Btrfs: fix ctime update of on-disk inode
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "volumes.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56
57 struct btrfs_iget_args {
58         u64 ino;
59         struct btrfs_root *root;
60 };
61
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
81         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
82         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
83         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
84         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
85         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
86         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
87 };
88
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93                                    struct page *locked_page,
94                                    u64 start, u64 end, int *page_started,
95                                    unsigned long *nr_written, int unlock);
96 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
97                                 struct btrfs_root *root, struct inode *inode);
98
99 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
100                                      struct inode *inode,  struct inode *dir,
101                                      const struct qstr *qstr)
102 {
103         int err;
104
105         err = btrfs_init_acl(trans, inode, dir);
106         if (!err)
107                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
108         return err;
109 }
110
111 /*
112  * this does all the hard work for inserting an inline extent into
113  * the btree.  The caller should have done a btrfs_drop_extents so that
114  * no overlapping inline items exist in the btree
115  */
116 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
117                                 struct btrfs_root *root, struct inode *inode,
118                                 u64 start, size_t size, size_t compressed_size,
119                                 int compress_type,
120                                 struct page **compressed_pages)
121 {
122         struct btrfs_key key;
123         struct btrfs_path *path;
124         struct extent_buffer *leaf;
125         struct page *page = NULL;
126         char *kaddr;
127         unsigned long ptr;
128         struct btrfs_file_extent_item *ei;
129         int err = 0;
130         int ret;
131         size_t cur_size = size;
132         size_t datasize;
133         unsigned long offset;
134
135         if (compressed_size && compressed_pages)
136                 cur_size = compressed_size;
137
138         path = btrfs_alloc_path();
139         if (!path)
140                 return -ENOMEM;
141
142         path->leave_spinning = 1;
143
144         key.objectid = btrfs_ino(inode);
145         key.offset = start;
146         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
147         datasize = btrfs_file_extent_calc_inline_size(cur_size);
148
149         inode_add_bytes(inode, size);
150         ret = btrfs_insert_empty_item(trans, root, path, &key,
151                                       datasize);
152         BUG_ON(ret);
153         if (ret) {
154                 err = ret;
155                 goto fail;
156         }
157         leaf = path->nodes[0];
158         ei = btrfs_item_ptr(leaf, path->slots[0],
159                             struct btrfs_file_extent_item);
160         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162         btrfs_set_file_extent_encryption(leaf, ei, 0);
163         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165         ptr = btrfs_file_extent_inline_start(ei);
166
167         if (compress_type != BTRFS_COMPRESS_NONE) {
168                 struct page *cpage;
169                 int i = 0;
170                 while (compressed_size > 0) {
171                         cpage = compressed_pages[i];
172                         cur_size = min_t(unsigned long, compressed_size,
173                                        PAGE_CACHE_SIZE);
174
175                         kaddr = kmap_atomic(cpage, KM_USER0);
176                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
177                         kunmap_atomic(kaddr, KM_USER0);
178
179                         i++;
180                         ptr += cur_size;
181                         compressed_size -= cur_size;
182                 }
183                 btrfs_set_file_extent_compression(leaf, ei,
184                                                   compress_type);
185         } else {
186                 page = find_get_page(inode->i_mapping,
187                                      start >> PAGE_CACHE_SHIFT);
188                 btrfs_set_file_extent_compression(leaf, ei, 0);
189                 kaddr = kmap_atomic(page, KM_USER0);
190                 offset = start & (PAGE_CACHE_SIZE - 1);
191                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
192                 kunmap_atomic(kaddr, KM_USER0);
193                 page_cache_release(page);
194         }
195         btrfs_mark_buffer_dirty(leaf);
196         btrfs_free_path(path);
197
198         /*
199          * we're an inline extent, so nobody can
200          * extend the file past i_size without locking
201          * a page we already have locked.
202          *
203          * We must do any isize and inode updates
204          * before we unlock the pages.  Otherwise we
205          * could end up racing with unlink.
206          */
207         BTRFS_I(inode)->disk_i_size = inode->i_size;
208         btrfs_update_inode(trans, root, inode);
209
210         return 0;
211 fail:
212         btrfs_free_path(path);
213         return err;
214 }
215
216
217 /*
218  * conditionally insert an inline extent into the file.  This
219  * does the checks required to make sure the data is small enough
220  * to fit as an inline extent.
221  */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223                                  struct btrfs_root *root,
224                                  struct inode *inode, u64 start, u64 end,
225                                  size_t compressed_size, int compress_type,
226                                  struct page **compressed_pages)
227 {
228         u64 isize = i_size_read(inode);
229         u64 actual_end = min(end + 1, isize);
230         u64 inline_len = actual_end - start;
231         u64 aligned_end = (end + root->sectorsize - 1) &
232                         ~((u64)root->sectorsize - 1);
233         u64 hint_byte;
234         u64 data_len = inline_len;
235         int ret;
236
237         if (compressed_size)
238                 data_len = compressed_size;
239
240         if (start > 0 ||
241             actual_end >= PAGE_CACHE_SIZE ||
242             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243             (!compressed_size &&
244             (actual_end & (root->sectorsize - 1)) == 0) ||
245             end + 1 < isize ||
246             data_len > root->fs_info->max_inline) {
247                 return 1;
248         }
249
250         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251                                  &hint_byte, 1);
252         BUG_ON(ret);
253
254         if (isize > actual_end)
255                 inline_len = min_t(u64, isize, actual_end);
256         ret = insert_inline_extent(trans, root, inode, start,
257                                    inline_len, compressed_size,
258                                    compress_type, compressed_pages);
259         BUG_ON(ret);
260         btrfs_delalloc_release_metadata(inode, end + 1 - start);
261         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
262         return 0;
263 }
264
265 struct async_extent {
266         u64 start;
267         u64 ram_size;
268         u64 compressed_size;
269         struct page **pages;
270         unsigned long nr_pages;
271         int compress_type;
272         struct list_head list;
273 };
274
275 struct async_cow {
276         struct inode *inode;
277         struct btrfs_root *root;
278         struct page *locked_page;
279         u64 start;
280         u64 end;
281         struct list_head extents;
282         struct btrfs_work work;
283 };
284
285 static noinline int add_async_extent(struct async_cow *cow,
286                                      u64 start, u64 ram_size,
287                                      u64 compressed_size,
288                                      struct page **pages,
289                                      unsigned long nr_pages,
290                                      int compress_type)
291 {
292         struct async_extent *async_extent;
293
294         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
295         BUG_ON(!async_extent);
296         async_extent->start = start;
297         async_extent->ram_size = ram_size;
298         async_extent->compressed_size = compressed_size;
299         async_extent->pages = pages;
300         async_extent->nr_pages = nr_pages;
301         async_extent->compress_type = compress_type;
302         list_add_tail(&async_extent->list, &cow->extents);
303         return 0;
304 }
305
306 /*
307  * we create compressed extents in two phases.  The first
308  * phase compresses a range of pages that have already been
309  * locked (both pages and state bits are locked).
310  *
311  * This is done inside an ordered work queue, and the compression
312  * is spread across many cpus.  The actual IO submission is step
313  * two, and the ordered work queue takes care of making sure that
314  * happens in the same order things were put onto the queue by
315  * writepages and friends.
316  *
317  * If this code finds it can't get good compression, it puts an
318  * entry onto the work queue to write the uncompressed bytes.  This
319  * makes sure that both compressed inodes and uncompressed inodes
320  * are written in the same order that pdflush sent them down.
321  */
322 static noinline int compress_file_range(struct inode *inode,
323                                         struct page *locked_page,
324                                         u64 start, u64 end,
325                                         struct async_cow *async_cow,
326                                         int *num_added)
327 {
328         struct btrfs_root *root = BTRFS_I(inode)->root;
329         struct btrfs_trans_handle *trans;
330         u64 num_bytes;
331         u64 blocksize = root->sectorsize;
332         u64 actual_end;
333         u64 isize = i_size_read(inode);
334         int ret = 0;
335         struct page **pages = NULL;
336         unsigned long nr_pages;
337         unsigned long nr_pages_ret = 0;
338         unsigned long total_compressed = 0;
339         unsigned long total_in = 0;
340         unsigned long max_compressed = 128 * 1024;
341         unsigned long max_uncompressed = 128 * 1024;
342         int i;
343         int will_compress;
344         int compress_type = root->fs_info->compress_type;
345
346         /* if this is a small write inside eof, kick off a defragbot */
347         if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
348                 btrfs_add_inode_defrag(NULL, inode);
349
350         actual_end = min_t(u64, isize, end + 1);
351 again:
352         will_compress = 0;
353         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
354         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
355
356         /*
357          * we don't want to send crud past the end of i_size through
358          * compression, that's just a waste of CPU time.  So, if the
359          * end of the file is before the start of our current
360          * requested range of bytes, we bail out to the uncompressed
361          * cleanup code that can deal with all of this.
362          *
363          * It isn't really the fastest way to fix things, but this is a
364          * very uncommon corner.
365          */
366         if (actual_end <= start)
367                 goto cleanup_and_bail_uncompressed;
368
369         total_compressed = actual_end - start;
370
371         /* we want to make sure that amount of ram required to uncompress
372          * an extent is reasonable, so we limit the total size in ram
373          * of a compressed extent to 128k.  This is a crucial number
374          * because it also controls how easily we can spread reads across
375          * cpus for decompression.
376          *
377          * We also want to make sure the amount of IO required to do
378          * a random read is reasonably small, so we limit the size of
379          * a compressed extent to 128k.
380          */
381         total_compressed = min(total_compressed, max_uncompressed);
382         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
383         num_bytes = max(blocksize,  num_bytes);
384         total_in = 0;
385         ret = 0;
386
387         /*
388          * we do compression for mount -o compress and when the
389          * inode has not been flagged as nocompress.  This flag can
390          * change at any time if we discover bad compression ratios.
391          */
392         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
393             (btrfs_test_opt(root, COMPRESS) ||
394              (BTRFS_I(inode)->force_compress) ||
395              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
396                 WARN_ON(pages);
397                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
398                 if (!pages) {
399                         /* just bail out to the uncompressed code */
400                         goto cont;
401                 }
402
403                 if (BTRFS_I(inode)->force_compress)
404                         compress_type = BTRFS_I(inode)->force_compress;
405
406                 ret = btrfs_compress_pages(compress_type,
407                                            inode->i_mapping, start,
408                                            total_compressed, pages,
409                                            nr_pages, &nr_pages_ret,
410                                            &total_in,
411                                            &total_compressed,
412                                            max_compressed);
413
414                 if (!ret) {
415                         unsigned long offset = total_compressed &
416                                 (PAGE_CACHE_SIZE - 1);
417                         struct page *page = pages[nr_pages_ret - 1];
418                         char *kaddr;
419
420                         /* zero the tail end of the last page, we might be
421                          * sending it down to disk
422                          */
423                         if (offset) {
424                                 kaddr = kmap_atomic(page, KM_USER0);
425                                 memset(kaddr + offset, 0,
426                                        PAGE_CACHE_SIZE - offset);
427                                 kunmap_atomic(kaddr, KM_USER0);
428                         }
429                         will_compress = 1;
430                 }
431         }
432 cont:
433         if (start == 0) {
434                 trans = btrfs_join_transaction(root);
435                 BUG_ON(IS_ERR(trans));
436                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
437
438                 /* lets try to make an inline extent */
439                 if (ret || total_in < (actual_end - start)) {
440                         /* we didn't compress the entire range, try
441                          * to make an uncompressed inline extent.
442                          */
443                         ret = cow_file_range_inline(trans, root, inode,
444                                                     start, end, 0, 0, NULL);
445                 } else {
446                         /* try making a compressed inline extent */
447                         ret = cow_file_range_inline(trans, root, inode,
448                                                     start, end,
449                                                     total_compressed,
450                                                     compress_type, pages);
451                 }
452                 if (ret == 0) {
453                         /*
454                          * inline extent creation worked, we don't need
455                          * to create any more async work items.  Unlock
456                          * and free up our temp pages.
457                          */
458                         extent_clear_unlock_delalloc(inode,
459                              &BTRFS_I(inode)->io_tree,
460                              start, end, NULL,
461                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
462                              EXTENT_CLEAR_DELALLOC |
463                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
464
465                         btrfs_end_transaction(trans, root);
466                         goto free_pages_out;
467                 }
468                 btrfs_end_transaction(trans, root);
469         }
470
471         if (will_compress) {
472                 /*
473                  * we aren't doing an inline extent round the compressed size
474                  * up to a block size boundary so the allocator does sane
475                  * things
476                  */
477                 total_compressed = (total_compressed + blocksize - 1) &
478                         ~(blocksize - 1);
479
480                 /*
481                  * one last check to make sure the compression is really a
482                  * win, compare the page count read with the blocks on disk
483                  */
484                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
485                         ~(PAGE_CACHE_SIZE - 1);
486                 if (total_compressed >= total_in) {
487                         will_compress = 0;
488                 } else {
489                         num_bytes = total_in;
490                 }
491         }
492         if (!will_compress && pages) {
493                 /*
494                  * the compression code ran but failed to make things smaller,
495                  * free any pages it allocated and our page pointer array
496                  */
497                 for (i = 0; i < nr_pages_ret; i++) {
498                         WARN_ON(pages[i]->mapping);
499                         page_cache_release(pages[i]);
500                 }
501                 kfree(pages);
502                 pages = NULL;
503                 total_compressed = 0;
504                 nr_pages_ret = 0;
505
506                 /* flag the file so we don't compress in the future */
507                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
508                     !(BTRFS_I(inode)->force_compress)) {
509                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
510                 }
511         }
512         if (will_compress) {
513                 *num_added += 1;
514
515                 /* the async work queues will take care of doing actual
516                  * allocation on disk for these compressed pages,
517                  * and will submit them to the elevator.
518                  */
519                 add_async_extent(async_cow, start, num_bytes,
520                                  total_compressed, pages, nr_pages_ret,
521                                  compress_type);
522
523                 if (start + num_bytes < end) {
524                         start += num_bytes;
525                         pages = NULL;
526                         cond_resched();
527                         goto again;
528                 }
529         } else {
530 cleanup_and_bail_uncompressed:
531                 /*
532                  * No compression, but we still need to write the pages in
533                  * the file we've been given so far.  redirty the locked
534                  * page if it corresponds to our extent and set things up
535                  * for the async work queue to run cow_file_range to do
536                  * the normal delalloc dance
537                  */
538                 if (page_offset(locked_page) >= start &&
539                     page_offset(locked_page) <= end) {
540                         __set_page_dirty_nobuffers(locked_page);
541                         /* unlocked later on in the async handlers */
542                 }
543                 add_async_extent(async_cow, start, end - start + 1,
544                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
545                 *num_added += 1;
546         }
547
548 out:
549         return 0;
550
551 free_pages_out:
552         for (i = 0; i < nr_pages_ret; i++) {
553                 WARN_ON(pages[i]->mapping);
554                 page_cache_release(pages[i]);
555         }
556         kfree(pages);
557
558         goto out;
559 }
560
561 /*
562  * phase two of compressed writeback.  This is the ordered portion
563  * of the code, which only gets called in the order the work was
564  * queued.  We walk all the async extents created by compress_file_range
565  * and send them down to the disk.
566  */
567 static noinline int submit_compressed_extents(struct inode *inode,
568                                               struct async_cow *async_cow)
569 {
570         struct async_extent *async_extent;
571         u64 alloc_hint = 0;
572         struct btrfs_trans_handle *trans;
573         struct btrfs_key ins;
574         struct extent_map *em;
575         struct btrfs_root *root = BTRFS_I(inode)->root;
576         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
577         struct extent_io_tree *io_tree;
578         int ret = 0;
579
580         if (list_empty(&async_cow->extents))
581                 return 0;
582
583
584         while (!list_empty(&async_cow->extents)) {
585                 async_extent = list_entry(async_cow->extents.next,
586                                           struct async_extent, list);
587                 list_del(&async_extent->list);
588
589                 io_tree = &BTRFS_I(inode)->io_tree;
590
591 retry:
592                 /* did the compression code fall back to uncompressed IO? */
593                 if (!async_extent->pages) {
594                         int page_started = 0;
595                         unsigned long nr_written = 0;
596
597                         lock_extent(io_tree, async_extent->start,
598                                          async_extent->start +
599                                          async_extent->ram_size - 1, GFP_NOFS);
600
601                         /* allocate blocks */
602                         ret = cow_file_range(inode, async_cow->locked_page,
603                                              async_extent->start,
604                                              async_extent->start +
605                                              async_extent->ram_size - 1,
606                                              &page_started, &nr_written, 0);
607
608                         /*
609                          * if page_started, cow_file_range inserted an
610                          * inline extent and took care of all the unlocking
611                          * and IO for us.  Otherwise, we need to submit
612                          * all those pages down to the drive.
613                          */
614                         if (!page_started && !ret)
615                                 extent_write_locked_range(io_tree,
616                                                   inode, async_extent->start,
617                                                   async_extent->start +
618                                                   async_extent->ram_size - 1,
619                                                   btrfs_get_extent,
620                                                   WB_SYNC_ALL);
621                         kfree(async_extent);
622                         cond_resched();
623                         continue;
624                 }
625
626                 lock_extent(io_tree, async_extent->start,
627                             async_extent->start + async_extent->ram_size - 1,
628                             GFP_NOFS);
629
630                 trans = btrfs_join_transaction(root);
631                 BUG_ON(IS_ERR(trans));
632                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
633                 ret = btrfs_reserve_extent(trans, root,
634                                            async_extent->compressed_size,
635                                            async_extent->compressed_size,
636                                            0, alloc_hint,
637                                            (u64)-1, &ins, 1);
638                 btrfs_end_transaction(trans, root);
639
640                 if (ret) {
641                         int i;
642                         for (i = 0; i < async_extent->nr_pages; i++) {
643                                 WARN_ON(async_extent->pages[i]->mapping);
644                                 page_cache_release(async_extent->pages[i]);
645                         }
646                         kfree(async_extent->pages);
647                         async_extent->nr_pages = 0;
648                         async_extent->pages = NULL;
649                         unlock_extent(io_tree, async_extent->start,
650                                       async_extent->start +
651                                       async_extent->ram_size - 1, GFP_NOFS);
652                         goto retry;
653                 }
654
655                 /*
656                  * here we're doing allocation and writeback of the
657                  * compressed pages
658                  */
659                 btrfs_drop_extent_cache(inode, async_extent->start,
660                                         async_extent->start +
661                                         async_extent->ram_size - 1, 0);
662
663                 em = alloc_extent_map();
664                 BUG_ON(!em);
665                 em->start = async_extent->start;
666                 em->len = async_extent->ram_size;
667                 em->orig_start = em->start;
668
669                 em->block_start = ins.objectid;
670                 em->block_len = ins.offset;
671                 em->bdev = root->fs_info->fs_devices->latest_bdev;
672                 em->compress_type = async_extent->compress_type;
673                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
674                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
675
676                 while (1) {
677                         write_lock(&em_tree->lock);
678                         ret = add_extent_mapping(em_tree, em);
679                         write_unlock(&em_tree->lock);
680                         if (ret != -EEXIST) {
681                                 free_extent_map(em);
682                                 break;
683                         }
684                         btrfs_drop_extent_cache(inode, async_extent->start,
685                                                 async_extent->start +
686                                                 async_extent->ram_size - 1, 0);
687                 }
688
689                 ret = btrfs_add_ordered_extent_compress(inode,
690                                                 async_extent->start,
691                                                 ins.objectid,
692                                                 async_extent->ram_size,
693                                                 ins.offset,
694                                                 BTRFS_ORDERED_COMPRESSED,
695                                                 async_extent->compress_type);
696                 BUG_ON(ret);
697
698                 /*
699                  * clear dirty, set writeback and unlock the pages.
700                  */
701                 extent_clear_unlock_delalloc(inode,
702                                 &BTRFS_I(inode)->io_tree,
703                                 async_extent->start,
704                                 async_extent->start +
705                                 async_extent->ram_size - 1,
706                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
707                                 EXTENT_CLEAR_UNLOCK |
708                                 EXTENT_CLEAR_DELALLOC |
709                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
710
711                 ret = btrfs_submit_compressed_write(inode,
712                                     async_extent->start,
713                                     async_extent->ram_size,
714                                     ins.objectid,
715                                     ins.offset, async_extent->pages,
716                                     async_extent->nr_pages);
717
718                 BUG_ON(ret);
719                 alloc_hint = ins.objectid + ins.offset;
720                 kfree(async_extent);
721                 cond_resched();
722         }
723
724         return 0;
725 }
726
727 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
728                                       u64 num_bytes)
729 {
730         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
731         struct extent_map *em;
732         u64 alloc_hint = 0;
733
734         read_lock(&em_tree->lock);
735         em = search_extent_mapping(em_tree, start, num_bytes);
736         if (em) {
737                 /*
738                  * if block start isn't an actual block number then find the
739                  * first block in this inode and use that as a hint.  If that
740                  * block is also bogus then just don't worry about it.
741                  */
742                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
743                         free_extent_map(em);
744                         em = search_extent_mapping(em_tree, 0, 0);
745                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
746                                 alloc_hint = em->block_start;
747                         if (em)
748                                 free_extent_map(em);
749                 } else {
750                         alloc_hint = em->block_start;
751                         free_extent_map(em);
752                 }
753         }
754         read_unlock(&em_tree->lock);
755
756         return alloc_hint;
757 }
758
759 /*
760  * when extent_io.c finds a delayed allocation range in the file,
761  * the call backs end up in this code.  The basic idea is to
762  * allocate extents on disk for the range, and create ordered data structs
763  * in ram to track those extents.
764  *
765  * locked_page is the page that writepage had locked already.  We use
766  * it to make sure we don't do extra locks or unlocks.
767  *
768  * *page_started is set to one if we unlock locked_page and do everything
769  * required to start IO on it.  It may be clean and already done with
770  * IO when we return.
771  */
772 static noinline int cow_file_range(struct inode *inode,
773                                    struct page *locked_page,
774                                    u64 start, u64 end, int *page_started,
775                                    unsigned long *nr_written,
776                                    int unlock)
777 {
778         struct btrfs_root *root = BTRFS_I(inode)->root;
779         struct btrfs_trans_handle *trans;
780         u64 alloc_hint = 0;
781         u64 num_bytes;
782         unsigned long ram_size;
783         u64 disk_num_bytes;
784         u64 cur_alloc_size;
785         u64 blocksize = root->sectorsize;
786         struct btrfs_key ins;
787         struct extent_map *em;
788         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
789         int ret = 0;
790
791         BUG_ON(btrfs_is_free_space_inode(root, inode));
792         trans = btrfs_join_transaction(root);
793         BUG_ON(IS_ERR(trans));
794         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
795
796         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
797         num_bytes = max(blocksize,  num_bytes);
798         disk_num_bytes = num_bytes;
799         ret = 0;
800
801         /* if this is a small write inside eof, kick off defrag */
802         if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
803                 btrfs_add_inode_defrag(trans, inode);
804
805         if (start == 0) {
806                 /* lets try to make an inline extent */
807                 ret = cow_file_range_inline(trans, root, inode,
808                                             start, end, 0, 0, NULL);
809                 if (ret == 0) {
810                         extent_clear_unlock_delalloc(inode,
811                                      &BTRFS_I(inode)->io_tree,
812                                      start, end, NULL,
813                                      EXTENT_CLEAR_UNLOCK_PAGE |
814                                      EXTENT_CLEAR_UNLOCK |
815                                      EXTENT_CLEAR_DELALLOC |
816                                      EXTENT_CLEAR_DIRTY |
817                                      EXTENT_SET_WRITEBACK |
818                                      EXTENT_END_WRITEBACK);
819
820                         *nr_written = *nr_written +
821                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
822                         *page_started = 1;
823                         ret = 0;
824                         goto out;
825                 }
826         }
827
828         BUG_ON(disk_num_bytes >
829                btrfs_super_total_bytes(root->fs_info->super_copy));
830
831         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
832         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
833
834         while (disk_num_bytes > 0) {
835                 unsigned long op;
836
837                 cur_alloc_size = disk_num_bytes;
838                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
839                                            root->sectorsize, 0, alloc_hint,
840                                            (u64)-1, &ins, 1);
841                 BUG_ON(ret);
842
843                 em = alloc_extent_map();
844                 BUG_ON(!em);
845                 em->start = start;
846                 em->orig_start = em->start;
847                 ram_size = ins.offset;
848                 em->len = ins.offset;
849
850                 em->block_start = ins.objectid;
851                 em->block_len = ins.offset;
852                 em->bdev = root->fs_info->fs_devices->latest_bdev;
853                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
854
855                 while (1) {
856                         write_lock(&em_tree->lock);
857                         ret = add_extent_mapping(em_tree, em);
858                         write_unlock(&em_tree->lock);
859                         if (ret != -EEXIST) {
860                                 free_extent_map(em);
861                                 break;
862                         }
863                         btrfs_drop_extent_cache(inode, start,
864                                                 start + ram_size - 1, 0);
865                 }
866
867                 cur_alloc_size = ins.offset;
868                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
869                                                ram_size, cur_alloc_size, 0);
870                 BUG_ON(ret);
871
872                 if (root->root_key.objectid ==
873                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
874                         ret = btrfs_reloc_clone_csums(inode, start,
875                                                       cur_alloc_size);
876                         BUG_ON(ret);
877                 }
878
879                 if (disk_num_bytes < cur_alloc_size)
880                         break;
881
882                 /* we're not doing compressed IO, don't unlock the first
883                  * page (which the caller expects to stay locked), don't
884                  * clear any dirty bits and don't set any writeback bits
885                  *
886                  * Do set the Private2 bit so we know this page was properly
887                  * setup for writepage
888                  */
889                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
890                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
891                         EXTENT_SET_PRIVATE2;
892
893                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
894                                              start, start + ram_size - 1,
895                                              locked_page, op);
896                 disk_num_bytes -= cur_alloc_size;
897                 num_bytes -= cur_alloc_size;
898                 alloc_hint = ins.objectid + ins.offset;
899                 start += cur_alloc_size;
900         }
901 out:
902         ret = 0;
903         btrfs_end_transaction(trans, root);
904
905         return ret;
906 }
907
908 /*
909  * work queue call back to started compression on a file and pages
910  */
911 static noinline void async_cow_start(struct btrfs_work *work)
912 {
913         struct async_cow *async_cow;
914         int num_added = 0;
915         async_cow = container_of(work, struct async_cow, work);
916
917         compress_file_range(async_cow->inode, async_cow->locked_page,
918                             async_cow->start, async_cow->end, async_cow,
919                             &num_added);
920         if (num_added == 0)
921                 async_cow->inode = NULL;
922 }
923
924 /*
925  * work queue call back to submit previously compressed pages
926  */
927 static noinline void async_cow_submit(struct btrfs_work *work)
928 {
929         struct async_cow *async_cow;
930         struct btrfs_root *root;
931         unsigned long nr_pages;
932
933         async_cow = container_of(work, struct async_cow, work);
934
935         root = async_cow->root;
936         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
937                 PAGE_CACHE_SHIFT;
938
939         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
940
941         if (atomic_read(&root->fs_info->async_delalloc_pages) <
942             5 * 1042 * 1024 &&
943             waitqueue_active(&root->fs_info->async_submit_wait))
944                 wake_up(&root->fs_info->async_submit_wait);
945
946         if (async_cow->inode)
947                 submit_compressed_extents(async_cow->inode, async_cow);
948 }
949
950 static noinline void async_cow_free(struct btrfs_work *work)
951 {
952         struct async_cow *async_cow;
953         async_cow = container_of(work, struct async_cow, work);
954         kfree(async_cow);
955 }
956
957 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
958                                 u64 start, u64 end, int *page_started,
959                                 unsigned long *nr_written)
960 {
961         struct async_cow *async_cow;
962         struct btrfs_root *root = BTRFS_I(inode)->root;
963         unsigned long nr_pages;
964         u64 cur_end;
965         int limit = 10 * 1024 * 1042;
966
967         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
968                          1, 0, NULL, GFP_NOFS);
969         while (start < end) {
970                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
971                 BUG_ON(!async_cow);
972                 async_cow->inode = inode;
973                 async_cow->root = root;
974                 async_cow->locked_page = locked_page;
975                 async_cow->start = start;
976
977                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
978                         cur_end = end;
979                 else
980                         cur_end = min(end, start + 512 * 1024 - 1);
981
982                 async_cow->end = cur_end;
983                 INIT_LIST_HEAD(&async_cow->extents);
984
985                 async_cow->work.func = async_cow_start;
986                 async_cow->work.ordered_func = async_cow_submit;
987                 async_cow->work.ordered_free = async_cow_free;
988                 async_cow->work.flags = 0;
989
990                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
991                         PAGE_CACHE_SHIFT;
992                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
993
994                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
995                                    &async_cow->work);
996
997                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
998                         wait_event(root->fs_info->async_submit_wait,
999                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1000                             limit));
1001                 }
1002
1003                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1004                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1005                         wait_event(root->fs_info->async_submit_wait,
1006                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1007                            0));
1008                 }
1009
1010                 *nr_written += nr_pages;
1011                 start = cur_end + 1;
1012         }
1013         *page_started = 1;
1014         return 0;
1015 }
1016
1017 static noinline int csum_exist_in_range(struct btrfs_root *root,
1018                                         u64 bytenr, u64 num_bytes)
1019 {
1020         int ret;
1021         struct btrfs_ordered_sum *sums;
1022         LIST_HEAD(list);
1023
1024         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1025                                        bytenr + num_bytes - 1, &list, 0);
1026         if (ret == 0 && list_empty(&list))
1027                 return 0;
1028
1029         while (!list_empty(&list)) {
1030                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1031                 list_del(&sums->list);
1032                 kfree(sums);
1033         }
1034         return 1;
1035 }
1036
1037 /*
1038  * when nowcow writeback call back.  This checks for snapshots or COW copies
1039  * of the extents that exist in the file, and COWs the file as required.
1040  *
1041  * If no cow copies or snapshots exist, we write directly to the existing
1042  * blocks on disk
1043  */
1044 static noinline int run_delalloc_nocow(struct inode *inode,
1045                                        struct page *locked_page,
1046                               u64 start, u64 end, int *page_started, int force,
1047                               unsigned long *nr_written)
1048 {
1049         struct btrfs_root *root = BTRFS_I(inode)->root;
1050         struct btrfs_trans_handle *trans;
1051         struct extent_buffer *leaf;
1052         struct btrfs_path *path;
1053         struct btrfs_file_extent_item *fi;
1054         struct btrfs_key found_key;
1055         u64 cow_start;
1056         u64 cur_offset;
1057         u64 extent_end;
1058         u64 extent_offset;
1059         u64 disk_bytenr;
1060         u64 num_bytes;
1061         int extent_type;
1062         int ret;
1063         int type;
1064         int nocow;
1065         int check_prev = 1;
1066         bool nolock;
1067         u64 ino = btrfs_ino(inode);
1068
1069         path = btrfs_alloc_path();
1070         if (!path)
1071                 return -ENOMEM;
1072
1073         nolock = btrfs_is_free_space_inode(root, inode);
1074
1075         if (nolock)
1076                 trans = btrfs_join_transaction_nolock(root);
1077         else
1078                 trans = btrfs_join_transaction(root);
1079
1080         BUG_ON(IS_ERR(trans));
1081         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1082
1083         cow_start = (u64)-1;
1084         cur_offset = start;
1085         while (1) {
1086                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1087                                                cur_offset, 0);
1088                 BUG_ON(ret < 0);
1089                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1090                         leaf = path->nodes[0];
1091                         btrfs_item_key_to_cpu(leaf, &found_key,
1092                                               path->slots[0] - 1);
1093                         if (found_key.objectid == ino &&
1094                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1095                                 path->slots[0]--;
1096                 }
1097                 check_prev = 0;
1098 next_slot:
1099                 leaf = path->nodes[0];
1100                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1101                         ret = btrfs_next_leaf(root, path);
1102                         if (ret < 0)
1103                                 BUG_ON(1);
1104                         if (ret > 0)
1105                                 break;
1106                         leaf = path->nodes[0];
1107                 }
1108
1109                 nocow = 0;
1110                 disk_bytenr = 0;
1111                 num_bytes = 0;
1112                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1113
1114                 if (found_key.objectid > ino ||
1115                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1116                     found_key.offset > end)
1117                         break;
1118
1119                 if (found_key.offset > cur_offset) {
1120                         extent_end = found_key.offset;
1121                         extent_type = 0;
1122                         goto out_check;
1123                 }
1124
1125                 fi = btrfs_item_ptr(leaf, path->slots[0],
1126                                     struct btrfs_file_extent_item);
1127                 extent_type = btrfs_file_extent_type(leaf, fi);
1128
1129                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1130                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1131                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1132                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1133                         extent_end = found_key.offset +
1134                                 btrfs_file_extent_num_bytes(leaf, fi);
1135                         if (extent_end <= start) {
1136                                 path->slots[0]++;
1137                                 goto next_slot;
1138                         }
1139                         if (disk_bytenr == 0)
1140                                 goto out_check;
1141                         if (btrfs_file_extent_compression(leaf, fi) ||
1142                             btrfs_file_extent_encryption(leaf, fi) ||
1143                             btrfs_file_extent_other_encoding(leaf, fi))
1144                                 goto out_check;
1145                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1146                                 goto out_check;
1147                         if (btrfs_extent_readonly(root, disk_bytenr))
1148                                 goto out_check;
1149                         if (btrfs_cross_ref_exist(trans, root, ino,
1150                                                   found_key.offset -
1151                                                   extent_offset, disk_bytenr))
1152                                 goto out_check;
1153                         disk_bytenr += extent_offset;
1154                         disk_bytenr += cur_offset - found_key.offset;
1155                         num_bytes = min(end + 1, extent_end) - cur_offset;
1156                         /*
1157                          * force cow if csum exists in the range.
1158                          * this ensure that csum for a given extent are
1159                          * either valid or do not exist.
1160                          */
1161                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1162                                 goto out_check;
1163                         nocow = 1;
1164                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1165                         extent_end = found_key.offset +
1166                                 btrfs_file_extent_inline_len(leaf, fi);
1167                         extent_end = ALIGN(extent_end, root->sectorsize);
1168                 } else {
1169                         BUG_ON(1);
1170                 }
1171 out_check:
1172                 if (extent_end <= start) {
1173                         path->slots[0]++;
1174                         goto next_slot;
1175                 }
1176                 if (!nocow) {
1177                         if (cow_start == (u64)-1)
1178                                 cow_start = cur_offset;
1179                         cur_offset = extent_end;
1180                         if (cur_offset > end)
1181                                 break;
1182                         path->slots[0]++;
1183                         goto next_slot;
1184                 }
1185
1186                 btrfs_release_path(path);
1187                 if (cow_start != (u64)-1) {
1188                         ret = cow_file_range(inode, locked_page, cow_start,
1189                                         found_key.offset - 1, page_started,
1190                                         nr_written, 1);
1191                         BUG_ON(ret);
1192                         cow_start = (u64)-1;
1193                 }
1194
1195                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1196                         struct extent_map *em;
1197                         struct extent_map_tree *em_tree;
1198                         em_tree = &BTRFS_I(inode)->extent_tree;
1199                         em = alloc_extent_map();
1200                         BUG_ON(!em);
1201                         em->start = cur_offset;
1202                         em->orig_start = em->start;
1203                         em->len = num_bytes;
1204                         em->block_len = num_bytes;
1205                         em->block_start = disk_bytenr;
1206                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1207                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1208                         while (1) {
1209                                 write_lock(&em_tree->lock);
1210                                 ret = add_extent_mapping(em_tree, em);
1211                                 write_unlock(&em_tree->lock);
1212                                 if (ret != -EEXIST) {
1213                                         free_extent_map(em);
1214                                         break;
1215                                 }
1216                                 btrfs_drop_extent_cache(inode, em->start,
1217                                                 em->start + em->len - 1, 0);
1218                         }
1219                         type = BTRFS_ORDERED_PREALLOC;
1220                 } else {
1221                         type = BTRFS_ORDERED_NOCOW;
1222                 }
1223
1224                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1225                                                num_bytes, num_bytes, type);
1226                 BUG_ON(ret);
1227
1228                 if (root->root_key.objectid ==
1229                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1230                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1231                                                       num_bytes);
1232                         BUG_ON(ret);
1233                 }
1234
1235                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1236                                 cur_offset, cur_offset + num_bytes - 1,
1237                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1238                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1239                                 EXTENT_SET_PRIVATE2);
1240                 cur_offset = extent_end;
1241                 if (cur_offset > end)
1242                         break;
1243         }
1244         btrfs_release_path(path);
1245
1246         if (cur_offset <= end && cow_start == (u64)-1)
1247                 cow_start = cur_offset;
1248         if (cow_start != (u64)-1) {
1249                 ret = cow_file_range(inode, locked_page, cow_start, end,
1250                                      page_started, nr_written, 1);
1251                 BUG_ON(ret);
1252         }
1253
1254         if (nolock) {
1255                 ret = btrfs_end_transaction_nolock(trans, root);
1256                 BUG_ON(ret);
1257         } else {
1258                 ret = btrfs_end_transaction(trans, root);
1259                 BUG_ON(ret);
1260         }
1261         btrfs_free_path(path);
1262         return 0;
1263 }
1264
1265 /*
1266  * extent_io.c call back to do delayed allocation processing
1267  */
1268 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1269                               u64 start, u64 end, int *page_started,
1270                               unsigned long *nr_written)
1271 {
1272         int ret;
1273         struct btrfs_root *root = BTRFS_I(inode)->root;
1274
1275         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1276                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1277                                          page_started, 1, nr_written);
1278         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1279                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1280                                          page_started, 0, nr_written);
1281         else if (!btrfs_test_opt(root, COMPRESS) &&
1282                  !(BTRFS_I(inode)->force_compress) &&
1283                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1284                 ret = cow_file_range(inode, locked_page, start, end,
1285                                       page_started, nr_written, 1);
1286         else
1287                 ret = cow_file_range_async(inode, locked_page, start, end,
1288                                            page_started, nr_written);
1289         return ret;
1290 }
1291
1292 static void btrfs_split_extent_hook(struct inode *inode,
1293                                     struct extent_state *orig, u64 split)
1294 {
1295         /* not delalloc, ignore it */
1296         if (!(orig->state & EXTENT_DELALLOC))
1297                 return;
1298
1299         spin_lock(&BTRFS_I(inode)->lock);
1300         BTRFS_I(inode)->outstanding_extents++;
1301         spin_unlock(&BTRFS_I(inode)->lock);
1302 }
1303
1304 /*
1305  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1306  * extents so we can keep track of new extents that are just merged onto old
1307  * extents, such as when we are doing sequential writes, so we can properly
1308  * account for the metadata space we'll need.
1309  */
1310 static void btrfs_merge_extent_hook(struct inode *inode,
1311                                     struct extent_state *new,
1312                                     struct extent_state *other)
1313 {
1314         /* not delalloc, ignore it */
1315         if (!(other->state & EXTENT_DELALLOC))
1316                 return;
1317
1318         spin_lock(&BTRFS_I(inode)->lock);
1319         BTRFS_I(inode)->outstanding_extents--;
1320         spin_unlock(&BTRFS_I(inode)->lock);
1321 }
1322
1323 /*
1324  * extent_io.c set_bit_hook, used to track delayed allocation
1325  * bytes in this file, and to maintain the list of inodes that
1326  * have pending delalloc work to be done.
1327  */
1328 static void btrfs_set_bit_hook(struct inode *inode,
1329                                struct extent_state *state, int *bits)
1330 {
1331
1332         /*
1333          * set_bit and clear bit hooks normally require _irqsave/restore
1334          * but in this case, we are only testing for the DELALLOC
1335          * bit, which is only set or cleared with irqs on
1336          */
1337         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1338                 struct btrfs_root *root = BTRFS_I(inode)->root;
1339                 u64 len = state->end + 1 - state->start;
1340                 bool do_list = !btrfs_is_free_space_inode(root, inode);
1341
1342                 if (*bits & EXTENT_FIRST_DELALLOC) {
1343                         *bits &= ~EXTENT_FIRST_DELALLOC;
1344                 } else {
1345                         spin_lock(&BTRFS_I(inode)->lock);
1346                         BTRFS_I(inode)->outstanding_extents++;
1347                         spin_unlock(&BTRFS_I(inode)->lock);
1348                 }
1349
1350                 spin_lock(&root->fs_info->delalloc_lock);
1351                 BTRFS_I(inode)->delalloc_bytes += len;
1352                 root->fs_info->delalloc_bytes += len;
1353                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1354                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1355                                       &root->fs_info->delalloc_inodes);
1356                 }
1357                 spin_unlock(&root->fs_info->delalloc_lock);
1358         }
1359 }
1360
1361 /*
1362  * extent_io.c clear_bit_hook, see set_bit_hook for why
1363  */
1364 static void btrfs_clear_bit_hook(struct inode *inode,
1365                                  struct extent_state *state, int *bits)
1366 {
1367         /*
1368          * set_bit and clear bit hooks normally require _irqsave/restore
1369          * but in this case, we are only testing for the DELALLOC
1370          * bit, which is only set or cleared with irqs on
1371          */
1372         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1373                 struct btrfs_root *root = BTRFS_I(inode)->root;
1374                 u64 len = state->end + 1 - state->start;
1375                 bool do_list = !btrfs_is_free_space_inode(root, inode);
1376
1377                 if (*bits & EXTENT_FIRST_DELALLOC) {
1378                         *bits &= ~EXTENT_FIRST_DELALLOC;
1379                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1380                         spin_lock(&BTRFS_I(inode)->lock);
1381                         BTRFS_I(inode)->outstanding_extents--;
1382                         spin_unlock(&BTRFS_I(inode)->lock);
1383                 }
1384
1385                 if (*bits & EXTENT_DO_ACCOUNTING)
1386                         btrfs_delalloc_release_metadata(inode, len);
1387
1388                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1389                     && do_list)
1390                         btrfs_free_reserved_data_space(inode, len);
1391
1392                 spin_lock(&root->fs_info->delalloc_lock);
1393                 root->fs_info->delalloc_bytes -= len;
1394                 BTRFS_I(inode)->delalloc_bytes -= len;
1395
1396                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1397                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1398                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1399                 }
1400                 spin_unlock(&root->fs_info->delalloc_lock);
1401         }
1402 }
1403
1404 /*
1405  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1406  * we don't create bios that span stripes or chunks
1407  */
1408 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1409                          size_t size, struct bio *bio,
1410                          unsigned long bio_flags)
1411 {
1412         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1413         struct btrfs_mapping_tree *map_tree;
1414         u64 logical = (u64)bio->bi_sector << 9;
1415         u64 length = 0;
1416         u64 map_length;
1417         int ret;
1418
1419         if (bio_flags & EXTENT_BIO_COMPRESSED)
1420                 return 0;
1421
1422         length = bio->bi_size;
1423         map_tree = &root->fs_info->mapping_tree;
1424         map_length = length;
1425         ret = btrfs_map_block(map_tree, READ, logical,
1426                               &map_length, NULL, 0);
1427
1428         if (map_length < length + size)
1429                 return 1;
1430         return ret;
1431 }
1432
1433 /*
1434  * in order to insert checksums into the metadata in large chunks,
1435  * we wait until bio submission time.   All the pages in the bio are
1436  * checksummed and sums are attached onto the ordered extent record.
1437  *
1438  * At IO completion time the cums attached on the ordered extent record
1439  * are inserted into the btree
1440  */
1441 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1442                                     struct bio *bio, int mirror_num,
1443                                     unsigned long bio_flags,
1444                                     u64 bio_offset)
1445 {
1446         struct btrfs_root *root = BTRFS_I(inode)->root;
1447         int ret = 0;
1448
1449         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1450         BUG_ON(ret);
1451         return 0;
1452 }
1453
1454 /*
1455  * in order to insert checksums into the metadata in large chunks,
1456  * we wait until bio submission time.   All the pages in the bio are
1457  * checksummed and sums are attached onto the ordered extent record.
1458  *
1459  * At IO completion time the cums attached on the ordered extent record
1460  * are inserted into the btree
1461  */
1462 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1463                           int mirror_num, unsigned long bio_flags,
1464                           u64 bio_offset)
1465 {
1466         struct btrfs_root *root = BTRFS_I(inode)->root;
1467         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1468 }
1469
1470 /*
1471  * extent_io.c submission hook. This does the right thing for csum calculation
1472  * on write, or reading the csums from the tree before a read
1473  */
1474 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1475                           int mirror_num, unsigned long bio_flags,
1476                           u64 bio_offset)
1477 {
1478         struct btrfs_root *root = BTRFS_I(inode)->root;
1479         int ret = 0;
1480         int skip_sum;
1481
1482         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1483
1484         if (btrfs_is_free_space_inode(root, inode))
1485                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1486         else
1487                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1488         BUG_ON(ret);
1489
1490         if (!(rw & REQ_WRITE)) {
1491                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1492                         return btrfs_submit_compressed_read(inode, bio,
1493                                                     mirror_num, bio_flags);
1494                 } else if (!skip_sum) {
1495                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1496                         if (ret)
1497                                 return ret;
1498                 }
1499                 goto mapit;
1500         } else if (!skip_sum) {
1501                 /* csum items have already been cloned */
1502                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1503                         goto mapit;
1504                 /* we're doing a write, do the async checksumming */
1505                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1506                                    inode, rw, bio, mirror_num,
1507                                    bio_flags, bio_offset,
1508                                    __btrfs_submit_bio_start,
1509                                    __btrfs_submit_bio_done);
1510         }
1511
1512 mapit:
1513         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1514 }
1515
1516 /*
1517  * given a list of ordered sums record them in the inode.  This happens
1518  * at IO completion time based on sums calculated at bio submission time.
1519  */
1520 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1521                              struct inode *inode, u64 file_offset,
1522                              struct list_head *list)
1523 {
1524         struct btrfs_ordered_sum *sum;
1525
1526         list_for_each_entry(sum, list, list) {
1527                 btrfs_csum_file_blocks(trans,
1528                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1529         }
1530         return 0;
1531 }
1532
1533 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1534                               struct extent_state **cached_state)
1535 {
1536         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1537                 WARN_ON(1);
1538         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1539                                    cached_state, GFP_NOFS);
1540 }
1541
1542 /* see btrfs_writepage_start_hook for details on why this is required */
1543 struct btrfs_writepage_fixup {
1544         struct page *page;
1545         struct btrfs_work work;
1546 };
1547
1548 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1549 {
1550         struct btrfs_writepage_fixup *fixup;
1551         struct btrfs_ordered_extent *ordered;
1552         struct extent_state *cached_state = NULL;
1553         struct page *page;
1554         struct inode *inode;
1555         u64 page_start;
1556         u64 page_end;
1557
1558         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1559         page = fixup->page;
1560 again:
1561         lock_page(page);
1562         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1563                 ClearPageChecked(page);
1564                 goto out_page;
1565         }
1566
1567         inode = page->mapping->host;
1568         page_start = page_offset(page);
1569         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1570
1571         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1572                          &cached_state, GFP_NOFS);
1573
1574         /* already ordered? We're done */
1575         if (PagePrivate2(page))
1576                 goto out;
1577
1578         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1579         if (ordered) {
1580                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1581                                      page_end, &cached_state, GFP_NOFS);
1582                 unlock_page(page);
1583                 btrfs_start_ordered_extent(inode, ordered, 1);
1584                 goto again;
1585         }
1586
1587         BUG();
1588         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1589         ClearPageChecked(page);
1590 out:
1591         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1592                              &cached_state, GFP_NOFS);
1593 out_page:
1594         unlock_page(page);
1595         page_cache_release(page);
1596         kfree(fixup);
1597 }
1598
1599 /*
1600  * There are a few paths in the higher layers of the kernel that directly
1601  * set the page dirty bit without asking the filesystem if it is a
1602  * good idea.  This causes problems because we want to make sure COW
1603  * properly happens and the data=ordered rules are followed.
1604  *
1605  * In our case any range that doesn't have the ORDERED bit set
1606  * hasn't been properly setup for IO.  We kick off an async process
1607  * to fix it up.  The async helper will wait for ordered extents, set
1608  * the delalloc bit and make it safe to write the page.
1609  */
1610 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1611 {
1612         struct inode *inode = page->mapping->host;
1613         struct btrfs_writepage_fixup *fixup;
1614         struct btrfs_root *root = BTRFS_I(inode)->root;
1615
1616         /* this page is properly in the ordered list */
1617         if (TestClearPagePrivate2(page))
1618                 return 0;
1619
1620         if (PageChecked(page))
1621                 return -EAGAIN;
1622
1623         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1624         if (!fixup)
1625                 return -EAGAIN;
1626
1627         SetPageChecked(page);
1628         page_cache_get(page);
1629         fixup->work.func = btrfs_writepage_fixup_worker;
1630         fixup->page = page;
1631         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1632         return -EAGAIN;
1633 }
1634
1635 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1636                                        struct inode *inode, u64 file_pos,
1637                                        u64 disk_bytenr, u64 disk_num_bytes,
1638                                        u64 num_bytes, u64 ram_bytes,
1639                                        u8 compression, u8 encryption,
1640                                        u16 other_encoding, int extent_type)
1641 {
1642         struct btrfs_root *root = BTRFS_I(inode)->root;
1643         struct btrfs_file_extent_item *fi;
1644         struct btrfs_path *path;
1645         struct extent_buffer *leaf;
1646         struct btrfs_key ins;
1647         u64 hint;
1648         int ret;
1649
1650         path = btrfs_alloc_path();
1651         if (!path)
1652                 return -ENOMEM;
1653
1654         path->leave_spinning = 1;
1655
1656         /*
1657          * we may be replacing one extent in the tree with another.
1658          * The new extent is pinned in the extent map, and we don't want
1659          * to drop it from the cache until it is completely in the btree.
1660          *
1661          * So, tell btrfs_drop_extents to leave this extent in the cache.
1662          * the caller is expected to unpin it and allow it to be merged
1663          * with the others.
1664          */
1665         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1666                                  &hint, 0);
1667         BUG_ON(ret);
1668
1669         ins.objectid = btrfs_ino(inode);
1670         ins.offset = file_pos;
1671         ins.type = BTRFS_EXTENT_DATA_KEY;
1672         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1673         BUG_ON(ret);
1674         leaf = path->nodes[0];
1675         fi = btrfs_item_ptr(leaf, path->slots[0],
1676                             struct btrfs_file_extent_item);
1677         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1678         btrfs_set_file_extent_type(leaf, fi, extent_type);
1679         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1680         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1681         btrfs_set_file_extent_offset(leaf, fi, 0);
1682         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1683         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1684         btrfs_set_file_extent_compression(leaf, fi, compression);
1685         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1686         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1687
1688         btrfs_unlock_up_safe(path, 1);
1689         btrfs_set_lock_blocking(leaf);
1690
1691         btrfs_mark_buffer_dirty(leaf);
1692
1693         inode_add_bytes(inode, num_bytes);
1694
1695         ins.objectid = disk_bytenr;
1696         ins.offset = disk_num_bytes;
1697         ins.type = BTRFS_EXTENT_ITEM_KEY;
1698         ret = btrfs_alloc_reserved_file_extent(trans, root,
1699                                         root->root_key.objectid,
1700                                         btrfs_ino(inode), file_pos, &ins);
1701         BUG_ON(ret);
1702         btrfs_free_path(path);
1703
1704         return 0;
1705 }
1706
1707 /*
1708  * helper function for btrfs_finish_ordered_io, this
1709  * just reads in some of the csum leaves to prime them into ram
1710  * before we start the transaction.  It limits the amount of btree
1711  * reads required while inside the transaction.
1712  */
1713 /* as ordered data IO finishes, this gets called so we can finish
1714  * an ordered extent if the range of bytes in the file it covers are
1715  * fully written.
1716  */
1717 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1718 {
1719         struct btrfs_root *root = BTRFS_I(inode)->root;
1720         struct btrfs_trans_handle *trans = NULL;
1721         struct btrfs_ordered_extent *ordered_extent = NULL;
1722         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1723         struct extent_state *cached_state = NULL;
1724         int compress_type = 0;
1725         int ret;
1726         bool nolock;
1727
1728         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1729                                              end - start + 1);
1730         if (!ret)
1731                 return 0;
1732         BUG_ON(!ordered_extent);
1733
1734         nolock = btrfs_is_free_space_inode(root, inode);
1735
1736         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1737                 BUG_ON(!list_empty(&ordered_extent->list));
1738                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1739                 if (!ret) {
1740                         if (nolock)
1741                                 trans = btrfs_join_transaction_nolock(root);
1742                         else
1743                                 trans = btrfs_join_transaction(root);
1744                         BUG_ON(IS_ERR(trans));
1745                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1746                         ret = btrfs_update_inode_fallback(trans, root, inode);
1747                         BUG_ON(ret);
1748                 }
1749                 goto out;
1750         }
1751
1752         lock_extent_bits(io_tree, ordered_extent->file_offset,
1753                          ordered_extent->file_offset + ordered_extent->len - 1,
1754                          0, &cached_state, GFP_NOFS);
1755
1756         if (nolock)
1757                 trans = btrfs_join_transaction_nolock(root);
1758         else
1759                 trans = btrfs_join_transaction(root);
1760         BUG_ON(IS_ERR(trans));
1761         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1762
1763         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1764                 compress_type = ordered_extent->compress_type;
1765         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1766                 BUG_ON(compress_type);
1767                 ret = btrfs_mark_extent_written(trans, inode,
1768                                                 ordered_extent->file_offset,
1769                                                 ordered_extent->file_offset +
1770                                                 ordered_extent->len);
1771                 BUG_ON(ret);
1772         } else {
1773                 BUG_ON(root == root->fs_info->tree_root);
1774                 ret = insert_reserved_file_extent(trans, inode,
1775                                                 ordered_extent->file_offset,
1776                                                 ordered_extent->start,
1777                                                 ordered_extent->disk_len,
1778                                                 ordered_extent->len,
1779                                                 ordered_extent->len,
1780                                                 compress_type, 0, 0,
1781                                                 BTRFS_FILE_EXTENT_REG);
1782                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1783                                    ordered_extent->file_offset,
1784                                    ordered_extent->len);
1785                 BUG_ON(ret);
1786         }
1787         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1788                              ordered_extent->file_offset +
1789                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1790
1791         add_pending_csums(trans, inode, ordered_extent->file_offset,
1792                           &ordered_extent->list);
1793
1794         ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1795         if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1796                 ret = btrfs_update_inode_fallback(trans, root, inode);
1797                 BUG_ON(ret);
1798         }
1799         ret = 0;
1800 out:
1801         if (root != root->fs_info->tree_root)
1802                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1803         if (trans) {
1804                 if (nolock)
1805                         btrfs_end_transaction_nolock(trans, root);
1806                 else
1807                         btrfs_end_transaction(trans, root);
1808         }
1809
1810         /* once for us */
1811         btrfs_put_ordered_extent(ordered_extent);
1812         /* once for the tree */
1813         btrfs_put_ordered_extent(ordered_extent);
1814
1815         return 0;
1816 }
1817
1818 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1819                                 struct extent_state *state, int uptodate)
1820 {
1821         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1822
1823         ClearPagePrivate2(page);
1824         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1825 }
1826
1827 /*
1828  * when reads are done, we need to check csums to verify the data is correct
1829  * if there's a match, we allow the bio to finish.  If not, the code in
1830  * extent_io.c will try to find good copies for us.
1831  */
1832 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1833                                struct extent_state *state)
1834 {
1835         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1836         struct inode *inode = page->mapping->host;
1837         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1838         char *kaddr;
1839         u64 private = ~(u32)0;
1840         int ret;
1841         struct btrfs_root *root = BTRFS_I(inode)->root;
1842         u32 csum = ~(u32)0;
1843
1844         if (PageChecked(page)) {
1845                 ClearPageChecked(page);
1846                 goto good;
1847         }
1848
1849         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1850                 goto good;
1851
1852         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1853             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1854                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1855                                   GFP_NOFS);
1856                 return 0;
1857         }
1858
1859         if (state && state->start == start) {
1860                 private = state->private;
1861                 ret = 0;
1862         } else {
1863                 ret = get_state_private(io_tree, start, &private);
1864         }
1865         kaddr = kmap_atomic(page, KM_USER0);
1866         if (ret)
1867                 goto zeroit;
1868
1869         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1870         btrfs_csum_final(csum, (char *)&csum);
1871         if (csum != private)
1872                 goto zeroit;
1873
1874         kunmap_atomic(kaddr, KM_USER0);
1875 good:
1876         return 0;
1877
1878 zeroit:
1879         printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1880                        "private %llu\n",
1881                        (unsigned long long)btrfs_ino(page->mapping->host),
1882                        (unsigned long long)start, csum,
1883                        (unsigned long long)private);
1884         memset(kaddr + offset, 1, end - start + 1);
1885         flush_dcache_page(page);
1886         kunmap_atomic(kaddr, KM_USER0);
1887         if (private == 0)
1888                 return 0;
1889         return -EIO;
1890 }
1891
1892 struct delayed_iput {
1893         struct list_head list;
1894         struct inode *inode;
1895 };
1896
1897 void btrfs_add_delayed_iput(struct inode *inode)
1898 {
1899         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1900         struct delayed_iput *delayed;
1901
1902         if (atomic_add_unless(&inode->i_count, -1, 1))
1903                 return;
1904
1905         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1906         delayed->inode = inode;
1907
1908         spin_lock(&fs_info->delayed_iput_lock);
1909         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1910         spin_unlock(&fs_info->delayed_iput_lock);
1911 }
1912
1913 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1914 {
1915         LIST_HEAD(list);
1916         struct btrfs_fs_info *fs_info = root->fs_info;
1917         struct delayed_iput *delayed;
1918         int empty;
1919
1920         spin_lock(&fs_info->delayed_iput_lock);
1921         empty = list_empty(&fs_info->delayed_iputs);
1922         spin_unlock(&fs_info->delayed_iput_lock);
1923         if (empty)
1924                 return;
1925
1926         down_read(&root->fs_info->cleanup_work_sem);
1927         spin_lock(&fs_info->delayed_iput_lock);
1928         list_splice_init(&fs_info->delayed_iputs, &list);
1929         spin_unlock(&fs_info->delayed_iput_lock);
1930
1931         while (!list_empty(&list)) {
1932                 delayed = list_entry(list.next, struct delayed_iput, list);
1933                 list_del(&delayed->list);
1934                 iput(delayed->inode);
1935                 kfree(delayed);
1936         }
1937         up_read(&root->fs_info->cleanup_work_sem);
1938 }
1939
1940 enum btrfs_orphan_cleanup_state {
1941         ORPHAN_CLEANUP_STARTED  = 1,
1942         ORPHAN_CLEANUP_DONE     = 2,
1943 };
1944
1945 /*
1946  * This is called in transaction commmit time. If there are no orphan
1947  * files in the subvolume, it removes orphan item and frees block_rsv
1948  * structure.
1949  */
1950 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1951                               struct btrfs_root *root)
1952 {
1953         int ret;
1954
1955         if (!list_empty(&root->orphan_list) ||
1956             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1957                 return;
1958
1959         if (root->orphan_item_inserted &&
1960             btrfs_root_refs(&root->root_item) > 0) {
1961                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1962                                             root->root_key.objectid);
1963                 BUG_ON(ret);
1964                 root->orphan_item_inserted = 0;
1965         }
1966
1967         if (root->orphan_block_rsv) {
1968                 WARN_ON(root->orphan_block_rsv->size > 0);
1969                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
1970                 root->orphan_block_rsv = NULL;
1971         }
1972 }
1973
1974 /*
1975  * This creates an orphan entry for the given inode in case something goes
1976  * wrong in the middle of an unlink/truncate.
1977  *
1978  * NOTE: caller of this function should reserve 5 units of metadata for
1979  *       this function.
1980  */
1981 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1982 {
1983         struct btrfs_root *root = BTRFS_I(inode)->root;
1984         struct btrfs_block_rsv *block_rsv = NULL;
1985         int reserve = 0;
1986         int insert = 0;
1987         int ret;
1988
1989         if (!root->orphan_block_rsv) {
1990                 block_rsv = btrfs_alloc_block_rsv(root);
1991                 if (!block_rsv)
1992                         return -ENOMEM;
1993         }
1994
1995         spin_lock(&root->orphan_lock);
1996         if (!root->orphan_block_rsv) {
1997                 root->orphan_block_rsv = block_rsv;
1998         } else if (block_rsv) {
1999                 btrfs_free_block_rsv(root, block_rsv);
2000                 block_rsv = NULL;
2001         }
2002
2003         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2004                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2005 #if 0
2006                 /*
2007                  * For proper ENOSPC handling, we should do orphan
2008                  * cleanup when mounting. But this introduces backward
2009                  * compatibility issue.
2010                  */
2011                 if (!xchg(&root->orphan_item_inserted, 1))
2012                         insert = 2;
2013                 else
2014                         insert = 1;
2015 #endif
2016                 insert = 1;
2017         }
2018
2019         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2020                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2021                 reserve = 1;
2022         }
2023         spin_unlock(&root->orphan_lock);
2024
2025         /* grab metadata reservation from transaction handle */
2026         if (reserve) {
2027                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2028                 BUG_ON(ret);
2029         }
2030
2031         /* insert an orphan item to track this unlinked/truncated file */
2032         if (insert >= 1) {
2033                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2034                 BUG_ON(ret);
2035         }
2036
2037         /* insert an orphan item to track subvolume contains orphan files */
2038         if (insert >= 2) {
2039                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2040                                                root->root_key.objectid);
2041                 BUG_ON(ret);
2042         }
2043         return 0;
2044 }
2045
2046 /*
2047  * We have done the truncate/delete so we can go ahead and remove the orphan
2048  * item for this particular inode.
2049  */
2050 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2051 {
2052         struct btrfs_root *root = BTRFS_I(inode)->root;
2053         int delete_item = 0;
2054         int release_rsv = 0;
2055         int ret = 0;
2056
2057         spin_lock(&root->orphan_lock);
2058         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2059                 list_del_init(&BTRFS_I(inode)->i_orphan);
2060                 delete_item = 1;
2061         }
2062
2063         if (BTRFS_I(inode)->orphan_meta_reserved) {
2064                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2065                 release_rsv = 1;
2066         }
2067         spin_unlock(&root->orphan_lock);
2068
2069         if (trans && delete_item) {
2070                 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2071                 BUG_ON(ret);
2072         }
2073
2074         if (release_rsv)
2075                 btrfs_orphan_release_metadata(inode);
2076
2077         return 0;
2078 }
2079
2080 /*
2081  * this cleans up any orphans that may be left on the list from the last use
2082  * of this root.
2083  */
2084 int btrfs_orphan_cleanup(struct btrfs_root *root)
2085 {
2086         struct btrfs_path *path;
2087         struct extent_buffer *leaf;
2088         struct btrfs_key key, found_key;
2089         struct btrfs_trans_handle *trans;
2090         struct inode *inode;
2091         u64 last_objectid = 0;
2092         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2093
2094         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2095                 return 0;
2096
2097         path = btrfs_alloc_path();
2098         if (!path) {
2099                 ret = -ENOMEM;
2100                 goto out;
2101         }
2102         path->reada = -1;
2103
2104         key.objectid = BTRFS_ORPHAN_OBJECTID;
2105         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2106         key.offset = (u64)-1;
2107
2108         while (1) {
2109                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2110                 if (ret < 0)
2111                         goto out;
2112
2113                 /*
2114                  * if ret == 0 means we found what we were searching for, which
2115                  * is weird, but possible, so only screw with path if we didn't
2116                  * find the key and see if we have stuff that matches
2117                  */
2118                 if (ret > 0) {
2119                         ret = 0;
2120                         if (path->slots[0] == 0)
2121                                 break;
2122                         path->slots[0]--;
2123                 }
2124
2125                 /* pull out the item */
2126                 leaf = path->nodes[0];
2127                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2128
2129                 /* make sure the item matches what we want */
2130                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2131                         break;
2132                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2133                         break;
2134
2135                 /* release the path since we're done with it */
2136                 btrfs_release_path(path);
2137
2138                 /*
2139                  * this is where we are basically btrfs_lookup, without the
2140                  * crossing root thing.  we store the inode number in the
2141                  * offset of the orphan item.
2142                  */
2143
2144                 if (found_key.offset == last_objectid) {
2145                         printk(KERN_ERR "btrfs: Error removing orphan entry, "
2146                                "stopping orphan cleanup\n");
2147                         ret = -EINVAL;
2148                         goto out;
2149                 }
2150
2151                 last_objectid = found_key.offset;
2152
2153                 found_key.objectid = found_key.offset;
2154                 found_key.type = BTRFS_INODE_ITEM_KEY;
2155                 found_key.offset = 0;
2156                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2157                 ret = PTR_RET(inode);
2158                 if (ret && ret != -ESTALE)
2159                         goto out;
2160
2161                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2162                         struct btrfs_root *dead_root;
2163                         struct btrfs_fs_info *fs_info = root->fs_info;
2164                         int is_dead_root = 0;
2165
2166                         /*
2167                          * this is an orphan in the tree root. Currently these
2168                          * could come from 2 sources:
2169                          *  a) a snapshot deletion in progress
2170                          *  b) a free space cache inode
2171                          * We need to distinguish those two, as the snapshot
2172                          * orphan must not get deleted.
2173                          * find_dead_roots already ran before us, so if this
2174                          * is a snapshot deletion, we should find the root
2175                          * in the dead_roots list
2176                          */
2177                         spin_lock(&fs_info->trans_lock);
2178                         list_for_each_entry(dead_root, &fs_info->dead_roots,
2179                                             root_list) {
2180                                 if (dead_root->root_key.objectid ==
2181                                     found_key.objectid) {
2182                                         is_dead_root = 1;
2183                                         break;
2184                                 }
2185                         }
2186                         spin_unlock(&fs_info->trans_lock);
2187                         if (is_dead_root) {
2188                                 /* prevent this orphan from being found again */
2189                                 key.offset = found_key.objectid - 1;
2190                                 continue;
2191                         }
2192                 }
2193                 /*
2194                  * Inode is already gone but the orphan item is still there,
2195                  * kill the orphan item.
2196                  */
2197                 if (ret == -ESTALE) {
2198                         trans = btrfs_start_transaction(root, 1);
2199                         if (IS_ERR(trans)) {
2200                                 ret = PTR_ERR(trans);
2201                                 goto out;
2202                         }
2203                         ret = btrfs_del_orphan_item(trans, root,
2204                                                     found_key.objectid);
2205                         BUG_ON(ret);
2206                         btrfs_end_transaction(trans, root);
2207                         continue;
2208                 }
2209
2210                 /*
2211                  * add this inode to the orphan list so btrfs_orphan_del does
2212                  * the proper thing when we hit it
2213                  */
2214                 spin_lock(&root->orphan_lock);
2215                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2216                 spin_unlock(&root->orphan_lock);
2217
2218                 /* if we have links, this was a truncate, lets do that */
2219                 if (inode->i_nlink) {
2220                         if (!S_ISREG(inode->i_mode)) {
2221                                 WARN_ON(1);
2222                                 iput(inode);
2223                                 continue;
2224                         }
2225                         nr_truncate++;
2226                         ret = btrfs_truncate(inode);
2227                 } else {
2228                         nr_unlink++;
2229                 }
2230
2231                 /* this will do delete_inode and everything for us */
2232                 iput(inode);
2233                 if (ret)
2234                         goto out;
2235         }
2236         /* release the path since we're done with it */
2237         btrfs_release_path(path);
2238
2239         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2240
2241         if (root->orphan_block_rsv)
2242                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2243                                         (u64)-1);
2244
2245         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2246                 trans = btrfs_join_transaction(root);
2247                 if (!IS_ERR(trans))
2248                         btrfs_end_transaction(trans, root);
2249         }
2250
2251         if (nr_unlink)
2252                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2253         if (nr_truncate)
2254                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2255
2256 out:
2257         if (ret)
2258                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2259         btrfs_free_path(path);
2260         return ret;
2261 }
2262
2263 /*
2264  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2265  * don't find any xattrs, we know there can't be any acls.
2266  *
2267  * slot is the slot the inode is in, objectid is the objectid of the inode
2268  */
2269 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2270                                           int slot, u64 objectid)
2271 {
2272         u32 nritems = btrfs_header_nritems(leaf);
2273         struct btrfs_key found_key;
2274         int scanned = 0;
2275
2276         slot++;
2277         while (slot < nritems) {
2278                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2279
2280                 /* we found a different objectid, there must not be acls */
2281                 if (found_key.objectid != objectid)
2282                         return 0;
2283
2284                 /* we found an xattr, assume we've got an acl */
2285                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2286                         return 1;
2287
2288                 /*
2289                  * we found a key greater than an xattr key, there can't
2290                  * be any acls later on
2291                  */
2292                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2293                         return 0;
2294
2295                 slot++;
2296                 scanned++;
2297
2298                 /*
2299                  * it goes inode, inode backrefs, xattrs, extents,
2300                  * so if there are a ton of hard links to an inode there can
2301                  * be a lot of backrefs.  Don't waste time searching too hard,
2302                  * this is just an optimization
2303                  */
2304                 if (scanned >= 8)
2305                         break;
2306         }
2307         /* we hit the end of the leaf before we found an xattr or
2308          * something larger than an xattr.  We have to assume the inode
2309          * has acls
2310          */
2311         return 1;
2312 }
2313
2314 /*
2315  * read an inode from the btree into the in-memory inode
2316  */
2317 static void btrfs_read_locked_inode(struct inode *inode)
2318 {
2319         struct btrfs_path *path;
2320         struct extent_buffer *leaf;
2321         struct btrfs_inode_item *inode_item;
2322         struct btrfs_timespec *tspec;
2323         struct btrfs_root *root = BTRFS_I(inode)->root;
2324         struct btrfs_key location;
2325         int maybe_acls;
2326         u32 rdev;
2327         int ret;
2328         bool filled = false;
2329
2330         ret = btrfs_fill_inode(inode, &rdev);
2331         if (!ret)
2332                 filled = true;
2333
2334         path = btrfs_alloc_path();
2335         if (!path)
2336                 goto make_bad;
2337
2338         path->leave_spinning = 1;
2339         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2340
2341         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2342         if (ret)
2343                 goto make_bad;
2344
2345         leaf = path->nodes[0];
2346
2347         if (filled)
2348                 goto cache_acl;
2349
2350         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2351                                     struct btrfs_inode_item);
2352         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2353         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2354         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2355         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2356         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2357
2358         tspec = btrfs_inode_atime(inode_item);
2359         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2360         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2361
2362         tspec = btrfs_inode_mtime(inode_item);
2363         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2364         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2365
2366         tspec = btrfs_inode_ctime(inode_item);
2367         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2368         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2369
2370         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2371         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2372         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2373         inode->i_generation = BTRFS_I(inode)->generation;
2374         inode->i_rdev = 0;
2375         rdev = btrfs_inode_rdev(leaf, inode_item);
2376
2377         BTRFS_I(inode)->index_cnt = (u64)-1;
2378         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2379 cache_acl:
2380         /*
2381          * try to precache a NULL acl entry for files that don't have
2382          * any xattrs or acls
2383          */
2384         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2385                                            btrfs_ino(inode));
2386         if (!maybe_acls)
2387                 cache_no_acl(inode);
2388
2389         btrfs_free_path(path);
2390
2391         switch (inode->i_mode & S_IFMT) {
2392         case S_IFREG:
2393                 inode->i_mapping->a_ops = &btrfs_aops;
2394                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2395                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2396                 inode->i_fop = &btrfs_file_operations;
2397                 inode->i_op = &btrfs_file_inode_operations;
2398                 break;
2399         case S_IFDIR:
2400                 inode->i_fop = &btrfs_dir_file_operations;
2401                 if (root == root->fs_info->tree_root)
2402                         inode->i_op = &btrfs_dir_ro_inode_operations;
2403                 else
2404                         inode->i_op = &btrfs_dir_inode_operations;
2405                 break;
2406         case S_IFLNK:
2407                 inode->i_op = &btrfs_symlink_inode_operations;
2408                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2409                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2410                 break;
2411         default:
2412                 inode->i_op = &btrfs_special_inode_operations;
2413                 init_special_inode(inode, inode->i_mode, rdev);
2414                 break;
2415         }
2416
2417         btrfs_update_iflags(inode);
2418         return;
2419
2420 make_bad:
2421         btrfs_free_path(path);
2422         make_bad_inode(inode);
2423 }
2424
2425 /*
2426  * given a leaf and an inode, copy the inode fields into the leaf
2427  */
2428 static void fill_inode_item(struct btrfs_trans_handle *trans,
2429                             struct extent_buffer *leaf,
2430                             struct btrfs_inode_item *item,
2431                             struct inode *inode)
2432 {
2433         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2434         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2435         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2436         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2437         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2438
2439         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2440                                inode->i_atime.tv_sec);
2441         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2442                                 inode->i_atime.tv_nsec);
2443
2444         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2445                                inode->i_mtime.tv_sec);
2446         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2447                                 inode->i_mtime.tv_nsec);
2448
2449         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2450                                inode->i_ctime.tv_sec);
2451         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2452                                 inode->i_ctime.tv_nsec);
2453
2454         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2455         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2456         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2457         btrfs_set_inode_transid(leaf, item, trans->transid);
2458         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2459         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2460         btrfs_set_inode_block_group(leaf, item, 0);
2461 }
2462
2463 /*
2464  * copy everything in the in-memory inode into the btree.
2465  */
2466 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2467                                 struct btrfs_root *root, struct inode *inode)
2468 {
2469         struct btrfs_inode_item *inode_item;
2470         struct btrfs_path *path;
2471         struct extent_buffer *leaf;
2472         int ret;
2473
2474         path = btrfs_alloc_path();
2475         if (!path)
2476                 return -ENOMEM;
2477
2478         path->leave_spinning = 1;
2479         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2480                                  1);
2481         if (ret) {
2482                 if (ret > 0)
2483                         ret = -ENOENT;
2484                 goto failed;
2485         }
2486
2487         btrfs_unlock_up_safe(path, 1);
2488         leaf = path->nodes[0];
2489         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2490                                     struct btrfs_inode_item);
2491
2492         fill_inode_item(trans, leaf, inode_item, inode);
2493         btrfs_mark_buffer_dirty(leaf);
2494         btrfs_set_inode_last_trans(trans, inode);
2495         ret = 0;
2496 failed:
2497         btrfs_free_path(path);
2498         return ret;
2499 }
2500
2501 /*
2502  * copy everything in the in-memory inode into the btree.
2503  */
2504 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2505                                 struct btrfs_root *root, struct inode *inode)
2506 {
2507         int ret;
2508
2509         /*
2510          * If the inode is a free space inode, we can deadlock during commit
2511          * if we put it into the delayed code.
2512          *
2513          * The data relocation inode should also be directly updated
2514          * without delay
2515          */
2516         if (!btrfs_is_free_space_inode(root, inode)
2517             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2518                 ret = btrfs_delayed_update_inode(trans, root, inode);
2519                 if (!ret)
2520                         btrfs_set_inode_last_trans(trans, inode);
2521                 return ret;
2522         }
2523
2524         return btrfs_update_inode_item(trans, root, inode);
2525 }
2526
2527 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2528                                 struct btrfs_root *root, struct inode *inode)
2529 {
2530         int ret;
2531
2532         ret = btrfs_update_inode(trans, root, inode);
2533         if (ret == -ENOSPC)
2534                 return btrfs_update_inode_item(trans, root, inode);
2535         return ret;
2536 }
2537
2538 /*
2539  * unlink helper that gets used here in inode.c and in the tree logging
2540  * recovery code.  It remove a link in a directory with a given name, and
2541  * also drops the back refs in the inode to the directory
2542  */
2543 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2544                                 struct btrfs_root *root,
2545                                 struct inode *dir, struct inode *inode,
2546                                 const char *name, int name_len)
2547 {
2548         struct btrfs_path *path;
2549         int ret = 0;
2550         struct extent_buffer *leaf;
2551         struct btrfs_dir_item *di;
2552         struct btrfs_key key;
2553         u64 index;
2554         u64 ino = btrfs_ino(inode);
2555         u64 dir_ino = btrfs_ino(dir);
2556
2557         path = btrfs_alloc_path();
2558         if (!path) {
2559                 ret = -ENOMEM;
2560                 goto out;
2561         }
2562
2563         path->leave_spinning = 1;
2564         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2565                                     name, name_len, -1);
2566         if (IS_ERR(di)) {
2567                 ret = PTR_ERR(di);
2568                 goto err;
2569         }
2570         if (!di) {
2571                 ret = -ENOENT;
2572                 goto err;
2573         }
2574         leaf = path->nodes[0];
2575         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2576         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2577         if (ret)
2578                 goto err;
2579         btrfs_release_path(path);
2580
2581         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2582                                   dir_ino, &index);
2583         if (ret) {
2584                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2585                        "inode %llu parent %llu\n", name_len, name,
2586                        (unsigned long long)ino, (unsigned long long)dir_ino);
2587                 goto err;
2588         }
2589
2590         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2591         if (ret)
2592                 goto err;
2593
2594         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2595                                          inode, dir_ino);
2596         BUG_ON(ret != 0 && ret != -ENOENT);
2597
2598         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2599                                            dir, index);
2600         if (ret == -ENOENT)
2601                 ret = 0;
2602 err:
2603         btrfs_free_path(path);
2604         if (ret)
2605                 goto out;
2606
2607         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2608         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2609         btrfs_update_inode(trans, root, dir);
2610 out:
2611         return ret;
2612 }
2613
2614 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2615                        struct btrfs_root *root,
2616                        struct inode *dir, struct inode *inode,
2617                        const char *name, int name_len)
2618 {
2619         int ret;
2620         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2621         if (!ret) {
2622                 btrfs_drop_nlink(inode);
2623                 ret = btrfs_update_inode(trans, root, inode);
2624         }
2625         return ret;
2626 }
2627                 
2628
2629 /* helper to check if there is any shared block in the path */
2630 static int check_path_shared(struct btrfs_root *root,
2631                              struct btrfs_path *path)
2632 {
2633         struct extent_buffer *eb;
2634         int level;
2635         u64 refs = 1;
2636
2637         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2638                 int ret;
2639
2640                 if (!path->nodes[level])
2641                         break;
2642                 eb = path->nodes[level];
2643                 if (!btrfs_block_can_be_shared(root, eb))
2644                         continue;
2645                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2646                                                &refs, NULL);
2647                 if (refs > 1)
2648                         return 1;
2649         }
2650         return 0;
2651 }
2652
2653 /*
2654  * helper to start transaction for unlink and rmdir.
2655  *
2656  * unlink and rmdir are special in btrfs, they do not always free space.
2657  * so in enospc case, we should make sure they will free space before
2658  * allowing them to use the global metadata reservation.
2659  */
2660 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2661                                                        struct dentry *dentry)
2662 {
2663         struct btrfs_trans_handle *trans;
2664         struct btrfs_root *root = BTRFS_I(dir)->root;
2665         struct btrfs_path *path;
2666         struct btrfs_inode_ref *ref;
2667         struct btrfs_dir_item *di;
2668         struct inode *inode = dentry->d_inode;
2669         u64 index;
2670         int check_link = 1;
2671         int err = -ENOSPC;
2672         int ret;
2673         u64 ino = btrfs_ino(inode);
2674         u64 dir_ino = btrfs_ino(dir);
2675
2676         /*
2677          * 1 for the possible orphan item
2678          * 1 for the dir item
2679          * 1 for the dir index
2680          * 1 for the inode ref
2681          * 1 for the inode ref in the tree log
2682          * 2 for the dir entries in the log
2683          * 1 for the inode
2684          */
2685         trans = btrfs_start_transaction(root, 8);
2686         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2687                 return trans;
2688
2689         if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2690                 return ERR_PTR(-ENOSPC);
2691
2692         /* check if there is someone else holds reference */
2693         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2694                 return ERR_PTR(-ENOSPC);
2695
2696         if (atomic_read(&inode->i_count) > 2)
2697                 return ERR_PTR(-ENOSPC);
2698
2699         if (xchg(&root->fs_info->enospc_unlink, 1))
2700                 return ERR_PTR(-ENOSPC);
2701
2702         path = btrfs_alloc_path();
2703         if (!path) {
2704                 root->fs_info->enospc_unlink = 0;
2705                 return ERR_PTR(-ENOMEM);
2706         }
2707
2708         /* 1 for the orphan item */
2709         trans = btrfs_start_transaction(root, 1);
2710         if (IS_ERR(trans)) {
2711                 btrfs_free_path(path);
2712                 root->fs_info->enospc_unlink = 0;
2713                 return trans;
2714         }
2715
2716         path->skip_locking = 1;
2717         path->search_commit_root = 1;
2718
2719         ret = btrfs_lookup_inode(trans, root, path,
2720                                 &BTRFS_I(dir)->location, 0);
2721         if (ret < 0) {
2722                 err = ret;
2723                 goto out;
2724         }
2725         if (ret == 0) {
2726                 if (check_path_shared(root, path))
2727                         goto out;
2728         } else {
2729                 check_link = 0;
2730         }
2731         btrfs_release_path(path);
2732
2733         ret = btrfs_lookup_inode(trans, root, path,
2734                                 &BTRFS_I(inode)->location, 0);
2735         if (ret < 0) {
2736                 err = ret;
2737                 goto out;
2738         }
2739         if (ret == 0) {
2740                 if (check_path_shared(root, path))
2741                         goto out;
2742         } else {
2743                 check_link = 0;
2744         }
2745         btrfs_release_path(path);
2746
2747         if (ret == 0 && S_ISREG(inode->i_mode)) {
2748                 ret = btrfs_lookup_file_extent(trans, root, path,
2749                                                ino, (u64)-1, 0);
2750                 if (ret < 0) {
2751                         err = ret;
2752                         goto out;
2753                 }
2754                 BUG_ON(ret == 0);
2755                 if (check_path_shared(root, path))
2756                         goto out;
2757                 btrfs_release_path(path);
2758         }
2759
2760         if (!check_link) {
2761                 err = 0;
2762                 goto out;
2763         }
2764
2765         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2766                                 dentry->d_name.name, dentry->d_name.len, 0);
2767         if (IS_ERR(di)) {
2768                 err = PTR_ERR(di);
2769                 goto out;
2770         }
2771         if (di) {
2772                 if (check_path_shared(root, path))
2773                         goto out;
2774         } else {
2775                 err = 0;
2776                 goto out;
2777         }
2778         btrfs_release_path(path);
2779
2780         ref = btrfs_lookup_inode_ref(trans, root, path,
2781                                 dentry->d_name.name, dentry->d_name.len,
2782                                 ino, dir_ino, 0);
2783         if (IS_ERR(ref)) {
2784                 err = PTR_ERR(ref);
2785                 goto out;
2786         }
2787         BUG_ON(!ref);
2788         if (check_path_shared(root, path))
2789                 goto out;
2790         index = btrfs_inode_ref_index(path->nodes[0], ref);
2791         btrfs_release_path(path);
2792
2793         /*
2794          * This is a commit root search, if we can lookup inode item and other
2795          * relative items in the commit root, it means the transaction of
2796          * dir/file creation has been committed, and the dir index item that we
2797          * delay to insert has also been inserted into the commit root. So
2798          * we needn't worry about the delayed insertion of the dir index item
2799          * here.
2800          */
2801         di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2802                                 dentry->d_name.name, dentry->d_name.len, 0);
2803         if (IS_ERR(di)) {
2804                 err = PTR_ERR(di);
2805                 goto out;
2806         }
2807         BUG_ON(ret == -ENOENT);
2808         if (check_path_shared(root, path))
2809                 goto out;
2810
2811         err = 0;
2812 out:
2813         btrfs_free_path(path);
2814         /* Migrate the orphan reservation over */
2815         if (!err)
2816                 err = btrfs_block_rsv_migrate(trans->block_rsv,
2817                                 &root->fs_info->global_block_rsv,
2818                                 trans->bytes_reserved);
2819
2820         if (err) {
2821                 btrfs_end_transaction(trans, root);
2822                 root->fs_info->enospc_unlink = 0;
2823                 return ERR_PTR(err);
2824         }
2825
2826         trans->block_rsv = &root->fs_info->global_block_rsv;
2827         return trans;
2828 }
2829
2830 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2831                                struct btrfs_root *root)
2832 {
2833         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2834                 btrfs_block_rsv_release(root, trans->block_rsv,
2835                                         trans->bytes_reserved);
2836                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2837                 BUG_ON(!root->fs_info->enospc_unlink);
2838                 root->fs_info->enospc_unlink = 0;
2839         }
2840         btrfs_end_transaction_throttle(trans, root);
2841 }
2842
2843 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2844 {
2845         struct btrfs_root *root = BTRFS_I(dir)->root;
2846         struct btrfs_trans_handle *trans;
2847         struct inode *inode = dentry->d_inode;
2848         int ret;
2849         unsigned long nr = 0;
2850
2851         trans = __unlink_start_trans(dir, dentry);
2852         if (IS_ERR(trans))
2853                 return PTR_ERR(trans);
2854
2855         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2856
2857         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2858                                  dentry->d_name.name, dentry->d_name.len);
2859         if (ret)
2860                 goto out;
2861
2862         if (inode->i_nlink == 0) {
2863                 ret = btrfs_orphan_add(trans, inode);
2864                 if (ret)
2865                         goto out;
2866         }
2867
2868 out:
2869         nr = trans->blocks_used;
2870         __unlink_end_trans(trans, root);
2871         btrfs_btree_balance_dirty(root, nr);
2872         return ret;
2873 }
2874
2875 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2876                         struct btrfs_root *root,
2877                         struct inode *dir, u64 objectid,
2878                         const char *name, int name_len)
2879 {
2880         struct btrfs_path *path;
2881         struct extent_buffer *leaf;
2882         struct btrfs_dir_item *di;
2883         struct btrfs_key key;
2884         u64 index;
2885         int ret;
2886         u64 dir_ino = btrfs_ino(dir);
2887
2888         path = btrfs_alloc_path();
2889         if (!path)
2890                 return -ENOMEM;
2891
2892         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2893                                    name, name_len, -1);
2894         BUG_ON(IS_ERR_OR_NULL(di));
2895
2896         leaf = path->nodes[0];
2897         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2898         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2899         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2900         BUG_ON(ret);
2901         btrfs_release_path(path);
2902
2903         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2904                                  objectid, root->root_key.objectid,
2905                                  dir_ino, &index, name, name_len);
2906         if (ret < 0) {
2907                 BUG_ON(ret != -ENOENT);
2908                 di = btrfs_search_dir_index_item(root, path, dir_ino,
2909                                                  name, name_len);
2910                 BUG_ON(IS_ERR_OR_NULL(di));
2911
2912                 leaf = path->nodes[0];
2913                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2914                 btrfs_release_path(path);
2915                 index = key.offset;
2916         }
2917         btrfs_release_path(path);
2918
2919         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2920         BUG_ON(ret);
2921
2922         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2923         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2924         ret = btrfs_update_inode(trans, root, dir);
2925         BUG_ON(ret);
2926
2927         btrfs_free_path(path);
2928         return 0;
2929 }
2930
2931 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2932 {
2933         struct inode *inode = dentry->d_inode;
2934         int err = 0;
2935         struct btrfs_root *root = BTRFS_I(dir)->root;
2936         struct btrfs_trans_handle *trans;
2937         unsigned long nr = 0;
2938
2939         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2940             btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
2941                 return -ENOTEMPTY;
2942
2943         trans = __unlink_start_trans(dir, dentry);
2944         if (IS_ERR(trans))
2945                 return PTR_ERR(trans);
2946
2947         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2948                 err = btrfs_unlink_subvol(trans, root, dir,
2949                                           BTRFS_I(inode)->location.objectid,
2950                                           dentry->d_name.name,
2951                                           dentry->d_name.len);
2952                 goto out;
2953         }
2954
2955         err = btrfs_orphan_add(trans, inode);
2956         if (err)
2957                 goto out;
2958
2959         /* now the directory is empty */
2960         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2961                                  dentry->d_name.name, dentry->d_name.len);
2962         if (!err)
2963                 btrfs_i_size_write(inode, 0);
2964 out:
2965         nr = trans->blocks_used;
2966         __unlink_end_trans(trans, root);
2967         btrfs_btree_balance_dirty(root, nr);
2968
2969         return err;
2970 }
2971
2972 /*
2973  * this can truncate away extent items, csum items and directory items.
2974  * It starts at a high offset and removes keys until it can't find
2975  * any higher than new_size
2976  *
2977  * csum items that cross the new i_size are truncated to the new size
2978  * as well.
2979  *
2980  * min_type is the minimum key type to truncate down to.  If set to 0, this
2981  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2982  */
2983 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2984                                struct btrfs_root *root,
2985                                struct inode *inode,
2986                                u64 new_size, u32 min_type)
2987 {
2988         struct btrfs_path *path;
2989         struct extent_buffer *leaf;
2990         struct btrfs_file_extent_item *fi;
2991         struct btrfs_key key;
2992         struct btrfs_key found_key;
2993         u64 extent_start = 0;
2994         u64 extent_num_bytes = 0;
2995         u64 extent_offset = 0;
2996         u64 item_end = 0;
2997         u64 mask = root->sectorsize - 1;
2998         u32 found_type = (u8)-1;
2999         int found_extent;
3000         int del_item;
3001         int pending_del_nr = 0;
3002         int pending_del_slot = 0;
3003         int extent_type = -1;
3004         int encoding;
3005         int ret;
3006         int err = 0;
3007         u64 ino = btrfs_ino(inode);
3008
3009         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3010
3011         path = btrfs_alloc_path();
3012         if (!path)
3013                 return -ENOMEM;
3014         path->reada = -1;
3015
3016         if (root->ref_cows || root == root->fs_info->tree_root)
3017                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3018
3019         /*
3020          * This function is also used to drop the items in the log tree before
3021          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3022          * it is used to drop the loged items. So we shouldn't kill the delayed
3023          * items.
3024          */
3025         if (min_type == 0 && root == BTRFS_I(inode)->root)
3026                 btrfs_kill_delayed_inode_items(inode);
3027
3028         key.objectid = ino;
3029         key.offset = (u64)-1;
3030         key.type = (u8)-1;
3031
3032 search_again:
3033         path->leave_spinning = 1;
3034         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3035         if (ret < 0) {
3036                 err = ret;
3037                 goto out;
3038         }
3039
3040         if (ret > 0) {
3041                 /* there are no items in the tree for us to truncate, we're
3042                  * done
3043                  */
3044                 if (path->slots[0] == 0)
3045                         goto out;
3046                 path->slots[0]--;
3047         }
3048
3049         while (1) {
3050                 fi = NULL;
3051                 leaf = path->nodes[0];
3052                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3053                 found_type = btrfs_key_type(&found_key);
3054                 encoding = 0;
3055
3056                 if (found_key.objectid != ino)
3057                         break;
3058
3059                 if (found_type < min_type)
3060                         break;
3061
3062                 item_end = found_key.offset;
3063                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3064                         fi = btrfs_item_ptr(leaf, path->slots[0],
3065                                             struct btrfs_file_extent_item);
3066                         extent_type = btrfs_file_extent_type(leaf, fi);
3067                         encoding = btrfs_file_extent_compression(leaf, fi);
3068                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3069                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3070
3071                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3072                                 item_end +=
3073                                     btrfs_file_extent_num_bytes(leaf, fi);
3074                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3075                                 item_end += btrfs_file_extent_inline_len(leaf,
3076                                                                          fi);
3077                         }
3078                         item_end--;
3079                 }
3080                 if (found_type > min_type) {
3081                         del_item = 1;
3082                 } else {
3083                         if (item_end < new_size)
3084                                 break;
3085                         if (found_key.offset >= new_size)
3086                                 del_item = 1;
3087                         else
3088                                 del_item = 0;
3089                 }
3090                 found_extent = 0;
3091                 /* FIXME, shrink the extent if the ref count is only 1 */
3092                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3093                         goto delete;
3094
3095                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3096                         u64 num_dec;
3097                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3098                         if (!del_item && !encoding) {
3099                                 u64 orig_num_bytes =
3100                                         btrfs_file_extent_num_bytes(leaf, fi);
3101                                 extent_num_bytes = new_size -
3102                                         found_key.offset + root->sectorsize - 1;
3103                                 extent_num_bytes = extent_num_bytes &
3104                                         ~((u64)root->sectorsize - 1);
3105                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3106                                                          extent_num_bytes);
3107                                 num_dec = (orig_num_bytes -
3108                                            extent_num_bytes);
3109                                 if (root->ref_cows && extent_start != 0)
3110                                         inode_sub_bytes(inode, num_dec);
3111                                 btrfs_mark_buffer_dirty(leaf);
3112                         } else {
3113                                 extent_num_bytes =
3114                                         btrfs_file_extent_disk_num_bytes(leaf,
3115                                                                          fi);
3116                                 extent_offset = found_key.offset -
3117                                         btrfs_file_extent_offset(leaf, fi);
3118
3119                                 /* FIXME blocksize != 4096 */
3120                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3121                                 if (extent_start != 0) {
3122                                         found_extent = 1;
3123                                         if (root->ref_cows)
3124                                                 inode_sub_bytes(inode, num_dec);
3125                                 }
3126                         }
3127                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3128                         /*
3129                          * we can't truncate inline items that have had
3130                          * special encodings
3131                          */
3132                         if (!del_item &&
3133                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3134                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3135                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3136                                 u32 size = new_size - found_key.offset;
3137
3138                                 if (root->ref_cows) {
3139                                         inode_sub_bytes(inode, item_end + 1 -
3140                                                         new_size);
3141                                 }
3142                                 size =
3143                                     btrfs_file_extent_calc_inline_size(size);
3144                                 ret = btrfs_truncate_item(trans, root, path,
3145                                                           size, 1);
3146                         } else if (root->ref_cows) {
3147                                 inode_sub_bytes(inode, item_end + 1 -
3148                                                 found_key.offset);
3149                         }
3150                 }
3151 delete:
3152                 if (del_item) {
3153                         if (!pending_del_nr) {
3154                                 /* no pending yet, add ourselves */
3155                                 pending_del_slot = path->slots[0];
3156                                 pending_del_nr = 1;
3157                         } else if (pending_del_nr &&
3158                                    path->slots[0] + 1 == pending_del_slot) {
3159                                 /* hop on the pending chunk */
3160                                 pending_del_nr++;
3161                                 pending_del_slot = path->slots[0];
3162                         } else {
3163                                 BUG();
3164                         }
3165                 } else {
3166                         break;
3167                 }
3168                 if (found_extent && (root->ref_cows ||
3169                                      root == root->fs_info->tree_root)) {
3170                         btrfs_set_path_blocking(path);
3171                         ret = btrfs_free_extent(trans, root, extent_start,
3172                                                 extent_num_bytes, 0,
3173                                                 btrfs_header_owner(leaf),
3174                                                 ino, extent_offset);
3175                         BUG_ON(ret);
3176                 }
3177
3178                 if (found_type == BTRFS_INODE_ITEM_KEY)
3179                         break;
3180
3181                 if (path->slots[0] == 0 ||
3182                     path->slots[0] != pending_del_slot) {
3183                         if (root->ref_cows &&
3184                             BTRFS_I(inode)->location.objectid !=
3185                                                 BTRFS_FREE_INO_OBJECTID) {
3186                                 err = -EAGAIN;
3187                                 goto out;
3188                         }
3189                         if (pending_del_nr) {
3190                                 ret = btrfs_del_items(trans, root, path,
3191                                                 pending_del_slot,
3192                                                 pending_del_nr);
3193                                 BUG_ON(ret);
3194                                 pending_del_nr = 0;
3195                         }
3196                         btrfs_release_path(path);
3197                         goto search_again;
3198                 } else {
3199                         path->slots[0]--;
3200                 }
3201         }
3202 out:
3203         if (pending_del_nr) {
3204                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3205                                       pending_del_nr);
3206                 BUG_ON(ret);
3207         }
3208         btrfs_free_path(path);
3209         return err;
3210 }
3211
3212 /*
3213  * taken from block_truncate_page, but does cow as it zeros out
3214  * any bytes left in the last page in the file.
3215  */
3216 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3217 {
3218         struct inode *inode = mapping->host;
3219         struct btrfs_root *root = BTRFS_I(inode)->root;
3220         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3221         struct btrfs_ordered_extent *ordered;
3222         struct extent_state *cached_state = NULL;
3223         char *kaddr;
3224         u32 blocksize = root->sectorsize;
3225         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3226         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3227         struct page *page;
3228         gfp_t mask = btrfs_alloc_write_mask(mapping);
3229         int ret = 0;
3230         u64 page_start;
3231         u64 page_end;
3232
3233         if ((offset & (blocksize - 1)) == 0)
3234                 goto out;
3235         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3236         if (ret)
3237                 goto out;
3238
3239         ret = -ENOMEM;
3240 again:
3241         page = find_or_create_page(mapping, index, mask);
3242         if (!page) {
3243                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3244                 goto out;
3245         }
3246
3247         page_start = page_offset(page);
3248         page_end = page_start + PAGE_CACHE_SIZE - 1;
3249
3250         if (!PageUptodate(page)) {
3251                 ret = btrfs_readpage(NULL, page);
3252                 lock_page(page);
3253                 if (page->mapping != mapping) {
3254                         unlock_page(page);
3255                         page_cache_release(page);
3256                         goto again;
3257                 }
3258                 if (!PageUptodate(page)) {
3259                         ret = -EIO;
3260                         goto out_unlock;
3261                 }
3262         }
3263         wait_on_page_writeback(page);
3264
3265         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3266                          GFP_NOFS);
3267         set_page_extent_mapped(page);
3268
3269         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3270         if (ordered) {
3271                 unlock_extent_cached(io_tree, page_start, page_end,
3272                                      &cached_state, GFP_NOFS);
3273                 unlock_page(page);
3274                 page_cache_release(page);
3275                 btrfs_start_ordered_extent(inode, ordered, 1);
3276                 btrfs_put_ordered_extent(ordered);
3277                 goto again;
3278         }
3279
3280         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3281                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3282                           0, 0, &cached_state, GFP_NOFS);
3283
3284         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3285                                         &cached_state);
3286         if (ret) {
3287                 unlock_extent_cached(io_tree, page_start, page_end,
3288                                      &cached_state, GFP_NOFS);
3289                 goto out_unlock;
3290         }
3291
3292         ret = 0;
3293         if (offset != PAGE_CACHE_SIZE) {
3294                 kaddr = kmap(page);
3295                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3296                 flush_dcache_page(page);
3297                 kunmap(page);
3298         }
3299         ClearPageChecked(page);
3300         set_page_dirty(page);
3301         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3302                              GFP_NOFS);
3303
3304 out_unlock:
3305         if (ret)
3306                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3307         unlock_page(page);
3308         page_cache_release(page);
3309 out:
3310         return ret;
3311 }
3312
3313 /*
3314  * This function puts in dummy file extents for the area we're creating a hole
3315  * for.  So if we are truncating this file to a larger size we need to insert
3316  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3317  * the range between oldsize and size
3318  */
3319 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3320 {
3321         struct btrfs_trans_handle *trans;
3322         struct btrfs_root *root = BTRFS_I(inode)->root;
3323         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3324         struct extent_map *em = NULL;
3325         struct extent_state *cached_state = NULL;
3326         u64 mask = root->sectorsize - 1;
3327         u64 hole_start = (oldsize + mask) & ~mask;
3328         u64 block_end = (size + mask) & ~mask;
3329         u64 last_byte;
3330         u64 cur_offset;
3331         u64 hole_size;
3332         int err = 0;
3333
3334         if (size <= hole_start)
3335                 return 0;
3336
3337         while (1) {
3338                 struct btrfs_ordered_extent *ordered;
3339                 btrfs_wait_ordered_range(inode, hole_start,
3340                                          block_end - hole_start);
3341                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3342                                  &cached_state, GFP_NOFS);
3343                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3344                 if (!ordered)
3345                         break;
3346                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3347                                      &cached_state, GFP_NOFS);
3348                 btrfs_put_ordered_extent(ordered);
3349         }
3350
3351         cur_offset = hole_start;
3352         while (1) {
3353                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3354                                 block_end - cur_offset, 0);
3355                 BUG_ON(IS_ERR_OR_NULL(em));
3356                 last_byte = min(extent_map_end(em), block_end);
3357                 last_byte = (last_byte + mask) & ~mask;
3358                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3359                         u64 hint_byte = 0;
3360                         hole_size = last_byte - cur_offset;
3361
3362                         trans = btrfs_start_transaction(root, 3);
3363                         if (IS_ERR(trans)) {
3364                                 err = PTR_ERR(trans);
3365                                 break;
3366                         }
3367
3368                         err = btrfs_drop_extents(trans, inode, cur_offset,
3369                                                  cur_offset + hole_size,
3370                                                  &hint_byte, 1);
3371                         if (err) {
3372                                 btrfs_update_inode(trans, root, inode);
3373                                 btrfs_end_transaction(trans, root);
3374                                 break;
3375                         }
3376
3377                         err = btrfs_insert_file_extent(trans, root,
3378                                         btrfs_ino(inode), cur_offset, 0,
3379                                         0, hole_size, 0, hole_size,
3380                                         0, 0, 0);
3381                         if (err) {
3382                                 btrfs_update_inode(trans, root, inode);
3383                                 btrfs_end_transaction(trans, root);
3384                                 break;
3385                         }
3386
3387                         btrfs_drop_extent_cache(inode, hole_start,
3388                                         last_byte - 1, 0);
3389
3390                         btrfs_update_inode(trans, root, inode);
3391                         btrfs_end_transaction(trans, root);
3392                 }
3393                 free_extent_map(em);
3394                 em = NULL;
3395                 cur_offset = last_byte;
3396                 if (cur_offset >= block_end)
3397                         break;
3398         }
3399
3400         free_extent_map(em);
3401         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3402                              GFP_NOFS);
3403         return err;
3404 }
3405
3406 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3407 {
3408         struct btrfs_root *root = BTRFS_I(inode)->root;
3409         struct btrfs_trans_handle *trans;
3410         loff_t oldsize = i_size_read(inode);
3411         int ret;
3412
3413         if (newsize == oldsize)
3414                 return 0;
3415
3416         if (newsize > oldsize) {
3417                 truncate_pagecache(inode, oldsize, newsize);
3418                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3419                 if (ret)
3420                         return ret;
3421
3422                 trans = btrfs_start_transaction(root, 1);
3423                 if (IS_ERR(trans))
3424                         return PTR_ERR(trans);
3425
3426                 i_size_write(inode, newsize);
3427                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3428                 ret = btrfs_update_inode(trans, root, inode);
3429
3430                 btrfs_end_transaction_throttle(trans, root);
3431         } else {
3432
3433                 /*
3434                  * We're truncating a file that used to have good data down to
3435                  * zero. Make sure it gets into the ordered flush list so that
3436                  * any new writes get down to disk quickly.
3437                  */
3438                 if (newsize == 0)
3439                         BTRFS_I(inode)->ordered_data_close = 1;
3440
3441                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3442                 truncate_setsize(inode, newsize);
3443                 ret = btrfs_truncate(inode);
3444         }
3445
3446         return ret;
3447 }
3448
3449 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3450 {
3451         struct inode *inode = dentry->d_inode;
3452         struct btrfs_root *root = BTRFS_I(inode)->root;
3453         int err;
3454
3455         if (btrfs_root_readonly(root))
3456                 return -EROFS;
3457
3458         err = inode_change_ok(inode, attr);
3459         if (err)
3460                 return err;
3461
3462         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3463                 err = btrfs_setsize(inode, attr->ia_size);
3464                 if (err)
3465                         return err;
3466         }
3467
3468         if (attr->ia_valid) {
3469                 setattr_copy(inode, attr);
3470                 mark_inode_dirty(inode);
3471
3472                 if (attr->ia_valid & ATTR_MODE)
3473                         err = btrfs_acl_chmod(inode);
3474         }
3475
3476         return err;
3477 }
3478
3479 void btrfs_evict_inode(struct inode *inode)
3480 {
3481         struct btrfs_trans_handle *trans;
3482         struct btrfs_root *root = BTRFS_I(inode)->root;
3483         struct btrfs_block_rsv *rsv, *global_rsv;
3484         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3485         unsigned long nr;
3486         int ret;
3487
3488         trace_btrfs_inode_evict(inode);
3489
3490         truncate_inode_pages(&inode->i_data, 0);
3491         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3492                                btrfs_is_free_space_inode(root, inode)))
3493                 goto no_delete;
3494
3495         if (is_bad_inode(inode)) {
3496                 btrfs_orphan_del(NULL, inode);
3497                 goto no_delete;
3498         }
3499         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3500         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3501
3502         if (root->fs_info->log_root_recovering) {
3503                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3504                 goto no_delete;
3505         }
3506
3507         if (inode->i_nlink > 0) {
3508                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3509                 goto no_delete;
3510         }
3511
3512         rsv = btrfs_alloc_block_rsv(root);
3513         if (!rsv) {
3514                 btrfs_orphan_del(NULL, inode);
3515                 goto no_delete;
3516         }
3517         rsv->size = min_size;
3518         global_rsv = &root->fs_info->global_block_rsv;
3519
3520         btrfs_i_size_write(inode, 0);
3521
3522         /*
3523          * This is a bit simpler than btrfs_truncate since
3524          *
3525          * 1) We've already reserved our space for our orphan item in the
3526          *    unlink.
3527          * 2) We're going to delete the inode item, so we don't need to update
3528          *    it at all.
3529          *
3530          * So we just need to reserve some slack space in case we add bytes when
3531          * doing the truncate.
3532          */
3533         while (1) {
3534                 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3535
3536                 /*
3537                  * Try and steal from the global reserve since we will
3538                  * likely not use this space anyway, we want to try as
3539                  * hard as possible to get this to work.
3540                  */
3541                 if (ret)
3542                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3543
3544                 if (ret) {
3545                         printk(KERN_WARNING "Could not get space for a "
3546                                "delete, will truncate on mount %d\n", ret);
3547                         btrfs_orphan_del(NULL, inode);
3548                         btrfs_free_block_rsv(root, rsv);
3549                         goto no_delete;
3550                 }
3551
3552                 trans = btrfs_start_transaction(root, 0);
3553                 if (IS_ERR(trans)) {
3554                         btrfs_orphan_del(NULL, inode);
3555                         btrfs_free_block_rsv(root, rsv);
3556                         goto no_delete;
3557                 }
3558
3559                 trans->block_rsv = rsv;
3560
3561                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3562                 if (ret != -EAGAIN)
3563                         break;
3564
3565                 nr = trans->blocks_used;
3566                 btrfs_end_transaction(trans, root);
3567                 trans = NULL;
3568                 btrfs_btree_balance_dirty(root, nr);
3569         }
3570
3571         btrfs_free_block_rsv(root, rsv);
3572
3573         if (ret == 0) {
3574                 trans->block_rsv = root->orphan_block_rsv;
3575                 ret = btrfs_orphan_del(trans, inode);
3576                 BUG_ON(ret);
3577         }
3578
3579         trans->block_rsv = &root->fs_info->trans_block_rsv;
3580         if (!(root == root->fs_info->tree_root ||
3581               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3582                 btrfs_return_ino(root, btrfs_ino(inode));
3583
3584         nr = trans->blocks_used;
3585         btrfs_end_transaction(trans, root);
3586         btrfs_btree_balance_dirty(root, nr);
3587 no_delete:
3588         end_writeback(inode);
3589         return;
3590 }
3591
3592 /*
3593  * this returns the key found in the dir entry in the location pointer.
3594  * If no dir entries were found, location->objectid is 0.
3595  */
3596 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3597                                struct btrfs_key *location)
3598 {
3599         const char *name = dentry->d_name.name;
3600         int namelen = dentry->d_name.len;
3601         struct btrfs_dir_item *di;
3602         struct btrfs_path *path;
3603         struct btrfs_root *root = BTRFS_I(dir)->root;
3604         int ret = 0;
3605
3606         path = btrfs_alloc_path();
3607         if (!path)
3608                 return -ENOMEM;
3609
3610         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3611                                     namelen, 0);
3612         if (IS_ERR(di))
3613                 ret = PTR_ERR(di);
3614
3615         if (IS_ERR_OR_NULL(di))
3616                 goto out_err;
3617
3618         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3619 out:
3620         btrfs_free_path(path);
3621         return ret;
3622 out_err:
3623         location->objectid = 0;
3624         goto out;
3625 }
3626
3627 /*
3628  * when we hit a tree root in a directory, the btrfs part of the inode
3629  * needs to be changed to reflect the root directory of the tree root.  This
3630  * is kind of like crossing a mount point.
3631  */
3632 static int fixup_tree_root_location(struct btrfs_root *root,
3633                                     struct inode *dir,
3634                                     struct dentry *dentry,
3635                                     struct btrfs_key *location,
3636                                     struct btrfs_root **sub_root)
3637 {
3638         struct btrfs_path *path;
3639         struct btrfs_root *new_root;
3640         struct btrfs_root_ref *ref;
3641         struct extent_buffer *leaf;
3642         int ret;
3643         int err = 0;
3644
3645         path = btrfs_alloc_path();
3646         if (!path) {
3647                 err = -ENOMEM;
3648                 goto out;
3649         }
3650
3651         err = -ENOENT;
3652         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3653                                   BTRFS_I(dir)->root->root_key.objectid,
3654                                   location->objectid);
3655         if (ret) {
3656                 if (ret < 0)
3657                         err = ret;
3658                 goto out;
3659         }
3660
3661         leaf = path->nodes[0];
3662         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3663         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3664             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3665                 goto out;
3666
3667         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3668                                    (unsigned long)(ref + 1),
3669                                    dentry->d_name.len);
3670         if (ret)
3671                 goto out;
3672
3673         btrfs_release_path(path);
3674
3675         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3676         if (IS_ERR(new_root)) {
3677                 err = PTR_ERR(new_root);
3678                 goto out;
3679         }
3680
3681         if (btrfs_root_refs(&new_root->root_item) == 0) {
3682                 err = -ENOENT;
3683                 goto out;
3684         }
3685
3686         *sub_root = new_root;
3687         location->objectid = btrfs_root_dirid(&new_root->root_item);
3688         location->type = BTRFS_INODE_ITEM_KEY;
3689         location->offset = 0;
3690         err = 0;
3691 out:
3692         btrfs_free_path(path);
3693         return err;
3694 }
3695
3696 static void inode_tree_add(struct inode *inode)
3697 {
3698         struct btrfs_root *root = BTRFS_I(inode)->root;
3699         struct btrfs_inode *entry;
3700         struct rb_node **p;
3701         struct rb_node *parent;
3702         u64 ino = btrfs_ino(inode);
3703 again:
3704         p = &root->inode_tree.rb_node;
3705         parent = NULL;
3706
3707         if (inode_unhashed(inode))
3708                 return;
3709
3710         spin_lock(&root->inode_lock);
3711         while (*p) {
3712                 parent = *p;
3713                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3714
3715                 if (ino < btrfs_ino(&entry->vfs_inode))
3716                         p = &parent->rb_left;
3717                 else if (ino > btrfs_ino(&entry->vfs_inode))
3718                         p = &parent->rb_right;
3719                 else {
3720                         WARN_ON(!(entry->vfs_inode.i_state &
3721                                   (I_WILL_FREE | I_FREEING)));
3722                         rb_erase(parent, &root->inode_tree);
3723                         RB_CLEAR_NODE(parent);
3724                         spin_unlock(&root->inode_lock);
3725                         goto again;
3726                 }
3727         }
3728         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3729         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3730         spin_unlock(&root->inode_lock);
3731 }
3732
3733 static void inode_tree_del(struct inode *inode)
3734 {
3735         struct btrfs_root *root = BTRFS_I(inode)->root;
3736         int empty = 0;
3737
3738         spin_lock(&root->inode_lock);
3739         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3740                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3741                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3742                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3743         }
3744         spin_unlock(&root->inode_lock);
3745
3746         /*
3747          * Free space cache has inodes in the tree root, but the tree root has a
3748          * root_refs of 0, so this could end up dropping the tree root as a
3749          * snapshot, so we need the extra !root->fs_info->tree_root check to
3750          * make sure we don't drop it.
3751          */
3752         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3753             root != root->fs_info->tree_root) {
3754                 synchronize_srcu(&root->fs_info->subvol_srcu);
3755                 spin_lock(&root->inode_lock);
3756                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3757                 spin_unlock(&root->inode_lock);
3758                 if (empty)
3759                         btrfs_add_dead_root(root);
3760         }
3761 }
3762
3763 int btrfs_invalidate_inodes(struct btrfs_root *root)
3764 {
3765         struct rb_node *node;
3766         struct rb_node *prev;
3767         struct btrfs_inode *entry;
3768         struct inode *inode;
3769         u64 objectid = 0;
3770
3771         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3772
3773         spin_lock(&root->inode_lock);
3774 again:
3775         node = root->inode_tree.rb_node;
3776         prev = NULL;
3777         while (node) {
3778                 prev = node;
3779                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3780
3781                 if (objectid < btrfs_ino(&entry->vfs_inode))
3782                         node = node->rb_left;
3783                 else if (objectid > btrfs_ino(&entry->vfs_inode))
3784                         node = node->rb_right;
3785                 else
3786                         break;
3787         }
3788         if (!node) {
3789                 while (prev) {
3790                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3791                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3792                                 node = prev;
3793                                 break;
3794                         }
3795                         prev = rb_next(prev);
3796                 }
3797         }
3798         while (node) {
3799                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3800                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3801                 inode = igrab(&entry->vfs_inode);
3802                 if (inode) {
3803                         spin_unlock(&root->inode_lock);
3804                         if (atomic_read(&inode->i_count) > 1)
3805                                 d_prune_aliases(inode);
3806                         /*
3807                          * btrfs_drop_inode will have it removed from
3808                          * the inode cache when its usage count
3809                          * hits zero.
3810                          */
3811                         iput(inode);
3812                         cond_resched();
3813                         spin_lock(&root->inode_lock);
3814                         goto again;
3815                 }
3816
3817                 if (cond_resched_lock(&root->inode_lock))
3818                         goto again;
3819
3820                 node = rb_next(node);
3821         }
3822         spin_unlock(&root->inode_lock);
3823         return 0;
3824 }
3825
3826 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3827 {
3828         struct btrfs_iget_args *args = p;
3829         inode->i_ino = args->ino;
3830         BTRFS_I(inode)->root = args->root;
3831         btrfs_set_inode_space_info(args->root, inode);
3832         return 0;
3833 }
3834
3835 static int btrfs_find_actor(struct inode *inode, void *opaque)
3836 {
3837         struct btrfs_iget_args *args = opaque;
3838         return args->ino == btrfs_ino(inode) &&
3839                 args->root == BTRFS_I(inode)->root;
3840 }
3841
3842 static struct inode *btrfs_iget_locked(struct super_block *s,
3843                                        u64 objectid,
3844                                        struct btrfs_root *root)
3845 {
3846         struct inode *inode;
3847         struct btrfs_iget_args args;
3848         args.ino = objectid;
3849         args.root = root;
3850
3851         inode = iget5_locked(s, objectid, btrfs_find_actor,
3852                              btrfs_init_locked_inode,
3853                              (void *)&args);
3854         return inode;
3855 }
3856
3857 /* Get an inode object given its location and corresponding root.
3858  * Returns in *is_new if the inode was read from disk
3859  */
3860 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3861                          struct btrfs_root *root, int *new)
3862 {
3863         struct inode *inode;
3864
3865         inode = btrfs_iget_locked(s, location->objectid, root);
3866         if (!inode)
3867                 return ERR_PTR(-ENOMEM);
3868
3869         if (inode->i_state & I_NEW) {
3870                 BTRFS_I(inode)->root = root;
3871                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3872                 btrfs_read_locked_inode(inode);
3873                 if (!is_bad_inode(inode)) {
3874                         inode_tree_add(inode);
3875                         unlock_new_inode(inode);
3876                         if (new)
3877                                 *new = 1;
3878                 } else {
3879                         unlock_new_inode(inode);
3880                         iput(inode);
3881                         inode = ERR_PTR(-ESTALE);
3882                 }
3883         }
3884
3885         return inode;
3886 }
3887
3888 static struct inode *new_simple_dir(struct super_block *s,
3889                                     struct btrfs_key *key,
3890                                     struct btrfs_root *root)
3891 {
3892         struct inode *inode = new_inode(s);
3893
3894         if (!inode)
3895                 return ERR_PTR(-ENOMEM);
3896
3897         BTRFS_I(inode)->root = root;
3898         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3899         BTRFS_I(inode)->dummy_inode = 1;
3900
3901         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3902         inode->i_op = &simple_dir_inode_operations;
3903         inode->i_fop = &simple_dir_operations;
3904         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3905         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3906
3907         return inode;
3908 }
3909
3910 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3911 {
3912         struct inode *inode;
3913         struct btrfs_root *root = BTRFS_I(dir)->root;
3914         struct btrfs_root *sub_root = root;
3915         struct btrfs_key location;
3916         int index;
3917         int ret = 0;
3918
3919         if (dentry->d_name.len > BTRFS_NAME_LEN)
3920                 return ERR_PTR(-ENAMETOOLONG);
3921
3922         if (unlikely(d_need_lookup(dentry))) {
3923                 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3924                 kfree(dentry->d_fsdata);
3925                 dentry->d_fsdata = NULL;
3926                 /* This thing is hashed, drop it for now */
3927                 d_drop(dentry);
3928         } else {
3929                 ret = btrfs_inode_by_name(dir, dentry, &location);
3930         }
3931
3932         if (ret < 0)
3933                 return ERR_PTR(ret);
3934
3935         if (location.objectid == 0)
3936                 return NULL;
3937
3938         if (location.type == BTRFS_INODE_ITEM_KEY) {
3939                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3940                 return inode;
3941         }
3942
3943         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3944
3945         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3946         ret = fixup_tree_root_location(root, dir, dentry,
3947                                        &location, &sub_root);
3948         if (ret < 0) {
3949                 if (ret != -ENOENT)
3950                         inode = ERR_PTR(ret);
3951                 else
3952                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3953         } else {
3954                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3955         }
3956         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3957
3958         if (!IS_ERR(inode) && root != sub_root) {
3959                 down_read(&root->fs_info->cleanup_work_sem);
3960                 if (!(inode->i_sb->s_flags & MS_RDONLY))
3961                         ret = btrfs_orphan_cleanup(sub_root);
3962                 up_read(&root->fs_info->cleanup_work_sem);
3963                 if (ret)
3964                         inode = ERR_PTR(ret);
3965         }
3966
3967         return inode;
3968 }
3969
3970 static int btrfs_dentry_delete(const struct dentry *dentry)
3971 {
3972         struct btrfs_root *root;
3973
3974         if (!dentry->d_inode && !IS_ROOT(dentry))
3975                 dentry = dentry->d_parent;
3976
3977         if (dentry->d_inode) {
3978                 root = BTRFS_I(dentry->d_inode)->root;
3979                 if (btrfs_root_refs(&root->root_item) == 0)
3980                         return 1;
3981         }
3982         return 0;
3983 }
3984
3985 static void btrfs_dentry_release(struct dentry *dentry)
3986 {
3987         if (dentry->d_fsdata)
3988                 kfree(dentry->d_fsdata);
3989 }
3990
3991 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3992                                    struct nameidata *nd)
3993 {
3994         struct dentry *ret;
3995
3996         ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
3997         if (unlikely(d_need_lookup(dentry))) {
3998                 spin_lock(&dentry->d_lock);
3999                 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4000                 spin_unlock(&dentry->d_lock);
4001         }
4002         return ret;
4003 }
4004
4005 unsigned char btrfs_filetype_table[] = {
4006         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4007 };
4008
4009 static int btrfs_real_readdir(struct file *filp, void *dirent,
4010                               filldir_t filldir)
4011 {
4012         struct inode *inode = filp->f_dentry->d_inode;
4013         struct btrfs_root *root = BTRFS_I(inode)->root;
4014         struct btrfs_item *item;
4015         struct btrfs_dir_item *di;
4016         struct btrfs_key key;
4017         struct btrfs_key found_key;
4018         struct btrfs_path *path;
4019         struct list_head ins_list;
4020         struct list_head del_list;
4021         struct qstr q;
4022         int ret;
4023         struct extent_buffer *leaf;
4024         int slot;
4025         unsigned char d_type;
4026         int over = 0;
4027         u32 di_cur;
4028         u32 di_total;
4029         u32 di_len;
4030         int key_type = BTRFS_DIR_INDEX_KEY;
4031         char tmp_name[32];
4032         char *name_ptr;
4033         int name_len;
4034         int is_curr = 0;        /* filp->f_pos points to the current index? */
4035
4036         /* FIXME, use a real flag for deciding about the key type */
4037         if (root->fs_info->tree_root == root)
4038                 key_type = BTRFS_DIR_ITEM_KEY;
4039
4040         /* special case for "." */
4041         if (filp->f_pos == 0) {
4042                 over = filldir(dirent, ".", 1,
4043                                filp->f_pos, btrfs_ino(inode), DT_DIR);
4044                 if (over)
4045                         return 0;
4046                 filp->f_pos = 1;
4047         }
4048         /* special case for .., just use the back ref */
4049         if (filp->f_pos == 1) {
4050                 u64 pino = parent_ino(filp->f_path.dentry);
4051                 over = filldir(dirent, "..", 2,
4052                                filp->f_pos, pino, DT_DIR);
4053                 if (over)
4054                         return 0;
4055                 filp->f_pos = 2;
4056         }
4057         path = btrfs_alloc_path();
4058         if (!path)
4059                 return -ENOMEM;
4060
4061         path->reada = 1;
4062
4063         if (key_type == BTRFS_DIR_INDEX_KEY) {
4064                 INIT_LIST_HEAD(&ins_list);
4065                 INIT_LIST_HEAD(&del_list);
4066                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4067         }
4068
4069         btrfs_set_key_type(&key, key_type);
4070         key.offset = filp->f_pos;
4071         key.objectid = btrfs_ino(inode);
4072
4073         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4074         if (ret < 0)
4075                 goto err;
4076
4077         while (1) {
4078                 leaf = path->nodes[0];
4079                 slot = path->slots[0];
4080                 if (slot >= btrfs_header_nritems(leaf)) {
4081                         ret = btrfs_next_leaf(root, path);
4082                         if (ret < 0)
4083                                 goto err;
4084                         else if (ret > 0)
4085                                 break;
4086                         continue;
4087                 }
4088
4089                 item = btrfs_item_nr(leaf, slot);
4090                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4091
4092                 if (found_key.objectid != key.objectid)
4093                         break;
4094                 if (btrfs_key_type(&found_key) != key_type)
4095                         break;
4096                 if (found_key.offset < filp->f_pos)
4097                         goto next;
4098                 if (key_type == BTRFS_DIR_INDEX_KEY &&
4099                     btrfs_should_delete_dir_index(&del_list,
4100                                                   found_key.offset))
4101                         goto next;
4102
4103                 filp->f_pos = found_key.offset;
4104                 is_curr = 1;
4105
4106                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4107                 di_cur = 0;
4108                 di_total = btrfs_item_size(leaf, item);
4109
4110                 while (di_cur < di_total) {
4111                         struct btrfs_key location;
4112                         struct dentry *tmp;
4113
4114                         if (verify_dir_item(root, leaf, di))
4115                                 break;
4116
4117                         name_len = btrfs_dir_name_len(leaf, di);
4118                         if (name_len <= sizeof(tmp_name)) {
4119                                 name_ptr = tmp_name;
4120                         } else {
4121                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4122                                 if (!name_ptr) {
4123                                         ret = -ENOMEM;
4124                                         goto err;
4125                                 }
4126                         }
4127                         read_extent_buffer(leaf, name_ptr,
4128                                            (unsigned long)(di + 1), name_len);
4129
4130                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4131                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4132
4133                         q.name = name_ptr;
4134                         q.len = name_len;
4135                         q.hash = full_name_hash(q.name, q.len);
4136                         tmp = d_lookup(filp->f_dentry, &q);
4137                         if (!tmp) {
4138                                 struct btrfs_key *newkey;
4139
4140                                 newkey = kzalloc(sizeof(struct btrfs_key),
4141                                                  GFP_NOFS);
4142                                 if (!newkey)
4143                                         goto no_dentry;
4144                                 tmp = d_alloc(filp->f_dentry, &q);
4145                                 if (!tmp) {
4146                                         kfree(newkey);
4147                                         dput(tmp);
4148                                         goto no_dentry;
4149                                 }
4150                                 memcpy(newkey, &location,
4151                                        sizeof(struct btrfs_key));
4152                                 tmp->d_fsdata = newkey;
4153                                 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4154                                 d_rehash(tmp);
4155                                 dput(tmp);
4156                         } else {
4157                                 dput(tmp);
4158                         }
4159 no_dentry:
4160                         /* is this a reference to our own snapshot? If so
4161                          * skip it
4162                          */
4163                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4164                             location.objectid == root->root_key.objectid) {
4165                                 over = 0;
4166                                 goto skip;
4167                         }
4168                         over = filldir(dirent, name_ptr, name_len,
4169                                        found_key.offset, location.objectid,
4170                                        d_type);
4171
4172 skip:
4173                         if (name_ptr != tmp_name)
4174                                 kfree(name_ptr);
4175
4176                         if (over)
4177                                 goto nopos;
4178                         di_len = btrfs_dir_name_len(leaf, di) +
4179                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4180                         di_cur += di_len;
4181                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4182                 }
4183 next:
4184                 path->slots[0]++;
4185         }
4186
4187         if (key_type == BTRFS_DIR_INDEX_KEY) {
4188                 if (is_curr)
4189                         filp->f_pos++;
4190                 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4191                                                       &ins_list);
4192                 if (ret)
4193                         goto nopos;
4194         }
4195
4196         /* Reached end of directory/root. Bump pos past the last item. */
4197         if (key_type == BTRFS_DIR_INDEX_KEY)
4198                 /*
4199                  * 32-bit glibc will use getdents64, but then strtol -
4200                  * so the last number we can serve is this.
4201                  */
4202                 filp->f_pos = 0x7fffffff;
4203         else
4204                 filp->f_pos++;
4205 nopos:
4206         ret = 0;
4207 err:
4208         if (key_type == BTRFS_DIR_INDEX_KEY)
4209                 btrfs_put_delayed_items(&ins_list, &del_list);
4210         btrfs_free_path(path);
4211         return ret;
4212 }
4213
4214 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4215 {
4216         struct btrfs_root *root = BTRFS_I(inode)->root;
4217         struct btrfs_trans_handle *trans;
4218         int ret = 0;
4219         bool nolock = false;
4220
4221         if (BTRFS_I(inode)->dummy_inode)
4222                 return 0;
4223
4224         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4225                 nolock = true;
4226
4227         if (wbc->sync_mode == WB_SYNC_ALL) {
4228                 if (nolock)
4229                         trans = btrfs_join_transaction_nolock(root);
4230                 else
4231                         trans = btrfs_join_transaction(root);
4232                 if (IS_ERR(trans))
4233                         return PTR_ERR(trans);
4234                 if (nolock)
4235                         ret = btrfs_end_transaction_nolock(trans, root);
4236                 else
4237                         ret = btrfs_commit_transaction(trans, root);
4238         }
4239         return ret;
4240 }
4241
4242 /*
4243  * This is somewhat expensive, updating the tree every time the
4244  * inode changes.  But, it is most likely to find the inode in cache.
4245  * FIXME, needs more benchmarking...there are no reasons other than performance
4246  * to keep or drop this code.
4247  */
4248 void btrfs_dirty_inode(struct inode *inode, int flags)
4249 {
4250         struct btrfs_root *root = BTRFS_I(inode)->root;
4251         struct btrfs_trans_handle *trans;
4252         int ret;
4253
4254         if (BTRFS_I(inode)->dummy_inode)
4255                 return;
4256
4257         trans = btrfs_join_transaction(root);
4258         BUG_ON(IS_ERR(trans));
4259
4260         ret = btrfs_update_inode(trans, root, inode);
4261         if (ret && ret == -ENOSPC) {
4262                 /* whoops, lets try again with the full transaction */
4263                 btrfs_end_transaction(trans, root);
4264                 trans = btrfs_start_transaction(root, 1);
4265                 if (IS_ERR(trans)) {
4266                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4267                                        "dirty  inode %llu error %ld\n",
4268                                        (unsigned long long)btrfs_ino(inode),
4269                                        PTR_ERR(trans));
4270                         return;
4271                 }
4272
4273                 ret = btrfs_update_inode(trans, root, inode);
4274                 if (ret) {
4275                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4276                                        "dirty  inode %llu error %d\n",
4277                                        (unsigned long long)btrfs_ino(inode),
4278                                        ret);
4279                 }
4280         }
4281         btrfs_end_transaction(trans, root);
4282         if (BTRFS_I(inode)->delayed_node)
4283                 btrfs_balance_delayed_items(root);
4284 }
4285
4286 /*
4287  * find the highest existing sequence number in a directory
4288  * and then set the in-memory index_cnt variable to reflect
4289  * free sequence numbers
4290  */
4291 static int btrfs_set_inode_index_count(struct inode *inode)
4292 {
4293         struct btrfs_root *root = BTRFS_I(inode)->root;
4294         struct btrfs_key key, found_key;
4295         struct btrfs_path *path;
4296         struct extent_buffer *leaf;
4297         int ret;
4298
4299         key.objectid = btrfs_ino(inode);
4300         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4301         key.offset = (u64)-1;
4302
4303         path = btrfs_alloc_path();
4304         if (!path)
4305                 return -ENOMEM;
4306
4307         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4308         if (ret < 0)
4309                 goto out;
4310         /* FIXME: we should be able to handle this */
4311         if (ret == 0)
4312                 goto out;
4313         ret = 0;
4314
4315         /*
4316          * MAGIC NUMBER EXPLANATION:
4317          * since we search a directory based on f_pos we have to start at 2
4318          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4319          * else has to start at 2
4320          */
4321         if (path->slots[0] == 0) {
4322                 BTRFS_I(inode)->index_cnt = 2;
4323                 goto out;
4324         }
4325
4326         path->slots[0]--;
4327
4328         leaf = path->nodes[0];
4329         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4330
4331         if (found_key.objectid != btrfs_ino(inode) ||
4332             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4333                 BTRFS_I(inode)->index_cnt = 2;
4334                 goto out;
4335         }
4336
4337         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4338 out:
4339         btrfs_free_path(path);
4340         return ret;
4341 }
4342
4343 /*
4344  * helper to find a free sequence number in a given directory.  This current
4345  * code is very simple, later versions will do smarter things in the btree
4346  */
4347 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4348 {
4349         int ret = 0;
4350
4351         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4352                 ret = btrfs_inode_delayed_dir_index_count(dir);
4353                 if (ret) {
4354                         ret = btrfs_set_inode_index_count(dir);
4355                         if (ret)
4356                                 return ret;
4357                 }
4358         }
4359
4360         *index = BTRFS_I(dir)->index_cnt;
4361         BTRFS_I(dir)->index_cnt++;
4362
4363         return ret;
4364 }
4365
4366 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4367                                      struct btrfs_root *root,
4368                                      struct inode *dir,
4369                                      const char *name, int name_len,
4370                                      u64 ref_objectid, u64 objectid, int mode,
4371                                      u64 *index)
4372 {
4373         struct inode *inode;
4374         struct btrfs_inode_item *inode_item;
4375         struct btrfs_key *location;
4376         struct btrfs_path *path;
4377         struct btrfs_inode_ref *ref;
4378         struct btrfs_key key[2];
4379         u32 sizes[2];
4380         unsigned long ptr;
4381         int ret;
4382         int owner;
4383
4384         path = btrfs_alloc_path();
4385         if (!path)
4386                 return ERR_PTR(-ENOMEM);
4387
4388         inode = new_inode(root->fs_info->sb);
4389         if (!inode) {
4390                 btrfs_free_path(path);
4391                 return ERR_PTR(-ENOMEM);
4392         }
4393
4394         /*
4395          * we have to initialize this early, so we can reclaim the inode
4396          * number if we fail afterwards in this function.
4397          */
4398         inode->i_ino = objectid;
4399
4400         if (dir) {
4401                 trace_btrfs_inode_request(dir);
4402
4403                 ret = btrfs_set_inode_index(dir, index);
4404                 if (ret) {
4405                         btrfs_free_path(path);
4406                         iput(inode);
4407                         return ERR_PTR(ret);
4408                 }
4409         }
4410         /*
4411          * index_cnt is ignored for everything but a dir,
4412          * btrfs_get_inode_index_count has an explanation for the magic
4413          * number
4414          */
4415         BTRFS_I(inode)->index_cnt = 2;
4416         BTRFS_I(inode)->root = root;
4417         BTRFS_I(inode)->generation = trans->transid;
4418         inode->i_generation = BTRFS_I(inode)->generation;
4419         btrfs_set_inode_space_info(root, inode);
4420
4421         if (S_ISDIR(mode))
4422                 owner = 0;
4423         else
4424                 owner = 1;
4425
4426         key[0].objectid = objectid;
4427         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4428         key[0].offset = 0;
4429
4430         key[1].objectid = objectid;
4431         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4432         key[1].offset = ref_objectid;
4433
4434         sizes[0] = sizeof(struct btrfs_inode_item);
4435         sizes[1] = name_len + sizeof(*ref);
4436
4437         path->leave_spinning = 1;
4438         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4439         if (ret != 0)
4440                 goto fail;
4441
4442         inode_init_owner(inode, dir, mode);
4443         inode_set_bytes(inode, 0);
4444         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4445         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4446                                   struct btrfs_inode_item);
4447         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4448
4449         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4450                              struct btrfs_inode_ref);
4451         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4452         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4453         ptr = (unsigned long)(ref + 1);
4454         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4455
4456         btrfs_mark_buffer_dirty(path->nodes[0]);
4457         btrfs_free_path(path);
4458
4459         location = &BTRFS_I(inode)->location;
4460         location->objectid = objectid;
4461         location->offset = 0;
4462         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4463
4464         btrfs_inherit_iflags(inode, dir);
4465
4466         if (S_ISREG(mode)) {
4467                 if (btrfs_test_opt(root, NODATASUM))
4468                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4469                 if (btrfs_test_opt(root, NODATACOW) ||
4470                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4471                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4472         }
4473
4474         insert_inode_hash(inode);
4475         inode_tree_add(inode);
4476
4477         trace_btrfs_inode_new(inode);
4478         btrfs_set_inode_last_trans(trans, inode);
4479
4480         return inode;
4481 fail:
4482         if (dir)
4483                 BTRFS_I(dir)->index_cnt--;
4484         btrfs_free_path(path);
4485         iput(inode);
4486         return ERR_PTR(ret);
4487 }
4488
4489 static inline u8 btrfs_inode_type(struct inode *inode)
4490 {
4491         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4492 }
4493
4494 /*
4495  * utility function to add 'inode' into 'parent_inode' with
4496  * a give name and a given sequence number.
4497  * if 'add_backref' is true, also insert a backref from the
4498  * inode to the parent directory.
4499  */
4500 int btrfs_add_link(struct btrfs_trans_handle *trans,
4501                    struct inode *parent_inode, struct inode *inode,
4502                    const char *name, int name_len, int add_backref, u64 index)
4503 {
4504         int ret = 0;
4505         struct btrfs_key key;
4506         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4507         u64 ino = btrfs_ino(inode);
4508         u64 parent_ino = btrfs_ino(parent_inode);
4509
4510         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4511                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4512         } else {
4513                 key.objectid = ino;
4514                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4515                 key.offset = 0;
4516         }
4517
4518         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4519                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4520                                          key.objectid, root->root_key.objectid,
4521                                          parent_ino, index, name, name_len);
4522         } else if (add_backref) {
4523                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4524                                              parent_ino, index);
4525         }
4526
4527         if (ret == 0) {
4528                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4529                                             parent_inode, &key,
4530                                             btrfs_inode_type(inode), index);
4531                 BUG_ON(ret);
4532
4533                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4534                                    name_len * 2);
4535                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4536                 ret = btrfs_update_inode(trans, root, parent_inode);
4537         }
4538         return ret;
4539 }
4540
4541 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4542                             struct inode *dir, struct dentry *dentry,
4543                             struct inode *inode, int backref, u64 index)
4544 {
4545         int err = btrfs_add_link(trans, dir, inode,
4546                                  dentry->d_name.name, dentry->d_name.len,
4547                                  backref, index);
4548         if (!err) {
4549                 d_instantiate(dentry, inode);
4550                 return 0;
4551         }
4552         if (err > 0)
4553                 err = -EEXIST;
4554         return err;
4555 }
4556
4557 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4558                         int mode, dev_t rdev)
4559 {
4560         struct btrfs_trans_handle *trans;
4561         struct btrfs_root *root = BTRFS_I(dir)->root;
4562         struct inode *inode = NULL;
4563         int err;
4564         int drop_inode = 0;
4565         u64 objectid;
4566         unsigned long nr = 0;
4567         u64 index = 0;
4568
4569         if (!new_valid_dev(rdev))
4570                 return -EINVAL;
4571
4572         /*
4573          * 2 for inode item and ref
4574          * 2 for dir items
4575          * 1 for xattr if selinux is on
4576          */
4577         trans = btrfs_start_transaction(root, 5);
4578         if (IS_ERR(trans))
4579                 return PTR_ERR(trans);
4580
4581         err = btrfs_find_free_ino(root, &objectid);
4582         if (err)
4583                 goto out_unlock;
4584
4585         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4586                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4587                                 mode, &index);
4588         if (IS_ERR(inode)) {
4589                 err = PTR_ERR(inode);
4590                 goto out_unlock;
4591         }
4592
4593         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4594         if (err) {
4595                 drop_inode = 1;
4596                 goto out_unlock;
4597         }
4598
4599         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4600         if (err)
4601                 drop_inode = 1;
4602         else {
4603                 inode->i_op = &btrfs_special_inode_operations;
4604                 init_special_inode(inode, inode->i_mode, rdev);
4605                 btrfs_update_inode(trans, root, inode);
4606         }
4607 out_unlock:
4608         nr = trans->blocks_used;
4609         btrfs_end_transaction_throttle(trans, root);
4610         btrfs_btree_balance_dirty(root, nr);
4611         if (drop_inode) {
4612                 inode_dec_link_count(inode);
4613                 iput(inode);
4614         }
4615         return err;
4616 }
4617
4618 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4619                         int mode, struct nameidata *nd)
4620 {
4621         struct btrfs_trans_handle *trans;
4622         struct btrfs_root *root = BTRFS_I(dir)->root;
4623         struct inode *inode = NULL;
4624         int drop_inode = 0;
4625         int err;
4626         unsigned long nr = 0;
4627         u64 objectid;
4628         u64 index = 0;
4629
4630         /*
4631          * 2 for inode item and ref
4632          * 2 for dir items
4633          * 1 for xattr if selinux is on
4634          */
4635         trans = btrfs_start_transaction(root, 5);
4636         if (IS_ERR(trans))
4637                 return PTR_ERR(trans);
4638
4639         err = btrfs_find_free_ino(root, &objectid);
4640         if (err)
4641                 goto out_unlock;
4642
4643         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4644                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4645                                 mode, &index);
4646         if (IS_ERR(inode)) {
4647                 err = PTR_ERR(inode);
4648                 goto out_unlock;
4649         }
4650
4651         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4652         if (err) {
4653                 drop_inode = 1;
4654                 goto out_unlock;
4655         }
4656
4657         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4658         if (err)
4659                 drop_inode = 1;
4660         else {
4661                 inode->i_mapping->a_ops = &btrfs_aops;
4662                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4663                 inode->i_fop = &btrfs_file_operations;
4664                 inode->i_op = &btrfs_file_inode_operations;
4665                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4666         }
4667 out_unlock:
4668         nr = trans->blocks_used;
4669         btrfs_end_transaction_throttle(trans, root);
4670         if (drop_inode) {
4671                 inode_dec_link_count(inode);
4672                 iput(inode);
4673         }
4674         btrfs_btree_balance_dirty(root, nr);
4675         return err;
4676 }
4677
4678 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4679                       struct dentry *dentry)
4680 {
4681         struct btrfs_trans_handle *trans;
4682         struct btrfs_root *root = BTRFS_I(dir)->root;
4683         struct inode *inode = old_dentry->d_inode;
4684         u64 index;
4685         unsigned long nr = 0;
4686         int err;
4687         int drop_inode = 0;
4688
4689         /* do not allow sys_link's with other subvols of the same device */
4690         if (root->objectid != BTRFS_I(inode)->root->objectid)
4691                 return -EXDEV;
4692
4693         if (inode->i_nlink == ~0U)
4694                 return -EMLINK;
4695
4696         err = btrfs_set_inode_index(dir, &index);
4697         if (err)
4698                 goto fail;
4699
4700         /*
4701          * 2 items for inode and inode ref
4702          * 2 items for dir items
4703          * 1 item for parent inode
4704          */
4705         trans = btrfs_start_transaction(root, 5);
4706         if (IS_ERR(trans)) {
4707                 err = PTR_ERR(trans);
4708                 goto fail;
4709         }
4710
4711         btrfs_inc_nlink(inode);
4712         inode->i_ctime = CURRENT_TIME;
4713         ihold(inode);
4714
4715         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4716
4717         if (err) {
4718                 drop_inode = 1;
4719         } else {
4720                 struct dentry *parent = dentry->d_parent;
4721                 err = btrfs_update_inode(trans, root, inode);
4722                 BUG_ON(err);
4723                 btrfs_log_new_name(trans, inode, NULL, parent);
4724         }
4725
4726         nr = trans->blocks_used;
4727         btrfs_end_transaction_throttle(trans, root);
4728 fail:
4729         if (drop_inode) {
4730                 inode_dec_link_count(inode);
4731                 iput(inode);
4732         }
4733         btrfs_btree_balance_dirty(root, nr);
4734         return err;
4735 }
4736
4737 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4738 {
4739         struct inode *inode = NULL;
4740         struct btrfs_trans_handle *trans;
4741         struct btrfs_root *root = BTRFS_I(dir)->root;
4742         int err = 0;
4743         int drop_on_err = 0;
4744         u64 objectid = 0;
4745         u64 index = 0;
4746         unsigned long nr = 1;
4747
4748         /*
4749          * 2 items for inode and ref
4750          * 2 items for dir items
4751          * 1 for xattr if selinux is on
4752          */
4753         trans = btrfs_start_transaction(root, 5);
4754         if (IS_ERR(trans))
4755                 return PTR_ERR(trans);
4756
4757         err = btrfs_find_free_ino(root, &objectid);
4758         if (err)
4759                 goto out_fail;
4760
4761         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4762                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4763                                 S_IFDIR | mode, &index);
4764         if (IS_ERR(inode)) {
4765                 err = PTR_ERR(inode);
4766                 goto out_fail;
4767         }
4768
4769         drop_on_err = 1;
4770
4771         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4772         if (err)
4773                 goto out_fail;
4774
4775         inode->i_op = &btrfs_dir_inode_operations;
4776         inode->i_fop = &btrfs_dir_file_operations;
4777
4778         btrfs_i_size_write(inode, 0);
4779         err = btrfs_update_inode(trans, root, inode);
4780         if (err)
4781                 goto out_fail;
4782
4783         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4784                              dentry->d_name.len, 0, index);
4785         if (err)
4786                 goto out_fail;
4787
4788         d_instantiate(dentry, inode);
4789         drop_on_err = 0;
4790
4791 out_fail:
4792         nr = trans->blocks_used;
4793         btrfs_end_transaction_throttle(trans, root);
4794         if (drop_on_err)
4795                 iput(inode);
4796         btrfs_btree_balance_dirty(root, nr);
4797         return err;
4798 }
4799
4800 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4801  * and an extent that you want to insert, deal with overlap and insert
4802  * the new extent into the tree.
4803  */
4804 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4805                                 struct extent_map *existing,
4806                                 struct extent_map *em,
4807                                 u64 map_start, u64 map_len)
4808 {
4809         u64 start_diff;
4810
4811         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4812         start_diff = map_start - em->start;
4813         em->start = map_start;
4814         em->len = map_len;
4815         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4816             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4817                 em->block_start += start_diff;
4818                 em->block_len -= start_diff;
4819         }
4820         return add_extent_mapping(em_tree, em);
4821 }
4822
4823 static noinline int uncompress_inline(struct btrfs_path *path,
4824                                       struct inode *inode, struct page *page,
4825                                       size_t pg_offset, u64 extent_offset,
4826                                       struct btrfs_file_extent_item *item)
4827 {
4828         int ret;
4829         struct extent_buffer *leaf = path->nodes[0];
4830         char *tmp;
4831         size_t max_size;
4832         unsigned long inline_size;
4833         unsigned long ptr;
4834         int compress_type;
4835
4836         WARN_ON(pg_offset != 0);
4837         compress_type = btrfs_file_extent_compression(leaf, item);
4838         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4839         inline_size = btrfs_file_extent_inline_item_len(leaf,
4840                                         btrfs_item_nr(leaf, path->slots[0]));
4841         tmp = kmalloc(inline_size, GFP_NOFS);
4842         if (!tmp)
4843                 return -ENOMEM;
4844         ptr = btrfs_file_extent_inline_start(item);
4845
4846         read_extent_buffer(leaf, tmp, ptr, inline_size);
4847
4848         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4849         ret = btrfs_decompress(compress_type, tmp, page,
4850                                extent_offset, inline_size, max_size);
4851         if (ret) {
4852                 char *kaddr = kmap_atomic(page, KM_USER0);
4853                 unsigned long copy_size = min_t(u64,
4854                                   PAGE_CACHE_SIZE - pg_offset,
4855                                   max_size - extent_offset);
4856                 memset(kaddr + pg_offset, 0, copy_size);
4857                 kunmap_atomic(kaddr, KM_USER0);
4858         }
4859         kfree(tmp);
4860         return 0;
4861 }
4862
4863 /*
4864  * a bit scary, this does extent mapping from logical file offset to the disk.
4865  * the ugly parts come from merging extents from the disk with the in-ram
4866  * representation.  This gets more complex because of the data=ordered code,
4867  * where the in-ram extents might be locked pending data=ordered completion.
4868  *
4869  * This also copies inline extents directly into the page.
4870  */
4871
4872 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4873                                     size_t pg_offset, u64 start, u64 len,
4874                                     int create)
4875 {
4876         int ret;
4877         int err = 0;
4878         u64 bytenr;
4879         u64 extent_start = 0;
4880         u64 extent_end = 0;
4881         u64 objectid = btrfs_ino(inode);
4882         u32 found_type;
4883         struct btrfs_path *path = NULL;
4884         struct btrfs_root *root = BTRFS_I(inode)->root;
4885         struct btrfs_file_extent_item *item;
4886         struct extent_buffer *leaf;
4887         struct btrfs_key found_key;
4888         struct extent_map *em = NULL;
4889         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4890         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4891         struct btrfs_trans_handle *trans = NULL;
4892         int compress_type;
4893
4894 again:
4895         read_lock(&em_tree->lock);
4896         em = lookup_extent_mapping(em_tree, start, len);
4897         if (em)
4898                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4899         read_unlock(&em_tree->lock);
4900
4901         if (em) {
4902                 if (em->start > start || em->start + em->len <= start)
4903                         free_extent_map(em);
4904                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4905                         free_extent_map(em);
4906                 else
4907                         goto out;
4908         }
4909         em = alloc_extent_map();
4910         if (!em) {
4911                 err = -ENOMEM;
4912                 goto out;
4913         }
4914         em->bdev = root->fs_info->fs_devices->latest_bdev;
4915         em->start = EXTENT_MAP_HOLE;
4916         em->orig_start = EXTENT_MAP_HOLE;
4917         em->len = (u64)-1;
4918         em->block_len = (u64)-1;
4919
4920         if (!path) {
4921                 path = btrfs_alloc_path();
4922                 if (!path) {
4923                         err = -ENOMEM;
4924                         goto out;
4925                 }
4926                 /*
4927                  * Chances are we'll be called again, so go ahead and do
4928                  * readahead
4929                  */
4930                 path->reada = 1;
4931         }
4932
4933         ret = btrfs_lookup_file_extent(trans, root, path,
4934                                        objectid, start, trans != NULL);
4935         if (ret < 0) {
4936                 err = ret;
4937                 goto out;
4938         }
4939
4940         if (ret != 0) {
4941                 if (path->slots[0] == 0)
4942                         goto not_found;
4943                 path->slots[0]--;
4944         }
4945
4946         leaf = path->nodes[0];
4947         item = btrfs_item_ptr(leaf, path->slots[0],
4948                               struct btrfs_file_extent_item);
4949         /* are we inside the extent that was found? */
4950         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4951         found_type = btrfs_key_type(&found_key);
4952         if (found_key.objectid != objectid ||
4953             found_type != BTRFS_EXTENT_DATA_KEY) {
4954                 goto not_found;
4955         }
4956
4957         found_type = btrfs_file_extent_type(leaf, item);
4958         extent_start = found_key.offset;
4959         compress_type = btrfs_file_extent_compression(leaf, item);
4960         if (found_type == BTRFS_FILE_EXTENT_REG ||
4961             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4962                 extent_end = extent_start +
4963                        btrfs_file_extent_num_bytes(leaf, item);
4964         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4965                 size_t size;
4966                 size = btrfs_file_extent_inline_len(leaf, item);
4967                 extent_end = (extent_start + size + root->sectorsize - 1) &
4968                         ~((u64)root->sectorsize - 1);
4969         }
4970
4971         if (start >= extent_end) {
4972                 path->slots[0]++;
4973                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4974                         ret = btrfs_next_leaf(root, path);
4975                         if (ret < 0) {
4976                                 err = ret;
4977                                 goto out;
4978                         }
4979                         if (ret > 0)
4980                                 goto not_found;
4981                         leaf = path->nodes[0];
4982                 }
4983                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4984                 if (found_key.objectid != objectid ||
4985                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4986                         goto not_found;
4987                 if (start + len <= found_key.offset)
4988                         goto not_found;
4989                 em->start = start;
4990                 em->len = found_key.offset - start;
4991                 goto not_found_em;
4992         }
4993
4994         if (found_type == BTRFS_FILE_EXTENT_REG ||
4995             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4996                 em->start = extent_start;
4997                 em->len = extent_end - extent_start;
4998                 em->orig_start = extent_start -
4999                                  btrfs_file_extent_offset(leaf, item);
5000                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5001                 if (bytenr == 0) {
5002                         em->block_start = EXTENT_MAP_HOLE;
5003                         goto insert;
5004                 }
5005                 if (compress_type != BTRFS_COMPRESS_NONE) {
5006                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5007                         em->compress_type = compress_type;
5008                         em->block_start = bytenr;
5009                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5010                                                                          item);
5011                 } else {
5012                         bytenr += btrfs_file_extent_offset(leaf, item);
5013                         em->block_start = bytenr;
5014                         em->block_len = em->len;
5015                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5016                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5017                 }
5018                 goto insert;
5019         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5020                 unsigned long ptr;
5021                 char *map;
5022                 size_t size;
5023                 size_t extent_offset;
5024                 size_t copy_size;
5025
5026                 em->block_start = EXTENT_MAP_INLINE;
5027                 if (!page || create) {
5028                         em->start = extent_start;
5029                         em->len = extent_end - extent_start;
5030                         goto out;
5031                 }
5032
5033                 size = btrfs_file_extent_inline_len(leaf, item);
5034                 extent_offset = page_offset(page) + pg_offset - extent_start;
5035                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5036                                 size - extent_offset);
5037                 em->start = extent_start + extent_offset;
5038                 em->len = (copy_size + root->sectorsize - 1) &
5039                         ~((u64)root->sectorsize - 1);
5040                 em->orig_start = EXTENT_MAP_INLINE;
5041                 if (compress_type) {
5042                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5043                         em->compress_type = compress_type;
5044                 }
5045                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5046                 if (create == 0 && !PageUptodate(page)) {
5047                         if (btrfs_file_extent_compression(leaf, item) !=
5048                             BTRFS_COMPRESS_NONE) {
5049                                 ret = uncompress_inline(path, inode, page,
5050                                                         pg_offset,
5051                                                         extent_offset, item);
5052                                 BUG_ON(ret);
5053                         } else {
5054                                 map = kmap(page);
5055                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5056                                                    copy_size);
5057                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5058                                         memset(map + pg_offset + copy_size, 0,
5059                                                PAGE_CACHE_SIZE - pg_offset -
5060                                                copy_size);
5061                                 }
5062                                 kunmap(page);
5063                         }
5064                         flush_dcache_page(page);
5065                 } else if (create && PageUptodate(page)) {
5066                         WARN_ON(1);
5067                         if (!trans) {
5068                                 kunmap(page);
5069                                 free_extent_map(em);
5070                                 em = NULL;
5071
5072                                 btrfs_release_path(path);
5073                                 trans = btrfs_join_transaction(root);
5074
5075                                 if (IS_ERR(trans))
5076                                         return ERR_CAST(trans);
5077                                 goto again;
5078                         }
5079                         map = kmap(page);
5080                         write_extent_buffer(leaf, map + pg_offset, ptr,
5081                                             copy_size);
5082                         kunmap(page);
5083                         btrfs_mark_buffer_dirty(leaf);
5084                 }
5085                 set_extent_uptodate(io_tree, em->start,
5086                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
5087                 goto insert;
5088         } else {
5089                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5090                 WARN_ON(1);
5091         }
5092 not_found:
5093         em->start = start;
5094         em->len = len;
5095 not_found_em:
5096         em->block_start = EXTENT_MAP_HOLE;
5097         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5098 insert:
5099         btrfs_release_path(path);
5100         if (em->start > start || extent_map_end(em) <= start) {
5101                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5102                        "[%llu %llu]\n", (unsigned long long)em->start,
5103                        (unsigned long long)em->len,
5104                        (unsigned long long)start,
5105                        (unsigned long long)len);
5106                 err = -EIO;
5107                 goto out;
5108         }
5109
5110         err = 0;
5111         write_lock(&em_tree->lock);
5112         ret = add_extent_mapping(em_tree, em);
5113         /* it is possible that someone inserted the extent into the tree
5114          * while we had the lock dropped.  It is also possible that
5115          * an overlapping map exists in the tree
5116          */
5117         if (ret == -EEXIST) {
5118                 struct extent_map *existing;
5119
5120                 ret = 0;
5121
5122                 existing = lookup_extent_mapping(em_tree, start, len);
5123                 if (existing && (existing->start > start ||
5124                     existing->start + existing->len <= start)) {
5125                         free_extent_map(existing);
5126                         existing = NULL;
5127                 }
5128                 if (!existing) {
5129                         existing = lookup_extent_mapping(em_tree, em->start,
5130                                                          em->len);
5131                         if (existing) {
5132                                 err = merge_extent_mapping(em_tree, existing,
5133                                                            em, start,
5134                                                            root->sectorsize);
5135                                 free_extent_map(existing);
5136                                 if (err) {
5137                                         free_extent_map(em);
5138                                         em = NULL;
5139                                 }
5140                         } else {
5141                                 err = -EIO;
5142                                 free_extent_map(em);
5143                                 em = NULL;
5144                         }
5145                 } else {
5146                         free_extent_map(em);
5147                         em = existing;
5148                         err = 0;
5149                 }
5150         }
5151         write_unlock(&em_tree->lock);
5152 out:
5153
5154         trace_btrfs_get_extent(root, em);
5155
5156         if (path)
5157                 btrfs_free_path(path);
5158         if (trans) {
5159                 ret = btrfs_end_transaction(trans, root);
5160                 if (!err)
5161                         err = ret;
5162         }
5163         if (err) {
5164                 free_extent_map(em);
5165                 return ERR_PTR(err);
5166         }
5167         return em;
5168 }
5169
5170 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5171                                            size_t pg_offset, u64 start, u64 len,
5172                                            int create)
5173 {
5174         struct extent_map *em;
5175         struct extent_map *hole_em = NULL;
5176         u64 range_start = start;
5177         u64 end;
5178         u64 found;
5179         u64 found_end;
5180         int err = 0;
5181
5182         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5183         if (IS_ERR(em))
5184                 return em;
5185         if (em) {
5186                 /*
5187                  * if our em maps to a hole, there might
5188                  * actually be delalloc bytes behind it
5189                  */
5190                 if (em->block_start != EXTENT_MAP_HOLE)
5191                         return em;
5192                 else
5193                         hole_em = em;
5194         }
5195
5196         /* check to see if we've wrapped (len == -1 or similar) */
5197         end = start + len;
5198         if (end < start)
5199                 end = (u64)-1;
5200         else
5201                 end -= 1;
5202
5203         em = NULL;
5204
5205         /* ok, we didn't find anything, lets look for delalloc */
5206         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5207                                  end, len, EXTENT_DELALLOC, 1);
5208         found_end = range_start + found;
5209         if (found_end < range_start)
5210                 found_end = (u64)-1;
5211
5212         /*
5213          * we didn't find anything useful, return
5214          * the original results from get_extent()
5215          */
5216         if (range_start > end || found_end <= start) {
5217                 em = hole_em;
5218                 hole_em = NULL;
5219                 goto out;
5220         }
5221
5222         /* adjust the range_start to make sure it doesn't
5223          * go backwards from the start they passed in
5224          */
5225         range_start = max(start,range_start);
5226         found = found_end - range_start;
5227
5228         if (found > 0) {
5229                 u64 hole_start = start;
5230                 u64 hole_len = len;
5231
5232                 em = alloc_extent_map();
5233                 if (!em) {
5234                         err = -ENOMEM;
5235                         goto out;
5236                 }
5237                 /*
5238                  * when btrfs_get_extent can't find anything it
5239                  * returns one huge hole
5240                  *
5241                  * make sure what it found really fits our range, and
5242                  * adjust to make sure it is based on the start from
5243                  * the caller
5244                  */
5245                 if (hole_em) {
5246                         u64 calc_end = extent_map_end(hole_em);
5247
5248                         if (calc_end <= start || (hole_em->start > end)) {
5249                                 free_extent_map(hole_em);
5250                                 hole_em = NULL;
5251                         } else {
5252                                 hole_start = max(hole_em->start, start);
5253                                 hole_len = calc_end - hole_start;
5254                         }
5255                 }
5256                 em->bdev = NULL;
5257                 if (hole_em && range_start > hole_start) {
5258                         /* our hole starts before our delalloc, so we
5259                          * have to return just the parts of the hole
5260                          * that go until  the delalloc starts
5261                          */
5262                         em->len = min(hole_len,
5263                                       range_start - hole_start);
5264                         em->start = hole_start;
5265                         em->orig_start = hole_start;
5266                         /*
5267                          * don't adjust block start at all,
5268                          * it is fixed at EXTENT_MAP_HOLE
5269                          */
5270                         em->block_start = hole_em->block_start;
5271                         em->block_len = hole_len;
5272                 } else {
5273                         em->start = range_start;
5274                         em->len = found;
5275                         em->orig_start = range_start;
5276                         em->block_start = EXTENT_MAP_DELALLOC;
5277                         em->block_len = found;
5278                 }
5279         } else if (hole_em) {
5280                 return hole_em;
5281         }
5282 out:
5283
5284         free_extent_map(hole_em);
5285         if (err) {
5286                 free_extent_map(em);
5287                 return ERR_PTR(err);
5288         }
5289         return em;
5290 }
5291
5292 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5293                                                   struct extent_map *em,
5294                                                   u64 start, u64 len)
5295 {
5296         struct btrfs_root *root = BTRFS_I(inode)->root;
5297         struct btrfs_trans_handle *trans;
5298         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5299         struct btrfs_key ins;
5300         u64 alloc_hint;
5301         int ret;
5302         bool insert = false;
5303
5304         /*
5305          * Ok if the extent map we looked up is a hole and is for the exact
5306          * range we want, there is no reason to allocate a new one, however if
5307          * it is not right then we need to free this one and drop the cache for
5308          * our range.
5309          */
5310         if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5311             em->len != len) {
5312                 free_extent_map(em);
5313                 em = NULL;
5314                 insert = true;
5315                 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5316         }
5317
5318         trans = btrfs_join_transaction(root);
5319         if (IS_ERR(trans))
5320                 return ERR_CAST(trans);
5321
5322         if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5323                 btrfs_add_inode_defrag(trans, inode);
5324
5325         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5326
5327         alloc_hint = get_extent_allocation_hint(inode, start, len);
5328         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5329                                    alloc_hint, (u64)-1, &ins, 1);
5330         if (ret) {
5331                 em = ERR_PTR(ret);
5332                 goto out;
5333         }
5334
5335         if (!em) {
5336                 em = alloc_extent_map();
5337                 if (!em) {
5338                         em = ERR_PTR(-ENOMEM);
5339                         goto out;
5340                 }
5341         }
5342
5343         em->start = start;
5344         em->orig_start = em->start;
5345         em->len = ins.offset;
5346
5347         em->block_start = ins.objectid;
5348         em->block_len = ins.offset;
5349         em->bdev = root->fs_info->fs_devices->latest_bdev;
5350
5351         /*
5352          * We need to do this because if we're using the original em we searched
5353          * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5354          */
5355         em->flags = 0;
5356         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5357
5358         while (insert) {
5359                 write_lock(&em_tree->lock);
5360                 ret = add_extent_mapping(em_tree, em);
5361                 write_unlock(&em_tree->lock);
5362                 if (ret != -EEXIST)
5363                         break;
5364                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5365         }
5366
5367         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5368                                            ins.offset, ins.offset, 0);
5369         if (ret) {
5370                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5371                 em = ERR_PTR(ret);
5372         }
5373 out:
5374         btrfs_end_transaction(trans, root);
5375         return em;
5376 }
5377
5378 /*
5379  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5380  * block must be cow'd
5381  */
5382 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5383                                       struct inode *inode, u64 offset, u64 len)
5384 {
5385         struct btrfs_path *path;
5386         int ret;
5387         struct extent_buffer *leaf;
5388         struct btrfs_root *root = BTRFS_I(inode)->root;
5389         struct btrfs_file_extent_item *fi;
5390         struct btrfs_key key;
5391         u64 disk_bytenr;
5392         u64 backref_offset;
5393         u64 extent_end;
5394         u64 num_bytes;
5395         int slot;
5396         int found_type;
5397
5398         path = btrfs_alloc_path();
5399         if (!path)
5400                 return -ENOMEM;
5401
5402         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5403                                        offset, 0);
5404         if (ret < 0)
5405                 goto out;
5406
5407         slot = path->slots[0];
5408         if (ret == 1) {
5409                 if (slot == 0) {
5410                         /* can't find the item, must cow */
5411                         ret = 0;
5412                         goto out;
5413                 }
5414                 slot--;
5415         }
5416         ret = 0;
5417         leaf = path->nodes[0];
5418         btrfs_item_key_to_cpu(leaf, &key, slot);
5419         if (key.objectid != btrfs_ino(inode) ||
5420             key.type != BTRFS_EXTENT_DATA_KEY) {
5421                 /* not our file or wrong item type, must cow */
5422                 goto out;
5423         }
5424
5425         if (key.offset > offset) {
5426                 /* Wrong offset, must cow */
5427                 goto out;
5428         }
5429
5430         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5431         found_type = btrfs_file_extent_type(leaf, fi);
5432         if (found_type != BTRFS_FILE_EXTENT_REG &&
5433             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5434                 /* not a regular extent, must cow */
5435                 goto out;
5436         }
5437         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5438         backref_offset = btrfs_file_extent_offset(leaf, fi);
5439
5440         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5441         if (extent_end < offset + len) {
5442                 /* extent doesn't include our full range, must cow */
5443                 goto out;
5444         }
5445
5446         if (btrfs_extent_readonly(root, disk_bytenr))
5447                 goto out;
5448
5449         /*
5450          * look for other files referencing this extent, if we
5451          * find any we must cow
5452          */
5453         if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5454                                   key.offset - backref_offset, disk_bytenr))
5455                 goto out;
5456
5457         /*
5458          * adjust disk_bytenr and num_bytes to cover just the bytes
5459          * in this extent we are about to write.  If there
5460          * are any csums in that range we have to cow in order
5461          * to keep the csums correct
5462          */
5463         disk_bytenr += backref_offset;
5464         disk_bytenr += offset - key.offset;
5465         num_bytes = min(offset + len, extent_end) - offset;
5466         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5467                                 goto out;
5468         /*
5469          * all of the above have passed, it is safe to overwrite this extent
5470          * without cow
5471          */
5472         ret = 1;
5473 out:
5474         btrfs_free_path(path);
5475         return ret;
5476 }
5477
5478 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5479                                    struct buffer_head *bh_result, int create)
5480 {
5481         struct extent_map *em;
5482         struct btrfs_root *root = BTRFS_I(inode)->root;
5483         u64 start = iblock << inode->i_blkbits;
5484         u64 len = bh_result->b_size;
5485         struct btrfs_trans_handle *trans;
5486
5487         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5488         if (IS_ERR(em))
5489                 return PTR_ERR(em);
5490
5491         /*
5492          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5493          * io.  INLINE is special, and we could probably kludge it in here, but
5494          * it's still buffered so for safety lets just fall back to the generic
5495          * buffered path.
5496          *
5497          * For COMPRESSED we _have_ to read the entire extent in so we can
5498          * decompress it, so there will be buffering required no matter what we
5499          * do, so go ahead and fallback to buffered.
5500          *
5501          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5502          * to buffered IO.  Don't blame me, this is the price we pay for using
5503          * the generic code.
5504          */
5505         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5506             em->block_start == EXTENT_MAP_INLINE) {
5507                 free_extent_map(em);
5508                 return -ENOTBLK;
5509         }
5510
5511         /* Just a good old fashioned hole, return */
5512         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5513                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5514                 free_extent_map(em);
5515                 /* DIO will do one hole at a time, so just unlock a sector */
5516                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5517                               start + root->sectorsize - 1, GFP_NOFS);
5518                 return 0;
5519         }
5520
5521         /*
5522          * We don't allocate a new extent in the following cases
5523          *
5524          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5525          * existing extent.
5526          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5527          * just use the extent.
5528          *
5529          */
5530         if (!create) {
5531                 len = em->len - (start - em->start);
5532                 goto map;
5533         }
5534
5535         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5536             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5537              em->block_start != EXTENT_MAP_HOLE)) {
5538                 int type;
5539                 int ret;
5540                 u64 block_start;
5541
5542                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5543                         type = BTRFS_ORDERED_PREALLOC;
5544                 else
5545                         type = BTRFS_ORDERED_NOCOW;
5546                 len = min(len, em->len - (start - em->start));
5547                 block_start = em->block_start + (start - em->start);
5548
5549                 /*
5550                  * we're not going to log anything, but we do need
5551                  * to make sure the current transaction stays open
5552                  * while we look for nocow cross refs
5553                  */
5554                 trans = btrfs_join_transaction(root);
5555                 if (IS_ERR(trans))
5556                         goto must_cow;
5557
5558                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5559                         ret = btrfs_add_ordered_extent_dio(inode, start,
5560                                            block_start, len, len, type);
5561                         btrfs_end_transaction(trans, root);
5562                         if (ret) {
5563                                 free_extent_map(em);
5564                                 return ret;
5565                         }
5566                         goto unlock;
5567                 }
5568                 btrfs_end_transaction(trans, root);
5569         }
5570 must_cow:
5571         /*
5572          * this will cow the extent, reset the len in case we changed
5573          * it above
5574          */
5575         len = bh_result->b_size;
5576         em = btrfs_new_extent_direct(inode, em, start, len);
5577         if (IS_ERR(em))
5578                 return PTR_ERR(em);
5579         len = min(len, em->len - (start - em->start));
5580 unlock:
5581         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5582                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5583                           0, NULL, GFP_NOFS);
5584 map:
5585         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5586                 inode->i_blkbits;
5587         bh_result->b_size = len;
5588         bh_result->b_bdev = em->bdev;
5589         set_buffer_mapped(bh_result);
5590         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5591                 set_buffer_new(bh_result);
5592
5593         free_extent_map(em);
5594
5595         return 0;
5596 }
5597
5598 struct btrfs_dio_private {
5599         struct inode *inode;
5600         u64 logical_offset;
5601         u64 disk_bytenr;
5602         u64 bytes;
5603         u32 *csums;
5604         void *private;
5605
5606         /* number of bios pending for this dio */
5607         atomic_t pending_bios;
5608
5609         /* IO errors */
5610         int errors;
5611
5612         struct bio *orig_bio;
5613 };
5614
5615 static void btrfs_endio_direct_read(struct bio *bio, int err)
5616 {
5617         struct btrfs_dio_private *dip = bio->bi_private;
5618         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5619         struct bio_vec *bvec = bio->bi_io_vec;
5620         struct inode *inode = dip->inode;
5621         struct btrfs_root *root = BTRFS_I(inode)->root;
5622         u64 start;
5623         u32 *private = dip->csums;
5624
5625         start = dip->logical_offset;
5626         do {
5627                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5628                         struct page *page = bvec->bv_page;
5629                         char *kaddr;
5630                         u32 csum = ~(u32)0;
5631                         unsigned long flags;
5632
5633                         local_irq_save(flags);
5634                         kaddr = kmap_atomic(page, KM_IRQ0);
5635                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5636                                                csum, bvec->bv_len);
5637                         btrfs_csum_final(csum, (char *)&csum);
5638                         kunmap_atomic(kaddr, KM_IRQ0);
5639                         local_irq_restore(flags);
5640
5641                         flush_dcache_page(bvec->bv_page);
5642                         if (csum != *private) {
5643                                 printk(KERN_ERR "btrfs csum failed ino %llu off"
5644                                       " %llu csum %u private %u\n",
5645                                       (unsigned long long)btrfs_ino(inode),
5646                                       (unsigned long long)start,
5647                                       csum, *private);
5648                                 err = -EIO;
5649                         }
5650                 }
5651
5652                 start += bvec->bv_len;
5653                 private++;
5654                 bvec++;
5655         } while (bvec <= bvec_end);
5656
5657         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5658                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5659         bio->bi_private = dip->private;
5660
5661         kfree(dip->csums);
5662         kfree(dip);
5663
5664         /* If we had a csum failure make sure to clear the uptodate flag */
5665         if (err)
5666                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5667         dio_end_io(bio, err);
5668 }
5669
5670 static void btrfs_endio_direct_write(struct bio *bio, int err)
5671 {
5672         struct btrfs_dio_private *dip = bio->bi_private;
5673         struct inode *inode = dip->inode;
5674         struct btrfs_root *root = BTRFS_I(inode)->root;
5675         struct btrfs_trans_handle *trans;
5676         struct btrfs_ordered_extent *ordered = NULL;
5677         struct extent_state *cached_state = NULL;
5678         u64 ordered_offset = dip->logical_offset;
5679         u64 ordered_bytes = dip->bytes;
5680         int ret;
5681
5682         if (err)
5683                 goto out_done;
5684 again:
5685         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5686                                                    &ordered_offset,
5687                                                    ordered_bytes);
5688         if (!ret)
5689                 goto out_test;
5690
5691         BUG_ON(!ordered);
5692
5693         trans = btrfs_join_transaction(root);
5694         if (IS_ERR(trans)) {
5695                 err = -ENOMEM;
5696                 goto out;
5697         }
5698         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5699
5700         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5701                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5702                 if (!ret)
5703                         err = btrfs_update_inode_fallback(trans, root, inode);
5704                 goto out;
5705         }
5706
5707         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5708                          ordered->file_offset + ordered->len - 1, 0,
5709                          &cached_state, GFP_NOFS);
5710
5711         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5712                 ret = btrfs_mark_extent_written(trans, inode,
5713                                                 ordered->file_offset,
5714                                                 ordered->file_offset +
5715                                                 ordered->len);
5716                 if (ret) {
5717                         err = ret;
5718                         goto out_unlock;
5719                 }
5720         } else {
5721                 ret = insert_reserved_file_extent(trans, inode,
5722                                                   ordered->file_offset,
5723                                                   ordered->start,
5724                                                   ordered->disk_len,
5725                                                   ordered->len,
5726                                                   ordered->len,
5727                                                   0, 0, 0,
5728                                                   BTRFS_FILE_EXTENT_REG);
5729                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5730                                    ordered->file_offset, ordered->len);
5731                 if (ret) {
5732                         err = ret;
5733                         WARN_ON(1);
5734                         goto out_unlock;
5735                 }
5736         }
5737
5738         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5739         ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5740         if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5741                 btrfs_update_inode_fallback(trans, root, inode);
5742         ret = 0;
5743 out_unlock:
5744         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5745                              ordered->file_offset + ordered->len - 1,
5746                              &cached_state, GFP_NOFS);
5747 out:
5748         btrfs_delalloc_release_metadata(inode, ordered->len);
5749         btrfs_end_transaction(trans, root);
5750         ordered_offset = ordered->file_offset + ordered->len;
5751         btrfs_put_ordered_extent(ordered);
5752         btrfs_put_ordered_extent(ordered);
5753
5754 out_test:
5755         /*
5756          * our bio might span multiple ordered extents.  If we haven't
5757          * completed the accounting for the whole dio, go back and try again
5758          */
5759         if (ordered_offset < dip->logical_offset + dip->bytes) {
5760                 ordered_bytes = dip->logical_offset + dip->bytes -
5761                         ordered_offset;
5762                 goto again;
5763         }
5764 out_done:
5765         bio->bi_private = dip->private;
5766
5767         kfree(dip->csums);
5768         kfree(dip);
5769
5770         /* If we had an error make sure to clear the uptodate flag */
5771         if (err)
5772                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5773         dio_end_io(bio, err);
5774 }
5775
5776 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5777                                     struct bio *bio, int mirror_num,
5778                                     unsigned long bio_flags, u64 offset)
5779 {
5780         int ret;
5781         struct btrfs_root *root = BTRFS_I(inode)->root;
5782         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5783         BUG_ON(ret);
5784         return 0;
5785 }
5786
5787 static void btrfs_end_dio_bio(struct bio *bio, int err)
5788 {
5789         struct btrfs_dio_private *dip = bio->bi_private;
5790
5791         if (err) {
5792                 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5793                       "sector %#Lx len %u err no %d\n",
5794                       (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5795                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5796                 dip->errors = 1;
5797
5798                 /*
5799                  * before atomic variable goto zero, we must make sure
5800                  * dip->errors is perceived to be set.
5801                  */
5802                 smp_mb__before_atomic_dec();
5803         }
5804
5805         /* if there are more bios still pending for this dio, just exit */
5806         if (!atomic_dec_and_test(&dip->pending_bios))
5807                 goto out;
5808
5809         if (dip->errors)
5810                 bio_io_error(dip->orig_bio);
5811         else {
5812                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5813                 bio_endio(dip->orig_bio, 0);
5814         }
5815 out:
5816         bio_put(bio);
5817 }
5818
5819 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5820                                        u64 first_sector, gfp_t gfp_flags)
5821 {
5822         int nr_vecs = bio_get_nr_vecs(bdev);
5823         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5824 }
5825
5826 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5827                                          int rw, u64 file_offset, int skip_sum,
5828                                          u32 *csums, int async_submit)
5829 {
5830         int write = rw & REQ_WRITE;
5831         struct btrfs_root *root = BTRFS_I(inode)->root;
5832         int ret;
5833
5834         bio_get(bio);
5835         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5836         if (ret)
5837                 goto err;
5838
5839         if (skip_sum)
5840                 goto map;
5841
5842         if (write && async_submit) {
5843                 ret = btrfs_wq_submit_bio(root->fs_info,
5844                                    inode, rw, bio, 0, 0,
5845                                    file_offset,
5846                                    __btrfs_submit_bio_start_direct_io,
5847                                    __btrfs_submit_bio_done);
5848                 goto err;
5849         } else if (write) {
5850                 /*
5851                  * If we aren't doing async submit, calculate the csum of the
5852                  * bio now.
5853                  */
5854                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5855                 if (ret)
5856                         goto err;
5857         } else if (!skip_sum) {
5858                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5859                                           file_offset, csums);
5860                 if (ret)
5861                         goto err;
5862         }
5863
5864 map:
5865         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5866 err:
5867         bio_put(bio);
5868         return ret;
5869 }
5870
5871 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5872                                     int skip_sum)
5873 {
5874         struct inode *inode = dip->inode;
5875         struct btrfs_root *root = BTRFS_I(inode)->root;
5876         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5877         struct bio *bio;
5878         struct bio *orig_bio = dip->orig_bio;
5879         struct bio_vec *bvec = orig_bio->bi_io_vec;
5880         u64 start_sector = orig_bio->bi_sector;
5881         u64 file_offset = dip->logical_offset;
5882         u64 submit_len = 0;
5883         u64 map_length;
5884         int nr_pages = 0;
5885         u32 *csums = dip->csums;
5886         int ret = 0;
5887         int async_submit = 0;
5888         int write = rw & REQ_WRITE;
5889
5890         map_length = orig_bio->bi_size;
5891         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5892                               &map_length, NULL, 0);
5893         if (ret) {
5894                 bio_put(orig_bio);
5895                 return -EIO;
5896         }
5897
5898         if (map_length >= orig_bio->bi_size) {
5899                 bio = orig_bio;
5900                 goto submit;
5901         }
5902
5903         async_submit = 1;
5904         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5905         if (!bio)
5906                 return -ENOMEM;
5907         bio->bi_private = dip;
5908         bio->bi_end_io = btrfs_end_dio_bio;
5909         atomic_inc(&dip->pending_bios);
5910
5911         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5912                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5913                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5914                                  bvec->bv_offset) < bvec->bv_len)) {
5915                         /*
5916                          * inc the count before we submit the bio so
5917                          * we know the end IO handler won't happen before
5918                          * we inc the count. Otherwise, the dip might get freed
5919                          * before we're done setting it up
5920                          */
5921                         atomic_inc(&dip->pending_bios);
5922                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5923                                                      file_offset, skip_sum,
5924                                                      csums, async_submit);
5925                         if (ret) {
5926                                 bio_put(bio);
5927                                 atomic_dec(&dip->pending_bios);
5928                                 goto out_err;
5929                         }
5930
5931                         /* Write's use the ordered csums */
5932                         if (!write && !skip_sum)
5933                                 csums = csums + nr_pages;
5934                         start_sector += submit_len >> 9;
5935                         file_offset += submit_len;
5936
5937                         submit_len = 0;
5938                         nr_pages = 0;
5939
5940                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5941                                                   start_sector, GFP_NOFS);
5942                         if (!bio)
5943                                 goto out_err;
5944                         bio->bi_private = dip;
5945                         bio->bi_end_io = btrfs_end_dio_bio;
5946
5947                         map_length = orig_bio->bi_size;
5948                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5949                                               &map_length, NULL, 0);
5950                         if (ret) {
5951                                 bio_put(bio);
5952                                 goto out_err;
5953                         }
5954                 } else {
5955                         submit_len += bvec->bv_len;
5956                         nr_pages ++;
5957                         bvec++;
5958                 }
5959         }
5960
5961 submit:
5962         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5963                                      csums, async_submit);
5964         if (!ret)
5965                 return 0;
5966
5967         bio_put(bio);
5968 out_err:
5969         dip->errors = 1;
5970         /*
5971          * before atomic variable goto zero, we must
5972          * make sure dip->errors is perceived to be set.
5973          */
5974         smp_mb__before_atomic_dec();
5975         if (atomic_dec_and_test(&dip->pending_bios))
5976                 bio_io_error(dip->orig_bio);
5977
5978         /* bio_end_io() will handle error, so we needn't return it */
5979         return 0;
5980 }
5981
5982 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5983                                 loff_t file_offset)
5984 {
5985         struct btrfs_root *root = BTRFS_I(inode)->root;
5986         struct btrfs_dio_private *dip;
5987         struct bio_vec *bvec = bio->bi_io_vec;
5988         int skip_sum;
5989         int write = rw & REQ_WRITE;
5990         int ret = 0;
5991
5992         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5993
5994         dip = kmalloc(sizeof(*dip), GFP_NOFS);
5995         if (!dip) {
5996                 ret = -ENOMEM;
5997                 goto free_ordered;
5998         }
5999         dip->csums = NULL;
6000
6001         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6002         if (!write && !skip_sum) {
6003                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6004                 if (!dip->csums) {
6005                         kfree(dip);
6006                         ret = -ENOMEM;
6007                         goto free_ordered;
6008                 }
6009         }
6010
6011         dip->private = bio->bi_private;
6012         dip->inode = inode;
6013         dip->logical_offset = file_offset;
6014
6015         dip->bytes = 0;
6016         do {
6017                 dip->bytes += bvec->bv_len;
6018                 bvec++;
6019         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6020
6021         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6022         bio->bi_private = dip;
6023         dip->errors = 0;
6024         dip->orig_bio = bio;
6025         atomic_set(&dip->pending_bios, 0);
6026
6027         if (write)
6028                 bio->bi_end_io = btrfs_endio_direct_write;
6029         else
6030                 bio->bi_end_io = btrfs_endio_direct_read;
6031
6032         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6033         if (!ret)
6034                 return;
6035 free_ordered:
6036         /*
6037          * If this is a write, we need to clean up the reserved space and kill
6038          * the ordered extent.
6039          */
6040         if (write) {
6041                 struct btrfs_ordered_extent *ordered;
6042                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6043                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6044                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6045                         btrfs_free_reserved_extent(root, ordered->start,
6046                                                    ordered->disk_len);
6047                 btrfs_put_ordered_extent(ordered);
6048                 btrfs_put_ordered_extent(ordered);
6049         }
6050         bio_endio(bio, ret);
6051 }
6052
6053 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6054                         const struct iovec *iov, loff_t offset,
6055                         unsigned long nr_segs)
6056 {
6057         int seg;
6058         int i;
6059         size_t size;
6060         unsigned long addr;
6061         unsigned blocksize_mask = root->sectorsize - 1;
6062         ssize_t retval = -EINVAL;
6063         loff_t end = offset;
6064
6065         if (offset & blocksize_mask)
6066                 goto out;
6067
6068         /* Check the memory alignment.  Blocks cannot straddle pages */
6069         for (seg = 0; seg < nr_segs; seg++) {
6070                 addr = (unsigned long)iov[seg].iov_base;
6071                 size = iov[seg].iov_len;
6072                 end += size;
6073                 if ((addr & blocksize_mask) || (size & blocksize_mask))
6074                         goto out;
6075
6076                 /* If this is a write we don't need to check anymore */
6077                 if (rw & WRITE)
6078                         continue;
6079
6080                 /*
6081                  * Check to make sure we don't have duplicate iov_base's in this
6082                  * iovec, if so return EINVAL, otherwise we'll get csum errors
6083                  * when reading back.
6084                  */
6085                 for (i = seg + 1; i < nr_segs; i++) {
6086                         if (iov[seg].iov_base == iov[i].iov_base)
6087                                 goto out;
6088                 }
6089         }
6090         retval = 0;
6091 out:
6092         return retval;
6093 }
6094 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6095                         const struct iovec *iov, loff_t offset,
6096                         unsigned long nr_segs)
6097 {
6098         struct file *file = iocb->ki_filp;
6099         struct inode *inode = file->f_mapping->host;
6100         struct btrfs_ordered_extent *ordered;
6101         struct extent_state *cached_state = NULL;
6102         u64 lockstart, lockend;
6103         ssize_t ret;
6104         int writing = rw & WRITE;
6105         int write_bits = 0;
6106         size_t count = iov_length(iov, nr_segs);
6107
6108         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6109                             offset, nr_segs)) {
6110                 return 0;
6111         }
6112
6113         lockstart = offset;
6114         lockend = offset + count - 1;
6115
6116         if (writing) {
6117                 ret = btrfs_delalloc_reserve_space(inode, count);
6118                 if (ret)
6119                         goto out;
6120         }
6121
6122         while (1) {
6123                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6124                                  0, &cached_state, GFP_NOFS);
6125                 /*
6126                  * We're concerned with the entire range that we're going to be
6127                  * doing DIO to, so we need to make sure theres no ordered
6128                  * extents in this range.
6129                  */
6130                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6131                                                      lockend - lockstart + 1);
6132                 if (!ordered)
6133                         break;
6134                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6135                                      &cached_state, GFP_NOFS);
6136                 btrfs_start_ordered_extent(inode, ordered, 1);
6137                 btrfs_put_ordered_extent(ordered);
6138                 cond_resched();
6139         }
6140
6141         /*
6142          * we don't use btrfs_set_extent_delalloc because we don't want
6143          * the dirty or uptodate bits
6144          */
6145         if (writing) {
6146                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6147                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6148                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6149                                      GFP_NOFS);
6150                 if (ret) {
6151                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6152                                          lockend, EXTENT_LOCKED | write_bits,
6153                                          1, 0, &cached_state, GFP_NOFS);
6154                         goto out;
6155                 }
6156         }
6157
6158         free_extent_state(cached_state);
6159         cached_state = NULL;
6160
6161         ret = __blockdev_direct_IO(rw, iocb, inode,
6162                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6163                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6164                    btrfs_submit_direct, 0);
6165
6166         if (ret < 0 && ret != -EIOCBQUEUED) {
6167                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6168                               offset + iov_length(iov, nr_segs) - 1,
6169                               EXTENT_LOCKED | write_bits, 1, 0,
6170                               &cached_state, GFP_NOFS);
6171         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6172                 /*
6173                  * We're falling back to buffered, unlock the section we didn't
6174                  * do IO on.
6175                  */
6176                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6177                               offset + iov_length(iov, nr_segs) - 1,
6178                               EXTENT_LOCKED | write_bits, 1, 0,
6179                               &cached_state, GFP_NOFS);
6180         }
6181 out:
6182         free_extent_state(cached_state);
6183         return ret;
6184 }
6185
6186 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6187                 __u64 start, __u64 len)
6188 {
6189         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6190 }
6191
6192 int btrfs_readpage(struct file *file, struct page *page)
6193 {
6194         struct extent_io_tree *tree;
6195         tree = &BTRFS_I(page->mapping->host)->io_tree;
6196         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6197 }
6198
6199 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6200 {
6201         struct extent_io_tree *tree;
6202
6203
6204         if (current->flags & PF_MEMALLOC) {
6205                 redirty_page_for_writepage(wbc, page);
6206                 unlock_page(page);
6207                 return 0;
6208         }
6209         tree = &BTRFS_I(page->mapping->host)->io_tree;
6210         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6211 }
6212
6213 int btrfs_writepages(struct address_space *mapping,
6214                      struct writeback_control *wbc)
6215 {
6216         struct extent_io_tree *tree;
6217
6218         tree = &BTRFS_I(mapping->host)->io_tree;
6219         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6220 }
6221
6222 static int
6223 btrfs_readpages(struct file *file, struct address_space *mapping,
6224                 struct list_head *pages, unsigned nr_pages)
6225 {
6226         struct extent_io_tree *tree;
6227         tree = &BTRFS_I(mapping->host)->io_tree;
6228         return extent_readpages(tree, mapping, pages, nr_pages,
6229                                 btrfs_get_extent);
6230 }
6231 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6232 {
6233         struct extent_io_tree *tree;
6234         struct extent_map_tree *map;
6235         int ret;
6236
6237         tree = &BTRFS_I(page->mapping->host)->io_tree;
6238         map = &BTRFS_I(page->mapping->host)->extent_tree;
6239         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6240         if (ret == 1) {
6241                 ClearPagePrivate(page);
6242                 set_page_private(page, 0);
6243                 page_cache_release(page);
6244         }
6245         return ret;
6246 }
6247
6248 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6249 {
6250         if (PageWriteback(page) || PageDirty(page))
6251                 return 0;
6252         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6253 }
6254
6255 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6256 {
6257         struct extent_io_tree *tree;
6258         struct btrfs_ordered_extent *ordered;
6259         struct extent_state *cached_state = NULL;
6260         u64 page_start = page_offset(page);
6261         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6262
6263
6264         /*
6265          * we have the page locked, so new writeback can't start,
6266          * and the dirty bit won't be cleared while we are here.
6267          *
6268          * Wait for IO on this page so that we can safely clear
6269          * the PagePrivate2 bit and do ordered accounting
6270          */
6271         wait_on_page_writeback(page);
6272
6273         tree = &BTRFS_I(page->mapping->host)->io_tree;
6274         if (offset) {
6275                 btrfs_releasepage(page, GFP_NOFS);
6276                 return;
6277         }
6278         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6279                          GFP_NOFS);
6280         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6281                                            page_offset(page));
6282         if (ordered) {
6283                 /*
6284                  * IO on this page will never be started, so we need
6285                  * to account for any ordered extents now
6286                  */
6287                 clear_extent_bit(tree, page_start, page_end,
6288                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6289                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6290                                  &cached_state, GFP_NOFS);
6291                 /*
6292                  * whoever cleared the private bit is responsible
6293                  * for the finish_ordered_io
6294                  */
6295                 if (TestClearPagePrivate2(page)) {
6296                         btrfs_finish_ordered_io(page->mapping->host,
6297                                                 page_start, page_end);
6298                 }
6299                 btrfs_put_ordered_extent(ordered);
6300                 cached_state = NULL;
6301                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6302                                  GFP_NOFS);
6303         }
6304         clear_extent_bit(tree, page_start, page_end,
6305                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6306                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6307         __btrfs_releasepage(page, GFP_NOFS);
6308
6309         ClearPageChecked(page);
6310         if (PagePrivate(page)) {
6311                 ClearPagePrivate(page);
6312                 set_page_private(page, 0);
6313                 page_cache_release(page);
6314         }
6315 }
6316
6317 /*
6318  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6319  * called from a page fault handler when a page is first dirtied. Hence we must
6320  * be careful to check for EOF conditions here. We set the page up correctly
6321  * for a written page which means we get ENOSPC checking when writing into
6322  * holes and correct delalloc and unwritten extent mapping on filesystems that
6323  * support these features.
6324  *
6325  * We are not allowed to take the i_mutex here so we have to play games to
6326  * protect against truncate races as the page could now be beyond EOF.  Because
6327  * vmtruncate() writes the inode size before removing pages, once we have the
6328  * page lock we can determine safely if the page is beyond EOF. If it is not
6329  * beyond EOF, then the page is guaranteed safe against truncation until we
6330  * unlock the page.
6331  */
6332 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6333 {
6334         struct page *page = vmf->page;
6335         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6336         struct btrfs_root *root = BTRFS_I(inode)->root;
6337         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6338         struct btrfs_ordered_extent *ordered;
6339         struct extent_state *cached_state = NULL;
6340         char *kaddr;
6341         unsigned long zero_start;
6342         loff_t size;
6343         int ret;
6344         u64 page_start;
6345         u64 page_end;
6346
6347         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6348         if (ret) {
6349                 if (ret == -ENOMEM)
6350                         ret = VM_FAULT_OOM;
6351                 else /* -ENOSPC, -EIO, etc */
6352                         ret = VM_FAULT_SIGBUS;
6353                 goto out;
6354         }
6355
6356         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6357 again:
6358         lock_page(page);
6359         size = i_size_read(inode);
6360         page_start = page_offset(page);
6361         page_end = page_start + PAGE_CACHE_SIZE - 1;
6362
6363         if ((page->mapping != inode->i_mapping) ||
6364             (page_start >= size)) {
6365                 /* page got truncated out from underneath us */
6366                 goto out_unlock;
6367         }
6368         wait_on_page_writeback(page);
6369
6370         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6371                          GFP_NOFS);
6372         set_page_extent_mapped(page);
6373
6374         /*
6375          * we can't set the delalloc bits if there are pending ordered
6376          * extents.  Drop our locks and wait for them to finish
6377          */
6378         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6379         if (ordered) {
6380                 unlock_extent_cached(io_tree, page_start, page_end,
6381                                      &cached_state, GFP_NOFS);
6382                 unlock_page(page);
6383                 btrfs_start_ordered_extent(inode, ordered, 1);
6384                 btrfs_put_ordered_extent(ordered);
6385                 goto again;
6386         }
6387
6388         /*
6389          * XXX - page_mkwrite gets called every time the page is dirtied, even
6390          * if it was already dirty, so for space accounting reasons we need to
6391          * clear any delalloc bits for the range we are fixing to save.  There
6392          * is probably a better way to do this, but for now keep consistent with
6393          * prepare_pages in the normal write path.
6394          */
6395         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6396                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6397                           0, 0, &cached_state, GFP_NOFS);
6398
6399         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6400                                         &cached_state);
6401         if (ret) {
6402                 unlock_extent_cached(io_tree, page_start, page_end,
6403                                      &cached_state, GFP_NOFS);
6404                 ret = VM_FAULT_SIGBUS;
6405                 goto out_unlock;
6406         }
6407         ret = 0;
6408
6409         /* page is wholly or partially inside EOF */
6410         if (page_start + PAGE_CACHE_SIZE > size)
6411                 zero_start = size & ~PAGE_CACHE_MASK;
6412         else
6413                 zero_start = PAGE_CACHE_SIZE;
6414
6415         if (zero_start != PAGE_CACHE_SIZE) {
6416                 kaddr = kmap(page);
6417                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6418                 flush_dcache_page(page);
6419                 kunmap(page);
6420         }
6421         ClearPageChecked(page);
6422         set_page_dirty(page);
6423         SetPageUptodate(page);
6424
6425         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6426         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6427
6428         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6429
6430 out_unlock:
6431         if (!ret)
6432                 return VM_FAULT_LOCKED;
6433         unlock_page(page);
6434         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6435 out:
6436         return ret;
6437 }
6438
6439 static int btrfs_truncate(struct inode *inode)
6440 {
6441         struct btrfs_root *root = BTRFS_I(inode)->root;
6442         struct btrfs_block_rsv *rsv;
6443         int ret;
6444         int err = 0;
6445         struct btrfs_trans_handle *trans;
6446         unsigned long nr;
6447         u64 mask = root->sectorsize - 1;
6448         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6449
6450         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6451         if (ret)
6452                 return ret;
6453
6454         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6455         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6456
6457         /*
6458          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6459          * 3 things going on here
6460          *
6461          * 1) We need to reserve space for our orphan item and the space to
6462          * delete our orphan item.  Lord knows we don't want to have a dangling
6463          * orphan item because we didn't reserve space to remove it.
6464          *
6465          * 2) We need to reserve space to update our inode.
6466          *
6467          * 3) We need to have something to cache all the space that is going to
6468          * be free'd up by the truncate operation, but also have some slack
6469          * space reserved in case it uses space during the truncate (thank you
6470          * very much snapshotting).
6471          *
6472          * And we need these to all be seperate.  The fact is we can use alot of
6473          * space doing the truncate, and we have no earthly idea how much space
6474          * we will use, so we need the truncate reservation to be seperate so it
6475          * doesn't end up using space reserved for updating the inode or
6476          * removing the orphan item.  We also need to be able to stop the
6477          * transaction and start a new one, which means we need to be able to
6478          * update the inode several times, and we have no idea of knowing how
6479          * many times that will be, so we can't just reserve 1 item for the
6480          * entirety of the opration, so that has to be done seperately as well.
6481          * Then there is the orphan item, which does indeed need to be held on
6482          * to for the whole operation, and we need nobody to touch this reserved
6483          * space except the orphan code.
6484          *
6485          * So that leaves us with
6486          *
6487          * 1) root->orphan_block_rsv - for the orphan deletion.
6488          * 2) rsv - for the truncate reservation, which we will steal from the
6489          * transaction reservation.
6490          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6491          * updating the inode.
6492          */
6493         rsv = btrfs_alloc_block_rsv(root);
6494         if (!rsv)
6495                 return -ENOMEM;
6496         rsv->size = min_size;
6497
6498         /*
6499          * 1 for the truncate slack space
6500          * 1 for the orphan item we're going to add
6501          * 1 for the orphan item deletion
6502          * 1 for updating the inode.
6503          */
6504         trans = btrfs_start_transaction(root, 4);
6505         if (IS_ERR(trans)) {
6506                 err = PTR_ERR(trans);
6507                 goto out;
6508         }
6509
6510         /* Migrate the slack space for the truncate to our reserve */
6511         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6512                                       min_size);
6513         BUG_ON(ret);
6514
6515         ret = btrfs_orphan_add(trans, inode);
6516         if (ret) {
6517                 btrfs_end_transaction(trans, root);
6518                 goto out;
6519         }
6520
6521         /*
6522          * setattr is responsible for setting the ordered_data_close flag,
6523          * but that is only tested during the last file release.  That
6524          * could happen well after the next commit, leaving a great big
6525          * window where new writes may get lost if someone chooses to write
6526          * to this file after truncating to zero
6527          *
6528          * The inode doesn't have any dirty data here, and so if we commit
6529          * this is a noop.  If someone immediately starts writing to the inode
6530          * it is very likely we'll catch some of their writes in this
6531          * transaction, and the commit will find this file on the ordered
6532          * data list with good things to send down.
6533          *
6534          * This is a best effort solution, there is still a window where
6535          * using truncate to replace the contents of the file will
6536          * end up with a zero length file after a crash.
6537          */
6538         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6539                 btrfs_add_ordered_operation(trans, root, inode);
6540
6541         while (1) {
6542                 ret = btrfs_block_rsv_refill(root, rsv, min_size);
6543                 if (ret) {
6544                         /*
6545                          * This can only happen with the original transaction we
6546                          * started above, every other time we shouldn't have a
6547                          * transaction started yet.
6548                          */
6549                         if (ret == -EAGAIN)
6550                                 goto end_trans;
6551                         err = ret;
6552                         break;
6553                 }
6554
6555                 if (!trans) {
6556                         /* Just need the 1 for updating the inode */
6557                         trans = btrfs_start_transaction(root, 1);
6558                         if (IS_ERR(trans)) {
6559                                 err = PTR_ERR(trans);
6560                                 goto out;
6561                         }
6562                 }
6563
6564                 trans->block_rsv = rsv;
6565
6566                 ret = btrfs_truncate_inode_items(trans, root, inode,
6567                                                  inode->i_size,
6568                                                  BTRFS_EXTENT_DATA_KEY);
6569                 if (ret != -EAGAIN) {
6570                         err = ret;
6571                         break;
6572                 }
6573
6574                 trans->block_rsv = &root->fs_info->trans_block_rsv;
6575                 ret = btrfs_update_inode(trans, root, inode);
6576                 if (ret) {
6577                         err = ret;
6578                         break;
6579                 }
6580 end_trans:
6581                 nr = trans->blocks_used;
6582                 btrfs_end_transaction(trans, root);
6583                 trans = NULL;
6584                 btrfs_btree_balance_dirty(root, nr);
6585         }
6586
6587         if (ret == 0 && inode->i_nlink > 0) {
6588                 trans->block_rsv = root->orphan_block_rsv;
6589                 ret = btrfs_orphan_del(trans, inode);
6590                 if (ret)
6591                         err = ret;
6592         } else if (ret && inode->i_nlink > 0) {
6593                 /*
6594                  * Failed to do the truncate, remove us from the in memory
6595                  * orphan list.
6596                  */
6597                 ret = btrfs_orphan_del(NULL, inode);
6598         }
6599
6600         if (trans) {
6601                 trans->block_rsv = &root->fs_info->trans_block_rsv;
6602                 ret = btrfs_update_inode(trans, root, inode);
6603                 if (ret && !err)
6604                         err = ret;
6605
6606                 nr = trans->blocks_used;
6607                 ret = btrfs_end_transaction_throttle(trans, root);
6608                 btrfs_btree_balance_dirty(root, nr);
6609         }
6610
6611 out:
6612         btrfs_free_block_rsv(root, rsv);
6613
6614         if (ret && !err)
6615                 err = ret;
6616
6617         return err;
6618 }
6619
6620 /*
6621  * create a new subvolume directory/inode (helper for the ioctl).
6622  */
6623 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6624                              struct btrfs_root *new_root, u64 new_dirid)
6625 {
6626         struct inode *inode;
6627         int err;
6628         u64 index = 0;
6629
6630         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6631                                 new_dirid, S_IFDIR | 0700, &index);
6632         if (IS_ERR(inode))
6633                 return PTR_ERR(inode);
6634         inode->i_op = &btrfs_dir_inode_operations;
6635         inode->i_fop = &btrfs_dir_file_operations;
6636
6637         inode->i_nlink = 1;
6638         btrfs_i_size_write(inode, 0);
6639
6640         err = btrfs_update_inode(trans, new_root, inode);
6641         BUG_ON(err);
6642
6643         iput(inode);
6644         return 0;
6645 }
6646
6647 struct inode *btrfs_alloc_inode(struct super_block *sb)
6648 {
6649         struct btrfs_inode *ei;
6650         struct inode *inode;
6651
6652         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6653         if (!ei)
6654                 return NULL;
6655
6656         ei->root = NULL;
6657         ei->space_info = NULL;
6658         ei->generation = 0;
6659         ei->sequence = 0;
6660         ei->last_trans = 0;
6661         ei->last_sub_trans = 0;
6662         ei->logged_trans = 0;
6663         ei->delalloc_bytes = 0;
6664         ei->disk_i_size = 0;
6665         ei->flags = 0;
6666         ei->csum_bytes = 0;
6667         ei->index_cnt = (u64)-1;
6668         ei->last_unlink_trans = 0;
6669
6670         spin_lock_init(&ei->lock);
6671         ei->outstanding_extents = 0;
6672         ei->reserved_extents = 0;
6673
6674         ei->ordered_data_close = 0;
6675         ei->orphan_meta_reserved = 0;
6676         ei->dummy_inode = 0;
6677         ei->in_defrag = 0;
6678         ei->delalloc_meta_reserved = 0;
6679         ei->force_compress = BTRFS_COMPRESS_NONE;
6680
6681         ei->delayed_node = NULL;
6682
6683         inode = &ei->vfs_inode;
6684         extent_map_tree_init(&ei->extent_tree);
6685         extent_io_tree_init(&ei->io_tree, &inode->i_data);
6686         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6687         mutex_init(&ei->log_mutex);
6688         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6689         INIT_LIST_HEAD(&ei->i_orphan);
6690         INIT_LIST_HEAD(&ei->delalloc_inodes);
6691         INIT_LIST_HEAD(&ei->ordered_operations);
6692         RB_CLEAR_NODE(&ei->rb_node);
6693
6694         return inode;
6695 }
6696
6697 static void btrfs_i_callback(struct rcu_head *head)
6698 {
6699         struct inode *inode = container_of(head, struct inode, i_rcu);
6700         INIT_LIST_HEAD(&inode->i_dentry);
6701         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6702 }
6703
6704 void btrfs_destroy_inode(struct inode *inode)
6705 {
6706         struct btrfs_ordered_extent *ordered;
6707         struct btrfs_root *root = BTRFS_I(inode)->root;
6708
6709         WARN_ON(!list_empty(&inode->i_dentry));
6710         WARN_ON(inode->i_data.nrpages);
6711         WARN_ON(BTRFS_I(inode)->outstanding_extents);
6712         WARN_ON(BTRFS_I(inode)->reserved_extents);
6713         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6714         WARN_ON(BTRFS_I(inode)->csum_bytes);
6715
6716         /*
6717          * This can happen where we create an inode, but somebody else also
6718          * created the same inode and we need to destroy the one we already
6719          * created.
6720          */
6721         if (!root)
6722                 goto free;
6723
6724         /*
6725          * Make sure we're properly removed from the ordered operation
6726          * lists.
6727          */
6728         smp_mb();
6729         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6730                 spin_lock(&root->fs_info->ordered_extent_lock);
6731                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6732                 spin_unlock(&root->fs_info->ordered_extent_lock);
6733         }
6734
6735         spin_lock(&root->orphan_lock);
6736         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6737                 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6738                        (unsigned long long)btrfs_ino(inode));
6739                 list_del_init(&BTRFS_I(inode)->i_orphan);
6740         }
6741         spin_unlock(&root->orphan_lock);
6742
6743         while (1) {
6744                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6745                 if (!ordered)
6746                         break;
6747                 else {
6748                         printk(KERN_ERR "btrfs found ordered "
6749                                "extent %llu %llu on inode cleanup\n",
6750                                (unsigned long long)ordered->file_offset,
6751                                (unsigned long long)ordered->len);
6752                         btrfs_remove_ordered_extent(inode, ordered);
6753                         btrfs_put_ordered_extent(ordered);
6754                         btrfs_put_ordered_extent(ordered);
6755                 }
6756         }
6757         inode_tree_del(inode);
6758         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6759 free:
6760         btrfs_remove_delayed_node(inode);
6761         call_rcu(&inode->i_rcu, btrfs_i_callback);
6762 }
6763
6764 int btrfs_drop_inode(struct inode *inode)
6765 {
6766         struct btrfs_root *root = BTRFS_I(inode)->root;
6767
6768         if (btrfs_root_refs(&root->root_item) == 0 &&
6769             !btrfs_is_free_space_inode(root, inode))
6770                 return 1;
6771         else
6772                 return generic_drop_inode(inode);
6773 }
6774
6775 static void init_once(void *foo)
6776 {
6777         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6778
6779         inode_init_once(&ei->vfs_inode);
6780 }
6781
6782 void btrfs_destroy_cachep(void)
6783 {
6784         if (btrfs_inode_cachep)
6785                 kmem_cache_destroy(btrfs_inode_cachep);
6786         if (btrfs_trans_handle_cachep)
6787                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6788         if (btrfs_transaction_cachep)
6789                 kmem_cache_destroy(btrfs_transaction_cachep);
6790         if (btrfs_path_cachep)
6791                 kmem_cache_destroy(btrfs_path_cachep);
6792         if (btrfs_free_space_cachep)
6793                 kmem_cache_destroy(btrfs_free_space_cachep);
6794 }
6795
6796 int btrfs_init_cachep(void)
6797 {
6798         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6799                         sizeof(struct btrfs_inode), 0,
6800                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6801         if (!btrfs_inode_cachep)
6802                 goto fail;
6803
6804         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6805                         sizeof(struct btrfs_trans_handle), 0,
6806                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6807         if (!btrfs_trans_handle_cachep)
6808                 goto fail;
6809
6810         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6811                         sizeof(struct btrfs_transaction), 0,
6812                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6813         if (!btrfs_transaction_cachep)
6814                 goto fail;
6815
6816         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6817                         sizeof(struct btrfs_path), 0,
6818                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6819         if (!btrfs_path_cachep)
6820                 goto fail;
6821
6822         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6823                         sizeof(struct btrfs_free_space), 0,
6824                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6825         if (!btrfs_free_space_cachep)
6826                 goto fail;
6827
6828         return 0;
6829 fail:
6830         btrfs_destroy_cachep();
6831         return -ENOMEM;
6832 }
6833
6834 static int btrfs_getattr(struct vfsmount *mnt,
6835                          struct dentry *dentry, struct kstat *stat)
6836 {
6837         struct inode *inode = dentry->d_inode;
6838         u32 blocksize = inode->i_sb->s_blocksize;
6839
6840         generic_fillattr(inode, stat);
6841         stat->dev = BTRFS_I(inode)->root->anon_dev;
6842         stat->blksize = PAGE_CACHE_SIZE;
6843         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
6844                 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
6845         return 0;
6846 }
6847
6848 /*
6849  * If a file is moved, it will inherit the cow and compression flags of the new
6850  * directory.
6851  */
6852 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6853 {
6854         struct btrfs_inode *b_dir = BTRFS_I(dir);
6855         struct btrfs_inode *b_inode = BTRFS_I(inode);
6856
6857         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6858                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6859         else
6860                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6861
6862         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6863                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6864         else
6865                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6866 }
6867
6868 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6869                            struct inode *new_dir, struct dentry *new_dentry)
6870 {
6871         struct btrfs_trans_handle *trans;
6872         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6873         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6874         struct inode *new_inode = new_dentry->d_inode;
6875         struct inode *old_inode = old_dentry->d_inode;
6876         struct timespec ctime = CURRENT_TIME;
6877         u64 index = 0;
6878         u64 root_objectid;
6879         int ret;
6880         u64 old_ino = btrfs_ino(old_inode);
6881
6882         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6883                 return -EPERM;
6884
6885         /* we only allow rename subvolume link between subvolumes */
6886         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6887                 return -EXDEV;
6888
6889         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6890             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6891                 return -ENOTEMPTY;
6892
6893         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6894             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6895                 return -ENOTEMPTY;
6896         /*
6897          * we're using rename to replace one file with another.
6898          * and the replacement file is large.  Start IO on it now so
6899          * we don't add too much work to the end of the transaction
6900          */
6901         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6902             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6903                 filemap_flush(old_inode->i_mapping);
6904
6905         /* close the racy window with snapshot create/destroy ioctl */
6906         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6907                 down_read(&root->fs_info->subvol_sem);
6908         /*
6909          * We want to reserve the absolute worst case amount of items.  So if
6910          * both inodes are subvols and we need to unlink them then that would
6911          * require 4 item modifications, but if they are both normal inodes it
6912          * would require 5 item modifications, so we'll assume their normal
6913          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6914          * should cover the worst case number of items we'll modify.
6915          */
6916         trans = btrfs_start_transaction(root, 20);
6917         if (IS_ERR(trans)) {
6918                 ret = PTR_ERR(trans);
6919                 goto out_notrans;
6920         }
6921
6922         if (dest != root)
6923                 btrfs_record_root_in_trans(trans, dest);
6924
6925         ret = btrfs_set_inode_index(new_dir, &index);
6926         if (ret)
6927                 goto out_fail;
6928
6929         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6930                 /* force full log commit if subvolume involved. */
6931                 root->fs_info->last_trans_log_full_commit = trans->transid;
6932         } else {
6933                 ret = btrfs_insert_inode_ref(trans, dest,
6934                                              new_dentry->d_name.name,
6935                                              new_dentry->d_name.len,
6936                                              old_ino,
6937                                              btrfs_ino(new_dir), index);
6938                 if (ret)
6939                         goto out_fail;
6940                 /*
6941                  * this is an ugly little race, but the rename is required
6942                  * to make sure that if we crash, the inode is either at the
6943                  * old name or the new one.  pinning the log transaction lets
6944                  * us make sure we don't allow a log commit to come in after
6945                  * we unlink the name but before we add the new name back in.
6946                  */
6947                 btrfs_pin_log_trans(root);
6948         }
6949         /*
6950          * make sure the inode gets flushed if it is replacing
6951          * something.
6952          */
6953         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
6954                 btrfs_add_ordered_operation(trans, root, old_inode);
6955
6956         old_dir->i_ctime = old_dir->i_mtime = ctime;
6957         new_dir->i_ctime = new_dir->i_mtime = ctime;
6958         old_inode->i_ctime = ctime;
6959
6960         if (old_dentry->d_parent != new_dentry->d_parent)
6961                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6962
6963         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6964                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6965                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6966                                         old_dentry->d_name.name,
6967                                         old_dentry->d_name.len);
6968         } else {
6969                 ret = __btrfs_unlink_inode(trans, root, old_dir,
6970                                         old_dentry->d_inode,
6971                                         old_dentry->d_name.name,
6972                                         old_dentry->d_name.len);
6973                 if (!ret)
6974                         ret = btrfs_update_inode(trans, root, old_inode);
6975         }
6976         BUG_ON(ret);
6977
6978         if (new_inode) {
6979                 new_inode->i_ctime = CURRENT_TIME;
6980                 if (unlikely(btrfs_ino(new_inode) ==
6981                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6982                         root_objectid = BTRFS_I(new_inode)->location.objectid;
6983                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
6984                                                 root_objectid,
6985                                                 new_dentry->d_name.name,
6986                                                 new_dentry->d_name.len);
6987                         BUG_ON(new_inode->i_nlink == 0);
6988                 } else {
6989                         ret = btrfs_unlink_inode(trans, dest, new_dir,
6990                                                  new_dentry->d_inode,
6991                                                  new_dentry->d_name.name,
6992                                                  new_dentry->d_name.len);
6993                 }
6994                 BUG_ON(ret);
6995                 if (new_inode->i_nlink == 0) {
6996                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6997                         BUG_ON(ret);
6998                 }
6999         }
7000
7001         fixup_inode_flags(new_dir, old_inode);
7002
7003         ret = btrfs_add_link(trans, new_dir, old_inode,
7004                              new_dentry->d_name.name,
7005                              new_dentry->d_name.len, 0, index);
7006         BUG_ON(ret);
7007
7008         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7009                 struct dentry *parent = new_dentry->d_parent;
7010                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7011                 btrfs_end_log_trans(root);
7012         }
7013 out_fail:
7014         btrfs_end_transaction_throttle(trans, root);
7015 out_notrans:
7016         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7017                 up_read(&root->fs_info->subvol_sem);
7018
7019         return ret;
7020 }
7021
7022 /*
7023  * some fairly slow code that needs optimization. This walks the list
7024  * of all the inodes with pending delalloc and forces them to disk.
7025  */
7026 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7027 {
7028         struct list_head *head = &root->fs_info->delalloc_inodes;
7029         struct btrfs_inode *binode;
7030         struct inode *inode;
7031
7032         if (root->fs_info->sb->s_flags & MS_RDONLY)
7033                 return -EROFS;
7034
7035         spin_lock(&root->fs_info->delalloc_lock);
7036         while (!list_empty(head)) {
7037                 binode = list_entry(head->next, struct btrfs_inode,
7038                                     delalloc_inodes);
7039                 inode = igrab(&binode->vfs_inode);
7040                 if (!inode)
7041                         list_del_init(&binode->delalloc_inodes);
7042                 spin_unlock(&root->fs_info->delalloc_lock);
7043                 if (inode) {
7044                         filemap_flush(inode->i_mapping);
7045                         if (delay_iput)
7046                                 btrfs_add_delayed_iput(inode);
7047                         else
7048                                 iput(inode);
7049                 }
7050                 cond_resched();
7051                 spin_lock(&root->fs_info->delalloc_lock);
7052         }
7053         spin_unlock(&root->fs_info->delalloc_lock);
7054
7055         /* the filemap_flush will queue IO into the worker threads, but
7056          * we have to make sure the IO is actually started and that
7057          * ordered extents get created before we return
7058          */
7059         atomic_inc(&root->fs_info->async_submit_draining);
7060         while (atomic_read(&root->fs_info->nr_async_submits) ||
7061               atomic_read(&root->fs_info->async_delalloc_pages)) {
7062                 wait_event(root->fs_info->async_submit_wait,
7063                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7064                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7065         }
7066         atomic_dec(&root->fs_info->async_submit_draining);
7067         return 0;
7068 }
7069
7070 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7071                          const char *symname)
7072 {
7073         struct btrfs_trans_handle *trans;
7074         struct btrfs_root *root = BTRFS_I(dir)->root;
7075         struct btrfs_path *path;
7076         struct btrfs_key key;
7077         struct inode *inode = NULL;
7078         int err;
7079         int drop_inode = 0;
7080         u64 objectid;
7081         u64 index = 0 ;
7082         int name_len;
7083         int datasize;
7084         unsigned long ptr;
7085         struct btrfs_file_extent_item *ei;
7086         struct extent_buffer *leaf;
7087         unsigned long nr = 0;
7088
7089         name_len = strlen(symname) + 1;
7090         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7091                 return -ENAMETOOLONG;
7092
7093         /*
7094          * 2 items for inode item and ref
7095          * 2 items for dir items
7096          * 1 item for xattr if selinux is on
7097          */
7098         trans = btrfs_start_transaction(root, 5);
7099         if (IS_ERR(trans))
7100                 return PTR_ERR(trans);
7101
7102         err = btrfs_find_free_ino(root, &objectid);
7103         if (err)
7104                 goto out_unlock;
7105
7106         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7107                                 dentry->d_name.len, btrfs_ino(dir), objectid,
7108                                 S_IFLNK|S_IRWXUGO, &index);
7109         if (IS_ERR(inode)) {
7110                 err = PTR_ERR(inode);
7111                 goto out_unlock;
7112         }
7113
7114         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7115         if (err) {
7116                 drop_inode = 1;
7117                 goto out_unlock;
7118         }
7119
7120         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7121         if (err)
7122                 drop_inode = 1;
7123         else {
7124                 inode->i_mapping->a_ops = &btrfs_aops;
7125                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7126                 inode->i_fop = &btrfs_file_operations;
7127                 inode->i_op = &btrfs_file_inode_operations;
7128                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7129         }
7130         if (drop_inode)
7131                 goto out_unlock;
7132
7133         path = btrfs_alloc_path();
7134         if (!path) {
7135                 err = -ENOMEM;
7136                 drop_inode = 1;
7137                 goto out_unlock;
7138         }
7139         key.objectid = btrfs_ino(inode);
7140         key.offset = 0;
7141         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7142         datasize = btrfs_file_extent_calc_inline_size(name_len);
7143         err = btrfs_insert_empty_item(trans, root, path, &key,
7144                                       datasize);
7145         if (err) {
7146                 drop_inode = 1;
7147                 btrfs_free_path(path);
7148                 goto out_unlock;
7149         }
7150         leaf = path->nodes[0];
7151         ei = btrfs_item_ptr(leaf, path->slots[0],
7152                             struct btrfs_file_extent_item);
7153         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7154         btrfs_set_file_extent_type(leaf, ei,
7155                                    BTRFS_FILE_EXTENT_INLINE);
7156         btrfs_set_file_extent_encryption(leaf, ei, 0);
7157         btrfs_set_file_extent_compression(leaf, ei, 0);
7158         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7159         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7160
7161         ptr = btrfs_file_extent_inline_start(ei);
7162         write_extent_buffer(leaf, symname, ptr, name_len);
7163         btrfs_mark_buffer_dirty(leaf);
7164         btrfs_free_path(path);
7165
7166         inode->i_op = &btrfs_symlink_inode_operations;
7167         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7168         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7169         inode_set_bytes(inode, name_len);
7170         btrfs_i_size_write(inode, name_len - 1);
7171         err = btrfs_update_inode(trans, root, inode);
7172         if (err)
7173                 drop_inode = 1;
7174
7175 out_unlock:
7176         nr = trans->blocks_used;
7177         btrfs_end_transaction_throttle(trans, root);
7178         if (drop_inode) {
7179                 inode_dec_link_count(inode);
7180                 iput(inode);
7181         }
7182         btrfs_btree_balance_dirty(root, nr);
7183         return err;
7184 }
7185
7186 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7187                                        u64 start, u64 num_bytes, u64 min_size,
7188                                        loff_t actual_len, u64 *alloc_hint,
7189                                        struct btrfs_trans_handle *trans)
7190 {
7191         struct btrfs_root *root = BTRFS_I(inode)->root;
7192         struct btrfs_key ins;
7193         u64 cur_offset = start;
7194         u64 i_size;
7195         int ret = 0;
7196         bool own_trans = true;
7197
7198         if (trans)
7199                 own_trans = false;
7200         while (num_bytes > 0) {
7201                 if (own_trans) {
7202                         trans = btrfs_start_transaction(root, 3);
7203                         if (IS_ERR(trans)) {
7204                                 ret = PTR_ERR(trans);
7205                                 break;
7206                         }
7207                 }
7208
7209                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7210                                            0, *alloc_hint, (u64)-1, &ins, 1);
7211                 if (ret) {
7212                         if (own_trans)
7213                                 btrfs_end_transaction(trans, root);
7214                         break;
7215                 }
7216
7217                 ret = insert_reserved_file_extent(trans, inode,
7218                                                   cur_offset, ins.objectid,
7219                                                   ins.offset, ins.offset,
7220                                                   ins.offset, 0, 0, 0,
7221                                                   BTRFS_FILE_EXTENT_PREALLOC);
7222                 BUG_ON(ret);
7223                 btrfs_drop_extent_cache(inode, cur_offset,
7224                                         cur_offset + ins.offset -1, 0);
7225
7226                 num_bytes -= ins.offset;
7227                 cur_offset += ins.offset;
7228                 *alloc_hint = ins.objectid + ins.offset;
7229
7230                 inode->i_ctime = CURRENT_TIME;
7231                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7232                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7233                     (actual_len > inode->i_size) &&
7234                     (cur_offset > inode->i_size)) {
7235                         if (cur_offset > actual_len)
7236                                 i_size = actual_len;
7237                         else
7238                                 i_size = cur_offset;
7239                         i_size_write(inode, i_size);
7240                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7241                 }
7242
7243                 ret = btrfs_update_inode(trans, root, inode);
7244                 BUG_ON(ret);
7245
7246                 if (own_trans)
7247                         btrfs_end_transaction(trans, root);
7248         }
7249         return ret;
7250 }
7251
7252 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7253                               u64 start, u64 num_bytes, u64 min_size,
7254                               loff_t actual_len, u64 *alloc_hint)
7255 {
7256         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7257                                            min_size, actual_len, alloc_hint,
7258                                            NULL);
7259 }
7260
7261 int btrfs_prealloc_file_range_trans(struct inode *inode,
7262                                     struct btrfs_trans_handle *trans, int mode,
7263                                     u64 start, u64 num_bytes, u64 min_size,
7264                                     loff_t actual_len, u64 *alloc_hint)
7265 {
7266         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7267                                            min_size, actual_len, alloc_hint, trans);
7268 }
7269
7270 static int btrfs_set_page_dirty(struct page *page)
7271 {
7272         return __set_page_dirty_nobuffers(page);
7273 }
7274
7275 static int btrfs_permission(struct inode *inode, int mask)
7276 {
7277         struct btrfs_root *root = BTRFS_I(inode)->root;
7278         umode_t mode = inode->i_mode;
7279
7280         if (mask & MAY_WRITE &&
7281             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7282                 if (btrfs_root_readonly(root))
7283                         return -EROFS;
7284                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7285                         return -EACCES;
7286         }
7287         return generic_permission(inode, mask);
7288 }
7289
7290 static const struct inode_operations btrfs_dir_inode_operations = {
7291         .getattr        = btrfs_getattr,
7292         .lookup         = btrfs_lookup,
7293         .create         = btrfs_create,
7294         .unlink         = btrfs_unlink,
7295         .link           = btrfs_link,
7296         .mkdir          = btrfs_mkdir,
7297         .rmdir          = btrfs_rmdir,
7298         .rename         = btrfs_rename,
7299         .symlink        = btrfs_symlink,
7300         .setattr        = btrfs_setattr,
7301         .mknod          = btrfs_mknod,
7302         .setxattr       = btrfs_setxattr,
7303         .getxattr       = btrfs_getxattr,
7304         .listxattr      = btrfs_listxattr,
7305         .removexattr    = btrfs_removexattr,
7306         .permission     = btrfs_permission,
7307         .get_acl        = btrfs_get_acl,
7308 };
7309 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7310         .lookup         = btrfs_lookup,
7311         .permission     = btrfs_permission,
7312         .get_acl        = btrfs_get_acl,
7313 };
7314
7315 static const struct file_operations btrfs_dir_file_operations = {
7316         .llseek         = generic_file_llseek,
7317         .read           = generic_read_dir,
7318         .readdir        = btrfs_real_readdir,
7319         .unlocked_ioctl = btrfs_ioctl,
7320 #ifdef CONFIG_COMPAT
7321         .compat_ioctl   = btrfs_ioctl,
7322 #endif
7323         .release        = btrfs_release_file,
7324         .fsync          = btrfs_sync_file,
7325 };
7326
7327 static struct extent_io_ops btrfs_extent_io_ops = {
7328         .fill_delalloc = run_delalloc_range,
7329         .submit_bio_hook = btrfs_submit_bio_hook,
7330         .merge_bio_hook = btrfs_merge_bio_hook,
7331         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7332         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7333         .writepage_start_hook = btrfs_writepage_start_hook,
7334         .set_bit_hook = btrfs_set_bit_hook,
7335         .clear_bit_hook = btrfs_clear_bit_hook,
7336         .merge_extent_hook = btrfs_merge_extent_hook,
7337         .split_extent_hook = btrfs_split_extent_hook,
7338 };
7339
7340 /*
7341  * btrfs doesn't support the bmap operation because swapfiles
7342  * use bmap to make a mapping of extents in the file.  They assume
7343  * these extents won't change over the life of the file and they
7344  * use the bmap result to do IO directly to the drive.
7345  *
7346  * the btrfs bmap call would return logical addresses that aren't
7347  * suitable for IO and they also will change frequently as COW
7348  * operations happen.  So, swapfile + btrfs == corruption.
7349  *
7350  * For now we're avoiding this by dropping bmap.
7351  */
7352 static const struct address_space_operations btrfs_aops = {
7353         .readpage       = btrfs_readpage,
7354         .writepage      = btrfs_writepage,
7355         .writepages     = btrfs_writepages,
7356         .readpages      = btrfs_readpages,
7357         .direct_IO      = btrfs_direct_IO,
7358         .invalidatepage = btrfs_invalidatepage,
7359         .releasepage    = btrfs_releasepage,
7360         .set_page_dirty = btrfs_set_page_dirty,
7361         .error_remove_page = generic_error_remove_page,
7362 };
7363
7364 static const struct address_space_operations btrfs_symlink_aops = {
7365         .readpage       = btrfs_readpage,
7366         .writepage      = btrfs_writepage,
7367         .invalidatepage = btrfs_invalidatepage,
7368         .releasepage    = btrfs_releasepage,
7369 };
7370
7371 static const struct inode_operations btrfs_file_inode_operations = {
7372         .getattr        = btrfs_getattr,
7373         .setattr        = btrfs_setattr,
7374         .setxattr       = btrfs_setxattr,
7375         .getxattr       = btrfs_getxattr,
7376         .listxattr      = btrfs_listxattr,
7377         .removexattr    = btrfs_removexattr,
7378         .permission     = btrfs_permission,
7379         .fiemap         = btrfs_fiemap,
7380         .get_acl        = btrfs_get_acl,
7381 };
7382 static const struct inode_operations btrfs_special_inode_operations = {
7383         .getattr        = btrfs_getattr,
7384         .setattr        = btrfs_setattr,
7385         .permission     = btrfs_permission,
7386         .setxattr       = btrfs_setxattr,
7387         .getxattr       = btrfs_getxattr,
7388         .listxattr      = btrfs_listxattr,
7389         .removexattr    = btrfs_removexattr,
7390         .get_acl        = btrfs_get_acl,
7391 };
7392 static const struct inode_operations btrfs_symlink_inode_operations = {
7393         .readlink       = generic_readlink,
7394         .follow_link    = page_follow_link_light,
7395         .put_link       = page_put_link,
7396         .getattr        = btrfs_getattr,
7397         .permission     = btrfs_permission,
7398         .setxattr       = btrfs_setxattr,
7399         .getxattr       = btrfs_getxattr,
7400         .listxattr      = btrfs_listxattr,
7401         .removexattr    = btrfs_removexattr,
7402         .get_acl        = btrfs_get_acl,
7403 };
7404
7405 const struct dentry_operations btrfs_dentry_operations = {
7406         .d_delete       = btrfs_dentry_delete,
7407         .d_release      = btrfs_dentry_release,
7408 };