Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
77         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
78         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
79         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
80         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
81         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
82         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88                                    struct page *locked_page,
89                                    u64 start, u64 end, int *page_started,
90                                    unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93                                      struct inode *inode,  struct inode *dir)
94 {
95         int err;
96
97         err = btrfs_init_acl(trans, inode, dir);
98         if (!err)
99                 err = btrfs_xattr_security_init(trans, inode, dir);
100         return err;
101 }
102
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109                                 struct btrfs_root *root, struct inode *inode,
110                                 u64 start, size_t size, size_t compressed_size,
111                                 struct page **compressed_pages)
112 {
113         struct btrfs_key key;
114         struct btrfs_path *path;
115         struct extent_buffer *leaf;
116         struct page *page = NULL;
117         char *kaddr;
118         unsigned long ptr;
119         struct btrfs_file_extent_item *ei;
120         int err = 0;
121         int ret;
122         size_t cur_size = size;
123         size_t datasize;
124         unsigned long offset;
125         int compress_type = BTRFS_COMPRESS_NONE;
126
127         if (compressed_size && compressed_pages) {
128                 compress_type = root->fs_info->compress_type;
129                 cur_size = compressed_size;
130         }
131
132         path = btrfs_alloc_path();
133         if (!path)
134                 return -ENOMEM;
135
136         path->leave_spinning = 1;
137         btrfs_set_trans_block_group(trans, inode);
138
139         key.objectid = inode->i_ino;
140         key.offset = start;
141         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142         datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144         inode_add_bytes(inode, size);
145         ret = btrfs_insert_empty_item(trans, root, path, &key,
146                                       datasize);
147         BUG_ON(ret);
148         if (ret) {
149                 err = ret;
150                 goto fail;
151         }
152         leaf = path->nodes[0];
153         ei = btrfs_item_ptr(leaf, path->slots[0],
154                             struct btrfs_file_extent_item);
155         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157         btrfs_set_file_extent_encryption(leaf, ei, 0);
158         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160         ptr = btrfs_file_extent_inline_start(ei);
161
162         if (compress_type != BTRFS_COMPRESS_NONE) {
163                 struct page *cpage;
164                 int i = 0;
165                 while (compressed_size > 0) {
166                         cpage = compressed_pages[i];
167                         cur_size = min_t(unsigned long, compressed_size,
168                                        PAGE_CACHE_SIZE);
169
170                         kaddr = kmap_atomic(cpage, KM_USER0);
171                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
172                         kunmap_atomic(kaddr, KM_USER0);
173
174                         i++;
175                         ptr += cur_size;
176                         compressed_size -= cur_size;
177                 }
178                 btrfs_set_file_extent_compression(leaf, ei,
179                                                   compress_type);
180         } else {
181                 page = find_get_page(inode->i_mapping,
182                                      start >> PAGE_CACHE_SHIFT);
183                 btrfs_set_file_extent_compression(leaf, ei, 0);
184                 kaddr = kmap_atomic(page, KM_USER0);
185                 offset = start & (PAGE_CACHE_SIZE - 1);
186                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187                 kunmap_atomic(kaddr, KM_USER0);
188                 page_cache_release(page);
189         }
190         btrfs_mark_buffer_dirty(leaf);
191         btrfs_free_path(path);
192
193         /*
194          * we're an inline extent, so nobody can
195          * extend the file past i_size without locking
196          * a page we already have locked.
197          *
198          * We must do any isize and inode updates
199          * before we unlock the pages.  Otherwise we
200          * could end up racing with unlink.
201          */
202         BTRFS_I(inode)->disk_i_size = inode->i_size;
203         btrfs_update_inode(trans, root, inode);
204
205         return 0;
206 fail:
207         btrfs_free_path(path);
208         return err;
209 }
210
211
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218                                  struct btrfs_root *root,
219                                  struct inode *inode, u64 start, u64 end,
220                                  size_t compressed_size,
221                                  struct page **compressed_pages)
222 {
223         u64 isize = i_size_read(inode);
224         u64 actual_end = min(end + 1, isize);
225         u64 inline_len = actual_end - start;
226         u64 aligned_end = (end + root->sectorsize - 1) &
227                         ~((u64)root->sectorsize - 1);
228         u64 hint_byte;
229         u64 data_len = inline_len;
230         int ret;
231
232         if (compressed_size)
233                 data_len = compressed_size;
234
235         if (start > 0 ||
236             actual_end >= PAGE_CACHE_SIZE ||
237             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238             (!compressed_size &&
239             (actual_end & (root->sectorsize - 1)) == 0) ||
240             end + 1 < isize ||
241             data_len > root->fs_info->max_inline) {
242                 return 1;
243         }
244
245         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246                                  &hint_byte, 1);
247         BUG_ON(ret);
248
249         if (isize > actual_end)
250                 inline_len = min_t(u64, isize, actual_end);
251         ret = insert_inline_extent(trans, root, inode, start,
252                                    inline_len, compressed_size,
253                                    compressed_pages);
254         BUG_ON(ret);
255         btrfs_delalloc_release_metadata(inode, end + 1 - start);
256         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257         return 0;
258 }
259
260 struct async_extent {
261         u64 start;
262         u64 ram_size;
263         u64 compressed_size;
264         struct page **pages;
265         unsigned long nr_pages;
266         int compress_type;
267         struct list_head list;
268 };
269
270 struct async_cow {
271         struct inode *inode;
272         struct btrfs_root *root;
273         struct page *locked_page;
274         u64 start;
275         u64 end;
276         struct list_head extents;
277         struct btrfs_work work;
278 };
279
280 static noinline int add_async_extent(struct async_cow *cow,
281                                      u64 start, u64 ram_size,
282                                      u64 compressed_size,
283                                      struct page **pages,
284                                      unsigned long nr_pages,
285                                      int compress_type)
286 {
287         struct async_extent *async_extent;
288
289         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290         async_extent->start = start;
291         async_extent->ram_size = ram_size;
292         async_extent->compressed_size = compressed_size;
293         async_extent->pages = pages;
294         async_extent->nr_pages = nr_pages;
295         async_extent->compress_type = compress_type;
296         list_add_tail(&async_extent->list, &cow->extents);
297         return 0;
298 }
299
300 /*
301  * we create compressed extents in two phases.  The first
302  * phase compresses a range of pages that have already been
303  * locked (both pages and state bits are locked).
304  *
305  * This is done inside an ordered work queue, and the compression
306  * is spread across many cpus.  The actual IO submission is step
307  * two, and the ordered work queue takes care of making sure that
308  * happens in the same order things were put onto the queue by
309  * writepages and friends.
310  *
311  * If this code finds it can't get good compression, it puts an
312  * entry onto the work queue to write the uncompressed bytes.  This
313  * makes sure that both compressed inodes and uncompressed inodes
314  * are written in the same order that pdflush sent them down.
315  */
316 static noinline int compress_file_range(struct inode *inode,
317                                         struct page *locked_page,
318                                         u64 start, u64 end,
319                                         struct async_cow *async_cow,
320                                         int *num_added)
321 {
322         struct btrfs_root *root = BTRFS_I(inode)->root;
323         struct btrfs_trans_handle *trans;
324         u64 num_bytes;
325         u64 blocksize = root->sectorsize;
326         u64 actual_end;
327         u64 isize = i_size_read(inode);
328         int ret = 0;
329         struct page **pages = NULL;
330         unsigned long nr_pages;
331         unsigned long nr_pages_ret = 0;
332         unsigned long total_compressed = 0;
333         unsigned long total_in = 0;
334         unsigned long max_compressed = 128 * 1024;
335         unsigned long max_uncompressed = 128 * 1024;
336         int i;
337         int will_compress;
338         int compress_type = root->fs_info->compress_type;
339
340         actual_end = min_t(u64, isize, end + 1);
341 again:
342         will_compress = 0;
343         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346         /*
347          * we don't want to send crud past the end of i_size through
348          * compression, that's just a waste of CPU time.  So, if the
349          * end of the file is before the start of our current
350          * requested range of bytes, we bail out to the uncompressed
351          * cleanup code that can deal with all of this.
352          *
353          * It isn't really the fastest way to fix things, but this is a
354          * very uncommon corner.
355          */
356         if (actual_end <= start)
357                 goto cleanup_and_bail_uncompressed;
358
359         total_compressed = actual_end - start;
360
361         /* we want to make sure that amount of ram required to uncompress
362          * an extent is reasonable, so we limit the total size in ram
363          * of a compressed extent to 128k.  This is a crucial number
364          * because it also controls how easily we can spread reads across
365          * cpus for decompression.
366          *
367          * We also want to make sure the amount of IO required to do
368          * a random read is reasonably small, so we limit the size of
369          * a compressed extent to 128k.
370          */
371         total_compressed = min(total_compressed, max_uncompressed);
372         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373         num_bytes = max(blocksize,  num_bytes);
374         total_in = 0;
375         ret = 0;
376
377         /*
378          * we do compression for mount -o compress and when the
379          * inode has not been flagged as nocompress.  This flag can
380          * change at any time if we discover bad compression ratios.
381          */
382         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383             (btrfs_test_opt(root, COMPRESS) ||
384              (BTRFS_I(inode)->force_compress))) {
385                 WARN_ON(pages);
386                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387
388                 if (BTRFS_I(inode)->force_compress)
389                         compress_type = BTRFS_I(inode)->force_compress;
390
391                 ret = btrfs_compress_pages(compress_type,
392                                            inode->i_mapping, start,
393                                            total_compressed, pages,
394                                            nr_pages, &nr_pages_ret,
395                                            &total_in,
396                                            &total_compressed,
397                                            max_compressed);
398
399                 if (!ret) {
400                         unsigned long offset = total_compressed &
401                                 (PAGE_CACHE_SIZE - 1);
402                         struct page *page = pages[nr_pages_ret - 1];
403                         char *kaddr;
404
405                         /* zero the tail end of the last page, we might be
406                          * sending it down to disk
407                          */
408                         if (offset) {
409                                 kaddr = kmap_atomic(page, KM_USER0);
410                                 memset(kaddr + offset, 0,
411                                        PAGE_CACHE_SIZE - offset);
412                                 kunmap_atomic(kaddr, KM_USER0);
413                         }
414                         will_compress = 1;
415                 }
416         }
417         if (start == 0) {
418                 trans = btrfs_join_transaction(root, 1);
419                 BUG_ON(!trans);
420                 btrfs_set_trans_block_group(trans, inode);
421                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
422
423                 /* lets try to make an inline extent */
424                 if (ret || total_in < (actual_end - start)) {
425                         /* we didn't compress the entire range, try
426                          * to make an uncompressed inline extent.
427                          */
428                         ret = cow_file_range_inline(trans, root, inode,
429                                                     start, end, 0, NULL);
430                 } else {
431                         /* try making a compressed inline extent */
432                         ret = cow_file_range_inline(trans, root, inode,
433                                                     start, end,
434                                                     total_compressed, pages);
435                 }
436                 if (ret == 0) {
437                         /*
438                          * inline extent creation worked, we don't need
439                          * to create any more async work items.  Unlock
440                          * and free up our temp pages.
441                          */
442                         extent_clear_unlock_delalloc(inode,
443                              &BTRFS_I(inode)->io_tree,
444                              start, end, NULL,
445                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446                              EXTENT_CLEAR_DELALLOC |
447                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
448
449                         btrfs_end_transaction(trans, root);
450                         goto free_pages_out;
451                 }
452                 btrfs_end_transaction(trans, root);
453         }
454
455         if (will_compress) {
456                 /*
457                  * we aren't doing an inline extent round the compressed size
458                  * up to a block size boundary so the allocator does sane
459                  * things
460                  */
461                 total_compressed = (total_compressed + blocksize - 1) &
462                         ~(blocksize - 1);
463
464                 /*
465                  * one last check to make sure the compression is really a
466                  * win, compare the page count read with the blocks on disk
467                  */
468                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469                         ~(PAGE_CACHE_SIZE - 1);
470                 if (total_compressed >= total_in) {
471                         will_compress = 0;
472                 } else {
473                         num_bytes = total_in;
474                 }
475         }
476         if (!will_compress && pages) {
477                 /*
478                  * the compression code ran but failed to make things smaller,
479                  * free any pages it allocated and our page pointer array
480                  */
481                 for (i = 0; i < nr_pages_ret; i++) {
482                         WARN_ON(pages[i]->mapping);
483                         page_cache_release(pages[i]);
484                 }
485                 kfree(pages);
486                 pages = NULL;
487                 total_compressed = 0;
488                 nr_pages_ret = 0;
489
490                 /* flag the file so we don't compress in the future */
491                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492                     !(BTRFS_I(inode)->force_compress)) {
493                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
494                 }
495         }
496         if (will_compress) {
497                 *num_added += 1;
498
499                 /* the async work queues will take care of doing actual
500                  * allocation on disk for these compressed pages,
501                  * and will submit them to the elevator.
502                  */
503                 add_async_extent(async_cow, start, num_bytes,
504                                  total_compressed, pages, nr_pages_ret,
505                                  compress_type);
506
507                 if (start + num_bytes < end) {
508                         start += num_bytes;
509                         pages = NULL;
510                         cond_resched();
511                         goto again;
512                 }
513         } else {
514 cleanup_and_bail_uncompressed:
515                 /*
516                  * No compression, but we still need to write the pages in
517                  * the file we've been given so far.  redirty the locked
518                  * page if it corresponds to our extent and set things up
519                  * for the async work queue to run cow_file_range to do
520                  * the normal delalloc dance
521                  */
522                 if (page_offset(locked_page) >= start &&
523                     page_offset(locked_page) <= end) {
524                         __set_page_dirty_nobuffers(locked_page);
525                         /* unlocked later on in the async handlers */
526                 }
527                 add_async_extent(async_cow, start, end - start + 1,
528                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
529                 *num_added += 1;
530         }
531
532 out:
533         return 0;
534
535 free_pages_out:
536         for (i = 0; i < nr_pages_ret; i++) {
537                 WARN_ON(pages[i]->mapping);
538                 page_cache_release(pages[i]);
539         }
540         kfree(pages);
541
542         goto out;
543 }
544
545 /*
546  * phase two of compressed writeback.  This is the ordered portion
547  * of the code, which only gets called in the order the work was
548  * queued.  We walk all the async extents created by compress_file_range
549  * and send them down to the disk.
550  */
551 static noinline int submit_compressed_extents(struct inode *inode,
552                                               struct async_cow *async_cow)
553 {
554         struct async_extent *async_extent;
555         u64 alloc_hint = 0;
556         struct btrfs_trans_handle *trans;
557         struct btrfs_key ins;
558         struct extent_map *em;
559         struct btrfs_root *root = BTRFS_I(inode)->root;
560         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561         struct extent_io_tree *io_tree;
562         int ret = 0;
563
564         if (list_empty(&async_cow->extents))
565                 return 0;
566
567
568         while (!list_empty(&async_cow->extents)) {
569                 async_extent = list_entry(async_cow->extents.next,
570                                           struct async_extent, list);
571                 list_del(&async_extent->list);
572
573                 io_tree = &BTRFS_I(inode)->io_tree;
574
575 retry:
576                 /* did the compression code fall back to uncompressed IO? */
577                 if (!async_extent->pages) {
578                         int page_started = 0;
579                         unsigned long nr_written = 0;
580
581                         lock_extent(io_tree, async_extent->start,
582                                          async_extent->start +
583                                          async_extent->ram_size - 1, GFP_NOFS);
584
585                         /* allocate blocks */
586                         ret = cow_file_range(inode, async_cow->locked_page,
587                                              async_extent->start,
588                                              async_extent->start +
589                                              async_extent->ram_size - 1,
590                                              &page_started, &nr_written, 0);
591
592                         /*
593                          * if page_started, cow_file_range inserted an
594                          * inline extent and took care of all the unlocking
595                          * and IO for us.  Otherwise, we need to submit
596                          * all those pages down to the drive.
597                          */
598                         if (!page_started && !ret)
599                                 extent_write_locked_range(io_tree,
600                                                   inode, async_extent->start,
601                                                   async_extent->start +
602                                                   async_extent->ram_size - 1,
603                                                   btrfs_get_extent,
604                                                   WB_SYNC_ALL);
605                         kfree(async_extent);
606                         cond_resched();
607                         continue;
608                 }
609
610                 lock_extent(io_tree, async_extent->start,
611                             async_extent->start + async_extent->ram_size - 1,
612                             GFP_NOFS);
613
614                 trans = btrfs_join_transaction(root, 1);
615                 ret = btrfs_reserve_extent(trans, root,
616                                            async_extent->compressed_size,
617                                            async_extent->compressed_size,
618                                            0, alloc_hint,
619                                            (u64)-1, &ins, 1);
620                 btrfs_end_transaction(trans, root);
621
622                 if (ret) {
623                         int i;
624                         for (i = 0; i < async_extent->nr_pages; i++) {
625                                 WARN_ON(async_extent->pages[i]->mapping);
626                                 page_cache_release(async_extent->pages[i]);
627                         }
628                         kfree(async_extent->pages);
629                         async_extent->nr_pages = 0;
630                         async_extent->pages = NULL;
631                         unlock_extent(io_tree, async_extent->start,
632                                       async_extent->start +
633                                       async_extent->ram_size - 1, GFP_NOFS);
634                         goto retry;
635                 }
636
637                 /*
638                  * here we're doing allocation and writeback of the
639                  * compressed pages
640                  */
641                 btrfs_drop_extent_cache(inode, async_extent->start,
642                                         async_extent->start +
643                                         async_extent->ram_size - 1, 0);
644
645                 em = alloc_extent_map(GFP_NOFS);
646                 em->start = async_extent->start;
647                 em->len = async_extent->ram_size;
648                 em->orig_start = em->start;
649
650                 em->block_start = ins.objectid;
651                 em->block_len = ins.offset;
652                 em->bdev = root->fs_info->fs_devices->latest_bdev;
653                 em->compress_type = async_extent->compress_type;
654                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
655                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
656
657                 while (1) {
658                         write_lock(&em_tree->lock);
659                         ret = add_extent_mapping(em_tree, em);
660                         write_unlock(&em_tree->lock);
661                         if (ret != -EEXIST) {
662                                 free_extent_map(em);
663                                 break;
664                         }
665                         btrfs_drop_extent_cache(inode, async_extent->start,
666                                                 async_extent->start +
667                                                 async_extent->ram_size - 1, 0);
668                 }
669
670                 ret = btrfs_add_ordered_extent_compress(inode,
671                                                 async_extent->start,
672                                                 ins.objectid,
673                                                 async_extent->ram_size,
674                                                 ins.offset,
675                                                 BTRFS_ORDERED_COMPRESSED,
676                                                 async_extent->compress_type);
677                 BUG_ON(ret);
678
679                 /*
680                  * clear dirty, set writeback and unlock the pages.
681                  */
682                 extent_clear_unlock_delalloc(inode,
683                                 &BTRFS_I(inode)->io_tree,
684                                 async_extent->start,
685                                 async_extent->start +
686                                 async_extent->ram_size - 1,
687                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
688                                 EXTENT_CLEAR_UNLOCK |
689                                 EXTENT_CLEAR_DELALLOC |
690                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
691
692                 ret = btrfs_submit_compressed_write(inode,
693                                     async_extent->start,
694                                     async_extent->ram_size,
695                                     ins.objectid,
696                                     ins.offset, async_extent->pages,
697                                     async_extent->nr_pages);
698
699                 BUG_ON(ret);
700                 alloc_hint = ins.objectid + ins.offset;
701                 kfree(async_extent);
702                 cond_resched();
703         }
704
705         return 0;
706 }
707
708 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
709                                       u64 num_bytes)
710 {
711         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
712         struct extent_map *em;
713         u64 alloc_hint = 0;
714
715         read_lock(&em_tree->lock);
716         em = search_extent_mapping(em_tree, start, num_bytes);
717         if (em) {
718                 /*
719                  * if block start isn't an actual block number then find the
720                  * first block in this inode and use that as a hint.  If that
721                  * block is also bogus then just don't worry about it.
722                  */
723                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
724                         free_extent_map(em);
725                         em = search_extent_mapping(em_tree, 0, 0);
726                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
727                                 alloc_hint = em->block_start;
728                         if (em)
729                                 free_extent_map(em);
730                 } else {
731                         alloc_hint = em->block_start;
732                         free_extent_map(em);
733                 }
734         }
735         read_unlock(&em_tree->lock);
736
737         return alloc_hint;
738 }
739
740 /*
741  * when extent_io.c finds a delayed allocation range in the file,
742  * the call backs end up in this code.  The basic idea is to
743  * allocate extents on disk for the range, and create ordered data structs
744  * in ram to track those extents.
745  *
746  * locked_page is the page that writepage had locked already.  We use
747  * it to make sure we don't do extra locks or unlocks.
748  *
749  * *page_started is set to one if we unlock locked_page and do everything
750  * required to start IO on it.  It may be clean and already done with
751  * IO when we return.
752  */
753 static noinline int cow_file_range(struct inode *inode,
754                                    struct page *locked_page,
755                                    u64 start, u64 end, int *page_started,
756                                    unsigned long *nr_written,
757                                    int unlock)
758 {
759         struct btrfs_root *root = BTRFS_I(inode)->root;
760         struct btrfs_trans_handle *trans;
761         u64 alloc_hint = 0;
762         u64 num_bytes;
763         unsigned long ram_size;
764         u64 disk_num_bytes;
765         u64 cur_alloc_size;
766         u64 blocksize = root->sectorsize;
767         struct btrfs_key ins;
768         struct extent_map *em;
769         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
770         int ret = 0;
771
772         BUG_ON(root == root->fs_info->tree_root);
773         trans = btrfs_join_transaction(root, 1);
774         BUG_ON(!trans);
775         btrfs_set_trans_block_group(trans, inode);
776         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
777
778         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
779         num_bytes = max(blocksize,  num_bytes);
780         disk_num_bytes = num_bytes;
781         ret = 0;
782
783         if (start == 0) {
784                 /* lets try to make an inline extent */
785                 ret = cow_file_range_inline(trans, root, inode,
786                                             start, end, 0, NULL);
787                 if (ret == 0) {
788                         extent_clear_unlock_delalloc(inode,
789                                      &BTRFS_I(inode)->io_tree,
790                                      start, end, NULL,
791                                      EXTENT_CLEAR_UNLOCK_PAGE |
792                                      EXTENT_CLEAR_UNLOCK |
793                                      EXTENT_CLEAR_DELALLOC |
794                                      EXTENT_CLEAR_DIRTY |
795                                      EXTENT_SET_WRITEBACK |
796                                      EXTENT_END_WRITEBACK);
797
798                         *nr_written = *nr_written +
799                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
800                         *page_started = 1;
801                         ret = 0;
802                         goto out;
803                 }
804         }
805
806         BUG_ON(disk_num_bytes >
807                btrfs_super_total_bytes(&root->fs_info->super_copy));
808
809         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
810         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
811
812         while (disk_num_bytes > 0) {
813                 unsigned long op;
814
815                 cur_alloc_size = disk_num_bytes;
816                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
817                                            root->sectorsize, 0, alloc_hint,
818                                            (u64)-1, &ins, 1);
819                 BUG_ON(ret);
820
821                 em = alloc_extent_map(GFP_NOFS);
822                 em->start = start;
823                 em->orig_start = em->start;
824                 ram_size = ins.offset;
825                 em->len = ins.offset;
826
827                 em->block_start = ins.objectid;
828                 em->block_len = ins.offset;
829                 em->bdev = root->fs_info->fs_devices->latest_bdev;
830                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
831
832                 while (1) {
833                         write_lock(&em_tree->lock);
834                         ret = add_extent_mapping(em_tree, em);
835                         write_unlock(&em_tree->lock);
836                         if (ret != -EEXIST) {
837                                 free_extent_map(em);
838                                 break;
839                         }
840                         btrfs_drop_extent_cache(inode, start,
841                                                 start + ram_size - 1, 0);
842                 }
843
844                 cur_alloc_size = ins.offset;
845                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
846                                                ram_size, cur_alloc_size, 0);
847                 BUG_ON(ret);
848
849                 if (root->root_key.objectid ==
850                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
851                         ret = btrfs_reloc_clone_csums(inode, start,
852                                                       cur_alloc_size);
853                         BUG_ON(ret);
854                 }
855
856                 if (disk_num_bytes < cur_alloc_size)
857                         break;
858
859                 /* we're not doing compressed IO, don't unlock the first
860                  * page (which the caller expects to stay locked), don't
861                  * clear any dirty bits and don't set any writeback bits
862                  *
863                  * Do set the Private2 bit so we know this page was properly
864                  * setup for writepage
865                  */
866                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
867                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
868                         EXTENT_SET_PRIVATE2;
869
870                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
871                                              start, start + ram_size - 1,
872                                              locked_page, op);
873                 disk_num_bytes -= cur_alloc_size;
874                 num_bytes -= cur_alloc_size;
875                 alloc_hint = ins.objectid + ins.offset;
876                 start += cur_alloc_size;
877         }
878 out:
879         ret = 0;
880         btrfs_end_transaction(trans, root);
881
882         return ret;
883 }
884
885 /*
886  * work queue call back to started compression on a file and pages
887  */
888 static noinline void async_cow_start(struct btrfs_work *work)
889 {
890         struct async_cow *async_cow;
891         int num_added = 0;
892         async_cow = container_of(work, struct async_cow, work);
893
894         compress_file_range(async_cow->inode, async_cow->locked_page,
895                             async_cow->start, async_cow->end, async_cow,
896                             &num_added);
897         if (num_added == 0)
898                 async_cow->inode = NULL;
899 }
900
901 /*
902  * work queue call back to submit previously compressed pages
903  */
904 static noinline void async_cow_submit(struct btrfs_work *work)
905 {
906         struct async_cow *async_cow;
907         struct btrfs_root *root;
908         unsigned long nr_pages;
909
910         async_cow = container_of(work, struct async_cow, work);
911
912         root = async_cow->root;
913         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
914                 PAGE_CACHE_SHIFT;
915
916         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
917
918         if (atomic_read(&root->fs_info->async_delalloc_pages) <
919             5 * 1042 * 1024 &&
920             waitqueue_active(&root->fs_info->async_submit_wait))
921                 wake_up(&root->fs_info->async_submit_wait);
922
923         if (async_cow->inode)
924                 submit_compressed_extents(async_cow->inode, async_cow);
925 }
926
927 static noinline void async_cow_free(struct btrfs_work *work)
928 {
929         struct async_cow *async_cow;
930         async_cow = container_of(work, struct async_cow, work);
931         kfree(async_cow);
932 }
933
934 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
935                                 u64 start, u64 end, int *page_started,
936                                 unsigned long *nr_written)
937 {
938         struct async_cow *async_cow;
939         struct btrfs_root *root = BTRFS_I(inode)->root;
940         unsigned long nr_pages;
941         u64 cur_end;
942         int limit = 10 * 1024 * 1042;
943
944         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
945                          1, 0, NULL, GFP_NOFS);
946         while (start < end) {
947                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
948                 async_cow->inode = inode;
949                 async_cow->root = root;
950                 async_cow->locked_page = locked_page;
951                 async_cow->start = start;
952
953                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
954                         cur_end = end;
955                 else
956                         cur_end = min(end, start + 512 * 1024 - 1);
957
958                 async_cow->end = cur_end;
959                 INIT_LIST_HEAD(&async_cow->extents);
960
961                 async_cow->work.func = async_cow_start;
962                 async_cow->work.ordered_func = async_cow_submit;
963                 async_cow->work.ordered_free = async_cow_free;
964                 async_cow->work.flags = 0;
965
966                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
967                         PAGE_CACHE_SHIFT;
968                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
969
970                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
971                                    &async_cow->work);
972
973                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
974                         wait_event(root->fs_info->async_submit_wait,
975                            (atomic_read(&root->fs_info->async_delalloc_pages) <
976                             limit));
977                 }
978
979                 while (atomic_read(&root->fs_info->async_submit_draining) &&
980                       atomic_read(&root->fs_info->async_delalloc_pages)) {
981                         wait_event(root->fs_info->async_submit_wait,
982                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
983                            0));
984                 }
985
986                 *nr_written += nr_pages;
987                 start = cur_end + 1;
988         }
989         *page_started = 1;
990         return 0;
991 }
992
993 static noinline int csum_exist_in_range(struct btrfs_root *root,
994                                         u64 bytenr, u64 num_bytes)
995 {
996         int ret;
997         struct btrfs_ordered_sum *sums;
998         LIST_HEAD(list);
999
1000         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1001                                        bytenr + num_bytes - 1, &list);
1002         if (ret == 0 && list_empty(&list))
1003                 return 0;
1004
1005         while (!list_empty(&list)) {
1006                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1007                 list_del(&sums->list);
1008                 kfree(sums);
1009         }
1010         return 1;
1011 }
1012
1013 /*
1014  * when nowcow writeback call back.  This checks for snapshots or COW copies
1015  * of the extents that exist in the file, and COWs the file as required.
1016  *
1017  * If no cow copies or snapshots exist, we write directly to the existing
1018  * blocks on disk
1019  */
1020 static noinline int run_delalloc_nocow(struct inode *inode,
1021                                        struct page *locked_page,
1022                               u64 start, u64 end, int *page_started, int force,
1023                               unsigned long *nr_written)
1024 {
1025         struct btrfs_root *root = BTRFS_I(inode)->root;
1026         struct btrfs_trans_handle *trans;
1027         struct extent_buffer *leaf;
1028         struct btrfs_path *path;
1029         struct btrfs_file_extent_item *fi;
1030         struct btrfs_key found_key;
1031         u64 cow_start;
1032         u64 cur_offset;
1033         u64 extent_end;
1034         u64 extent_offset;
1035         u64 disk_bytenr;
1036         u64 num_bytes;
1037         int extent_type;
1038         int ret;
1039         int type;
1040         int nocow;
1041         int check_prev = 1;
1042         bool nolock = false;
1043
1044         path = btrfs_alloc_path();
1045         BUG_ON(!path);
1046         if (root == root->fs_info->tree_root) {
1047                 nolock = true;
1048                 trans = btrfs_join_transaction_nolock(root, 1);
1049         } else {
1050                 trans = btrfs_join_transaction(root, 1);
1051         }
1052         BUG_ON(!trans);
1053
1054         cow_start = (u64)-1;
1055         cur_offset = start;
1056         while (1) {
1057                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1058                                                cur_offset, 0);
1059                 BUG_ON(ret < 0);
1060                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1061                         leaf = path->nodes[0];
1062                         btrfs_item_key_to_cpu(leaf, &found_key,
1063                                               path->slots[0] - 1);
1064                         if (found_key.objectid == inode->i_ino &&
1065                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1066                                 path->slots[0]--;
1067                 }
1068                 check_prev = 0;
1069 next_slot:
1070                 leaf = path->nodes[0];
1071                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1072                         ret = btrfs_next_leaf(root, path);
1073                         if (ret < 0)
1074                                 BUG_ON(1);
1075                         if (ret > 0)
1076                                 break;
1077                         leaf = path->nodes[0];
1078                 }
1079
1080                 nocow = 0;
1081                 disk_bytenr = 0;
1082                 num_bytes = 0;
1083                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1084
1085                 if (found_key.objectid > inode->i_ino ||
1086                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1087                     found_key.offset > end)
1088                         break;
1089
1090                 if (found_key.offset > cur_offset) {
1091                         extent_end = found_key.offset;
1092                         extent_type = 0;
1093                         goto out_check;
1094                 }
1095
1096                 fi = btrfs_item_ptr(leaf, path->slots[0],
1097                                     struct btrfs_file_extent_item);
1098                 extent_type = btrfs_file_extent_type(leaf, fi);
1099
1100                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1101                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1102                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1103                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1104                         extent_end = found_key.offset +
1105                                 btrfs_file_extent_num_bytes(leaf, fi);
1106                         if (extent_end <= start) {
1107                                 path->slots[0]++;
1108                                 goto next_slot;
1109                         }
1110                         if (disk_bytenr == 0)
1111                                 goto out_check;
1112                         if (btrfs_file_extent_compression(leaf, fi) ||
1113                             btrfs_file_extent_encryption(leaf, fi) ||
1114                             btrfs_file_extent_other_encoding(leaf, fi))
1115                                 goto out_check;
1116                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1117                                 goto out_check;
1118                         if (btrfs_extent_readonly(root, disk_bytenr))
1119                                 goto out_check;
1120                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1121                                                   found_key.offset -
1122                                                   extent_offset, disk_bytenr))
1123                                 goto out_check;
1124                         disk_bytenr += extent_offset;
1125                         disk_bytenr += cur_offset - found_key.offset;
1126                         num_bytes = min(end + 1, extent_end) - cur_offset;
1127                         /*
1128                          * force cow if csum exists in the range.
1129                          * this ensure that csum for a given extent are
1130                          * either valid or do not exist.
1131                          */
1132                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1133                                 goto out_check;
1134                         nocow = 1;
1135                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1136                         extent_end = found_key.offset +
1137                                 btrfs_file_extent_inline_len(leaf, fi);
1138                         extent_end = ALIGN(extent_end, root->sectorsize);
1139                 } else {
1140                         BUG_ON(1);
1141                 }
1142 out_check:
1143                 if (extent_end <= start) {
1144                         path->slots[0]++;
1145                         goto next_slot;
1146                 }
1147                 if (!nocow) {
1148                         if (cow_start == (u64)-1)
1149                                 cow_start = cur_offset;
1150                         cur_offset = extent_end;
1151                         if (cur_offset > end)
1152                                 break;
1153                         path->slots[0]++;
1154                         goto next_slot;
1155                 }
1156
1157                 btrfs_release_path(root, path);
1158                 if (cow_start != (u64)-1) {
1159                         ret = cow_file_range(inode, locked_page, cow_start,
1160                                         found_key.offset - 1, page_started,
1161                                         nr_written, 1);
1162                         BUG_ON(ret);
1163                         cow_start = (u64)-1;
1164                 }
1165
1166                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1167                         struct extent_map *em;
1168                         struct extent_map_tree *em_tree;
1169                         em_tree = &BTRFS_I(inode)->extent_tree;
1170                         em = alloc_extent_map(GFP_NOFS);
1171                         em->start = cur_offset;
1172                         em->orig_start = em->start;
1173                         em->len = num_bytes;
1174                         em->block_len = num_bytes;
1175                         em->block_start = disk_bytenr;
1176                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1177                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1178                         while (1) {
1179                                 write_lock(&em_tree->lock);
1180                                 ret = add_extent_mapping(em_tree, em);
1181                                 write_unlock(&em_tree->lock);
1182                                 if (ret != -EEXIST) {
1183                                         free_extent_map(em);
1184                                         break;
1185                                 }
1186                                 btrfs_drop_extent_cache(inode, em->start,
1187                                                 em->start + em->len - 1, 0);
1188                         }
1189                         type = BTRFS_ORDERED_PREALLOC;
1190                 } else {
1191                         type = BTRFS_ORDERED_NOCOW;
1192                 }
1193
1194                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1195                                                num_bytes, num_bytes, type);
1196                 BUG_ON(ret);
1197
1198                 if (root->root_key.objectid ==
1199                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1200                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1201                                                       num_bytes);
1202                         BUG_ON(ret);
1203                 }
1204
1205                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1206                                 cur_offset, cur_offset + num_bytes - 1,
1207                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1208                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1209                                 EXTENT_SET_PRIVATE2);
1210                 cur_offset = extent_end;
1211                 if (cur_offset > end)
1212                         break;
1213         }
1214         btrfs_release_path(root, path);
1215
1216         if (cur_offset <= end && cow_start == (u64)-1)
1217                 cow_start = cur_offset;
1218         if (cow_start != (u64)-1) {
1219                 ret = cow_file_range(inode, locked_page, cow_start, end,
1220                                      page_started, nr_written, 1);
1221                 BUG_ON(ret);
1222         }
1223
1224         if (nolock) {
1225                 ret = btrfs_end_transaction_nolock(trans, root);
1226                 BUG_ON(ret);
1227         } else {
1228                 ret = btrfs_end_transaction(trans, root);
1229                 BUG_ON(ret);
1230         }
1231         btrfs_free_path(path);
1232         return 0;
1233 }
1234
1235 /*
1236  * extent_io.c call back to do delayed allocation processing
1237  */
1238 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1239                               u64 start, u64 end, int *page_started,
1240                               unsigned long *nr_written)
1241 {
1242         int ret;
1243         struct btrfs_root *root = BTRFS_I(inode)->root;
1244
1245         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1246                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1247                                          page_started, 1, nr_written);
1248         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1249                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1250                                          page_started, 0, nr_written);
1251         else if (!btrfs_test_opt(root, COMPRESS) &&
1252                  !(BTRFS_I(inode)->force_compress))
1253                 ret = cow_file_range(inode, locked_page, start, end,
1254                                       page_started, nr_written, 1);
1255         else
1256                 ret = cow_file_range_async(inode, locked_page, start, end,
1257                                            page_started, nr_written);
1258         return ret;
1259 }
1260
1261 static int btrfs_split_extent_hook(struct inode *inode,
1262                                    struct extent_state *orig, u64 split)
1263 {
1264         /* not delalloc, ignore it */
1265         if (!(orig->state & EXTENT_DELALLOC))
1266                 return 0;
1267
1268         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1269         return 0;
1270 }
1271
1272 /*
1273  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1274  * extents so we can keep track of new extents that are just merged onto old
1275  * extents, such as when we are doing sequential writes, so we can properly
1276  * account for the metadata space we'll need.
1277  */
1278 static int btrfs_merge_extent_hook(struct inode *inode,
1279                                    struct extent_state *new,
1280                                    struct extent_state *other)
1281 {
1282         /* not delalloc, ignore it */
1283         if (!(other->state & EXTENT_DELALLOC))
1284                 return 0;
1285
1286         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1287         return 0;
1288 }
1289
1290 /*
1291  * extent_io.c set_bit_hook, used to track delayed allocation
1292  * bytes in this file, and to maintain the list of inodes that
1293  * have pending delalloc work to be done.
1294  */
1295 static int btrfs_set_bit_hook(struct inode *inode,
1296                               struct extent_state *state, int *bits)
1297 {
1298
1299         /*
1300          * set_bit and clear bit hooks normally require _irqsave/restore
1301          * but in this case, we are only testeing for the DELALLOC
1302          * bit, which is only set or cleared with irqs on
1303          */
1304         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1305                 struct btrfs_root *root = BTRFS_I(inode)->root;
1306                 u64 len = state->end + 1 - state->start;
1307                 int do_list = (root->root_key.objectid !=
1308                                BTRFS_ROOT_TREE_OBJECTID);
1309
1310                 if (*bits & EXTENT_FIRST_DELALLOC)
1311                         *bits &= ~EXTENT_FIRST_DELALLOC;
1312                 else
1313                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1314
1315                 spin_lock(&root->fs_info->delalloc_lock);
1316                 BTRFS_I(inode)->delalloc_bytes += len;
1317                 root->fs_info->delalloc_bytes += len;
1318                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1319                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1320                                       &root->fs_info->delalloc_inodes);
1321                 }
1322                 spin_unlock(&root->fs_info->delalloc_lock);
1323         }
1324         return 0;
1325 }
1326
1327 /*
1328  * extent_io.c clear_bit_hook, see set_bit_hook for why
1329  */
1330 static int btrfs_clear_bit_hook(struct inode *inode,
1331                                 struct extent_state *state, int *bits)
1332 {
1333         /*
1334          * set_bit and clear bit hooks normally require _irqsave/restore
1335          * but in this case, we are only testeing for the DELALLOC
1336          * bit, which is only set or cleared with irqs on
1337          */
1338         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1339                 struct btrfs_root *root = BTRFS_I(inode)->root;
1340                 u64 len = state->end + 1 - state->start;
1341                 int do_list = (root->root_key.objectid !=
1342                                BTRFS_ROOT_TREE_OBJECTID);
1343
1344                 if (*bits & EXTENT_FIRST_DELALLOC)
1345                         *bits &= ~EXTENT_FIRST_DELALLOC;
1346                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1347                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1348
1349                 if (*bits & EXTENT_DO_ACCOUNTING)
1350                         btrfs_delalloc_release_metadata(inode, len);
1351
1352                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1353                     && do_list)
1354                         btrfs_free_reserved_data_space(inode, len);
1355
1356                 spin_lock(&root->fs_info->delalloc_lock);
1357                 root->fs_info->delalloc_bytes -= len;
1358                 BTRFS_I(inode)->delalloc_bytes -= len;
1359
1360                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1361                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1362                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1363                 }
1364                 spin_unlock(&root->fs_info->delalloc_lock);
1365         }
1366         return 0;
1367 }
1368
1369 /*
1370  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1371  * we don't create bios that span stripes or chunks
1372  */
1373 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1374                          size_t size, struct bio *bio,
1375                          unsigned long bio_flags)
1376 {
1377         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1378         struct btrfs_mapping_tree *map_tree;
1379         u64 logical = (u64)bio->bi_sector << 9;
1380         u64 length = 0;
1381         u64 map_length;
1382         int ret;
1383
1384         if (bio_flags & EXTENT_BIO_COMPRESSED)
1385                 return 0;
1386
1387         length = bio->bi_size;
1388         map_tree = &root->fs_info->mapping_tree;
1389         map_length = length;
1390         ret = btrfs_map_block(map_tree, READ, logical,
1391                               &map_length, NULL, 0);
1392
1393         if (map_length < length + size)
1394                 return 1;
1395         return ret;
1396 }
1397
1398 /*
1399  * in order to insert checksums into the metadata in large chunks,
1400  * we wait until bio submission time.   All the pages in the bio are
1401  * checksummed and sums are attached onto the ordered extent record.
1402  *
1403  * At IO completion time the cums attached on the ordered extent record
1404  * are inserted into the btree
1405  */
1406 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1407                                     struct bio *bio, int mirror_num,
1408                                     unsigned long bio_flags,
1409                                     u64 bio_offset)
1410 {
1411         struct btrfs_root *root = BTRFS_I(inode)->root;
1412         int ret = 0;
1413
1414         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1415         BUG_ON(ret);
1416         return 0;
1417 }
1418
1419 /*
1420  * in order to insert checksums into the metadata in large chunks,
1421  * we wait until bio submission time.   All the pages in the bio are
1422  * checksummed and sums are attached onto the ordered extent record.
1423  *
1424  * At IO completion time the cums attached on the ordered extent record
1425  * are inserted into the btree
1426  */
1427 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1428                           int mirror_num, unsigned long bio_flags,
1429                           u64 bio_offset)
1430 {
1431         struct btrfs_root *root = BTRFS_I(inode)->root;
1432         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1433 }
1434
1435 /*
1436  * extent_io.c submission hook. This does the right thing for csum calculation
1437  * on write, or reading the csums from the tree before a read
1438  */
1439 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1440                           int mirror_num, unsigned long bio_flags,
1441                           u64 bio_offset)
1442 {
1443         struct btrfs_root *root = BTRFS_I(inode)->root;
1444         int ret = 0;
1445         int skip_sum;
1446
1447         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1448
1449         if (root == root->fs_info->tree_root)
1450                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1451         else
1452                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1453         BUG_ON(ret);
1454
1455         if (!(rw & REQ_WRITE)) {
1456                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1457                         return btrfs_submit_compressed_read(inode, bio,
1458                                                     mirror_num, bio_flags);
1459                 } else if (!skip_sum)
1460                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1461                 goto mapit;
1462         } else if (!skip_sum) {
1463                 /* csum items have already been cloned */
1464                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1465                         goto mapit;
1466                 /* we're doing a write, do the async checksumming */
1467                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1468                                    inode, rw, bio, mirror_num,
1469                                    bio_flags, bio_offset,
1470                                    __btrfs_submit_bio_start,
1471                                    __btrfs_submit_bio_done);
1472         }
1473
1474 mapit:
1475         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1476 }
1477
1478 /*
1479  * given a list of ordered sums record them in the inode.  This happens
1480  * at IO completion time based on sums calculated at bio submission time.
1481  */
1482 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1483                              struct inode *inode, u64 file_offset,
1484                              struct list_head *list)
1485 {
1486         struct btrfs_ordered_sum *sum;
1487
1488         btrfs_set_trans_block_group(trans, inode);
1489
1490         list_for_each_entry(sum, list, list) {
1491                 btrfs_csum_file_blocks(trans,
1492                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1493         }
1494         return 0;
1495 }
1496
1497 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1498                               struct extent_state **cached_state)
1499 {
1500         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1501                 WARN_ON(1);
1502         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1503                                    cached_state, GFP_NOFS);
1504 }
1505
1506 /* see btrfs_writepage_start_hook for details on why this is required */
1507 struct btrfs_writepage_fixup {
1508         struct page *page;
1509         struct btrfs_work work;
1510 };
1511
1512 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1513 {
1514         struct btrfs_writepage_fixup *fixup;
1515         struct btrfs_ordered_extent *ordered;
1516         struct extent_state *cached_state = NULL;
1517         struct page *page;
1518         struct inode *inode;
1519         u64 page_start;
1520         u64 page_end;
1521
1522         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1523         page = fixup->page;
1524 again:
1525         lock_page(page);
1526         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1527                 ClearPageChecked(page);
1528                 goto out_page;
1529         }
1530
1531         inode = page->mapping->host;
1532         page_start = page_offset(page);
1533         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1534
1535         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1536                          &cached_state, GFP_NOFS);
1537
1538         /* already ordered? We're done */
1539         if (PagePrivate2(page))
1540                 goto out;
1541
1542         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1543         if (ordered) {
1544                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1545                                      page_end, &cached_state, GFP_NOFS);
1546                 unlock_page(page);
1547                 btrfs_start_ordered_extent(inode, ordered, 1);
1548                 goto again;
1549         }
1550
1551         BUG();
1552         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1553         ClearPageChecked(page);
1554 out:
1555         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1556                              &cached_state, GFP_NOFS);
1557 out_page:
1558         unlock_page(page);
1559         page_cache_release(page);
1560 }
1561
1562 /*
1563  * There are a few paths in the higher layers of the kernel that directly
1564  * set the page dirty bit without asking the filesystem if it is a
1565  * good idea.  This causes problems because we want to make sure COW
1566  * properly happens and the data=ordered rules are followed.
1567  *
1568  * In our case any range that doesn't have the ORDERED bit set
1569  * hasn't been properly setup for IO.  We kick off an async process
1570  * to fix it up.  The async helper will wait for ordered extents, set
1571  * the delalloc bit and make it safe to write the page.
1572  */
1573 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1574 {
1575         struct inode *inode = page->mapping->host;
1576         struct btrfs_writepage_fixup *fixup;
1577         struct btrfs_root *root = BTRFS_I(inode)->root;
1578
1579         /* this page is properly in the ordered list */
1580         if (TestClearPagePrivate2(page))
1581                 return 0;
1582
1583         if (PageChecked(page))
1584                 return -EAGAIN;
1585
1586         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1587         if (!fixup)
1588                 return -EAGAIN;
1589
1590         SetPageChecked(page);
1591         page_cache_get(page);
1592         fixup->work.func = btrfs_writepage_fixup_worker;
1593         fixup->page = page;
1594         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1595         return -EAGAIN;
1596 }
1597
1598 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1599                                        struct inode *inode, u64 file_pos,
1600                                        u64 disk_bytenr, u64 disk_num_bytes,
1601                                        u64 num_bytes, u64 ram_bytes,
1602                                        u8 compression, u8 encryption,
1603                                        u16 other_encoding, int extent_type)
1604 {
1605         struct btrfs_root *root = BTRFS_I(inode)->root;
1606         struct btrfs_file_extent_item *fi;
1607         struct btrfs_path *path;
1608         struct extent_buffer *leaf;
1609         struct btrfs_key ins;
1610         u64 hint;
1611         int ret;
1612
1613         path = btrfs_alloc_path();
1614         BUG_ON(!path);
1615
1616         path->leave_spinning = 1;
1617
1618         /*
1619          * we may be replacing one extent in the tree with another.
1620          * The new extent is pinned in the extent map, and we don't want
1621          * to drop it from the cache until it is completely in the btree.
1622          *
1623          * So, tell btrfs_drop_extents to leave this extent in the cache.
1624          * the caller is expected to unpin it and allow it to be merged
1625          * with the others.
1626          */
1627         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1628                                  &hint, 0);
1629         BUG_ON(ret);
1630
1631         ins.objectid = inode->i_ino;
1632         ins.offset = file_pos;
1633         ins.type = BTRFS_EXTENT_DATA_KEY;
1634         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1635         BUG_ON(ret);
1636         leaf = path->nodes[0];
1637         fi = btrfs_item_ptr(leaf, path->slots[0],
1638                             struct btrfs_file_extent_item);
1639         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1640         btrfs_set_file_extent_type(leaf, fi, extent_type);
1641         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1642         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1643         btrfs_set_file_extent_offset(leaf, fi, 0);
1644         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1645         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1646         btrfs_set_file_extent_compression(leaf, fi, compression);
1647         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1648         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1649
1650         btrfs_unlock_up_safe(path, 1);
1651         btrfs_set_lock_blocking(leaf);
1652
1653         btrfs_mark_buffer_dirty(leaf);
1654
1655         inode_add_bytes(inode, num_bytes);
1656
1657         ins.objectid = disk_bytenr;
1658         ins.offset = disk_num_bytes;
1659         ins.type = BTRFS_EXTENT_ITEM_KEY;
1660         ret = btrfs_alloc_reserved_file_extent(trans, root,
1661                                         root->root_key.objectid,
1662                                         inode->i_ino, file_pos, &ins);
1663         BUG_ON(ret);
1664         btrfs_free_path(path);
1665
1666         return 0;
1667 }
1668
1669 /*
1670  * helper function for btrfs_finish_ordered_io, this
1671  * just reads in some of the csum leaves to prime them into ram
1672  * before we start the transaction.  It limits the amount of btree
1673  * reads required while inside the transaction.
1674  */
1675 /* as ordered data IO finishes, this gets called so we can finish
1676  * an ordered extent if the range of bytes in the file it covers are
1677  * fully written.
1678  */
1679 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1680 {
1681         struct btrfs_root *root = BTRFS_I(inode)->root;
1682         struct btrfs_trans_handle *trans = NULL;
1683         struct btrfs_ordered_extent *ordered_extent = NULL;
1684         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1685         struct extent_state *cached_state = NULL;
1686         int compress_type = 0;
1687         int ret;
1688         bool nolock = false;
1689
1690         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1691                                              end - start + 1);
1692         if (!ret)
1693                 return 0;
1694         BUG_ON(!ordered_extent);
1695
1696         nolock = (root == root->fs_info->tree_root);
1697
1698         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1699                 BUG_ON(!list_empty(&ordered_extent->list));
1700                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1701                 if (!ret) {
1702                         if (nolock)
1703                                 trans = btrfs_join_transaction_nolock(root, 1);
1704                         else
1705                                 trans = btrfs_join_transaction(root, 1);
1706                         BUG_ON(!trans);
1707                         btrfs_set_trans_block_group(trans, inode);
1708                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1709                         ret = btrfs_update_inode(trans, root, inode);
1710                         BUG_ON(ret);
1711                 }
1712                 goto out;
1713         }
1714
1715         lock_extent_bits(io_tree, ordered_extent->file_offset,
1716                          ordered_extent->file_offset + ordered_extent->len - 1,
1717                          0, &cached_state, GFP_NOFS);
1718
1719         if (nolock)
1720                 trans = btrfs_join_transaction_nolock(root, 1);
1721         else
1722                 trans = btrfs_join_transaction(root, 1);
1723         btrfs_set_trans_block_group(trans, inode);
1724         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1725
1726         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1727                 compress_type = ordered_extent->compress_type;
1728         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1729                 BUG_ON(compress_type);
1730                 ret = btrfs_mark_extent_written(trans, inode,
1731                                                 ordered_extent->file_offset,
1732                                                 ordered_extent->file_offset +
1733                                                 ordered_extent->len);
1734                 BUG_ON(ret);
1735         } else {
1736                 BUG_ON(root == root->fs_info->tree_root);
1737                 ret = insert_reserved_file_extent(trans, inode,
1738                                                 ordered_extent->file_offset,
1739                                                 ordered_extent->start,
1740                                                 ordered_extent->disk_len,
1741                                                 ordered_extent->len,
1742                                                 ordered_extent->len,
1743                                                 compress_type, 0, 0,
1744                                                 BTRFS_FILE_EXTENT_REG);
1745                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1746                                    ordered_extent->file_offset,
1747                                    ordered_extent->len);
1748                 BUG_ON(ret);
1749         }
1750         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1751                              ordered_extent->file_offset +
1752                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1753
1754         add_pending_csums(trans, inode, ordered_extent->file_offset,
1755                           &ordered_extent->list);
1756
1757         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1758         ret = btrfs_update_inode(trans, root, inode);
1759         BUG_ON(ret);
1760 out:
1761         if (nolock) {
1762                 if (trans)
1763                         btrfs_end_transaction_nolock(trans, root);
1764         } else {
1765                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1766                 if (trans)
1767                         btrfs_end_transaction(trans, root);
1768         }
1769
1770         /* once for us */
1771         btrfs_put_ordered_extent(ordered_extent);
1772         /* once for the tree */
1773         btrfs_put_ordered_extent(ordered_extent);
1774
1775         return 0;
1776 }
1777
1778 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1779                                 struct extent_state *state, int uptodate)
1780 {
1781         ClearPagePrivate2(page);
1782         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1783 }
1784
1785 /*
1786  * When IO fails, either with EIO or csum verification fails, we
1787  * try other mirrors that might have a good copy of the data.  This
1788  * io_failure_record is used to record state as we go through all the
1789  * mirrors.  If another mirror has good data, the page is set up to date
1790  * and things continue.  If a good mirror can't be found, the original
1791  * bio end_io callback is called to indicate things have failed.
1792  */
1793 struct io_failure_record {
1794         struct page *page;
1795         u64 start;
1796         u64 len;
1797         u64 logical;
1798         unsigned long bio_flags;
1799         int last_mirror;
1800 };
1801
1802 static int btrfs_io_failed_hook(struct bio *failed_bio,
1803                          struct page *page, u64 start, u64 end,
1804                          struct extent_state *state)
1805 {
1806         struct io_failure_record *failrec = NULL;
1807         u64 private;
1808         struct extent_map *em;
1809         struct inode *inode = page->mapping->host;
1810         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1811         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1812         struct bio *bio;
1813         int num_copies;
1814         int ret;
1815         int rw;
1816         u64 logical;
1817
1818         ret = get_state_private(failure_tree, start, &private);
1819         if (ret) {
1820                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1821                 if (!failrec)
1822                         return -ENOMEM;
1823                 failrec->start = start;
1824                 failrec->len = end - start + 1;
1825                 failrec->last_mirror = 0;
1826                 failrec->bio_flags = 0;
1827
1828                 read_lock(&em_tree->lock);
1829                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1830                 if (em->start > start || em->start + em->len < start) {
1831                         free_extent_map(em);
1832                         em = NULL;
1833                 }
1834                 read_unlock(&em_tree->lock);
1835
1836                 if (!em || IS_ERR(em)) {
1837                         kfree(failrec);
1838                         return -EIO;
1839                 }
1840                 logical = start - em->start;
1841                 logical = em->block_start + logical;
1842                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1843                         logical = em->block_start;
1844                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1845                         extent_set_compress_type(&failrec->bio_flags,
1846                                                  em->compress_type);
1847                 }
1848                 failrec->logical = logical;
1849                 free_extent_map(em);
1850                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1851                                 EXTENT_DIRTY, GFP_NOFS);
1852                 set_state_private(failure_tree, start,
1853                                  (u64)(unsigned long)failrec);
1854         } else {
1855                 failrec = (struct io_failure_record *)(unsigned long)private;
1856         }
1857         num_copies = btrfs_num_copies(
1858                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1859                               failrec->logical, failrec->len);
1860         failrec->last_mirror++;
1861         if (!state) {
1862                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1863                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1864                                                     failrec->start,
1865                                                     EXTENT_LOCKED);
1866                 if (state && state->start != failrec->start)
1867                         state = NULL;
1868                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1869         }
1870         if (!state || failrec->last_mirror > num_copies) {
1871                 set_state_private(failure_tree, failrec->start, 0);
1872                 clear_extent_bits(failure_tree, failrec->start,
1873                                   failrec->start + failrec->len - 1,
1874                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1875                 kfree(failrec);
1876                 return -EIO;
1877         }
1878         bio = bio_alloc(GFP_NOFS, 1);
1879         bio->bi_private = state;
1880         bio->bi_end_io = failed_bio->bi_end_io;
1881         bio->bi_sector = failrec->logical >> 9;
1882         bio->bi_bdev = failed_bio->bi_bdev;
1883         bio->bi_size = 0;
1884
1885         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1886         if (failed_bio->bi_rw & REQ_WRITE)
1887                 rw = WRITE;
1888         else
1889                 rw = READ;
1890
1891         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1892                                                       failrec->last_mirror,
1893                                                       failrec->bio_flags, 0);
1894         return 0;
1895 }
1896
1897 /*
1898  * each time an IO finishes, we do a fast check in the IO failure tree
1899  * to see if we need to process or clean up an io_failure_record
1900  */
1901 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1902 {
1903         u64 private;
1904         u64 private_failure;
1905         struct io_failure_record *failure;
1906         int ret;
1907
1908         private = 0;
1909         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1910                              (u64)-1, 1, EXTENT_DIRTY)) {
1911                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1912                                         start, &private_failure);
1913                 if (ret == 0) {
1914                         failure = (struct io_failure_record *)(unsigned long)
1915                                    private_failure;
1916                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1917                                           failure->start, 0);
1918                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1919                                           failure->start,
1920                                           failure->start + failure->len - 1,
1921                                           EXTENT_DIRTY | EXTENT_LOCKED,
1922                                           GFP_NOFS);
1923                         kfree(failure);
1924                 }
1925         }
1926         return 0;
1927 }
1928
1929 /*
1930  * when reads are done, we need to check csums to verify the data is correct
1931  * if there's a match, we allow the bio to finish.  If not, we go through
1932  * the io_failure_record routines to find good copies
1933  */
1934 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1935                                struct extent_state *state)
1936 {
1937         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1938         struct inode *inode = page->mapping->host;
1939         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1940         char *kaddr;
1941         u64 private = ~(u32)0;
1942         int ret;
1943         struct btrfs_root *root = BTRFS_I(inode)->root;
1944         u32 csum = ~(u32)0;
1945
1946         if (PageChecked(page)) {
1947                 ClearPageChecked(page);
1948                 goto good;
1949         }
1950
1951         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1952                 return 0;
1953
1954         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1955             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1956                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1957                                   GFP_NOFS);
1958                 return 0;
1959         }
1960
1961         if (state && state->start == start) {
1962                 private = state->private;
1963                 ret = 0;
1964         } else {
1965                 ret = get_state_private(io_tree, start, &private);
1966         }
1967         kaddr = kmap_atomic(page, KM_USER0);
1968         if (ret)
1969                 goto zeroit;
1970
1971         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1972         btrfs_csum_final(csum, (char *)&csum);
1973         if (csum != private)
1974                 goto zeroit;
1975
1976         kunmap_atomic(kaddr, KM_USER0);
1977 good:
1978         /* if the io failure tree for this inode is non-empty,
1979          * check to see if we've recovered from a failed IO
1980          */
1981         btrfs_clean_io_failures(inode, start);
1982         return 0;
1983
1984 zeroit:
1985         if (printk_ratelimit()) {
1986                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1987                        "private %llu\n", page->mapping->host->i_ino,
1988                        (unsigned long long)start, csum,
1989                        (unsigned long long)private);
1990         }
1991         memset(kaddr + offset, 1, end - start + 1);
1992         flush_dcache_page(page);
1993         kunmap_atomic(kaddr, KM_USER0);
1994         if (private == 0)
1995                 return 0;
1996         return -EIO;
1997 }
1998
1999 struct delayed_iput {
2000         struct list_head list;
2001         struct inode *inode;
2002 };
2003
2004 void btrfs_add_delayed_iput(struct inode *inode)
2005 {
2006         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007         struct delayed_iput *delayed;
2008
2009         if (atomic_add_unless(&inode->i_count, -1, 1))
2010                 return;
2011
2012         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2013         delayed->inode = inode;
2014
2015         spin_lock(&fs_info->delayed_iput_lock);
2016         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2017         spin_unlock(&fs_info->delayed_iput_lock);
2018 }
2019
2020 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2021 {
2022         LIST_HEAD(list);
2023         struct btrfs_fs_info *fs_info = root->fs_info;
2024         struct delayed_iput *delayed;
2025         int empty;
2026
2027         spin_lock(&fs_info->delayed_iput_lock);
2028         empty = list_empty(&fs_info->delayed_iputs);
2029         spin_unlock(&fs_info->delayed_iput_lock);
2030         if (empty)
2031                 return;
2032
2033         down_read(&root->fs_info->cleanup_work_sem);
2034         spin_lock(&fs_info->delayed_iput_lock);
2035         list_splice_init(&fs_info->delayed_iputs, &list);
2036         spin_unlock(&fs_info->delayed_iput_lock);
2037
2038         while (!list_empty(&list)) {
2039                 delayed = list_entry(list.next, struct delayed_iput, list);
2040                 list_del(&delayed->list);
2041                 iput(delayed->inode);
2042                 kfree(delayed);
2043         }
2044         up_read(&root->fs_info->cleanup_work_sem);
2045 }
2046
2047 /*
2048  * calculate extra metadata reservation when snapshotting a subvolume
2049  * contains orphan files.
2050  */
2051 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2052                                 struct btrfs_pending_snapshot *pending,
2053                                 u64 *bytes_to_reserve)
2054 {
2055         struct btrfs_root *root;
2056         struct btrfs_block_rsv *block_rsv;
2057         u64 num_bytes;
2058         int index;
2059
2060         root = pending->root;
2061         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2062                 return;
2063
2064         block_rsv = root->orphan_block_rsv;
2065
2066         /* orphan block reservation for the snapshot */
2067         num_bytes = block_rsv->size;
2068
2069         /*
2070          * after the snapshot is created, COWing tree blocks may use more
2071          * space than it frees. So we should make sure there is enough
2072          * reserved space.
2073          */
2074         index = trans->transid & 0x1;
2075         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2076                 num_bytes += block_rsv->size -
2077                              (block_rsv->reserved + block_rsv->freed[index]);
2078         }
2079
2080         *bytes_to_reserve += num_bytes;
2081 }
2082
2083 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2084                                 struct btrfs_pending_snapshot *pending)
2085 {
2086         struct btrfs_root *root = pending->root;
2087         struct btrfs_root *snap = pending->snap;
2088         struct btrfs_block_rsv *block_rsv;
2089         u64 num_bytes;
2090         int index;
2091         int ret;
2092
2093         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2094                 return;
2095
2096         /* refill source subvolume's orphan block reservation */
2097         block_rsv = root->orphan_block_rsv;
2098         index = trans->transid & 0x1;
2099         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2100                 num_bytes = block_rsv->size -
2101                             (block_rsv->reserved + block_rsv->freed[index]);
2102                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2103                                               root->orphan_block_rsv,
2104                                               num_bytes);
2105                 BUG_ON(ret);
2106         }
2107
2108         /* setup orphan block reservation for the snapshot */
2109         block_rsv = btrfs_alloc_block_rsv(snap);
2110         BUG_ON(!block_rsv);
2111
2112         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2113         snap->orphan_block_rsv = block_rsv;
2114
2115         num_bytes = root->orphan_block_rsv->size;
2116         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2117                                       block_rsv, num_bytes);
2118         BUG_ON(ret);
2119
2120 #if 0
2121         /* insert orphan item for the snapshot */
2122         WARN_ON(!root->orphan_item_inserted);
2123         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2124                                        snap->root_key.objectid);
2125         BUG_ON(ret);
2126         snap->orphan_item_inserted = 1;
2127 #endif
2128 }
2129
2130 enum btrfs_orphan_cleanup_state {
2131         ORPHAN_CLEANUP_STARTED  = 1,
2132         ORPHAN_CLEANUP_DONE     = 2,
2133 };
2134
2135 /*
2136  * This is called in transaction commmit time. If there are no orphan
2137  * files in the subvolume, it removes orphan item and frees block_rsv
2138  * structure.
2139  */
2140 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2141                               struct btrfs_root *root)
2142 {
2143         int ret;
2144
2145         if (!list_empty(&root->orphan_list) ||
2146             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2147                 return;
2148
2149         if (root->orphan_item_inserted &&
2150             btrfs_root_refs(&root->root_item) > 0) {
2151                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2152                                             root->root_key.objectid);
2153                 BUG_ON(ret);
2154                 root->orphan_item_inserted = 0;
2155         }
2156
2157         if (root->orphan_block_rsv) {
2158                 WARN_ON(root->orphan_block_rsv->size > 0);
2159                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2160                 root->orphan_block_rsv = NULL;
2161         }
2162 }
2163
2164 /*
2165  * This creates an orphan entry for the given inode in case something goes
2166  * wrong in the middle of an unlink/truncate.
2167  *
2168  * NOTE: caller of this function should reserve 5 units of metadata for
2169  *       this function.
2170  */
2171 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2172 {
2173         struct btrfs_root *root = BTRFS_I(inode)->root;
2174         struct btrfs_block_rsv *block_rsv = NULL;
2175         int reserve = 0;
2176         int insert = 0;
2177         int ret;
2178
2179         if (!root->orphan_block_rsv) {
2180                 block_rsv = btrfs_alloc_block_rsv(root);
2181                 BUG_ON(!block_rsv);
2182         }
2183
2184         spin_lock(&root->orphan_lock);
2185         if (!root->orphan_block_rsv) {
2186                 root->orphan_block_rsv = block_rsv;
2187         } else if (block_rsv) {
2188                 btrfs_free_block_rsv(root, block_rsv);
2189                 block_rsv = NULL;
2190         }
2191
2192         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2193                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2194 #if 0
2195                 /*
2196                  * For proper ENOSPC handling, we should do orphan
2197                  * cleanup when mounting. But this introduces backward
2198                  * compatibility issue.
2199                  */
2200                 if (!xchg(&root->orphan_item_inserted, 1))
2201                         insert = 2;
2202                 else
2203                         insert = 1;
2204 #endif
2205                 insert = 1;
2206         } else {
2207                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2208         }
2209
2210         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2211                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2212                 reserve = 1;
2213         }
2214         spin_unlock(&root->orphan_lock);
2215
2216         if (block_rsv)
2217                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2218
2219         /* grab metadata reservation from transaction handle */
2220         if (reserve) {
2221                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2222                 BUG_ON(ret);
2223         }
2224
2225         /* insert an orphan item to track this unlinked/truncated file */
2226         if (insert >= 1) {
2227                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2228                 BUG_ON(ret);
2229         }
2230
2231         /* insert an orphan item to track subvolume contains orphan files */
2232         if (insert >= 2) {
2233                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2234                                                root->root_key.objectid);
2235                 BUG_ON(ret);
2236         }
2237         return 0;
2238 }
2239
2240 /*
2241  * We have done the truncate/delete so we can go ahead and remove the orphan
2242  * item for this particular inode.
2243  */
2244 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2245 {
2246         struct btrfs_root *root = BTRFS_I(inode)->root;
2247         int delete_item = 0;
2248         int release_rsv = 0;
2249         int ret = 0;
2250
2251         spin_lock(&root->orphan_lock);
2252         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2253                 list_del_init(&BTRFS_I(inode)->i_orphan);
2254                 delete_item = 1;
2255         }
2256
2257         if (BTRFS_I(inode)->orphan_meta_reserved) {
2258                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2259                 release_rsv = 1;
2260         }
2261         spin_unlock(&root->orphan_lock);
2262
2263         if (trans && delete_item) {
2264                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2265                 BUG_ON(ret);
2266         }
2267
2268         if (release_rsv)
2269                 btrfs_orphan_release_metadata(inode);
2270
2271         return 0;
2272 }
2273
2274 /*
2275  * this cleans up any orphans that may be left on the list from the last use
2276  * of this root.
2277  */
2278 void btrfs_orphan_cleanup(struct btrfs_root *root)
2279 {
2280         struct btrfs_path *path;
2281         struct extent_buffer *leaf;
2282         struct btrfs_key key, found_key;
2283         struct btrfs_trans_handle *trans;
2284         struct inode *inode;
2285         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2286
2287         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2288                 return;
2289
2290         path = btrfs_alloc_path();
2291         BUG_ON(!path);
2292         path->reada = -1;
2293
2294         key.objectid = BTRFS_ORPHAN_OBJECTID;
2295         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2296         key.offset = (u64)-1;
2297
2298         while (1) {
2299                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2300                 if (ret < 0) {
2301                         printk(KERN_ERR "Error searching slot for orphan: %d"
2302                                "\n", ret);
2303                         break;
2304                 }
2305
2306                 /*
2307                  * if ret == 0 means we found what we were searching for, which
2308                  * is weird, but possible, so only screw with path if we didnt
2309                  * find the key and see if we have stuff that matches
2310                  */
2311                 if (ret > 0) {
2312                         if (path->slots[0] == 0)
2313                                 break;
2314                         path->slots[0]--;
2315                 }
2316
2317                 /* pull out the item */
2318                 leaf = path->nodes[0];
2319                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2320
2321                 /* make sure the item matches what we want */
2322                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2323                         break;
2324                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2325                         break;
2326
2327                 /* release the path since we're done with it */
2328                 btrfs_release_path(root, path);
2329
2330                 /*
2331                  * this is where we are basically btrfs_lookup, without the
2332                  * crossing root thing.  we store the inode number in the
2333                  * offset of the orphan item.
2334                  */
2335                 found_key.objectid = found_key.offset;
2336                 found_key.type = BTRFS_INODE_ITEM_KEY;
2337                 found_key.offset = 0;
2338                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2339                 BUG_ON(IS_ERR(inode));
2340
2341                 /*
2342                  * add this inode to the orphan list so btrfs_orphan_del does
2343                  * the proper thing when we hit it
2344                  */
2345                 spin_lock(&root->orphan_lock);
2346                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2347                 spin_unlock(&root->orphan_lock);
2348
2349                 /*
2350                  * if this is a bad inode, means we actually succeeded in
2351                  * removing the inode, but not the orphan record, which means
2352                  * we need to manually delete the orphan since iput will just
2353                  * do a destroy_inode
2354                  */
2355                 if (is_bad_inode(inode)) {
2356                         trans = btrfs_start_transaction(root, 0);
2357                         btrfs_orphan_del(trans, inode);
2358                         btrfs_end_transaction(trans, root);
2359                         iput(inode);
2360                         continue;
2361                 }
2362
2363                 /* if we have links, this was a truncate, lets do that */
2364                 if (inode->i_nlink) {
2365                         nr_truncate++;
2366                         btrfs_truncate(inode);
2367                 } else {
2368                         nr_unlink++;
2369                 }
2370
2371                 /* this will do delete_inode and everything for us */
2372                 iput(inode);
2373         }
2374         btrfs_free_path(path);
2375
2376         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2377
2378         if (root->orphan_block_rsv)
2379                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2380                                         (u64)-1);
2381
2382         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2383                 trans = btrfs_join_transaction(root, 1);
2384                 btrfs_end_transaction(trans, root);
2385         }
2386
2387         if (nr_unlink)
2388                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2389         if (nr_truncate)
2390                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2391 }
2392
2393 /*
2394  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2395  * don't find any xattrs, we know there can't be any acls.
2396  *
2397  * slot is the slot the inode is in, objectid is the objectid of the inode
2398  */
2399 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2400                                           int slot, u64 objectid)
2401 {
2402         u32 nritems = btrfs_header_nritems(leaf);
2403         struct btrfs_key found_key;
2404         int scanned = 0;
2405
2406         slot++;
2407         while (slot < nritems) {
2408                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2409
2410                 /* we found a different objectid, there must not be acls */
2411                 if (found_key.objectid != objectid)
2412                         return 0;
2413
2414                 /* we found an xattr, assume we've got an acl */
2415                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2416                         return 1;
2417
2418                 /*
2419                  * we found a key greater than an xattr key, there can't
2420                  * be any acls later on
2421                  */
2422                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2423                         return 0;
2424
2425                 slot++;
2426                 scanned++;
2427
2428                 /*
2429                  * it goes inode, inode backrefs, xattrs, extents,
2430                  * so if there are a ton of hard links to an inode there can
2431                  * be a lot of backrefs.  Don't waste time searching too hard,
2432                  * this is just an optimization
2433                  */
2434                 if (scanned >= 8)
2435                         break;
2436         }
2437         /* we hit the end of the leaf before we found an xattr or
2438          * something larger than an xattr.  We have to assume the inode
2439          * has acls
2440          */
2441         return 1;
2442 }
2443
2444 /*
2445  * read an inode from the btree into the in-memory inode
2446  */
2447 static void btrfs_read_locked_inode(struct inode *inode)
2448 {
2449         struct btrfs_path *path;
2450         struct extent_buffer *leaf;
2451         struct btrfs_inode_item *inode_item;
2452         struct btrfs_timespec *tspec;
2453         struct btrfs_root *root = BTRFS_I(inode)->root;
2454         struct btrfs_key location;
2455         int maybe_acls;
2456         u64 alloc_group_block;
2457         u32 rdev;
2458         int ret;
2459
2460         path = btrfs_alloc_path();
2461         BUG_ON(!path);
2462         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2463
2464         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2465         if (ret)
2466                 goto make_bad;
2467
2468         leaf = path->nodes[0];
2469         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2470                                     struct btrfs_inode_item);
2471
2472         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2473         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2474         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2475         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2476         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2477
2478         tspec = btrfs_inode_atime(inode_item);
2479         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2480         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2481
2482         tspec = btrfs_inode_mtime(inode_item);
2483         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2484         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2485
2486         tspec = btrfs_inode_ctime(inode_item);
2487         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2488         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2489
2490         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2491         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2492         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2493         inode->i_generation = BTRFS_I(inode)->generation;
2494         inode->i_rdev = 0;
2495         rdev = btrfs_inode_rdev(leaf, inode_item);
2496
2497         BTRFS_I(inode)->index_cnt = (u64)-1;
2498         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2499
2500         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2501
2502         /*
2503          * try to precache a NULL acl entry for files that don't have
2504          * any xattrs or acls
2505          */
2506         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2507         if (!maybe_acls)
2508                 cache_no_acl(inode);
2509
2510         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2511                                                 alloc_group_block, 0);
2512         btrfs_free_path(path);
2513         inode_item = NULL;
2514
2515         switch (inode->i_mode & S_IFMT) {
2516         case S_IFREG:
2517                 inode->i_mapping->a_ops = &btrfs_aops;
2518                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2519                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2520                 inode->i_fop = &btrfs_file_operations;
2521                 inode->i_op = &btrfs_file_inode_operations;
2522                 break;
2523         case S_IFDIR:
2524                 inode->i_fop = &btrfs_dir_file_operations;
2525                 if (root == root->fs_info->tree_root)
2526                         inode->i_op = &btrfs_dir_ro_inode_operations;
2527                 else
2528                         inode->i_op = &btrfs_dir_inode_operations;
2529                 break;
2530         case S_IFLNK:
2531                 inode->i_op = &btrfs_symlink_inode_operations;
2532                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2533                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2534                 break;
2535         default:
2536                 inode->i_op = &btrfs_special_inode_operations;
2537                 init_special_inode(inode, inode->i_mode, rdev);
2538                 break;
2539         }
2540
2541         btrfs_update_iflags(inode);
2542         return;
2543
2544 make_bad:
2545         btrfs_free_path(path);
2546         make_bad_inode(inode);
2547 }
2548
2549 /*
2550  * given a leaf and an inode, copy the inode fields into the leaf
2551  */
2552 static void fill_inode_item(struct btrfs_trans_handle *trans,
2553                             struct extent_buffer *leaf,
2554                             struct btrfs_inode_item *item,
2555                             struct inode *inode)
2556 {
2557         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2558         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2559         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2560         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2561         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2562
2563         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2564                                inode->i_atime.tv_sec);
2565         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2566                                 inode->i_atime.tv_nsec);
2567
2568         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2569                                inode->i_mtime.tv_sec);
2570         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2571                                 inode->i_mtime.tv_nsec);
2572
2573         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2574                                inode->i_ctime.tv_sec);
2575         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2576                                 inode->i_ctime.tv_nsec);
2577
2578         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2579         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2580         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2581         btrfs_set_inode_transid(leaf, item, trans->transid);
2582         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2583         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2584         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2585 }
2586
2587 /*
2588  * copy everything in the in-memory inode into the btree.
2589  */
2590 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2591                                 struct btrfs_root *root, struct inode *inode)
2592 {
2593         struct btrfs_inode_item *inode_item;
2594         struct btrfs_path *path;
2595         struct extent_buffer *leaf;
2596         int ret;
2597
2598         path = btrfs_alloc_path();
2599         BUG_ON(!path);
2600         path->leave_spinning = 1;
2601         ret = btrfs_lookup_inode(trans, root, path,
2602                                  &BTRFS_I(inode)->location, 1);
2603         if (ret) {
2604                 if (ret > 0)
2605                         ret = -ENOENT;
2606                 goto failed;
2607         }
2608
2609         btrfs_unlock_up_safe(path, 1);
2610         leaf = path->nodes[0];
2611         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2612                                   struct btrfs_inode_item);
2613
2614         fill_inode_item(trans, leaf, inode_item, inode);
2615         btrfs_mark_buffer_dirty(leaf);
2616         btrfs_set_inode_last_trans(trans, inode);
2617         ret = 0;
2618 failed:
2619         btrfs_free_path(path);
2620         return ret;
2621 }
2622
2623
2624 /*
2625  * unlink helper that gets used here in inode.c and in the tree logging
2626  * recovery code.  It remove a link in a directory with a given name, and
2627  * also drops the back refs in the inode to the directory
2628  */
2629 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2630                        struct btrfs_root *root,
2631                        struct inode *dir, struct inode *inode,
2632                        const char *name, int name_len)
2633 {
2634         struct btrfs_path *path;
2635         int ret = 0;
2636         struct extent_buffer *leaf;
2637         struct btrfs_dir_item *di;
2638         struct btrfs_key key;
2639         u64 index;
2640
2641         path = btrfs_alloc_path();
2642         if (!path) {
2643                 ret = -ENOMEM;
2644                 goto err;
2645         }
2646
2647         path->leave_spinning = 1;
2648         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2649                                     name, name_len, -1);
2650         if (IS_ERR(di)) {
2651                 ret = PTR_ERR(di);
2652                 goto err;
2653         }
2654         if (!di) {
2655                 ret = -ENOENT;
2656                 goto err;
2657         }
2658         leaf = path->nodes[0];
2659         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2660         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2661         if (ret)
2662                 goto err;
2663         btrfs_release_path(root, path);
2664
2665         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2666                                   inode->i_ino,
2667                                   dir->i_ino, &index);
2668         if (ret) {
2669                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2670                        "inode %lu parent %lu\n", name_len, name,
2671                        inode->i_ino, dir->i_ino);
2672                 goto err;
2673         }
2674
2675         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2676                                          index, name, name_len, -1);
2677         if (IS_ERR(di)) {
2678                 ret = PTR_ERR(di);
2679                 goto err;
2680         }
2681         if (!di) {
2682                 ret = -ENOENT;
2683                 goto err;
2684         }
2685         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2686         btrfs_release_path(root, path);
2687
2688         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2689                                          inode, dir->i_ino);
2690         BUG_ON(ret != 0 && ret != -ENOENT);
2691
2692         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2693                                            dir, index);
2694         if (ret == -ENOENT)
2695                 ret = 0;
2696 err:
2697         btrfs_free_path(path);
2698         if (ret)
2699                 goto out;
2700
2701         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2702         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2703         btrfs_update_inode(trans, root, dir);
2704         btrfs_drop_nlink(inode);
2705         ret = btrfs_update_inode(trans, root, inode);
2706 out:
2707         return ret;
2708 }
2709
2710 /* helper to check if there is any shared block in the path */
2711 static int check_path_shared(struct btrfs_root *root,
2712                              struct btrfs_path *path)
2713 {
2714         struct extent_buffer *eb;
2715         int level;
2716         u64 refs = 1;
2717         int uninitialized_var(ret);
2718
2719         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2720                 if (!path->nodes[level])
2721                         break;
2722                 eb = path->nodes[level];
2723                 if (!btrfs_block_can_be_shared(root, eb))
2724                         continue;
2725                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2726                                                &refs, NULL);
2727                 if (refs > 1)
2728                         return 1;
2729         }
2730         return ret; /* XXX callers? */
2731 }
2732
2733 /*
2734  * helper to start transaction for unlink and rmdir.
2735  *
2736  * unlink and rmdir are special in btrfs, they do not always free space.
2737  * so in enospc case, we should make sure they will free space before
2738  * allowing them to use the global metadata reservation.
2739  */
2740 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2741                                                        struct dentry *dentry)
2742 {
2743         struct btrfs_trans_handle *trans;
2744         struct btrfs_root *root = BTRFS_I(dir)->root;
2745         struct btrfs_path *path;
2746         struct btrfs_inode_ref *ref;
2747         struct btrfs_dir_item *di;
2748         struct inode *inode = dentry->d_inode;
2749         u64 index;
2750         int check_link = 1;
2751         int err = -ENOSPC;
2752         int ret;
2753
2754         trans = btrfs_start_transaction(root, 10);
2755         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2756                 return trans;
2757
2758         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2759                 return ERR_PTR(-ENOSPC);
2760
2761         /* check if there is someone else holds reference */
2762         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2763                 return ERR_PTR(-ENOSPC);
2764
2765         if (atomic_read(&inode->i_count) > 2)
2766                 return ERR_PTR(-ENOSPC);
2767
2768         if (xchg(&root->fs_info->enospc_unlink, 1))
2769                 return ERR_PTR(-ENOSPC);
2770
2771         path = btrfs_alloc_path();
2772         if (!path) {
2773                 root->fs_info->enospc_unlink = 0;
2774                 return ERR_PTR(-ENOMEM);
2775         }
2776
2777         trans = btrfs_start_transaction(root, 0);
2778         if (IS_ERR(trans)) {
2779                 btrfs_free_path(path);
2780                 root->fs_info->enospc_unlink = 0;
2781                 return trans;
2782         }
2783
2784         path->skip_locking = 1;
2785         path->search_commit_root = 1;
2786
2787         ret = btrfs_lookup_inode(trans, root, path,
2788                                 &BTRFS_I(dir)->location, 0);
2789         if (ret < 0) {
2790                 err = ret;
2791                 goto out;
2792         }
2793         if (ret == 0) {
2794                 if (check_path_shared(root, path))
2795                         goto out;
2796         } else {
2797                 check_link = 0;
2798         }
2799         btrfs_release_path(root, path);
2800
2801         ret = btrfs_lookup_inode(trans, root, path,
2802                                 &BTRFS_I(inode)->location, 0);
2803         if (ret < 0) {
2804                 err = ret;
2805                 goto out;
2806         }
2807         if (ret == 0) {
2808                 if (check_path_shared(root, path))
2809                         goto out;
2810         } else {
2811                 check_link = 0;
2812         }
2813         btrfs_release_path(root, path);
2814
2815         if (ret == 0 && S_ISREG(inode->i_mode)) {
2816                 ret = btrfs_lookup_file_extent(trans, root, path,
2817                                                inode->i_ino, (u64)-1, 0);
2818                 if (ret < 0) {
2819                         err = ret;
2820                         goto out;
2821                 }
2822                 BUG_ON(ret == 0);
2823                 if (check_path_shared(root, path))
2824                         goto out;
2825                 btrfs_release_path(root, path);
2826         }
2827
2828         if (!check_link) {
2829                 err = 0;
2830                 goto out;
2831         }
2832
2833         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2834                                 dentry->d_name.name, dentry->d_name.len, 0);
2835         if (IS_ERR(di)) {
2836                 err = PTR_ERR(di);
2837                 goto out;
2838         }
2839         if (di) {
2840                 if (check_path_shared(root, path))
2841                         goto out;
2842         } else {
2843                 err = 0;
2844                 goto out;
2845         }
2846         btrfs_release_path(root, path);
2847
2848         ref = btrfs_lookup_inode_ref(trans, root, path,
2849                                 dentry->d_name.name, dentry->d_name.len,
2850                                 inode->i_ino, dir->i_ino, 0);
2851         if (IS_ERR(ref)) {
2852                 err = PTR_ERR(ref);
2853                 goto out;
2854         }
2855         BUG_ON(!ref);
2856         if (check_path_shared(root, path))
2857                 goto out;
2858         index = btrfs_inode_ref_index(path->nodes[0], ref);
2859         btrfs_release_path(root, path);
2860
2861         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2862                                 dentry->d_name.name, dentry->d_name.len, 0);
2863         if (IS_ERR(di)) {
2864                 err = PTR_ERR(di);
2865                 goto out;
2866         }
2867         BUG_ON(ret == -ENOENT);
2868         if (check_path_shared(root, path))
2869                 goto out;
2870
2871         err = 0;
2872 out:
2873         btrfs_free_path(path);
2874         if (err) {
2875                 btrfs_end_transaction(trans, root);
2876                 root->fs_info->enospc_unlink = 0;
2877                 return ERR_PTR(err);
2878         }
2879
2880         trans->block_rsv = &root->fs_info->global_block_rsv;
2881         return trans;
2882 }
2883
2884 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2885                                struct btrfs_root *root)
2886 {
2887         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2888                 BUG_ON(!root->fs_info->enospc_unlink);
2889                 root->fs_info->enospc_unlink = 0;
2890         }
2891         btrfs_end_transaction_throttle(trans, root);
2892 }
2893
2894 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2895 {
2896         struct btrfs_root *root = BTRFS_I(dir)->root;
2897         struct btrfs_trans_handle *trans;
2898         struct inode *inode = dentry->d_inode;
2899         int ret;
2900         unsigned long nr = 0;
2901
2902         trans = __unlink_start_trans(dir, dentry);
2903         if (IS_ERR(trans))
2904                 return PTR_ERR(trans);
2905
2906         btrfs_set_trans_block_group(trans, dir);
2907
2908         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2909
2910         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2911                                  dentry->d_name.name, dentry->d_name.len);
2912         BUG_ON(ret);
2913
2914         if (inode->i_nlink == 0) {
2915                 ret = btrfs_orphan_add(trans, inode);
2916                 BUG_ON(ret);
2917         }
2918
2919         nr = trans->blocks_used;
2920         __unlink_end_trans(trans, root);
2921         btrfs_btree_balance_dirty(root, nr);
2922         return ret;
2923 }
2924
2925 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2926                         struct btrfs_root *root,
2927                         struct inode *dir, u64 objectid,
2928                         const char *name, int name_len)
2929 {
2930         struct btrfs_path *path;
2931         struct extent_buffer *leaf;
2932         struct btrfs_dir_item *di;
2933         struct btrfs_key key;
2934         u64 index;
2935         int ret;
2936
2937         path = btrfs_alloc_path();
2938         if (!path)
2939                 return -ENOMEM;
2940
2941         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2942                                    name, name_len, -1);
2943         BUG_ON(!di || IS_ERR(di));
2944
2945         leaf = path->nodes[0];
2946         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2947         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2948         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2949         BUG_ON(ret);
2950         btrfs_release_path(root, path);
2951
2952         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2953                                  objectid, root->root_key.objectid,
2954                                  dir->i_ino, &index, name, name_len);
2955         if (ret < 0) {
2956                 BUG_ON(ret != -ENOENT);
2957                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2958                                                  name, name_len);
2959                 BUG_ON(!di || IS_ERR(di));
2960
2961                 leaf = path->nodes[0];
2962                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2963                 btrfs_release_path(root, path);
2964                 index = key.offset;
2965         }
2966
2967         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2968                                          index, name, name_len, -1);
2969         BUG_ON(!di || IS_ERR(di));
2970
2971         leaf = path->nodes[0];
2972         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2973         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2974         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2975         BUG_ON(ret);
2976         btrfs_release_path(root, path);
2977
2978         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2979         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2980         ret = btrfs_update_inode(trans, root, dir);
2981         BUG_ON(ret);
2982
2983         btrfs_free_path(path);
2984         return 0;
2985 }
2986
2987 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2988 {
2989         struct inode *inode = dentry->d_inode;
2990         int err = 0;
2991         struct btrfs_root *root = BTRFS_I(dir)->root;
2992         struct btrfs_trans_handle *trans;
2993         unsigned long nr = 0;
2994
2995         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2996             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2997                 return -ENOTEMPTY;
2998
2999         trans = __unlink_start_trans(dir, dentry);
3000         if (IS_ERR(trans))
3001                 return PTR_ERR(trans);
3002
3003         btrfs_set_trans_block_group(trans, dir);
3004
3005         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3006                 err = btrfs_unlink_subvol(trans, root, dir,
3007                                           BTRFS_I(inode)->location.objectid,
3008                                           dentry->d_name.name,
3009                                           dentry->d_name.len);
3010                 goto out;
3011         }
3012
3013         err = btrfs_orphan_add(trans, inode);
3014         if (err)
3015                 goto out;
3016
3017         /* now the directory is empty */
3018         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3019                                  dentry->d_name.name, dentry->d_name.len);
3020         if (!err)
3021                 btrfs_i_size_write(inode, 0);
3022 out:
3023         nr = trans->blocks_used;
3024         __unlink_end_trans(trans, root);
3025         btrfs_btree_balance_dirty(root, nr);
3026
3027         return err;
3028 }
3029
3030 #if 0
3031 /*
3032  * when truncating bytes in a file, it is possible to avoid reading
3033  * the leaves that contain only checksum items.  This can be the
3034  * majority of the IO required to delete a large file, but it must
3035  * be done carefully.
3036  *
3037  * The keys in the level just above the leaves are checked to make sure
3038  * the lowest key in a given leaf is a csum key, and starts at an offset
3039  * after the new  size.
3040  *
3041  * Then the key for the next leaf is checked to make sure it also has
3042  * a checksum item for the same file.  If it does, we know our target leaf
3043  * contains only checksum items, and it can be safely freed without reading
3044  * it.
3045  *
3046  * This is just an optimization targeted at large files.  It may do
3047  * nothing.  It will return 0 unless things went badly.
3048  */
3049 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3050                                      struct btrfs_root *root,
3051                                      struct btrfs_path *path,
3052                                      struct inode *inode, u64 new_size)
3053 {
3054         struct btrfs_key key;
3055         int ret;
3056         int nritems;
3057         struct btrfs_key found_key;
3058         struct btrfs_key other_key;
3059         struct btrfs_leaf_ref *ref;
3060         u64 leaf_gen;
3061         u64 leaf_start;
3062
3063         path->lowest_level = 1;
3064         key.objectid = inode->i_ino;
3065         key.type = BTRFS_CSUM_ITEM_KEY;
3066         key.offset = new_size;
3067 again:
3068         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3069         if (ret < 0)
3070                 goto out;
3071
3072         if (path->nodes[1] == NULL) {
3073                 ret = 0;
3074                 goto out;
3075         }
3076         ret = 0;
3077         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3078         nritems = btrfs_header_nritems(path->nodes[1]);
3079
3080         if (!nritems)
3081                 goto out;
3082
3083         if (path->slots[1] >= nritems)
3084                 goto next_node;
3085
3086         /* did we find a key greater than anything we want to delete? */
3087         if (found_key.objectid > inode->i_ino ||
3088            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3089                 goto out;
3090
3091         /* we check the next key in the node to make sure the leave contains
3092          * only checksum items.  This comparison doesn't work if our
3093          * leaf is the last one in the node
3094          */
3095         if (path->slots[1] + 1 >= nritems) {
3096 next_node:
3097                 /* search forward from the last key in the node, this
3098                  * will bring us into the next node in the tree
3099                  */
3100                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3101
3102                 /* unlikely, but we inc below, so check to be safe */
3103                 if (found_key.offset == (u64)-1)
3104                         goto out;
3105
3106                 /* search_forward needs a path with locks held, do the
3107                  * search again for the original key.  It is possible
3108                  * this will race with a balance and return a path that
3109                  * we could modify, but this drop is just an optimization
3110                  * and is allowed to miss some leaves.
3111                  */
3112                 btrfs_release_path(root, path);
3113                 found_key.offset++;
3114
3115                 /* setup a max key for search_forward */
3116                 other_key.offset = (u64)-1;
3117                 other_key.type = key.type;
3118                 other_key.objectid = key.objectid;
3119
3120                 path->keep_locks = 1;
3121                 ret = btrfs_search_forward(root, &found_key, &other_key,
3122                                            path, 0, 0);
3123                 path->keep_locks = 0;
3124                 if (ret || found_key.objectid != key.objectid ||
3125                     found_key.type != key.type) {
3126                         ret = 0;
3127                         goto out;
3128                 }
3129
3130                 key.offset = found_key.offset;
3131                 btrfs_release_path(root, path);
3132                 cond_resched();
3133                 goto again;
3134         }
3135
3136         /* we know there's one more slot after us in the tree,
3137          * read that key so we can verify it is also a checksum item
3138          */
3139         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3140
3141         if (found_key.objectid < inode->i_ino)
3142                 goto next_key;
3143
3144         if (found_key.type != key.type || found_key.offset < new_size)
3145                 goto next_key;
3146
3147         /*
3148          * if the key for the next leaf isn't a csum key from this objectid,
3149          * we can't be sure there aren't good items inside this leaf.
3150          * Bail out
3151          */
3152         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3153                 goto out;
3154
3155         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3156         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3157         /*
3158          * it is safe to delete this leaf, it contains only
3159          * csum items from this inode at an offset >= new_size
3160          */
3161         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3162         BUG_ON(ret);
3163
3164         if (root->ref_cows && leaf_gen < trans->transid) {
3165                 ref = btrfs_alloc_leaf_ref(root, 0);
3166                 if (ref) {
3167                         ref->root_gen = root->root_key.offset;
3168                         ref->bytenr = leaf_start;
3169                         ref->owner = 0;
3170                         ref->generation = leaf_gen;
3171                         ref->nritems = 0;
3172
3173                         btrfs_sort_leaf_ref(ref);
3174
3175                         ret = btrfs_add_leaf_ref(root, ref, 0);
3176                         WARN_ON(ret);
3177                         btrfs_free_leaf_ref(root, ref);
3178                 } else {
3179                         WARN_ON(1);
3180                 }
3181         }
3182 next_key:
3183         btrfs_release_path(root, path);
3184
3185         if (other_key.objectid == inode->i_ino &&
3186             other_key.type == key.type && other_key.offset > key.offset) {
3187                 key.offset = other_key.offset;
3188                 cond_resched();
3189                 goto again;
3190         }
3191         ret = 0;
3192 out:
3193         /* fixup any changes we've made to the path */
3194         path->lowest_level = 0;
3195         path->keep_locks = 0;
3196         btrfs_release_path(root, path);
3197         return ret;
3198 }
3199
3200 #endif
3201
3202 /*
3203  * this can truncate away extent items, csum items and directory items.
3204  * It starts at a high offset and removes keys until it can't find
3205  * any higher than new_size
3206  *
3207  * csum items that cross the new i_size are truncated to the new size
3208  * as well.
3209  *
3210  * min_type is the minimum key type to truncate down to.  If set to 0, this
3211  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3212  */
3213 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3214                                struct btrfs_root *root,
3215                                struct inode *inode,
3216                                u64 new_size, u32 min_type)
3217 {
3218         struct btrfs_path *path;
3219         struct extent_buffer *leaf;
3220         struct btrfs_file_extent_item *fi;
3221         struct btrfs_key key;
3222         struct btrfs_key found_key;
3223         u64 extent_start = 0;
3224         u64 extent_num_bytes = 0;
3225         u64 extent_offset = 0;
3226         u64 item_end = 0;
3227         u64 mask = root->sectorsize - 1;
3228         u32 found_type = (u8)-1;
3229         int found_extent;
3230         int del_item;
3231         int pending_del_nr = 0;
3232         int pending_del_slot = 0;
3233         int extent_type = -1;
3234         int encoding;
3235         int ret;
3236         int err = 0;
3237
3238         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3239
3240         if (root->ref_cows || root == root->fs_info->tree_root)
3241                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3242
3243         path = btrfs_alloc_path();
3244         BUG_ON(!path);
3245         path->reada = -1;
3246
3247         key.objectid = inode->i_ino;
3248         key.offset = (u64)-1;
3249         key.type = (u8)-1;
3250
3251 search_again:
3252         path->leave_spinning = 1;
3253         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3254         if (ret < 0) {
3255                 err = ret;
3256                 goto out;
3257         }
3258
3259         if (ret > 0) {
3260                 /* there are no items in the tree for us to truncate, we're
3261                  * done
3262                  */
3263                 if (path->slots[0] == 0)
3264                         goto out;
3265                 path->slots[0]--;
3266         }
3267
3268         while (1) {
3269                 fi = NULL;
3270                 leaf = path->nodes[0];
3271                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3272                 found_type = btrfs_key_type(&found_key);
3273                 encoding = 0;
3274
3275                 if (found_key.objectid != inode->i_ino)
3276                         break;
3277
3278                 if (found_type < min_type)
3279                         break;
3280
3281                 item_end = found_key.offset;
3282                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3283                         fi = btrfs_item_ptr(leaf, path->slots[0],
3284                                             struct btrfs_file_extent_item);
3285                         extent_type = btrfs_file_extent_type(leaf, fi);
3286                         encoding = btrfs_file_extent_compression(leaf, fi);
3287                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3288                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3289
3290                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3291                                 item_end +=
3292                                     btrfs_file_extent_num_bytes(leaf, fi);
3293                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3294                                 item_end += btrfs_file_extent_inline_len(leaf,
3295                                                                          fi);
3296                         }
3297                         item_end--;
3298                 }
3299                 if (found_type > min_type) {
3300                         del_item = 1;
3301                 } else {
3302                         if (item_end < new_size)
3303                                 break;
3304                         if (found_key.offset >= new_size)
3305                                 del_item = 1;
3306                         else
3307                                 del_item = 0;
3308                 }
3309                 found_extent = 0;
3310                 /* FIXME, shrink the extent if the ref count is only 1 */
3311                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3312                         goto delete;
3313
3314                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3315                         u64 num_dec;
3316                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3317                         if (!del_item && !encoding) {
3318                                 u64 orig_num_bytes =
3319                                         btrfs_file_extent_num_bytes(leaf, fi);
3320                                 extent_num_bytes = new_size -
3321                                         found_key.offset + root->sectorsize - 1;
3322                                 extent_num_bytes = extent_num_bytes &
3323                                         ~((u64)root->sectorsize - 1);
3324                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3325                                                          extent_num_bytes);
3326                                 num_dec = (orig_num_bytes -
3327                                            extent_num_bytes);
3328                                 if (root->ref_cows && extent_start != 0)
3329                                         inode_sub_bytes(inode, num_dec);
3330                                 btrfs_mark_buffer_dirty(leaf);
3331                         } else {
3332                                 extent_num_bytes =
3333                                         btrfs_file_extent_disk_num_bytes(leaf,
3334                                                                          fi);
3335                                 extent_offset = found_key.offset -
3336                                         btrfs_file_extent_offset(leaf, fi);
3337
3338                                 /* FIXME blocksize != 4096 */
3339                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3340                                 if (extent_start != 0) {
3341                                         found_extent = 1;
3342                                         if (root->ref_cows)
3343                                                 inode_sub_bytes(inode, num_dec);
3344                                 }
3345                         }
3346                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3347                         /*
3348                          * we can't truncate inline items that have had
3349                          * special encodings
3350                          */
3351                         if (!del_item &&
3352                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3353                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3354                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3355                                 u32 size = new_size - found_key.offset;
3356
3357                                 if (root->ref_cows) {
3358                                         inode_sub_bytes(inode, item_end + 1 -
3359                                                         new_size);
3360                                 }
3361                                 size =
3362                                     btrfs_file_extent_calc_inline_size(size);
3363                                 ret = btrfs_truncate_item(trans, root, path,
3364                                                           size, 1);
3365                                 BUG_ON(ret);
3366                         } else if (root->ref_cows) {
3367                                 inode_sub_bytes(inode, item_end + 1 -
3368                                                 found_key.offset);
3369                         }
3370                 }
3371 delete:
3372                 if (del_item) {
3373                         if (!pending_del_nr) {
3374                                 /* no pending yet, add ourselves */
3375                                 pending_del_slot = path->slots[0];
3376                                 pending_del_nr = 1;
3377                         } else if (pending_del_nr &&
3378                                    path->slots[0] + 1 == pending_del_slot) {
3379                                 /* hop on the pending chunk */
3380                                 pending_del_nr++;
3381                                 pending_del_slot = path->slots[0];
3382                         } else {
3383                                 BUG();
3384                         }
3385                 } else {
3386                         break;
3387                 }
3388                 if (found_extent && (root->ref_cows ||
3389                                      root == root->fs_info->tree_root)) {
3390                         btrfs_set_path_blocking(path);
3391                         ret = btrfs_free_extent(trans, root, extent_start,
3392                                                 extent_num_bytes, 0,
3393                                                 btrfs_header_owner(leaf),
3394                                                 inode->i_ino, extent_offset);
3395                         BUG_ON(ret);
3396                 }
3397
3398                 if (found_type == BTRFS_INODE_ITEM_KEY)
3399                         break;
3400
3401                 if (path->slots[0] == 0 ||
3402                     path->slots[0] != pending_del_slot) {
3403                         if (root->ref_cows) {
3404                                 err = -EAGAIN;
3405                                 goto out;
3406                         }
3407                         if (pending_del_nr) {
3408                                 ret = btrfs_del_items(trans, root, path,
3409                                                 pending_del_slot,
3410                                                 pending_del_nr);
3411                                 BUG_ON(ret);
3412                                 pending_del_nr = 0;
3413                         }
3414                         btrfs_release_path(root, path);
3415                         goto search_again;
3416                 } else {
3417                         path->slots[0]--;
3418                 }
3419         }
3420 out:
3421         if (pending_del_nr) {
3422                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3423                                       pending_del_nr);
3424                 BUG_ON(ret);
3425         }
3426         btrfs_free_path(path);
3427         return err;
3428 }
3429
3430 /*
3431  * taken from block_truncate_page, but does cow as it zeros out
3432  * any bytes left in the last page in the file.
3433  */
3434 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3435 {
3436         struct inode *inode = mapping->host;
3437         struct btrfs_root *root = BTRFS_I(inode)->root;
3438         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3439         struct btrfs_ordered_extent *ordered;
3440         struct extent_state *cached_state = NULL;
3441         char *kaddr;
3442         u32 blocksize = root->sectorsize;
3443         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3444         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3445         struct page *page;
3446         int ret = 0;
3447         u64 page_start;
3448         u64 page_end;
3449
3450         if ((offset & (blocksize - 1)) == 0)
3451                 goto out;
3452         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3453         if (ret)
3454                 goto out;
3455
3456         ret = -ENOMEM;
3457 again:
3458         page = grab_cache_page(mapping, index);
3459         if (!page) {
3460                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3461                 goto out;
3462         }
3463
3464         page_start = page_offset(page);
3465         page_end = page_start + PAGE_CACHE_SIZE - 1;
3466
3467         if (!PageUptodate(page)) {
3468                 ret = btrfs_readpage(NULL, page);
3469                 lock_page(page);
3470                 if (page->mapping != mapping) {
3471                         unlock_page(page);
3472                         page_cache_release(page);
3473                         goto again;
3474                 }
3475                 if (!PageUptodate(page)) {
3476                         ret = -EIO;
3477                         goto out_unlock;
3478                 }
3479         }
3480         wait_on_page_writeback(page);
3481
3482         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3483                          GFP_NOFS);
3484         set_page_extent_mapped(page);
3485
3486         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3487         if (ordered) {
3488                 unlock_extent_cached(io_tree, page_start, page_end,
3489                                      &cached_state, GFP_NOFS);
3490                 unlock_page(page);
3491                 page_cache_release(page);
3492                 btrfs_start_ordered_extent(inode, ordered, 1);
3493                 btrfs_put_ordered_extent(ordered);
3494                 goto again;
3495         }
3496
3497         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3498                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3499                           0, 0, &cached_state, GFP_NOFS);
3500
3501         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3502                                         &cached_state);
3503         if (ret) {
3504                 unlock_extent_cached(io_tree, page_start, page_end,
3505                                      &cached_state, GFP_NOFS);
3506                 goto out_unlock;
3507         }
3508
3509         ret = 0;
3510         if (offset != PAGE_CACHE_SIZE) {
3511                 kaddr = kmap(page);
3512                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3513                 flush_dcache_page(page);
3514                 kunmap(page);
3515         }
3516         ClearPageChecked(page);
3517         set_page_dirty(page);
3518         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3519                              GFP_NOFS);
3520
3521 out_unlock:
3522         if (ret)
3523                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3524         unlock_page(page);
3525         page_cache_release(page);
3526 out:
3527         return ret;
3528 }
3529
3530 int btrfs_cont_expand(struct inode *inode, loff_t size)
3531 {
3532         struct btrfs_trans_handle *trans;
3533         struct btrfs_root *root = BTRFS_I(inode)->root;
3534         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3535         struct extent_map *em = NULL;
3536         struct extent_state *cached_state = NULL;
3537         u64 mask = root->sectorsize - 1;
3538         u64 hole_start = (inode->i_size + mask) & ~mask;
3539         u64 block_end = (size + mask) & ~mask;
3540         u64 last_byte;
3541         u64 cur_offset;
3542         u64 hole_size;
3543         int err = 0;
3544
3545         if (size <= hole_start)
3546                 return 0;
3547
3548         while (1) {
3549                 struct btrfs_ordered_extent *ordered;
3550                 btrfs_wait_ordered_range(inode, hole_start,
3551                                          block_end - hole_start);
3552                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3553                                  &cached_state, GFP_NOFS);
3554                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3555                 if (!ordered)
3556                         break;
3557                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3558                                      &cached_state, GFP_NOFS);
3559                 btrfs_put_ordered_extent(ordered);
3560         }
3561
3562         cur_offset = hole_start;
3563         while (1) {
3564                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3565                                 block_end - cur_offset, 0);
3566                 BUG_ON(IS_ERR(em) || !em);
3567                 last_byte = min(extent_map_end(em), block_end);
3568                 last_byte = (last_byte + mask) & ~mask;
3569                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3570                         u64 hint_byte = 0;
3571                         hole_size = last_byte - cur_offset;
3572
3573                         trans = btrfs_start_transaction(root, 2);
3574                         if (IS_ERR(trans)) {
3575                                 err = PTR_ERR(trans);
3576                                 break;
3577                         }
3578                         btrfs_set_trans_block_group(trans, inode);
3579
3580                         err = btrfs_drop_extents(trans, inode, cur_offset,
3581                                                  cur_offset + hole_size,
3582                                                  &hint_byte, 1);
3583                         BUG_ON(err);
3584
3585                         err = btrfs_insert_file_extent(trans, root,
3586                                         inode->i_ino, cur_offset, 0,
3587                                         0, hole_size, 0, hole_size,
3588                                         0, 0, 0);
3589                         BUG_ON(err);
3590
3591                         btrfs_drop_extent_cache(inode, hole_start,
3592                                         last_byte - 1, 0);
3593
3594                         btrfs_end_transaction(trans, root);
3595                 }
3596                 free_extent_map(em);
3597                 em = NULL;
3598                 cur_offset = last_byte;
3599                 if (cur_offset >= block_end)
3600                         break;
3601         }
3602
3603         free_extent_map(em);
3604         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3605                              GFP_NOFS);
3606         return err;
3607 }
3608
3609 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3610 {
3611         struct btrfs_root *root = BTRFS_I(inode)->root;
3612         struct btrfs_trans_handle *trans;
3613         unsigned long nr;
3614         int ret;
3615
3616         if (attr->ia_size == inode->i_size)
3617                 return 0;
3618
3619         if (attr->ia_size > inode->i_size) {
3620                 unsigned long limit;
3621                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3622                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3623                         return -EFBIG;
3624                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3625                         send_sig(SIGXFSZ, current, 0);
3626                         return -EFBIG;
3627                 }
3628         }
3629
3630         trans = btrfs_start_transaction(root, 5);
3631         if (IS_ERR(trans))
3632                 return PTR_ERR(trans);
3633
3634         btrfs_set_trans_block_group(trans, inode);
3635
3636         ret = btrfs_orphan_add(trans, inode);
3637         BUG_ON(ret);
3638
3639         nr = trans->blocks_used;
3640         btrfs_end_transaction(trans, root);
3641         btrfs_btree_balance_dirty(root, nr);
3642
3643         if (attr->ia_size > inode->i_size) {
3644                 ret = btrfs_cont_expand(inode, attr->ia_size);
3645                 if (ret) {
3646                         btrfs_truncate(inode);
3647                         return ret;
3648                 }
3649
3650                 i_size_write(inode, attr->ia_size);
3651                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3652
3653                 trans = btrfs_start_transaction(root, 0);
3654                 BUG_ON(IS_ERR(trans));
3655                 btrfs_set_trans_block_group(trans, inode);
3656                 trans->block_rsv = root->orphan_block_rsv;
3657                 BUG_ON(!trans->block_rsv);
3658
3659                 ret = btrfs_update_inode(trans, root, inode);
3660                 BUG_ON(ret);
3661                 if (inode->i_nlink > 0) {
3662                         ret = btrfs_orphan_del(trans, inode);
3663                         BUG_ON(ret);
3664                 }
3665                 nr = trans->blocks_used;
3666                 btrfs_end_transaction(trans, root);
3667                 btrfs_btree_balance_dirty(root, nr);
3668                 return 0;
3669         }
3670
3671         /*
3672          * We're truncating a file that used to have good data down to
3673          * zero. Make sure it gets into the ordered flush list so that
3674          * any new writes get down to disk quickly.
3675          */
3676         if (attr->ia_size == 0)
3677                 BTRFS_I(inode)->ordered_data_close = 1;
3678
3679         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3680         ret = vmtruncate(inode, attr->ia_size);
3681         BUG_ON(ret);
3682
3683         return 0;
3684 }
3685
3686 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3687 {
3688         struct inode *inode = dentry->d_inode;
3689         struct btrfs_root *root = BTRFS_I(inode)->root;
3690         int err;
3691
3692         if (btrfs_root_readonly(root))
3693                 return -EROFS;
3694
3695         err = inode_change_ok(inode, attr);
3696         if (err)
3697                 return err;
3698
3699         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3700                 err = btrfs_setattr_size(inode, attr);
3701                 if (err)
3702                         return err;
3703         }
3704
3705         if (attr->ia_valid) {
3706                 setattr_copy(inode, attr);
3707                 mark_inode_dirty(inode);
3708
3709                 if (attr->ia_valid & ATTR_MODE)
3710                         err = btrfs_acl_chmod(inode);
3711         }
3712
3713         return err;
3714 }
3715
3716 void btrfs_evict_inode(struct inode *inode)
3717 {
3718         struct btrfs_trans_handle *trans;
3719         struct btrfs_root *root = BTRFS_I(inode)->root;
3720         unsigned long nr;
3721         int ret;
3722
3723         truncate_inode_pages(&inode->i_data, 0);
3724         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3725                                root == root->fs_info->tree_root))
3726                 goto no_delete;
3727
3728         if (is_bad_inode(inode)) {
3729                 btrfs_orphan_del(NULL, inode);
3730                 goto no_delete;
3731         }
3732         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3733         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3734
3735         if (root->fs_info->log_root_recovering) {
3736                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3737                 goto no_delete;
3738         }
3739
3740         if (inode->i_nlink > 0) {
3741                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3742                 goto no_delete;
3743         }
3744
3745         btrfs_i_size_write(inode, 0);
3746
3747         while (1) {
3748                 trans = btrfs_start_transaction(root, 0);
3749                 BUG_ON(IS_ERR(trans));
3750                 btrfs_set_trans_block_group(trans, inode);
3751                 trans->block_rsv = root->orphan_block_rsv;
3752
3753                 ret = btrfs_block_rsv_check(trans, root,
3754                                             root->orphan_block_rsv, 0, 5);
3755                 if (ret) {
3756                         BUG_ON(ret != -EAGAIN);
3757                         ret = btrfs_commit_transaction(trans, root);
3758                         BUG_ON(ret);
3759                         continue;
3760                 }
3761
3762                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3763                 if (ret != -EAGAIN)
3764                         break;
3765
3766                 nr = trans->blocks_used;
3767                 btrfs_end_transaction(trans, root);
3768                 trans = NULL;
3769                 btrfs_btree_balance_dirty(root, nr);
3770
3771         }
3772
3773         if (ret == 0) {
3774                 ret = btrfs_orphan_del(trans, inode);
3775                 BUG_ON(ret);
3776         }
3777
3778         nr = trans->blocks_used;
3779         btrfs_end_transaction(trans, root);
3780         btrfs_btree_balance_dirty(root, nr);
3781 no_delete:
3782         end_writeback(inode);
3783         return;
3784 }
3785
3786 /*
3787  * this returns the key found in the dir entry in the location pointer.
3788  * If no dir entries were found, location->objectid is 0.
3789  */
3790 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3791                                struct btrfs_key *location)
3792 {
3793         const char *name = dentry->d_name.name;
3794         int namelen = dentry->d_name.len;
3795         struct btrfs_dir_item *di;
3796         struct btrfs_path *path;
3797         struct btrfs_root *root = BTRFS_I(dir)->root;
3798         int ret = 0;
3799
3800         path = btrfs_alloc_path();
3801         BUG_ON(!path);
3802
3803         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3804                                     namelen, 0);
3805         if (IS_ERR(di))
3806                 ret = PTR_ERR(di);
3807
3808         if (!di || IS_ERR(di))
3809                 goto out_err;
3810
3811         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3812 out:
3813         btrfs_free_path(path);
3814         return ret;
3815 out_err:
3816         location->objectid = 0;
3817         goto out;
3818 }
3819
3820 /*
3821  * when we hit a tree root in a directory, the btrfs part of the inode
3822  * needs to be changed to reflect the root directory of the tree root.  This
3823  * is kind of like crossing a mount point.
3824  */
3825 static int fixup_tree_root_location(struct btrfs_root *root,
3826                                     struct inode *dir,
3827                                     struct dentry *dentry,
3828                                     struct btrfs_key *location,
3829                                     struct btrfs_root **sub_root)
3830 {
3831         struct btrfs_path *path;
3832         struct btrfs_root *new_root;
3833         struct btrfs_root_ref *ref;
3834         struct extent_buffer *leaf;
3835         int ret;
3836         int err = 0;
3837
3838         path = btrfs_alloc_path();
3839         if (!path) {
3840                 err = -ENOMEM;
3841                 goto out;
3842         }
3843
3844         err = -ENOENT;
3845         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3846                                   BTRFS_I(dir)->root->root_key.objectid,
3847                                   location->objectid);
3848         if (ret) {
3849                 if (ret < 0)
3850                         err = ret;
3851                 goto out;
3852         }
3853
3854         leaf = path->nodes[0];
3855         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3856         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3857             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3858                 goto out;
3859
3860         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3861                                    (unsigned long)(ref + 1),
3862                                    dentry->d_name.len);
3863         if (ret)
3864                 goto out;
3865
3866         btrfs_release_path(root->fs_info->tree_root, path);
3867
3868         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3869         if (IS_ERR(new_root)) {
3870                 err = PTR_ERR(new_root);
3871                 goto out;
3872         }
3873
3874         if (btrfs_root_refs(&new_root->root_item) == 0) {
3875                 err = -ENOENT;
3876                 goto out;
3877         }
3878
3879         *sub_root = new_root;
3880         location->objectid = btrfs_root_dirid(&new_root->root_item);
3881         location->type = BTRFS_INODE_ITEM_KEY;
3882         location->offset = 0;
3883         err = 0;
3884 out:
3885         btrfs_free_path(path);
3886         return err;
3887 }
3888
3889 static void inode_tree_add(struct inode *inode)
3890 {
3891         struct btrfs_root *root = BTRFS_I(inode)->root;
3892         struct btrfs_inode *entry;
3893         struct rb_node **p;
3894         struct rb_node *parent;
3895 again:
3896         p = &root->inode_tree.rb_node;
3897         parent = NULL;
3898
3899         if (inode_unhashed(inode))
3900                 return;
3901
3902         spin_lock(&root->inode_lock);
3903         while (*p) {
3904                 parent = *p;
3905                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3906
3907                 if (inode->i_ino < entry->vfs_inode.i_ino)
3908                         p = &parent->rb_left;
3909                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3910                         p = &parent->rb_right;
3911                 else {
3912                         WARN_ON(!(entry->vfs_inode.i_state &
3913                                   (I_WILL_FREE | I_FREEING)));
3914                         rb_erase(parent, &root->inode_tree);
3915                         RB_CLEAR_NODE(parent);
3916                         spin_unlock(&root->inode_lock);
3917                         goto again;
3918                 }
3919         }
3920         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3921         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3922         spin_unlock(&root->inode_lock);
3923 }
3924
3925 static void inode_tree_del(struct inode *inode)
3926 {
3927         struct btrfs_root *root = BTRFS_I(inode)->root;
3928         int empty = 0;
3929
3930         spin_lock(&root->inode_lock);
3931         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3932                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3933                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3934                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3935         }
3936         spin_unlock(&root->inode_lock);
3937
3938         /*
3939          * Free space cache has inodes in the tree root, but the tree root has a
3940          * root_refs of 0, so this could end up dropping the tree root as a
3941          * snapshot, so we need the extra !root->fs_info->tree_root check to
3942          * make sure we don't drop it.
3943          */
3944         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3945             root != root->fs_info->tree_root) {
3946                 synchronize_srcu(&root->fs_info->subvol_srcu);
3947                 spin_lock(&root->inode_lock);
3948                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3949                 spin_unlock(&root->inode_lock);
3950                 if (empty)
3951                         btrfs_add_dead_root(root);
3952         }
3953 }
3954
3955 int btrfs_invalidate_inodes(struct btrfs_root *root)
3956 {
3957         struct rb_node *node;
3958         struct rb_node *prev;
3959         struct btrfs_inode *entry;
3960         struct inode *inode;
3961         u64 objectid = 0;
3962
3963         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3964
3965         spin_lock(&root->inode_lock);
3966 again:
3967         node = root->inode_tree.rb_node;
3968         prev = NULL;
3969         while (node) {
3970                 prev = node;
3971                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3972
3973                 if (objectid < entry->vfs_inode.i_ino)
3974                         node = node->rb_left;
3975                 else if (objectid > entry->vfs_inode.i_ino)
3976                         node = node->rb_right;
3977                 else
3978                         break;
3979         }
3980         if (!node) {
3981                 while (prev) {
3982                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3983                         if (objectid <= entry->vfs_inode.i_ino) {
3984                                 node = prev;
3985                                 break;
3986                         }
3987                         prev = rb_next(prev);
3988                 }
3989         }
3990         while (node) {
3991                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3992                 objectid = entry->vfs_inode.i_ino + 1;
3993                 inode = igrab(&entry->vfs_inode);
3994                 if (inode) {
3995                         spin_unlock(&root->inode_lock);
3996                         if (atomic_read(&inode->i_count) > 1)
3997                                 d_prune_aliases(inode);
3998                         /*
3999                          * btrfs_drop_inode will have it removed from
4000                          * the inode cache when its usage count
4001                          * hits zero.
4002                          */
4003                         iput(inode);
4004                         cond_resched();
4005                         spin_lock(&root->inode_lock);
4006                         goto again;
4007                 }
4008
4009                 if (cond_resched_lock(&root->inode_lock))
4010                         goto again;
4011
4012                 node = rb_next(node);
4013         }
4014         spin_unlock(&root->inode_lock);
4015         return 0;
4016 }
4017
4018 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4019 {
4020         struct btrfs_iget_args *args = p;
4021         inode->i_ino = args->ino;
4022         BTRFS_I(inode)->root = args->root;
4023         btrfs_set_inode_space_info(args->root, inode);
4024         return 0;
4025 }
4026
4027 static int btrfs_find_actor(struct inode *inode, void *opaque)
4028 {
4029         struct btrfs_iget_args *args = opaque;
4030         return args->ino == inode->i_ino &&
4031                 args->root == BTRFS_I(inode)->root;
4032 }
4033
4034 static struct inode *btrfs_iget_locked(struct super_block *s,
4035                                        u64 objectid,
4036                                        struct btrfs_root *root)
4037 {
4038         struct inode *inode;
4039         struct btrfs_iget_args args;
4040         args.ino = objectid;
4041         args.root = root;
4042
4043         inode = iget5_locked(s, objectid, btrfs_find_actor,
4044                              btrfs_init_locked_inode,
4045                              (void *)&args);
4046         return inode;
4047 }
4048
4049 /* Get an inode object given its location and corresponding root.
4050  * Returns in *is_new if the inode was read from disk
4051  */
4052 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4053                          struct btrfs_root *root, int *new)
4054 {
4055         struct inode *inode;
4056
4057         inode = btrfs_iget_locked(s, location->objectid, root);
4058         if (!inode)
4059                 return ERR_PTR(-ENOMEM);
4060
4061         if (inode->i_state & I_NEW) {
4062                 BTRFS_I(inode)->root = root;
4063                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4064                 btrfs_read_locked_inode(inode);
4065
4066                 inode_tree_add(inode);
4067                 unlock_new_inode(inode);
4068                 if (new)
4069                         *new = 1;
4070         }
4071
4072         return inode;
4073 }
4074
4075 static struct inode *new_simple_dir(struct super_block *s,
4076                                     struct btrfs_key *key,
4077                                     struct btrfs_root *root)
4078 {
4079         struct inode *inode = new_inode(s);
4080
4081         if (!inode)
4082                 return ERR_PTR(-ENOMEM);
4083
4084         BTRFS_I(inode)->root = root;
4085         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4086         BTRFS_I(inode)->dummy_inode = 1;
4087
4088         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4089         inode->i_op = &simple_dir_inode_operations;
4090         inode->i_fop = &simple_dir_operations;
4091         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4092         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4093
4094         return inode;
4095 }
4096
4097 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4098 {
4099         struct inode *inode;
4100         struct btrfs_root *root = BTRFS_I(dir)->root;
4101         struct btrfs_root *sub_root = root;
4102         struct btrfs_key location;
4103         int index;
4104         int ret;
4105
4106         if (dentry->d_name.len > BTRFS_NAME_LEN)
4107                 return ERR_PTR(-ENAMETOOLONG);
4108
4109         ret = btrfs_inode_by_name(dir, dentry, &location);
4110
4111         if (ret < 0)
4112                 return ERR_PTR(ret);
4113
4114         if (location.objectid == 0)
4115                 return NULL;
4116
4117         if (location.type == BTRFS_INODE_ITEM_KEY) {
4118                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4119                 return inode;
4120         }
4121
4122         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4123
4124         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4125         ret = fixup_tree_root_location(root, dir, dentry,
4126                                        &location, &sub_root);
4127         if (ret < 0) {
4128                 if (ret != -ENOENT)
4129                         inode = ERR_PTR(ret);
4130                 else
4131                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4132         } else {
4133                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4134         }
4135         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4136
4137         if (root != sub_root) {
4138                 down_read(&root->fs_info->cleanup_work_sem);
4139                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4140                         btrfs_orphan_cleanup(sub_root);
4141                 up_read(&root->fs_info->cleanup_work_sem);
4142         }
4143
4144         return inode;
4145 }
4146
4147 static int btrfs_dentry_delete(const struct dentry *dentry)
4148 {
4149         struct btrfs_root *root;
4150
4151         if (!dentry->d_inode && !IS_ROOT(dentry))
4152                 dentry = dentry->d_parent;
4153
4154         if (dentry->d_inode) {
4155                 root = BTRFS_I(dentry->d_inode)->root;
4156                 if (btrfs_root_refs(&root->root_item) == 0)
4157                         return 1;
4158         }
4159         return 0;
4160 }
4161
4162 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4163                                    struct nameidata *nd)
4164 {
4165         struct inode *inode;
4166
4167         inode = btrfs_lookup_dentry(dir, dentry);
4168         if (IS_ERR(inode))
4169                 return ERR_CAST(inode);
4170
4171         return d_splice_alias(inode, dentry);
4172 }
4173
4174 static unsigned char btrfs_filetype_table[] = {
4175         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4176 };
4177
4178 static int btrfs_real_readdir(struct file *filp, void *dirent,
4179                               filldir_t filldir)
4180 {
4181         struct inode *inode = filp->f_dentry->d_inode;
4182         struct btrfs_root *root = BTRFS_I(inode)->root;
4183         struct btrfs_item *item;
4184         struct btrfs_dir_item *di;
4185         struct btrfs_key key;
4186         struct btrfs_key found_key;
4187         struct btrfs_path *path;
4188         int ret;
4189         u32 nritems;
4190         struct extent_buffer *leaf;
4191         int slot;
4192         int advance;
4193         unsigned char d_type;
4194         int over = 0;
4195         u32 di_cur;
4196         u32 di_total;
4197         u32 di_len;
4198         int key_type = BTRFS_DIR_INDEX_KEY;
4199         char tmp_name[32];
4200         char *name_ptr;
4201         int name_len;
4202
4203         /* FIXME, use a real flag for deciding about the key type */
4204         if (root->fs_info->tree_root == root)
4205                 key_type = BTRFS_DIR_ITEM_KEY;
4206
4207         /* special case for "." */
4208         if (filp->f_pos == 0) {
4209                 over = filldir(dirent, ".", 1,
4210                                1, inode->i_ino,
4211                                DT_DIR);
4212                 if (over)
4213                         return 0;
4214                 filp->f_pos = 1;
4215         }
4216         /* special case for .., just use the back ref */
4217         if (filp->f_pos == 1) {
4218                 u64 pino = parent_ino(filp->f_path.dentry);
4219                 over = filldir(dirent, "..", 2,
4220                                2, pino, DT_DIR);
4221                 if (over)
4222                         return 0;
4223                 filp->f_pos = 2;
4224         }
4225         path = btrfs_alloc_path();
4226         path->reada = 2;
4227
4228         btrfs_set_key_type(&key, key_type);
4229         key.offset = filp->f_pos;
4230         key.objectid = inode->i_ino;
4231
4232         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4233         if (ret < 0)
4234                 goto err;
4235         advance = 0;
4236
4237         while (1) {
4238                 leaf = path->nodes[0];
4239                 nritems = btrfs_header_nritems(leaf);
4240                 slot = path->slots[0];
4241                 if (advance || slot >= nritems) {
4242                         if (slot >= nritems - 1) {
4243                                 ret = btrfs_next_leaf(root, path);
4244                                 if (ret)
4245                                         break;
4246                                 leaf = path->nodes[0];
4247                                 nritems = btrfs_header_nritems(leaf);
4248                                 slot = path->slots[0];
4249                         } else {
4250                                 slot++;
4251                                 path->slots[0]++;
4252                         }
4253                 }
4254
4255                 advance = 1;
4256                 item = btrfs_item_nr(leaf, slot);
4257                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4258
4259                 if (found_key.objectid != key.objectid)
4260                         break;
4261                 if (btrfs_key_type(&found_key) != key_type)
4262                         break;
4263                 if (found_key.offset < filp->f_pos)
4264                         continue;
4265
4266                 filp->f_pos = found_key.offset;
4267
4268                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4269                 di_cur = 0;
4270                 di_total = btrfs_item_size(leaf, item);
4271
4272                 while (di_cur < di_total) {
4273                         struct btrfs_key location;
4274
4275                         name_len = btrfs_dir_name_len(leaf, di);
4276                         if (name_len <= sizeof(tmp_name)) {
4277                                 name_ptr = tmp_name;
4278                         } else {
4279                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4280                                 if (!name_ptr) {
4281                                         ret = -ENOMEM;
4282                                         goto err;
4283                                 }
4284                         }
4285                         read_extent_buffer(leaf, name_ptr,
4286                                            (unsigned long)(di + 1), name_len);
4287
4288                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4289                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4290
4291                         /* is this a reference to our own snapshot? If so
4292                          * skip it
4293                          */
4294                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4295                             location.objectid == root->root_key.objectid) {
4296                                 over = 0;
4297                                 goto skip;
4298                         }
4299                         over = filldir(dirent, name_ptr, name_len,
4300                                        found_key.offset, location.objectid,
4301                                        d_type);
4302
4303 skip:
4304                         if (name_ptr != tmp_name)
4305                                 kfree(name_ptr);
4306
4307                         if (over)
4308                                 goto nopos;
4309                         di_len = btrfs_dir_name_len(leaf, di) +
4310                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4311                         di_cur += di_len;
4312                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4313                 }
4314         }
4315
4316         /* Reached end of directory/root. Bump pos past the last item. */
4317         if (key_type == BTRFS_DIR_INDEX_KEY)
4318                 /*
4319                  * 32-bit glibc will use getdents64, but then strtol -
4320                  * so the last number we can serve is this.
4321                  */
4322                 filp->f_pos = 0x7fffffff;
4323         else
4324                 filp->f_pos++;
4325 nopos:
4326         ret = 0;
4327 err:
4328         btrfs_free_path(path);
4329         return ret;
4330 }
4331
4332 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4333 {
4334         struct btrfs_root *root = BTRFS_I(inode)->root;
4335         struct btrfs_trans_handle *trans;
4336         int ret = 0;
4337         bool nolock = false;
4338
4339         if (BTRFS_I(inode)->dummy_inode)
4340                 return 0;
4341
4342         smp_mb();
4343         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4344
4345         if (wbc->sync_mode == WB_SYNC_ALL) {
4346                 if (nolock)
4347                         trans = btrfs_join_transaction_nolock(root, 1);
4348                 else
4349                         trans = btrfs_join_transaction(root, 1);
4350                 btrfs_set_trans_block_group(trans, inode);
4351                 if (nolock)
4352                         ret = btrfs_end_transaction_nolock(trans, root);
4353                 else
4354                         ret = btrfs_commit_transaction(trans, root);
4355         }
4356         return ret;
4357 }
4358
4359 /*
4360  * This is somewhat expensive, updating the tree every time the
4361  * inode changes.  But, it is most likely to find the inode in cache.
4362  * FIXME, needs more benchmarking...there are no reasons other than performance
4363  * to keep or drop this code.
4364  */
4365 void btrfs_dirty_inode(struct inode *inode)
4366 {
4367         struct btrfs_root *root = BTRFS_I(inode)->root;
4368         struct btrfs_trans_handle *trans;
4369         int ret;
4370
4371         if (BTRFS_I(inode)->dummy_inode)
4372                 return;
4373
4374         trans = btrfs_join_transaction(root, 1);
4375         btrfs_set_trans_block_group(trans, inode);
4376
4377         ret = btrfs_update_inode(trans, root, inode);
4378         if (ret && ret == -ENOSPC) {
4379                 /* whoops, lets try again with the full transaction */
4380                 btrfs_end_transaction(trans, root);
4381                 trans = btrfs_start_transaction(root, 1);
4382                 if (IS_ERR(trans)) {
4383                         if (printk_ratelimit()) {
4384                                 printk(KERN_ERR "btrfs: fail to "
4385                                        "dirty  inode %lu error %ld\n",
4386                                        inode->i_ino, PTR_ERR(trans));
4387                         }
4388                         return;
4389                 }
4390                 btrfs_set_trans_block_group(trans, inode);
4391
4392                 ret = btrfs_update_inode(trans, root, inode);
4393                 if (ret) {
4394                         if (printk_ratelimit()) {
4395                                 printk(KERN_ERR "btrfs: fail to "
4396                                        "dirty  inode %lu error %d\n",
4397                                        inode->i_ino, ret);
4398                         }
4399                 }
4400         }
4401         btrfs_end_transaction(trans, root);
4402 }
4403
4404 /*
4405  * find the highest existing sequence number in a directory
4406  * and then set the in-memory index_cnt variable to reflect
4407  * free sequence numbers
4408  */
4409 static int btrfs_set_inode_index_count(struct inode *inode)
4410 {
4411         struct btrfs_root *root = BTRFS_I(inode)->root;
4412         struct btrfs_key key, found_key;
4413         struct btrfs_path *path;
4414         struct extent_buffer *leaf;
4415         int ret;
4416
4417         key.objectid = inode->i_ino;
4418         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4419         key.offset = (u64)-1;
4420
4421         path = btrfs_alloc_path();
4422         if (!path)
4423                 return -ENOMEM;
4424
4425         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4426         if (ret < 0)
4427                 goto out;
4428         /* FIXME: we should be able to handle this */
4429         if (ret == 0)
4430                 goto out;
4431         ret = 0;
4432
4433         /*
4434          * MAGIC NUMBER EXPLANATION:
4435          * since we search a directory based on f_pos we have to start at 2
4436          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4437          * else has to start at 2
4438          */
4439         if (path->slots[0] == 0) {
4440                 BTRFS_I(inode)->index_cnt = 2;
4441                 goto out;
4442         }
4443
4444         path->slots[0]--;
4445
4446         leaf = path->nodes[0];
4447         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4448
4449         if (found_key.objectid != inode->i_ino ||
4450             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4451                 BTRFS_I(inode)->index_cnt = 2;
4452                 goto out;
4453         }
4454
4455         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4456 out:
4457         btrfs_free_path(path);
4458         return ret;
4459 }
4460
4461 /*
4462  * helper to find a free sequence number in a given directory.  This current
4463  * code is very simple, later versions will do smarter things in the btree
4464  */
4465 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4466 {
4467         int ret = 0;
4468
4469         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4470                 ret = btrfs_set_inode_index_count(dir);
4471                 if (ret)
4472                         return ret;
4473         }
4474
4475         *index = BTRFS_I(dir)->index_cnt;
4476         BTRFS_I(dir)->index_cnt++;
4477
4478         return ret;
4479 }
4480
4481 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4482                                      struct btrfs_root *root,
4483                                      struct inode *dir,
4484                                      const char *name, int name_len,
4485                                      u64 ref_objectid, u64 objectid,
4486                                      u64 alloc_hint, int mode, u64 *index)
4487 {
4488         struct inode *inode;
4489         struct btrfs_inode_item *inode_item;
4490         struct btrfs_key *location;
4491         struct btrfs_path *path;
4492         struct btrfs_inode_ref *ref;
4493         struct btrfs_key key[2];
4494         u32 sizes[2];
4495         unsigned long ptr;
4496         int ret;
4497         int owner;
4498
4499         path = btrfs_alloc_path();
4500         BUG_ON(!path);
4501
4502         inode = new_inode(root->fs_info->sb);
4503         if (!inode)
4504                 return ERR_PTR(-ENOMEM);
4505
4506         if (dir) {
4507                 ret = btrfs_set_inode_index(dir, index);
4508                 if (ret) {
4509                         iput(inode);
4510                         return ERR_PTR(ret);
4511                 }
4512         }
4513         /*
4514          * index_cnt is ignored for everything but a dir,
4515          * btrfs_get_inode_index_count has an explanation for the magic
4516          * number
4517          */
4518         BTRFS_I(inode)->index_cnt = 2;
4519         BTRFS_I(inode)->root = root;
4520         BTRFS_I(inode)->generation = trans->transid;
4521         inode->i_generation = BTRFS_I(inode)->generation;
4522         btrfs_set_inode_space_info(root, inode);
4523
4524         if (mode & S_IFDIR)
4525                 owner = 0;
4526         else
4527                 owner = 1;
4528         BTRFS_I(inode)->block_group =
4529                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4530
4531         key[0].objectid = objectid;
4532         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4533         key[0].offset = 0;
4534
4535         key[1].objectid = objectid;
4536         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4537         key[1].offset = ref_objectid;
4538
4539         sizes[0] = sizeof(struct btrfs_inode_item);
4540         sizes[1] = name_len + sizeof(*ref);
4541
4542         path->leave_spinning = 1;
4543         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4544         if (ret != 0)
4545                 goto fail;
4546
4547         inode_init_owner(inode, dir, mode);
4548         inode->i_ino = objectid;
4549         inode_set_bytes(inode, 0);
4550         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4551         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4552                                   struct btrfs_inode_item);
4553         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4554
4555         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4556                              struct btrfs_inode_ref);
4557         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4558         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4559         ptr = (unsigned long)(ref + 1);
4560         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4561
4562         btrfs_mark_buffer_dirty(path->nodes[0]);
4563         btrfs_free_path(path);
4564
4565         location = &BTRFS_I(inode)->location;
4566         location->objectid = objectid;
4567         location->offset = 0;
4568         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4569
4570         btrfs_inherit_iflags(inode, dir);
4571
4572         if ((mode & S_IFREG)) {
4573                 if (btrfs_test_opt(root, NODATASUM))
4574                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4575                 if (btrfs_test_opt(root, NODATACOW))
4576                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4577         }
4578
4579         insert_inode_hash(inode);
4580         inode_tree_add(inode);
4581         return inode;
4582 fail:
4583         if (dir)
4584                 BTRFS_I(dir)->index_cnt--;
4585         btrfs_free_path(path);
4586         iput(inode);
4587         return ERR_PTR(ret);
4588 }
4589
4590 static inline u8 btrfs_inode_type(struct inode *inode)
4591 {
4592         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4593 }
4594
4595 /*
4596  * utility function to add 'inode' into 'parent_inode' with
4597  * a give name and a given sequence number.
4598  * if 'add_backref' is true, also insert a backref from the
4599  * inode to the parent directory.
4600  */
4601 int btrfs_add_link(struct btrfs_trans_handle *trans,
4602                    struct inode *parent_inode, struct inode *inode,
4603                    const char *name, int name_len, int add_backref, u64 index)
4604 {
4605         int ret = 0;
4606         struct btrfs_key key;
4607         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4608
4609         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4610                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4611         } else {
4612                 key.objectid = inode->i_ino;
4613                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4614                 key.offset = 0;
4615         }
4616
4617         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4618                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4619                                          key.objectid, root->root_key.objectid,
4620                                          parent_inode->i_ino,
4621                                          index, name, name_len);
4622         } else if (add_backref) {
4623                 ret = btrfs_insert_inode_ref(trans, root,
4624                                              name, name_len, inode->i_ino,
4625                                              parent_inode->i_ino, index);
4626         }
4627
4628         if (ret == 0) {
4629                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4630                                             parent_inode->i_ino, &key,
4631                                             btrfs_inode_type(inode), index);
4632                 BUG_ON(ret);
4633
4634                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4635                                    name_len * 2);
4636                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4637                 ret = btrfs_update_inode(trans, root, parent_inode);
4638         }
4639         return ret;
4640 }
4641
4642 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4643                             struct inode *dir, struct dentry *dentry,
4644                             struct inode *inode, int backref, u64 index)
4645 {
4646         int err = btrfs_add_link(trans, dir, inode,
4647                                  dentry->d_name.name, dentry->d_name.len,
4648                                  backref, index);
4649         if (!err) {
4650                 d_instantiate(dentry, inode);
4651                 return 0;
4652         }
4653         if (err > 0)
4654                 err = -EEXIST;
4655         return err;
4656 }
4657
4658 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4659                         int mode, dev_t rdev)
4660 {
4661         struct btrfs_trans_handle *trans;
4662         struct btrfs_root *root = BTRFS_I(dir)->root;
4663         struct inode *inode = NULL;
4664         int err;
4665         int drop_inode = 0;
4666         u64 objectid;
4667         unsigned long nr = 0;
4668         u64 index = 0;
4669
4670         if (!new_valid_dev(rdev))
4671                 return -EINVAL;
4672
4673         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4674         if (err)
4675                 return err;
4676
4677         /*
4678          * 2 for inode item and ref
4679          * 2 for dir items
4680          * 1 for xattr if selinux is on
4681          */
4682         trans = btrfs_start_transaction(root, 5);
4683         if (IS_ERR(trans))
4684                 return PTR_ERR(trans);
4685
4686         btrfs_set_trans_block_group(trans, dir);
4687
4688         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4689                                 dentry->d_name.len, dir->i_ino, objectid,
4690                                 BTRFS_I(dir)->block_group, mode, &index);
4691         err = PTR_ERR(inode);
4692         if (IS_ERR(inode))
4693                 goto out_unlock;
4694
4695         err = btrfs_init_inode_security(trans, inode, dir);
4696         if (err) {
4697                 drop_inode = 1;
4698                 goto out_unlock;
4699         }
4700
4701         btrfs_set_trans_block_group(trans, inode);
4702         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4703         if (err)
4704                 drop_inode = 1;
4705         else {
4706                 inode->i_op = &btrfs_special_inode_operations;
4707                 init_special_inode(inode, inode->i_mode, rdev);
4708                 btrfs_update_inode(trans, root, inode);
4709         }
4710         btrfs_update_inode_block_group(trans, inode);
4711         btrfs_update_inode_block_group(trans, dir);
4712 out_unlock:
4713         nr = trans->blocks_used;
4714         btrfs_end_transaction_throttle(trans, root);
4715         btrfs_btree_balance_dirty(root, nr);
4716         if (drop_inode) {
4717                 inode_dec_link_count(inode);
4718                 iput(inode);
4719         }
4720         return err;
4721 }
4722
4723 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4724                         int mode, struct nameidata *nd)
4725 {
4726         struct btrfs_trans_handle *trans;
4727         struct btrfs_root *root = BTRFS_I(dir)->root;
4728         struct inode *inode = NULL;
4729         int drop_inode = 0;
4730         int err;
4731         unsigned long nr = 0;
4732         u64 objectid;
4733         u64 index = 0;
4734
4735         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4736         if (err)
4737                 return err;
4738         /*
4739          * 2 for inode item and ref
4740          * 2 for dir items
4741          * 1 for xattr if selinux is on
4742          */
4743         trans = btrfs_start_transaction(root, 5);
4744         if (IS_ERR(trans))
4745                 return PTR_ERR(trans);
4746
4747         btrfs_set_trans_block_group(trans, dir);
4748
4749         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4750                                 dentry->d_name.len, dir->i_ino, objectid,
4751                                 BTRFS_I(dir)->block_group, mode, &index);
4752         err = PTR_ERR(inode);
4753         if (IS_ERR(inode))
4754                 goto out_unlock;
4755
4756         err = btrfs_init_inode_security(trans, inode, dir);
4757         if (err) {
4758                 drop_inode = 1;
4759                 goto out_unlock;
4760         }
4761
4762         btrfs_set_trans_block_group(trans, inode);
4763         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4764         if (err)
4765                 drop_inode = 1;
4766         else {
4767                 inode->i_mapping->a_ops = &btrfs_aops;
4768                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4769                 inode->i_fop = &btrfs_file_operations;
4770                 inode->i_op = &btrfs_file_inode_operations;
4771                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4772         }
4773         btrfs_update_inode_block_group(trans, inode);
4774         btrfs_update_inode_block_group(trans, dir);
4775 out_unlock:
4776         nr = trans->blocks_used;
4777         btrfs_end_transaction_throttle(trans, root);
4778         if (drop_inode) {
4779                 inode_dec_link_count(inode);
4780                 iput(inode);
4781         }
4782         btrfs_btree_balance_dirty(root, nr);
4783         return err;
4784 }
4785
4786 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4787                       struct dentry *dentry)
4788 {
4789         struct btrfs_trans_handle *trans;
4790         struct btrfs_root *root = BTRFS_I(dir)->root;
4791         struct inode *inode = old_dentry->d_inode;
4792         u64 index;
4793         unsigned long nr = 0;
4794         int err;
4795         int drop_inode = 0;
4796
4797         if (inode->i_nlink == 0)
4798                 return -ENOENT;
4799
4800         /* do not allow sys_link's with other subvols of the same device */
4801         if (root->objectid != BTRFS_I(inode)->root->objectid)
4802                 return -EPERM;
4803
4804         btrfs_inc_nlink(inode);
4805         inode->i_ctime = CURRENT_TIME;
4806
4807         err = btrfs_set_inode_index(dir, &index);
4808         if (err)
4809                 goto fail;
4810
4811         /*
4812          * 1 item for inode ref
4813          * 2 items for dir items
4814          */
4815         trans = btrfs_start_transaction(root, 3);
4816         if (IS_ERR(trans)) {
4817                 err = PTR_ERR(trans);
4818                 goto fail;
4819         }
4820
4821         btrfs_set_trans_block_group(trans, dir);
4822         ihold(inode);
4823
4824         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4825
4826         if (err) {
4827                 drop_inode = 1;
4828         } else {
4829                 struct dentry *parent = dget_parent(dentry);
4830                 btrfs_update_inode_block_group(trans, dir);
4831                 err = btrfs_update_inode(trans, root, inode);
4832                 BUG_ON(err);
4833                 btrfs_log_new_name(trans, inode, NULL, parent);
4834                 dput(parent);
4835         }
4836
4837         nr = trans->blocks_used;
4838         btrfs_end_transaction_throttle(trans, root);
4839 fail:
4840         if (drop_inode) {
4841                 inode_dec_link_count(inode);
4842                 iput(inode);
4843         }
4844         btrfs_btree_balance_dirty(root, nr);
4845         return err;
4846 }
4847
4848 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4849 {
4850         struct inode *inode = NULL;
4851         struct btrfs_trans_handle *trans;
4852         struct btrfs_root *root = BTRFS_I(dir)->root;
4853         int err = 0;
4854         int drop_on_err = 0;
4855         u64 objectid = 0;
4856         u64 index = 0;
4857         unsigned long nr = 1;
4858
4859         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4860         if (err)
4861                 return err;
4862
4863         /*
4864          * 2 items for inode and ref
4865          * 2 items for dir items
4866          * 1 for xattr if selinux is on
4867          */
4868         trans = btrfs_start_transaction(root, 5);
4869         if (IS_ERR(trans))
4870                 return PTR_ERR(trans);
4871         btrfs_set_trans_block_group(trans, dir);
4872
4873         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4874                                 dentry->d_name.len, dir->i_ino, objectid,
4875                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4876                                 &index);
4877         if (IS_ERR(inode)) {
4878                 err = PTR_ERR(inode);
4879                 goto out_fail;
4880         }
4881
4882         drop_on_err = 1;
4883
4884         err = btrfs_init_inode_security(trans, inode, dir);
4885         if (err)
4886                 goto out_fail;
4887
4888         inode->i_op = &btrfs_dir_inode_operations;
4889         inode->i_fop = &btrfs_dir_file_operations;
4890         btrfs_set_trans_block_group(trans, inode);
4891
4892         btrfs_i_size_write(inode, 0);
4893         err = btrfs_update_inode(trans, root, inode);
4894         if (err)
4895                 goto out_fail;
4896
4897         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4898                              dentry->d_name.len, 0, index);
4899         if (err)
4900                 goto out_fail;
4901
4902         d_instantiate(dentry, inode);
4903         drop_on_err = 0;
4904         btrfs_update_inode_block_group(trans, inode);
4905         btrfs_update_inode_block_group(trans, dir);
4906
4907 out_fail:
4908         nr = trans->blocks_used;
4909         btrfs_end_transaction_throttle(trans, root);
4910         if (drop_on_err)
4911                 iput(inode);
4912         btrfs_btree_balance_dirty(root, nr);
4913         return err;
4914 }
4915
4916 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4917  * and an extent that you want to insert, deal with overlap and insert
4918  * the new extent into the tree.
4919  */
4920 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4921                                 struct extent_map *existing,
4922                                 struct extent_map *em,
4923                                 u64 map_start, u64 map_len)
4924 {
4925         u64 start_diff;
4926
4927         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4928         start_diff = map_start - em->start;
4929         em->start = map_start;
4930         em->len = map_len;
4931         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4932             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4933                 em->block_start += start_diff;
4934                 em->block_len -= start_diff;
4935         }
4936         return add_extent_mapping(em_tree, em);
4937 }
4938
4939 static noinline int uncompress_inline(struct btrfs_path *path,
4940                                       struct inode *inode, struct page *page,
4941                                       size_t pg_offset, u64 extent_offset,
4942                                       struct btrfs_file_extent_item *item)
4943 {
4944         int ret;
4945         struct extent_buffer *leaf = path->nodes[0];
4946         char *tmp;
4947         size_t max_size;
4948         unsigned long inline_size;
4949         unsigned long ptr;
4950         int compress_type;
4951
4952         WARN_ON(pg_offset != 0);
4953         compress_type = btrfs_file_extent_compression(leaf, item);
4954         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4955         inline_size = btrfs_file_extent_inline_item_len(leaf,
4956                                         btrfs_item_nr(leaf, path->slots[0]));
4957         tmp = kmalloc(inline_size, GFP_NOFS);
4958         ptr = btrfs_file_extent_inline_start(item);
4959
4960         read_extent_buffer(leaf, tmp, ptr, inline_size);
4961
4962         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4963         ret = btrfs_decompress(compress_type, tmp, page,
4964                                extent_offset, inline_size, max_size);
4965         if (ret) {
4966                 char *kaddr = kmap_atomic(page, KM_USER0);
4967                 unsigned long copy_size = min_t(u64,
4968                                   PAGE_CACHE_SIZE - pg_offset,
4969                                   max_size - extent_offset);
4970                 memset(kaddr + pg_offset, 0, copy_size);
4971                 kunmap_atomic(kaddr, KM_USER0);
4972         }
4973         kfree(tmp);
4974         return 0;
4975 }
4976
4977 /*
4978  * a bit scary, this does extent mapping from logical file offset to the disk.
4979  * the ugly parts come from merging extents from the disk with the in-ram
4980  * representation.  This gets more complex because of the data=ordered code,
4981  * where the in-ram extents might be locked pending data=ordered completion.
4982  *
4983  * This also copies inline extents directly into the page.
4984  */
4985
4986 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4987                                     size_t pg_offset, u64 start, u64 len,
4988                                     int create)
4989 {
4990         int ret;
4991         int err = 0;
4992         u64 bytenr;
4993         u64 extent_start = 0;
4994         u64 extent_end = 0;
4995         u64 objectid = inode->i_ino;
4996         u32 found_type;
4997         struct btrfs_path *path = NULL;
4998         struct btrfs_root *root = BTRFS_I(inode)->root;
4999         struct btrfs_file_extent_item *item;
5000         struct extent_buffer *leaf;
5001         struct btrfs_key found_key;
5002         struct extent_map *em = NULL;
5003         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5004         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5005         struct btrfs_trans_handle *trans = NULL;
5006         int compress_type;
5007
5008 again:
5009         read_lock(&em_tree->lock);
5010         em = lookup_extent_mapping(em_tree, start, len);
5011         if (em)
5012                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5013         read_unlock(&em_tree->lock);
5014
5015         if (em) {
5016                 if (em->start > start || em->start + em->len <= start)
5017                         free_extent_map(em);
5018                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5019                         free_extent_map(em);
5020                 else
5021                         goto out;
5022         }
5023         em = alloc_extent_map(GFP_NOFS);
5024         if (!em) {
5025                 err = -ENOMEM;
5026                 goto out;
5027         }
5028         em->bdev = root->fs_info->fs_devices->latest_bdev;
5029         em->start = EXTENT_MAP_HOLE;
5030         em->orig_start = EXTENT_MAP_HOLE;
5031         em->len = (u64)-1;
5032         em->block_len = (u64)-1;
5033
5034         if (!path) {
5035                 path = btrfs_alloc_path();
5036                 BUG_ON(!path);
5037         }
5038
5039         ret = btrfs_lookup_file_extent(trans, root, path,
5040                                        objectid, start, trans != NULL);
5041         if (ret < 0) {
5042                 err = ret;
5043                 goto out;
5044         }
5045
5046         if (ret != 0) {
5047                 if (path->slots[0] == 0)
5048                         goto not_found;
5049                 path->slots[0]--;
5050         }
5051
5052         leaf = path->nodes[0];
5053         item = btrfs_item_ptr(leaf, path->slots[0],
5054                               struct btrfs_file_extent_item);
5055         /* are we inside the extent that was found? */
5056         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5057         found_type = btrfs_key_type(&found_key);
5058         if (found_key.objectid != objectid ||
5059             found_type != BTRFS_EXTENT_DATA_KEY) {
5060                 goto not_found;
5061         }
5062
5063         found_type = btrfs_file_extent_type(leaf, item);
5064         extent_start = found_key.offset;
5065         compress_type = btrfs_file_extent_compression(leaf, item);
5066         if (found_type == BTRFS_FILE_EXTENT_REG ||
5067             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5068                 extent_end = extent_start +
5069                        btrfs_file_extent_num_bytes(leaf, item);
5070         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5071                 size_t size;
5072                 size = btrfs_file_extent_inline_len(leaf, item);
5073                 extent_end = (extent_start + size + root->sectorsize - 1) &
5074                         ~((u64)root->sectorsize - 1);
5075         }
5076
5077         if (start >= extent_end) {
5078                 path->slots[0]++;
5079                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5080                         ret = btrfs_next_leaf(root, path);
5081                         if (ret < 0) {
5082                                 err = ret;
5083                                 goto out;
5084                         }
5085                         if (ret > 0)
5086                                 goto not_found;
5087                         leaf = path->nodes[0];
5088                 }
5089                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5090                 if (found_key.objectid != objectid ||
5091                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5092                         goto not_found;
5093                 if (start + len <= found_key.offset)
5094                         goto not_found;
5095                 em->start = start;
5096                 em->len = found_key.offset - start;
5097                 goto not_found_em;
5098         }
5099
5100         if (found_type == BTRFS_FILE_EXTENT_REG ||
5101             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5102                 em->start = extent_start;
5103                 em->len = extent_end - extent_start;
5104                 em->orig_start = extent_start -
5105                                  btrfs_file_extent_offset(leaf, item);
5106                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5107                 if (bytenr == 0) {
5108                         em->block_start = EXTENT_MAP_HOLE;
5109                         goto insert;
5110                 }
5111                 if (compress_type != BTRFS_COMPRESS_NONE) {
5112                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5113                         em->compress_type = compress_type;
5114                         em->block_start = bytenr;
5115                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5116                                                                          item);
5117                 } else {
5118                         bytenr += btrfs_file_extent_offset(leaf, item);
5119                         em->block_start = bytenr;
5120                         em->block_len = em->len;
5121                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5122                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5123                 }
5124                 goto insert;
5125         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5126                 unsigned long ptr;
5127                 char *map;
5128                 size_t size;
5129                 size_t extent_offset;
5130                 size_t copy_size;
5131
5132                 em->block_start = EXTENT_MAP_INLINE;
5133                 if (!page || create) {
5134                         em->start = extent_start;
5135                         em->len = extent_end - extent_start;
5136                         goto out;
5137                 }
5138
5139                 size = btrfs_file_extent_inline_len(leaf, item);
5140                 extent_offset = page_offset(page) + pg_offset - extent_start;
5141                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5142                                 size - extent_offset);
5143                 em->start = extent_start + extent_offset;
5144                 em->len = (copy_size + root->sectorsize - 1) &
5145                         ~((u64)root->sectorsize - 1);
5146                 em->orig_start = EXTENT_MAP_INLINE;
5147                 if (compress_type) {
5148                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5149                         em->compress_type = compress_type;
5150                 }
5151                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5152                 if (create == 0 && !PageUptodate(page)) {
5153                         if (btrfs_file_extent_compression(leaf, item) !=
5154                             BTRFS_COMPRESS_NONE) {
5155                                 ret = uncompress_inline(path, inode, page,
5156                                                         pg_offset,
5157                                                         extent_offset, item);
5158                                 BUG_ON(ret);
5159                         } else {
5160                                 map = kmap(page);
5161                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5162                                                    copy_size);
5163                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5164                                         memset(map + pg_offset + copy_size, 0,
5165                                                PAGE_CACHE_SIZE - pg_offset -
5166                                                copy_size);
5167                                 }
5168                                 kunmap(page);
5169                         }
5170                         flush_dcache_page(page);
5171                 } else if (create && PageUptodate(page)) {
5172                         WARN_ON(1);
5173                         if (!trans) {
5174                                 kunmap(page);
5175                                 free_extent_map(em);
5176                                 em = NULL;
5177                                 btrfs_release_path(root, path);
5178                                 trans = btrfs_join_transaction(root, 1);
5179                                 goto again;
5180                         }
5181                         map = kmap(page);
5182                         write_extent_buffer(leaf, map + pg_offset, ptr,
5183                                             copy_size);
5184                         kunmap(page);
5185                         btrfs_mark_buffer_dirty(leaf);
5186                 }
5187                 set_extent_uptodate(io_tree, em->start,
5188                                     extent_map_end(em) - 1, GFP_NOFS);
5189                 goto insert;
5190         } else {
5191                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5192                 WARN_ON(1);
5193         }
5194 not_found:
5195         em->start = start;
5196         em->len = len;
5197 not_found_em:
5198         em->block_start = EXTENT_MAP_HOLE;
5199         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5200 insert:
5201         btrfs_release_path(root, path);
5202         if (em->start > start || extent_map_end(em) <= start) {
5203                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5204                        "[%llu %llu]\n", (unsigned long long)em->start,
5205                        (unsigned long long)em->len,
5206                        (unsigned long long)start,
5207                        (unsigned long long)len);
5208                 err = -EIO;
5209                 goto out;
5210         }
5211
5212         err = 0;
5213         write_lock(&em_tree->lock);
5214         ret = add_extent_mapping(em_tree, em);
5215         /* it is possible that someone inserted the extent into the tree
5216          * while we had the lock dropped.  It is also possible that
5217          * an overlapping map exists in the tree
5218          */
5219         if (ret == -EEXIST) {
5220                 struct extent_map *existing;
5221
5222                 ret = 0;
5223
5224                 existing = lookup_extent_mapping(em_tree, start, len);
5225                 if (existing && (existing->start > start ||
5226                     existing->start + existing->len <= start)) {
5227                         free_extent_map(existing);
5228                         existing = NULL;
5229                 }
5230                 if (!existing) {
5231                         existing = lookup_extent_mapping(em_tree, em->start,
5232                                                          em->len);
5233                         if (existing) {
5234                                 err = merge_extent_mapping(em_tree, existing,
5235                                                            em, start,
5236                                                            root->sectorsize);
5237                                 free_extent_map(existing);
5238                                 if (err) {
5239                                         free_extent_map(em);
5240                                         em = NULL;
5241                                 }
5242                         } else {
5243                                 err = -EIO;
5244                                 free_extent_map(em);
5245                                 em = NULL;
5246                         }
5247                 } else {
5248                         free_extent_map(em);
5249                         em = existing;
5250                         err = 0;
5251                 }
5252         }
5253         write_unlock(&em_tree->lock);
5254 out:
5255         if (path)
5256                 btrfs_free_path(path);
5257         if (trans) {
5258                 ret = btrfs_end_transaction(trans, root);
5259                 if (!err)
5260                         err = ret;
5261         }
5262         if (err) {
5263                 free_extent_map(em);
5264                 return ERR_PTR(err);
5265         }
5266         return em;
5267 }
5268
5269 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5270                                                   u64 start, u64 len)
5271 {
5272         struct btrfs_root *root = BTRFS_I(inode)->root;
5273         struct btrfs_trans_handle *trans;
5274         struct extent_map *em;
5275         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5276         struct btrfs_key ins;
5277         u64 alloc_hint;
5278         int ret;
5279
5280         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5281
5282         trans = btrfs_join_transaction(root, 0);
5283         if (!trans)
5284                 return ERR_PTR(-ENOMEM);
5285
5286         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5287
5288         alloc_hint = get_extent_allocation_hint(inode, start, len);
5289         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5290                                    alloc_hint, (u64)-1, &ins, 1);
5291         if (ret) {
5292                 em = ERR_PTR(ret);
5293                 goto out;
5294         }
5295
5296         em = alloc_extent_map(GFP_NOFS);
5297         if (!em) {
5298                 em = ERR_PTR(-ENOMEM);
5299                 goto out;
5300         }
5301
5302         em->start = start;
5303         em->orig_start = em->start;
5304         em->len = ins.offset;
5305
5306         em->block_start = ins.objectid;
5307         em->block_len = ins.offset;
5308         em->bdev = root->fs_info->fs_devices->latest_bdev;
5309         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5310
5311         while (1) {
5312                 write_lock(&em_tree->lock);
5313                 ret = add_extent_mapping(em_tree, em);
5314                 write_unlock(&em_tree->lock);
5315                 if (ret != -EEXIST)
5316                         break;
5317                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5318         }
5319
5320         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5321                                            ins.offset, ins.offset, 0);
5322         if (ret) {
5323                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5324                 em = ERR_PTR(ret);
5325         }
5326 out:
5327         btrfs_end_transaction(trans, root);
5328         return em;
5329 }
5330
5331 /*
5332  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5333  * block must be cow'd
5334  */
5335 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5336                                       struct inode *inode, u64 offset, u64 len)
5337 {
5338         struct btrfs_path *path;
5339         int ret;
5340         struct extent_buffer *leaf;
5341         struct btrfs_root *root = BTRFS_I(inode)->root;
5342         struct btrfs_file_extent_item *fi;
5343         struct btrfs_key key;
5344         u64 disk_bytenr;
5345         u64 backref_offset;
5346         u64 extent_end;
5347         u64 num_bytes;
5348         int slot;
5349         int found_type;
5350
5351         path = btrfs_alloc_path();
5352         if (!path)
5353                 return -ENOMEM;
5354
5355         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5356                                        offset, 0);
5357         if (ret < 0)
5358                 goto out;
5359
5360         slot = path->slots[0];
5361         if (ret == 1) {
5362                 if (slot == 0) {
5363                         /* can't find the item, must cow */
5364                         ret = 0;
5365                         goto out;
5366                 }
5367                 slot--;
5368         }
5369         ret = 0;
5370         leaf = path->nodes[0];
5371         btrfs_item_key_to_cpu(leaf, &key, slot);
5372         if (key.objectid != inode->i_ino ||
5373             key.type != BTRFS_EXTENT_DATA_KEY) {
5374                 /* not our file or wrong item type, must cow */
5375                 goto out;
5376         }
5377
5378         if (key.offset > offset) {
5379                 /* Wrong offset, must cow */
5380                 goto out;
5381         }
5382
5383         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5384         found_type = btrfs_file_extent_type(leaf, fi);
5385         if (found_type != BTRFS_FILE_EXTENT_REG &&
5386             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5387                 /* not a regular extent, must cow */
5388                 goto out;
5389         }
5390         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5391         backref_offset = btrfs_file_extent_offset(leaf, fi);
5392
5393         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5394         if (extent_end < offset + len) {
5395                 /* extent doesn't include our full range, must cow */
5396                 goto out;
5397         }
5398
5399         if (btrfs_extent_readonly(root, disk_bytenr))
5400                 goto out;
5401
5402         /*
5403          * look for other files referencing this extent, if we
5404          * find any we must cow
5405          */
5406         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5407                                   key.offset - backref_offset, disk_bytenr))
5408                 goto out;
5409
5410         /*
5411          * adjust disk_bytenr and num_bytes to cover just the bytes
5412          * in this extent we are about to write.  If there
5413          * are any csums in that range we have to cow in order
5414          * to keep the csums correct
5415          */
5416         disk_bytenr += backref_offset;
5417         disk_bytenr += offset - key.offset;
5418         num_bytes = min(offset + len, extent_end) - offset;
5419         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5420                                 goto out;
5421         /*
5422          * all of the above have passed, it is safe to overwrite this extent
5423          * without cow
5424          */
5425         ret = 1;
5426 out:
5427         btrfs_free_path(path);
5428         return ret;
5429 }
5430
5431 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5432                                    struct buffer_head *bh_result, int create)
5433 {
5434         struct extent_map *em;
5435         struct btrfs_root *root = BTRFS_I(inode)->root;
5436         u64 start = iblock << inode->i_blkbits;
5437         u64 len = bh_result->b_size;
5438         struct btrfs_trans_handle *trans;
5439
5440         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5441         if (IS_ERR(em))
5442                 return PTR_ERR(em);
5443
5444         /*
5445          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5446          * io.  INLINE is special, and we could probably kludge it in here, but
5447          * it's still buffered so for safety lets just fall back to the generic
5448          * buffered path.
5449          *
5450          * For COMPRESSED we _have_ to read the entire extent in so we can
5451          * decompress it, so there will be buffering required no matter what we
5452          * do, so go ahead and fallback to buffered.
5453          *
5454          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5455          * to buffered IO.  Don't blame me, this is the price we pay for using
5456          * the generic code.
5457          */
5458         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5459             em->block_start == EXTENT_MAP_INLINE) {
5460                 free_extent_map(em);
5461                 return -ENOTBLK;
5462         }
5463
5464         /* Just a good old fashioned hole, return */
5465         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5466                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5467                 free_extent_map(em);
5468                 /* DIO will do one hole at a time, so just unlock a sector */
5469                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5470                               start + root->sectorsize - 1, GFP_NOFS);
5471                 return 0;
5472         }
5473
5474         /*
5475          * We don't allocate a new extent in the following cases
5476          *
5477          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5478          * existing extent.
5479          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5480          * just use the extent.
5481          *
5482          */
5483         if (!create) {
5484                 len = em->len - (start - em->start);
5485                 goto map;
5486         }
5487
5488         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5489             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5490              em->block_start != EXTENT_MAP_HOLE)) {
5491                 int type;
5492                 int ret;
5493                 u64 block_start;
5494
5495                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5496                         type = BTRFS_ORDERED_PREALLOC;
5497                 else
5498                         type = BTRFS_ORDERED_NOCOW;
5499                 len = min(len, em->len - (start - em->start));
5500                 block_start = em->block_start + (start - em->start);
5501
5502                 /*
5503                  * we're not going to log anything, but we do need
5504                  * to make sure the current transaction stays open
5505                  * while we look for nocow cross refs
5506                  */
5507                 trans = btrfs_join_transaction(root, 0);
5508                 if (!trans)
5509                         goto must_cow;
5510
5511                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5512                         ret = btrfs_add_ordered_extent_dio(inode, start,
5513                                            block_start, len, len, type);
5514                         btrfs_end_transaction(trans, root);
5515                         if (ret) {
5516                                 free_extent_map(em);
5517                                 return ret;
5518                         }
5519                         goto unlock;
5520                 }
5521                 btrfs_end_transaction(trans, root);
5522         }
5523 must_cow:
5524         /*
5525          * this will cow the extent, reset the len in case we changed
5526          * it above
5527          */
5528         len = bh_result->b_size;
5529         free_extent_map(em);
5530         em = btrfs_new_extent_direct(inode, start, len);
5531         if (IS_ERR(em))
5532                 return PTR_ERR(em);
5533         len = min(len, em->len - (start - em->start));
5534 unlock:
5535         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5536                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5537                           0, NULL, GFP_NOFS);
5538 map:
5539         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5540                 inode->i_blkbits;
5541         bh_result->b_size = len;
5542         bh_result->b_bdev = em->bdev;
5543         set_buffer_mapped(bh_result);
5544         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5545                 set_buffer_new(bh_result);
5546
5547         free_extent_map(em);
5548
5549         return 0;
5550 }
5551
5552 struct btrfs_dio_private {
5553         struct inode *inode;
5554         u64 logical_offset;
5555         u64 disk_bytenr;
5556         u64 bytes;
5557         u32 *csums;
5558         void *private;
5559
5560         /* number of bios pending for this dio */
5561         atomic_t pending_bios;
5562
5563         /* IO errors */
5564         int errors;
5565
5566         struct bio *orig_bio;
5567 };
5568
5569 static void btrfs_endio_direct_read(struct bio *bio, int err)
5570 {
5571         struct btrfs_dio_private *dip = bio->bi_private;
5572         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5573         struct bio_vec *bvec = bio->bi_io_vec;
5574         struct inode *inode = dip->inode;
5575         struct btrfs_root *root = BTRFS_I(inode)->root;
5576         u64 start;
5577         u32 *private = dip->csums;
5578
5579         start = dip->logical_offset;
5580         do {
5581                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5582                         struct page *page = bvec->bv_page;
5583                         char *kaddr;
5584                         u32 csum = ~(u32)0;
5585                         unsigned long flags;
5586
5587                         local_irq_save(flags);
5588                         kaddr = kmap_atomic(page, KM_IRQ0);
5589                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5590                                                csum, bvec->bv_len);
5591                         btrfs_csum_final(csum, (char *)&csum);
5592                         kunmap_atomic(kaddr, KM_IRQ0);
5593                         local_irq_restore(flags);
5594
5595                         flush_dcache_page(bvec->bv_page);
5596                         if (csum != *private) {
5597                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5598                                       " %llu csum %u private %u\n",
5599                                       inode->i_ino, (unsigned long long)start,
5600                                       csum, *private);
5601                                 err = -EIO;
5602                         }
5603                 }
5604
5605                 start += bvec->bv_len;
5606                 private++;
5607                 bvec++;
5608         } while (bvec <= bvec_end);
5609
5610         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5611                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5612         bio->bi_private = dip->private;
5613
5614         kfree(dip->csums);
5615         kfree(dip);
5616         dio_end_io(bio, err);
5617 }
5618
5619 static void btrfs_endio_direct_write(struct bio *bio, int err)
5620 {
5621         struct btrfs_dio_private *dip = bio->bi_private;
5622         struct inode *inode = dip->inode;
5623         struct btrfs_root *root = BTRFS_I(inode)->root;
5624         struct btrfs_trans_handle *trans;
5625         struct btrfs_ordered_extent *ordered = NULL;
5626         struct extent_state *cached_state = NULL;
5627         u64 ordered_offset = dip->logical_offset;
5628         u64 ordered_bytes = dip->bytes;
5629         int ret;
5630
5631         if (err)
5632                 goto out_done;
5633 again:
5634         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5635                                                    &ordered_offset,
5636                                                    ordered_bytes);
5637         if (!ret)
5638                 goto out_test;
5639
5640         BUG_ON(!ordered);
5641
5642         trans = btrfs_join_transaction(root, 1);
5643         if (!trans) {
5644                 err = -ENOMEM;
5645                 goto out;
5646         }
5647         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5648
5649         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5650                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5651                 if (!ret)
5652                         ret = btrfs_update_inode(trans, root, inode);
5653                 err = ret;
5654                 goto out;
5655         }
5656
5657         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5658                          ordered->file_offset + ordered->len - 1, 0,
5659                          &cached_state, GFP_NOFS);
5660
5661         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5662                 ret = btrfs_mark_extent_written(trans, inode,
5663                                                 ordered->file_offset,
5664                                                 ordered->file_offset +
5665                                                 ordered->len);
5666                 if (ret) {
5667                         err = ret;
5668                         goto out_unlock;
5669                 }
5670         } else {
5671                 ret = insert_reserved_file_extent(trans, inode,
5672                                                   ordered->file_offset,
5673                                                   ordered->start,
5674                                                   ordered->disk_len,
5675                                                   ordered->len,
5676                                                   ordered->len,
5677                                                   0, 0, 0,
5678                                                   BTRFS_FILE_EXTENT_REG);
5679                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5680                                    ordered->file_offset, ordered->len);
5681                 if (ret) {
5682                         err = ret;
5683                         WARN_ON(1);
5684                         goto out_unlock;
5685                 }
5686         }
5687
5688         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5689         btrfs_ordered_update_i_size(inode, 0, ordered);
5690         btrfs_update_inode(trans, root, inode);
5691 out_unlock:
5692         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5693                              ordered->file_offset + ordered->len - 1,
5694                              &cached_state, GFP_NOFS);
5695 out:
5696         btrfs_delalloc_release_metadata(inode, ordered->len);
5697         btrfs_end_transaction(trans, root);
5698         ordered_offset = ordered->file_offset + ordered->len;
5699         btrfs_put_ordered_extent(ordered);
5700         btrfs_put_ordered_extent(ordered);
5701
5702 out_test:
5703         /*
5704          * our bio might span multiple ordered extents.  If we haven't
5705          * completed the accounting for the whole dio, go back and try again
5706          */
5707         if (ordered_offset < dip->logical_offset + dip->bytes) {
5708                 ordered_bytes = dip->logical_offset + dip->bytes -
5709                         ordered_offset;
5710                 goto again;
5711         }
5712 out_done:
5713         bio->bi_private = dip->private;
5714
5715         kfree(dip->csums);
5716         kfree(dip);
5717         dio_end_io(bio, err);
5718 }
5719
5720 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5721                                     struct bio *bio, int mirror_num,
5722                                     unsigned long bio_flags, u64 offset)
5723 {
5724         int ret;
5725         struct btrfs_root *root = BTRFS_I(inode)->root;
5726         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5727         BUG_ON(ret);
5728         return 0;
5729 }
5730
5731 static void btrfs_end_dio_bio(struct bio *bio, int err)
5732 {
5733         struct btrfs_dio_private *dip = bio->bi_private;
5734
5735         if (err) {
5736                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5737                       "sector %#Lx len %u err no %d\n",
5738                       dip->inode->i_ino, bio->bi_rw,
5739                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5740                 dip->errors = 1;
5741
5742                 /*
5743                  * before atomic variable goto zero, we must make sure
5744                  * dip->errors is perceived to be set.
5745                  */
5746                 smp_mb__before_atomic_dec();
5747         }
5748
5749         /* if there are more bios still pending for this dio, just exit */
5750         if (!atomic_dec_and_test(&dip->pending_bios))
5751                 goto out;
5752
5753         if (dip->errors)
5754                 bio_io_error(dip->orig_bio);
5755         else {
5756                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5757                 bio_endio(dip->orig_bio, 0);
5758         }
5759 out:
5760         bio_put(bio);
5761 }
5762
5763 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5764                                        u64 first_sector, gfp_t gfp_flags)
5765 {
5766         int nr_vecs = bio_get_nr_vecs(bdev);
5767         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5768 }
5769
5770 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5771                                          int rw, u64 file_offset, int skip_sum,
5772                                          u32 *csums)
5773 {
5774         int write = rw & REQ_WRITE;
5775         struct btrfs_root *root = BTRFS_I(inode)->root;
5776         int ret;
5777
5778         bio_get(bio);
5779         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5780         if (ret)
5781                 goto err;
5782
5783         if (write && !skip_sum) {
5784                 ret = btrfs_wq_submit_bio(root->fs_info,
5785                                    inode, rw, bio, 0, 0,
5786                                    file_offset,
5787                                    __btrfs_submit_bio_start_direct_io,
5788                                    __btrfs_submit_bio_done);
5789                 goto err;
5790         } else if (!skip_sum)
5791                 btrfs_lookup_bio_sums_dio(root, inode, bio,
5792                                           file_offset, csums);
5793
5794         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5795 err:
5796         bio_put(bio);
5797         return ret;
5798 }
5799
5800 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5801                                     int skip_sum)
5802 {
5803         struct inode *inode = dip->inode;
5804         struct btrfs_root *root = BTRFS_I(inode)->root;
5805         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5806         struct bio *bio;
5807         struct bio *orig_bio = dip->orig_bio;
5808         struct bio_vec *bvec = orig_bio->bi_io_vec;
5809         u64 start_sector = orig_bio->bi_sector;
5810         u64 file_offset = dip->logical_offset;
5811         u64 submit_len = 0;
5812         u64 map_length;
5813         int nr_pages = 0;
5814         u32 *csums = dip->csums;
5815         int ret = 0;
5816
5817         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5818         if (!bio)
5819                 return -ENOMEM;
5820         bio->bi_private = dip;
5821         bio->bi_end_io = btrfs_end_dio_bio;
5822         atomic_inc(&dip->pending_bios);
5823
5824         map_length = orig_bio->bi_size;
5825         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5826                               &map_length, NULL, 0);
5827         if (ret) {
5828                 bio_put(bio);
5829                 return -EIO;
5830         }
5831
5832         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5833                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5834                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5835                                  bvec->bv_offset) < bvec->bv_len)) {
5836                         /*
5837                          * inc the count before we submit the bio so
5838                          * we know the end IO handler won't happen before
5839                          * we inc the count. Otherwise, the dip might get freed
5840                          * before we're done setting it up
5841                          */
5842                         atomic_inc(&dip->pending_bios);
5843                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5844                                                      file_offset, skip_sum,
5845                                                      csums);
5846                         if (ret) {
5847                                 bio_put(bio);
5848                                 atomic_dec(&dip->pending_bios);
5849                                 goto out_err;
5850                         }
5851
5852                         if (!skip_sum)
5853                                 csums = csums + nr_pages;
5854                         start_sector += submit_len >> 9;
5855                         file_offset += submit_len;
5856
5857                         submit_len = 0;
5858                         nr_pages = 0;
5859
5860                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5861                                                   start_sector, GFP_NOFS);
5862                         if (!bio)
5863                                 goto out_err;
5864                         bio->bi_private = dip;
5865                         bio->bi_end_io = btrfs_end_dio_bio;
5866
5867                         map_length = orig_bio->bi_size;
5868                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5869                                               &map_length, NULL, 0);
5870                         if (ret) {
5871                                 bio_put(bio);
5872                                 goto out_err;
5873                         }
5874                 } else {
5875                         submit_len += bvec->bv_len;
5876                         nr_pages ++;
5877                         bvec++;
5878                 }
5879         }
5880
5881         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5882                                      csums);
5883         if (!ret)
5884                 return 0;
5885
5886         bio_put(bio);
5887 out_err:
5888         dip->errors = 1;
5889         /*
5890          * before atomic variable goto zero, we must
5891          * make sure dip->errors is perceived to be set.
5892          */
5893         smp_mb__before_atomic_dec();
5894         if (atomic_dec_and_test(&dip->pending_bios))
5895                 bio_io_error(dip->orig_bio);
5896
5897         /* bio_end_io() will handle error, so we needn't return it */
5898         return 0;
5899 }
5900
5901 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5902                                 loff_t file_offset)
5903 {
5904         struct btrfs_root *root = BTRFS_I(inode)->root;
5905         struct btrfs_dio_private *dip;
5906         struct bio_vec *bvec = bio->bi_io_vec;
5907         int skip_sum;
5908         int write = rw & REQ_WRITE;
5909         int ret = 0;
5910
5911         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5912
5913         dip = kmalloc(sizeof(*dip), GFP_NOFS);
5914         if (!dip) {
5915                 ret = -ENOMEM;
5916                 goto free_ordered;
5917         }
5918         dip->csums = NULL;
5919
5920         if (!skip_sum) {
5921                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5922                 if (!dip->csums) {
5923                         ret = -ENOMEM;
5924                         goto free_ordered;
5925                 }
5926         }
5927
5928         dip->private = bio->bi_private;
5929         dip->inode = inode;
5930         dip->logical_offset = file_offset;
5931
5932         dip->bytes = 0;
5933         do {
5934                 dip->bytes += bvec->bv_len;
5935                 bvec++;
5936         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5937
5938         dip->disk_bytenr = (u64)bio->bi_sector << 9;
5939         bio->bi_private = dip;
5940         dip->errors = 0;
5941         dip->orig_bio = bio;
5942         atomic_set(&dip->pending_bios, 0);
5943
5944         if (write)
5945                 bio->bi_end_io = btrfs_endio_direct_write;
5946         else
5947                 bio->bi_end_io = btrfs_endio_direct_read;
5948
5949         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5950         if (!ret)
5951                 return;
5952 free_ordered:
5953         /*
5954          * If this is a write, we need to clean up the reserved space and kill
5955          * the ordered extent.
5956          */
5957         if (write) {
5958                 struct btrfs_ordered_extent *ordered;
5959                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5960                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5961                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5962                         btrfs_free_reserved_extent(root, ordered->start,
5963                                                    ordered->disk_len);
5964                 btrfs_put_ordered_extent(ordered);
5965                 btrfs_put_ordered_extent(ordered);
5966         }
5967         bio_endio(bio, ret);
5968 }
5969
5970 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5971                         const struct iovec *iov, loff_t offset,
5972                         unsigned long nr_segs)
5973 {
5974         int seg;
5975         size_t size;
5976         unsigned long addr;
5977         unsigned blocksize_mask = root->sectorsize - 1;
5978         ssize_t retval = -EINVAL;
5979         loff_t end = offset;
5980
5981         if (offset & blocksize_mask)
5982                 goto out;
5983
5984         /* Check the memory alignment.  Blocks cannot straddle pages */
5985         for (seg = 0; seg < nr_segs; seg++) {
5986                 addr = (unsigned long)iov[seg].iov_base;
5987                 size = iov[seg].iov_len;
5988                 end += size;
5989                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
5990                         goto out;
5991         }
5992         retval = 0;
5993 out:
5994         return retval;
5995 }
5996 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5997                         const struct iovec *iov, loff_t offset,
5998                         unsigned long nr_segs)
5999 {
6000         struct file *file = iocb->ki_filp;
6001         struct inode *inode = file->f_mapping->host;
6002         struct btrfs_ordered_extent *ordered;
6003         struct extent_state *cached_state = NULL;
6004         u64 lockstart, lockend;
6005         ssize_t ret;
6006         int writing = rw & WRITE;
6007         int write_bits = 0;
6008         size_t count = iov_length(iov, nr_segs);
6009
6010         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6011                             offset, nr_segs)) {
6012                 return 0;
6013         }
6014
6015         lockstart = offset;
6016         lockend = offset + count - 1;
6017
6018         if (writing) {
6019                 ret = btrfs_delalloc_reserve_space(inode, count);
6020                 if (ret)
6021                         goto out;
6022         }
6023
6024         while (1) {
6025                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6026                                  0, &cached_state, GFP_NOFS);
6027                 /*
6028                  * We're concerned with the entire range that we're going to be
6029                  * doing DIO to, so we need to make sure theres no ordered
6030                  * extents in this range.
6031                  */
6032                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6033                                                      lockend - lockstart + 1);
6034                 if (!ordered)
6035                         break;
6036                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6037                                      &cached_state, GFP_NOFS);
6038                 btrfs_start_ordered_extent(inode, ordered, 1);
6039                 btrfs_put_ordered_extent(ordered);
6040                 cond_resched();
6041         }
6042
6043         /*
6044          * we don't use btrfs_set_extent_delalloc because we don't want
6045          * the dirty or uptodate bits
6046          */
6047         if (writing) {
6048                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6049                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6050                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6051                                      GFP_NOFS);
6052                 if (ret) {
6053                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6054                                          lockend, EXTENT_LOCKED | write_bits,
6055                                          1, 0, &cached_state, GFP_NOFS);
6056                         goto out;
6057                 }
6058         }
6059
6060         free_extent_state(cached_state);
6061         cached_state = NULL;
6062
6063         ret = __blockdev_direct_IO(rw, iocb, inode,
6064                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6065                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6066                    btrfs_submit_direct, 0);
6067
6068         if (ret < 0 && ret != -EIOCBQUEUED) {
6069                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6070                               offset + iov_length(iov, nr_segs) - 1,
6071                               EXTENT_LOCKED | write_bits, 1, 0,
6072                               &cached_state, GFP_NOFS);
6073         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6074                 /*
6075                  * We're falling back to buffered, unlock the section we didn't
6076                  * do IO on.
6077                  */
6078                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6079                               offset + iov_length(iov, nr_segs) - 1,
6080                               EXTENT_LOCKED | write_bits, 1, 0,
6081                               &cached_state, GFP_NOFS);
6082         }
6083 out:
6084         free_extent_state(cached_state);
6085         return ret;
6086 }
6087
6088 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6089                 __u64 start, __u64 len)
6090 {
6091         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6092 }
6093
6094 int btrfs_readpage(struct file *file, struct page *page)
6095 {
6096         struct extent_io_tree *tree;
6097         tree = &BTRFS_I(page->mapping->host)->io_tree;
6098         return extent_read_full_page(tree, page, btrfs_get_extent);
6099 }
6100
6101 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6102 {
6103         struct extent_io_tree *tree;
6104
6105
6106         if (current->flags & PF_MEMALLOC) {
6107                 redirty_page_for_writepage(wbc, page);
6108                 unlock_page(page);
6109                 return 0;
6110         }
6111         tree = &BTRFS_I(page->mapping->host)->io_tree;
6112         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6113 }
6114
6115 int btrfs_writepages(struct address_space *mapping,
6116                      struct writeback_control *wbc)
6117 {
6118         struct extent_io_tree *tree;
6119
6120         tree = &BTRFS_I(mapping->host)->io_tree;
6121         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6122 }
6123
6124 static int
6125 btrfs_readpages(struct file *file, struct address_space *mapping,
6126                 struct list_head *pages, unsigned nr_pages)
6127 {
6128         struct extent_io_tree *tree;
6129         tree = &BTRFS_I(mapping->host)->io_tree;
6130         return extent_readpages(tree, mapping, pages, nr_pages,
6131                                 btrfs_get_extent);
6132 }
6133 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6134 {
6135         struct extent_io_tree *tree;
6136         struct extent_map_tree *map;
6137         int ret;
6138
6139         tree = &BTRFS_I(page->mapping->host)->io_tree;
6140         map = &BTRFS_I(page->mapping->host)->extent_tree;
6141         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6142         if (ret == 1) {
6143                 ClearPagePrivate(page);
6144                 set_page_private(page, 0);
6145                 page_cache_release(page);
6146         }
6147         return ret;
6148 }
6149
6150 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6151 {
6152         if (PageWriteback(page) || PageDirty(page))
6153                 return 0;
6154         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6155 }
6156
6157 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6158 {
6159         struct extent_io_tree *tree;
6160         struct btrfs_ordered_extent *ordered;
6161         struct extent_state *cached_state = NULL;
6162         u64 page_start = page_offset(page);
6163         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6164
6165
6166         /*
6167          * we have the page locked, so new writeback can't start,
6168          * and the dirty bit won't be cleared while we are here.
6169          *
6170          * Wait for IO on this page so that we can safely clear
6171          * the PagePrivate2 bit and do ordered accounting
6172          */
6173         wait_on_page_writeback(page);
6174
6175         tree = &BTRFS_I(page->mapping->host)->io_tree;
6176         if (offset) {
6177                 btrfs_releasepage(page, GFP_NOFS);
6178                 return;
6179         }
6180         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6181                          GFP_NOFS);
6182         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6183                                            page_offset(page));
6184         if (ordered) {
6185                 /*
6186                  * IO on this page will never be started, so we need
6187                  * to account for any ordered extents now
6188                  */
6189                 clear_extent_bit(tree, page_start, page_end,
6190                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6191                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6192                                  &cached_state, GFP_NOFS);
6193                 /*
6194                  * whoever cleared the private bit is responsible
6195                  * for the finish_ordered_io
6196                  */
6197                 if (TestClearPagePrivate2(page)) {
6198                         btrfs_finish_ordered_io(page->mapping->host,
6199                                                 page_start, page_end);
6200                 }
6201                 btrfs_put_ordered_extent(ordered);
6202                 cached_state = NULL;
6203                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6204                                  GFP_NOFS);
6205         }
6206         clear_extent_bit(tree, page_start, page_end,
6207                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6208                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6209         __btrfs_releasepage(page, GFP_NOFS);
6210
6211         ClearPageChecked(page);
6212         if (PagePrivate(page)) {
6213                 ClearPagePrivate(page);
6214                 set_page_private(page, 0);
6215                 page_cache_release(page);
6216         }
6217 }
6218
6219 /*
6220  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6221  * called from a page fault handler when a page is first dirtied. Hence we must
6222  * be careful to check for EOF conditions here. We set the page up correctly
6223  * for a written page which means we get ENOSPC checking when writing into
6224  * holes and correct delalloc and unwritten extent mapping on filesystems that
6225  * support these features.
6226  *
6227  * We are not allowed to take the i_mutex here so we have to play games to
6228  * protect against truncate races as the page could now be beyond EOF.  Because
6229  * vmtruncate() writes the inode size before removing pages, once we have the
6230  * page lock we can determine safely if the page is beyond EOF. If it is not
6231  * beyond EOF, then the page is guaranteed safe against truncation until we
6232  * unlock the page.
6233  */
6234 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6235 {
6236         struct page *page = vmf->page;
6237         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6238         struct btrfs_root *root = BTRFS_I(inode)->root;
6239         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6240         struct btrfs_ordered_extent *ordered;
6241         struct extent_state *cached_state = NULL;
6242         char *kaddr;
6243         unsigned long zero_start;
6244         loff_t size;
6245         int ret;
6246         u64 page_start;
6247         u64 page_end;
6248
6249         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6250         if (ret) {
6251                 if (ret == -ENOMEM)
6252                         ret = VM_FAULT_OOM;
6253                 else /* -ENOSPC, -EIO, etc */
6254                         ret = VM_FAULT_SIGBUS;
6255                 goto out;
6256         }
6257
6258         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6259 again:
6260         lock_page(page);
6261         size = i_size_read(inode);
6262         page_start = page_offset(page);
6263         page_end = page_start + PAGE_CACHE_SIZE - 1;
6264
6265         if ((page->mapping != inode->i_mapping) ||
6266             (page_start >= size)) {
6267                 /* page got truncated out from underneath us */
6268                 goto out_unlock;
6269         }
6270         wait_on_page_writeback(page);
6271
6272         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6273                          GFP_NOFS);
6274         set_page_extent_mapped(page);
6275
6276         /*
6277          * we can't set the delalloc bits if there are pending ordered
6278          * extents.  Drop our locks and wait for them to finish
6279          */
6280         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6281         if (ordered) {
6282                 unlock_extent_cached(io_tree, page_start, page_end,
6283                                      &cached_state, GFP_NOFS);
6284                 unlock_page(page);
6285                 btrfs_start_ordered_extent(inode, ordered, 1);
6286                 btrfs_put_ordered_extent(ordered);
6287                 goto again;
6288         }
6289
6290         /*
6291          * XXX - page_mkwrite gets called every time the page is dirtied, even
6292          * if it was already dirty, so for space accounting reasons we need to
6293          * clear any delalloc bits for the range we are fixing to save.  There
6294          * is probably a better way to do this, but for now keep consistent with
6295          * prepare_pages in the normal write path.
6296          */
6297         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6298                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6299                           0, 0, &cached_state, GFP_NOFS);
6300
6301         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6302                                         &cached_state);
6303         if (ret) {
6304                 unlock_extent_cached(io_tree, page_start, page_end,
6305                                      &cached_state, GFP_NOFS);
6306                 ret = VM_FAULT_SIGBUS;
6307                 goto out_unlock;
6308         }
6309         ret = 0;
6310
6311         /* page is wholly or partially inside EOF */
6312         if (page_start + PAGE_CACHE_SIZE > size)
6313                 zero_start = size & ~PAGE_CACHE_MASK;
6314         else
6315                 zero_start = PAGE_CACHE_SIZE;
6316
6317         if (zero_start != PAGE_CACHE_SIZE) {
6318                 kaddr = kmap(page);
6319                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6320                 flush_dcache_page(page);
6321                 kunmap(page);
6322         }
6323         ClearPageChecked(page);
6324         set_page_dirty(page);
6325         SetPageUptodate(page);
6326
6327         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6328         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6329
6330         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6331
6332 out_unlock:
6333         if (!ret)
6334                 return VM_FAULT_LOCKED;
6335         unlock_page(page);
6336         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6337 out:
6338         return ret;
6339 }
6340
6341 static void btrfs_truncate(struct inode *inode)
6342 {
6343         struct btrfs_root *root = BTRFS_I(inode)->root;
6344         int ret;
6345         struct btrfs_trans_handle *trans;
6346         unsigned long nr;
6347         u64 mask = root->sectorsize - 1;
6348
6349         if (!S_ISREG(inode->i_mode)) {
6350                 WARN_ON(1);
6351                 return;
6352         }
6353
6354         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6355         if (ret)
6356                 return;
6357
6358         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6359         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6360
6361         trans = btrfs_start_transaction(root, 0);
6362         BUG_ON(IS_ERR(trans));
6363         btrfs_set_trans_block_group(trans, inode);
6364         trans->block_rsv = root->orphan_block_rsv;
6365
6366         /*
6367          * setattr is responsible for setting the ordered_data_close flag,
6368          * but that is only tested during the last file release.  That
6369          * could happen well after the next commit, leaving a great big
6370          * window where new writes may get lost if someone chooses to write
6371          * to this file after truncating to zero
6372          *
6373          * The inode doesn't have any dirty data here, and so if we commit
6374          * this is a noop.  If someone immediately starts writing to the inode
6375          * it is very likely we'll catch some of their writes in this
6376          * transaction, and the commit will find this file on the ordered
6377          * data list with good things to send down.
6378          *
6379          * This is a best effort solution, there is still a window where
6380          * using truncate to replace the contents of the file will
6381          * end up with a zero length file after a crash.
6382          */
6383         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6384                 btrfs_add_ordered_operation(trans, root, inode);
6385
6386         while (1) {
6387                 if (!trans) {
6388                         trans = btrfs_start_transaction(root, 0);
6389                         BUG_ON(IS_ERR(trans));
6390                         btrfs_set_trans_block_group(trans, inode);
6391                         trans->block_rsv = root->orphan_block_rsv;
6392                 }
6393
6394                 ret = btrfs_block_rsv_check(trans, root,
6395                                             root->orphan_block_rsv, 0, 5);
6396                 if (ret) {
6397                         BUG_ON(ret != -EAGAIN);
6398                         ret = btrfs_commit_transaction(trans, root);
6399                         BUG_ON(ret);
6400                         trans = NULL;
6401                         continue;
6402                 }
6403
6404                 ret = btrfs_truncate_inode_items(trans, root, inode,
6405                                                  inode->i_size,
6406                                                  BTRFS_EXTENT_DATA_KEY);
6407                 if (ret != -EAGAIN)
6408                         break;
6409
6410                 ret = btrfs_update_inode(trans, root, inode);
6411                 BUG_ON(ret);
6412
6413                 nr = trans->blocks_used;
6414                 btrfs_end_transaction(trans, root);
6415                 trans = NULL;
6416                 btrfs_btree_balance_dirty(root, nr);
6417         }
6418
6419         if (ret == 0 && inode->i_nlink > 0) {
6420                 ret = btrfs_orphan_del(trans, inode);
6421                 BUG_ON(ret);
6422         }
6423
6424         ret = btrfs_update_inode(trans, root, inode);
6425         BUG_ON(ret);
6426
6427         nr = trans->blocks_used;
6428         ret = btrfs_end_transaction_throttle(trans, root);
6429         BUG_ON(ret);
6430         btrfs_btree_balance_dirty(root, nr);
6431 }
6432
6433 /*
6434  * create a new subvolume directory/inode (helper for the ioctl).
6435  */
6436 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6437                              struct btrfs_root *new_root,
6438                              u64 new_dirid, u64 alloc_hint)
6439 {
6440         struct inode *inode;
6441         int err;
6442         u64 index = 0;
6443
6444         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6445                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6446         if (IS_ERR(inode))
6447                 return PTR_ERR(inode);
6448         inode->i_op = &btrfs_dir_inode_operations;
6449         inode->i_fop = &btrfs_dir_file_operations;
6450
6451         inode->i_nlink = 1;
6452         btrfs_i_size_write(inode, 0);
6453
6454         err = btrfs_update_inode(trans, new_root, inode);
6455         BUG_ON(err);
6456
6457         iput(inode);
6458         return 0;
6459 }
6460
6461 /* helper function for file defrag and space balancing.  This
6462  * forces readahead on a given range of bytes in an inode
6463  */
6464 unsigned long btrfs_force_ra(struct address_space *mapping,
6465                               struct file_ra_state *ra, struct file *file,
6466                               pgoff_t offset, pgoff_t last_index)
6467 {
6468         pgoff_t req_size = last_index - offset + 1;
6469
6470         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6471         return offset + req_size;
6472 }
6473
6474 struct inode *btrfs_alloc_inode(struct super_block *sb)
6475 {
6476         struct btrfs_inode *ei;
6477         struct inode *inode;
6478
6479         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6480         if (!ei)
6481                 return NULL;
6482
6483         ei->root = NULL;
6484         ei->space_info = NULL;
6485         ei->generation = 0;
6486         ei->sequence = 0;
6487         ei->last_trans = 0;
6488         ei->last_sub_trans = 0;
6489         ei->logged_trans = 0;
6490         ei->delalloc_bytes = 0;
6491         ei->reserved_bytes = 0;
6492         ei->disk_i_size = 0;
6493         ei->flags = 0;
6494         ei->index_cnt = (u64)-1;
6495         ei->last_unlink_trans = 0;
6496
6497         spin_lock_init(&ei->accounting_lock);
6498         atomic_set(&ei->outstanding_extents, 0);
6499         ei->reserved_extents = 0;
6500
6501         ei->ordered_data_close = 0;
6502         ei->orphan_meta_reserved = 0;
6503         ei->dummy_inode = 0;
6504         ei->force_compress = BTRFS_COMPRESS_NONE;
6505
6506         inode = &ei->vfs_inode;
6507         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6508         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6509         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6510         mutex_init(&ei->log_mutex);
6511         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6512         INIT_LIST_HEAD(&ei->i_orphan);
6513         INIT_LIST_HEAD(&ei->delalloc_inodes);
6514         INIT_LIST_HEAD(&ei->ordered_operations);
6515         RB_CLEAR_NODE(&ei->rb_node);
6516
6517         return inode;
6518 }
6519
6520 static void btrfs_i_callback(struct rcu_head *head)
6521 {
6522         struct inode *inode = container_of(head, struct inode, i_rcu);
6523         INIT_LIST_HEAD(&inode->i_dentry);
6524         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6525 }
6526
6527 void btrfs_destroy_inode(struct inode *inode)
6528 {
6529         struct btrfs_ordered_extent *ordered;
6530         struct btrfs_root *root = BTRFS_I(inode)->root;
6531
6532         WARN_ON(!list_empty(&inode->i_dentry));
6533         WARN_ON(inode->i_data.nrpages);
6534         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6535         WARN_ON(BTRFS_I(inode)->reserved_extents);
6536
6537         /*
6538          * This can happen where we create an inode, but somebody else also
6539          * created the same inode and we need to destroy the one we already
6540          * created.
6541          */
6542         if (!root)
6543                 goto free;
6544
6545         /*
6546          * Make sure we're properly removed from the ordered operation
6547          * lists.
6548          */
6549         smp_mb();
6550         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6551                 spin_lock(&root->fs_info->ordered_extent_lock);
6552                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6553                 spin_unlock(&root->fs_info->ordered_extent_lock);
6554         }
6555
6556         if (root == root->fs_info->tree_root) {
6557                 struct btrfs_block_group_cache *block_group;
6558
6559                 block_group = btrfs_lookup_block_group(root->fs_info,
6560                                                 BTRFS_I(inode)->block_group);
6561                 if (block_group && block_group->inode == inode) {
6562                         spin_lock(&block_group->lock);
6563                         block_group->inode = NULL;
6564                         spin_unlock(&block_group->lock);
6565                         btrfs_put_block_group(block_group);
6566                 } else if (block_group) {
6567                         btrfs_put_block_group(block_group);
6568                 }
6569         }
6570
6571         spin_lock(&root->orphan_lock);
6572         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6573                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6574                        inode->i_ino);
6575                 list_del_init(&BTRFS_I(inode)->i_orphan);
6576         }
6577         spin_unlock(&root->orphan_lock);
6578
6579         while (1) {
6580                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6581                 if (!ordered)
6582                         break;
6583                 else {
6584                         printk(KERN_ERR "btrfs found ordered "
6585                                "extent %llu %llu on inode cleanup\n",
6586                                (unsigned long long)ordered->file_offset,
6587                                (unsigned long long)ordered->len);
6588                         btrfs_remove_ordered_extent(inode, ordered);
6589                         btrfs_put_ordered_extent(ordered);
6590                         btrfs_put_ordered_extent(ordered);
6591                 }
6592         }
6593         inode_tree_del(inode);
6594         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6595 free:
6596         call_rcu(&inode->i_rcu, btrfs_i_callback);
6597 }
6598
6599 int btrfs_drop_inode(struct inode *inode)
6600 {
6601         struct btrfs_root *root = BTRFS_I(inode)->root;
6602
6603         if (btrfs_root_refs(&root->root_item) == 0 &&
6604             root != root->fs_info->tree_root)
6605                 return 1;
6606         else
6607                 return generic_drop_inode(inode);
6608 }
6609
6610 static void init_once(void *foo)
6611 {
6612         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6613
6614         inode_init_once(&ei->vfs_inode);
6615 }
6616
6617 void btrfs_destroy_cachep(void)
6618 {
6619         if (btrfs_inode_cachep)
6620                 kmem_cache_destroy(btrfs_inode_cachep);
6621         if (btrfs_trans_handle_cachep)
6622                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6623         if (btrfs_transaction_cachep)
6624                 kmem_cache_destroy(btrfs_transaction_cachep);
6625         if (btrfs_path_cachep)
6626                 kmem_cache_destroy(btrfs_path_cachep);
6627 }
6628
6629 int btrfs_init_cachep(void)
6630 {
6631         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6632                         sizeof(struct btrfs_inode), 0,
6633                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6634         if (!btrfs_inode_cachep)
6635                 goto fail;
6636
6637         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6638                         sizeof(struct btrfs_trans_handle), 0,
6639                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6640         if (!btrfs_trans_handle_cachep)
6641                 goto fail;
6642
6643         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6644                         sizeof(struct btrfs_transaction), 0,
6645                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6646         if (!btrfs_transaction_cachep)
6647                 goto fail;
6648
6649         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6650                         sizeof(struct btrfs_path), 0,
6651                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6652         if (!btrfs_path_cachep)
6653                 goto fail;
6654
6655         return 0;
6656 fail:
6657         btrfs_destroy_cachep();
6658         return -ENOMEM;
6659 }
6660
6661 static int btrfs_getattr(struct vfsmount *mnt,
6662                          struct dentry *dentry, struct kstat *stat)
6663 {
6664         struct inode *inode = dentry->d_inode;
6665         generic_fillattr(inode, stat);
6666         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6667         stat->blksize = PAGE_CACHE_SIZE;
6668         stat->blocks = (inode_get_bytes(inode) +
6669                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6670         return 0;
6671 }
6672
6673 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6674                            struct inode *new_dir, struct dentry *new_dentry)
6675 {
6676         struct btrfs_trans_handle *trans;
6677         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6678         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6679         struct inode *new_inode = new_dentry->d_inode;
6680         struct inode *old_inode = old_dentry->d_inode;
6681         struct timespec ctime = CURRENT_TIME;
6682         u64 index = 0;
6683         u64 root_objectid;
6684         int ret;
6685
6686         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6687                 return -EPERM;
6688
6689         /* we only allow rename subvolume link between subvolumes */
6690         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6691                 return -EXDEV;
6692
6693         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6694             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6695                 return -ENOTEMPTY;
6696
6697         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6698             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6699                 return -ENOTEMPTY;
6700         /*
6701          * we're using rename to replace one file with another.
6702          * and the replacement file is large.  Start IO on it now so
6703          * we don't add too much work to the end of the transaction
6704          */
6705         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6706             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6707                 filemap_flush(old_inode->i_mapping);
6708
6709         /* close the racy window with snapshot create/destroy ioctl */
6710         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6711                 down_read(&root->fs_info->subvol_sem);
6712         /*
6713          * We want to reserve the absolute worst case amount of items.  So if
6714          * both inodes are subvols and we need to unlink them then that would
6715          * require 4 item modifications, but if they are both normal inodes it
6716          * would require 5 item modifications, so we'll assume their normal
6717          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6718          * should cover the worst case number of items we'll modify.
6719          */
6720         trans = btrfs_start_transaction(root, 20);
6721         if (IS_ERR(trans))
6722                 return PTR_ERR(trans);
6723
6724         btrfs_set_trans_block_group(trans, new_dir);
6725
6726         if (dest != root)
6727                 btrfs_record_root_in_trans(trans, dest);
6728
6729         ret = btrfs_set_inode_index(new_dir, &index);
6730         if (ret)
6731                 goto out_fail;
6732
6733         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6734                 /* force full log commit if subvolume involved. */
6735                 root->fs_info->last_trans_log_full_commit = trans->transid;
6736         } else {
6737                 ret = btrfs_insert_inode_ref(trans, dest,
6738                                              new_dentry->d_name.name,
6739                                              new_dentry->d_name.len,
6740                                              old_inode->i_ino,
6741                                              new_dir->i_ino, index);
6742                 if (ret)
6743                         goto out_fail;
6744                 /*
6745                  * this is an ugly little race, but the rename is required
6746                  * to make sure that if we crash, the inode is either at the
6747                  * old name or the new one.  pinning the log transaction lets
6748                  * us make sure we don't allow a log commit to come in after
6749                  * we unlink the name but before we add the new name back in.
6750                  */
6751                 btrfs_pin_log_trans(root);
6752         }
6753         /*
6754          * make sure the inode gets flushed if it is replacing
6755          * something.
6756          */
6757         if (new_inode && new_inode->i_size &&
6758             old_inode && S_ISREG(old_inode->i_mode)) {
6759                 btrfs_add_ordered_operation(trans, root, old_inode);
6760         }
6761
6762         old_dir->i_ctime = old_dir->i_mtime = ctime;
6763         new_dir->i_ctime = new_dir->i_mtime = ctime;
6764         old_inode->i_ctime = ctime;
6765
6766         if (old_dentry->d_parent != new_dentry->d_parent)
6767                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6768
6769         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6770                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6771                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6772                                         old_dentry->d_name.name,
6773                                         old_dentry->d_name.len);
6774         } else {
6775                 btrfs_inc_nlink(old_dentry->d_inode);
6776                 ret = btrfs_unlink_inode(trans, root, old_dir,
6777                                          old_dentry->d_inode,
6778                                          old_dentry->d_name.name,
6779                                          old_dentry->d_name.len);
6780         }
6781         BUG_ON(ret);
6782
6783         if (new_inode) {
6784                 new_inode->i_ctime = CURRENT_TIME;
6785                 if (unlikely(new_inode->i_ino ==
6786                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6787                         root_objectid = BTRFS_I(new_inode)->location.objectid;
6788                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
6789                                                 root_objectid,
6790                                                 new_dentry->d_name.name,
6791                                                 new_dentry->d_name.len);
6792                         BUG_ON(new_inode->i_nlink == 0);
6793                 } else {
6794                         ret = btrfs_unlink_inode(trans, dest, new_dir,
6795                                                  new_dentry->d_inode,
6796                                                  new_dentry->d_name.name,
6797                                                  new_dentry->d_name.len);
6798                 }
6799                 BUG_ON(ret);
6800                 if (new_inode->i_nlink == 0) {
6801                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6802                         BUG_ON(ret);
6803                 }
6804         }
6805
6806         ret = btrfs_add_link(trans, new_dir, old_inode,
6807                              new_dentry->d_name.name,
6808                              new_dentry->d_name.len, 0, index);
6809         BUG_ON(ret);
6810
6811         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6812                 struct dentry *parent = dget_parent(new_dentry);
6813                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6814                 dput(parent);
6815                 btrfs_end_log_trans(root);
6816         }
6817 out_fail:
6818         btrfs_end_transaction_throttle(trans, root);
6819
6820         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6821                 up_read(&root->fs_info->subvol_sem);
6822
6823         return ret;
6824 }
6825
6826 /*
6827  * some fairly slow code that needs optimization. This walks the list
6828  * of all the inodes with pending delalloc and forces them to disk.
6829  */
6830 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6831 {
6832         struct list_head *head = &root->fs_info->delalloc_inodes;
6833         struct btrfs_inode *binode;
6834         struct inode *inode;
6835
6836         if (root->fs_info->sb->s_flags & MS_RDONLY)
6837                 return -EROFS;
6838
6839         spin_lock(&root->fs_info->delalloc_lock);
6840         while (!list_empty(head)) {
6841                 binode = list_entry(head->next, struct btrfs_inode,
6842                                     delalloc_inodes);
6843                 inode = igrab(&binode->vfs_inode);
6844                 if (!inode)
6845                         list_del_init(&binode->delalloc_inodes);
6846                 spin_unlock(&root->fs_info->delalloc_lock);
6847                 if (inode) {
6848                         filemap_flush(inode->i_mapping);
6849                         if (delay_iput)
6850                                 btrfs_add_delayed_iput(inode);
6851                         else
6852                                 iput(inode);
6853                 }
6854                 cond_resched();
6855                 spin_lock(&root->fs_info->delalloc_lock);
6856         }
6857         spin_unlock(&root->fs_info->delalloc_lock);
6858
6859         /* the filemap_flush will queue IO into the worker threads, but
6860          * we have to make sure the IO is actually started and that
6861          * ordered extents get created before we return
6862          */
6863         atomic_inc(&root->fs_info->async_submit_draining);
6864         while (atomic_read(&root->fs_info->nr_async_submits) ||
6865               atomic_read(&root->fs_info->async_delalloc_pages)) {
6866                 wait_event(root->fs_info->async_submit_wait,
6867                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6868                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6869         }
6870         atomic_dec(&root->fs_info->async_submit_draining);
6871         return 0;
6872 }
6873
6874 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6875                                    int sync)
6876 {
6877         struct btrfs_inode *binode;
6878         struct inode *inode = NULL;
6879
6880         spin_lock(&root->fs_info->delalloc_lock);
6881         while (!list_empty(&root->fs_info->delalloc_inodes)) {
6882                 binode = list_entry(root->fs_info->delalloc_inodes.next,
6883                                     struct btrfs_inode, delalloc_inodes);
6884                 inode = igrab(&binode->vfs_inode);
6885                 if (inode) {
6886                         list_move_tail(&binode->delalloc_inodes,
6887                                        &root->fs_info->delalloc_inodes);
6888                         break;
6889                 }
6890
6891                 list_del_init(&binode->delalloc_inodes);
6892                 cond_resched_lock(&root->fs_info->delalloc_lock);
6893         }
6894         spin_unlock(&root->fs_info->delalloc_lock);
6895
6896         if (inode) {
6897                 if (sync) {
6898                         filemap_write_and_wait(inode->i_mapping);
6899                         /*
6900                          * We have to do this because compression doesn't
6901                          * actually set PG_writeback until it submits the pages
6902                          * for IO, which happens in an async thread, so we could
6903                          * race and not actually wait for any writeback pages
6904                          * because they've not been submitted yet.  Technically
6905                          * this could still be the case for the ordered stuff
6906                          * since the async thread may not have started to do its
6907                          * work yet.  If this becomes the case then we need to
6908                          * figure out a way to make sure that in writepage we
6909                          * wait for any async pages to be submitted before
6910                          * returning so that fdatawait does what its supposed to
6911                          * do.
6912                          */
6913                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
6914                 } else {
6915                         filemap_flush(inode->i_mapping);
6916                 }
6917                 if (delay_iput)
6918                         btrfs_add_delayed_iput(inode);
6919                 else
6920                         iput(inode);
6921                 return 1;
6922         }
6923         return 0;
6924 }
6925
6926 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6927                          const char *symname)
6928 {
6929         struct btrfs_trans_handle *trans;
6930         struct btrfs_root *root = BTRFS_I(dir)->root;
6931         struct btrfs_path *path;
6932         struct btrfs_key key;
6933         struct inode *inode = NULL;
6934         int err;
6935         int drop_inode = 0;
6936         u64 objectid;
6937         u64 index = 0 ;
6938         int name_len;
6939         int datasize;
6940         unsigned long ptr;
6941         struct btrfs_file_extent_item *ei;
6942         struct extent_buffer *leaf;
6943         unsigned long nr = 0;
6944
6945         name_len = strlen(symname) + 1;
6946         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6947                 return -ENAMETOOLONG;
6948
6949         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6950         if (err)
6951                 return err;
6952         /*
6953          * 2 items for inode item and ref
6954          * 2 items for dir items
6955          * 1 item for xattr if selinux is on
6956          */
6957         trans = btrfs_start_transaction(root, 5);
6958         if (IS_ERR(trans))
6959                 return PTR_ERR(trans);
6960
6961         btrfs_set_trans_block_group(trans, dir);
6962
6963         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6964                                 dentry->d_name.len, dir->i_ino, objectid,
6965                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6966                                 &index);
6967         err = PTR_ERR(inode);
6968         if (IS_ERR(inode))
6969                 goto out_unlock;
6970
6971         err = btrfs_init_inode_security(trans, inode, dir);
6972         if (err) {
6973                 drop_inode = 1;
6974                 goto out_unlock;
6975         }
6976
6977         btrfs_set_trans_block_group(trans, inode);
6978         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6979         if (err)
6980                 drop_inode = 1;
6981         else {
6982                 inode->i_mapping->a_ops = &btrfs_aops;
6983                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6984                 inode->i_fop = &btrfs_file_operations;
6985                 inode->i_op = &btrfs_file_inode_operations;
6986                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6987         }
6988         btrfs_update_inode_block_group(trans, inode);
6989         btrfs_update_inode_block_group(trans, dir);
6990         if (drop_inode)
6991                 goto out_unlock;
6992
6993         path = btrfs_alloc_path();
6994         BUG_ON(!path);
6995         key.objectid = inode->i_ino;
6996         key.offset = 0;
6997         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6998         datasize = btrfs_file_extent_calc_inline_size(name_len);
6999         err = btrfs_insert_empty_item(trans, root, path, &key,
7000                                       datasize);
7001         if (err) {
7002                 drop_inode = 1;
7003                 goto out_unlock;
7004         }
7005         leaf = path->nodes[0];
7006         ei = btrfs_item_ptr(leaf, path->slots[0],
7007                             struct btrfs_file_extent_item);
7008         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7009         btrfs_set_file_extent_type(leaf, ei,
7010                                    BTRFS_FILE_EXTENT_INLINE);
7011         btrfs_set_file_extent_encryption(leaf, ei, 0);
7012         btrfs_set_file_extent_compression(leaf, ei, 0);
7013         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7014         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7015
7016         ptr = btrfs_file_extent_inline_start(ei);
7017         write_extent_buffer(leaf, symname, ptr, name_len);
7018         btrfs_mark_buffer_dirty(leaf);
7019         btrfs_free_path(path);
7020
7021         inode->i_op = &btrfs_symlink_inode_operations;
7022         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7023         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7024         inode_set_bytes(inode, name_len);
7025         btrfs_i_size_write(inode, name_len - 1);
7026         err = btrfs_update_inode(trans, root, inode);
7027         if (err)
7028                 drop_inode = 1;
7029
7030 out_unlock:
7031         nr = trans->blocks_used;
7032         btrfs_end_transaction_throttle(trans, root);
7033         if (drop_inode) {
7034                 inode_dec_link_count(inode);
7035                 iput(inode);
7036         }
7037         btrfs_btree_balance_dirty(root, nr);
7038         return err;
7039 }
7040
7041 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7042                                        u64 start, u64 num_bytes, u64 min_size,
7043                                        loff_t actual_len, u64 *alloc_hint,
7044                                        struct btrfs_trans_handle *trans)
7045 {
7046         struct btrfs_root *root = BTRFS_I(inode)->root;
7047         struct btrfs_key ins;
7048         u64 cur_offset = start;
7049         u64 i_size;
7050         int ret = 0;
7051         bool own_trans = true;
7052
7053         if (trans)
7054                 own_trans = false;
7055         while (num_bytes > 0) {
7056                 if (own_trans) {
7057                         trans = btrfs_start_transaction(root, 3);
7058                         if (IS_ERR(trans)) {
7059                                 ret = PTR_ERR(trans);
7060                                 break;
7061                         }
7062                 }
7063
7064                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7065                                            0, *alloc_hint, (u64)-1, &ins, 1);
7066                 if (ret) {
7067                         if (own_trans)
7068                                 btrfs_end_transaction(trans, root);
7069                         break;
7070                 }
7071
7072                 ret = insert_reserved_file_extent(trans, inode,
7073                                                   cur_offset, ins.objectid,
7074                                                   ins.offset, ins.offset,
7075                                                   ins.offset, 0, 0, 0,
7076                                                   BTRFS_FILE_EXTENT_PREALLOC);
7077                 BUG_ON(ret);
7078                 btrfs_drop_extent_cache(inode, cur_offset,
7079                                         cur_offset + ins.offset -1, 0);
7080
7081                 num_bytes -= ins.offset;
7082                 cur_offset += ins.offset;
7083                 *alloc_hint = ins.objectid + ins.offset;
7084
7085                 inode->i_ctime = CURRENT_TIME;
7086                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7087                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7088                     (actual_len > inode->i_size) &&
7089                     (cur_offset > inode->i_size)) {
7090                         if (cur_offset > actual_len)
7091                                 i_size = actual_len;
7092                         else
7093                                 i_size = cur_offset;
7094                         i_size_write(inode, i_size);
7095                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7096                 }
7097
7098                 ret = btrfs_update_inode(trans, root, inode);
7099                 BUG_ON(ret);
7100
7101                 if (own_trans)
7102                         btrfs_end_transaction(trans, root);
7103         }
7104         return ret;
7105 }
7106
7107 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7108                               u64 start, u64 num_bytes, u64 min_size,
7109                               loff_t actual_len, u64 *alloc_hint)
7110 {
7111         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7112                                            min_size, actual_len, alloc_hint,
7113                                            NULL);
7114 }
7115
7116 int btrfs_prealloc_file_range_trans(struct inode *inode,
7117                                     struct btrfs_trans_handle *trans, int mode,
7118                                     u64 start, u64 num_bytes, u64 min_size,
7119                                     loff_t actual_len, u64 *alloc_hint)
7120 {
7121         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7122                                            min_size, actual_len, alloc_hint, trans);
7123 }
7124
7125 static int btrfs_set_page_dirty(struct page *page)
7126 {
7127         return __set_page_dirty_nobuffers(page);
7128 }
7129
7130 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7131 {
7132         struct btrfs_root *root = BTRFS_I(inode)->root;
7133
7134         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7135                 return -EROFS;
7136         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7137                 return -EACCES;
7138         return generic_permission(inode, mask, flags, btrfs_check_acl);
7139 }
7140
7141 static const struct inode_operations btrfs_dir_inode_operations = {
7142         .getattr        = btrfs_getattr,
7143         .lookup         = btrfs_lookup,
7144         .create         = btrfs_create,
7145         .unlink         = btrfs_unlink,
7146         .link           = btrfs_link,
7147         .mkdir          = btrfs_mkdir,
7148         .rmdir          = btrfs_rmdir,
7149         .rename         = btrfs_rename,
7150         .symlink        = btrfs_symlink,
7151         .setattr        = btrfs_setattr,
7152         .mknod          = btrfs_mknod,
7153         .setxattr       = btrfs_setxattr,
7154         .getxattr       = btrfs_getxattr,
7155         .listxattr      = btrfs_listxattr,
7156         .removexattr    = btrfs_removexattr,
7157         .permission     = btrfs_permission,
7158 };
7159 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7160         .lookup         = btrfs_lookup,
7161         .permission     = btrfs_permission,
7162 };
7163
7164 static const struct file_operations btrfs_dir_file_operations = {
7165         .llseek         = generic_file_llseek,
7166         .read           = generic_read_dir,
7167         .readdir        = btrfs_real_readdir,
7168         .unlocked_ioctl = btrfs_ioctl,
7169 #ifdef CONFIG_COMPAT
7170         .compat_ioctl   = btrfs_ioctl,
7171 #endif
7172         .release        = btrfs_release_file,
7173         .fsync          = btrfs_sync_file,
7174 };
7175
7176 static struct extent_io_ops btrfs_extent_io_ops = {
7177         .fill_delalloc = run_delalloc_range,
7178         .submit_bio_hook = btrfs_submit_bio_hook,
7179         .merge_bio_hook = btrfs_merge_bio_hook,
7180         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7181         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7182         .writepage_start_hook = btrfs_writepage_start_hook,
7183         .readpage_io_failed_hook = btrfs_io_failed_hook,
7184         .set_bit_hook = btrfs_set_bit_hook,
7185         .clear_bit_hook = btrfs_clear_bit_hook,
7186         .merge_extent_hook = btrfs_merge_extent_hook,
7187         .split_extent_hook = btrfs_split_extent_hook,
7188 };
7189
7190 /*
7191  * btrfs doesn't support the bmap operation because swapfiles
7192  * use bmap to make a mapping of extents in the file.  They assume
7193  * these extents won't change over the life of the file and they
7194  * use the bmap result to do IO directly to the drive.
7195  *
7196  * the btrfs bmap call would return logical addresses that aren't
7197  * suitable for IO and they also will change frequently as COW
7198  * operations happen.  So, swapfile + btrfs == corruption.
7199  *
7200  * For now we're avoiding this by dropping bmap.
7201  */
7202 static const struct address_space_operations btrfs_aops = {
7203         .readpage       = btrfs_readpage,
7204         .writepage      = btrfs_writepage,
7205         .writepages     = btrfs_writepages,
7206         .readpages      = btrfs_readpages,
7207         .sync_page      = block_sync_page,
7208         .direct_IO      = btrfs_direct_IO,
7209         .invalidatepage = btrfs_invalidatepage,
7210         .releasepage    = btrfs_releasepage,
7211         .set_page_dirty = btrfs_set_page_dirty,
7212         .error_remove_page = generic_error_remove_page,
7213 };
7214
7215 static const struct address_space_operations btrfs_symlink_aops = {
7216         .readpage       = btrfs_readpage,
7217         .writepage      = btrfs_writepage,
7218         .invalidatepage = btrfs_invalidatepage,
7219         .releasepage    = btrfs_releasepage,
7220 };
7221
7222 static const struct inode_operations btrfs_file_inode_operations = {
7223         .truncate       = btrfs_truncate,
7224         .getattr        = btrfs_getattr,
7225         .setattr        = btrfs_setattr,
7226         .setxattr       = btrfs_setxattr,
7227         .getxattr       = btrfs_getxattr,
7228         .listxattr      = btrfs_listxattr,
7229         .removexattr    = btrfs_removexattr,
7230         .permission     = btrfs_permission,
7231         .fiemap         = btrfs_fiemap,
7232 };
7233 static const struct inode_operations btrfs_special_inode_operations = {
7234         .getattr        = btrfs_getattr,
7235         .setattr        = btrfs_setattr,
7236         .permission     = btrfs_permission,
7237         .setxattr       = btrfs_setxattr,
7238         .getxattr       = btrfs_getxattr,
7239         .listxattr      = btrfs_listxattr,
7240         .removexattr    = btrfs_removexattr,
7241 };
7242 static const struct inode_operations btrfs_symlink_inode_operations = {
7243         .readlink       = generic_readlink,
7244         .follow_link    = page_follow_link_light,
7245         .put_link       = page_put_link,
7246         .getattr        = btrfs_getattr,
7247         .permission     = btrfs_permission,
7248         .setxattr       = btrfs_setxattr,
7249         .getxattr       = btrfs_getxattr,
7250         .listxattr      = btrfs_listxattr,
7251         .removexattr    = btrfs_removexattr,
7252 };
7253
7254 const struct dentry_operations btrfs_dentry_operations = {
7255         .d_delete       = btrfs_dentry_delete,
7256 };