Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[pandora-kernel.git] / fs / btrfs / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30
31 #define BITS_PER_BITMAP         (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35                            struct btrfs_free_space *info);
36
37 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
38                                                struct btrfs_path *path,
39                                                u64 offset)
40 {
41         struct btrfs_key key;
42         struct btrfs_key location;
43         struct btrfs_disk_key disk_key;
44         struct btrfs_free_space_header *header;
45         struct extent_buffer *leaf;
46         struct inode *inode = NULL;
47         int ret;
48
49         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
50         key.offset = offset;
51         key.type = 0;
52
53         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
54         if (ret < 0)
55                 return ERR_PTR(ret);
56         if (ret > 0) {
57                 btrfs_release_path(path);
58                 return ERR_PTR(-ENOENT);
59         }
60
61         leaf = path->nodes[0];
62         header = btrfs_item_ptr(leaf, path->slots[0],
63                                 struct btrfs_free_space_header);
64         btrfs_free_space_key(leaf, header, &disk_key);
65         btrfs_disk_key_to_cpu(&location, &disk_key);
66         btrfs_release_path(path);
67
68         inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
69         if (!inode)
70                 return ERR_PTR(-ENOENT);
71         if (IS_ERR(inode))
72                 return inode;
73         if (is_bad_inode(inode)) {
74                 iput(inode);
75                 return ERR_PTR(-ENOENT);
76         }
77
78         inode->i_mapping->flags &= ~__GFP_FS;
79
80         return inode;
81 }
82
83 struct inode *lookup_free_space_inode(struct btrfs_root *root,
84                                       struct btrfs_block_group_cache
85                                       *block_group, struct btrfs_path *path)
86 {
87         struct inode *inode = NULL;
88         u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
89
90         spin_lock(&block_group->lock);
91         if (block_group->inode)
92                 inode = igrab(block_group->inode);
93         spin_unlock(&block_group->lock);
94         if (inode)
95                 return inode;
96
97         inode = __lookup_free_space_inode(root, path,
98                                           block_group->key.objectid);
99         if (IS_ERR(inode))
100                 return inode;
101
102         spin_lock(&block_group->lock);
103         if (!((BTRFS_I(inode)->flags & flags) == flags)) {
104                 printk(KERN_INFO "Old style space inode found, converting.\n");
105                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
106                         BTRFS_INODE_NODATACOW;
107                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
108         }
109
110         if (!block_group->iref) {
111                 block_group->inode = igrab(inode);
112                 block_group->iref = 1;
113         }
114         spin_unlock(&block_group->lock);
115
116         return inode;
117 }
118
119 int __create_free_space_inode(struct btrfs_root *root,
120                               struct btrfs_trans_handle *trans,
121                               struct btrfs_path *path, u64 ino, u64 offset)
122 {
123         struct btrfs_key key;
124         struct btrfs_disk_key disk_key;
125         struct btrfs_free_space_header *header;
126         struct btrfs_inode_item *inode_item;
127         struct extent_buffer *leaf;
128         u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
129         int ret;
130
131         ret = btrfs_insert_empty_inode(trans, root, path, ino);
132         if (ret)
133                 return ret;
134
135         /* We inline crc's for the free disk space cache */
136         if (ino != BTRFS_FREE_INO_OBJECTID)
137                 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
139         leaf = path->nodes[0];
140         inode_item = btrfs_item_ptr(leaf, path->slots[0],
141                                     struct btrfs_inode_item);
142         btrfs_item_key(leaf, &disk_key, path->slots[0]);
143         memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
144                              sizeof(*inode_item));
145         btrfs_set_inode_generation(leaf, inode_item, trans->transid);
146         btrfs_set_inode_size(leaf, inode_item, 0);
147         btrfs_set_inode_nbytes(leaf, inode_item, 0);
148         btrfs_set_inode_uid(leaf, inode_item, 0);
149         btrfs_set_inode_gid(leaf, inode_item, 0);
150         btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
151         btrfs_set_inode_flags(leaf, inode_item, flags);
152         btrfs_set_inode_nlink(leaf, inode_item, 1);
153         btrfs_set_inode_transid(leaf, inode_item, trans->transid);
154         btrfs_set_inode_block_group(leaf, inode_item, offset);
155         btrfs_mark_buffer_dirty(leaf);
156         btrfs_release_path(path);
157
158         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
159         key.offset = offset;
160         key.type = 0;
161
162         ret = btrfs_insert_empty_item(trans, root, path, &key,
163                                       sizeof(struct btrfs_free_space_header));
164         if (ret < 0) {
165                 btrfs_release_path(path);
166                 return ret;
167         }
168         leaf = path->nodes[0];
169         header = btrfs_item_ptr(leaf, path->slots[0],
170                                 struct btrfs_free_space_header);
171         memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
172         btrfs_set_free_space_key(leaf, header, &disk_key);
173         btrfs_mark_buffer_dirty(leaf);
174         btrfs_release_path(path);
175
176         return 0;
177 }
178
179 int create_free_space_inode(struct btrfs_root *root,
180                             struct btrfs_trans_handle *trans,
181                             struct btrfs_block_group_cache *block_group,
182                             struct btrfs_path *path)
183 {
184         int ret;
185         u64 ino;
186
187         ret = btrfs_find_free_objectid(root, &ino);
188         if (ret < 0)
189                 return ret;
190
191         return __create_free_space_inode(root, trans, path, ino,
192                                          block_group->key.objectid);
193 }
194
195 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
196                                     struct btrfs_trans_handle *trans,
197                                     struct btrfs_path *path,
198                                     struct inode *inode)
199 {
200         struct btrfs_block_rsv *rsv;
201         u64 needed_bytes;
202         loff_t oldsize;
203         int ret = 0;
204
205         rsv = trans->block_rsv;
206         trans->block_rsv = &root->fs_info->global_block_rsv;
207
208         /* 1 for slack space, 1 for updating the inode */
209         needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
210                 btrfs_calc_trans_metadata_size(root, 1);
211
212         spin_lock(&trans->block_rsv->lock);
213         if (trans->block_rsv->reserved < needed_bytes) {
214                 spin_unlock(&trans->block_rsv->lock);
215                 trans->block_rsv = rsv;
216                 return -ENOSPC;
217         }
218         spin_unlock(&trans->block_rsv->lock);
219
220         oldsize = i_size_read(inode);
221         btrfs_i_size_write(inode, 0);
222         truncate_pagecache(inode, oldsize, 0);
223
224         /*
225          * We don't need an orphan item because truncating the free space cache
226          * will never be split across transactions.
227          */
228         ret = btrfs_truncate_inode_items(trans, root, inode,
229                                          0, BTRFS_EXTENT_DATA_KEY);
230
231         if (ret) {
232                 trans->block_rsv = rsv;
233                 WARN_ON(1);
234                 return ret;
235         }
236
237         ret = btrfs_update_inode(trans, root, inode);
238         trans->block_rsv = rsv;
239
240         return ret;
241 }
242
243 static int readahead_cache(struct inode *inode)
244 {
245         struct file_ra_state *ra;
246         unsigned long last_index;
247
248         ra = kzalloc(sizeof(*ra), GFP_NOFS);
249         if (!ra)
250                 return -ENOMEM;
251
252         file_ra_state_init(ra, inode->i_mapping);
253         last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
254
255         page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
256
257         kfree(ra);
258
259         return 0;
260 }
261
262 struct io_ctl {
263         void *cur, *orig;
264         struct page *page;
265         struct page **pages;
266         struct btrfs_root *root;
267         unsigned long size;
268         int index;
269         int num_pages;
270         unsigned check_crcs:1;
271 };
272
273 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
274                        struct btrfs_root *root)
275 {
276         memset(io_ctl, 0, sizeof(struct io_ctl));
277         io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
278                 PAGE_CACHE_SHIFT;
279         io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
280                                 GFP_NOFS);
281         if (!io_ctl->pages)
282                 return -ENOMEM;
283         io_ctl->root = root;
284         if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
285                 io_ctl->check_crcs = 1;
286         return 0;
287 }
288
289 static void io_ctl_free(struct io_ctl *io_ctl)
290 {
291         kfree(io_ctl->pages);
292 }
293
294 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
295 {
296         if (io_ctl->cur) {
297                 kunmap(io_ctl->page);
298                 io_ctl->cur = NULL;
299                 io_ctl->orig = NULL;
300         }
301 }
302
303 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
304 {
305         WARN_ON(io_ctl->cur);
306         BUG_ON(io_ctl->index >= io_ctl->num_pages);
307         io_ctl->page = io_ctl->pages[io_ctl->index++];
308         io_ctl->cur = kmap(io_ctl->page);
309         io_ctl->orig = io_ctl->cur;
310         io_ctl->size = PAGE_CACHE_SIZE;
311         if (clear)
312                 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
313 }
314
315 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
316 {
317         int i;
318
319         io_ctl_unmap_page(io_ctl);
320
321         for (i = 0; i < io_ctl->num_pages; i++) {
322                 ClearPageChecked(io_ctl->pages[i]);
323                 unlock_page(io_ctl->pages[i]);
324                 page_cache_release(io_ctl->pages[i]);
325         }
326 }
327
328 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
329                                 int uptodate)
330 {
331         struct page *page;
332         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
333         int i;
334
335         for (i = 0; i < io_ctl->num_pages; i++) {
336                 page = find_or_create_page(inode->i_mapping, i, mask);
337                 if (!page) {
338                         io_ctl_drop_pages(io_ctl);
339                         return -ENOMEM;
340                 }
341                 io_ctl->pages[i] = page;
342                 if (uptodate && !PageUptodate(page)) {
343                         btrfs_readpage(NULL, page);
344                         lock_page(page);
345                         if (!PageUptodate(page)) {
346                                 printk(KERN_ERR "btrfs: error reading free "
347                                        "space cache\n");
348                                 io_ctl_drop_pages(io_ctl);
349                                 return -EIO;
350                         }
351                 }
352         }
353
354         for (i = 0; i < io_ctl->num_pages; i++) {
355                 clear_page_dirty_for_io(io_ctl->pages[i]);
356                 set_page_extent_mapped(io_ctl->pages[i]);
357         }
358
359         return 0;
360 }
361
362 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
363 {
364         u64 *val;
365
366         io_ctl_map_page(io_ctl, 1);
367
368         /*
369          * Skip the csum areas.  If we don't check crcs then we just have a
370          * 64bit chunk at the front of the first page.
371          */
372         if (io_ctl->check_crcs) {
373                 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
374                 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
375         } else {
376                 io_ctl->cur += sizeof(u64);
377                 io_ctl->size -= sizeof(u64) * 2;
378         }
379
380         val = io_ctl->cur;
381         *val = cpu_to_le64(generation);
382         io_ctl->cur += sizeof(u64);
383 }
384
385 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
386 {
387         u64 *gen;
388
389         /*
390          * Skip the crc area.  If we don't check crcs then we just have a 64bit
391          * chunk at the front of the first page.
392          */
393         if (io_ctl->check_crcs) {
394                 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
395                 io_ctl->size -= sizeof(u64) +
396                         (sizeof(u32) * io_ctl->num_pages);
397         } else {
398                 io_ctl->cur += sizeof(u64);
399                 io_ctl->size -= sizeof(u64) * 2;
400         }
401
402         gen = io_ctl->cur;
403         if (le64_to_cpu(*gen) != generation) {
404                 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
405                                    "(%Lu) does not match inode (%Lu)\n", *gen,
406                                    generation);
407                 io_ctl_unmap_page(io_ctl);
408                 return -EIO;
409         }
410         io_ctl->cur += sizeof(u64);
411         return 0;
412 }
413
414 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
415 {
416         u32 *tmp;
417         u32 crc = ~(u32)0;
418         unsigned offset = 0;
419
420         if (!io_ctl->check_crcs) {
421                 io_ctl_unmap_page(io_ctl);
422                 return;
423         }
424
425         if (index == 0)
426                 offset = sizeof(u32) * io_ctl->num_pages;;
427
428         crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
429                               PAGE_CACHE_SIZE - offset);
430         btrfs_csum_final(crc, (char *)&crc);
431         io_ctl_unmap_page(io_ctl);
432         tmp = kmap(io_ctl->pages[0]);
433         tmp += index;
434         *tmp = crc;
435         kunmap(io_ctl->pages[0]);
436 }
437
438 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
439 {
440         u32 *tmp, val;
441         u32 crc = ~(u32)0;
442         unsigned offset = 0;
443
444         if (!io_ctl->check_crcs) {
445                 io_ctl_map_page(io_ctl, 0);
446                 return 0;
447         }
448
449         if (index == 0)
450                 offset = sizeof(u32) * io_ctl->num_pages;
451
452         tmp = kmap(io_ctl->pages[0]);
453         tmp += index;
454         val = *tmp;
455         kunmap(io_ctl->pages[0]);
456
457         io_ctl_map_page(io_ctl, 0);
458         crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
459                               PAGE_CACHE_SIZE - offset);
460         btrfs_csum_final(crc, (char *)&crc);
461         if (val != crc) {
462                 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
463                                    "space cache\n");
464                 io_ctl_unmap_page(io_ctl);
465                 return -EIO;
466         }
467
468         return 0;
469 }
470
471 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
472                             void *bitmap)
473 {
474         struct btrfs_free_space_entry *entry;
475
476         if (!io_ctl->cur)
477                 return -ENOSPC;
478
479         entry = io_ctl->cur;
480         entry->offset = cpu_to_le64(offset);
481         entry->bytes = cpu_to_le64(bytes);
482         entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
483                 BTRFS_FREE_SPACE_EXTENT;
484         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
485         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
486
487         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
488                 return 0;
489
490         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
491
492         /* No more pages to map */
493         if (io_ctl->index >= io_ctl->num_pages)
494                 return 0;
495
496         /* map the next page */
497         io_ctl_map_page(io_ctl, 1);
498         return 0;
499 }
500
501 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
502 {
503         if (!io_ctl->cur)
504                 return -ENOSPC;
505
506         /*
507          * If we aren't at the start of the current page, unmap this one and
508          * map the next one if there is any left.
509          */
510         if (io_ctl->cur != io_ctl->orig) {
511                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
512                 if (io_ctl->index >= io_ctl->num_pages)
513                         return -ENOSPC;
514                 io_ctl_map_page(io_ctl, 0);
515         }
516
517         memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
518         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
519         if (io_ctl->index < io_ctl->num_pages)
520                 io_ctl_map_page(io_ctl, 0);
521         return 0;
522 }
523
524 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
525 {
526         /*
527          * If we're not on the boundary we know we've modified the page and we
528          * need to crc the page.
529          */
530         if (io_ctl->cur != io_ctl->orig)
531                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
532         else
533                 io_ctl_unmap_page(io_ctl);
534
535         while (io_ctl->index < io_ctl->num_pages) {
536                 io_ctl_map_page(io_ctl, 1);
537                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538         }
539 }
540
541 static int io_ctl_read_entry(struct io_ctl *io_ctl,
542                             struct btrfs_free_space *entry, u8 *type)
543 {
544         struct btrfs_free_space_entry *e;
545         int ret;
546
547         if (!io_ctl->cur) {
548                 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
549                 if (ret)
550                         return ret;
551         }
552
553         e = io_ctl->cur;
554         entry->offset = le64_to_cpu(e->offset);
555         entry->bytes = le64_to_cpu(e->bytes);
556         *type = e->type;
557         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
558         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
559
560         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
561                 return 0;
562
563         io_ctl_unmap_page(io_ctl);
564
565         return 0;
566 }
567
568 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
569                               struct btrfs_free_space *entry)
570 {
571         int ret;
572
573         ret = io_ctl_check_crc(io_ctl, io_ctl->index);
574         if (ret)
575                 return ret;
576
577         memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
578         io_ctl_unmap_page(io_ctl);
579
580         return 0;
581 }
582
583 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
584                             struct btrfs_free_space_ctl *ctl,
585                             struct btrfs_path *path, u64 offset)
586 {
587         struct btrfs_free_space_header *header;
588         struct extent_buffer *leaf;
589         struct io_ctl io_ctl;
590         struct btrfs_key key;
591         struct btrfs_free_space *e, *n;
592         struct list_head bitmaps;
593         u64 num_entries;
594         u64 num_bitmaps;
595         u64 generation;
596         u8 type;
597         int ret = 0;
598
599         INIT_LIST_HEAD(&bitmaps);
600
601         /* Nothing in the space cache, goodbye */
602         if (!i_size_read(inode))
603                 return 0;
604
605         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
606         key.offset = offset;
607         key.type = 0;
608
609         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
610         if (ret < 0)
611                 return 0;
612         else if (ret > 0) {
613                 btrfs_release_path(path);
614                 return 0;
615         }
616
617         ret = -1;
618
619         leaf = path->nodes[0];
620         header = btrfs_item_ptr(leaf, path->slots[0],
621                                 struct btrfs_free_space_header);
622         num_entries = btrfs_free_space_entries(leaf, header);
623         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
624         generation = btrfs_free_space_generation(leaf, header);
625         btrfs_release_path(path);
626
627         if (BTRFS_I(inode)->generation != generation) {
628                 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
629                        " not match free space cache generation (%llu)\n",
630                        (unsigned long long)BTRFS_I(inode)->generation,
631                        (unsigned long long)generation);
632                 return 0;
633         }
634
635         if (!num_entries)
636                 return 0;
637
638         io_ctl_init(&io_ctl, inode, root);
639         ret = readahead_cache(inode);
640         if (ret)
641                 goto out;
642
643         ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
644         if (ret)
645                 goto out;
646
647         ret = io_ctl_check_crc(&io_ctl, 0);
648         if (ret)
649                 goto free_cache;
650
651         ret = io_ctl_check_generation(&io_ctl, generation);
652         if (ret)
653                 goto free_cache;
654
655         while (num_entries) {
656                 e = kmem_cache_zalloc(btrfs_free_space_cachep,
657                                       GFP_NOFS);
658                 if (!e)
659                         goto free_cache;
660
661                 ret = io_ctl_read_entry(&io_ctl, e, &type);
662                 if (ret) {
663                         kmem_cache_free(btrfs_free_space_cachep, e);
664                         goto free_cache;
665                 }
666
667                 if (!e->bytes) {
668                         kmem_cache_free(btrfs_free_space_cachep, e);
669                         goto free_cache;
670                 }
671
672                 if (type == BTRFS_FREE_SPACE_EXTENT) {
673                         spin_lock(&ctl->tree_lock);
674                         ret = link_free_space(ctl, e);
675                         spin_unlock(&ctl->tree_lock);
676                         if (ret) {
677                                 printk(KERN_ERR "Duplicate entries in "
678                                        "free space cache, dumping\n");
679                                 kmem_cache_free(btrfs_free_space_cachep, e);
680                                 goto free_cache;
681                         }
682                 } else {
683                         BUG_ON(!num_bitmaps);
684                         num_bitmaps--;
685                         e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
686                         if (!e->bitmap) {
687                                 kmem_cache_free(
688                                         btrfs_free_space_cachep, e);
689                                 goto free_cache;
690                         }
691                         spin_lock(&ctl->tree_lock);
692                         ret = link_free_space(ctl, e);
693                         ctl->total_bitmaps++;
694                         ctl->op->recalc_thresholds(ctl);
695                         spin_unlock(&ctl->tree_lock);
696                         if (ret) {
697                                 printk(KERN_ERR "Duplicate entries in "
698                                        "free space cache, dumping\n");
699                                 kmem_cache_free(btrfs_free_space_cachep, e);
700                                 goto free_cache;
701                         }
702                         list_add_tail(&e->list, &bitmaps);
703                 }
704
705                 num_entries--;
706         }
707
708         io_ctl_unmap_page(&io_ctl);
709
710         /*
711          * We add the bitmaps at the end of the entries in order that
712          * the bitmap entries are added to the cache.
713          */
714         list_for_each_entry_safe(e, n, &bitmaps, list) {
715                 list_del_init(&e->list);
716                 ret = io_ctl_read_bitmap(&io_ctl, e);
717                 if (ret)
718                         goto free_cache;
719         }
720
721         io_ctl_drop_pages(&io_ctl);
722         ret = 1;
723 out:
724         io_ctl_free(&io_ctl);
725         return ret;
726 free_cache:
727         io_ctl_drop_pages(&io_ctl);
728         __btrfs_remove_free_space_cache(ctl);
729         goto out;
730 }
731
732 int load_free_space_cache(struct btrfs_fs_info *fs_info,
733                           struct btrfs_block_group_cache *block_group)
734 {
735         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
736         struct btrfs_root *root = fs_info->tree_root;
737         struct inode *inode;
738         struct btrfs_path *path;
739         int ret = 0;
740         bool matched;
741         u64 used = btrfs_block_group_used(&block_group->item);
742
743         /*
744          * If we're unmounting then just return, since this does a search on the
745          * normal root and not the commit root and we could deadlock.
746          */
747         if (btrfs_fs_closing(fs_info))
748                 return 0;
749
750         /*
751          * If this block group has been marked to be cleared for one reason or
752          * another then we can't trust the on disk cache, so just return.
753          */
754         spin_lock(&block_group->lock);
755         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
756                 spin_unlock(&block_group->lock);
757                 return 0;
758         }
759         spin_unlock(&block_group->lock);
760
761         path = btrfs_alloc_path();
762         if (!path)
763                 return 0;
764
765         inode = lookup_free_space_inode(root, block_group, path);
766         if (IS_ERR(inode)) {
767                 btrfs_free_path(path);
768                 return 0;
769         }
770
771         /* We may have converted the inode and made the cache invalid. */
772         spin_lock(&block_group->lock);
773         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
774                 spin_unlock(&block_group->lock);
775                 goto out;
776         }
777         spin_unlock(&block_group->lock);
778
779         ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
780                                       path, block_group->key.objectid);
781         btrfs_free_path(path);
782         if (ret <= 0)
783                 goto out;
784
785         spin_lock(&ctl->tree_lock);
786         matched = (ctl->free_space == (block_group->key.offset - used -
787                                        block_group->bytes_super));
788         spin_unlock(&ctl->tree_lock);
789
790         if (!matched) {
791                 __btrfs_remove_free_space_cache(ctl);
792                 printk(KERN_ERR "block group %llu has an wrong amount of free "
793                        "space\n", block_group->key.objectid);
794                 ret = -1;
795         }
796 out:
797         if (ret < 0) {
798                 /* This cache is bogus, make sure it gets cleared */
799                 spin_lock(&block_group->lock);
800                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
801                 spin_unlock(&block_group->lock);
802                 ret = 0;
803
804                 printk(KERN_ERR "btrfs: failed to load free space cache "
805                        "for block group %llu\n", block_group->key.objectid);
806         }
807
808         iput(inode);
809         return ret;
810 }
811
812 /**
813  * __btrfs_write_out_cache - write out cached info to an inode
814  * @root - the root the inode belongs to
815  * @ctl - the free space cache we are going to write out
816  * @block_group - the block_group for this cache if it belongs to a block_group
817  * @trans - the trans handle
818  * @path - the path to use
819  * @offset - the offset for the key we'll insert
820  *
821  * This function writes out a free space cache struct to disk for quick recovery
822  * on mount.  This will return 0 if it was successfull in writing the cache out,
823  * and -1 if it was not.
824  */
825 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
826                             struct btrfs_free_space_ctl *ctl,
827                             struct btrfs_block_group_cache *block_group,
828                             struct btrfs_trans_handle *trans,
829                             struct btrfs_path *path, u64 offset)
830 {
831         struct btrfs_free_space_header *header;
832         struct extent_buffer *leaf;
833         struct rb_node *node;
834         struct list_head *pos, *n;
835         struct extent_state *cached_state = NULL;
836         struct btrfs_free_cluster *cluster = NULL;
837         struct extent_io_tree *unpin = NULL;
838         struct io_ctl io_ctl;
839         struct list_head bitmap_list;
840         struct btrfs_key key;
841         u64 start, end, len;
842         int entries = 0;
843         int bitmaps = 0;
844         int ret;
845         int err = -1;
846
847         INIT_LIST_HEAD(&bitmap_list);
848
849         if (!i_size_read(inode))
850                 return -1;
851
852         io_ctl_init(&io_ctl, inode, root);
853
854         /* Get the cluster for this block_group if it exists */
855         if (block_group && !list_empty(&block_group->cluster_list))
856                 cluster = list_entry(block_group->cluster_list.next,
857                                      struct btrfs_free_cluster,
858                                      block_group_list);
859
860         /*
861          * We shouldn't have switched the pinned extents yet so this is the
862          * right one
863          */
864         unpin = root->fs_info->pinned_extents;
865
866         /* Lock all pages first so we can lock the extent safely. */
867         io_ctl_prepare_pages(&io_ctl, inode, 0);
868
869         lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
870                          0, &cached_state, GFP_NOFS);
871
872         /*
873          * When searching for pinned extents, we need to start at our start
874          * offset.
875          */
876         if (block_group)
877                 start = block_group->key.objectid;
878
879         node = rb_first(&ctl->free_space_offset);
880         if (!node && cluster) {
881                 node = rb_first(&cluster->root);
882                 cluster = NULL;
883         }
884
885         /* Make sure we can fit our crcs into the first page */
886         if (io_ctl.check_crcs &&
887             (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
888                 WARN_ON(1);
889                 goto out_nospc;
890         }
891
892         io_ctl_set_generation(&io_ctl, trans->transid);
893
894         /* Write out the extent entries */
895         while (node) {
896                 struct btrfs_free_space *e;
897
898                 e = rb_entry(node, struct btrfs_free_space, offset_index);
899                 entries++;
900
901                 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
902                                        e->bitmap);
903                 if (ret)
904                         goto out_nospc;
905
906                 if (e->bitmap) {
907                         list_add_tail(&e->list, &bitmap_list);
908                         bitmaps++;
909                 }
910                 node = rb_next(node);
911                 if (!node && cluster) {
912                         node = rb_first(&cluster->root);
913                         cluster = NULL;
914                 }
915         }
916
917         /*
918          * We want to add any pinned extents to our free space cache
919          * so we don't leak the space
920          */
921         while (block_group && (start < block_group->key.objectid +
922                                block_group->key.offset)) {
923                 ret = find_first_extent_bit(unpin, start, &start, &end,
924                                             EXTENT_DIRTY);
925                 if (ret) {
926                         ret = 0;
927                         break;
928                 }
929
930                 /* This pinned extent is out of our range */
931                 if (start >= block_group->key.objectid +
932                     block_group->key.offset)
933                         break;
934
935                 len = block_group->key.objectid +
936                         block_group->key.offset - start;
937                 len = min(len, end + 1 - start);
938
939                 entries++;
940                 ret = io_ctl_add_entry(&io_ctl, start, len, NULL);
941                 if (ret)
942                         goto out_nospc;
943
944                 start = end + 1;
945         }
946
947         /* Write out the bitmaps */
948         list_for_each_safe(pos, n, &bitmap_list) {
949                 struct btrfs_free_space *entry =
950                         list_entry(pos, struct btrfs_free_space, list);
951
952                 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
953                 if (ret)
954                         goto out_nospc;
955                 list_del_init(&entry->list);
956         }
957
958         /* Zero out the rest of the pages just to make sure */
959         io_ctl_zero_remaining_pages(&io_ctl);
960
961         ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
962                                 0, i_size_read(inode), &cached_state);
963         io_ctl_drop_pages(&io_ctl);
964         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
965                              i_size_read(inode) - 1, &cached_state, GFP_NOFS);
966
967         if (ret)
968                 goto out;
969
970
971         ret = filemap_write_and_wait(inode->i_mapping);
972         if (ret)
973                 goto out;
974
975         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
976         key.offset = offset;
977         key.type = 0;
978
979         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
980         if (ret < 0) {
981                 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
982                                  EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
983                                  GFP_NOFS);
984                 goto out;
985         }
986         leaf = path->nodes[0];
987         if (ret > 0) {
988                 struct btrfs_key found_key;
989                 BUG_ON(!path->slots[0]);
990                 path->slots[0]--;
991                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
992                 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
993                     found_key.offset != offset) {
994                         clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
995                                          inode->i_size - 1,
996                                          EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
997                                          NULL, GFP_NOFS);
998                         btrfs_release_path(path);
999                         goto out;
1000                 }
1001         }
1002
1003         BTRFS_I(inode)->generation = trans->transid;
1004         header = btrfs_item_ptr(leaf, path->slots[0],
1005                                 struct btrfs_free_space_header);
1006         btrfs_set_free_space_entries(leaf, header, entries);
1007         btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1008         btrfs_set_free_space_generation(leaf, header, trans->transid);
1009         btrfs_mark_buffer_dirty(leaf);
1010         btrfs_release_path(path);
1011
1012         err = 0;
1013 out:
1014         io_ctl_free(&io_ctl);
1015         if (err) {
1016                 invalidate_inode_pages2(inode->i_mapping);
1017                 BTRFS_I(inode)->generation = 0;
1018         }
1019         btrfs_update_inode(trans, root, inode);
1020         return err;
1021
1022 out_nospc:
1023         list_for_each_safe(pos, n, &bitmap_list) {
1024                 struct btrfs_free_space *entry =
1025                         list_entry(pos, struct btrfs_free_space, list);
1026                 list_del_init(&entry->list);
1027         }
1028         io_ctl_drop_pages(&io_ctl);
1029         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1030                              i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1031         goto out;
1032 }
1033
1034 int btrfs_write_out_cache(struct btrfs_root *root,
1035                           struct btrfs_trans_handle *trans,
1036                           struct btrfs_block_group_cache *block_group,
1037                           struct btrfs_path *path)
1038 {
1039         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1040         struct inode *inode;
1041         int ret = 0;
1042
1043         root = root->fs_info->tree_root;
1044
1045         spin_lock(&block_group->lock);
1046         if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1047                 spin_unlock(&block_group->lock);
1048                 return 0;
1049         }
1050         spin_unlock(&block_group->lock);
1051
1052         inode = lookup_free_space_inode(root, block_group, path);
1053         if (IS_ERR(inode))
1054                 return 0;
1055
1056         ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1057                                       path, block_group->key.objectid);
1058         if (ret) {
1059                 spin_lock(&block_group->lock);
1060                 block_group->disk_cache_state = BTRFS_DC_ERROR;
1061                 spin_unlock(&block_group->lock);
1062                 ret = 0;
1063 #ifdef DEBUG
1064                 printk(KERN_ERR "btrfs: failed to write free space cace "
1065                        "for block group %llu\n", block_group->key.objectid);
1066 #endif
1067         }
1068
1069         iput(inode);
1070         return ret;
1071 }
1072
1073 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1074                                           u64 offset)
1075 {
1076         BUG_ON(offset < bitmap_start);
1077         offset -= bitmap_start;
1078         return (unsigned long)(div_u64(offset, unit));
1079 }
1080
1081 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1082 {
1083         return (unsigned long)(div_u64(bytes, unit));
1084 }
1085
1086 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1087                                    u64 offset)
1088 {
1089         u64 bitmap_start;
1090         u64 bytes_per_bitmap;
1091
1092         bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1093         bitmap_start = offset - ctl->start;
1094         bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1095         bitmap_start *= bytes_per_bitmap;
1096         bitmap_start += ctl->start;
1097
1098         return bitmap_start;
1099 }
1100
1101 static int tree_insert_offset(struct rb_root *root, u64 offset,
1102                               struct rb_node *node, int bitmap)
1103 {
1104         struct rb_node **p = &root->rb_node;
1105         struct rb_node *parent = NULL;
1106         struct btrfs_free_space *info;
1107
1108         while (*p) {
1109                 parent = *p;
1110                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1111
1112                 if (offset < info->offset) {
1113                         p = &(*p)->rb_left;
1114                 } else if (offset > info->offset) {
1115                         p = &(*p)->rb_right;
1116                 } else {
1117                         /*
1118                          * we could have a bitmap entry and an extent entry
1119                          * share the same offset.  If this is the case, we want
1120                          * the extent entry to always be found first if we do a
1121                          * linear search through the tree, since we want to have
1122                          * the quickest allocation time, and allocating from an
1123                          * extent is faster than allocating from a bitmap.  So
1124                          * if we're inserting a bitmap and we find an entry at
1125                          * this offset, we want to go right, or after this entry
1126                          * logically.  If we are inserting an extent and we've
1127                          * found a bitmap, we want to go left, or before
1128                          * logically.
1129                          */
1130                         if (bitmap) {
1131                                 if (info->bitmap) {
1132                                         WARN_ON_ONCE(1);
1133                                         return -EEXIST;
1134                                 }
1135                                 p = &(*p)->rb_right;
1136                         } else {
1137                                 if (!info->bitmap) {
1138                                         WARN_ON_ONCE(1);
1139                                         return -EEXIST;
1140                                 }
1141                                 p = &(*p)->rb_left;
1142                         }
1143                 }
1144         }
1145
1146         rb_link_node(node, parent, p);
1147         rb_insert_color(node, root);
1148
1149         return 0;
1150 }
1151
1152 /*
1153  * searches the tree for the given offset.
1154  *
1155  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1156  * want a section that has at least bytes size and comes at or after the given
1157  * offset.
1158  */
1159 static struct btrfs_free_space *
1160 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1161                    u64 offset, int bitmap_only, int fuzzy)
1162 {
1163         struct rb_node *n = ctl->free_space_offset.rb_node;
1164         struct btrfs_free_space *entry, *prev = NULL;
1165
1166         /* find entry that is closest to the 'offset' */
1167         while (1) {
1168                 if (!n) {
1169                         entry = NULL;
1170                         break;
1171                 }
1172
1173                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1174                 prev = entry;
1175
1176                 if (offset < entry->offset)
1177                         n = n->rb_left;
1178                 else if (offset > entry->offset)
1179                         n = n->rb_right;
1180                 else
1181                         break;
1182         }
1183
1184         if (bitmap_only) {
1185                 if (!entry)
1186                         return NULL;
1187                 if (entry->bitmap)
1188                         return entry;
1189
1190                 /*
1191                  * bitmap entry and extent entry may share same offset,
1192                  * in that case, bitmap entry comes after extent entry.
1193                  */
1194                 n = rb_next(n);
1195                 if (!n)
1196                         return NULL;
1197                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1198                 if (entry->offset != offset)
1199                         return NULL;
1200
1201                 WARN_ON(!entry->bitmap);
1202                 return entry;
1203         } else if (entry) {
1204                 if (entry->bitmap) {
1205                         /*
1206                          * if previous extent entry covers the offset,
1207                          * we should return it instead of the bitmap entry
1208                          */
1209                         n = &entry->offset_index;
1210                         while (1) {
1211                                 n = rb_prev(n);
1212                                 if (!n)
1213                                         break;
1214                                 prev = rb_entry(n, struct btrfs_free_space,
1215                                                 offset_index);
1216                                 if (!prev->bitmap) {
1217                                         if (prev->offset + prev->bytes > offset)
1218                                                 entry = prev;
1219                                         break;
1220                                 }
1221                         }
1222                 }
1223                 return entry;
1224         }
1225
1226         if (!prev)
1227                 return NULL;
1228
1229         /* find last entry before the 'offset' */
1230         entry = prev;
1231         if (entry->offset > offset) {
1232                 n = rb_prev(&entry->offset_index);
1233                 if (n) {
1234                         entry = rb_entry(n, struct btrfs_free_space,
1235                                         offset_index);
1236                         BUG_ON(entry->offset > offset);
1237                 } else {
1238                         if (fuzzy)
1239                                 return entry;
1240                         else
1241                                 return NULL;
1242                 }
1243         }
1244
1245         if (entry->bitmap) {
1246                 n = &entry->offset_index;
1247                 while (1) {
1248                         n = rb_prev(n);
1249                         if (!n)
1250                                 break;
1251                         prev = rb_entry(n, struct btrfs_free_space,
1252                                         offset_index);
1253                         if (!prev->bitmap) {
1254                                 if (prev->offset + prev->bytes > offset)
1255                                         return prev;
1256                                 break;
1257                         }
1258                 }
1259                 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1260                         return entry;
1261         } else if (entry->offset + entry->bytes > offset)
1262                 return entry;
1263
1264         if (!fuzzy)
1265                 return NULL;
1266
1267         while (1) {
1268                 if (entry->bitmap) {
1269                         if (entry->offset + BITS_PER_BITMAP *
1270                             ctl->unit > offset)
1271                                 break;
1272                 } else {
1273                         if (entry->offset + entry->bytes > offset)
1274                                 break;
1275                 }
1276
1277                 n = rb_next(&entry->offset_index);
1278                 if (!n)
1279                         return NULL;
1280                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1281         }
1282         return entry;
1283 }
1284
1285 static inline void
1286 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1287                     struct btrfs_free_space *info)
1288 {
1289         rb_erase(&info->offset_index, &ctl->free_space_offset);
1290         ctl->free_extents--;
1291 }
1292
1293 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1294                               struct btrfs_free_space *info)
1295 {
1296         __unlink_free_space(ctl, info);
1297         ctl->free_space -= info->bytes;
1298 }
1299
1300 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1301                            struct btrfs_free_space *info)
1302 {
1303         int ret = 0;
1304
1305         BUG_ON(!info->bitmap && !info->bytes);
1306         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1307                                  &info->offset_index, (info->bitmap != NULL));
1308         if (ret)
1309                 return ret;
1310
1311         ctl->free_space += info->bytes;
1312         ctl->free_extents++;
1313         return ret;
1314 }
1315
1316 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1317 {
1318         struct btrfs_block_group_cache *block_group = ctl->private;
1319         u64 max_bytes;
1320         u64 bitmap_bytes;
1321         u64 extent_bytes;
1322         u64 size = block_group->key.offset;
1323         u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1324         int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1325
1326         BUG_ON(ctl->total_bitmaps > max_bitmaps);
1327
1328         /*
1329          * The goal is to keep the total amount of memory used per 1gb of space
1330          * at or below 32k, so we need to adjust how much memory we allow to be
1331          * used by extent based free space tracking
1332          */
1333         if (size < 1024 * 1024 * 1024)
1334                 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1335         else
1336                 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1337                         div64_u64(size, 1024 * 1024 * 1024);
1338
1339         /*
1340          * we want to account for 1 more bitmap than what we have so we can make
1341          * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1342          * we add more bitmaps.
1343          */
1344         bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1345
1346         if (bitmap_bytes >= max_bytes) {
1347                 ctl->extents_thresh = 0;
1348                 return;
1349         }
1350
1351         /*
1352          * we want the extent entry threshold to always be at most 1/2 the maxw
1353          * bytes we can have, or whatever is less than that.
1354          */
1355         extent_bytes = max_bytes - bitmap_bytes;
1356         extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1357
1358         ctl->extents_thresh =
1359                 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1360 }
1361
1362 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1363                                        struct btrfs_free_space *info,
1364                                        u64 offset, u64 bytes)
1365 {
1366         unsigned long start, count;
1367
1368         start = offset_to_bit(info->offset, ctl->unit, offset);
1369         count = bytes_to_bits(bytes, ctl->unit);
1370         BUG_ON(start + count > BITS_PER_BITMAP);
1371
1372         bitmap_clear(info->bitmap, start, count);
1373
1374         info->bytes -= bytes;
1375 }
1376
1377 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1378                               struct btrfs_free_space *info, u64 offset,
1379                               u64 bytes)
1380 {
1381         __bitmap_clear_bits(ctl, info, offset, bytes);
1382         ctl->free_space -= bytes;
1383 }
1384
1385 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1386                             struct btrfs_free_space *info, u64 offset,
1387                             u64 bytes)
1388 {
1389         unsigned long start, count;
1390
1391         start = offset_to_bit(info->offset, ctl->unit, offset);
1392         count = bytes_to_bits(bytes, ctl->unit);
1393         BUG_ON(start + count > BITS_PER_BITMAP);
1394
1395         bitmap_set(info->bitmap, start, count);
1396
1397         info->bytes += bytes;
1398         ctl->free_space += bytes;
1399 }
1400
1401 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1402                          struct btrfs_free_space *bitmap_info, u64 *offset,
1403                          u64 *bytes)
1404 {
1405         unsigned long found_bits = 0;
1406         unsigned long bits, i;
1407         unsigned long next_zero;
1408
1409         i = offset_to_bit(bitmap_info->offset, ctl->unit,
1410                           max_t(u64, *offset, bitmap_info->offset));
1411         bits = bytes_to_bits(*bytes, ctl->unit);
1412
1413         for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1414              i < BITS_PER_BITMAP;
1415              i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1416                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1417                                                BITS_PER_BITMAP, i);
1418                 if ((next_zero - i) >= bits) {
1419                         found_bits = next_zero - i;
1420                         break;
1421                 }
1422                 i = next_zero;
1423         }
1424
1425         if (found_bits) {
1426                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1427                 *bytes = (u64)(found_bits) * ctl->unit;
1428                 return 0;
1429         }
1430
1431         return -1;
1432 }
1433
1434 static struct btrfs_free_space *
1435 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1436 {
1437         struct btrfs_free_space *entry;
1438         struct rb_node *node;
1439         int ret;
1440
1441         if (!ctl->free_space_offset.rb_node)
1442                 return NULL;
1443
1444         entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1445         if (!entry)
1446                 return NULL;
1447
1448         for (node = &entry->offset_index; node; node = rb_next(node)) {
1449                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1450                 if (entry->bytes < *bytes)
1451                         continue;
1452
1453                 if (entry->bitmap) {
1454                         ret = search_bitmap(ctl, entry, offset, bytes);
1455                         if (!ret)
1456                                 return entry;
1457                         continue;
1458                 }
1459
1460                 *offset = entry->offset;
1461                 *bytes = entry->bytes;
1462                 return entry;
1463         }
1464
1465         return NULL;
1466 }
1467
1468 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1469                            struct btrfs_free_space *info, u64 offset)
1470 {
1471         info->offset = offset_to_bitmap(ctl, offset);
1472         info->bytes = 0;
1473         INIT_LIST_HEAD(&info->list);
1474         link_free_space(ctl, info);
1475         ctl->total_bitmaps++;
1476
1477         ctl->op->recalc_thresholds(ctl);
1478 }
1479
1480 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1481                         struct btrfs_free_space *bitmap_info)
1482 {
1483         unlink_free_space(ctl, bitmap_info);
1484         kfree(bitmap_info->bitmap);
1485         kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1486         ctl->total_bitmaps--;
1487         ctl->op->recalc_thresholds(ctl);
1488 }
1489
1490 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1491                               struct btrfs_free_space *bitmap_info,
1492                               u64 *offset, u64 *bytes)
1493 {
1494         u64 end;
1495         u64 search_start, search_bytes;
1496         int ret;
1497
1498 again:
1499         end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1500
1501         /*
1502          * XXX - this can go away after a few releases.
1503          *
1504          * since the only user of btrfs_remove_free_space is the tree logging
1505          * stuff, and the only way to test that is under crash conditions, we
1506          * want to have this debug stuff here just in case somethings not
1507          * working.  Search the bitmap for the space we are trying to use to
1508          * make sure its actually there.  If its not there then we need to stop
1509          * because something has gone wrong.
1510          */
1511         search_start = *offset;
1512         search_bytes = *bytes;
1513         search_bytes = min(search_bytes, end - search_start + 1);
1514         ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1515         BUG_ON(ret < 0 || search_start != *offset);
1516
1517         if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1518                 bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1519                 *bytes -= end - *offset + 1;
1520                 *offset = end + 1;
1521         } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1522                 bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1523                 *bytes = 0;
1524         }
1525
1526         if (*bytes) {
1527                 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1528                 if (!bitmap_info->bytes)
1529                         free_bitmap(ctl, bitmap_info);
1530
1531                 /*
1532                  * no entry after this bitmap, but we still have bytes to
1533                  * remove, so something has gone wrong.
1534                  */
1535                 if (!next)
1536                         return -EINVAL;
1537
1538                 bitmap_info = rb_entry(next, struct btrfs_free_space,
1539                                        offset_index);
1540
1541                 /*
1542                  * if the next entry isn't a bitmap we need to return to let the
1543                  * extent stuff do its work.
1544                  */
1545                 if (!bitmap_info->bitmap)
1546                         return -EAGAIN;
1547
1548                 /*
1549                  * Ok the next item is a bitmap, but it may not actually hold
1550                  * the information for the rest of this free space stuff, so
1551                  * look for it, and if we don't find it return so we can try
1552                  * everything over again.
1553                  */
1554                 search_start = *offset;
1555                 search_bytes = *bytes;
1556                 ret = search_bitmap(ctl, bitmap_info, &search_start,
1557                                     &search_bytes);
1558                 if (ret < 0 || search_start != *offset)
1559                         return -EAGAIN;
1560
1561                 goto again;
1562         } else if (!bitmap_info->bytes)
1563                 free_bitmap(ctl, bitmap_info);
1564
1565         return 0;
1566 }
1567
1568 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1569                                struct btrfs_free_space *info, u64 offset,
1570                                u64 bytes)
1571 {
1572         u64 bytes_to_set = 0;
1573         u64 end;
1574
1575         end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1576
1577         bytes_to_set = min(end - offset, bytes);
1578
1579         bitmap_set_bits(ctl, info, offset, bytes_to_set);
1580
1581         return bytes_to_set;
1582
1583 }
1584
1585 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1586                       struct btrfs_free_space *info)
1587 {
1588         struct btrfs_block_group_cache *block_group = ctl->private;
1589
1590         /*
1591          * If we are below the extents threshold then we can add this as an
1592          * extent, and don't have to deal with the bitmap
1593          */
1594         if (ctl->free_extents < ctl->extents_thresh) {
1595                 /*
1596                  * If this block group has some small extents we don't want to
1597                  * use up all of our free slots in the cache with them, we want
1598                  * to reserve them to larger extents, however if we have plent
1599                  * of cache left then go ahead an dadd them, no sense in adding
1600                  * the overhead of a bitmap if we don't have to.
1601                  */
1602                 if (info->bytes <= block_group->sectorsize * 4) {
1603                         if (ctl->free_extents * 2 <= ctl->extents_thresh)
1604                                 return false;
1605                 } else {
1606                         return false;
1607                 }
1608         }
1609
1610         /*
1611          * some block groups are so tiny they can't be enveloped by a bitmap, so
1612          * don't even bother to create a bitmap for this
1613          */
1614         if (BITS_PER_BITMAP * block_group->sectorsize >
1615             block_group->key.offset)
1616                 return false;
1617
1618         return true;
1619 }
1620
1621 static struct btrfs_free_space_op free_space_op = {
1622         .recalc_thresholds      = recalculate_thresholds,
1623         .use_bitmap             = use_bitmap,
1624 };
1625
1626 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1627                               struct btrfs_free_space *info)
1628 {
1629         struct btrfs_free_space *bitmap_info;
1630         struct btrfs_block_group_cache *block_group = NULL;
1631         int added = 0;
1632         u64 bytes, offset, bytes_added;
1633         int ret;
1634
1635         bytes = info->bytes;
1636         offset = info->offset;
1637
1638         if (!ctl->op->use_bitmap(ctl, info))
1639                 return 0;
1640
1641         if (ctl->op == &free_space_op)
1642                 block_group = ctl->private;
1643 again:
1644         /*
1645          * Since we link bitmaps right into the cluster we need to see if we
1646          * have a cluster here, and if so and it has our bitmap we need to add
1647          * the free space to that bitmap.
1648          */
1649         if (block_group && !list_empty(&block_group->cluster_list)) {
1650                 struct btrfs_free_cluster *cluster;
1651                 struct rb_node *node;
1652                 struct btrfs_free_space *entry;
1653
1654                 cluster = list_entry(block_group->cluster_list.next,
1655                                      struct btrfs_free_cluster,
1656                                      block_group_list);
1657                 spin_lock(&cluster->lock);
1658                 node = rb_first(&cluster->root);
1659                 if (!node) {
1660                         spin_unlock(&cluster->lock);
1661                         goto no_cluster_bitmap;
1662                 }
1663
1664                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1665                 if (!entry->bitmap) {
1666                         spin_unlock(&cluster->lock);
1667                         goto no_cluster_bitmap;
1668                 }
1669
1670                 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1671                         bytes_added = add_bytes_to_bitmap(ctl, entry,
1672                                                           offset, bytes);
1673                         bytes -= bytes_added;
1674                         offset += bytes_added;
1675                 }
1676                 spin_unlock(&cluster->lock);
1677                 if (!bytes) {
1678                         ret = 1;
1679                         goto out;
1680                 }
1681         }
1682
1683 no_cluster_bitmap:
1684         bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1685                                          1, 0);
1686         if (!bitmap_info) {
1687                 BUG_ON(added);
1688                 goto new_bitmap;
1689         }
1690
1691         bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1692         bytes -= bytes_added;
1693         offset += bytes_added;
1694         added = 0;
1695
1696         if (!bytes) {
1697                 ret = 1;
1698                 goto out;
1699         } else
1700                 goto again;
1701
1702 new_bitmap:
1703         if (info && info->bitmap) {
1704                 add_new_bitmap(ctl, info, offset);
1705                 added = 1;
1706                 info = NULL;
1707                 goto again;
1708         } else {
1709                 spin_unlock(&ctl->tree_lock);
1710
1711                 /* no pre-allocated info, allocate a new one */
1712                 if (!info) {
1713                         info = kmem_cache_zalloc(btrfs_free_space_cachep,
1714                                                  GFP_NOFS);
1715                         if (!info) {
1716                                 spin_lock(&ctl->tree_lock);
1717                                 ret = -ENOMEM;
1718                                 goto out;
1719                         }
1720                 }
1721
1722                 /* allocate the bitmap */
1723                 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1724                 spin_lock(&ctl->tree_lock);
1725                 if (!info->bitmap) {
1726                         ret = -ENOMEM;
1727                         goto out;
1728                 }
1729                 goto again;
1730         }
1731
1732 out:
1733         if (info) {
1734                 if (info->bitmap)
1735                         kfree(info->bitmap);
1736                 kmem_cache_free(btrfs_free_space_cachep, info);
1737         }
1738
1739         return ret;
1740 }
1741
1742 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1743                           struct btrfs_free_space *info, bool update_stat)
1744 {
1745         struct btrfs_free_space *left_info;
1746         struct btrfs_free_space *right_info;
1747         bool merged = false;
1748         u64 offset = info->offset;
1749         u64 bytes = info->bytes;
1750
1751         /*
1752          * first we want to see if there is free space adjacent to the range we
1753          * are adding, if there is remove that struct and add a new one to
1754          * cover the entire range
1755          */
1756         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1757         if (right_info && rb_prev(&right_info->offset_index))
1758                 left_info = rb_entry(rb_prev(&right_info->offset_index),
1759                                      struct btrfs_free_space, offset_index);
1760         else
1761                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1762
1763         if (right_info && !right_info->bitmap) {
1764                 if (update_stat)
1765                         unlink_free_space(ctl, right_info);
1766                 else
1767                         __unlink_free_space(ctl, right_info);
1768                 info->bytes += right_info->bytes;
1769                 kmem_cache_free(btrfs_free_space_cachep, right_info);
1770                 merged = true;
1771         }
1772
1773         if (left_info && !left_info->bitmap &&
1774             left_info->offset + left_info->bytes == offset) {
1775                 if (update_stat)
1776                         unlink_free_space(ctl, left_info);
1777                 else
1778                         __unlink_free_space(ctl, left_info);
1779                 info->offset = left_info->offset;
1780                 info->bytes += left_info->bytes;
1781                 kmem_cache_free(btrfs_free_space_cachep, left_info);
1782                 merged = true;
1783         }
1784
1785         return merged;
1786 }
1787
1788 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1789                            u64 offset, u64 bytes)
1790 {
1791         struct btrfs_free_space *info;
1792         int ret = 0;
1793
1794         info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1795         if (!info)
1796                 return -ENOMEM;
1797
1798         info->offset = offset;
1799         info->bytes = bytes;
1800
1801         spin_lock(&ctl->tree_lock);
1802
1803         if (try_merge_free_space(ctl, info, true))
1804                 goto link;
1805
1806         /*
1807          * There was no extent directly to the left or right of this new
1808          * extent then we know we're going to have to allocate a new extent, so
1809          * before we do that see if we need to drop this into a bitmap
1810          */
1811         ret = insert_into_bitmap(ctl, info);
1812         if (ret < 0) {
1813                 goto out;
1814         } else if (ret) {
1815                 ret = 0;
1816                 goto out;
1817         }
1818 link:
1819         ret = link_free_space(ctl, info);
1820         if (ret)
1821                 kmem_cache_free(btrfs_free_space_cachep, info);
1822 out:
1823         spin_unlock(&ctl->tree_lock);
1824
1825         if (ret) {
1826                 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1827                 BUG_ON(ret == -EEXIST);
1828         }
1829
1830         return ret;
1831 }
1832
1833 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1834                             u64 offset, u64 bytes)
1835 {
1836         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1837         struct btrfs_free_space *info;
1838         struct btrfs_free_space *next_info = NULL;
1839         int ret = 0;
1840
1841         spin_lock(&ctl->tree_lock);
1842
1843 again:
1844         info = tree_search_offset(ctl, offset, 0, 0);
1845         if (!info) {
1846                 /*
1847                  * oops didn't find an extent that matched the space we wanted
1848                  * to remove, look for a bitmap instead
1849                  */
1850                 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1851                                           1, 0);
1852                 if (!info) {
1853                         /* the tree logging code might be calling us before we
1854                          * have fully loaded the free space rbtree for this
1855                          * block group.  So it is possible the entry won't
1856                          * be in the rbtree yet at all.  The caching code
1857                          * will make sure not to put it in the rbtree if
1858                          * the logging code has pinned it.
1859                          */
1860                         goto out_lock;
1861                 }
1862         }
1863
1864         if (info->bytes < bytes && rb_next(&info->offset_index)) {
1865                 u64 end;
1866                 next_info = rb_entry(rb_next(&info->offset_index),
1867                                              struct btrfs_free_space,
1868                                              offset_index);
1869
1870                 if (next_info->bitmap)
1871                         end = next_info->offset +
1872                               BITS_PER_BITMAP * ctl->unit - 1;
1873                 else
1874                         end = next_info->offset + next_info->bytes;
1875
1876                 if (next_info->bytes < bytes ||
1877                     next_info->offset > offset || offset > end) {
1878                         printk(KERN_CRIT "Found free space at %llu, size %llu,"
1879                               " trying to use %llu\n",
1880                               (unsigned long long)info->offset,
1881                               (unsigned long long)info->bytes,
1882                               (unsigned long long)bytes);
1883                         WARN_ON(1);
1884                         ret = -EINVAL;
1885                         goto out_lock;
1886                 }
1887
1888                 info = next_info;
1889         }
1890
1891         if (info->bytes == bytes) {
1892                 unlink_free_space(ctl, info);
1893                 if (info->bitmap) {
1894                         kfree(info->bitmap);
1895                         ctl->total_bitmaps--;
1896                 }
1897                 kmem_cache_free(btrfs_free_space_cachep, info);
1898                 ret = 0;
1899                 goto out_lock;
1900         }
1901
1902         if (!info->bitmap && info->offset == offset) {
1903                 unlink_free_space(ctl, info);
1904                 info->offset += bytes;
1905                 info->bytes -= bytes;
1906                 ret = link_free_space(ctl, info);
1907                 WARN_ON(ret);
1908                 goto out_lock;
1909         }
1910
1911         if (!info->bitmap && info->offset <= offset &&
1912             info->offset + info->bytes >= offset + bytes) {
1913                 u64 old_start = info->offset;
1914                 /*
1915                  * we're freeing space in the middle of the info,
1916                  * this can happen during tree log replay
1917                  *
1918                  * first unlink the old info and then
1919                  * insert it again after the hole we're creating
1920                  */
1921                 unlink_free_space(ctl, info);
1922                 if (offset + bytes < info->offset + info->bytes) {
1923                         u64 old_end = info->offset + info->bytes;
1924
1925                         info->offset = offset + bytes;
1926                         info->bytes = old_end - info->offset;
1927                         ret = link_free_space(ctl, info);
1928                         WARN_ON(ret);
1929                         if (ret)
1930                                 goto out_lock;
1931                 } else {
1932                         /* the hole we're creating ends at the end
1933                          * of the info struct, just free the info
1934                          */
1935                         kmem_cache_free(btrfs_free_space_cachep, info);
1936                 }
1937                 spin_unlock(&ctl->tree_lock);
1938
1939                 /* step two, insert a new info struct to cover
1940                  * anything before the hole
1941                  */
1942                 ret = btrfs_add_free_space(block_group, old_start,
1943                                            offset - old_start);
1944                 WARN_ON(ret);
1945                 goto out;
1946         }
1947
1948         ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1949         if (ret == -EAGAIN)
1950                 goto again;
1951         BUG_ON(ret);
1952 out_lock:
1953         spin_unlock(&ctl->tree_lock);
1954 out:
1955         return ret;
1956 }
1957
1958 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1959                            u64 bytes)
1960 {
1961         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1962         struct btrfs_free_space *info;
1963         struct rb_node *n;
1964         int count = 0;
1965
1966         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1967                 info = rb_entry(n, struct btrfs_free_space, offset_index);
1968                 if (info->bytes >= bytes)
1969                         count++;
1970                 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1971                        (unsigned long long)info->offset,
1972                        (unsigned long long)info->bytes,
1973                        (info->bitmap) ? "yes" : "no");
1974         }
1975         printk(KERN_INFO "block group has cluster?: %s\n",
1976                list_empty(&block_group->cluster_list) ? "no" : "yes");
1977         printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1978                "\n", count);
1979 }
1980
1981 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1982 {
1983         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1984
1985         spin_lock_init(&ctl->tree_lock);
1986         ctl->unit = block_group->sectorsize;
1987         ctl->start = block_group->key.objectid;
1988         ctl->private = block_group;
1989         ctl->op = &free_space_op;
1990
1991         /*
1992          * we only want to have 32k of ram per block group for keeping
1993          * track of free space, and if we pass 1/2 of that we want to
1994          * start converting things over to using bitmaps
1995          */
1996         ctl->extents_thresh = ((1024 * 32) / 2) /
1997                                 sizeof(struct btrfs_free_space);
1998 }
1999
2000 /*
2001  * for a given cluster, put all of its extents back into the free
2002  * space cache.  If the block group passed doesn't match the block group
2003  * pointed to by the cluster, someone else raced in and freed the
2004  * cluster already.  In that case, we just return without changing anything
2005  */
2006 static int
2007 __btrfs_return_cluster_to_free_space(
2008                              struct btrfs_block_group_cache *block_group,
2009                              struct btrfs_free_cluster *cluster)
2010 {
2011         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2012         struct btrfs_free_space *entry;
2013         struct rb_node *node;
2014
2015         spin_lock(&cluster->lock);
2016         if (cluster->block_group != block_group)
2017                 goto out;
2018
2019         cluster->block_group = NULL;
2020         cluster->window_start = 0;
2021         list_del_init(&cluster->block_group_list);
2022
2023         node = rb_first(&cluster->root);
2024         while (node) {
2025                 bool bitmap;
2026
2027                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2028                 node = rb_next(&entry->offset_index);
2029                 rb_erase(&entry->offset_index, &cluster->root);
2030
2031                 bitmap = (entry->bitmap != NULL);
2032                 if (!bitmap)
2033                         try_merge_free_space(ctl, entry, false);
2034                 tree_insert_offset(&ctl->free_space_offset,
2035                                    entry->offset, &entry->offset_index, bitmap);
2036         }
2037         cluster->root = RB_ROOT;
2038
2039 out:
2040         spin_unlock(&cluster->lock);
2041         btrfs_put_block_group(block_group);
2042         return 0;
2043 }
2044
2045 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2046 {
2047         struct btrfs_free_space *info;
2048         struct rb_node *node;
2049
2050         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2051                 info = rb_entry(node, struct btrfs_free_space, offset_index);
2052                 if (!info->bitmap) {
2053                         unlink_free_space(ctl, info);
2054                         kmem_cache_free(btrfs_free_space_cachep, info);
2055                 } else {
2056                         free_bitmap(ctl, info);
2057                 }
2058                 if (need_resched()) {
2059                         spin_unlock(&ctl->tree_lock);
2060                         cond_resched();
2061                         spin_lock(&ctl->tree_lock);
2062                 }
2063         }
2064 }
2065
2066 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2067 {
2068         spin_lock(&ctl->tree_lock);
2069         __btrfs_remove_free_space_cache_locked(ctl);
2070         spin_unlock(&ctl->tree_lock);
2071 }
2072
2073 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2074 {
2075         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2076         struct btrfs_free_cluster *cluster;
2077         struct list_head *head;
2078
2079         spin_lock(&ctl->tree_lock);
2080         while ((head = block_group->cluster_list.next) !=
2081                &block_group->cluster_list) {
2082                 cluster = list_entry(head, struct btrfs_free_cluster,
2083                                      block_group_list);
2084
2085                 WARN_ON(cluster->block_group != block_group);
2086                 __btrfs_return_cluster_to_free_space(block_group, cluster);
2087                 if (need_resched()) {
2088                         spin_unlock(&ctl->tree_lock);
2089                         cond_resched();
2090                         spin_lock(&ctl->tree_lock);
2091                 }
2092         }
2093         __btrfs_remove_free_space_cache_locked(ctl);
2094         spin_unlock(&ctl->tree_lock);
2095
2096 }
2097
2098 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2099                                u64 offset, u64 bytes, u64 empty_size)
2100 {
2101         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2102         struct btrfs_free_space *entry = NULL;
2103         u64 bytes_search = bytes + empty_size;
2104         u64 ret = 0;
2105
2106         spin_lock(&ctl->tree_lock);
2107         entry = find_free_space(ctl, &offset, &bytes_search);
2108         if (!entry)
2109                 goto out;
2110
2111         ret = offset;
2112         if (entry->bitmap) {
2113                 bitmap_clear_bits(ctl, entry, offset, bytes);
2114                 if (!entry->bytes)
2115                         free_bitmap(ctl, entry);
2116         } else {
2117                 unlink_free_space(ctl, entry);
2118                 entry->offset += bytes;
2119                 entry->bytes -= bytes;
2120                 if (!entry->bytes)
2121                         kmem_cache_free(btrfs_free_space_cachep, entry);
2122                 else
2123                         link_free_space(ctl, entry);
2124         }
2125
2126 out:
2127         spin_unlock(&ctl->tree_lock);
2128
2129         return ret;
2130 }
2131
2132 /*
2133  * given a cluster, put all of its extents back into the free space
2134  * cache.  If a block group is passed, this function will only free
2135  * a cluster that belongs to the passed block group.
2136  *
2137  * Otherwise, it'll get a reference on the block group pointed to by the
2138  * cluster and remove the cluster from it.
2139  */
2140 int btrfs_return_cluster_to_free_space(
2141                                struct btrfs_block_group_cache *block_group,
2142                                struct btrfs_free_cluster *cluster)
2143 {
2144         struct btrfs_free_space_ctl *ctl;
2145         int ret;
2146
2147         /* first, get a safe pointer to the block group */
2148         spin_lock(&cluster->lock);
2149         if (!block_group) {
2150                 block_group = cluster->block_group;
2151                 if (!block_group) {
2152                         spin_unlock(&cluster->lock);
2153                         return 0;
2154                 }
2155         } else if (cluster->block_group != block_group) {
2156                 /* someone else has already freed it don't redo their work */
2157                 spin_unlock(&cluster->lock);
2158                 return 0;
2159         }
2160         atomic_inc(&block_group->count);
2161         spin_unlock(&cluster->lock);
2162
2163         ctl = block_group->free_space_ctl;
2164
2165         /* now return any extents the cluster had on it */
2166         spin_lock(&ctl->tree_lock);
2167         ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2168         spin_unlock(&ctl->tree_lock);
2169
2170         /* finally drop our ref */
2171         btrfs_put_block_group(block_group);
2172         return ret;
2173 }
2174
2175 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2176                                    struct btrfs_free_cluster *cluster,
2177                                    struct btrfs_free_space *entry,
2178                                    u64 bytes, u64 min_start)
2179 {
2180         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2181         int err;
2182         u64 search_start = cluster->window_start;
2183         u64 search_bytes = bytes;
2184         u64 ret = 0;
2185
2186         search_start = min_start;
2187         search_bytes = bytes;
2188
2189         err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2190         if (err)
2191                 return 0;
2192
2193         ret = search_start;
2194         __bitmap_clear_bits(ctl, entry, ret, bytes);
2195
2196         return ret;
2197 }
2198
2199 /*
2200  * given a cluster, try to allocate 'bytes' from it, returns 0
2201  * if it couldn't find anything suitably large, or a logical disk offset
2202  * if things worked out
2203  */
2204 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2205                              struct btrfs_free_cluster *cluster, u64 bytes,
2206                              u64 min_start)
2207 {
2208         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2209         struct btrfs_free_space *entry = NULL;
2210         struct rb_node *node;
2211         u64 ret = 0;
2212
2213         spin_lock(&cluster->lock);
2214         if (bytes > cluster->max_size)
2215                 goto out;
2216
2217         if (cluster->block_group != block_group)
2218                 goto out;
2219
2220         node = rb_first(&cluster->root);
2221         if (!node)
2222                 goto out;
2223
2224         entry = rb_entry(node, struct btrfs_free_space, offset_index);
2225         while(1) {
2226                 if (entry->bytes < bytes ||
2227                     (!entry->bitmap && entry->offset < min_start)) {
2228                         node = rb_next(&entry->offset_index);
2229                         if (!node)
2230                                 break;
2231                         entry = rb_entry(node, struct btrfs_free_space,
2232                                          offset_index);
2233                         continue;
2234                 }
2235
2236                 if (entry->bitmap) {
2237                         ret = btrfs_alloc_from_bitmap(block_group,
2238                                                       cluster, entry, bytes,
2239                                                       min_start);
2240                         if (ret == 0) {
2241                                 node = rb_next(&entry->offset_index);
2242                                 if (!node)
2243                                         break;
2244                                 entry = rb_entry(node, struct btrfs_free_space,
2245                                                  offset_index);
2246                                 continue;
2247                         }
2248                 } else {
2249                         ret = entry->offset;
2250
2251                         entry->offset += bytes;
2252                         entry->bytes -= bytes;
2253                 }
2254
2255                 if (entry->bytes == 0)
2256                         rb_erase(&entry->offset_index, &cluster->root);
2257                 break;
2258         }
2259 out:
2260         spin_unlock(&cluster->lock);
2261
2262         if (!ret)
2263                 return 0;
2264
2265         spin_lock(&ctl->tree_lock);
2266
2267         ctl->free_space -= bytes;
2268         if (entry->bytes == 0) {
2269                 ctl->free_extents--;
2270                 if (entry->bitmap) {
2271                         kfree(entry->bitmap);
2272                         ctl->total_bitmaps--;
2273                         ctl->op->recalc_thresholds(ctl);
2274                 }
2275                 kmem_cache_free(btrfs_free_space_cachep, entry);
2276         }
2277
2278         spin_unlock(&ctl->tree_lock);
2279
2280         return ret;
2281 }
2282
2283 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2284                                 struct btrfs_free_space *entry,
2285                                 struct btrfs_free_cluster *cluster,
2286                                 u64 offset, u64 bytes, u64 min_bytes)
2287 {
2288         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2289         unsigned long next_zero;
2290         unsigned long i;
2291         unsigned long search_bits;
2292         unsigned long total_bits;
2293         unsigned long found_bits;
2294         unsigned long start = 0;
2295         unsigned long total_found = 0;
2296         int ret;
2297         bool found = false;
2298
2299         i = offset_to_bit(entry->offset, block_group->sectorsize,
2300                           max_t(u64, offset, entry->offset));
2301         search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2302         total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2303
2304 again:
2305         found_bits = 0;
2306         for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2307              i < BITS_PER_BITMAP;
2308              i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2309                 next_zero = find_next_zero_bit(entry->bitmap,
2310                                                BITS_PER_BITMAP, i);
2311                 if (next_zero - i >= search_bits) {
2312                         found_bits = next_zero - i;
2313                         break;
2314                 }
2315                 i = next_zero;
2316         }
2317
2318         if (!found_bits)
2319                 return -ENOSPC;
2320
2321         if (!found) {
2322                 start = i;
2323                 cluster->max_size = 0;
2324                 found = true;
2325         }
2326
2327         total_found += found_bits;
2328
2329         if (cluster->max_size < found_bits * block_group->sectorsize)
2330                 cluster->max_size = found_bits * block_group->sectorsize;
2331
2332         if (total_found < total_bits) {
2333                 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2334                 if (i - start > total_bits * 2) {
2335                         total_found = 0;
2336                         cluster->max_size = 0;
2337                         found = false;
2338                 }
2339                 goto again;
2340         }
2341
2342         cluster->window_start = start * block_group->sectorsize +
2343                 entry->offset;
2344         rb_erase(&entry->offset_index, &ctl->free_space_offset);
2345         ret = tree_insert_offset(&cluster->root, entry->offset,
2346                                  &entry->offset_index, 1);
2347         BUG_ON(ret);
2348
2349         return 0;
2350 }
2351
2352 /*
2353  * This searches the block group for just extents to fill the cluster with.
2354  */
2355 static noinline int
2356 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2357                         struct btrfs_free_cluster *cluster,
2358                         struct list_head *bitmaps, u64 offset, u64 bytes,
2359                         u64 min_bytes)
2360 {
2361         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2362         struct btrfs_free_space *first = NULL;
2363         struct btrfs_free_space *entry = NULL;
2364         struct btrfs_free_space *prev = NULL;
2365         struct btrfs_free_space *last;
2366         struct rb_node *node;
2367         u64 window_start;
2368         u64 window_free;
2369         u64 max_extent;
2370         u64 max_gap = 128 * 1024;
2371
2372         entry = tree_search_offset(ctl, offset, 0, 1);
2373         if (!entry)
2374                 return -ENOSPC;
2375
2376         /*
2377          * We don't want bitmaps, so just move along until we find a normal
2378          * extent entry.
2379          */
2380         while (entry->bitmap) {
2381                 if (list_empty(&entry->list))
2382                         list_add_tail(&entry->list, bitmaps);
2383                 node = rb_next(&entry->offset_index);
2384                 if (!node)
2385                         return -ENOSPC;
2386                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2387         }
2388
2389         window_start = entry->offset;
2390         window_free = entry->bytes;
2391         max_extent = entry->bytes;
2392         first = entry;
2393         last = entry;
2394         prev = entry;
2395
2396         while (window_free <= min_bytes) {
2397                 node = rb_next(&entry->offset_index);
2398                 if (!node)
2399                         return -ENOSPC;
2400                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2401
2402                 if (entry->bitmap) {
2403                         if (list_empty(&entry->list))
2404                                 list_add_tail(&entry->list, bitmaps);
2405                         continue;
2406                 }
2407
2408                 /*
2409                  * we haven't filled the empty size and the window is
2410                  * very large.  reset and try again
2411                  */
2412                 if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2413                     entry->offset - window_start > (min_bytes * 2)) {
2414                         first = entry;
2415                         window_start = entry->offset;
2416                         window_free = entry->bytes;
2417                         last = entry;
2418                         max_extent = entry->bytes;
2419                 } else {
2420                         last = entry;
2421                         window_free += entry->bytes;
2422                         if (entry->bytes > max_extent)
2423                                 max_extent = entry->bytes;
2424                 }
2425                 prev = entry;
2426         }
2427
2428         cluster->window_start = first->offset;
2429
2430         node = &first->offset_index;
2431
2432         /*
2433          * now we've found our entries, pull them out of the free space
2434          * cache and put them into the cluster rbtree
2435          */
2436         do {
2437                 int ret;
2438
2439                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2440                 node = rb_next(&entry->offset_index);
2441                 if (entry->bitmap)
2442                         continue;
2443
2444                 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2445                 ret = tree_insert_offset(&cluster->root, entry->offset,
2446                                          &entry->offset_index, 0);
2447                 BUG_ON(ret);
2448         } while (node && entry != last);
2449
2450         cluster->max_size = max_extent;
2451
2452         return 0;
2453 }
2454
2455 /*
2456  * This specifically looks for bitmaps that may work in the cluster, we assume
2457  * that we have already failed to find extents that will work.
2458  */
2459 static noinline int
2460 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2461                      struct btrfs_free_cluster *cluster,
2462                      struct list_head *bitmaps, u64 offset, u64 bytes,
2463                      u64 min_bytes)
2464 {
2465         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2466         struct btrfs_free_space *entry;
2467         int ret = -ENOSPC;
2468         u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2469
2470         if (ctl->total_bitmaps == 0)
2471                 return -ENOSPC;
2472
2473         /*
2474          * The bitmap that covers offset won't be in the list unless offset
2475          * is just its start offset.
2476          */
2477         entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2478         if (entry->offset != bitmap_offset) {
2479                 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2480                 if (entry && list_empty(&entry->list))
2481                         list_add(&entry->list, bitmaps);
2482         }
2483
2484         list_for_each_entry(entry, bitmaps, list) {
2485                 if (entry->bytes < min_bytes)
2486                         continue;
2487                 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2488                                            bytes, min_bytes);
2489                 if (!ret)
2490                         return 0;
2491         }
2492
2493         /*
2494          * The bitmaps list has all the bitmaps that record free space
2495          * starting after offset, so no more search is required.
2496          */
2497         return -ENOSPC;
2498 }
2499
2500 /*
2501  * here we try to find a cluster of blocks in a block group.  The goal
2502  * is to find at least bytes free and up to empty_size + bytes free.
2503  * We might not find them all in one contiguous area.
2504  *
2505  * returns zero and sets up cluster if things worked out, otherwise
2506  * it returns -enospc
2507  */
2508 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2509                              struct btrfs_root *root,
2510                              struct btrfs_block_group_cache *block_group,
2511                              struct btrfs_free_cluster *cluster,
2512                              u64 offset, u64 bytes, u64 empty_size)
2513 {
2514         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2515         struct btrfs_free_space *entry, *tmp;
2516         LIST_HEAD(bitmaps);
2517         u64 min_bytes;
2518         int ret;
2519
2520         /* for metadata, allow allocates with more holes */
2521         if (btrfs_test_opt(root, SSD_SPREAD)) {
2522                 min_bytes = bytes + empty_size;
2523         } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2524                 /*
2525                  * we want to do larger allocations when we are
2526                  * flushing out the delayed refs, it helps prevent
2527                  * making more work as we go along.
2528                  */
2529                 if (trans->transaction->delayed_refs.flushing)
2530                         min_bytes = max(bytes, (bytes + empty_size) >> 1);
2531                 else
2532                         min_bytes = max(bytes, (bytes + empty_size) >> 4);
2533         } else
2534                 min_bytes = max(bytes, (bytes + empty_size) >> 2);
2535
2536         spin_lock(&ctl->tree_lock);
2537
2538         /*
2539          * If we know we don't have enough space to make a cluster don't even
2540          * bother doing all the work to try and find one.
2541          */
2542         if (ctl->free_space < min_bytes) {
2543                 spin_unlock(&ctl->tree_lock);
2544                 return -ENOSPC;
2545         }
2546
2547         spin_lock(&cluster->lock);
2548
2549         /* someone already found a cluster, hooray */
2550         if (cluster->block_group) {
2551                 ret = 0;
2552                 goto out;
2553         }
2554
2555         ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2556                                       bytes, min_bytes);
2557         if (ret)
2558                 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2559                                            offset, bytes, min_bytes);
2560
2561         /* Clear our temporary list */
2562         list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2563                 list_del_init(&entry->list);
2564
2565         if (!ret) {
2566                 atomic_inc(&block_group->count);
2567                 list_add_tail(&cluster->block_group_list,
2568                               &block_group->cluster_list);
2569                 cluster->block_group = block_group;
2570         }
2571 out:
2572         spin_unlock(&cluster->lock);
2573         spin_unlock(&ctl->tree_lock);
2574
2575         return ret;
2576 }
2577
2578 /*
2579  * simple code to zero out a cluster
2580  */
2581 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2582 {
2583         spin_lock_init(&cluster->lock);
2584         spin_lock_init(&cluster->refill_lock);
2585         cluster->root = RB_ROOT;
2586         cluster->max_size = 0;
2587         INIT_LIST_HEAD(&cluster->block_group_list);
2588         cluster->block_group = NULL;
2589 }
2590
2591 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2592                            u64 *trimmed, u64 start, u64 end, u64 minlen)
2593 {
2594         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2595         struct btrfs_free_space *entry = NULL;
2596         struct btrfs_fs_info *fs_info = block_group->fs_info;
2597         u64 bytes = 0;
2598         u64 actually_trimmed;
2599         int ret = 0;
2600
2601         *trimmed = 0;
2602
2603         while (start < end) {
2604                 spin_lock(&ctl->tree_lock);
2605
2606                 if (ctl->free_space < minlen) {
2607                         spin_unlock(&ctl->tree_lock);
2608                         break;
2609                 }
2610
2611                 entry = tree_search_offset(ctl, start, 0, 1);
2612                 if (!entry)
2613                         entry = tree_search_offset(ctl,
2614                                                    offset_to_bitmap(ctl, start),
2615                                                    1, 1);
2616
2617                 if (!entry || entry->offset >= end) {
2618                         spin_unlock(&ctl->tree_lock);
2619                         break;
2620                 }
2621
2622                 if (entry->bitmap) {
2623                         ret = search_bitmap(ctl, entry, &start, &bytes);
2624                         if (!ret) {
2625                                 if (start >= end) {
2626                                         spin_unlock(&ctl->tree_lock);
2627                                         break;
2628                                 }
2629                                 bytes = min(bytes, end - start);
2630                                 bitmap_clear_bits(ctl, entry, start, bytes);
2631                                 if (entry->bytes == 0)
2632                                         free_bitmap(ctl, entry);
2633                         } else {
2634                                 start = entry->offset + BITS_PER_BITMAP *
2635                                         block_group->sectorsize;
2636                                 spin_unlock(&ctl->tree_lock);
2637                                 ret = 0;
2638                                 continue;
2639                         }
2640                 } else {
2641                         start = entry->offset;
2642                         bytes = min(entry->bytes, end - start);
2643                         unlink_free_space(ctl, entry);
2644                         kmem_cache_free(btrfs_free_space_cachep, entry);
2645                 }
2646
2647                 spin_unlock(&ctl->tree_lock);
2648
2649                 if (bytes >= minlen) {
2650                         struct btrfs_space_info *space_info;
2651                         int update = 0;
2652
2653                         space_info = block_group->space_info;
2654                         spin_lock(&space_info->lock);
2655                         spin_lock(&block_group->lock);
2656                         if (!block_group->ro) {
2657                                 block_group->reserved += bytes;
2658                                 space_info->bytes_reserved += bytes;
2659                                 update = 1;
2660                         }
2661                         spin_unlock(&block_group->lock);
2662                         spin_unlock(&space_info->lock);
2663
2664                         ret = btrfs_error_discard_extent(fs_info->extent_root,
2665                                                          start,
2666                                                          bytes,
2667                                                          &actually_trimmed);
2668
2669                         btrfs_add_free_space(block_group, start, bytes);
2670                         if (update) {
2671                                 spin_lock(&space_info->lock);
2672                                 spin_lock(&block_group->lock);
2673                                 if (block_group->ro)
2674                                         space_info->bytes_readonly += bytes;
2675                                 block_group->reserved -= bytes;
2676                                 space_info->bytes_reserved -= bytes;
2677                                 spin_unlock(&space_info->lock);
2678                                 spin_unlock(&block_group->lock);
2679                         }
2680
2681                         if (ret)
2682                                 break;
2683                         *trimmed += actually_trimmed;
2684                 }
2685                 start += bytes;
2686                 bytes = 0;
2687
2688                 if (fatal_signal_pending(current)) {
2689                         ret = -ERESTARTSYS;
2690                         break;
2691                 }
2692
2693                 cond_resched();
2694         }
2695
2696         return ret;
2697 }
2698
2699 /*
2700  * Find the left-most item in the cache tree, and then return the
2701  * smallest inode number in the item.
2702  *
2703  * Note: the returned inode number may not be the smallest one in
2704  * the tree, if the left-most item is a bitmap.
2705  */
2706 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2707 {
2708         struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2709         struct btrfs_free_space *entry = NULL;
2710         u64 ino = 0;
2711
2712         spin_lock(&ctl->tree_lock);
2713
2714         if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2715                 goto out;
2716
2717         entry = rb_entry(rb_first(&ctl->free_space_offset),
2718                          struct btrfs_free_space, offset_index);
2719
2720         if (!entry->bitmap) {
2721                 ino = entry->offset;
2722
2723                 unlink_free_space(ctl, entry);
2724                 entry->offset++;
2725                 entry->bytes--;
2726                 if (!entry->bytes)
2727                         kmem_cache_free(btrfs_free_space_cachep, entry);
2728                 else
2729                         link_free_space(ctl, entry);
2730         } else {
2731                 u64 offset = 0;
2732                 u64 count = 1;
2733                 int ret;
2734
2735                 ret = search_bitmap(ctl, entry, &offset, &count);
2736                 BUG_ON(ret);
2737
2738                 ino = offset;
2739                 bitmap_clear_bits(ctl, entry, offset, 1);
2740                 if (entry->bytes == 0)
2741                         free_bitmap(ctl, entry);
2742         }
2743 out:
2744         spin_unlock(&ctl->tree_lock);
2745
2746         return ino;
2747 }
2748
2749 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2750                                     struct btrfs_path *path)
2751 {
2752         struct inode *inode = NULL;
2753
2754         spin_lock(&root->cache_lock);
2755         if (root->cache_inode)
2756                 inode = igrab(root->cache_inode);
2757         spin_unlock(&root->cache_lock);
2758         if (inode)
2759                 return inode;
2760
2761         inode = __lookup_free_space_inode(root, path, 0);
2762         if (IS_ERR(inode))
2763                 return inode;
2764
2765         spin_lock(&root->cache_lock);
2766         if (!btrfs_fs_closing(root->fs_info))
2767                 root->cache_inode = igrab(inode);
2768         spin_unlock(&root->cache_lock);
2769
2770         return inode;
2771 }
2772
2773 int create_free_ino_inode(struct btrfs_root *root,
2774                           struct btrfs_trans_handle *trans,
2775                           struct btrfs_path *path)
2776 {
2777         return __create_free_space_inode(root, trans, path,
2778                                          BTRFS_FREE_INO_OBJECTID, 0);
2779 }
2780
2781 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2782 {
2783         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2784         struct btrfs_path *path;
2785         struct inode *inode;
2786         int ret = 0;
2787         u64 root_gen = btrfs_root_generation(&root->root_item);
2788
2789         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2790                 return 0;
2791
2792         /*
2793          * If we're unmounting then just return, since this does a search on the
2794          * normal root and not the commit root and we could deadlock.
2795          */
2796         if (btrfs_fs_closing(fs_info))
2797                 return 0;
2798
2799         path = btrfs_alloc_path();
2800         if (!path)
2801                 return 0;
2802
2803         inode = lookup_free_ino_inode(root, path);
2804         if (IS_ERR(inode))
2805                 goto out;
2806
2807         if (root_gen != BTRFS_I(inode)->generation)
2808                 goto out_put;
2809
2810         ret = __load_free_space_cache(root, inode, ctl, path, 0);
2811
2812         if (ret < 0)
2813                 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2814                        "root %llu\n", root->root_key.objectid);
2815 out_put:
2816         iput(inode);
2817 out:
2818         btrfs_free_path(path);
2819         return ret;
2820 }
2821
2822 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2823                               struct btrfs_trans_handle *trans,
2824                               struct btrfs_path *path)
2825 {
2826         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2827         struct inode *inode;
2828         int ret;
2829
2830         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2831                 return 0;
2832
2833         inode = lookup_free_ino_inode(root, path);
2834         if (IS_ERR(inode))
2835                 return 0;
2836
2837         ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2838         if (ret) {
2839                 btrfs_delalloc_release_metadata(inode, inode->i_size);
2840 #ifdef DEBUG
2841                 printk(KERN_ERR "btrfs: failed to write free ino cache "
2842                        "for root %llu\n", root->root_key.objectid);
2843 #endif
2844         }
2845
2846         iput(inode);
2847         return ret;
2848 }