btrfs: check NULL or not
[pandora-kernel.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include "compat.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "print-tree.h"
39 #include "async-thread.h"
40 #include "locking.h"
41 #include "tree-log.h"
42 #include "free-space-cache.h"
43
44 static struct extent_io_ops btree_extent_io_ops;
45 static void end_workqueue_fn(struct btrfs_work *work);
46 static void free_fs_root(struct btrfs_root *root);
47
48 /*
49  * end_io_wq structs are used to do processing in task context when an IO is
50  * complete.  This is used during reads to verify checksums, and it is used
51  * by writes to insert metadata for new file extents after IO is complete.
52  */
53 struct end_io_wq {
54         struct bio *bio;
55         bio_end_io_t *end_io;
56         void *private;
57         struct btrfs_fs_info *info;
58         int error;
59         int metadata;
60         struct list_head list;
61         struct btrfs_work work;
62 };
63
64 /*
65  * async submit bios are used to offload expensive checksumming
66  * onto the worker threads.  They checksum file and metadata bios
67  * just before they are sent down the IO stack.
68  */
69 struct async_submit_bio {
70         struct inode *inode;
71         struct bio *bio;
72         struct list_head list;
73         extent_submit_bio_hook_t *submit_bio_start;
74         extent_submit_bio_hook_t *submit_bio_done;
75         int rw;
76         int mirror_num;
77         unsigned long bio_flags;
78         /*
79          * bio_offset is optional, can be used if the pages in the bio
80          * can't tell us where in the file the bio should go
81          */
82         u64 bio_offset;
83         struct btrfs_work work;
84 };
85
86 /* These are used to set the lockdep class on the extent buffer locks.
87  * The class is set by the readpage_end_io_hook after the buffer has
88  * passed csum validation but before the pages are unlocked.
89  *
90  * The lockdep class is also set by btrfs_init_new_buffer on freshly
91  * allocated blocks.
92  *
93  * The class is based on the level in the tree block, which allows lockdep
94  * to know that lower nodes nest inside the locks of higher nodes.
95  *
96  * We also add a check to make sure the highest level of the tree is
97  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
98  * code needs update as well.
99  */
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 # if BTRFS_MAX_LEVEL != 8
102 #  error
103 # endif
104 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
105 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
106         /* leaf */
107         "btrfs-extent-00",
108         "btrfs-extent-01",
109         "btrfs-extent-02",
110         "btrfs-extent-03",
111         "btrfs-extent-04",
112         "btrfs-extent-05",
113         "btrfs-extent-06",
114         "btrfs-extent-07",
115         /* highest possible level */
116         "btrfs-extent-08",
117 };
118 #endif
119
120 /*
121  * extents on the btree inode are pretty simple, there's one extent
122  * that covers the entire device
123  */
124 static struct extent_map *btree_get_extent(struct inode *inode,
125                 struct page *page, size_t page_offset, u64 start, u64 len,
126                 int create)
127 {
128         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
129         struct extent_map *em;
130         int ret;
131
132         read_lock(&em_tree->lock);
133         em = lookup_extent_mapping(em_tree, start, len);
134         if (em) {
135                 em->bdev =
136                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
137                 read_unlock(&em_tree->lock);
138                 goto out;
139         }
140         read_unlock(&em_tree->lock);
141
142         em = alloc_extent_map(GFP_NOFS);
143         if (!em) {
144                 em = ERR_PTR(-ENOMEM);
145                 goto out;
146         }
147         em->start = 0;
148         em->len = (u64)-1;
149         em->block_len = (u64)-1;
150         em->block_start = 0;
151         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
152
153         write_lock(&em_tree->lock);
154         ret = add_extent_mapping(em_tree, em);
155         if (ret == -EEXIST) {
156                 u64 failed_start = em->start;
157                 u64 failed_len = em->len;
158
159                 free_extent_map(em);
160                 em = lookup_extent_mapping(em_tree, start, len);
161                 if (em) {
162                         ret = 0;
163                 } else {
164                         em = lookup_extent_mapping(em_tree, failed_start,
165                                                    failed_len);
166                         ret = -EIO;
167                 }
168         } else if (ret) {
169                 free_extent_map(em);
170                 em = NULL;
171         }
172         write_unlock(&em_tree->lock);
173
174         if (ret)
175                 em = ERR_PTR(ret);
176 out:
177         return em;
178 }
179
180 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
181 {
182         return crc32c(seed, data, len);
183 }
184
185 void btrfs_csum_final(u32 crc, char *result)
186 {
187         *(__le32 *)result = ~cpu_to_le32(crc);
188 }
189
190 /*
191  * compute the csum for a btree block, and either verify it or write it
192  * into the csum field of the block.
193  */
194 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
195                            int verify)
196 {
197         u16 csum_size =
198                 btrfs_super_csum_size(&root->fs_info->super_copy);
199         char *result = NULL;
200         unsigned long len;
201         unsigned long cur_len;
202         unsigned long offset = BTRFS_CSUM_SIZE;
203         char *map_token = NULL;
204         char *kaddr;
205         unsigned long map_start;
206         unsigned long map_len;
207         int err;
208         u32 crc = ~(u32)0;
209         unsigned long inline_result;
210
211         len = buf->len - offset;
212         while (len > 0) {
213                 err = map_private_extent_buffer(buf, offset, 32,
214                                         &map_token, &kaddr,
215                                         &map_start, &map_len, KM_USER0);
216                 if (err)
217                         return 1;
218                 cur_len = min(len, map_len - (offset - map_start));
219                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
220                                       crc, cur_len);
221                 len -= cur_len;
222                 offset += cur_len;
223                 unmap_extent_buffer(buf, map_token, KM_USER0);
224         }
225         if (csum_size > sizeof(inline_result)) {
226                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
227                 if (!result)
228                         return 1;
229         } else {
230                 result = (char *)&inline_result;
231         }
232
233         btrfs_csum_final(crc, result);
234
235         if (verify) {
236                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
237                         u32 val;
238                         u32 found = 0;
239                         memcpy(&found, result, csum_size);
240
241                         read_extent_buffer(buf, &val, 0, csum_size);
242                         if (printk_ratelimit()) {
243                                 printk(KERN_INFO "btrfs: %s checksum verify "
244                                        "failed on %llu wanted %X found %X "
245                                        "level %d\n",
246                                        root->fs_info->sb->s_id,
247                                        (unsigned long long)buf->start, val, found,
248                                        btrfs_header_level(buf));
249                         }
250                         if (result != (char *)&inline_result)
251                                 kfree(result);
252                         return 1;
253                 }
254         } else {
255                 write_extent_buffer(buf, result, 0, csum_size);
256         }
257         if (result != (char *)&inline_result)
258                 kfree(result);
259         return 0;
260 }
261
262 /*
263  * we can't consider a given block up to date unless the transid of the
264  * block matches the transid in the parent node's pointer.  This is how we
265  * detect blocks that either didn't get written at all or got written
266  * in the wrong place.
267  */
268 static int verify_parent_transid(struct extent_io_tree *io_tree,
269                                  struct extent_buffer *eb, u64 parent_transid)
270 {
271         struct extent_state *cached_state = NULL;
272         int ret;
273
274         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
275                 return 0;
276
277         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
278                          0, &cached_state, GFP_NOFS);
279         if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
280             btrfs_header_generation(eb) == parent_transid) {
281                 ret = 0;
282                 goto out;
283         }
284         if (printk_ratelimit()) {
285                 printk("parent transid verify failed on %llu wanted %llu "
286                        "found %llu\n",
287                        (unsigned long long)eb->start,
288                        (unsigned long long)parent_transid,
289                        (unsigned long long)btrfs_header_generation(eb));
290         }
291         ret = 1;
292         clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
293 out:
294         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
295                              &cached_state, GFP_NOFS);
296         return ret;
297 }
298
299 /*
300  * helper to read a given tree block, doing retries as required when
301  * the checksums don't match and we have alternate mirrors to try.
302  */
303 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
304                                           struct extent_buffer *eb,
305                                           u64 start, u64 parent_transid)
306 {
307         struct extent_io_tree *io_tree;
308         int ret;
309         int num_copies = 0;
310         int mirror_num = 0;
311
312         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
313         while (1) {
314                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
315                                                btree_get_extent, mirror_num);
316                 if (!ret &&
317                     !verify_parent_transid(io_tree, eb, parent_transid))
318                         return ret;
319
320                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
321                                               eb->start, eb->len);
322                 if (num_copies == 1)
323                         return ret;
324
325                 mirror_num++;
326                 if (mirror_num > num_copies)
327                         return ret;
328         }
329         return -EIO;
330 }
331
332 /*
333  * checksum a dirty tree block before IO.  This has extra checks to make sure
334  * we only fill in the checksum field in the first page of a multi-page block
335  */
336
337 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
338 {
339         struct extent_io_tree *tree;
340         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
341         u64 found_start;
342         unsigned long len;
343         struct extent_buffer *eb;
344         int ret;
345
346         tree = &BTRFS_I(page->mapping->host)->io_tree;
347
348         if (page->private == EXTENT_PAGE_PRIVATE)
349                 goto out;
350         if (!page->private)
351                 goto out;
352         len = page->private >> 2;
353         WARN_ON(len == 0);
354
355         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
356         if (eb == NULL) {
357                 WARN_ON(1);
358                 goto out;
359         }
360         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
361                                              btrfs_header_generation(eb));
362         BUG_ON(ret);
363         WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
364
365         found_start = btrfs_header_bytenr(eb);
366         if (found_start != start) {
367                 WARN_ON(1);
368                 goto err;
369         }
370         if (eb->first_page != page) {
371                 WARN_ON(1);
372                 goto err;
373         }
374         if (!PageUptodate(page)) {
375                 WARN_ON(1);
376                 goto err;
377         }
378         csum_tree_block(root, eb, 0);
379 err:
380         free_extent_buffer(eb);
381 out:
382         return 0;
383 }
384
385 static int check_tree_block_fsid(struct btrfs_root *root,
386                                  struct extent_buffer *eb)
387 {
388         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
389         u8 fsid[BTRFS_UUID_SIZE];
390         int ret = 1;
391
392         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
393                            BTRFS_FSID_SIZE);
394         while (fs_devices) {
395                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
396                         ret = 0;
397                         break;
398                 }
399                 fs_devices = fs_devices->seed;
400         }
401         return ret;
402 }
403
404 #ifdef CONFIG_DEBUG_LOCK_ALLOC
405 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
406 {
407         lockdep_set_class_and_name(&eb->lock,
408                            &btrfs_eb_class[level],
409                            btrfs_eb_name[level]);
410 }
411 #endif
412
413 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
414                                struct extent_state *state)
415 {
416         struct extent_io_tree *tree;
417         u64 found_start;
418         int found_level;
419         unsigned long len;
420         struct extent_buffer *eb;
421         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
422         int ret = 0;
423
424         tree = &BTRFS_I(page->mapping->host)->io_tree;
425         if (page->private == EXTENT_PAGE_PRIVATE)
426                 goto out;
427         if (!page->private)
428                 goto out;
429
430         len = page->private >> 2;
431         WARN_ON(len == 0);
432
433         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
434         if (eb == NULL) {
435                 ret = -EIO;
436                 goto out;
437         }
438
439         found_start = btrfs_header_bytenr(eb);
440         if (found_start != start) {
441                 if (printk_ratelimit()) {
442                         printk(KERN_INFO "btrfs bad tree block start "
443                                "%llu %llu\n",
444                                (unsigned long long)found_start,
445                                (unsigned long long)eb->start);
446                 }
447                 ret = -EIO;
448                 goto err;
449         }
450         if (eb->first_page != page) {
451                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
452                        eb->first_page->index, page->index);
453                 WARN_ON(1);
454                 ret = -EIO;
455                 goto err;
456         }
457         if (check_tree_block_fsid(root, eb)) {
458                 if (printk_ratelimit()) {
459                         printk(KERN_INFO "btrfs bad fsid on block %llu\n",
460                                (unsigned long long)eb->start);
461                 }
462                 ret = -EIO;
463                 goto err;
464         }
465         found_level = btrfs_header_level(eb);
466
467         btrfs_set_buffer_lockdep_class(eb, found_level);
468
469         ret = csum_tree_block(root, eb, 1);
470         if (ret)
471                 ret = -EIO;
472
473         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
474         end = eb->start + end - 1;
475 err:
476         free_extent_buffer(eb);
477 out:
478         return ret;
479 }
480
481 static void end_workqueue_bio(struct bio *bio, int err)
482 {
483         struct end_io_wq *end_io_wq = bio->bi_private;
484         struct btrfs_fs_info *fs_info;
485
486         fs_info = end_io_wq->info;
487         end_io_wq->error = err;
488         end_io_wq->work.func = end_workqueue_fn;
489         end_io_wq->work.flags = 0;
490
491         if (bio->bi_rw & REQ_WRITE) {
492                 if (end_io_wq->metadata == 1)
493                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
494                                            &end_io_wq->work);
495                 else if (end_io_wq->metadata == 2)
496                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
497                                            &end_io_wq->work);
498                 else
499                         btrfs_queue_worker(&fs_info->endio_write_workers,
500                                            &end_io_wq->work);
501         } else {
502                 if (end_io_wq->metadata)
503                         btrfs_queue_worker(&fs_info->endio_meta_workers,
504                                            &end_io_wq->work);
505                 else
506                         btrfs_queue_worker(&fs_info->endio_workers,
507                                            &end_io_wq->work);
508         }
509 }
510
511 /*
512  * For the metadata arg you want
513  *
514  * 0 - if data
515  * 1 - if normal metadta
516  * 2 - if writing to the free space cache area
517  */
518 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
519                         int metadata)
520 {
521         struct end_io_wq *end_io_wq;
522         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
523         if (!end_io_wq)
524                 return -ENOMEM;
525
526         end_io_wq->private = bio->bi_private;
527         end_io_wq->end_io = bio->bi_end_io;
528         end_io_wq->info = info;
529         end_io_wq->error = 0;
530         end_io_wq->bio = bio;
531         end_io_wq->metadata = metadata;
532
533         bio->bi_private = end_io_wq;
534         bio->bi_end_io = end_workqueue_bio;
535         return 0;
536 }
537
538 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
539 {
540         unsigned long limit = min_t(unsigned long,
541                                     info->workers.max_workers,
542                                     info->fs_devices->open_devices);
543         return 256 * limit;
544 }
545
546 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
547 {
548         return atomic_read(&info->nr_async_bios) >
549                 btrfs_async_submit_limit(info);
550 }
551
552 static void run_one_async_start(struct btrfs_work *work)
553 {
554         struct async_submit_bio *async;
555
556         async = container_of(work, struct  async_submit_bio, work);
557         async->submit_bio_start(async->inode, async->rw, async->bio,
558                                async->mirror_num, async->bio_flags,
559                                async->bio_offset);
560 }
561
562 static void run_one_async_done(struct btrfs_work *work)
563 {
564         struct btrfs_fs_info *fs_info;
565         struct async_submit_bio *async;
566         int limit;
567
568         async = container_of(work, struct  async_submit_bio, work);
569         fs_info = BTRFS_I(async->inode)->root->fs_info;
570
571         limit = btrfs_async_submit_limit(fs_info);
572         limit = limit * 2 / 3;
573
574         atomic_dec(&fs_info->nr_async_submits);
575
576         if (atomic_read(&fs_info->nr_async_submits) < limit &&
577             waitqueue_active(&fs_info->async_submit_wait))
578                 wake_up(&fs_info->async_submit_wait);
579
580         async->submit_bio_done(async->inode, async->rw, async->bio,
581                                async->mirror_num, async->bio_flags,
582                                async->bio_offset);
583 }
584
585 static void run_one_async_free(struct btrfs_work *work)
586 {
587         struct async_submit_bio *async;
588
589         async = container_of(work, struct  async_submit_bio, work);
590         kfree(async);
591 }
592
593 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
594                         int rw, struct bio *bio, int mirror_num,
595                         unsigned long bio_flags,
596                         u64 bio_offset,
597                         extent_submit_bio_hook_t *submit_bio_start,
598                         extent_submit_bio_hook_t *submit_bio_done)
599 {
600         struct async_submit_bio *async;
601
602         async = kmalloc(sizeof(*async), GFP_NOFS);
603         if (!async)
604                 return -ENOMEM;
605
606         async->inode = inode;
607         async->rw = rw;
608         async->bio = bio;
609         async->mirror_num = mirror_num;
610         async->submit_bio_start = submit_bio_start;
611         async->submit_bio_done = submit_bio_done;
612
613         async->work.func = run_one_async_start;
614         async->work.ordered_func = run_one_async_done;
615         async->work.ordered_free = run_one_async_free;
616
617         async->work.flags = 0;
618         async->bio_flags = bio_flags;
619         async->bio_offset = bio_offset;
620
621         atomic_inc(&fs_info->nr_async_submits);
622
623         if (rw & REQ_SYNC)
624                 btrfs_set_work_high_prio(&async->work);
625
626         btrfs_queue_worker(&fs_info->workers, &async->work);
627
628         while (atomic_read(&fs_info->async_submit_draining) &&
629               atomic_read(&fs_info->nr_async_submits)) {
630                 wait_event(fs_info->async_submit_wait,
631                            (atomic_read(&fs_info->nr_async_submits) == 0));
632         }
633
634         return 0;
635 }
636
637 static int btree_csum_one_bio(struct bio *bio)
638 {
639         struct bio_vec *bvec = bio->bi_io_vec;
640         int bio_index = 0;
641         struct btrfs_root *root;
642
643         WARN_ON(bio->bi_vcnt <= 0);
644         while (bio_index < bio->bi_vcnt) {
645                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
646                 csum_dirty_buffer(root, bvec->bv_page);
647                 bio_index++;
648                 bvec++;
649         }
650         return 0;
651 }
652
653 static int __btree_submit_bio_start(struct inode *inode, int rw,
654                                     struct bio *bio, int mirror_num,
655                                     unsigned long bio_flags,
656                                     u64 bio_offset)
657 {
658         /*
659          * when we're called for a write, we're already in the async
660          * submission context.  Just jump into btrfs_map_bio
661          */
662         btree_csum_one_bio(bio);
663         return 0;
664 }
665
666 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
667                                  int mirror_num, unsigned long bio_flags,
668                                  u64 bio_offset)
669 {
670         /*
671          * when we're called for a write, we're already in the async
672          * submission context.  Just jump into btrfs_map_bio
673          */
674         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
675 }
676
677 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
678                                  int mirror_num, unsigned long bio_flags,
679                                  u64 bio_offset)
680 {
681         int ret;
682
683         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
684                                           bio, 1);
685         BUG_ON(ret);
686
687         if (!(rw & REQ_WRITE)) {
688                 /*
689                  * called for a read, do the setup so that checksum validation
690                  * can happen in the async kernel threads
691                  */
692                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
693                                      mirror_num, 0);
694         }
695
696         /*
697          * kthread helpers are used to submit writes so that checksumming
698          * can happen in parallel across all CPUs
699          */
700         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
701                                    inode, rw, bio, mirror_num, 0,
702                                    bio_offset,
703                                    __btree_submit_bio_start,
704                                    __btree_submit_bio_done);
705 }
706
707 #ifdef CONFIG_MIGRATION
708 static int btree_migratepage(struct address_space *mapping,
709                         struct page *newpage, struct page *page)
710 {
711         /*
712          * we can't safely write a btree page from here,
713          * we haven't done the locking hook
714          */
715         if (PageDirty(page))
716                 return -EAGAIN;
717         /*
718          * Buffers may be managed in a filesystem specific way.
719          * We must have no buffers or drop them.
720          */
721         if (page_has_private(page) &&
722             !try_to_release_page(page, GFP_KERNEL))
723                 return -EAGAIN;
724         return migrate_page(mapping, newpage, page);
725 }
726 #endif
727
728 static int btree_writepage(struct page *page, struct writeback_control *wbc)
729 {
730         struct extent_io_tree *tree;
731         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
732         struct extent_buffer *eb;
733         int was_dirty;
734
735         tree = &BTRFS_I(page->mapping->host)->io_tree;
736         if (!(current->flags & PF_MEMALLOC)) {
737                 return extent_write_full_page(tree, page,
738                                               btree_get_extent, wbc);
739         }
740
741         redirty_page_for_writepage(wbc, page);
742         eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
743         WARN_ON(!eb);
744
745         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
746         if (!was_dirty) {
747                 spin_lock(&root->fs_info->delalloc_lock);
748                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
749                 spin_unlock(&root->fs_info->delalloc_lock);
750         }
751         free_extent_buffer(eb);
752
753         unlock_page(page);
754         return 0;
755 }
756
757 static int btree_writepages(struct address_space *mapping,
758                             struct writeback_control *wbc)
759 {
760         struct extent_io_tree *tree;
761         tree = &BTRFS_I(mapping->host)->io_tree;
762         if (wbc->sync_mode == WB_SYNC_NONE) {
763                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
764                 u64 num_dirty;
765                 unsigned long thresh = 32 * 1024 * 1024;
766
767                 if (wbc->for_kupdate)
768                         return 0;
769
770                 /* this is a bit racy, but that's ok */
771                 num_dirty = root->fs_info->dirty_metadata_bytes;
772                 if (num_dirty < thresh)
773                         return 0;
774         }
775         return extent_writepages(tree, mapping, btree_get_extent, wbc);
776 }
777
778 static int btree_readpage(struct file *file, struct page *page)
779 {
780         struct extent_io_tree *tree;
781         tree = &BTRFS_I(page->mapping->host)->io_tree;
782         return extent_read_full_page(tree, page, btree_get_extent);
783 }
784
785 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
786 {
787         struct extent_io_tree *tree;
788         struct extent_map_tree *map;
789         int ret;
790
791         if (PageWriteback(page) || PageDirty(page))
792                 return 0;
793
794         tree = &BTRFS_I(page->mapping->host)->io_tree;
795         map = &BTRFS_I(page->mapping->host)->extent_tree;
796
797         ret = try_release_extent_state(map, tree, page, gfp_flags);
798         if (!ret)
799                 return 0;
800
801         ret = try_release_extent_buffer(tree, page);
802         if (ret == 1) {
803                 ClearPagePrivate(page);
804                 set_page_private(page, 0);
805                 page_cache_release(page);
806         }
807
808         return ret;
809 }
810
811 static void btree_invalidatepage(struct page *page, unsigned long offset)
812 {
813         struct extent_io_tree *tree;
814         tree = &BTRFS_I(page->mapping->host)->io_tree;
815         extent_invalidatepage(tree, page, offset);
816         btree_releasepage(page, GFP_NOFS);
817         if (PagePrivate(page)) {
818                 printk(KERN_WARNING "btrfs warning page private not zero "
819                        "on page %llu\n", (unsigned long long)page_offset(page));
820                 ClearPagePrivate(page);
821                 set_page_private(page, 0);
822                 page_cache_release(page);
823         }
824 }
825
826 static const struct address_space_operations btree_aops = {
827         .readpage       = btree_readpage,
828         .writepage      = btree_writepage,
829         .writepages     = btree_writepages,
830         .releasepage    = btree_releasepage,
831         .invalidatepage = btree_invalidatepage,
832         .sync_page      = block_sync_page,
833 #ifdef CONFIG_MIGRATION
834         .migratepage    = btree_migratepage,
835 #endif
836 };
837
838 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
839                          u64 parent_transid)
840 {
841         struct extent_buffer *buf = NULL;
842         struct inode *btree_inode = root->fs_info->btree_inode;
843         int ret = 0;
844
845         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
846         if (!buf)
847                 return 0;
848         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
849                                  buf, 0, 0, btree_get_extent, 0);
850         free_extent_buffer(buf);
851         return ret;
852 }
853
854 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
855                                             u64 bytenr, u32 blocksize)
856 {
857         struct inode *btree_inode = root->fs_info->btree_inode;
858         struct extent_buffer *eb;
859         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
860                                 bytenr, blocksize, GFP_NOFS);
861         return eb;
862 }
863
864 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
865                                                  u64 bytenr, u32 blocksize)
866 {
867         struct inode *btree_inode = root->fs_info->btree_inode;
868         struct extent_buffer *eb;
869
870         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
871                                  bytenr, blocksize, NULL, GFP_NOFS);
872         return eb;
873 }
874
875
876 int btrfs_write_tree_block(struct extent_buffer *buf)
877 {
878         return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
879                                         buf->start + buf->len - 1);
880 }
881
882 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
883 {
884         return filemap_fdatawait_range(buf->first_page->mapping,
885                                        buf->start, buf->start + buf->len - 1);
886 }
887
888 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
889                                       u32 blocksize, u64 parent_transid)
890 {
891         struct extent_buffer *buf = NULL;
892         int ret;
893
894         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
895         if (!buf)
896                 return NULL;
897
898         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
899
900         if (ret == 0)
901                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
902         return buf;
903
904 }
905
906 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
907                      struct extent_buffer *buf)
908 {
909         struct inode *btree_inode = root->fs_info->btree_inode;
910         if (btrfs_header_generation(buf) ==
911             root->fs_info->running_transaction->transid) {
912                 btrfs_assert_tree_locked(buf);
913
914                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
915                         spin_lock(&root->fs_info->delalloc_lock);
916                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
917                                 root->fs_info->dirty_metadata_bytes -= buf->len;
918                         else
919                                 WARN_ON(1);
920                         spin_unlock(&root->fs_info->delalloc_lock);
921                 }
922
923                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
924                 btrfs_set_lock_blocking(buf);
925                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
926                                           buf);
927         }
928         return 0;
929 }
930
931 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
932                         u32 stripesize, struct btrfs_root *root,
933                         struct btrfs_fs_info *fs_info,
934                         u64 objectid)
935 {
936         root->node = NULL;
937         root->commit_root = NULL;
938         root->sectorsize = sectorsize;
939         root->nodesize = nodesize;
940         root->leafsize = leafsize;
941         root->stripesize = stripesize;
942         root->ref_cows = 0;
943         root->track_dirty = 0;
944         root->in_radix = 0;
945         root->orphan_item_inserted = 0;
946         root->orphan_cleanup_state = 0;
947
948         root->fs_info = fs_info;
949         root->objectid = objectid;
950         root->last_trans = 0;
951         root->highest_objectid = 0;
952         root->name = NULL;
953         root->in_sysfs = 0;
954         root->inode_tree = RB_ROOT;
955         root->block_rsv = NULL;
956         root->orphan_block_rsv = NULL;
957
958         INIT_LIST_HEAD(&root->dirty_list);
959         INIT_LIST_HEAD(&root->orphan_list);
960         INIT_LIST_HEAD(&root->root_list);
961         spin_lock_init(&root->node_lock);
962         spin_lock_init(&root->orphan_lock);
963         spin_lock_init(&root->inode_lock);
964         spin_lock_init(&root->accounting_lock);
965         mutex_init(&root->objectid_mutex);
966         mutex_init(&root->log_mutex);
967         init_waitqueue_head(&root->log_writer_wait);
968         init_waitqueue_head(&root->log_commit_wait[0]);
969         init_waitqueue_head(&root->log_commit_wait[1]);
970         atomic_set(&root->log_commit[0], 0);
971         atomic_set(&root->log_commit[1], 0);
972         atomic_set(&root->log_writers, 0);
973         root->log_batch = 0;
974         root->log_transid = 0;
975         root->last_log_commit = 0;
976         extent_io_tree_init(&root->dirty_log_pages,
977                              fs_info->btree_inode->i_mapping, GFP_NOFS);
978
979         memset(&root->root_key, 0, sizeof(root->root_key));
980         memset(&root->root_item, 0, sizeof(root->root_item));
981         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
982         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
983         root->defrag_trans_start = fs_info->generation;
984         init_completion(&root->kobj_unregister);
985         root->defrag_running = 0;
986         root->root_key.objectid = objectid;
987         root->anon_super.s_root = NULL;
988         root->anon_super.s_dev = 0;
989         INIT_LIST_HEAD(&root->anon_super.s_list);
990         INIT_LIST_HEAD(&root->anon_super.s_instances);
991         init_rwsem(&root->anon_super.s_umount);
992
993         return 0;
994 }
995
996 static int find_and_setup_root(struct btrfs_root *tree_root,
997                                struct btrfs_fs_info *fs_info,
998                                u64 objectid,
999                                struct btrfs_root *root)
1000 {
1001         int ret;
1002         u32 blocksize;
1003         u64 generation;
1004
1005         __setup_root(tree_root->nodesize, tree_root->leafsize,
1006                      tree_root->sectorsize, tree_root->stripesize,
1007                      root, fs_info, objectid);
1008         ret = btrfs_find_last_root(tree_root, objectid,
1009                                    &root->root_item, &root->root_key);
1010         if (ret > 0)
1011                 return -ENOENT;
1012         BUG_ON(ret);
1013
1014         generation = btrfs_root_generation(&root->root_item);
1015         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1016         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1017                                      blocksize, generation);
1018         if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1019                 free_extent_buffer(root->node);
1020                 return -EIO;
1021         }
1022         root->commit_root = btrfs_root_node(root);
1023         return 0;
1024 }
1025
1026 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1027                                          struct btrfs_fs_info *fs_info)
1028 {
1029         struct btrfs_root *root;
1030         struct btrfs_root *tree_root = fs_info->tree_root;
1031         struct extent_buffer *leaf;
1032
1033         root = kzalloc(sizeof(*root), GFP_NOFS);
1034         if (!root)
1035                 return ERR_PTR(-ENOMEM);
1036
1037         __setup_root(tree_root->nodesize, tree_root->leafsize,
1038                      tree_root->sectorsize, tree_root->stripesize,
1039                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1040
1041         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1042         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1043         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1044         /*
1045          * log trees do not get reference counted because they go away
1046          * before a real commit is actually done.  They do store pointers
1047          * to file data extents, and those reference counts still get
1048          * updated (along with back refs to the log tree).
1049          */
1050         root->ref_cows = 0;
1051
1052         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1053                                       BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1054         if (IS_ERR(leaf)) {
1055                 kfree(root);
1056                 return ERR_CAST(leaf);
1057         }
1058
1059         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1060         btrfs_set_header_bytenr(leaf, leaf->start);
1061         btrfs_set_header_generation(leaf, trans->transid);
1062         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1063         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1064         root->node = leaf;
1065
1066         write_extent_buffer(root->node, root->fs_info->fsid,
1067                             (unsigned long)btrfs_header_fsid(root->node),
1068                             BTRFS_FSID_SIZE);
1069         btrfs_mark_buffer_dirty(root->node);
1070         btrfs_tree_unlock(root->node);
1071         return root;
1072 }
1073
1074 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1075                              struct btrfs_fs_info *fs_info)
1076 {
1077         struct btrfs_root *log_root;
1078
1079         log_root = alloc_log_tree(trans, fs_info);
1080         if (IS_ERR(log_root))
1081                 return PTR_ERR(log_root);
1082         WARN_ON(fs_info->log_root_tree);
1083         fs_info->log_root_tree = log_root;
1084         return 0;
1085 }
1086
1087 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1088                        struct btrfs_root *root)
1089 {
1090         struct btrfs_root *log_root;
1091         struct btrfs_inode_item *inode_item;
1092
1093         log_root = alloc_log_tree(trans, root->fs_info);
1094         if (IS_ERR(log_root))
1095                 return PTR_ERR(log_root);
1096
1097         log_root->last_trans = trans->transid;
1098         log_root->root_key.offset = root->root_key.objectid;
1099
1100         inode_item = &log_root->root_item.inode;
1101         inode_item->generation = cpu_to_le64(1);
1102         inode_item->size = cpu_to_le64(3);
1103         inode_item->nlink = cpu_to_le32(1);
1104         inode_item->nbytes = cpu_to_le64(root->leafsize);
1105         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1106
1107         btrfs_set_root_node(&log_root->root_item, log_root->node);
1108
1109         WARN_ON(root->log_root);
1110         root->log_root = log_root;
1111         root->log_transid = 0;
1112         root->last_log_commit = 0;
1113         return 0;
1114 }
1115
1116 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1117                                                struct btrfs_key *location)
1118 {
1119         struct btrfs_root *root;
1120         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1121         struct btrfs_path *path;
1122         struct extent_buffer *l;
1123         u64 generation;
1124         u32 blocksize;
1125         int ret = 0;
1126
1127         root = kzalloc(sizeof(*root), GFP_NOFS);
1128         if (!root)
1129                 return ERR_PTR(-ENOMEM);
1130         if (location->offset == (u64)-1) {
1131                 ret = find_and_setup_root(tree_root, fs_info,
1132                                           location->objectid, root);
1133                 if (ret) {
1134                         kfree(root);
1135                         return ERR_PTR(ret);
1136                 }
1137                 goto out;
1138         }
1139
1140         __setup_root(tree_root->nodesize, tree_root->leafsize,
1141                      tree_root->sectorsize, tree_root->stripesize,
1142                      root, fs_info, location->objectid);
1143
1144         path = btrfs_alloc_path();
1145         BUG_ON(!path);
1146         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1147         if (ret == 0) {
1148                 l = path->nodes[0];
1149                 read_extent_buffer(l, &root->root_item,
1150                                 btrfs_item_ptr_offset(l, path->slots[0]),
1151                                 sizeof(root->root_item));
1152                 memcpy(&root->root_key, location, sizeof(*location));
1153         }
1154         btrfs_free_path(path);
1155         if (ret) {
1156                 if (ret > 0)
1157                         ret = -ENOENT;
1158                 return ERR_PTR(ret);
1159         }
1160
1161         generation = btrfs_root_generation(&root->root_item);
1162         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1163         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1164                                      blocksize, generation);
1165         root->commit_root = btrfs_root_node(root);
1166         BUG_ON(!root->node);
1167 out:
1168         if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1169                 root->ref_cows = 1;
1170
1171         return root;
1172 }
1173
1174 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1175                                         u64 root_objectid)
1176 {
1177         struct btrfs_root *root;
1178
1179         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1180                 return fs_info->tree_root;
1181         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1182                 return fs_info->extent_root;
1183
1184         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1185                                  (unsigned long)root_objectid);
1186         return root;
1187 }
1188
1189 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1190                                               struct btrfs_key *location)
1191 {
1192         struct btrfs_root *root;
1193         int ret;
1194
1195         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1196                 return fs_info->tree_root;
1197         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1198                 return fs_info->extent_root;
1199         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1200                 return fs_info->chunk_root;
1201         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1202                 return fs_info->dev_root;
1203         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1204                 return fs_info->csum_root;
1205 again:
1206         spin_lock(&fs_info->fs_roots_radix_lock);
1207         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1208                                  (unsigned long)location->objectid);
1209         spin_unlock(&fs_info->fs_roots_radix_lock);
1210         if (root)
1211                 return root;
1212
1213         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1214         if (IS_ERR(root))
1215                 return root;
1216
1217         set_anon_super(&root->anon_super, NULL);
1218
1219         if (btrfs_root_refs(&root->root_item) == 0) {
1220                 ret = -ENOENT;
1221                 goto fail;
1222         }
1223
1224         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1225         if (ret < 0)
1226                 goto fail;
1227         if (ret == 0)
1228                 root->orphan_item_inserted = 1;
1229
1230         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1231         if (ret)
1232                 goto fail;
1233
1234         spin_lock(&fs_info->fs_roots_radix_lock);
1235         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1236                                 (unsigned long)root->root_key.objectid,
1237                                 root);
1238         if (ret == 0)
1239                 root->in_radix = 1;
1240
1241         spin_unlock(&fs_info->fs_roots_radix_lock);
1242         radix_tree_preload_end();
1243         if (ret) {
1244                 if (ret == -EEXIST) {
1245                         free_fs_root(root);
1246                         goto again;
1247                 }
1248                 goto fail;
1249         }
1250
1251         ret = btrfs_find_dead_roots(fs_info->tree_root,
1252                                     root->root_key.objectid);
1253         WARN_ON(ret);
1254         return root;
1255 fail:
1256         free_fs_root(root);
1257         return ERR_PTR(ret);
1258 }
1259
1260 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1261                                       struct btrfs_key *location,
1262                                       const char *name, int namelen)
1263 {
1264         return btrfs_read_fs_root_no_name(fs_info, location);
1265 #if 0
1266         struct btrfs_root *root;
1267         int ret;
1268
1269         root = btrfs_read_fs_root_no_name(fs_info, location);
1270         if (!root)
1271                 return NULL;
1272
1273         if (root->in_sysfs)
1274                 return root;
1275
1276         ret = btrfs_set_root_name(root, name, namelen);
1277         if (ret) {
1278                 free_extent_buffer(root->node);
1279                 kfree(root);
1280                 return ERR_PTR(ret);
1281         }
1282
1283         ret = btrfs_sysfs_add_root(root);
1284         if (ret) {
1285                 free_extent_buffer(root->node);
1286                 kfree(root->name);
1287                 kfree(root);
1288                 return ERR_PTR(ret);
1289         }
1290         root->in_sysfs = 1;
1291         return root;
1292 #endif
1293 }
1294
1295 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1296 {
1297         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1298         int ret = 0;
1299         struct btrfs_device *device;
1300         struct backing_dev_info *bdi;
1301
1302         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1303                 if (!device->bdev)
1304                         continue;
1305                 bdi = blk_get_backing_dev_info(device->bdev);
1306                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1307                         ret = 1;
1308                         break;
1309                 }
1310         }
1311         return ret;
1312 }
1313
1314 /*
1315  * this unplugs every device on the box, and it is only used when page
1316  * is null
1317  */
1318 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1319 {
1320         struct btrfs_device *device;
1321         struct btrfs_fs_info *info;
1322
1323         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1324         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1325                 if (!device->bdev)
1326                         continue;
1327
1328                 bdi = blk_get_backing_dev_info(device->bdev);
1329                 if (bdi->unplug_io_fn)
1330                         bdi->unplug_io_fn(bdi, page);
1331         }
1332 }
1333
1334 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1335 {
1336         struct inode *inode;
1337         struct extent_map_tree *em_tree;
1338         struct extent_map *em;
1339         struct address_space *mapping;
1340         u64 offset;
1341
1342         /* the generic O_DIRECT read code does this */
1343         if (1 || !page) {
1344                 __unplug_io_fn(bdi, page);
1345                 return;
1346         }
1347
1348         /*
1349          * page->mapping may change at any time.  Get a consistent copy
1350          * and use that for everything below
1351          */
1352         smp_mb();
1353         mapping = page->mapping;
1354         if (!mapping)
1355                 return;
1356
1357         inode = mapping->host;
1358
1359         /*
1360          * don't do the expensive searching for a small number of
1361          * devices
1362          */
1363         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1364                 __unplug_io_fn(bdi, page);
1365                 return;
1366         }
1367
1368         offset = page_offset(page);
1369
1370         em_tree = &BTRFS_I(inode)->extent_tree;
1371         read_lock(&em_tree->lock);
1372         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1373         read_unlock(&em_tree->lock);
1374         if (!em) {
1375                 __unplug_io_fn(bdi, page);
1376                 return;
1377         }
1378
1379         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1380                 free_extent_map(em);
1381                 __unplug_io_fn(bdi, page);
1382                 return;
1383         }
1384         offset = offset - em->start;
1385         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1386                           em->block_start + offset, page);
1387         free_extent_map(em);
1388 }
1389
1390 /*
1391  * If this fails, caller must call bdi_destroy() to get rid of the
1392  * bdi again.
1393  */
1394 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1395 {
1396         int err;
1397
1398         bdi->capabilities = BDI_CAP_MAP_COPY;
1399         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1400         if (err)
1401                 return err;
1402
1403         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1404         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1405         bdi->unplug_io_data     = info;
1406         bdi->congested_fn       = btrfs_congested_fn;
1407         bdi->congested_data     = info;
1408         return 0;
1409 }
1410
1411 static int bio_ready_for_csum(struct bio *bio)
1412 {
1413         u64 length = 0;
1414         u64 buf_len = 0;
1415         u64 start = 0;
1416         struct page *page;
1417         struct extent_io_tree *io_tree = NULL;
1418         struct bio_vec *bvec;
1419         int i;
1420         int ret;
1421
1422         bio_for_each_segment(bvec, bio, i) {
1423                 page = bvec->bv_page;
1424                 if (page->private == EXTENT_PAGE_PRIVATE) {
1425                         length += bvec->bv_len;
1426                         continue;
1427                 }
1428                 if (!page->private) {
1429                         length += bvec->bv_len;
1430                         continue;
1431                 }
1432                 length = bvec->bv_len;
1433                 buf_len = page->private >> 2;
1434                 start = page_offset(page) + bvec->bv_offset;
1435                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1436         }
1437         /* are we fully contained in this bio? */
1438         if (buf_len <= length)
1439                 return 1;
1440
1441         ret = extent_range_uptodate(io_tree, start + length,
1442                                     start + buf_len - 1);
1443         return ret;
1444 }
1445
1446 /*
1447  * called by the kthread helper functions to finally call the bio end_io
1448  * functions.  This is where read checksum verification actually happens
1449  */
1450 static void end_workqueue_fn(struct btrfs_work *work)
1451 {
1452         struct bio *bio;
1453         struct end_io_wq *end_io_wq;
1454         struct btrfs_fs_info *fs_info;
1455         int error;
1456
1457         end_io_wq = container_of(work, struct end_io_wq, work);
1458         bio = end_io_wq->bio;
1459         fs_info = end_io_wq->info;
1460
1461         /* metadata bio reads are special because the whole tree block must
1462          * be checksummed at once.  This makes sure the entire block is in
1463          * ram and up to date before trying to verify things.  For
1464          * blocksize <= pagesize, it is basically a noop
1465          */
1466         if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1467             !bio_ready_for_csum(bio)) {
1468                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1469                                    &end_io_wq->work);
1470                 return;
1471         }
1472         error = end_io_wq->error;
1473         bio->bi_private = end_io_wq->private;
1474         bio->bi_end_io = end_io_wq->end_io;
1475         kfree(end_io_wq);
1476         bio_endio(bio, error);
1477 }
1478
1479 static int cleaner_kthread(void *arg)
1480 {
1481         struct btrfs_root *root = arg;
1482
1483         do {
1484                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1485
1486                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1487                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1488                         btrfs_run_delayed_iputs(root);
1489                         btrfs_clean_old_snapshots(root);
1490                         mutex_unlock(&root->fs_info->cleaner_mutex);
1491                 }
1492
1493                 if (freezing(current)) {
1494                         refrigerator();
1495                 } else {
1496                         set_current_state(TASK_INTERRUPTIBLE);
1497                         if (!kthread_should_stop())
1498                                 schedule();
1499                         __set_current_state(TASK_RUNNING);
1500                 }
1501         } while (!kthread_should_stop());
1502         return 0;
1503 }
1504
1505 static int transaction_kthread(void *arg)
1506 {
1507         struct btrfs_root *root = arg;
1508         struct btrfs_trans_handle *trans;
1509         struct btrfs_transaction *cur;
1510         u64 transid;
1511         unsigned long now;
1512         unsigned long delay;
1513         int ret;
1514
1515         do {
1516                 delay = HZ * 30;
1517                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1518                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1519
1520                 spin_lock(&root->fs_info->new_trans_lock);
1521                 cur = root->fs_info->running_transaction;
1522                 if (!cur) {
1523                         spin_unlock(&root->fs_info->new_trans_lock);
1524                         goto sleep;
1525                 }
1526
1527                 now = get_seconds();
1528                 if (!cur->blocked &&
1529                     (now < cur->start_time || now - cur->start_time < 30)) {
1530                         spin_unlock(&root->fs_info->new_trans_lock);
1531                         delay = HZ * 5;
1532                         goto sleep;
1533                 }
1534                 transid = cur->transid;
1535                 spin_unlock(&root->fs_info->new_trans_lock);
1536
1537                 trans = btrfs_join_transaction(root, 1);
1538                 if (transid == trans->transid) {
1539                         ret = btrfs_commit_transaction(trans, root);
1540                         BUG_ON(ret);
1541                 } else {
1542                         btrfs_end_transaction(trans, root);
1543                 }
1544 sleep:
1545                 wake_up_process(root->fs_info->cleaner_kthread);
1546                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1547
1548                 if (freezing(current)) {
1549                         refrigerator();
1550                 } else {
1551                         set_current_state(TASK_INTERRUPTIBLE);
1552                         if (!kthread_should_stop() &&
1553                             !btrfs_transaction_blocked(root->fs_info))
1554                                 schedule_timeout(delay);
1555                         __set_current_state(TASK_RUNNING);
1556                 }
1557         } while (!kthread_should_stop());
1558         return 0;
1559 }
1560
1561 struct btrfs_root *open_ctree(struct super_block *sb,
1562                               struct btrfs_fs_devices *fs_devices,
1563                               char *options)
1564 {
1565         u32 sectorsize;
1566         u32 nodesize;
1567         u32 leafsize;
1568         u32 blocksize;
1569         u32 stripesize;
1570         u64 generation;
1571         u64 features;
1572         struct btrfs_key location;
1573         struct buffer_head *bh;
1574         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1575                                                  GFP_NOFS);
1576         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1577                                                  GFP_NOFS);
1578         struct btrfs_root *tree_root = btrfs_sb(sb);
1579         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1580         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1581                                                 GFP_NOFS);
1582         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1583                                               GFP_NOFS);
1584         struct btrfs_root *log_tree_root;
1585
1586         int ret;
1587         int err = -EINVAL;
1588
1589         struct btrfs_super_block *disk_super;
1590
1591         if (!extent_root || !tree_root || !fs_info ||
1592             !chunk_root || !dev_root || !csum_root) {
1593                 err = -ENOMEM;
1594                 goto fail;
1595         }
1596
1597         ret = init_srcu_struct(&fs_info->subvol_srcu);
1598         if (ret) {
1599                 err = ret;
1600                 goto fail;
1601         }
1602
1603         ret = setup_bdi(fs_info, &fs_info->bdi);
1604         if (ret) {
1605                 err = ret;
1606                 goto fail_srcu;
1607         }
1608
1609         fs_info->btree_inode = new_inode(sb);
1610         if (!fs_info->btree_inode) {
1611                 err = -ENOMEM;
1612                 goto fail_bdi;
1613         }
1614
1615         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1616         INIT_LIST_HEAD(&fs_info->trans_list);
1617         INIT_LIST_HEAD(&fs_info->dead_roots);
1618         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1619         INIT_LIST_HEAD(&fs_info->hashers);
1620         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1621         INIT_LIST_HEAD(&fs_info->ordered_operations);
1622         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1623         spin_lock_init(&fs_info->delalloc_lock);
1624         spin_lock_init(&fs_info->new_trans_lock);
1625         spin_lock_init(&fs_info->ref_cache_lock);
1626         spin_lock_init(&fs_info->fs_roots_radix_lock);
1627         spin_lock_init(&fs_info->delayed_iput_lock);
1628
1629         init_completion(&fs_info->kobj_unregister);
1630         fs_info->tree_root = tree_root;
1631         fs_info->extent_root = extent_root;
1632         fs_info->csum_root = csum_root;
1633         fs_info->chunk_root = chunk_root;
1634         fs_info->dev_root = dev_root;
1635         fs_info->fs_devices = fs_devices;
1636         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1637         INIT_LIST_HEAD(&fs_info->space_info);
1638         btrfs_mapping_init(&fs_info->mapping_tree);
1639         btrfs_init_block_rsv(&fs_info->global_block_rsv);
1640         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1641         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1642         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1643         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1644         INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1645         mutex_init(&fs_info->durable_block_rsv_mutex);
1646         atomic_set(&fs_info->nr_async_submits, 0);
1647         atomic_set(&fs_info->async_delalloc_pages, 0);
1648         atomic_set(&fs_info->async_submit_draining, 0);
1649         atomic_set(&fs_info->nr_async_bios, 0);
1650         fs_info->sb = sb;
1651         fs_info->max_inline = 8192 * 1024;
1652         fs_info->metadata_ratio = 0;
1653
1654         fs_info->thread_pool_size = min_t(unsigned long,
1655                                           num_online_cpus() + 2, 8);
1656
1657         INIT_LIST_HEAD(&fs_info->ordered_extents);
1658         spin_lock_init(&fs_info->ordered_extent_lock);
1659
1660         sb->s_blocksize = 4096;
1661         sb->s_blocksize_bits = blksize_bits(4096);
1662         sb->s_bdi = &fs_info->bdi;
1663
1664         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1665         fs_info->btree_inode->i_nlink = 1;
1666         /*
1667          * we set the i_size on the btree inode to the max possible int.
1668          * the real end of the address space is determined by all of
1669          * the devices in the system
1670          */
1671         fs_info->btree_inode->i_size = OFFSET_MAX;
1672         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1673         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1674
1675         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1676         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1677                              fs_info->btree_inode->i_mapping,
1678                              GFP_NOFS);
1679         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1680                              GFP_NOFS);
1681
1682         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1683
1684         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1685         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1686                sizeof(struct btrfs_key));
1687         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1688         insert_inode_hash(fs_info->btree_inode);
1689
1690         spin_lock_init(&fs_info->block_group_cache_lock);
1691         fs_info->block_group_cache_tree = RB_ROOT;
1692
1693         extent_io_tree_init(&fs_info->freed_extents[0],
1694                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1695         extent_io_tree_init(&fs_info->freed_extents[1],
1696                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1697         fs_info->pinned_extents = &fs_info->freed_extents[0];
1698         fs_info->do_barriers = 1;
1699
1700
1701         mutex_init(&fs_info->trans_mutex);
1702         mutex_init(&fs_info->ordered_operations_mutex);
1703         mutex_init(&fs_info->tree_log_mutex);
1704         mutex_init(&fs_info->chunk_mutex);
1705         mutex_init(&fs_info->transaction_kthread_mutex);
1706         mutex_init(&fs_info->cleaner_mutex);
1707         mutex_init(&fs_info->volume_mutex);
1708         init_rwsem(&fs_info->extent_commit_sem);
1709         init_rwsem(&fs_info->cleanup_work_sem);
1710         init_rwsem(&fs_info->subvol_sem);
1711
1712         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1713         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1714
1715         init_waitqueue_head(&fs_info->transaction_throttle);
1716         init_waitqueue_head(&fs_info->transaction_wait);
1717         init_waitqueue_head(&fs_info->transaction_blocked_wait);
1718         init_waitqueue_head(&fs_info->async_submit_wait);
1719
1720         __setup_root(4096, 4096, 4096, 4096, tree_root,
1721                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1722
1723         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1724         if (!bh) {
1725                 err = -EINVAL;
1726                 goto fail_iput;
1727         }
1728
1729         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1730         memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1731                sizeof(fs_info->super_for_commit));
1732         brelse(bh);
1733
1734         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1735
1736         disk_super = &fs_info->super_copy;
1737         if (!btrfs_super_root(disk_super))
1738                 goto fail_iput;
1739
1740         ret = btrfs_parse_options(tree_root, options);
1741         if (ret) {
1742                 err = ret;
1743                 goto fail_iput;
1744         }
1745
1746         features = btrfs_super_incompat_flags(disk_super) &
1747                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1748         if (features) {
1749                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1750                        "unsupported optional features (%Lx).\n",
1751                        (unsigned long long)features);
1752                 err = -EINVAL;
1753                 goto fail_iput;
1754         }
1755
1756         features = btrfs_super_incompat_flags(disk_super);
1757         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1758         if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1759                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1760         btrfs_set_super_incompat_flags(disk_super, features);
1761
1762         features = btrfs_super_compat_ro_flags(disk_super) &
1763                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1764         if (!(sb->s_flags & MS_RDONLY) && features) {
1765                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1766                        "unsupported option features (%Lx).\n",
1767                        (unsigned long long)features);
1768                 err = -EINVAL;
1769                 goto fail_iput;
1770         }
1771
1772         btrfs_init_workers(&fs_info->generic_worker,
1773                            "genwork", 1, NULL);
1774
1775         btrfs_init_workers(&fs_info->workers, "worker",
1776                            fs_info->thread_pool_size,
1777                            &fs_info->generic_worker);
1778
1779         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1780                            fs_info->thread_pool_size,
1781                            &fs_info->generic_worker);
1782
1783         btrfs_init_workers(&fs_info->submit_workers, "submit",
1784                            min_t(u64, fs_devices->num_devices,
1785                            fs_info->thread_pool_size),
1786                            &fs_info->generic_worker);
1787
1788         /* a higher idle thresh on the submit workers makes it much more
1789          * likely that bios will be send down in a sane order to the
1790          * devices
1791          */
1792         fs_info->submit_workers.idle_thresh = 64;
1793
1794         fs_info->workers.idle_thresh = 16;
1795         fs_info->workers.ordered = 1;
1796
1797         fs_info->delalloc_workers.idle_thresh = 2;
1798         fs_info->delalloc_workers.ordered = 1;
1799
1800         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1801                            &fs_info->generic_worker);
1802         btrfs_init_workers(&fs_info->endio_workers, "endio",
1803                            fs_info->thread_pool_size,
1804                            &fs_info->generic_worker);
1805         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1806                            fs_info->thread_pool_size,
1807                            &fs_info->generic_worker);
1808         btrfs_init_workers(&fs_info->endio_meta_write_workers,
1809                            "endio-meta-write", fs_info->thread_pool_size,
1810                            &fs_info->generic_worker);
1811         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1812                            fs_info->thread_pool_size,
1813                            &fs_info->generic_worker);
1814         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1815                            1, &fs_info->generic_worker);
1816
1817         /*
1818          * endios are largely parallel and should have a very
1819          * low idle thresh
1820          */
1821         fs_info->endio_workers.idle_thresh = 4;
1822         fs_info->endio_meta_workers.idle_thresh = 4;
1823
1824         fs_info->endio_write_workers.idle_thresh = 2;
1825         fs_info->endio_meta_write_workers.idle_thresh = 2;
1826
1827         btrfs_start_workers(&fs_info->workers, 1);
1828         btrfs_start_workers(&fs_info->generic_worker, 1);
1829         btrfs_start_workers(&fs_info->submit_workers, 1);
1830         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1831         btrfs_start_workers(&fs_info->fixup_workers, 1);
1832         btrfs_start_workers(&fs_info->endio_workers, 1);
1833         btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1834         btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1835         btrfs_start_workers(&fs_info->endio_write_workers, 1);
1836         btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1837
1838         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1839         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1840                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1841
1842         nodesize = btrfs_super_nodesize(disk_super);
1843         leafsize = btrfs_super_leafsize(disk_super);
1844         sectorsize = btrfs_super_sectorsize(disk_super);
1845         stripesize = btrfs_super_stripesize(disk_super);
1846         tree_root->nodesize = nodesize;
1847         tree_root->leafsize = leafsize;
1848         tree_root->sectorsize = sectorsize;
1849         tree_root->stripesize = stripesize;
1850
1851         sb->s_blocksize = sectorsize;
1852         sb->s_blocksize_bits = blksize_bits(sectorsize);
1853
1854         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1855                     sizeof(disk_super->magic))) {
1856                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1857                 goto fail_sb_buffer;
1858         }
1859
1860         mutex_lock(&fs_info->chunk_mutex);
1861         ret = btrfs_read_sys_array(tree_root);
1862         mutex_unlock(&fs_info->chunk_mutex);
1863         if (ret) {
1864                 printk(KERN_WARNING "btrfs: failed to read the system "
1865                        "array on %s\n", sb->s_id);
1866                 goto fail_sb_buffer;
1867         }
1868
1869         blocksize = btrfs_level_size(tree_root,
1870                                      btrfs_super_chunk_root_level(disk_super));
1871         generation = btrfs_super_chunk_root_generation(disk_super);
1872
1873         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1874                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1875
1876         chunk_root->node = read_tree_block(chunk_root,
1877                                            btrfs_super_chunk_root(disk_super),
1878                                            blocksize, generation);
1879         BUG_ON(!chunk_root->node);
1880         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1881                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1882                        sb->s_id);
1883                 goto fail_chunk_root;
1884         }
1885         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1886         chunk_root->commit_root = btrfs_root_node(chunk_root);
1887
1888         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1889            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1890            BTRFS_UUID_SIZE);
1891
1892         mutex_lock(&fs_info->chunk_mutex);
1893         ret = btrfs_read_chunk_tree(chunk_root);
1894         mutex_unlock(&fs_info->chunk_mutex);
1895         if (ret) {
1896                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1897                        sb->s_id);
1898                 goto fail_chunk_root;
1899         }
1900
1901         btrfs_close_extra_devices(fs_devices);
1902
1903         blocksize = btrfs_level_size(tree_root,
1904                                      btrfs_super_root_level(disk_super));
1905         generation = btrfs_super_generation(disk_super);
1906
1907         tree_root->node = read_tree_block(tree_root,
1908                                           btrfs_super_root(disk_super),
1909                                           blocksize, generation);
1910         if (!tree_root->node)
1911                 goto fail_chunk_root;
1912         if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1913                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1914                        sb->s_id);
1915                 goto fail_tree_root;
1916         }
1917         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1918         tree_root->commit_root = btrfs_root_node(tree_root);
1919
1920         ret = find_and_setup_root(tree_root, fs_info,
1921                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1922         if (ret)
1923                 goto fail_tree_root;
1924         extent_root->track_dirty = 1;
1925
1926         ret = find_and_setup_root(tree_root, fs_info,
1927                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1928         if (ret)
1929                 goto fail_extent_root;
1930         dev_root->track_dirty = 1;
1931
1932         ret = find_and_setup_root(tree_root, fs_info,
1933                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
1934         if (ret)
1935                 goto fail_dev_root;
1936
1937         csum_root->track_dirty = 1;
1938
1939         fs_info->generation = generation;
1940         fs_info->last_trans_committed = generation;
1941         fs_info->data_alloc_profile = (u64)-1;
1942         fs_info->metadata_alloc_profile = (u64)-1;
1943         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1944
1945         ret = btrfs_read_block_groups(extent_root);
1946         if (ret) {
1947                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1948                 goto fail_block_groups;
1949         }
1950
1951         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1952                                                "btrfs-cleaner");
1953         if (IS_ERR(fs_info->cleaner_kthread))
1954                 goto fail_block_groups;
1955
1956         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1957                                                    tree_root,
1958                                                    "btrfs-transaction");
1959         if (IS_ERR(fs_info->transaction_kthread))
1960                 goto fail_cleaner;
1961
1962         if (!btrfs_test_opt(tree_root, SSD) &&
1963             !btrfs_test_opt(tree_root, NOSSD) &&
1964             !fs_info->fs_devices->rotating) {
1965                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1966                        "mode\n");
1967                 btrfs_set_opt(fs_info->mount_opt, SSD);
1968         }
1969
1970         if (btrfs_super_log_root(disk_super) != 0) {
1971                 u64 bytenr = btrfs_super_log_root(disk_super);
1972
1973                 if (fs_devices->rw_devices == 0) {
1974                         printk(KERN_WARNING "Btrfs log replay required "
1975                                "on RO media\n");
1976                         err = -EIO;
1977                         goto fail_trans_kthread;
1978                 }
1979                 blocksize =
1980                      btrfs_level_size(tree_root,
1981                                       btrfs_super_log_root_level(disk_super));
1982
1983                 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1984                 if (!log_tree_root) {
1985                         err = -ENOMEM;
1986                         goto fail_trans_kthread;
1987                 }
1988
1989                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1990                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1991
1992                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1993                                                       blocksize,
1994                                                       generation + 1);
1995                 ret = btrfs_recover_log_trees(log_tree_root);
1996                 BUG_ON(ret);
1997
1998                 if (sb->s_flags & MS_RDONLY) {
1999                         ret =  btrfs_commit_super(tree_root);
2000                         BUG_ON(ret);
2001                 }
2002         }
2003
2004         ret = btrfs_find_orphan_roots(tree_root);
2005         BUG_ON(ret);
2006
2007         if (!(sb->s_flags & MS_RDONLY)) {
2008                 ret = btrfs_cleanup_fs_roots(fs_info);
2009                 BUG_ON(ret);
2010
2011                 ret = btrfs_recover_relocation(tree_root);
2012                 if (ret < 0) {
2013                         printk(KERN_WARNING
2014                                "btrfs: failed to recover relocation\n");
2015                         err = -EINVAL;
2016                         goto fail_trans_kthread;
2017                 }
2018         }
2019
2020         location.objectid = BTRFS_FS_TREE_OBJECTID;
2021         location.type = BTRFS_ROOT_ITEM_KEY;
2022         location.offset = (u64)-1;
2023
2024         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2025         if (!fs_info->fs_root)
2026                 goto fail_trans_kthread;
2027         if (IS_ERR(fs_info->fs_root)) {
2028                 err = PTR_ERR(fs_info->fs_root);
2029                 goto fail_trans_kthread;
2030         }
2031
2032         if (!(sb->s_flags & MS_RDONLY)) {
2033                 down_read(&fs_info->cleanup_work_sem);
2034                 btrfs_orphan_cleanup(fs_info->fs_root);
2035                 btrfs_orphan_cleanup(fs_info->tree_root);
2036                 up_read(&fs_info->cleanup_work_sem);
2037         }
2038
2039         return tree_root;
2040
2041 fail_trans_kthread:
2042         kthread_stop(fs_info->transaction_kthread);
2043 fail_cleaner:
2044         kthread_stop(fs_info->cleaner_kthread);
2045
2046         /*
2047          * make sure we're done with the btree inode before we stop our
2048          * kthreads
2049          */
2050         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2051         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2052
2053 fail_block_groups:
2054         btrfs_free_block_groups(fs_info);
2055         free_extent_buffer(csum_root->node);
2056         free_extent_buffer(csum_root->commit_root);
2057 fail_dev_root:
2058         free_extent_buffer(dev_root->node);
2059         free_extent_buffer(dev_root->commit_root);
2060 fail_extent_root:
2061         free_extent_buffer(extent_root->node);
2062         free_extent_buffer(extent_root->commit_root);
2063 fail_tree_root:
2064         free_extent_buffer(tree_root->node);
2065         free_extent_buffer(tree_root->commit_root);
2066 fail_chunk_root:
2067         free_extent_buffer(chunk_root->node);
2068         free_extent_buffer(chunk_root->commit_root);
2069 fail_sb_buffer:
2070         btrfs_stop_workers(&fs_info->generic_worker);
2071         btrfs_stop_workers(&fs_info->fixup_workers);
2072         btrfs_stop_workers(&fs_info->delalloc_workers);
2073         btrfs_stop_workers(&fs_info->workers);
2074         btrfs_stop_workers(&fs_info->endio_workers);
2075         btrfs_stop_workers(&fs_info->endio_meta_workers);
2076         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2077         btrfs_stop_workers(&fs_info->endio_write_workers);
2078         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2079         btrfs_stop_workers(&fs_info->submit_workers);
2080 fail_iput:
2081         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2082         iput(fs_info->btree_inode);
2083
2084         btrfs_close_devices(fs_info->fs_devices);
2085         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2086 fail_bdi:
2087         bdi_destroy(&fs_info->bdi);
2088 fail_srcu:
2089         cleanup_srcu_struct(&fs_info->subvol_srcu);
2090 fail:
2091         kfree(extent_root);
2092         kfree(tree_root);
2093         kfree(fs_info);
2094         kfree(chunk_root);
2095         kfree(dev_root);
2096         kfree(csum_root);
2097         return ERR_PTR(err);
2098 }
2099
2100 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2101 {
2102         char b[BDEVNAME_SIZE];
2103
2104         if (uptodate) {
2105                 set_buffer_uptodate(bh);
2106         } else {
2107                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2108                         printk(KERN_WARNING "lost page write due to "
2109                                         "I/O error on %s\n",
2110                                        bdevname(bh->b_bdev, b));
2111                 }
2112                 /* note, we dont' set_buffer_write_io_error because we have
2113                  * our own ways of dealing with the IO errors
2114                  */
2115                 clear_buffer_uptodate(bh);
2116         }
2117         unlock_buffer(bh);
2118         put_bh(bh);
2119 }
2120
2121 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2122 {
2123         struct buffer_head *bh;
2124         struct buffer_head *latest = NULL;
2125         struct btrfs_super_block *super;
2126         int i;
2127         u64 transid = 0;
2128         u64 bytenr;
2129
2130         /* we would like to check all the supers, but that would make
2131          * a btrfs mount succeed after a mkfs from a different FS.
2132          * So, we need to add a special mount option to scan for
2133          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2134          */
2135         for (i = 0; i < 1; i++) {
2136                 bytenr = btrfs_sb_offset(i);
2137                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2138                         break;
2139                 bh = __bread(bdev, bytenr / 4096, 4096);
2140                 if (!bh)
2141                         continue;
2142
2143                 super = (struct btrfs_super_block *)bh->b_data;
2144                 if (btrfs_super_bytenr(super) != bytenr ||
2145                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2146                             sizeof(super->magic))) {
2147                         brelse(bh);
2148                         continue;
2149                 }
2150
2151                 if (!latest || btrfs_super_generation(super) > transid) {
2152                         brelse(latest);
2153                         latest = bh;
2154                         transid = btrfs_super_generation(super);
2155                 } else {
2156                         brelse(bh);
2157                 }
2158         }
2159         return latest;
2160 }
2161
2162 /*
2163  * this should be called twice, once with wait == 0 and
2164  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2165  * we write are pinned.
2166  *
2167  * They are released when wait == 1 is done.
2168  * max_mirrors must be the same for both runs, and it indicates how
2169  * many supers on this one device should be written.
2170  *
2171  * max_mirrors == 0 means to write them all.
2172  */
2173 static int write_dev_supers(struct btrfs_device *device,
2174                             struct btrfs_super_block *sb,
2175                             int do_barriers, int wait, int max_mirrors)
2176 {
2177         struct buffer_head *bh;
2178         int i;
2179         int ret;
2180         int errors = 0;
2181         u32 crc;
2182         u64 bytenr;
2183         int last_barrier = 0;
2184
2185         if (max_mirrors == 0)
2186                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2187
2188         /* make sure only the last submit_bh does a barrier */
2189         if (do_barriers) {
2190                 for (i = 0; i < max_mirrors; i++) {
2191                         bytenr = btrfs_sb_offset(i);
2192                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2193                             device->total_bytes)
2194                                 break;
2195                         last_barrier = i;
2196                 }
2197         }
2198
2199         for (i = 0; i < max_mirrors; i++) {
2200                 bytenr = btrfs_sb_offset(i);
2201                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2202                         break;
2203
2204                 if (wait) {
2205                         bh = __find_get_block(device->bdev, bytenr / 4096,
2206                                               BTRFS_SUPER_INFO_SIZE);
2207                         BUG_ON(!bh);
2208                         wait_on_buffer(bh);
2209                         if (!buffer_uptodate(bh))
2210                                 errors++;
2211
2212                         /* drop our reference */
2213                         brelse(bh);
2214
2215                         /* drop the reference from the wait == 0 run */
2216                         brelse(bh);
2217                         continue;
2218                 } else {
2219                         btrfs_set_super_bytenr(sb, bytenr);
2220
2221                         crc = ~(u32)0;
2222                         crc = btrfs_csum_data(NULL, (char *)sb +
2223                                               BTRFS_CSUM_SIZE, crc,
2224                                               BTRFS_SUPER_INFO_SIZE -
2225                                               BTRFS_CSUM_SIZE);
2226                         btrfs_csum_final(crc, sb->csum);
2227
2228                         /*
2229                          * one reference for us, and we leave it for the
2230                          * caller
2231                          */
2232                         bh = __getblk(device->bdev, bytenr / 4096,
2233                                       BTRFS_SUPER_INFO_SIZE);
2234                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2235
2236                         /* one reference for submit_bh */
2237                         get_bh(bh);
2238
2239                         set_buffer_uptodate(bh);
2240                         lock_buffer(bh);
2241                         bh->b_end_io = btrfs_end_buffer_write_sync;
2242                 }
2243
2244                 if (i == last_barrier && do_barriers && device->barriers) {
2245                         ret = submit_bh(WRITE_BARRIER, bh);
2246                         if (ret == -EOPNOTSUPP) {
2247                                 printk("btrfs: disabling barriers on dev %s\n",
2248                                        device->name);
2249                                 set_buffer_uptodate(bh);
2250                                 device->barriers = 0;
2251                                 /* one reference for submit_bh */
2252                                 get_bh(bh);
2253                                 lock_buffer(bh);
2254                                 ret = submit_bh(WRITE_SYNC, bh);
2255                         }
2256                 } else {
2257                         ret = submit_bh(WRITE_SYNC, bh);
2258                 }
2259
2260                 if (ret)
2261                         errors++;
2262         }
2263         return errors < i ? 0 : -1;
2264 }
2265
2266 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2267 {
2268         struct list_head *head;
2269         struct btrfs_device *dev;
2270         struct btrfs_super_block *sb;
2271         struct btrfs_dev_item *dev_item;
2272         int ret;
2273         int do_barriers;
2274         int max_errors;
2275         int total_errors = 0;
2276         u64 flags;
2277
2278         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2279         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2280
2281         sb = &root->fs_info->super_for_commit;
2282         dev_item = &sb->dev_item;
2283
2284         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2285         head = &root->fs_info->fs_devices->devices;
2286         list_for_each_entry(dev, head, dev_list) {
2287                 if (!dev->bdev) {
2288                         total_errors++;
2289                         continue;
2290                 }
2291                 if (!dev->in_fs_metadata || !dev->writeable)
2292                         continue;
2293
2294                 btrfs_set_stack_device_generation(dev_item, 0);
2295                 btrfs_set_stack_device_type(dev_item, dev->type);
2296                 btrfs_set_stack_device_id(dev_item, dev->devid);
2297                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2298                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2299                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2300                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2301                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2302                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2303                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2304
2305                 flags = btrfs_super_flags(sb);
2306                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2307
2308                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2309                 if (ret)
2310                         total_errors++;
2311         }
2312         if (total_errors > max_errors) {
2313                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2314                        total_errors);
2315                 BUG();
2316         }
2317
2318         total_errors = 0;
2319         list_for_each_entry(dev, head, dev_list) {
2320                 if (!dev->bdev)
2321                         continue;
2322                 if (!dev->in_fs_metadata || !dev->writeable)
2323                         continue;
2324
2325                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2326                 if (ret)
2327                         total_errors++;
2328         }
2329         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2330         if (total_errors > max_errors) {
2331                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2332                        total_errors);
2333                 BUG();
2334         }
2335         return 0;
2336 }
2337
2338 int write_ctree_super(struct btrfs_trans_handle *trans,
2339                       struct btrfs_root *root, int max_mirrors)
2340 {
2341         int ret;
2342
2343         ret = write_all_supers(root, max_mirrors);
2344         return ret;
2345 }
2346
2347 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2348 {
2349         spin_lock(&fs_info->fs_roots_radix_lock);
2350         radix_tree_delete(&fs_info->fs_roots_radix,
2351                           (unsigned long)root->root_key.objectid);
2352         spin_unlock(&fs_info->fs_roots_radix_lock);
2353
2354         if (btrfs_root_refs(&root->root_item) == 0)
2355                 synchronize_srcu(&fs_info->subvol_srcu);
2356
2357         free_fs_root(root);
2358         return 0;
2359 }
2360
2361 static void free_fs_root(struct btrfs_root *root)
2362 {
2363         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2364         if (root->anon_super.s_dev) {
2365                 down_write(&root->anon_super.s_umount);
2366                 kill_anon_super(&root->anon_super);
2367         }
2368         free_extent_buffer(root->node);
2369         free_extent_buffer(root->commit_root);
2370         kfree(root->name);
2371         kfree(root);
2372 }
2373
2374 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2375 {
2376         int ret;
2377         struct btrfs_root *gang[8];
2378         int i;
2379
2380         while (!list_empty(&fs_info->dead_roots)) {
2381                 gang[0] = list_entry(fs_info->dead_roots.next,
2382                                      struct btrfs_root, root_list);
2383                 list_del(&gang[0]->root_list);
2384
2385                 if (gang[0]->in_radix) {
2386                         btrfs_free_fs_root(fs_info, gang[0]);
2387                 } else {
2388                         free_extent_buffer(gang[0]->node);
2389                         free_extent_buffer(gang[0]->commit_root);
2390                         kfree(gang[0]);
2391                 }
2392         }
2393
2394         while (1) {
2395                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2396                                              (void **)gang, 0,
2397                                              ARRAY_SIZE(gang));
2398                 if (!ret)
2399                         break;
2400                 for (i = 0; i < ret; i++)
2401                         btrfs_free_fs_root(fs_info, gang[i]);
2402         }
2403         return 0;
2404 }
2405
2406 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2407 {
2408         u64 root_objectid = 0;
2409         struct btrfs_root *gang[8];
2410         int i;
2411         int ret;
2412
2413         while (1) {
2414                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2415                                              (void **)gang, root_objectid,
2416                                              ARRAY_SIZE(gang));
2417                 if (!ret)
2418                         break;
2419
2420                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2421                 for (i = 0; i < ret; i++) {
2422                         root_objectid = gang[i]->root_key.objectid;
2423                         btrfs_orphan_cleanup(gang[i]);
2424                 }
2425                 root_objectid++;
2426         }
2427         return 0;
2428 }
2429
2430 int btrfs_commit_super(struct btrfs_root *root)
2431 {
2432         struct btrfs_trans_handle *trans;
2433         int ret;
2434
2435         mutex_lock(&root->fs_info->cleaner_mutex);
2436         btrfs_run_delayed_iputs(root);
2437         btrfs_clean_old_snapshots(root);
2438         mutex_unlock(&root->fs_info->cleaner_mutex);
2439
2440         /* wait until ongoing cleanup work done */
2441         down_write(&root->fs_info->cleanup_work_sem);
2442         up_write(&root->fs_info->cleanup_work_sem);
2443
2444         trans = btrfs_join_transaction(root, 1);
2445         ret = btrfs_commit_transaction(trans, root);
2446         BUG_ON(ret);
2447         /* run commit again to drop the original snapshot */
2448         trans = btrfs_join_transaction(root, 1);
2449         btrfs_commit_transaction(trans, root);
2450         ret = btrfs_write_and_wait_transaction(NULL, root);
2451         BUG_ON(ret);
2452
2453         ret = write_ctree_super(NULL, root, 0);
2454         return ret;
2455 }
2456
2457 int close_ctree(struct btrfs_root *root)
2458 {
2459         struct btrfs_fs_info *fs_info = root->fs_info;
2460         int ret;
2461
2462         fs_info->closing = 1;
2463         smp_mb();
2464
2465         btrfs_put_block_group_cache(fs_info);
2466         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2467                 ret =  btrfs_commit_super(root);
2468                 if (ret)
2469                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2470         }
2471
2472         kthread_stop(root->fs_info->transaction_kthread);
2473         kthread_stop(root->fs_info->cleaner_kthread);
2474
2475         fs_info->closing = 2;
2476         smp_mb();
2477
2478         if (fs_info->delalloc_bytes) {
2479                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2480                        (unsigned long long)fs_info->delalloc_bytes);
2481         }
2482         if (fs_info->total_ref_cache_size) {
2483                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2484                        (unsigned long long)fs_info->total_ref_cache_size);
2485         }
2486
2487         free_extent_buffer(fs_info->extent_root->node);
2488         free_extent_buffer(fs_info->extent_root->commit_root);
2489         free_extent_buffer(fs_info->tree_root->node);
2490         free_extent_buffer(fs_info->tree_root->commit_root);
2491         free_extent_buffer(root->fs_info->chunk_root->node);
2492         free_extent_buffer(root->fs_info->chunk_root->commit_root);
2493         free_extent_buffer(root->fs_info->dev_root->node);
2494         free_extent_buffer(root->fs_info->dev_root->commit_root);
2495         free_extent_buffer(root->fs_info->csum_root->node);
2496         free_extent_buffer(root->fs_info->csum_root->commit_root);
2497
2498         btrfs_free_block_groups(root->fs_info);
2499
2500         del_fs_roots(fs_info);
2501
2502         iput(fs_info->btree_inode);
2503
2504         btrfs_stop_workers(&fs_info->generic_worker);
2505         btrfs_stop_workers(&fs_info->fixup_workers);
2506         btrfs_stop_workers(&fs_info->delalloc_workers);
2507         btrfs_stop_workers(&fs_info->workers);
2508         btrfs_stop_workers(&fs_info->endio_workers);
2509         btrfs_stop_workers(&fs_info->endio_meta_workers);
2510         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2511         btrfs_stop_workers(&fs_info->endio_write_workers);
2512         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2513         btrfs_stop_workers(&fs_info->submit_workers);
2514
2515         btrfs_close_devices(fs_info->fs_devices);
2516         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2517
2518         bdi_destroy(&fs_info->bdi);
2519         cleanup_srcu_struct(&fs_info->subvol_srcu);
2520
2521         kfree(fs_info->extent_root);
2522         kfree(fs_info->tree_root);
2523         kfree(fs_info->chunk_root);
2524         kfree(fs_info->dev_root);
2525         kfree(fs_info->csum_root);
2526         return 0;
2527 }
2528
2529 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2530 {
2531         int ret;
2532         struct inode *btree_inode = buf->first_page->mapping->host;
2533
2534         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2535                                      NULL);
2536         if (!ret)
2537                 return ret;
2538
2539         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2540                                     parent_transid);
2541         return !ret;
2542 }
2543
2544 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2545 {
2546         struct inode *btree_inode = buf->first_page->mapping->host;
2547         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2548                                           buf);
2549 }
2550
2551 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2552 {
2553         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2554         u64 transid = btrfs_header_generation(buf);
2555         struct inode *btree_inode = root->fs_info->btree_inode;
2556         int was_dirty;
2557
2558         btrfs_assert_tree_locked(buf);
2559         if (transid != root->fs_info->generation) {
2560                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2561                        "found %llu running %llu\n",
2562                         (unsigned long long)buf->start,
2563                         (unsigned long long)transid,
2564                         (unsigned long long)root->fs_info->generation);
2565                 WARN_ON(1);
2566         }
2567         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2568                                             buf);
2569         if (!was_dirty) {
2570                 spin_lock(&root->fs_info->delalloc_lock);
2571                 root->fs_info->dirty_metadata_bytes += buf->len;
2572                 spin_unlock(&root->fs_info->delalloc_lock);
2573         }
2574 }
2575
2576 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2577 {
2578         /*
2579          * looks as though older kernels can get into trouble with
2580          * this code, they end up stuck in balance_dirty_pages forever
2581          */
2582         u64 num_dirty;
2583         unsigned long thresh = 32 * 1024 * 1024;
2584
2585         if (current->flags & PF_MEMALLOC)
2586                 return;
2587
2588         num_dirty = root->fs_info->dirty_metadata_bytes;
2589
2590         if (num_dirty > thresh) {
2591                 balance_dirty_pages_ratelimited_nr(
2592                                    root->fs_info->btree_inode->i_mapping, 1);
2593         }
2594         return;
2595 }
2596
2597 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2598 {
2599         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2600         int ret;
2601         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2602         if (ret == 0)
2603                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2604         return ret;
2605 }
2606
2607 int btree_lock_page_hook(struct page *page)
2608 {
2609         struct inode *inode = page->mapping->host;
2610         struct btrfs_root *root = BTRFS_I(inode)->root;
2611         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2612         struct extent_buffer *eb;
2613         unsigned long len;
2614         u64 bytenr = page_offset(page);
2615
2616         if (page->private == EXTENT_PAGE_PRIVATE)
2617                 goto out;
2618
2619         len = page->private >> 2;
2620         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2621         if (!eb)
2622                 goto out;
2623
2624         btrfs_tree_lock(eb);
2625         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2626
2627         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2628                 spin_lock(&root->fs_info->delalloc_lock);
2629                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2630                         root->fs_info->dirty_metadata_bytes -= eb->len;
2631                 else
2632                         WARN_ON(1);
2633                 spin_unlock(&root->fs_info->delalloc_lock);
2634         }
2635
2636         btrfs_tree_unlock(eb);
2637         free_extent_buffer(eb);
2638 out:
2639         lock_page(page);
2640         return 0;
2641 }
2642
2643 static struct extent_io_ops btree_extent_io_ops = {
2644         .write_cache_pages_lock_hook = btree_lock_page_hook,
2645         .readpage_end_io_hook = btree_readpage_end_io_hook,
2646         .submit_bio_hook = btree_submit_bio_hook,
2647         /* note we're sharing with inode.c for the merge bio hook */
2648         .merge_bio_hook = btrfs_merge_bio_hook,
2649 };