btrfs_end_transaction(trans, root);
3842 }
3843
3844 /*
3845  * find the highest existing sequence number in a directory
3846  * and then set the in-memory index_cnt variable to reflect
3847  * free sequence numbers
3848  */
3849 static int btrfs_set_inode_index_count(struct inode *inode)
3850 {
3851         struct btrfs_root *root = BTRFS_I(inode)->root;
3852         struct btrfs_key key, found_key;
3853         struct btrfs_path *path;
3854         struct extent_buffer *leaf;
3855         int ret;
3856
3857         key.objectid = inode->i_ino;
3858         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3859         key.offset = (u64)-1;
3860
3861         path = btrfs_alloc_path();
3862         if (!path)
3863                 return -ENOMEM;
3864
3865         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3866         if (ret < 0)
3867                 goto out;
3868         /* FIXME: we should be able to handle this */
3869         if (ret == 0)
3870                 goto out;
3871         ret = 0;
3872
3873         /*
3874          * MAGIC NUMBER EXPLANATION:
3875          * since we search a directory based on f_pos we have to start at 2
3876          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3877          * else has to start at 2
3878          */
3879         if (path->slots[0] == 0) {
3880                 BTRFS_I(inode)->index_cnt = 2;
3881                 goto out;
3882         }
3883
3884         path->slots[0]--;
3885
3886         leaf = path->nodes[0];
3887         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3888
3889         if (found_key.objectid != inode->i_ino ||
3890             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3891                 BTRFS_I(inode)->index_cnt = 2;
3892                 goto out;
3893         }
3894
3895         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3896 out:
3897         btrfs_free_path(path);
3898         return ret;
3899 }
3900
3901 /*
3902  * helper to find a free sequence number in a given directory.  This current
3903  * code is very simple, later versions will do smarter things in the btree
3904  */
3905 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3906 {
3907         int ret = 0;
3908
3909         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3910                 ret = btrfs_set_inode_index_count(dir);
3911                 if (ret)
3912                         return ret;
3913         }
3914
3915         *index = BTRFS_I(dir)->index_cnt;
3916         BTRFS_I(dir)->index_cnt++;
3917
3918         return ret;
3919 }
3920
3921 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3922                                      struct btrfs_root *root,
3923                                      struct inode *dir,
3924                                      const char *name, int name_len,
3925                                      u64 ref_objectid, u64 objectid,
3926                                      u64 alloc_hint, int mode, u64 *index)
3927 {
3928         struct inode *inode;
3929         struct btrfs_inode_item *inode_item;
3930         struct btrfs_key *location;
3931         struct btrfs_path *path;
3932         struct btrfs_inode_ref *ref;
3933         struct btrfs_key key[2];
3934         u32 sizes[2];
3935         unsigned long ptr;
3936         int ret;
3937         int owner;
3938
3939         path = btrfs_alloc_path();
3940         BUG_ON(!path);
3941
3942         inode = new_inode(root->fs_info->sb);
3943         if (!inode)
3944                 return ERR_PTR(-ENOMEM);
3945
3946         if (dir) {
3947                 ret = btrfs_set_inode_index(dir, index);
3948                 if (ret) {
3949                         iput(inode);
3950                         return ERR_PTR(ret);
3951                 }
3952         }
3953         /*
3954          * index_cnt is ignored for everything but a dir,
3955          * btrfs_get_inode_index_count has an explanation for the magic
3956          * number
3957          */
3958         init_btrfs_i(inode);
3959         BTRFS_I(inode)->index_cnt = 2;
3960         BTRFS_I(inode)->root = root;
3961         BTRFS_I(inode)->generation = trans->transid;
3962         btrfs_set_inode_space_info(root, inode);
3963
3964         if (mode & S_IFDIR)
3965                 owner = 0;
3966         else
3967                 owner = 1;
3968         BTRFS_I(inode)->block_group =
3969                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3970
3971         key[0].objectid = objectid;
3972         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3973         key[0].offset = 0;
3974
3975         key[1].objectid = objectid;
3976         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3977         key[1].offset = ref_objectid;
3978
3979         sizes[0] = sizeof(struct btrfs_inode_item);
3980         sizes[1] = name_len + sizeof(*ref);
3981
3982         path->leave_spinning = 1;
3983         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3984         if (ret != 0)
3985                 goto fail;
3986
3987         inode->i_uid = current_fsuid();
3988
3989         if (dir && (dir->i_mode & S_ISGID)) {
3990                 inode->i_gid = dir->i_gid;
3991                 if (S_ISDIR(mode))
3992                         mode |= S_ISGID;
3993         } else
3994                 inode->i_gid = current_fsgid();
3995
3996         inode->i_mode = mode;
3997         inode->i_ino = objectid;
3998         inode_set_bytes(inode, 0);
3999         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4000         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4001                                   struct btrfs_inode_item);
4002         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4003
4004         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4005                              struct btrfs_inode_ref);
4006         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4007         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4008         ptr = (unsigned long)(ref + 1);
4009         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4010
4011         btrfs_mark_buffer_dirty(path->nodes[0]);
4012         btrfs_free_path(path);
4013
4014         location = &BTRFS_I(inode)->location;
4015         location->objectid = objectid;
4016         location->offset = 0;
4017         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4018
4019         btrfs_inherit_iflags(inode, dir);
4020
4021         if ((mode & S_IFREG)) {
4022                 if (btrfs_test_opt(root, NODATASUM))
4023                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4024                 if (btrfs_test_opt(root, NODATACOW))
4025                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4026         }
4027
4028         insert_inode_hash(inode);
4029         inode_tree_add(inode);
4030         return inode;
4031 fail:
4032         if (dir)
4033                 BTRFS_I(dir)->index_cnt--;
4034         btrfs_free_path(path);
4035         iput(inode);
4036         return ERR_PTR(ret);
4037 }
4038
4039 static inline u8 btrfs_inode_type(struct inode *inode)
4040 {
4041         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4042 }
4043
4044 /*
4045  * utility function to add 'inode' into 'parent_inode' with
4046  * a give name and a given sequence number.
4047  * if 'add_backref' is true, also insert a backref from the
4048  * inode to the parent directory.
4049  */
4050 int btrfs_add_link(struct btrfs_trans_handle *trans,
4051                    struct inode *parent_inode, struct inode *inode,
4052                    const char *name, int name_len, int add_backref, u64 index)
4053 {
4054         int ret = 0;
4055         struct btrfs_key key;
4056         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4057
4058         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4059                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4060         } else {
4061                 key.objectid = inode->i_ino;
4062                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4063                 key.offset = 0;
4064         }
4065
4066         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4067                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4068                                          key.objectid, root->root_key.objectid,
4069                                          parent_inode->i_ino,
4070                                          index, name, name_len);
4071         } else if (add_backref) {
4072                 ret = btrfs_insert_inode_ref(trans, root,
4073                                              name, name_len, inode->i_ino,
4074                                              parent_inode->i_ino, index);
4075         }
4076
4077         if (ret == 0) {
4078                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4079                                             parent_inode->i_ino, &key,
4080                                             btrfs_inode_type(inode), index);
4081                 BUG_ON(ret);
4082
4083                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4084                                    name_len * 2);
4085                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4086                 ret = btrfs_update_inode(trans, root, parent_inode);
4087         }
4088         return ret;
4089 }
4090
4091 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4092                             struct dentry *dentry, struct inode *inode,
4093                             int backref, u64 index)
4094 {
4095         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4096                                  inode, dentry->d_name.name,
4097                                  dentry->d_name.len, backref, index);
4098         if (!err) {
4099                 d_instantiate(dentry, inode);
4100                 return 0;
4101         }
4102         if (err > 0)
4103                 err = -EEXIST;
4104         return err;
4105 }
4106
4107 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4108                         int mode, dev_t rdev)
4109 {
4110         struct btrfs_trans_handle *trans;
4111         struct btrfs_root *root = BTRFS_I(dir)->root;
4112         struct inode *inode = NULL;
4113         int err;
4114         int drop_inode = 0;
4115         u64 objectid;
4116         unsigned long nr = 0;
4117         u64 index = 0;
4118
4119         if (!new_valid_dev(rdev))
4120                 return -EINVAL;
4121
4122         /*
4123          * 2 for inode item and ref
4124          * 2 for dir items
4125          * 1 for xattr if selinux is on
4126          */
4127         err = btrfs_reserve_metadata_space(root, 5);
4128         if (err)
4129                 return err;
4130
4131         trans = btrfs_start_transaction(root, 1);
4132         if (!trans)
4133                 goto fail;
4134         btrfs_set_trans_block_group(trans, dir);
4135
4136         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4137         if (err) {
4138                 err = -ENOSPC;
4139                 goto out_unlock;
4140         }
4141
4142         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4143                                 dentry->d_name.len,
4144                                 dentry->d_parent->d_inode->i_ino, objectid,
4145                                 BTRFS_I(dir)->block_group, mode, &index);
4146         err = PTR_ERR(inode);
4147         if (IS_ERR(inode))
4148                 goto out_unlock;
4149
4150         err = btrfs_init_inode_security(inode, dir);
4151         if (err) {
4152                 drop_inode = 1;
4153                 goto out_unlock;
4154         }
4155
4156         btrfs_set_trans_block_group(trans, inode);
4157         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4158         if (err)
4159                 drop_inode = 1;
4160         else {
4161                 inode->i_op = &btrfs_special_inode_operations;
4162                 init_special_inode(inode, inode->i_mode, rdev);
4163                 btrfs_update_inode(trans, root, inode);
4164         }
4165         btrfs_update_inode_block_group(trans, inode);
4166         btrfs_update_inode_block_group(trans, dir);
4167 out_unlock:
4168         nr = trans->blocks_used;
4169         btrfs_end_transaction_throttle(trans, root);
4170 fail:
4171         btrfs_unreserve_metadata_space(root, 5);
4172         if (drop_inode) {
4173                 inode_dec_link_count(inode);
4174                 iput(inode);
4175         }
4176         btrfs_btree_balance_dirty(root, nr);
4177         return err;
4178 }
4179
4180 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4181                         int mode, struct nameidata *nd)
4182 {
4183         struct btrfs_trans_handle *trans;
4184         struct btrfs_root *root = BTRFS_I(dir)->root;
4185         struct inode *inode = NULL;
4186         int err;
4187         int drop_inode = 0;
4188         unsigned long nr = 0;
4189         u64 objectid;
4190         u64 index = 0;
4191
4192         /*
4193          * 2 for inode item and ref
4194          * 2 for dir items
4195          * 1 for xattr if selinux is on
4196          */
4197         err = btrfs_reserve_metadata_space(root, 5);
4198         if (err)
4199                 return err;
4200
4201         trans = btrfs_start_transaction(root, 1);
4202         if (!trans)
4203                 goto fail;
4204         btrfs_set_trans_block_group(trans, dir);
4205
4206         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4207         if (err) {
4208                 err = -ENOSPC;
4209                 goto out_unlock;
4210         }
4211
4212         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4213                                 dentry->d_name.len,
4214                                 dentry->d_parent->d_inode->i_ino,
4215                                 objectid, BTRFS_I(dir)->block_group, mode,
4216                                 &index);
4217         err = PTR_ERR(inode);
4218         if (IS_ERR(inode))
4219                 goto out_unlock;
4220
4221         err = btrfs_init_inode_security(inode, dir);
4222         if (err) {
4223                 drop_inode = 1;
4224                 goto out_unlock;
4225         }
4226
4227         btrfs_set_trans_block_group(trans, inode);
4228         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4229         if (err)
4230                 drop_inode = 1;
4231         else {
4232                 inode->i_mapping->a_ops = &btrfs_aops;
4233                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4234                 inode->i_fop = &btrfs_file_operations;
4235                 inode->i_op = &btrfs_file_inode_operations;
4236                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4237         }
4238         btrfs_update_inode_block_group(trans, inode);
4239         btrfs_update_inode_block_group(trans, dir);
4240 out_unlock:
4241         nr = trans->blocks_used;
4242         btrfs_end_transaction_throttle(trans, root);
4243 fail:
4244         btrfs_unreserve_metadata_space(root, 5);
4245         if (drop_inode) {
4246                 inode_dec_link_count(inode);
4247                 iput(inode);
4248         }
4249         btrfs_btree_balance_dirty(root, nr);
4250         return err;
4251 }
4252
4253 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4254                       struct dentry *dentry)
4255 {
4256         struct btrfs_trans_handle *trans;
4257         struct btrfs_root *root = BTRFS_I(dir)->root;
4258         struct inode *inode = old_dentry->d_inode;
4259         u64 index;
4260         unsigned long nr = 0;
4261         int err;
4262         int drop_inode = 0;
4263
4264         if (inode->i_nlink == 0)
4265                 return -ENOENT;
4266
4267         /*
4268          * 1 item for inode ref
4269          * 2 items for dir items
4270          */
4271         err = btrfs_reserve_metadata_space(root, 3);
4272         if (err)
4273                 return err;
4274
4275         btrfs_inc_nlink(inode);
4276
4277         err = btrfs_set_inode_index(dir, &index);
4278         if (err)
4279                 goto fail;
4280
4281         trans = btrfs_start_transaction(root, 1);
4282
4283         btrfs_set_trans_block_group(trans, dir);
4284         atomic_inc(&inode->i_count);
4285
4286         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4287
4288         if (err) {
4289                 drop_inode = 1;
4290         } else {
4291                 btrfs_update_inode_block_group(trans, dir);
4292                 err = btrfs_update_inode(trans, root, inode);
4293                 BUG_ON(err);
4294                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4295         }
4296
4297         nr = trans->blocks_used;
4298         btrfs_end_transaction_throttle(trans, root);
4299 fail:
4300         btrfs_unreserve_metadata_space(root, 3);
4301         if (drop_inode) {
4302                 inode_dec_link_count(inode);
4303                 iput(inode);
4304         }
4305         btrfs_btree_balance_dirty(root, nr);
4306         return err;
4307 }
4308
4309 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4310 {
4311         struct inode *inode = NULL;
4312         struct btrfs_trans_handle *trans;
4313         struct btrfs_root *root = BTRFS_I(dir)->root;
4314         int err = 0;
4315         int drop_on_err = 0;
4316         u64 objectid = 0;
4317         u64 index = 0;
4318         unsigned long nr = 1;
4319
4320         /*
4321          * 2 items for inode and ref
4322          * 2 items for dir items
4323          * 1 for xattr if selinux is on
4324          */
4325         err = btrfs_reserve_metadata_space(root, 5);
4326         if (err)
4327                 return err;
4328
4329         trans = btrfs_start_transaction(root, 1);
4330         if (!trans) {
4331                 err = -ENOMEM;
4332                 goto out_unlock;
4333         }
4334         btrfs_set_trans_block_group(trans, dir);
4335
4336         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4337         if (err) {
4338                 err = -ENOSPC;
4339                 goto out_unlock;
4340         }
4341
4342         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4343                                 dentry->d_name.len,
4344                                 dentry->d_parent->d_inode->i_ino, objectid,
4345                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4346                                 &index);
4347         if (IS_ERR(inode)) {
4348                 err = PTR_ERR(inode);
4349                 goto out_fail;
4350         }
4351
4352         drop_on_err = 1;
4353
4354         err = btrfs_init_inode_security(inode, dir);
4355         if (err)
4356                 goto out_fail;
4357
4358         inode->i_op = &btrfs_dir_inode_operations;
4359         inode->i_fop = &btrfs_dir_file_operations;
4360         btrfs_set_trans_block_group(trans, inode);
4361
4362         btrfs_i_size_write(inode, 0);
4363         err = btrfs_update_inode(trans, root, inode);
4364         if (err)
4365                 goto out_fail;
4366
4367         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4368                                  inode, dentry->d_name.name,
4369                                  dentry->d_name.len, 0, index);
4370         if (err)
4371                 goto out_fail;
4372
4373         d_instantiate(dentry, inode);
4374         drop_on_err = 0;
4375         btrfs_update_inode_block_group(trans, inode);
4376         btrfs_update_inode_block_group(trans, dir);
4377
4378 out_fail:
4379         nr = trans->blocks_used;
4380         btrfs_end_transaction_throttle(trans, root);
4381
4382 out_unlock:
4383         btrfs_unreserve_metadata_space(root, 5);
4384         if (drop_on_err)
4385                 iput(inode);
4386         btrfs_btree_balance_dirty(root, nr);
4387         return err;
4388 }
4389
4390 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4391  * and an extent that you want to insert, deal with overlap and insert
4392  * the new extent into the tree.
4393  */
4394 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4395                                 struct extent_map *existing,
4396                                 struct extent_map *em,
4397                                 u64 map_start, u64 map_len)
4398 {
4399         u64 start_diff;
4400
4401         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4402         start_diff = map_start - em->start;
4403         em->start = map_start;
4404         em->len = map_len;
4405         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4406             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4407                 em->block_start += start_diff;
4408                 em->block_len -= start_diff;
4409         }
4410         return add_extent_mapping(em_tree, em);
4411 }
4412
4413 static noinline int uncompress_inline(struct btrfs_path *path,
4414                                       struct inode *inode, struct page *page,
4415                                       size_t pg_offset, u64 extent_offset,
4416                                       struct btrfs_file_extent_item *item)
4417 {
4418         int ret;
4419         struct extent_buffer *leaf = path->nodes[0];
4420         char *tmp;
4421         size_t max_size;
4422         unsigned long inline_size;
4423         unsigned long ptr;
4424
4425         WARN_ON(pg_offset != 0);
4426         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4427         inline_size = btrfs_file_extent_inline_item_len(leaf,
4428                                         btrfs_item_nr(leaf, path->slots[0]));
4429         tmp = kmalloc(inline_size, GFP_NOFS);
4430         ptr = btrfs_file_extent_inline_start(item);
4431
4432         read_extent_buffer(leaf, tmp, ptr, inline_size);
4433
4434         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4435         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4436                                     inline_size, max_size);
4437         if (ret) {
4438                 char *kaddr = kmap_atomic(page, KM_USER0);
4439                 unsigned long copy_size = min_t(u64,
4440                                   PAGE_CACHE_SIZE - pg_offset,
4441                                   max_size - extent_offset);
4442                 memset(kaddr + pg_offset, 0, copy_size);
4443                 kunmap_atomic(kaddr, KM_USER0);
4444         }
4445         kfree(tmp);
4446         return 0;
4447 }
4448
4449 /*
4450  * a bit scary, this does extent mapping from logical file offset to the disk.
4451  * the ugly parts come from merging extents from the disk with the in-ram
4452  * representation.  This gets more complex because of the data=ordered code,
4453  * where the in-ram extents might be locked pending data=ordered completion.
4454  *
4455  * This also copies inline extents directly into the page.
4456  */
4457
4458 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4459                                     size_t pg_offset, u64 start, u64 len,
4460                                     int create)
4461 {
4462         int ret;
4463         int err = 0;
4464         u64 bytenr;
4465         u64 extent_start = 0;
4466         u64 extent_end = 0;
4467         u64 objectid = inode->i_ino;
4468         u32 found_type;
4469         struct btrfs_path *path = NULL;
4470         struct btrfs_root *root = BTRFS_I(inode)->root;
4471         struct btrfs_file_extent_item *item;
4472         struct extent_buffer *leaf;
4473         struct btrfs_key found_key;
4474         struct extent_map *em = NULL;
4475         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4476         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4477         struct btrfs_trans_handle *trans = NULL;
4478         int compressed;
4479
4480 again:
4481         read_lock(&em_tree->lock);
4482         em = lookup_extent_mapping(em_tree, start, len);
4483         if (em)
4484                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4485         read_unlock(&em_tree->lock);
4486
4487         if (em) {
4488                 if (em->start > start || em->start + em->len <= start)
4489                         free_extent_map(em);
4490                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4491                         free_extent_map(em);
4492                 else
4493                         goto out;
4494         }
4495         em = alloc_extent_map(GFP_NOFS);
4496         if (!em) {
4497                 err = -ENOMEM;
4498                 goto out;
4499         }
4500         em->bdev = root->fs_info->fs_devices->latest_bdev;
4501         em->start = EXTENT_MAP_HOLE;
4502         em->orig_start = EXTENT_MAP_HOLE;
4503         em->len = (u64)-1;
4504         em->block_len = (u64)-1;
4505
4506         if (!path) {
4507                 path = btrfs_alloc_path();
4508                 BUG_ON(!path);
4509         }
4510
4511         ret = btrfs_lookup_file_extent(trans, root, path,
4512                                        objectid, start, trans != NULL);
4513         if (ret < 0) {
4514                 err = ret;
4515                 goto out;
4516         }
4517
4518         if (ret != 0) {
4519                 if (path->slots[0] == 0)
4520                         goto not_found;
4521                 path->slots[0]--;
4522         }
4523
4524         leaf = path->nodes[0];
4525         item = btrfs_item_ptr(leaf, path->slots[0],
4526                               struct btrfs_file_extent_item);
4527         /* are we inside the extent that was found? */
4528         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4529         found_type = btrfs_key_type(&found_key);
4530         if (found_key.objectid != objectid ||
4531             found_type != BTRFS_EXTENT_DATA_KEY) {
4532                 goto not_found;
4533         }
4534
4535         found_type = btrfs_file_extent_type(leaf, item);
4536         extent_start = found_key.offset;
4537         compressed = btrfs_file_extent_compression(leaf, item);
4538         if (found_type == BTRFS_FILE_EXTENT_REG ||
4539             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4540                 extent_end = extent_start +
4541                        btrfs_file_extent_num_bytes(leaf, item);
4542         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4543                 size_t size;
4544                 size = btrfs_file_extent_inline_len(leaf, item);
4545                 extent_end = (extent_start + size + root->sectorsize - 1) &
4546                         ~((u64)root->sectorsize - 1);
4547         }
4548
4549         if (start >= extent_end) {
4550                 path->slots[0]++;
4551                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4552                         ret = btrfs_next_leaf(root, path);
4553                         if (ret < 0) {
4554                                 err = ret;
4555                                 goto out;
4556                         }
4557                         if (ret > 0)
4558                                 goto not_found;
4559                         leaf = path->nodes[0];
4560                 }
4561                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4562                 if (found_key.objectid != objectid ||
4563                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4564                         goto not_found;
4565                 if (start + len <= found_key.offset)
4566                         goto not_found;
4567                 em->start = start;
4568                 em->len = found_key.offset - start;
4569                 goto not_found_em;
4570         }
4571
4572         if (found_type == BTRFS_FILE_EXTENT_REG ||
4573             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4574                 em->start = extent_start;
4575                 em->len = extent_end - extent_start;
4576                 em->orig_start = extent_start -
4577                                  btrfs_file_extent_offset(leaf, item);
4578                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4579                 if (bytenr == 0) {
4580                         em->block_start = EXTENT_MAP_HOLE;
4581                         goto insert;
4582                 }
4583                 if (compressed) {
4584                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4585                         em->block_start = bytenr;
4586                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4587                                                                          item);
4588                 } else {
4589                         bytenr += btrfs_file_extent_offset(leaf, item);
4590                         em->block_start = bytenr;
4591                         em->block_len = em->len;
4592                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4593                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4594                 }
4595                 goto insert;
4596         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4597                 unsigned long ptr;
4598                 char *map;
4599                 size_t size;
4600                 size_t extent_offset;
4601                 size_t copy_size;
4602
4603                 em->block_start = EXTENT_MAP_INLINE;
4604                 if (!page || create) {
4605                         em->start = extent_start;
4606                         em->len = extent_end - extent_start;
4607                         goto out;
4608                 }
4609
4610                 size = btrfs_file_extent_inline_len(leaf, item);
4611                 extent_offset = page_offset(page) + pg_offset - extent_start;
4612                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4613                                 size - extent_offset);
4614                 em->start = extent_start + extent_offset;
4615                 em->len = (copy_size + root->sectorsize - 1) &
4616                         ~((u64)root->sectorsize - 1);
4617                 em->orig_start = EXTENT_MAP_INLINE;
4618                 if (compressed)
4619                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4620                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4621                 if (create == 0 && !PageUptodate(page)) {
4622                         if (btrfs_file_extent_compression(leaf, item) ==
4623                             BTRFS_COMPRESS_ZLIB) {
4624                                 ret = uncompress_inline(path, inode, page,
4625                                                         pg_offset,
4626                                                         extent_offset, item);
4627                                 BUG_ON(ret);
4628                         } else {
4629                                 map = kmap(page);
4630                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4631                                                    copy_size);
4632                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4633                                         memset(map + pg_offset + copy_size, 0,
4634                                                PAGE_CACHE_SIZE - pg_offset -
4635                                                copy_size);
4636                                 }
4637                                 kunmap(page);
4638                         }
4639                         flush_dcache_page(page);
4640                 } else if (create && PageUptodate(page)) {
4641                         if (!trans) {
4642                                 kunmap(page);
4643                                 free_extent_map(em);
4644                                 em = NULL;
4645                                 btrfs_release_path(root, path);
4646                                 trans = btrfs_join_transaction(root, 1);
4647                                 goto again;
4648                         }
4649                         map = kmap(page);
4650                         write_extent_buffer(leaf, map + pg_offset, ptr,
4651                                             copy_size);
4652                         kunmap(page);
4653                         btrfs_mark_buffer_dirty(leaf);
4654                 }
4655                 set_extent_uptodate(io_tree, em->start,
4656                                     extent_map_end(em) - 1, GFP_NOFS);
4657                 goto insert;
4658         } else {
4659                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4660                 WARN_ON(1);
4661         }
4662 not_found:
4663         em->start = start;
4664         em->len = len;
4665 not_found_em:
4666         em->block_start = EXTENT_MAP_HOLE;
4667         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4668 insert:
4669         btrfs_release_path(root, path);
4670         if (em->start > start || extent_map_end(em) <= start) {
4671                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4672                        "[%llu %llu]\n", (unsigned long long)em->start,
4673                        (unsigned long long)em->len,
4674                        (unsigned long long)start,
4675                        (unsigned long long)len);
4676                 err = -EIO;
4677                 goto out;
4678         }
4679
4680         err = 0;
4681         write_lock(&em_tree->lock);
4682         ret = add_extent_mapping(em_tree, em);
4683         /* it is possible that someone inserted the extent into the tree
4684          * while we had the lock dropped.  It is also possible that
4685          * an overlapping map exists in the tree
4686          */
4687         if (ret == -EEXIST) {
4688                 struct extent_map *existing;
4689
4690                 ret = 0;
4691
4692                 existing = lookup_extent_mapping(em_tree, start, len);
4693                 if (existing && (existing->start > start ||
4694                     existing->start + existing->len <= start)) {
4695                         free_extent_map(existing);
4696                         existing = NULL;
4697                 }
4698                 if (!existing) {
4699                         existing = lookup_extent_mapping(em_tree, em->start,
4700                                                          em->len);
4701                         if (existing) {
4702                                 err = merge_extent_mapping(em_tree, existing,
4703                                                            em, start,
4704                                                            root->sectorsize);
4705                                 free_extent_map(existing);
4706                                 if (err) {
4707                                         free_extent_map(em);
4708                                         em = NULL;
4709                                 }
4710                         } else {
4711                                 err = -EIO;
4712                                 free_extent_map(em);
4713                                 em = NULL;
4714                         }
4715                 } else {
4716                         free_extent_map(em);
4717                         em = existing;
4718                         err = 0;
4719                 }
4720         }
4721         write_unlock(&em_tree->lock);
4722 out:
4723         if (path)
4724                 btrfs_free_path(path);
4725         if (trans) {
4726                 ret = btrfs_end_transaction(trans, root);
4727                 if (!err)
4728                         err = ret;
4729         }
4730         if (err) {
4731                 free_extent_map(em);
4732                 return ERR_PTR(err);
4733         }
4734         return em;
4735 }
4736
4737 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4738                         const struct iovec *iov, loff_t offset,
4739                         unsigned long nr_segs)
4740 {
4741         return -EINVAL;
4742 }
4743
4744 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4745                 __u64 start, __u64 len)
4746 {
4747         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4748 }
4749
4750 int btrfs_readpage(struct file *file, struct page *page)
4751 {
4752         struct extent_io_tree *tree;
4753         tree = &BTRFS_I(page->mapping->host)->io_tree;
4754         return extent_read_full_page(tree, page, btrfs_get_extent);
4755 }
4756
4757 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4758 {
4759         struct extent_io_tree *tree;
4760
4761
4762         if (current->flags & PF_MEMALLOC) {
4763                 redirty_page_for_writepage(wbc, page);
4764                 unlock_page(page);
4765                 return 0;
4766         }
4767         tree = &BTRFS_I(page->mapping->host)->io_tree;
4768         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4769 }
4770
4771 int btrfs_writepages(struct address_space *mapping,
4772                      struct writeback_control *wbc)
4773 {
4774         struct extent_io_tree *tree;
4775
4776         tree = &BTRFS_I(mapping->host)->io_tree;
4777         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4778 }
4779
4780 static int
4781 btrfs_readpages(struct file *file, struct address_space *mapping,
4782                 struct list_head *pages, unsigned nr_pages)
4783 {
4784         struct extent_io_tree *tree;
4785         tree = &BTRFS_I(mapping->host)->io_tree;
4786         return extent_readpages(tree, mapping, pages, nr_pages,
4787                                 btrfs_get_extent);
4788 }
4789 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4790 {
4791         struct extent_io_tree *tree;
4792         struct extent_map_tree *map;
4793         int ret;
4794
4795         tree = &BTRFS_I(page->mapping->host)->io_tree;
4796         map = &BTRFS_I(page->mapping->host)->extent_tree;
4797         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4798         if (ret == 1) {
4799                 ClearPagePrivate(page);
4800                 set_page_private(page, 0);
4801                 page_cache_release(page);
4802         }
4803         return ret;
4804 }
4805
4806 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4807 {
4808         if (PageWriteback(page) || PageDirty(page))
4809                 return 0;
4810         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4811 }
4812
4813 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4814 {
4815         struct extent_io_tree *tree;
4816         struct btrfs_ordered_extent *ordered;
4817         u64 page_start = page_offset(page);
4818         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4819
4820
4821         /*
4822          * we have the page locked, so new writeback can't start,
4823          * and the dirty bit won't be cleared while we are here.
4824          *
4825          * Wait for IO on this page so that we can safely clear
4826          * the PagePrivate2 bit and do ordered accounting
4827          */
4828         wait_on_page_writeback(page);
4829
4830         tree = &BTRFS_I(page->mapping->host)->io_tree;
4831         if (offset) {
4832                 btrfs_releasepage(page, GFP_NOFS);
4833                 return;
4834         }
4835         lock_extent(tree, page_start, page_end, GFP_NOFS);
4836         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4837                                            page_offset(page));
4838         if (ordered) {
4839                 /*
4840                  * IO on this page will never be started, so we need
4841                  * to account for any ordered extents now
4842                  */
4843                 clear_extent_bit(tree, page_start, page_end,
4844                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4845                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4846                                  NULL, GFP_NOFS);
4847                 /*
4848                  * whoever cleared the private bit is responsible
4849                  * for the finish_ordered_io
4850                  */
4851                 if (TestClearPagePrivate2(page)) {
4852                         btrfs_finish_ordered_io(page->mapping->host,
4853                                                 page_start, page_end);
4854                 }
4855                 btrfs_put_ordered_extent(ordered);
4856                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4857         }
4858         clear_extent_bit(tree, page_start, page_end,
4859                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4860                  EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
4861         __btrfs_releasepage(page, GFP_NOFS);
4862
4863         ClearPageChecked(page);
4864         if (PagePrivate(page)) {
4865                 ClearPagePrivate(page);
4866                 set_page_private(page, 0);
4867                 page_cache_release(page);
4868         }
4869 }
4870
4871 /*
4872  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4873  * called from a page fault handler when a page is first dirtied. Hence we must
4874  * be careful to check for EOF conditions here. We set the page up correctly
4875  * for a written page which means we get ENOSPC checking when writing into
4876  * holes and correct delalloc and unwritten extent mapping on filesystems that
4877  * support these features.
4878  *
4879  * We are not allowed to take the i_mutex here so we have to play games to
4880  * protect against truncate races as the page could now be beyond EOF.  Because
4881  * vmtruncate() writes the inode size before removing pages, once we have the
4882  * page lock we can determine safely if the page is beyond EOF. If it is not
4883  * beyond EOF, then the page is guaranteed safe against truncation until we
4884  * unlock the page.
4885  */
4886 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4887 {
4888         struct page *page = vmf->page;
4889         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4890         struct btrfs_root *root = BTRFS_I(inode)->root;
4891         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4892         struct btrfs_ordered_extent *ordered;
4893         char *kaddr;
4894         unsigned long zero_start;
4895         loff_t size;
4896         int ret;
4897         u64 page_start;
4898         u64 page_end;
4899
4900         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4901         if (ret) {
4902                 if (ret == -ENOMEM)
4903                         ret = VM_FAULT_OOM;
4904                 else /* -ENOSPC, -EIO, etc */
4905                         ret = VM_FAULT_SIGBUS;
4906                 goto out;
4907         }
4908
4909         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4910         if (ret) {
4911                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4912                 ret = VM_FAULT_SIGBUS;
4913                 goto out;
4914         }
4915
4916         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4917 again:
4918         lock_page(page);
4919         size = i_size_read(inode);
4920         page_start = page_offset(page);
4921         page_end = page_start + PAGE_CACHE_SIZE - 1;
4922
4923         if ((page->mapping != inode->i_mapping) ||
4924             (page_start >= size)) {
4925                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4926                 /* page got truncated out from underneath us */
4927                 goto out_unlock;
4928         }
4929         wait_on_page_writeback(page);
4930
4931         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4932         set_page_extent_mapped(page);
4933
4934         /*
4935          * we can't set the delalloc bits if there are pending ordered
4936          * extents.  Drop our locks and wait for them to finish
4937          */
4938         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4939         if (ordered) {
4940                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4941                 unlock_page(page);
4942                 btrfs_start_ordered_extent(inode, ordered, 1);
4943                 btrfs_put_ordered_extent(ordered);
4944                 goto again;
4945         }
4946
4947         /*
4948          * XXX - page_mkwrite gets called every time the page is dirtied, even
4949          * if it was already dirty, so for space accounting reasons we need to
4950          * clear any delalloc bits for the range we are fixing to save.  There
4951          * is probably a better way to do this, but for now keep consistent with
4952          * prepare_pages in the normal write path.
4953          */
4954         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
4955                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
4956                           GFP_NOFS);
4957
4958         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
4959         if (ret) {
4960                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4961                 ret = VM_FAULT_SIGBUS;
4962                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4963                 goto out_unlock;
4964         }
4965         ret = 0;
4966
4967         /* page is wholly or partially inside EOF */
4968         if (page_start + PAGE_CACHE_SIZE > size)
4969                 zero_start = size & ~PAGE_CACHE_MASK;
4970         else
4971                 zero_start = PAGE_CACHE_SIZE;
4972
4973         if (zero_start != PAGE_CACHE_SIZE) {
4974                 kaddr = kmap(page);
4975                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4976                 flush_dcache_page(page);
4977                 kunmap(page);
4978         }
4979         ClearPageChecked(page);
4980         set_page_dirty(page);
4981         SetPageUptodate(page);
4982
4983         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4984         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4985
4986 out_unlock:
4987         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
4988         if (!ret)
4989                 return VM_FAULT_LOCKED;
4990         unlock_page(page);
4991 out:
4992         return ret;
4993 }
4994
4995 static void btrfs_truncate(struct inode *inode)
4996 {
4997         struct btrfs_root *root = BTRFS_I(inode)->root;
4998         int ret;
4999         struct btrfs_trans_handle *trans;
5000         unsigned long nr;
5001         u64 mask = root->sectorsize - 1;
5002
5003         if (!S_ISREG(inode->i_mode))
5004                 return;
5005         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5006                 return;
5007
5008         btrfs_truncate_page(inode->i_mapping, inode->i_size);
5009         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5010
5011         trans = btrfs_start_transaction(root, 1);
5012
5013         /*
5014          * setattr is responsible for setting the ordered_data_close flag,
5015          * but that is only tested during the last file release.  That
5016          * could happen well after the next commit, leaving a great big
5017          * window where new writes may get lost if someone chooses to write
5018          * to this file after truncating to zero
5019          *
5020          * The inode doesn't have any dirty data here, and so if we commit
5021          * this is a noop.  If someone immediately starts writing to the inode
5022          * it is very likely we'll catch some of their writes in this
5023          * transaction, and the commit will find this file on the ordered
5024          * data list with good things to send down.
5025          *
5026          * This is a best effort solution, there is still a window where
5027          * using truncate to replace the contents of the file will
5028          * end up with a zero length file after a crash.
5029          */
5030         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5031                 btrfs_add_ordered_operation(trans, root, inode);
5032
5033         btrfs_set_trans_block_group(trans, inode);
5034         btrfs_i_size_write(inode, inode->i_size);
5035
5036         ret = btrfs_orphan_add(trans, inode);
5037         if (ret)
5038                 goto out;
5039         /* FIXME, add redo link to tree so we don't leak on crash */
5040         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
5041                                       BTRFS_EXTENT_DATA_KEY);
5042         btrfs_update_inode(trans, root, inode);
5043
5044         ret = btrfs_orphan_del(trans, inode);
5045         BUG_ON(ret);
5046
5047 out:
5048         nr = trans->blocks_used;
5049         ret = btrfs_end_transaction_throttle(trans, root);
5050         BUG_ON(ret);
5051         btrfs_btree_balance_dirty(root, nr);
5052 }
5053
5054 /*
5055  * create a new subvolume directory/inode (helper for the ioctl).
5056  */
5057 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5058                              struct btrfs_root *new_root,
5059                              u64 new_dirid, u64 alloc_hint)
5060 {
5061         struct inode *inode;
5062         int err;
5063         u64 index = 0;
5064
5065         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5066                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5067         if (IS_ERR(inode))
5068                 return PTR_ERR(inode);
5069         inode->i_op = &btrfs_dir_inode_operations;
5070         inode->i_fop = &btrfs_dir_file_operations;
5071
5072         inode->i_nlink = 1;
5073         btrfs_i_size_write(inode, 0);
5074
5075         err = btrfs_update_inode(trans, new_root, inode);
5076         BUG_ON(err);
5077
5078         iput(inode);
5079         return 0;
5080 }
5081
5082 /* helper function for file defrag and space balancing.  This
5083  * forces readahead on a given range of bytes in an inode
5084  */
5085 unsigned long btrfs_force_ra(struct address_space *mapping,
5086                               struct file_ra_state *ra, struct file *file,
5087                               pgoff_t offset, pgoff_t last_index)
5088 {
5089         pgoff_t req_size = last_index - offset + 1;
5090
5091         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5092         return offset + req_size;
5093 }
5094
5095 struct inode *btrfs_alloc_inode(struct super_block *sb)
5096 {
5097         struct btrfs_inode *ei;
5098
5099         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5100         if (!ei)
5101                 return NULL;
5102         ei->last_trans = 0;
5103         ei->logged_trans = 0;
5104         ei->outstanding_extents = 0;
5105         ei->reserved_extents = 0;
5106         spin_lock_init(&ei->accounting_lock);
5107         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5108         INIT_LIST_HEAD(&ei->i_orphan);
5109         INIT_LIST_HEAD(&ei->ordered_operations);
5110         return &ei->vfs_inode;
5111 }
5112
5113 void btrfs_destroy_inode(struct inode *inode)
5114 {
5115         struct btrfs_ordered_extent *ordered;
5116         struct btrfs_root *root = BTRFS_I(inode)->root;
5117
5118         WARN_ON(!list_empty(&inode->i_dentry));
5119         WARN_ON(inode->i_data.nrpages);
5120
5121         /*
5122          * Make sure we're properly removed from the ordered operation
5123          * lists.
5124          */
5125         smp_mb();
5126         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5127                 spin_lock(&root->fs_info->ordered_extent_lock);
5128                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5129                 spin_unlock(&root->fs_info->ordered_extent_lock);
5130         }
5131
5132         spin_lock(&root->list_lock);
5133         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5134                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5135                        " list\n", inode->i_ino);
5136                 dump_stack();
5137         }
5138         spin_unlock(&root->list_lock);
5139
5140         while (1) {
5141                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5142                 if (!ordered)
5143                         break;
5144                 else {
5145                         printk(KERN_ERR "btrfs found ordered "
5146                                "extent %llu %llu on inode cleanup\n",
5147                                (unsigned long long)ordered->file_offset,
5148                                (unsigned long long)ordered->len);
5149                         btrfs_remove_ordered_extent(inode, ordered);
5150                         btrfs_put_ordered_extent(ordered);
5151                         btrfs_put_ordered_extent(ordered);
5152                 }
5153         }
5154         inode_tree_del(inode);
5155         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5156         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5157 }
5158
5159 void btrfs_drop_inode(struct inode *inode)
5160 {
5161         struct btrfs_root *root = BTRFS_I(inode)->root;
5162
5163         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5164                 generic_delete_inode(inode);
5165         else
5166                 generic_drop_inode(inode);
5167 }
5168
5169 static void init_once(void *foo)
5170 {
5171         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5172
5173         inode_init_once(&ei->vfs_inode);
5174 }
5175
5176 void btrfs_destroy_cachep(void)
5177 {
5178         if (btrfs_inode_cachep)
5179                 kmem_cache_destroy(btrfs_inode_cachep);
5180         if (btrfs_trans_handle_cachep)
5181                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5182         if (btrfs_transaction_cachep)
5183                 kmem_cache_destroy(btrfs_transaction_cachep);
5184         if (btrfs_path_cachep)
5185                 kmem_cache_destroy(btrfs_path_cachep);
5186 }
5187
5188 int btrfs_init_cachep(void)
5189 {
5190         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5191                         sizeof(struct btrfs_inode), 0,
5192                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5193         if (!btrfs_inode_cachep)
5194                 goto fail;
5195
5196         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5197                         sizeof(struct btrfs_trans_handle), 0,
5198                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5199         if (!btrfs_trans_handle_cachep)
5200                 goto fail;
5201
5202         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5203                         sizeof(struct btrfs_transaction), 0,
5204                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5205         if (!btrfs_transaction_cachep)
5206                 goto fail;
5207
5208         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5209                         sizeof(struct btrfs_path), 0,
5210                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5211         if (!btrfs_path_cachep)
5212                 goto fail;
5213
5214         return 0;
5215 fail:
5216         btrfs_destroy_cachep();
5217         return -ENOMEM;
5218 }
5219
5220 static int btrfs_getattr(struct vfsmount *mnt,
5221                          struct dentry *dentry, struct kstat *stat)
5222 {
5223         struct inode *inode = dentry->d_inode;
5224         generic_fillattr(inode, stat);
5225         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5226         stat->blksize = PAGE_CACHE_SIZE;
5227         stat->blocks = (inode_get_bytes(inode) +
5228                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5229         return 0;
5230 }
5231
5232 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5233                            struct inode *new_dir, struct dentry *new_dentry)
5234 {
5235         struct btrfs_trans_handle *trans;
5236         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5237         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5238         struct inode *new_inode = new_dentry->d_inode;
5239         struct inode *old_inode = old_dentry->d_inode;
5240         struct timespec ctime = CURRENT_TIME;
5241         u64 index = 0;
5242         u64 root_objectid;
5243         int ret;
5244
5245         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5246                 return -EPERM;
5247
5248         /* we only allow rename subvolume link between subvolumes */
5249         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5250                 return -EXDEV;
5251
5252         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5253             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5254                 return -ENOTEMPTY;
5255
5256         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5257             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5258                 return -ENOTEMPTY;
5259
5260         /*
5261          * 2 items for dir items
5262          * 1 item for orphan entry
5263          * 1 item for ref
5264          */
5265         ret = btrfs_reserve_metadata_space(root, 4);
5266         if (ret)
5267                 return ret;
5268
5269         /*
5270          * we're using rename to replace one file with another.
5271          * and the replacement file is large.  Start IO on it now so
5272          * we don't add too much work to the end of the transaction
5273          */
5274         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5275             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5276                 filemap_flush(old_inode->i_mapping);
5277
5278         /* close the racy window with snapshot create/destroy ioctl */
5279         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5280                 down_read(&root->fs_info->subvol_sem);
5281
5282         trans = btrfs_start_transaction(root, 1);
5283         btrfs_set_trans_block_group(trans, new_dir);
5284
5285         if (dest != root)
5286                 btrfs_record_root_in_trans(trans, dest);
5287
5288         ret = btrfs_set_inode_index(new_dir, &index);
5289         if (ret)
5290                 goto out_fail;
5291
5292         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5293                 /* force full log commit if subvolume involved. */
5294                 root->fs_info->last_trans_log_full_commit = trans->transid;
5295         } else {
5296                 ret = btrfs_insert_inode_ref(trans, dest,
5297                                              new_dentry->d_name.name,
5298                                              new_dentry->d_name.len,
5299                                              old_inode->i_ino,
5300                                              new_dir->i_ino, index);
5301                 if (ret)
5302                         goto out_fail;
5303                 /*
5304                  * this is an ugly little race, but the rename is required
5305                  * to make sure that if we crash, the inode is either at the
5306                  * old name or the new one.  pinning the log transaction lets
5307                  * us make sure we don't allow a log commit to come in after
5308                  * we unlink the name but before we add the new name back in.
5309                  */
5310                 btrfs_pin_log_trans(root);
5311         }
5312         /*
5313          * make sure the inode gets flushed if it is replacing
5314          * something.
5315          */
5316         if (new_inode && new_inode->i_size &&
5317             old_inode && S_ISREG(old_inode->i_mode)) {
5318                 btrfs_add_ordered_operation(trans, root, old_inode);
5319         }
5320
5321         old_dir->i_ctime = old_dir->i_mtime = ctime;
5322         new_dir->i_ctime = new_dir->i_mtime = ctime;
5323         old_inode->i_ctime = ctime;
5324
5325         if (old_dentry->d_parent != new_dentry->d_parent)
5326                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5327
5328         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5329                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5330                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5331                                         old_dentry->d_name.name,
5332                                         old_dentry->d_name.len);
5333         } else {
5334                 btrfs_inc_nlink(old_dentry->d_inode);
5335                 ret = btrfs_unlink_inode(trans, root, old_dir,
5336                                          old_dentry->d_inode,
5337                                          old_dentry->d_name.name,
5338                                          old_dentry->d_name.len);
5339         }
5340         BUG_ON(ret);
5341
5342         if (new_inode) {
5343                 new_inode->i_ctime = CURRENT_TIME;
5344                 if (unlikely(new_inode->i_ino ==
5345                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5346                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5347                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5348                                                 root_objectid,
5349                                                 new_dentry->d_name.name,
5350                                                 new_dentry->d_name.len);
5351                         BUG_ON(new_inode->i_nlink == 0);
5352                 } else {
5353                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5354                                                  new_dentry->d_inode,
5355                                                  new_dentry->d_name.name,
5356                                                  new_dentry->d_name.len);
5357                 }
5358                 BUG_ON(ret);
5359                 if (new_inode->i_nlink == 0) {
5360                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5361                         BUG_ON(ret);
5362                 }
5363         }
5364
5365         ret = btrfs_add_link(trans, new_dir, old_inode,
5366                              new_dentry->d_name.name,
5367                              new_dentry->d_name.len, 0, index);
5368         BUG_ON(ret);
5369
5370         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5371                 btrfs_log_new_name(trans, old_inode, old_dir,
5372                                    new_dentry->d_parent);
5373                 btrfs_end_log_trans(root);
5374         }
5375 out_fail:
5376         btrfs_end_transaction_throttle(trans, root);
5377
5378         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5379                 up_read(&root->fs_info->subvol_sem);
5380
5381         btrfs_unreserve_metadata_space(root, 4);
5382         return ret;
5383 }
5384
5385 /*
5386  * some fairly slow code that needs optimization. This walks the list
5387  * of all the inodes with pending delalloc and forces them to disk.
5388  */
5389 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5390 {
5391         struct list_head *head = &root->fs_info->delalloc_inodes;
5392         struct btrfs_inode *binode;
5393         struct inode *inode;
5394
5395         if (root->fs_info->sb->s_flags & MS_RDONLY)
5396                 return -EROFS;
5397
5398         spin_lock(&root->fs_info->delalloc_lock);
5399         while (!list_empty(head)) {
5400                 binode = list_entry(head->next, struct btrfs_inode,
5401                                     delalloc_inodes);
5402                 inode = igrab(&binode->vfs_inode);
5403                 if (!inode)
5404                         list_del_init(&binode->delalloc_inodes);
5405                 spin_unlock(&root->fs_info->delalloc_lock);
5406                 if (inode) {
5407                         filemap_flush(inode->i_mapping);
5408                         iput(inode);
5409                 }
5410                 cond_resched();
5411                 spin_lock(&root->fs_info->delalloc_lock);
5412         }
5413         spin_unlock(&root->fs_info->delalloc_lock);
5414
5415         /* the filemap_flush will queue IO into the worker threads, but
5416          * we have to make sure the IO is actually started and that
5417          * ordered extents get created before we return
5418          */
5419         atomic_inc(&root->fs_info->async_submit_draining);
5420         while (atomic_read(&root->fs_info->nr_async_submits) ||
5421               atomic_read(&root->fs_info->async_delalloc_pages)) {
5422                 wait_event(root->fs_info->async_submit_wait,
5423                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5424                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5425         }
5426         atomic_dec(&root->fs_info->async_submit_draining);
5427         return 0;
5428 }
5429
5430 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5431                          const char *symname)
5432 {
5433         struct btrfs_trans_handle *trans;
5434         struct btrfs_root *root = BTRFS_I(dir)->root;
5435         struct btrfs_path *path;
5436         struct btrfs_key key;
5437         struct inode *inode = NULL;
5438         int err;
5439         int drop_inode = 0;
5440         u64 objectid;
5441         u64 index = 0 ;
5442         int name_len;
5443         int datasize;
5444         unsigned long ptr;
5445         struct btrfs_file_extent_item *ei;
5446         struct extent_buffer *leaf;
5447         unsigned long nr = 0;
5448
5449         name_len = strlen(symname) + 1;
5450         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5451                 return -ENAMETOOLONG;
5452
5453         /*
5454          * 2 items for inode item and ref
5455          * 2 items for dir items
5456          * 1 item for xattr if selinux is on
5457          */
5458         err = btrfs_reserve_metadata_space(root, 5);
5459         if (err)
5460                 return err;
5461
5462         trans = btrfs_start_transaction(root, 1);
5463         if (!trans)
5464                 goto out_fail;
5465         btrfs_set_trans_block_group(trans, dir);
5466
5467         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5468         if (err) {
5469                 err = -ENOSPC;
5470                 goto out_unlock;
5471         }
5472
5473         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5474                                 dentry->d_name.len,
5475                                 dentry->d_parent->d_inode->i_ino, objectid,
5476                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5477                                 &index);
5478         err = PTR_ERR(inode);
5479         if (IS_ERR(inode))
5480                 goto out_unlock;
5481
5482         err = btrfs_init_inode_security(inode, dir);
5483         if (err) {
5484                 drop_inode = 1;
5485                 goto out_unlock;
5486         }
5487
5488         btrfs_set_trans_block_group(trans, inode);
5489         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5490         if (err)
5491                 drop_inode = 1;
5492         else {
5493                 inode->i_mapping->a_ops = &btrfs_aops;
5494                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5495                 inode->i_fop = &btrfs_file_operations;
5496                 inode->i_op = &btrfs_file_inode_operations;
5497                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5498         }
5499         btrfs_update_inode_block_group(trans, inode);
5500         btrfs_update_inode_block_group(trans, dir);
5501         if (drop_inode)
5502                 goto out_unlock;
5503
5504         path = btrfs_alloc_path();
5505         BUG_ON(!path);
5506         key.objectid = inode->i_ino;
5507         key.offset = 0;
5508         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5509         datasize = btrfs_file_extent_calc_inline_size(name_len);
5510         err = btrfs_insert_empty_item(trans, root, path, &key,
5511                                       datasize);
5512         if (err) {
5513                 drop_inode = 1;
5514                 goto out_unlock;
5515         }
5516         leaf = path->nodes[0];
5517         ei = btrfs_item_ptr(leaf, path->slots[0],
5518                             struct btrfs_file_extent_item);
5519         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5520         btrfs_set_file_extent_type(leaf, ei,
5521                                    BTRFS_FILE_EXTENT_INLINE);
5522         btrfs_set_file_extent_encryption(leaf, ei, 0);
5523         btrfs_set_file_extent_compression(leaf, ei, 0);
5524         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5525         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5526
5527         ptr = btrfs_file_extent_inline_start(ei);
5528         write_extent_buffer(leaf, symname, ptr, name_len);
5529         btrfs_mark_buffer_dirty(leaf);
5530         btrfs_free_path(path);
5531
5532         inode->i_op = &btrfs_symlink_inode_operations;
5533         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5534         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5535         inode_set_bytes(inode, name_len);
5536         btrfs_i_size_write(inode, name_len - 1);
5537         err = btrfs_update_inode(trans, root, inode);
5538         if (err)
5539                 drop_inode = 1;
5540
5541 out_unlock:
5542         nr = trans->blocks_used;
5543         btrfs_end_transaction_throttle(trans, root);
5544 out_fail:
5545         btrfs_unreserve_metadata_space(root, 5);
5546         if (drop_inode) {
5547                 inode_dec_link_count(inode);
5548                 iput(inode);
5549         }
5550         btrfs_btree_balance_dirty(root, nr);
5551         return err;
5552 }
5553
5554 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5555                                struct inode *inode, u64 start, u64 end,
5556                                u64 locked_end, u64 alloc_hint, int mode)
5557 {
5558         struct btrfs_root *root = BTRFS_I(inode)->root;
5559         struct btrfs_key ins;
5560         u64 alloc_size;
5561         u64 cur_offset = start;
5562         u64 num_bytes = end - start;
5563         int ret = 0;
5564
5565         while (num_bytes > 0) {
5566                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5567
5568                 ret = btrfs_reserve_metadata_space(root, 1);
5569                 if (ret)
5570                         goto out;
5571
5572                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5573                                            root->sectorsize, 0, alloc_hint,
5574                                            (u64)-1, &ins, 1);
5575                 if (ret) {
5576                         WARN_ON(1);
5577                         goto out;
5578                 }
5579                 ret = insert_reserved_file_extent(trans, inode,
5580                                                   cur_offset, ins.objectid,
5581                                                   ins.offset, ins.offset,
5582                                                   ins.offset, locked_end,
5583                                                   0, 0, 0,
5584                                                   BTRFS_FILE_EXTENT_PREALLOC);
5585                 BUG_ON(ret);
5586                 btrfs_drop_extent_cache(inode, cur_offset,
5587                                         cur_offset + ins.offset -1, 0);
5588                 num_bytes -= ins.offset;
5589                 cur_offset += ins.offset;
5590                 alloc_hint = ins.objectid + ins.offset;
5591                 btrfs_unreserve_metadata_space(root, 1);
5592         }
5593 out:
5594         if (cur_offset > start) {
5595                 inode->i_ctime = CURRENT_TIME;
5596                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5597                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5598                     cur_offset > i_size_read(inode))
5599                         btrfs_i_size_write(inode, cur_offset);
5600                 ret = btrfs_update_inode(trans, root, inode);
5601                 BUG_ON(ret);
5602         }
5603
5604         return ret;
5605 }
5606
5607 static long btrfs_fallocate(struct inode *inode, int mode,
5608                             loff_t offset, loff_t len)
5609 {
5610         u64 cur_offset;
5611         u64 last_byte;
5612         u64 alloc_start;
5613         u64 alloc_end;
5614         u64 alloc_hint = 0;
5615         u64 locked_end;
5616         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5617         struct extent_map *em;
5618         struct btrfs_trans_handle *trans;
5619         struct btrfs_root *root;
5620         int ret;
5621
5622         alloc_start = offset & ~mask;
5623         alloc_end =  (offset + len + mask) & ~mask;
5624
5625         /*
5626          * wait for ordered IO before we have any locks.  We'll loop again
5627          * below with the locks held.
5628          */
5629         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5630
5631         mutex_lock(&inode->i_mutex);
5632         if (alloc_start > inode->i_size) {
5633                 ret = btrfs_cont_expand(inode, alloc_start);
5634                 if (ret)
5635                         goto out;
5636         }
5637
5638         root = BTRFS_I(inode)->root;
5639
5640         ret = btrfs_check_data_free_space(root, inode,
5641                                           alloc_end - alloc_start);
5642         if (ret)
5643                 goto out;
5644
5645         locked_end = alloc_end - 1;
5646         while (1) {
5647                 struct btrfs_ordered_extent *ordered;
5648
5649                 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5650                 if (!trans) {
5651                         ret = -EIO;
5652                         goto out_free;
5653                 }
5654
5655                 /* the extent lock is ordered inside the running
5656                  * transaction
5657                  */
5658                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5659                             GFP_NOFS);
5660                 ordered = btrfs_lookup_first_ordered_extent(inode,
5661                                                             alloc_end - 1);
5662                 if (ordered &&
5663                     ordered->file_offset + ordered->len > alloc_start &&
5664                     ordered->file_offset < alloc_end) {
5665                         btrfs_put_ordered_extent(ordered);
5666                         unlock_extent(&BTRFS_I(inode)->io_tree,
5667                                       alloc_start, locked_end, GFP_NOFS);
5668                         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5669
5670                         /*
5671                          * we can't wait on the range with the transaction
5672                          * running or with the extent lock held
5673                          */
5674                         btrfs_wait_ordered_range(inode, alloc_start,
5675                                                  alloc_end - alloc_start);
5676                 } else {
5677                         if (ordered)
5678                                 btrfs_put_ordered_extent(ordered);
5679                         break;
5680                 }
5681         }
5682
5683         cur_offset = alloc_start;
5684         while (1) {
5685                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5686                                       alloc_end - cur_offset, 0);
5687                 BUG_ON(IS_ERR(em) || !em);
5688                 last_byte = min(extent_map_end(em), alloc_end);
5689                 last_byte = (last_byte + mask) & ~mask;
5690                 if (em->block_start == EXTENT_MAP_HOLE) {
5691                         ret = prealloc_file_range(trans, inode, cur_offset,
5692                                         last_byte, locked_end + 1,
5693                                         alloc_hint, mode);
5694                         if (ret < 0) {
5695                                 free_extent_map(em);
5696                                 break;
5697                         }
5698                 }
5699                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5700                         alloc_hint = em->block_start;
5701                 free_extent_map(em);
5702
5703                 cur_offset = last_byte;
5704                 if (cur_offset >= alloc_end) {
5705                         ret = 0;
5706                         break;
5707                 }
5708         }
5709         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5710                       GFP_NOFS);
5711
5712         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5713 out_free:
5714         btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5715 out:
5716         mutex_unlock(&inode->i_mutex);
5717         return ret;
5718 }
5719
5720 static int btrfs_set_page_dirty(struct page *page)
5721 {
5722         return __set_page_dirty_nobuffers(page);
5723 }
5724
5725 static int btrfs_permission(struct inode *inode, int mask)
5726 {
5727         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5728                 return -EACCES;
5729         return generic_permission(inode, mask, btrfs_check_acl);
5730 }
5731
5732 static struct inode_operations btrfs_dir_inode_operations = {
5733         .getattr        = btrfs_getattr,
5734         .lookup         = btrfs_lookup,
5735         .create         = btrfs_create,
5736         .unlink         = btrfs_unlink,
5737         .link           = btrfs_link,
5738         .mkdir          = btrfs_mkdir,
5739         .rmdir          = btrfs_rmdir,
5740         .rename         = btrfs_rename,
5741         .symlink        = btrfs_symlink,
5742         .setattr        = btrfs_setattr,
5743         .mknod          = btrfs_mknod,
5744         .setxattr       = btrfs_setxattr,
5745         .getxattr       = btrfs_getxattr,
5746         .listxattr      = btrfs_listxattr,
5747         .removexattr    = btrfs_removexattr,
5748         .permission     = btrfs_permission,
5749 };
5750 static struct inode_operations btrfs_dir_ro_inode_operations = {
5751         .lookup         = btrfs_lookup,
5752         .permission     = btrfs_permission,
5753 };
5754
5755 static struct file_operations btrfs_dir_file_operations = {
5756         .llseek         = generic_file_llseek,
5757         .read           = generic_read_dir,
5758         .readdir        = btrfs_real_readdir,
5759         .unlocked_ioctl = btrfs_ioctl,
5760 #ifdef CONFIG_COMPAT
5761         .compat_ioctl   = btrfs_ioctl,
5762 #endif
5763         .release        = btrfs_release_file,
5764         .fsync          = btrfs_sync_file,
5765 };
5766
5767 static struct extent_io_ops btrfs_extent_io_ops = {
5768         .fill_delalloc = run_delalloc_range,
5769         .submit_bio_hook = btrfs_submit_bio_hook,
5770         .merge_bio_hook = btrfs_merge_bio_hook,
5771         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5772         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5773         .writepage_start_hook = btrfs_writepage_start_hook,
5774         .readpage_io_failed_hook = btrfs_io_failed_hook,
5775         .set_bit_hook = btrfs_set_bit_hook,
5776         .clear_bit_hook = btrfs_clear_bit_hook,
5777         .merge_extent_hook = btrfs_merge_extent_hook,
5778         .split_extent_hook = btrfs_split_extent_hook,
5779 };
5780
5781 /*
5782  * btrfs doesn't support the bmap operation because swapfiles
5783  * use bmap to make a mapping of extents in the file.  They assume
5784  * these extents won't change over the life of the file and they
5785  * use the bmap result to do IO directly to the drive.
5786  *
5787  * the btrfs bmap call would return logical addresses that aren't
5788  * suitable for IO and they also will change frequently as COW
5789  * operations happen.  So, swapfile + btrfs == corruption.
5790  *
5791  * For now we're avoiding this by dropping bmap.
5792  */
5793 static struct address_space_operations btrfs_aops = {
5794         .readpage       = btrfs_readpage,
5795         .writepage      = btrfs_writepage,
5796         .writepages     = btrfs_writepages,
5797         .readpages      = btrfs_readpages,
5798         .sync_page      = block_sync_page,
5799         .direct_IO      = btrfs_direct_IO,
5800         .invalidatepage = btrfs_invalidatepage,
5801         .releasepage    = btrfs_releasepage,
5802         .set_page_dirty = btrfs_set_page_dirty,
5803 };
5804
5805 static struct address_space_operations btrfs_symlink_aops = {
5806         .readpage       = btrfs_readpage,
5807         .writepage      = btrfs_writepage,
5808         .invalidatepage = btrfs_invalidatepage,
5809         .releasepage    = btrfs_releasepage,
5810 };
5811
5812 static struct inode_operations btrfs_file_inode_operations = {
5813         .truncate       = btrfs_truncate,
5814         .getattr        = btrfs_getattr,
5815         .setattr        = btrfs_setattr,
5816         .setxattr       = btrfs_setxattr,
5817         .getxattr       = btrfs_getxattr,
5818         .listxattr      = btrfs_listxattr,
5819         .removexattr    = btrfs_removexattr,
5820         .permission     = btrfs_permission,
5821         .fallocate      = btrfs_fallocate,
5822         .fiemap         = btrfs_fiemap,
5823 };
5824 static struct inode_operations btrfs_special_inode_operations = {
5825         .getattr        = btrfs_getattr,
5826         .setattr        = btrfs_setattr,
5827         .permission     = btrfs_permission,
5828         .setxattr       = btrfs_setxattr,
5829         .getxattr       = btrfs_getxattr,
5830         .listxattr      = btrfs_listxattr,
5831         .removexattr    = btrfs_removexattr,
5832 };
5833 static struct inode_operations btrfs_symlink_inode_operations = {
5834         .readlink       = generic_readlink,
5835         .follow_link    = page_follow_link_light,
5836         .put_link       = page_put_link,
5837         .permission     = btrfs_permission,
5838         .setxattr       = btrfs_setxattr,
5839         .getxattr       = btrfs_getxattr,
5840         .listxattr      = btrfs_listxattr,
5841         .removexattr    = btrfs_removexattr,
5842 };
5843
5844 const struct dentry_operations btrfs_dentry_operations = {
5845         .d_delete       = btrfs_dentry_delete,
5846 };