btrfs: mask out gfp flags in releasepage
[pandora-kernel.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52                                     int read_only);
53 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_root *root);
57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_root *root);
65
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         int error;
77         int metadata;
78         struct list_head list;
79         struct btrfs_work work;
80 };
81
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88         struct inode *inode;
89         struct bio *bio;
90         struct list_head list;
91         extent_submit_bio_hook_t *submit_bio_start;
92         extent_submit_bio_hook_t *submit_bio_done;
93         int rw;
94         int mirror_num;
95         unsigned long bio_flags;
96         /*
97          * bio_offset is optional, can be used if the pages in the bio
98          * can't tell us where in the file the bio should go
99          */
100         u64 bio_offset;
101         struct btrfs_work work;
102 };
103
104 /*
105  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
106  * eb, the lockdep key is determined by the btrfs_root it belongs to and
107  * the level the eb occupies in the tree.
108  *
109  * Different roots are used for different purposes and may nest inside each
110  * other and they require separate keysets.  As lockdep keys should be
111  * static, assign keysets according to the purpose of the root as indicated
112  * by btrfs_root->objectid.  This ensures that all special purpose roots
113  * have separate keysets.
114  *
115  * Lock-nesting across peer nodes is always done with the immediate parent
116  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
117  * subclass to avoid triggering lockdep warning in such cases.
118  *
119  * The key is set by the readpage_end_io_hook after the buffer has passed
120  * csum validation but before the pages are unlocked.  It is also set by
121  * btrfs_init_new_buffer on freshly allocated blocks.
122  *
123  * We also add a check to make sure the highest level of the tree is the
124  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
125  * needs update as well.
126  */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 #  error
130 # endif
131
132 static struct btrfs_lockdep_keyset {
133         u64                     id;             /* root objectid */
134         const char              *name_stem;     /* lock name stem */
135         char                    names[BTRFS_MAX_LEVEL + 1][20];
136         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
139         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
140         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
141         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
142         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
143         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
144         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
145         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
146         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
147         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
148         { .id = 0,                              .name_stem = "tree"     },
149 };
150
151 void __init btrfs_init_lockdep(void)
152 {
153         int i, j;
154
155         /* initialize lockdep class names */
156         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160                         snprintf(ks->names[j], sizeof(ks->names[j]),
161                                  "btrfs-%s-%02d", ks->name_stem, j);
162         }
163 }
164
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166                                     int level)
167 {
168         struct btrfs_lockdep_keyset *ks;
169
170         BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172         /* find the matching keyset, id 0 is the default entry */
173         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174                 if (ks->id == objectid)
175                         break;
176
177         lockdep_set_class_and_name(&eb->lock,
178                                    &ks->keys[level], ks->names[level]);
179 }
180
181 #endif
182
183 /*
184  * extents on the btree inode are pretty simple, there's one extent
185  * that covers the entire device
186  */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188                 struct page *page, size_t pg_offset, u64 start, u64 len,
189                 int create)
190 {
191         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192         struct extent_map *em;
193         int ret;
194
195         read_lock(&em_tree->lock);
196         em = lookup_extent_mapping(em_tree, start, len);
197         if (em) {
198                 em->bdev =
199                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200                 read_unlock(&em_tree->lock);
201                 goto out;
202         }
203         read_unlock(&em_tree->lock);
204
205         em = alloc_extent_map();
206         if (!em) {
207                 em = ERR_PTR(-ENOMEM);
208                 goto out;
209         }
210         em->start = 0;
211         em->len = (u64)-1;
212         em->block_len = (u64)-1;
213         em->block_start = 0;
214         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215
216         write_lock(&em_tree->lock);
217         ret = add_extent_mapping(em_tree, em);
218         if (ret == -EEXIST) {
219                 u64 failed_start = em->start;
220                 u64 failed_len = em->len;
221
222                 free_extent_map(em);
223                 em = lookup_extent_mapping(em_tree, start, len);
224                 if (em) {
225                         ret = 0;
226                 } else {
227                         em = lookup_extent_mapping(em_tree, failed_start,
228                                                    failed_len);
229                         ret = -EIO;
230                 }
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = NULL;
234         }
235         write_unlock(&em_tree->lock);
236
237         if (ret)
238                 em = ERR_PTR(ret);
239 out:
240         return em;
241 }
242
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245         return crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250         put_unaligned_le32(~crc, result);
251 }
252
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258                            int verify)
259 {
260         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261         char *result = NULL;
262         unsigned long len;
263         unsigned long cur_len;
264         unsigned long offset = BTRFS_CSUM_SIZE;
265         char *kaddr;
266         unsigned long map_start;
267         unsigned long map_len;
268         int err;
269         u32 crc = ~(u32)0;
270         unsigned long inline_result;
271
272         len = buf->len - offset;
273         while (len > 0) {
274                 err = map_private_extent_buffer(buf, offset, 32,
275                                         &kaddr, &map_start, &map_len);
276                 if (err)
277                         return 1;
278                 cur_len = min(len, map_len - (offset - map_start));
279                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280                                       crc, cur_len);
281                 len -= cur_len;
282                 offset += cur_len;
283         }
284         if (csum_size > sizeof(inline_result)) {
285                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286                 if (!result)
287                         return 1;
288         } else {
289                 result = (char *)&inline_result;
290         }
291
292         btrfs_csum_final(crc, result);
293
294         if (verify) {
295                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296                         u32 val;
297                         u32 found = 0;
298                         memcpy(&found, result, csum_size);
299
300                         read_extent_buffer(buf, &val, 0, csum_size);
301                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302                                        "failed on %llu wanted %X found %X "
303                                        "level %d\n",
304                                        root->fs_info->sb->s_id,
305                                        (unsigned long long)buf->start, val, found,
306                                        btrfs_header_level(buf));
307                         if (result != (char *)&inline_result)
308                                 kfree(result);
309                         return 1;
310                 }
311         } else {
312                 write_extent_buffer(buf, result, 0, csum_size);
313         }
314         if (result != (char *)&inline_result)
315                 kfree(result);
316         return 0;
317 }
318
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326                                  struct extent_buffer *eb, u64 parent_transid)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330
331         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332                 return 0;
333
334         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335                          0, &cached_state, GFP_NOFS);
336         if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
337             btrfs_header_generation(eb) == parent_transid) {
338                 ret = 0;
339                 goto out;
340         }
341         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342                        "found %llu\n",
343                        (unsigned long long)eb->start,
344                        (unsigned long long)parent_transid,
345                        (unsigned long long)btrfs_header_generation(eb));
346         ret = 1;
347         clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
348 out:
349         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350                              &cached_state, GFP_NOFS);
351         return ret;
352 }
353
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359                                           struct extent_buffer *eb,
360                                           u64 start, u64 parent_transid)
361 {
362         struct extent_io_tree *io_tree;
363         int ret;
364         int num_copies = 0;
365         int mirror_num = 0;
366
367         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
368         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369         while (1) {
370                 ret = read_extent_buffer_pages(io_tree, eb, start,
371                                                WAIT_COMPLETE,
372                                                btree_get_extent, mirror_num);
373                 if (!ret &&
374                     !verify_parent_transid(io_tree, eb, parent_transid))
375                         return ret;
376
377                 /*
378                  * This buffer's crc is fine, but its contents are corrupted, so
379                  * there is no reason to read the other copies, they won't be
380                  * any less wrong.
381                  */
382                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383                         return ret;
384
385                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386                                               eb->start, eb->len);
387                 if (num_copies == 1)
388                         return ret;
389
390                 mirror_num++;
391                 if (mirror_num > num_copies)
392                         return ret;
393         }
394         return -EIO;
395 }
396
397 /*
398  * checksum a dirty tree block before IO.  This has extra checks to make sure
399  * we only fill in the checksum field in the first page of a multi-page block
400  */
401
402 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
403 {
404         struct extent_io_tree *tree;
405         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
406         u64 found_start;
407         unsigned long len;
408         struct extent_buffer *eb;
409         int ret;
410
411         tree = &BTRFS_I(page->mapping->host)->io_tree;
412
413         if (page->private == EXTENT_PAGE_PRIVATE) {
414                 WARN_ON(1);
415                 goto out;
416         }
417         if (!page->private) {
418                 WARN_ON(1);
419                 goto out;
420         }
421         len = page->private >> 2;
422         WARN_ON(len == 0);
423
424         eb = alloc_extent_buffer(tree, start, len, page);
425         if (eb == NULL) {
426                 WARN_ON(1);
427                 goto out;
428         }
429         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430                                              btrfs_header_generation(eb));
431         BUG_ON(ret);
432         WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
434         found_start = btrfs_header_bytenr(eb);
435         if (found_start != start) {
436                 WARN_ON(1);
437                 goto err;
438         }
439         if (eb->first_page != page) {
440                 WARN_ON(1);
441                 goto err;
442         }
443         if (!PageUptodate(page)) {
444                 WARN_ON(1);
445                 goto err;
446         }
447         csum_tree_block(root, eb, 0);
448 err:
449         free_extent_buffer(eb);
450 out:
451         return 0;
452 }
453
454 static int check_tree_block_fsid(struct btrfs_root *root,
455                                  struct extent_buffer *eb)
456 {
457         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458         u8 fsid[BTRFS_UUID_SIZE];
459         int ret = 1;
460
461         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462                            BTRFS_FSID_SIZE);
463         while (fs_devices) {
464                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465                         ret = 0;
466                         break;
467                 }
468                 fs_devices = fs_devices->seed;
469         }
470         return ret;
471 }
472
473 #define CORRUPT(reason, eb, root, slot)                         \
474         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475                "root=%llu, slot=%d\n", reason,                  \
476                (unsigned long long)btrfs_header_bytenr(eb),     \
477                (unsigned long long)root->objectid, slot)
478
479 static noinline int check_leaf(struct btrfs_root *root,
480                                struct extent_buffer *leaf)
481 {
482         struct btrfs_key key;
483         struct btrfs_key leaf_key;
484         u32 nritems = btrfs_header_nritems(leaf);
485         int slot;
486
487         if (nritems == 0)
488                 return 0;
489
490         /* Check the 0 item */
491         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492             BTRFS_LEAF_DATA_SIZE(root)) {
493                 CORRUPT("invalid item offset size pair", leaf, root, 0);
494                 return -EIO;
495         }
496
497         /*
498          * Check to make sure each items keys are in the correct order and their
499          * offsets make sense.  We only have to loop through nritems-1 because
500          * we check the current slot against the next slot, which verifies the
501          * next slot's offset+size makes sense and that the current's slot
502          * offset is correct.
503          */
504         for (slot = 0; slot < nritems - 1; slot++) {
505                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508                 /* Make sure the keys are in the right order */
509                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510                         CORRUPT("bad key order", leaf, root, slot);
511                         return -EIO;
512                 }
513
514                 /*
515                  * Make sure the offset and ends are right, remember that the
516                  * item data starts at the end of the leaf and grows towards the
517                  * front.
518                  */
519                 if (btrfs_item_offset_nr(leaf, slot) !=
520                         btrfs_item_end_nr(leaf, slot + 1)) {
521                         CORRUPT("slot offset bad", leaf, root, slot);
522                         return -EIO;
523                 }
524
525                 /*
526                  * Check to make sure that we don't point outside of the leaf,
527                  * just incase all the items are consistent to eachother, but
528                  * all point outside of the leaf.
529                  */
530                 if (btrfs_item_end_nr(leaf, slot) >
531                     BTRFS_LEAF_DATA_SIZE(root)) {
532                         CORRUPT("slot end outside of leaf", leaf, root, slot);
533                         return -EIO;
534                 }
535         }
536
537         return 0;
538 }
539
540 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
541                                struct extent_state *state)
542 {
543         struct extent_io_tree *tree;
544         u64 found_start;
545         int found_level;
546         unsigned long len;
547         struct extent_buffer *eb;
548         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549         int ret = 0;
550
551         tree = &BTRFS_I(page->mapping->host)->io_tree;
552         if (page->private == EXTENT_PAGE_PRIVATE)
553                 goto out;
554         if (!page->private)
555                 goto out;
556
557         len = page->private >> 2;
558         WARN_ON(len == 0);
559
560         eb = alloc_extent_buffer(tree, start, len, page);
561         if (eb == NULL) {
562                 ret = -EIO;
563                 goto out;
564         }
565
566         found_start = btrfs_header_bytenr(eb);
567         if (found_start != start) {
568                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
569                                "%llu %llu\n",
570                                (unsigned long long)found_start,
571                                (unsigned long long)eb->start);
572                 ret = -EIO;
573                 goto err;
574         }
575         if (eb->first_page != page) {
576                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577                        eb->first_page->index, page->index);
578                 WARN_ON(1);
579                 ret = -EIO;
580                 goto err;
581         }
582         if (check_tree_block_fsid(root, eb)) {
583                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
584                                (unsigned long long)eb->start);
585                 ret = -EIO;
586                 goto err;
587         }
588         found_level = btrfs_header_level(eb);
589
590         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591                                        eb, found_level);
592
593         ret = csum_tree_block(root, eb, 1);
594         if (ret) {
595                 ret = -EIO;
596                 goto err;
597         }
598
599         /*
600          * If this is a leaf block and it is corrupt, set the corrupt bit so
601          * that we don't try and read the other copies of this block, just
602          * return -EIO.
603          */
604         if (found_level == 0 && check_leaf(root, eb)) {
605                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606                 ret = -EIO;
607         }
608
609         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610         end = eb->start + end - 1;
611 err:
612         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614                 btree_readahead_hook(root, eb, eb->start, ret);
615         }
616
617         free_extent_buffer(eb);
618 out:
619         return ret;
620 }
621
622 static int btree_io_failed_hook(struct bio *failed_bio,
623                          struct page *page, u64 start, u64 end,
624                          int mirror_num, struct extent_state *state)
625 {
626         struct extent_io_tree *tree;
627         unsigned long len;
628         struct extent_buffer *eb;
629         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630
631         tree = &BTRFS_I(page->mapping->host)->io_tree;
632         if (page->private == EXTENT_PAGE_PRIVATE)
633                 goto out;
634         if (!page->private)
635                 goto out;
636
637         len = page->private >> 2;
638         WARN_ON(len == 0);
639
640         eb = alloc_extent_buffer(tree, start, len, page);
641         if (eb == NULL)
642                 goto out;
643
644         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646                 btree_readahead_hook(root, eb, eb->start, -EIO);
647         }
648         free_extent_buffer(eb);
649
650 out:
651         return -EIO;    /* we fixed nothing */
652 }
653
654 static void end_workqueue_bio(struct bio *bio, int err)
655 {
656         struct end_io_wq *end_io_wq = bio->bi_private;
657         struct btrfs_fs_info *fs_info;
658
659         fs_info = end_io_wq->info;
660         end_io_wq->error = err;
661         end_io_wq->work.func = end_workqueue_fn;
662         end_io_wq->work.flags = 0;
663
664         if (bio->bi_rw & REQ_WRITE) {
665                 if (end_io_wq->metadata == 1)
666                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667                                            &end_io_wq->work);
668                 else if (end_io_wq->metadata == 2)
669                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
670                                            &end_io_wq->work);
671                 else
672                         btrfs_queue_worker(&fs_info->endio_write_workers,
673                                            &end_io_wq->work);
674         } else {
675                 if (end_io_wq->metadata)
676                         btrfs_queue_worker(&fs_info->endio_meta_workers,
677                                            &end_io_wq->work);
678                 else
679                         btrfs_queue_worker(&fs_info->endio_workers,
680                                            &end_io_wq->work);
681         }
682 }
683
684 /*
685  * For the metadata arg you want
686  *
687  * 0 - if data
688  * 1 - if normal metadta
689  * 2 - if writing to the free space cache area
690  */
691 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692                         int metadata)
693 {
694         struct end_io_wq *end_io_wq;
695         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696         if (!end_io_wq)
697                 return -ENOMEM;
698
699         end_io_wq->private = bio->bi_private;
700         end_io_wq->end_io = bio->bi_end_io;
701         end_io_wq->info = info;
702         end_io_wq->error = 0;
703         end_io_wq->bio = bio;
704         end_io_wq->metadata = metadata;
705
706         bio->bi_private = end_io_wq;
707         bio->bi_end_io = end_workqueue_bio;
708         return 0;
709 }
710
711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
712 {
713         unsigned long limit = min_t(unsigned long,
714                                     info->workers.max_workers,
715                                     info->fs_devices->open_devices);
716         return 256 * limit;
717 }
718
719 static void run_one_async_start(struct btrfs_work *work)
720 {
721         struct async_submit_bio *async;
722
723         async = container_of(work, struct  async_submit_bio, work);
724         async->submit_bio_start(async->inode, async->rw, async->bio,
725                                async->mirror_num, async->bio_flags,
726                                async->bio_offset);
727 }
728
729 static void run_one_async_done(struct btrfs_work *work)
730 {
731         struct btrfs_fs_info *fs_info;
732         struct async_submit_bio *async;
733         int limit;
734
735         async = container_of(work, struct  async_submit_bio, work);
736         fs_info = BTRFS_I(async->inode)->root->fs_info;
737
738         limit = btrfs_async_submit_limit(fs_info);
739         limit = limit * 2 / 3;
740
741         atomic_dec(&fs_info->nr_async_submits);
742
743         if (atomic_read(&fs_info->nr_async_submits) < limit &&
744             waitqueue_active(&fs_info->async_submit_wait))
745                 wake_up(&fs_info->async_submit_wait);
746
747         async->submit_bio_done(async->inode, async->rw, async->bio,
748                                async->mirror_num, async->bio_flags,
749                                async->bio_offset);
750 }
751
752 static void run_one_async_free(struct btrfs_work *work)
753 {
754         struct async_submit_bio *async;
755
756         async = container_of(work, struct  async_submit_bio, work);
757         kfree(async);
758 }
759
760 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761                         int rw, struct bio *bio, int mirror_num,
762                         unsigned long bio_flags,
763                         u64 bio_offset,
764                         extent_submit_bio_hook_t *submit_bio_start,
765                         extent_submit_bio_hook_t *submit_bio_done)
766 {
767         struct async_submit_bio *async;
768
769         async = kmalloc(sizeof(*async), GFP_NOFS);
770         if (!async)
771                 return -ENOMEM;
772
773         async->inode = inode;
774         async->rw = rw;
775         async->bio = bio;
776         async->mirror_num = mirror_num;
777         async->submit_bio_start = submit_bio_start;
778         async->submit_bio_done = submit_bio_done;
779
780         async->work.func = run_one_async_start;
781         async->work.ordered_func = run_one_async_done;
782         async->work.ordered_free = run_one_async_free;
783
784         async->work.flags = 0;
785         async->bio_flags = bio_flags;
786         async->bio_offset = bio_offset;
787
788         atomic_inc(&fs_info->nr_async_submits);
789
790         if (rw & REQ_SYNC)
791                 btrfs_set_work_high_prio(&async->work);
792
793         btrfs_queue_worker(&fs_info->workers, &async->work);
794
795         while (atomic_read(&fs_info->async_submit_draining) &&
796               atomic_read(&fs_info->nr_async_submits)) {
797                 wait_event(fs_info->async_submit_wait,
798                            (atomic_read(&fs_info->nr_async_submits) == 0));
799         }
800
801         return 0;
802 }
803
804 static int btree_csum_one_bio(struct bio *bio)
805 {
806         struct bio_vec *bvec = bio->bi_io_vec;
807         int bio_index = 0;
808         struct btrfs_root *root;
809
810         WARN_ON(bio->bi_vcnt <= 0);
811         while (bio_index < bio->bi_vcnt) {
812                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813                 csum_dirty_buffer(root, bvec->bv_page);
814                 bio_index++;
815                 bvec++;
816         }
817         return 0;
818 }
819
820 static int __btree_submit_bio_start(struct inode *inode, int rw,
821                                     struct bio *bio, int mirror_num,
822                                     unsigned long bio_flags,
823                                     u64 bio_offset)
824 {
825         /*
826          * when we're called for a write, we're already in the async
827          * submission context.  Just jump into btrfs_map_bio
828          */
829         btree_csum_one_bio(bio);
830         return 0;
831 }
832
833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
834                                  int mirror_num, unsigned long bio_flags,
835                                  u64 bio_offset)
836 {
837         /*
838          * when we're called for a write, we're already in the async
839          * submission context.  Just jump into btrfs_map_bio
840          */
841         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
842 }
843
844 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
845                                  int mirror_num, unsigned long bio_flags,
846                                  u64 bio_offset)
847 {
848         int ret;
849
850         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
851                                           bio, 1);
852         BUG_ON(ret);
853
854         if (!(rw & REQ_WRITE)) {
855                 /*
856                  * called for a read, do the setup so that checksum validation
857                  * can happen in the async kernel threads
858                  */
859                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
860                                      mirror_num, 0);
861         }
862
863         /*
864          * kthread helpers are used to submit writes so that checksumming
865          * can happen in parallel across all CPUs
866          */
867         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
868                                    inode, rw, bio, mirror_num, 0,
869                                    bio_offset,
870                                    __btree_submit_bio_start,
871                                    __btree_submit_bio_done);
872 }
873
874 #ifdef CONFIG_MIGRATION
875 static int btree_migratepage(struct address_space *mapping,
876                         struct page *newpage, struct page *page)
877 {
878         /*
879          * we can't safely write a btree page from here,
880          * we haven't done the locking hook
881          */
882         if (PageDirty(page))
883                 return -EAGAIN;
884         /*
885          * Buffers may be managed in a filesystem specific way.
886          * We must have no buffers or drop them.
887          */
888         if (page_has_private(page) &&
889             !try_to_release_page(page, GFP_KERNEL))
890                 return -EAGAIN;
891         return migrate_page(mapping, newpage, page);
892 }
893 #endif
894
895 static int btree_writepage(struct page *page, struct writeback_control *wbc)
896 {
897         struct extent_io_tree *tree;
898         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
899         struct extent_buffer *eb;
900         int was_dirty;
901
902         tree = &BTRFS_I(page->mapping->host)->io_tree;
903         if (!(current->flags & PF_MEMALLOC)) {
904                 return extent_write_full_page(tree, page,
905                                               btree_get_extent, wbc);
906         }
907
908         redirty_page_for_writepage(wbc, page);
909         eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
910         WARN_ON(!eb);
911
912         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
913         if (!was_dirty) {
914                 spin_lock(&root->fs_info->delalloc_lock);
915                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
916                 spin_unlock(&root->fs_info->delalloc_lock);
917         }
918         free_extent_buffer(eb);
919
920         unlock_page(page);
921         return 0;
922 }
923
924 static int btree_writepages(struct address_space *mapping,
925                             struct writeback_control *wbc)
926 {
927         struct extent_io_tree *tree;
928         tree = &BTRFS_I(mapping->host)->io_tree;
929         if (wbc->sync_mode == WB_SYNC_NONE) {
930                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931                 u64 num_dirty;
932                 unsigned long thresh = 32 * 1024 * 1024;
933
934                 if (wbc->for_kupdate)
935                         return 0;
936
937                 /* this is a bit racy, but that's ok */
938                 num_dirty = root->fs_info->dirty_metadata_bytes;
939                 if (num_dirty < thresh)
940                         return 0;
941         }
942         return extent_writepages(tree, mapping, btree_get_extent, wbc);
943 }
944
945 static int btree_readpage(struct file *file, struct page *page)
946 {
947         struct extent_io_tree *tree;
948         tree = &BTRFS_I(page->mapping->host)->io_tree;
949         return extent_read_full_page(tree, page, btree_get_extent, 0);
950 }
951
952 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 {
954         struct extent_io_tree *tree;
955         struct extent_map_tree *map;
956         int ret;
957
958         if (PageWriteback(page) || PageDirty(page))
959                 return 0;
960
961         tree = &BTRFS_I(page->mapping->host)->io_tree;
962         map = &BTRFS_I(page->mapping->host)->extent_tree;
963
964         /*
965          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
966          * slab allocation from alloc_extent_state down the callchain where
967          * it'd hit a BUG_ON as those flags are not allowed.
968          */
969         gfp_flags &= ~GFP_SLAB_BUG_MASK;
970
971         ret = try_release_extent_state(map, tree, page, gfp_flags);
972         if (!ret)
973                 return 0;
974
975         ret = try_release_extent_buffer(tree, page);
976         if (ret == 1) {
977                 ClearPagePrivate(page);
978                 set_page_private(page, 0);
979                 page_cache_release(page);
980         }
981
982         return ret;
983 }
984
985 static void btree_invalidatepage(struct page *page, unsigned long offset)
986 {
987         struct extent_io_tree *tree;
988         tree = &BTRFS_I(page->mapping->host)->io_tree;
989         extent_invalidatepage(tree, page, offset);
990         btree_releasepage(page, GFP_NOFS);
991         if (PagePrivate(page)) {
992                 printk(KERN_WARNING "btrfs warning page private not zero "
993                        "on page %llu\n", (unsigned long long)page_offset(page));
994                 ClearPagePrivate(page);
995                 set_page_private(page, 0);
996                 page_cache_release(page);
997         }
998 }
999
1000 static const struct address_space_operations btree_aops = {
1001         .readpage       = btree_readpage,
1002         .writepage      = btree_writepage,
1003         .writepages     = btree_writepages,
1004         .releasepage    = btree_releasepage,
1005         .invalidatepage = btree_invalidatepage,
1006 #ifdef CONFIG_MIGRATION
1007         .migratepage    = btree_migratepage,
1008 #endif
1009 };
1010
1011 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1012                          u64 parent_transid)
1013 {
1014         struct extent_buffer *buf = NULL;
1015         struct inode *btree_inode = root->fs_info->btree_inode;
1016         int ret = 0;
1017
1018         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1019         if (!buf)
1020                 return 0;
1021         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1022                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1023         free_extent_buffer(buf);
1024         return ret;
1025 }
1026
1027 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1028                          int mirror_num, struct extent_buffer **eb)
1029 {
1030         struct extent_buffer *buf = NULL;
1031         struct inode *btree_inode = root->fs_info->btree_inode;
1032         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1033         int ret;
1034
1035         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1036         if (!buf)
1037                 return 0;
1038
1039         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1040
1041         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1042                                        btree_get_extent, mirror_num);
1043         if (ret) {
1044                 free_extent_buffer(buf);
1045                 return ret;
1046         }
1047
1048         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1049                 free_extent_buffer(buf);
1050                 return -EIO;
1051         } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1052                 *eb = buf;
1053         } else {
1054                 free_extent_buffer(buf);
1055         }
1056         return 0;
1057 }
1058
1059 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1060                                             u64 bytenr, u32 blocksize)
1061 {
1062         struct inode *btree_inode = root->fs_info->btree_inode;
1063         struct extent_buffer *eb;
1064         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1065                                 bytenr, blocksize);
1066         return eb;
1067 }
1068
1069 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1070                                                  u64 bytenr, u32 blocksize)
1071 {
1072         struct inode *btree_inode = root->fs_info->btree_inode;
1073         struct extent_buffer *eb;
1074
1075         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1076                                  bytenr, blocksize, NULL);
1077         return eb;
1078 }
1079
1080
1081 int btrfs_write_tree_block(struct extent_buffer *buf)
1082 {
1083         return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1084                                         buf->start + buf->len - 1);
1085 }
1086
1087 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1088 {
1089         return filemap_fdatawait_range(buf->first_page->mapping,
1090                                        buf->start, buf->start + buf->len - 1);
1091 }
1092
1093 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1094                                       u32 blocksize, u64 parent_transid)
1095 {
1096         struct extent_buffer *buf = NULL;
1097         int ret;
1098
1099         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1100         if (!buf)
1101                 return NULL;
1102
1103         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1104
1105         if (ret == 0)
1106                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1107         return buf;
1108
1109 }
1110
1111 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1112                      struct extent_buffer *buf)
1113 {
1114         struct inode *btree_inode = root->fs_info->btree_inode;
1115         if (btrfs_header_generation(buf) ==
1116             root->fs_info->running_transaction->transid) {
1117                 btrfs_assert_tree_locked(buf);
1118
1119                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1120                         spin_lock(&root->fs_info->delalloc_lock);
1121                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1122                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1123                         else
1124                                 WARN_ON(1);
1125                         spin_unlock(&root->fs_info->delalloc_lock);
1126                 }
1127
1128                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1129                 btrfs_set_lock_blocking(buf);
1130                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1131                                           buf);
1132         }
1133         return 0;
1134 }
1135
1136 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1137                         u32 stripesize, struct btrfs_root *root,
1138                         struct btrfs_fs_info *fs_info,
1139                         u64 objectid)
1140 {
1141         root->node = NULL;
1142         root->commit_root = NULL;
1143         root->sectorsize = sectorsize;
1144         root->nodesize = nodesize;
1145         root->leafsize = leafsize;
1146         root->stripesize = stripesize;
1147         root->ref_cows = 0;
1148         root->track_dirty = 0;
1149         root->in_radix = 0;
1150         root->orphan_item_inserted = 0;
1151         root->orphan_cleanup_state = 0;
1152
1153         root->fs_info = fs_info;
1154         root->objectid = objectid;
1155         root->last_trans = 0;
1156         root->highest_objectid = 0;
1157         root->name = NULL;
1158         root->inode_tree = RB_ROOT;
1159         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1160         root->block_rsv = NULL;
1161         root->orphan_block_rsv = NULL;
1162
1163         INIT_LIST_HEAD(&root->dirty_list);
1164         INIT_LIST_HEAD(&root->orphan_list);
1165         INIT_LIST_HEAD(&root->root_list);
1166         spin_lock_init(&root->orphan_lock);
1167         spin_lock_init(&root->inode_lock);
1168         spin_lock_init(&root->accounting_lock);
1169         mutex_init(&root->objectid_mutex);
1170         mutex_init(&root->log_mutex);
1171         init_waitqueue_head(&root->log_writer_wait);
1172         init_waitqueue_head(&root->log_commit_wait[0]);
1173         init_waitqueue_head(&root->log_commit_wait[1]);
1174         atomic_set(&root->log_commit[0], 0);
1175         atomic_set(&root->log_commit[1], 0);
1176         atomic_set(&root->log_writers, 0);
1177         root->log_batch = 0;
1178         root->log_transid = 0;
1179         root->last_log_commit = 0;
1180         extent_io_tree_init(&root->dirty_log_pages,
1181                              fs_info->btree_inode->i_mapping);
1182
1183         memset(&root->root_key, 0, sizeof(root->root_key));
1184         memset(&root->root_item, 0, sizeof(root->root_item));
1185         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1186         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1187         root->defrag_trans_start = fs_info->generation;
1188         init_completion(&root->kobj_unregister);
1189         root->defrag_running = 0;
1190         root->root_key.objectid = objectid;
1191         root->anon_dev = 0;
1192         return 0;
1193 }
1194
1195 static int find_and_setup_root(struct btrfs_root *tree_root,
1196                                struct btrfs_fs_info *fs_info,
1197                                u64 objectid,
1198                                struct btrfs_root *root)
1199 {
1200         int ret;
1201         u32 blocksize;
1202         u64 generation;
1203
1204         __setup_root(tree_root->nodesize, tree_root->leafsize,
1205                      tree_root->sectorsize, tree_root->stripesize,
1206                      root, fs_info, objectid);
1207         ret = btrfs_find_last_root(tree_root, objectid,
1208                                    &root->root_item, &root->root_key);
1209         if (ret > 0)
1210                 return -ENOENT;
1211         BUG_ON(ret);
1212
1213         generation = btrfs_root_generation(&root->root_item);
1214         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1215         root->commit_root = NULL;
1216         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1217                                      blocksize, generation);
1218         if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1219                 free_extent_buffer(root->node);
1220                 root->node = NULL;
1221                 return -EIO;
1222         }
1223         root->commit_root = btrfs_root_node(root);
1224         return 0;
1225 }
1226
1227 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1228                                          struct btrfs_fs_info *fs_info)
1229 {
1230         struct btrfs_root *root;
1231         struct btrfs_root *tree_root = fs_info->tree_root;
1232         struct extent_buffer *leaf;
1233
1234         root = kzalloc(sizeof(*root), GFP_NOFS);
1235         if (!root)
1236                 return ERR_PTR(-ENOMEM);
1237
1238         __setup_root(tree_root->nodesize, tree_root->leafsize,
1239                      tree_root->sectorsize, tree_root->stripesize,
1240                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1241
1242         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1243         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1244         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1245         /*
1246          * log trees do not get reference counted because they go away
1247          * before a real commit is actually done.  They do store pointers
1248          * to file data extents, and those reference counts still get
1249          * updated (along with back refs to the log tree).
1250          */
1251         root->ref_cows = 0;
1252
1253         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1254                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1255                                       0, 0, 0, 0);
1256         if (IS_ERR(leaf)) {
1257                 kfree(root);
1258                 return ERR_CAST(leaf);
1259         }
1260
1261         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1262         btrfs_set_header_bytenr(leaf, leaf->start);
1263         btrfs_set_header_generation(leaf, trans->transid);
1264         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1265         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1266         root->node = leaf;
1267
1268         write_extent_buffer(root->node, root->fs_info->fsid,
1269                             (unsigned long)btrfs_header_fsid(root->node),
1270                             BTRFS_FSID_SIZE);
1271         btrfs_mark_buffer_dirty(root->node);
1272         btrfs_tree_unlock(root->node);
1273         return root;
1274 }
1275
1276 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1277                              struct btrfs_fs_info *fs_info)
1278 {
1279         struct btrfs_root *log_root;
1280
1281         log_root = alloc_log_tree(trans, fs_info);
1282         if (IS_ERR(log_root))
1283                 return PTR_ERR(log_root);
1284         WARN_ON(fs_info->log_root_tree);
1285         fs_info->log_root_tree = log_root;
1286         return 0;
1287 }
1288
1289 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1290                        struct btrfs_root *root)
1291 {
1292         struct btrfs_root *log_root;
1293         struct btrfs_inode_item *inode_item;
1294
1295         log_root = alloc_log_tree(trans, root->fs_info);
1296         if (IS_ERR(log_root))
1297                 return PTR_ERR(log_root);
1298
1299         log_root->last_trans = trans->transid;
1300         log_root->root_key.offset = root->root_key.objectid;
1301
1302         inode_item = &log_root->root_item.inode;
1303         inode_item->generation = cpu_to_le64(1);
1304         inode_item->size = cpu_to_le64(3);
1305         inode_item->nlink = cpu_to_le32(1);
1306         inode_item->nbytes = cpu_to_le64(root->leafsize);
1307         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1308
1309         btrfs_set_root_node(&log_root->root_item, log_root->node);
1310
1311         WARN_ON(root->log_root);
1312         root->log_root = log_root;
1313         root->log_transid = 0;
1314         root->last_log_commit = 0;
1315         return 0;
1316 }
1317
1318 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1319                                                struct btrfs_key *location)
1320 {
1321         struct btrfs_root *root;
1322         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1323         struct btrfs_path *path;
1324         struct extent_buffer *l;
1325         u64 generation;
1326         u32 blocksize;
1327         int ret = 0;
1328
1329         root = kzalloc(sizeof(*root), GFP_NOFS);
1330         if (!root)
1331                 return ERR_PTR(-ENOMEM);
1332         if (location->offset == (u64)-1) {
1333                 ret = find_and_setup_root(tree_root, fs_info,
1334                                           location->objectid, root);
1335                 if (ret) {
1336                         kfree(root);
1337                         return ERR_PTR(ret);
1338                 }
1339                 goto out;
1340         }
1341
1342         __setup_root(tree_root->nodesize, tree_root->leafsize,
1343                      tree_root->sectorsize, tree_root->stripesize,
1344                      root, fs_info, location->objectid);
1345
1346         path = btrfs_alloc_path();
1347         if (!path) {
1348                 kfree(root);
1349                 return ERR_PTR(-ENOMEM);
1350         }
1351         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1352         if (ret == 0) {
1353                 l = path->nodes[0];
1354                 read_extent_buffer(l, &root->root_item,
1355                                 btrfs_item_ptr_offset(l, path->slots[0]),
1356                                 sizeof(root->root_item));
1357                 memcpy(&root->root_key, location, sizeof(*location));
1358         }
1359         btrfs_free_path(path);
1360         if (ret) {
1361                 kfree(root);
1362                 if (ret > 0)
1363                         ret = -ENOENT;
1364                 return ERR_PTR(ret);
1365         }
1366
1367         generation = btrfs_root_generation(&root->root_item);
1368         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1369         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1370                                      blocksize, generation);
1371         root->commit_root = btrfs_root_node(root);
1372         BUG_ON(!root->node);
1373 out:
1374         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1375                 root->ref_cows = 1;
1376                 btrfs_check_and_init_root_item(&root->root_item);
1377         }
1378
1379         return root;
1380 }
1381
1382 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1383                                               struct btrfs_key *location)
1384 {
1385         struct btrfs_root *root;
1386         int ret;
1387
1388         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1389                 return fs_info->tree_root;
1390         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1391                 return fs_info->extent_root;
1392         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1393                 return fs_info->chunk_root;
1394         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1395                 return fs_info->dev_root;
1396         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1397                 return fs_info->csum_root;
1398 again:
1399         spin_lock(&fs_info->fs_roots_radix_lock);
1400         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1401                                  (unsigned long)location->objectid);
1402         spin_unlock(&fs_info->fs_roots_radix_lock);
1403         if (root)
1404                 return root;
1405
1406         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1407         if (IS_ERR(root))
1408                 return root;
1409
1410         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1411         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1412                                         GFP_NOFS);
1413         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1414                 ret = -ENOMEM;
1415                 goto fail;
1416         }
1417
1418         btrfs_init_free_ino_ctl(root);
1419         mutex_init(&root->fs_commit_mutex);
1420         spin_lock_init(&root->cache_lock);
1421         init_waitqueue_head(&root->cache_wait);
1422
1423         ret = get_anon_bdev(&root->anon_dev);
1424         if (ret)
1425                 goto fail;
1426
1427         if (btrfs_root_refs(&root->root_item) == 0) {
1428                 ret = -ENOENT;
1429                 goto fail;
1430         }
1431
1432         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1433         if (ret < 0)
1434                 goto fail;
1435         if (ret == 0)
1436                 root->orphan_item_inserted = 1;
1437
1438         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1439         if (ret)
1440                 goto fail;
1441
1442         spin_lock(&fs_info->fs_roots_radix_lock);
1443         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1444                                 (unsigned long)root->root_key.objectid,
1445                                 root);
1446         if (ret == 0)
1447                 root->in_radix = 1;
1448
1449         spin_unlock(&fs_info->fs_roots_radix_lock);
1450         radix_tree_preload_end();
1451         if (ret) {
1452                 if (ret == -EEXIST) {
1453                         free_fs_root(root);
1454                         goto again;
1455                 }
1456                 goto fail;
1457         }
1458
1459         ret = btrfs_find_dead_roots(fs_info->tree_root,
1460                                     root->root_key.objectid);
1461         WARN_ON(ret);
1462         return root;
1463 fail:
1464         free_fs_root(root);
1465         return ERR_PTR(ret);
1466 }
1467
1468 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1469 {
1470         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1471         int ret = 0;
1472         struct btrfs_device *device;
1473         struct backing_dev_info *bdi;
1474
1475         rcu_read_lock();
1476         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1477                 if (!device->bdev)
1478                         continue;
1479                 bdi = blk_get_backing_dev_info(device->bdev);
1480                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1481                         ret = 1;
1482                         break;
1483                 }
1484         }
1485         rcu_read_unlock();
1486         return ret;
1487 }
1488
1489 /*
1490  * If this fails, caller must call bdi_destroy() to get rid of the
1491  * bdi again.
1492  */
1493 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1494 {
1495         int err;
1496
1497         bdi->capabilities = BDI_CAP_MAP_COPY;
1498         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1499         if (err)
1500                 return err;
1501
1502         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1503         bdi->congested_fn       = btrfs_congested_fn;
1504         bdi->congested_data     = info;
1505         return 0;
1506 }
1507
1508 static int bio_ready_for_csum(struct bio *bio)
1509 {
1510         u64 length = 0;
1511         u64 buf_len = 0;
1512         u64 start = 0;
1513         struct page *page;
1514         struct extent_io_tree *io_tree = NULL;
1515         struct bio_vec *bvec;
1516         int i;
1517         int ret;
1518
1519         bio_for_each_segment(bvec, bio, i) {
1520                 page = bvec->bv_page;
1521                 if (page->private == EXTENT_PAGE_PRIVATE) {
1522                         length += bvec->bv_len;
1523                         continue;
1524                 }
1525                 if (!page->private) {
1526                         length += bvec->bv_len;
1527                         continue;
1528                 }
1529                 length = bvec->bv_len;
1530                 buf_len = page->private >> 2;
1531                 start = page_offset(page) + bvec->bv_offset;
1532                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1533         }
1534         /* are we fully contained in this bio? */
1535         if (buf_len <= length)
1536                 return 1;
1537
1538         ret = extent_range_uptodate(io_tree, start + length,
1539                                     start + buf_len - 1);
1540         return ret;
1541 }
1542
1543 /*
1544  * called by the kthread helper functions to finally call the bio end_io
1545  * functions.  This is where read checksum verification actually happens
1546  */
1547 static void end_workqueue_fn(struct btrfs_work *work)
1548 {
1549         struct bio *bio;
1550         struct end_io_wq *end_io_wq;
1551         struct btrfs_fs_info *fs_info;
1552         int error;
1553
1554         end_io_wq = container_of(work, struct end_io_wq, work);
1555         bio = end_io_wq->bio;
1556         fs_info = end_io_wq->info;
1557
1558         /* metadata bio reads are special because the whole tree block must
1559          * be checksummed at once.  This makes sure the entire block is in
1560          * ram and up to date before trying to verify things.  For
1561          * blocksize <= pagesize, it is basically a noop
1562          */
1563         if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1564             !bio_ready_for_csum(bio)) {
1565                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1566                                    &end_io_wq->work);
1567                 return;
1568         }
1569         error = end_io_wq->error;
1570         bio->bi_private = end_io_wq->private;
1571         bio->bi_end_io = end_io_wq->end_io;
1572         kfree(end_io_wq);
1573         bio_endio(bio, error);
1574 }
1575
1576 static int cleaner_kthread(void *arg)
1577 {
1578         struct btrfs_root *root = arg;
1579
1580         do {
1581                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1582
1583                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1584                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1585                         btrfs_run_delayed_iputs(root);
1586                         btrfs_clean_old_snapshots(root);
1587                         mutex_unlock(&root->fs_info->cleaner_mutex);
1588                         btrfs_run_defrag_inodes(root->fs_info);
1589                 }
1590
1591                 if (freezing(current)) {
1592                         refrigerator();
1593                 } else {
1594                         set_current_state(TASK_INTERRUPTIBLE);
1595                         if (!kthread_should_stop())
1596                                 schedule();
1597                         __set_current_state(TASK_RUNNING);
1598                 }
1599         } while (!kthread_should_stop());
1600         return 0;
1601 }
1602
1603 static int transaction_kthread(void *arg)
1604 {
1605         struct btrfs_root *root = arg;
1606         struct btrfs_trans_handle *trans;
1607         struct btrfs_transaction *cur;
1608         u64 transid;
1609         unsigned long now;
1610         unsigned long delay;
1611         int ret;
1612
1613         do {
1614                 delay = HZ * 30;
1615                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1616                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1617
1618                 spin_lock(&root->fs_info->trans_lock);
1619                 cur = root->fs_info->running_transaction;
1620                 if (!cur) {
1621                         spin_unlock(&root->fs_info->trans_lock);
1622                         goto sleep;
1623                 }
1624
1625                 now = get_seconds();
1626                 if (!cur->blocked &&
1627                     (now < cur->start_time || now - cur->start_time < 30)) {
1628                         spin_unlock(&root->fs_info->trans_lock);
1629                         delay = HZ * 5;
1630                         goto sleep;
1631                 }
1632                 transid = cur->transid;
1633                 spin_unlock(&root->fs_info->trans_lock);
1634
1635                 trans = btrfs_join_transaction(root);
1636                 BUG_ON(IS_ERR(trans));
1637                 if (transid == trans->transid) {
1638                         ret = btrfs_commit_transaction(trans, root);
1639                         BUG_ON(ret);
1640                 } else {
1641                         btrfs_end_transaction(trans, root);
1642                 }
1643 sleep:
1644                 wake_up_process(root->fs_info->cleaner_kthread);
1645                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1646
1647                 if (freezing(current)) {
1648                         refrigerator();
1649                 } else {
1650                         set_current_state(TASK_INTERRUPTIBLE);
1651                         if (!kthread_should_stop() &&
1652                             !btrfs_transaction_blocked(root->fs_info))
1653                                 schedule_timeout(delay);
1654                         __set_current_state(TASK_RUNNING);
1655                 }
1656         } while (!kthread_should_stop());
1657         return 0;
1658 }
1659
1660 /*
1661  * this will find the highest generation in the array of
1662  * root backups.  The index of the highest array is returned,
1663  * or -1 if we can't find anything.
1664  *
1665  * We check to make sure the array is valid by comparing the
1666  * generation of the latest  root in the array with the generation
1667  * in the super block.  If they don't match we pitch it.
1668  */
1669 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1670 {
1671         u64 cur;
1672         int newest_index = -1;
1673         struct btrfs_root_backup *root_backup;
1674         int i;
1675
1676         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1677                 root_backup = info->super_copy->super_roots + i;
1678                 cur = btrfs_backup_tree_root_gen(root_backup);
1679                 if (cur == newest_gen)
1680                         newest_index = i;
1681         }
1682
1683         /* check to see if we actually wrapped around */
1684         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1685                 root_backup = info->super_copy->super_roots;
1686                 cur = btrfs_backup_tree_root_gen(root_backup);
1687                 if (cur == newest_gen)
1688                         newest_index = 0;
1689         }
1690         return newest_index;
1691 }
1692
1693
1694 /*
1695  * find the oldest backup so we know where to store new entries
1696  * in the backup array.  This will set the backup_root_index
1697  * field in the fs_info struct
1698  */
1699 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1700                                      u64 newest_gen)
1701 {
1702         int newest_index = -1;
1703
1704         newest_index = find_newest_super_backup(info, newest_gen);
1705         /* if there was garbage in there, just move along */
1706         if (newest_index == -1) {
1707                 info->backup_root_index = 0;
1708         } else {
1709                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1710         }
1711 }
1712
1713 /*
1714  * copy all the root pointers into the super backup array.
1715  * this will bump the backup pointer by one when it is
1716  * done
1717  */
1718 static void backup_super_roots(struct btrfs_fs_info *info)
1719 {
1720         int next_backup;
1721         struct btrfs_root_backup *root_backup;
1722         int last_backup;
1723
1724         next_backup = info->backup_root_index;
1725         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1726                 BTRFS_NUM_BACKUP_ROOTS;
1727
1728         /*
1729          * just overwrite the last backup if we're at the same generation
1730          * this happens only at umount
1731          */
1732         root_backup = info->super_for_commit->super_roots + last_backup;
1733         if (btrfs_backup_tree_root_gen(root_backup) ==
1734             btrfs_header_generation(info->tree_root->node))
1735                 next_backup = last_backup;
1736
1737         root_backup = info->super_for_commit->super_roots + next_backup;
1738
1739         /*
1740          * make sure all of our padding and empty slots get zero filled
1741          * regardless of which ones we use today
1742          */
1743         memset(root_backup, 0, sizeof(*root_backup));
1744
1745         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1746
1747         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1748         btrfs_set_backup_tree_root_gen(root_backup,
1749                                btrfs_header_generation(info->tree_root->node));
1750
1751         btrfs_set_backup_tree_root_level(root_backup,
1752                                btrfs_header_level(info->tree_root->node));
1753
1754         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1755         btrfs_set_backup_chunk_root_gen(root_backup,
1756                                btrfs_header_generation(info->chunk_root->node));
1757         btrfs_set_backup_chunk_root_level(root_backup,
1758                                btrfs_header_level(info->chunk_root->node));
1759
1760         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1761         btrfs_set_backup_extent_root_gen(root_backup,
1762                                btrfs_header_generation(info->extent_root->node));
1763         btrfs_set_backup_extent_root_level(root_backup,
1764                                btrfs_header_level(info->extent_root->node));
1765
1766         /*
1767          * we might commit during log recovery, which happens before we set
1768          * the fs_root.  Make sure it is valid before we fill it in.
1769          */
1770         if (info->fs_root && info->fs_root->node) {
1771                 btrfs_set_backup_fs_root(root_backup,
1772                                          info->fs_root->node->start);
1773                 btrfs_set_backup_fs_root_gen(root_backup,
1774                                btrfs_header_generation(info->fs_root->node));
1775                 btrfs_set_backup_fs_root_level(root_backup,
1776                                btrfs_header_level(info->fs_root->node));
1777         }
1778
1779         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1780         btrfs_set_backup_dev_root_gen(root_backup,
1781                                btrfs_header_generation(info->dev_root->node));
1782         btrfs_set_backup_dev_root_level(root_backup,
1783                                        btrfs_header_level(info->dev_root->node));
1784
1785         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1786         btrfs_set_backup_csum_root_gen(root_backup,
1787                                btrfs_header_generation(info->csum_root->node));
1788         btrfs_set_backup_csum_root_level(root_backup,
1789                                btrfs_header_level(info->csum_root->node));
1790
1791         btrfs_set_backup_total_bytes(root_backup,
1792                              btrfs_super_total_bytes(info->super_copy));
1793         btrfs_set_backup_bytes_used(root_backup,
1794                              btrfs_super_bytes_used(info->super_copy));
1795         btrfs_set_backup_num_devices(root_backup,
1796                              btrfs_super_num_devices(info->super_copy));
1797
1798         /*
1799          * if we don't copy this out to the super_copy, it won't get remembered
1800          * for the next commit
1801          */
1802         memcpy(&info->super_copy->super_roots,
1803                &info->super_for_commit->super_roots,
1804                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1805 }
1806
1807 /*
1808  * this copies info out of the root backup array and back into
1809  * the in-memory super block.  It is meant to help iterate through
1810  * the array, so you send it the number of backups you've already
1811  * tried and the last backup index you used.
1812  *
1813  * this returns -1 when it has tried all the backups
1814  */
1815 static noinline int next_root_backup(struct btrfs_fs_info *info,
1816                                      struct btrfs_super_block *super,
1817                                      int *num_backups_tried, int *backup_index)
1818 {
1819         struct btrfs_root_backup *root_backup;
1820         int newest = *backup_index;
1821
1822         if (*num_backups_tried == 0) {
1823                 u64 gen = btrfs_super_generation(super);
1824
1825                 newest = find_newest_super_backup(info, gen);
1826                 if (newest == -1)
1827                         return -1;
1828
1829                 *backup_index = newest;
1830                 *num_backups_tried = 1;
1831         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1832                 /* we've tried all the backups, all done */
1833                 return -1;
1834         } else {
1835                 /* jump to the next oldest backup */
1836                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1837                         BTRFS_NUM_BACKUP_ROOTS;
1838                 *backup_index = newest;
1839                 *num_backups_tried += 1;
1840         }
1841         root_backup = super->super_roots + newest;
1842
1843         btrfs_set_super_generation(super,
1844                                    btrfs_backup_tree_root_gen(root_backup));
1845         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1846         btrfs_set_super_root_level(super,
1847                                    btrfs_backup_tree_root_level(root_backup));
1848         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1849
1850         /*
1851          * fixme: the total bytes and num_devices need to match or we should
1852          * need a fsck
1853          */
1854         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1855         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1856         return 0;
1857 }
1858
1859 /* helper to cleanup tree roots */
1860 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1861 {
1862         free_extent_buffer(info->tree_root->node);
1863         free_extent_buffer(info->tree_root->commit_root);
1864         free_extent_buffer(info->dev_root->node);
1865         free_extent_buffer(info->dev_root->commit_root);
1866         free_extent_buffer(info->extent_root->node);
1867         free_extent_buffer(info->extent_root->commit_root);
1868         free_extent_buffer(info->csum_root->node);
1869         free_extent_buffer(info->csum_root->commit_root);
1870
1871         info->tree_root->node = NULL;
1872         info->tree_root->commit_root = NULL;
1873         info->dev_root->node = NULL;
1874         info->dev_root->commit_root = NULL;
1875         info->extent_root->node = NULL;
1876         info->extent_root->commit_root = NULL;
1877         info->csum_root->node = NULL;
1878         info->csum_root->commit_root = NULL;
1879
1880         if (chunk_root) {
1881                 free_extent_buffer(info->chunk_root->node);
1882                 free_extent_buffer(info->chunk_root->commit_root);
1883                 info->chunk_root->node = NULL;
1884                 info->chunk_root->commit_root = NULL;
1885         }
1886 }
1887
1888
1889 struct btrfs_root *open_ctree(struct super_block *sb,
1890                               struct btrfs_fs_devices *fs_devices,
1891                               char *options)
1892 {
1893         u32 sectorsize;
1894         u32 nodesize;
1895         u32 leafsize;
1896         u32 blocksize;
1897         u32 stripesize;
1898         u64 generation;
1899         u64 features;
1900         struct btrfs_key location;
1901         struct buffer_head *bh;
1902         struct btrfs_super_block *disk_super;
1903         struct btrfs_root *tree_root = btrfs_sb(sb);
1904         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1905         struct btrfs_root *extent_root;
1906         struct btrfs_root *csum_root;
1907         struct btrfs_root *chunk_root;
1908         struct btrfs_root *dev_root;
1909         struct btrfs_root *log_tree_root;
1910         int ret;
1911         int err = -EINVAL;
1912         int num_backups_tried = 0;
1913         int backup_index = 0;
1914
1915         extent_root = fs_info->extent_root =
1916                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1917         csum_root = fs_info->csum_root =
1918                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1919         chunk_root = fs_info->chunk_root =
1920                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1921         dev_root = fs_info->dev_root =
1922                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1923
1924         if (!extent_root || !csum_root || !chunk_root || !dev_root) {
1925                 err = -ENOMEM;
1926                 goto fail;
1927         }
1928
1929         ret = init_srcu_struct(&fs_info->subvol_srcu);
1930         if (ret) {
1931                 err = ret;
1932                 goto fail;
1933         }
1934
1935         ret = setup_bdi(fs_info, &fs_info->bdi);
1936         if (ret) {
1937                 err = ret;
1938                 goto fail_srcu;
1939         }
1940
1941         fs_info->btree_inode = new_inode(sb);
1942         if (!fs_info->btree_inode) {
1943                 err = -ENOMEM;
1944                 goto fail_bdi;
1945         }
1946
1947         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1948
1949         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1950         INIT_LIST_HEAD(&fs_info->trans_list);
1951         INIT_LIST_HEAD(&fs_info->dead_roots);
1952         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1953         INIT_LIST_HEAD(&fs_info->hashers);
1954         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1955         INIT_LIST_HEAD(&fs_info->ordered_operations);
1956         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1957         spin_lock_init(&fs_info->delalloc_lock);
1958         spin_lock_init(&fs_info->trans_lock);
1959         spin_lock_init(&fs_info->ref_cache_lock);
1960         spin_lock_init(&fs_info->fs_roots_radix_lock);
1961         spin_lock_init(&fs_info->delayed_iput_lock);
1962         spin_lock_init(&fs_info->defrag_inodes_lock);
1963         spin_lock_init(&fs_info->free_chunk_lock);
1964         mutex_init(&fs_info->reloc_mutex);
1965
1966         init_completion(&fs_info->kobj_unregister);
1967         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1968         INIT_LIST_HEAD(&fs_info->space_info);
1969         btrfs_mapping_init(&fs_info->mapping_tree);
1970         btrfs_init_block_rsv(&fs_info->global_block_rsv);
1971         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1972         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1973         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1974         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1975         btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1976         atomic_set(&fs_info->nr_async_submits, 0);
1977         atomic_set(&fs_info->async_delalloc_pages, 0);
1978         atomic_set(&fs_info->async_submit_draining, 0);
1979         atomic_set(&fs_info->nr_async_bios, 0);
1980         atomic_set(&fs_info->defrag_running, 0);
1981         fs_info->sb = sb;
1982         fs_info->max_inline = 8192 * 1024;
1983         fs_info->metadata_ratio = 0;
1984         fs_info->defrag_inodes = RB_ROOT;
1985         fs_info->trans_no_join = 0;
1986         fs_info->free_chunk_space = 0;
1987
1988         /* readahead state */
1989         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1990         spin_lock_init(&fs_info->reada_lock);
1991
1992         fs_info->thread_pool_size = min_t(unsigned long,
1993                                           num_online_cpus() + 2, 8);
1994
1995         INIT_LIST_HEAD(&fs_info->ordered_extents);
1996         spin_lock_init(&fs_info->ordered_extent_lock);
1997         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1998                                         GFP_NOFS);
1999         if (!fs_info->delayed_root) {
2000                 err = -ENOMEM;
2001                 goto fail_iput;
2002         }
2003         btrfs_init_delayed_root(fs_info->delayed_root);
2004
2005         mutex_init(&fs_info->scrub_lock);
2006         atomic_set(&fs_info->scrubs_running, 0);
2007         atomic_set(&fs_info->scrub_pause_req, 0);
2008         atomic_set(&fs_info->scrubs_paused, 0);
2009         atomic_set(&fs_info->scrub_cancel_req, 0);
2010         init_waitqueue_head(&fs_info->scrub_pause_wait);
2011         init_rwsem(&fs_info->scrub_super_lock);
2012         fs_info->scrub_workers_refcnt = 0;
2013 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2014         fs_info->check_integrity_print_mask = 0;
2015 #endif
2016
2017         spin_lock_init(&fs_info->balance_lock);
2018         mutex_init(&fs_info->balance_mutex);
2019         atomic_set(&fs_info->balance_running, 0);
2020         atomic_set(&fs_info->balance_pause_req, 0);
2021         atomic_set(&fs_info->balance_cancel_req, 0);
2022         fs_info->balance_ctl = NULL;
2023         init_waitqueue_head(&fs_info->balance_wait_q);
2024
2025         sb->s_blocksize = 4096;
2026         sb->s_blocksize_bits = blksize_bits(4096);
2027         sb->s_bdi = &fs_info->bdi;
2028
2029         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2030         set_nlink(fs_info->btree_inode, 1);
2031         /*
2032          * we set the i_size on the btree inode to the max possible int.
2033          * the real end of the address space is determined by all of
2034          * the devices in the system
2035          */
2036         fs_info->btree_inode->i_size = OFFSET_MAX;
2037         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2038         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2039
2040         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2041         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2042                              fs_info->btree_inode->i_mapping);
2043         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2044
2045         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2046
2047         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2048         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2049                sizeof(struct btrfs_key));
2050         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2051         insert_inode_hash(fs_info->btree_inode);
2052
2053         spin_lock_init(&fs_info->block_group_cache_lock);
2054         fs_info->block_group_cache_tree = RB_ROOT;
2055
2056         extent_io_tree_init(&fs_info->freed_extents[0],
2057                              fs_info->btree_inode->i_mapping);
2058         extent_io_tree_init(&fs_info->freed_extents[1],
2059                              fs_info->btree_inode->i_mapping);
2060         fs_info->pinned_extents = &fs_info->freed_extents[0];
2061         fs_info->do_barriers = 1;
2062
2063
2064         mutex_init(&fs_info->ordered_operations_mutex);
2065         mutex_init(&fs_info->tree_log_mutex);
2066         mutex_init(&fs_info->chunk_mutex);
2067         mutex_init(&fs_info->transaction_kthread_mutex);
2068         mutex_init(&fs_info->cleaner_mutex);
2069         mutex_init(&fs_info->volume_mutex);
2070         init_rwsem(&fs_info->extent_commit_sem);
2071         init_rwsem(&fs_info->cleanup_work_sem);
2072         init_rwsem(&fs_info->subvol_sem);
2073
2074         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2075         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2076
2077         init_waitqueue_head(&fs_info->transaction_throttle);
2078         init_waitqueue_head(&fs_info->transaction_wait);
2079         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2080         init_waitqueue_head(&fs_info->async_submit_wait);
2081
2082         __setup_root(4096, 4096, 4096, 4096, tree_root,
2083                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2084
2085         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2086         if (!bh) {
2087                 err = -EINVAL;
2088                 goto fail_alloc;
2089         }
2090
2091         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2092         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2093                sizeof(*fs_info->super_for_commit));
2094         brelse(bh);
2095
2096         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2097
2098         disk_super = fs_info->super_copy;
2099         if (!btrfs_super_root(disk_super))
2100                 goto fail_alloc;
2101
2102         /* check FS state, whether FS is broken. */
2103         fs_info->fs_state |= btrfs_super_flags(disk_super);
2104
2105         btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2106
2107         /*
2108          * run through our array of backup supers and setup
2109          * our ring pointer to the oldest one
2110          */
2111         generation = btrfs_super_generation(disk_super);
2112         find_oldest_super_backup(fs_info, generation);
2113
2114         /*
2115          * In the long term, we'll store the compression type in the super
2116          * block, and it'll be used for per file compression control.
2117          */
2118         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2119
2120         ret = btrfs_parse_options(tree_root, options);
2121         if (ret) {
2122                 err = ret;
2123                 goto fail_alloc;
2124         }
2125
2126         features = btrfs_super_incompat_flags(disk_super) &
2127                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2128         if (features) {
2129                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2130                        "unsupported optional features (%Lx).\n",
2131                        (unsigned long long)features);
2132                 err = -EINVAL;
2133                 goto fail_alloc;
2134         }
2135
2136         features = btrfs_super_incompat_flags(disk_super);
2137         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2138         if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2139                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2140         btrfs_set_super_incompat_flags(disk_super, features);
2141
2142         features = btrfs_super_compat_ro_flags(disk_super) &
2143                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2144         if (!(sb->s_flags & MS_RDONLY) && features) {
2145                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2146                        "unsupported option features (%Lx).\n",
2147                        (unsigned long long)features);
2148                 err = -EINVAL;
2149                 goto fail_alloc;
2150         }
2151
2152         btrfs_init_workers(&fs_info->generic_worker,
2153                            "genwork", 1, NULL);
2154
2155         btrfs_init_workers(&fs_info->workers, "worker",
2156                            fs_info->thread_pool_size,
2157                            &fs_info->generic_worker);
2158
2159         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2160                            fs_info->thread_pool_size,
2161                            &fs_info->generic_worker);
2162
2163         btrfs_init_workers(&fs_info->submit_workers, "submit",
2164                            min_t(u64, fs_devices->num_devices,
2165                            fs_info->thread_pool_size),
2166                            &fs_info->generic_worker);
2167
2168         btrfs_init_workers(&fs_info->caching_workers, "cache",
2169                            2, &fs_info->generic_worker);
2170
2171         /* a higher idle thresh on the submit workers makes it much more
2172          * likely that bios will be send down in a sane order to the
2173          * devices
2174          */
2175         fs_info->submit_workers.idle_thresh = 64;
2176
2177         fs_info->workers.idle_thresh = 16;
2178         fs_info->workers.ordered = 1;
2179
2180         fs_info->delalloc_workers.idle_thresh = 2;
2181         fs_info->delalloc_workers.ordered = 1;
2182
2183         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2184                            &fs_info->generic_worker);
2185         btrfs_init_workers(&fs_info->endio_workers, "endio",
2186                            fs_info->thread_pool_size,
2187                            &fs_info->generic_worker);
2188         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2189                            fs_info->thread_pool_size,
2190                            &fs_info->generic_worker);
2191         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2192                            "endio-meta-write", fs_info->thread_pool_size,
2193                            &fs_info->generic_worker);
2194         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2195                            fs_info->thread_pool_size,
2196                            &fs_info->generic_worker);
2197         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2198                            1, &fs_info->generic_worker);
2199         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2200                            fs_info->thread_pool_size,
2201                            &fs_info->generic_worker);
2202         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2203                            fs_info->thread_pool_size,
2204                            &fs_info->generic_worker);
2205
2206         /*
2207          * endios are largely parallel and should have a very
2208          * low idle thresh
2209          */
2210         fs_info->endio_workers.idle_thresh = 4;
2211         fs_info->endio_meta_workers.idle_thresh = 4;
2212
2213         fs_info->endio_write_workers.idle_thresh = 2;
2214         fs_info->endio_meta_write_workers.idle_thresh = 2;
2215         fs_info->readahead_workers.idle_thresh = 2;
2216
2217         /*
2218          * btrfs_start_workers can really only fail because of ENOMEM so just
2219          * return -ENOMEM if any of these fail.
2220          */
2221         ret = btrfs_start_workers(&fs_info->workers);
2222         ret |= btrfs_start_workers(&fs_info->generic_worker);
2223         ret |= btrfs_start_workers(&fs_info->submit_workers);
2224         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2225         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2226         ret |= btrfs_start_workers(&fs_info->endio_workers);
2227         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2228         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2229         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2230         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2231         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2232         ret |= btrfs_start_workers(&fs_info->caching_workers);
2233         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2234         if (ret) {
2235                 ret = -ENOMEM;
2236                 goto fail_sb_buffer;
2237         }
2238
2239         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2240         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2241                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2242
2243         nodesize = btrfs_super_nodesize(disk_super);
2244         leafsize = btrfs_super_leafsize(disk_super);
2245         sectorsize = btrfs_super_sectorsize(disk_super);
2246         stripesize = btrfs_super_stripesize(disk_super);
2247         tree_root->nodesize = nodesize;
2248         tree_root->leafsize = leafsize;
2249         tree_root->sectorsize = sectorsize;
2250         tree_root->stripesize = stripesize;
2251
2252         sb->s_blocksize = sectorsize;
2253         sb->s_blocksize_bits = blksize_bits(sectorsize);
2254
2255         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2256                     sizeof(disk_super->magic))) {
2257                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2258                 goto fail_sb_buffer;
2259         }
2260
2261         mutex_lock(&fs_info->chunk_mutex);
2262         ret = btrfs_read_sys_array(tree_root);
2263         mutex_unlock(&fs_info->chunk_mutex);
2264         if (ret) {
2265                 printk(KERN_WARNING "btrfs: failed to read the system "
2266                        "array on %s\n", sb->s_id);
2267                 goto fail_sb_buffer;
2268         }
2269
2270         blocksize = btrfs_level_size(tree_root,
2271                                      btrfs_super_chunk_root_level(disk_super));
2272         generation = btrfs_super_chunk_root_generation(disk_super);
2273
2274         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2275                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2276
2277         chunk_root->node = read_tree_block(chunk_root,
2278                                            btrfs_super_chunk_root(disk_super),
2279                                            blocksize, generation);
2280         BUG_ON(!chunk_root->node);
2281         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2282                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2283                        sb->s_id);
2284                 goto fail_tree_roots;
2285         }
2286         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2287         chunk_root->commit_root = btrfs_root_node(chunk_root);
2288
2289         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2290            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2291            BTRFS_UUID_SIZE);
2292
2293         ret = btrfs_read_chunk_tree(chunk_root);
2294         if (ret) {
2295                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2296                        sb->s_id);
2297                 goto fail_tree_roots;
2298         }
2299
2300         btrfs_close_extra_devices(fs_devices);
2301
2302 retry_root_backup:
2303         blocksize = btrfs_level_size(tree_root,
2304                                      btrfs_super_root_level(disk_super));
2305         generation = btrfs_super_generation(disk_super);
2306
2307         tree_root->node = read_tree_block(tree_root,
2308                                           btrfs_super_root(disk_super),
2309                                           blocksize, generation);
2310         if (!tree_root->node ||
2311             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2312                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2313                        sb->s_id);
2314
2315                 goto recovery_tree_root;
2316         }
2317
2318         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2319         tree_root->commit_root = btrfs_root_node(tree_root);
2320
2321         ret = find_and_setup_root(tree_root, fs_info,
2322                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2323         if (ret)
2324                 goto recovery_tree_root;
2325         extent_root->track_dirty = 1;
2326
2327         ret = find_and_setup_root(tree_root, fs_info,
2328                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2329         if (ret)
2330                 goto recovery_tree_root;
2331         dev_root->track_dirty = 1;
2332
2333         ret = find_and_setup_root(tree_root, fs_info,
2334                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2335         if (ret)
2336                 goto recovery_tree_root;
2337
2338         csum_root->track_dirty = 1;
2339
2340         fs_info->generation = generation;
2341         fs_info->last_trans_committed = generation;
2342
2343         ret = btrfs_init_space_info(fs_info);
2344         if (ret) {
2345                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2346                 goto fail_block_groups;
2347         }
2348
2349         ret = btrfs_read_block_groups(extent_root);
2350         if (ret) {
2351                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2352                 goto fail_block_groups;
2353         }
2354
2355         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2356                                                "btrfs-cleaner");
2357         if (IS_ERR(fs_info->cleaner_kthread))
2358                 goto fail_block_groups;
2359
2360         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2361                                                    tree_root,
2362                                                    "btrfs-transaction");
2363         if (IS_ERR(fs_info->transaction_kthread))
2364                 goto fail_cleaner;
2365
2366         if (!btrfs_test_opt(tree_root, SSD) &&
2367             !btrfs_test_opt(tree_root, NOSSD) &&
2368             !fs_info->fs_devices->rotating) {
2369                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2370                        "mode\n");
2371                 btrfs_set_opt(fs_info->mount_opt, SSD);
2372         }
2373
2374 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2375         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2376                 ret = btrfsic_mount(tree_root, fs_devices,
2377                                     btrfs_test_opt(tree_root,
2378                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2379                                     1 : 0,
2380                                     fs_info->check_integrity_print_mask);
2381                 if (ret)
2382                         printk(KERN_WARNING "btrfs: failed to initialize"
2383                                " integrity check module %s\n", sb->s_id);
2384         }
2385 #endif
2386
2387         /* do not make disk changes in broken FS */
2388         if (btrfs_super_log_root(disk_super) != 0 &&
2389             !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2390                 u64 bytenr = btrfs_super_log_root(disk_super);
2391
2392                 if (fs_devices->rw_devices == 0) {
2393                         printk(KERN_WARNING "Btrfs log replay required "
2394                                "on RO media\n");
2395                         err = -EIO;
2396                         goto fail_trans_kthread;
2397                 }
2398                 blocksize =
2399                      btrfs_level_size(tree_root,
2400                                       btrfs_super_log_root_level(disk_super));
2401
2402                 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2403                 if (!log_tree_root) {
2404                         err = -ENOMEM;
2405                         goto fail_trans_kthread;
2406                 }
2407
2408                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2409                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2410
2411                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2412                                                       blocksize,
2413                                                       generation + 1);
2414                 ret = btrfs_recover_log_trees(log_tree_root);
2415                 BUG_ON(ret);
2416
2417                 if (sb->s_flags & MS_RDONLY) {
2418                         ret =  btrfs_commit_super(tree_root);
2419                         BUG_ON(ret);
2420                 }
2421         }
2422
2423         ret = btrfs_find_orphan_roots(tree_root);
2424         BUG_ON(ret);
2425
2426         if (!(sb->s_flags & MS_RDONLY)) {
2427                 ret = btrfs_cleanup_fs_roots(fs_info);
2428                 BUG_ON(ret);
2429
2430                 ret = btrfs_recover_relocation(tree_root);
2431                 if (ret < 0) {
2432                         printk(KERN_WARNING
2433                                "btrfs: failed to recover relocation\n");
2434                         err = -EINVAL;
2435                         goto fail_trans_kthread;
2436                 }
2437         }
2438
2439         location.objectid = BTRFS_FS_TREE_OBJECTID;
2440         location.type = BTRFS_ROOT_ITEM_KEY;
2441         location.offset = (u64)-1;
2442
2443         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2444         if (!fs_info->fs_root)
2445                 goto fail_trans_kthread;
2446         if (IS_ERR(fs_info->fs_root)) {
2447                 err = PTR_ERR(fs_info->fs_root);
2448                 goto fail_trans_kthread;
2449         }
2450
2451         if (!(sb->s_flags & MS_RDONLY)) {
2452                 down_read(&fs_info->cleanup_work_sem);
2453                 err = btrfs_orphan_cleanup(fs_info->fs_root);
2454                 if (!err)
2455                         err = btrfs_orphan_cleanup(fs_info->tree_root);
2456                 up_read(&fs_info->cleanup_work_sem);
2457
2458                 if (!err)
2459                         err = btrfs_recover_balance(fs_info->tree_root);
2460
2461                 if (err) {
2462                         close_ctree(tree_root);
2463                         return ERR_PTR(err);
2464                 }
2465         }
2466
2467         return tree_root;
2468
2469 fail_trans_kthread:
2470         kthread_stop(fs_info->transaction_kthread);
2471 fail_cleaner:
2472         kthread_stop(fs_info->cleaner_kthread);
2473
2474         /*
2475          * make sure we're done with the btree inode before we stop our
2476          * kthreads
2477          */
2478         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2479         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2480
2481 fail_block_groups:
2482         btrfs_free_block_groups(fs_info);
2483
2484 fail_tree_roots:
2485         free_root_pointers(fs_info, 1);
2486
2487 fail_sb_buffer:
2488         btrfs_stop_workers(&fs_info->generic_worker);
2489         btrfs_stop_workers(&fs_info->readahead_workers);
2490         btrfs_stop_workers(&fs_info->fixup_workers);
2491         btrfs_stop_workers(&fs_info->delalloc_workers);
2492         btrfs_stop_workers(&fs_info->workers);
2493         btrfs_stop_workers(&fs_info->endio_workers);
2494         btrfs_stop_workers(&fs_info->endio_meta_workers);
2495         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2496         btrfs_stop_workers(&fs_info->endio_write_workers);
2497         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2498         btrfs_stop_workers(&fs_info->submit_workers);
2499         btrfs_stop_workers(&fs_info->delayed_workers);
2500         btrfs_stop_workers(&fs_info->caching_workers);
2501 fail_alloc:
2502 fail_iput:
2503         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2504
2505         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2506         iput(fs_info->btree_inode);
2507 fail_bdi:
2508         bdi_destroy(&fs_info->bdi);
2509 fail_srcu:
2510         cleanup_srcu_struct(&fs_info->subvol_srcu);
2511 fail:
2512         btrfs_close_devices(fs_info->fs_devices);
2513         free_fs_info(fs_info);
2514         return ERR_PTR(err);
2515
2516 recovery_tree_root:
2517         if (!btrfs_test_opt(tree_root, RECOVERY))
2518                 goto fail_tree_roots;
2519
2520         free_root_pointers(fs_info, 0);
2521
2522         /* don't use the log in recovery mode, it won't be valid */
2523         btrfs_set_super_log_root(disk_super, 0);
2524
2525         /* we can't trust the free space cache either */
2526         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2527
2528         ret = next_root_backup(fs_info, fs_info->super_copy,
2529                                &num_backups_tried, &backup_index);
2530         if (ret == -1)
2531                 goto fail_block_groups;
2532         goto retry_root_backup;
2533 }
2534
2535 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2536 {
2537         char b[BDEVNAME_SIZE];
2538
2539         if (uptodate) {
2540                 set_buffer_uptodate(bh);
2541         } else {
2542                 printk_ratelimited(KERN_WARNING "lost page write due to "
2543                                         "I/O error on %s\n",
2544                                        bdevname(bh->b_bdev, b));
2545                 /* note, we dont' set_buffer_write_io_error because we have
2546                  * our own ways of dealing with the IO errors
2547                  */
2548                 clear_buffer_uptodate(bh);
2549         }
2550         unlock_buffer(bh);
2551         put_bh(bh);
2552 }
2553
2554 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2555 {
2556         struct buffer_head *bh;
2557         struct buffer_head *latest = NULL;
2558         struct btrfs_super_block *super;
2559         int i;
2560         u64 transid = 0;
2561         u64 bytenr;
2562
2563         /* we would like to check all the supers, but that would make
2564          * a btrfs mount succeed after a mkfs from a different FS.
2565          * So, we need to add a special mount option to scan for
2566          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2567          */
2568         for (i = 0; i < 1; i++) {
2569                 bytenr = btrfs_sb_offset(i);
2570                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2571                         break;
2572                 bh = __bread(bdev, bytenr / 4096, 4096);
2573                 if (!bh)
2574                         continue;
2575
2576                 super = (struct btrfs_super_block *)bh->b_data;
2577                 if (btrfs_super_bytenr(super) != bytenr ||
2578                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2579                             sizeof(super->magic))) {
2580                         brelse(bh);
2581                         continue;
2582                 }
2583
2584                 if (!latest || btrfs_super_generation(super) > transid) {
2585                         brelse(latest);
2586                         latest = bh;
2587                         transid = btrfs_super_generation(super);
2588                 } else {
2589                         brelse(bh);
2590                 }
2591         }
2592         return latest;
2593 }
2594
2595 /*
2596  * this should be called twice, once with wait == 0 and
2597  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2598  * we write are pinned.
2599  *
2600  * They are released when wait == 1 is done.
2601  * max_mirrors must be the same for both runs, and it indicates how
2602  * many supers on this one device should be written.
2603  *
2604  * max_mirrors == 0 means to write them all.
2605  */
2606 static int write_dev_supers(struct btrfs_device *device,
2607                             struct btrfs_super_block *sb,
2608                             int do_barriers, int wait, int max_mirrors)
2609 {
2610         struct buffer_head *bh;
2611         int i;
2612         int ret;
2613         int errors = 0;
2614         u32 crc;
2615         u64 bytenr;
2616
2617         if (max_mirrors == 0)
2618                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2619
2620         for (i = 0; i < max_mirrors; i++) {
2621                 bytenr = btrfs_sb_offset(i);
2622                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2623                         break;
2624
2625                 if (wait) {
2626                         bh = __find_get_block(device->bdev, bytenr / 4096,
2627                                               BTRFS_SUPER_INFO_SIZE);
2628                         BUG_ON(!bh);
2629                         wait_on_buffer(bh);
2630                         if (!buffer_uptodate(bh))
2631                                 errors++;
2632
2633                         /* drop our reference */
2634                         brelse(bh);
2635
2636                         /* drop the reference from the wait == 0 run */
2637                         brelse(bh);
2638                         continue;
2639                 } else {
2640                         btrfs_set_super_bytenr(sb, bytenr);
2641
2642                         crc = ~(u32)0;
2643                         crc = btrfs_csum_data(NULL, (char *)sb +
2644                                               BTRFS_CSUM_SIZE, crc,
2645                                               BTRFS_SUPER_INFO_SIZE -
2646                                               BTRFS_CSUM_SIZE);
2647                         btrfs_csum_final(crc, sb->csum);
2648
2649                         /*
2650                          * one reference for us, and we leave it for the
2651                          * caller
2652                          */
2653                         bh = __getblk(device->bdev, bytenr / 4096,
2654                                       BTRFS_SUPER_INFO_SIZE);
2655                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2656
2657                         /* one reference for submit_bh */
2658                         get_bh(bh);
2659
2660                         set_buffer_uptodate(bh);
2661                         lock_buffer(bh);
2662                         bh->b_end_io = btrfs_end_buffer_write_sync;
2663                 }
2664
2665                 /*
2666                  * we fua the first super.  The others we allow
2667                  * to go down lazy.
2668                  */
2669                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2670                 if (ret)
2671                         errors++;
2672         }
2673         return errors < i ? 0 : -1;
2674 }
2675
2676 /*
2677  * endio for the write_dev_flush, this will wake anyone waiting
2678  * for the barrier when it is done
2679  */
2680 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2681 {
2682         if (err) {
2683                 if (err == -EOPNOTSUPP)
2684                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2685                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2686         }
2687         if (bio->bi_private)
2688                 complete(bio->bi_private);
2689         bio_put(bio);
2690 }
2691
2692 /*
2693  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2694  * sent down.  With wait == 1, it waits for the previous flush.
2695  *
2696  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2697  * capable
2698  */
2699 static int write_dev_flush(struct btrfs_device *device, int wait)
2700 {
2701         struct bio *bio;
2702         int ret = 0;
2703
2704         if (device->nobarriers)
2705                 return 0;
2706
2707         if (wait) {
2708                 bio = device->flush_bio;
2709                 if (!bio)
2710                         return 0;
2711
2712                 wait_for_completion(&device->flush_wait);
2713
2714                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2715                         printk("btrfs: disabling barriers on dev %s\n",
2716                                device->name);
2717                         device->nobarriers = 1;
2718                 }
2719                 if (!bio_flagged(bio, BIO_UPTODATE)) {
2720                         ret = -EIO;
2721                 }
2722
2723                 /* drop the reference from the wait == 0 run */
2724                 bio_put(bio);
2725                 device->flush_bio = NULL;
2726
2727                 return ret;
2728         }
2729
2730         /*
2731          * one reference for us, and we leave it for the
2732          * caller
2733          */
2734         device->flush_bio = NULL;;
2735         bio = bio_alloc(GFP_NOFS, 0);
2736         if (!bio)
2737                 return -ENOMEM;
2738
2739         bio->bi_end_io = btrfs_end_empty_barrier;
2740         bio->bi_bdev = device->bdev;
2741         init_completion(&device->flush_wait);
2742         bio->bi_private = &device->flush_wait;
2743         device->flush_bio = bio;
2744
2745         bio_get(bio);
2746         btrfsic_submit_bio(WRITE_FLUSH, bio);
2747
2748         return 0;
2749 }
2750
2751 /*
2752  * send an empty flush down to each device in parallel,
2753  * then wait for them
2754  */
2755 static int barrier_all_devices(struct btrfs_fs_info *info)
2756 {
2757         struct list_head *head;
2758         struct btrfs_device *dev;
2759         int errors = 0;
2760         int ret;
2761
2762         /* send down all the barriers */
2763         head = &info->fs_devices->devices;
2764         list_for_each_entry_rcu(dev, head, dev_list) {
2765                 if (!dev->bdev) {
2766                         errors++;
2767                         continue;
2768                 }
2769                 if (!dev->in_fs_metadata || !dev->writeable)
2770                         continue;
2771
2772                 ret = write_dev_flush(dev, 0);
2773                 if (ret)
2774                         errors++;
2775         }
2776
2777         /* wait for all the barriers */
2778         list_for_each_entry_rcu(dev, head, dev_list) {
2779                 if (!dev->bdev) {
2780                         errors++;
2781                         continue;
2782                 }
2783                 if (!dev->in_fs_metadata || !dev->writeable)
2784                         continue;
2785
2786                 ret = write_dev_flush(dev, 1);
2787                 if (ret)
2788                         errors++;
2789         }
2790         if (errors)
2791                 return -EIO;
2792         return 0;
2793 }
2794
2795 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2796 {
2797         struct list_head *head;
2798         struct btrfs_device *dev;
2799         struct btrfs_super_block *sb;
2800         struct btrfs_dev_item *dev_item;
2801         int ret;
2802         int do_barriers;
2803         int max_errors;
2804         int total_errors = 0;
2805         u64 flags;
2806
2807         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2808         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2809         backup_super_roots(root->fs_info);
2810
2811         sb = root->fs_info->super_for_commit;
2812         dev_item = &sb->dev_item;
2813
2814         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2815         head = &root->fs_info->fs_devices->devices;
2816
2817         if (do_barriers)
2818                 barrier_all_devices(root->fs_info);
2819
2820         list_for_each_entry_rcu(dev, head, dev_list) {
2821                 if (!dev->bdev) {
2822                         total_errors++;
2823                         continue;
2824                 }
2825                 if (!dev->in_fs_metadata || !dev->writeable)
2826                         continue;
2827
2828                 btrfs_set_stack_device_generation(dev_item, 0);
2829                 btrfs_set_stack_device_type(dev_item, dev->type);
2830                 btrfs_set_stack_device_id(dev_item, dev->devid);
2831                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2832                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2833                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2834                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2835                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2836                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2837                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2838
2839                 flags = btrfs_super_flags(sb);
2840                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2841
2842                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2843                 if (ret)
2844                         total_errors++;
2845         }
2846         if (total_errors > max_errors) {
2847                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2848                        total_errors);
2849                 BUG();
2850         }
2851
2852         total_errors = 0;
2853         list_for_each_entry_rcu(dev, head, dev_list) {
2854                 if (!dev->bdev)
2855                         continue;
2856                 if (!dev->in_fs_metadata || !dev->writeable)
2857                         continue;
2858
2859                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2860                 if (ret)
2861                         total_errors++;
2862         }
2863         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2864         if (total_errors > max_errors) {
2865                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2866                        total_errors);
2867                 BUG();
2868         }
2869         return 0;
2870 }
2871
2872 int write_ctree_super(struct btrfs_trans_handle *trans,
2873                       struct btrfs_root *root, int max_mirrors)
2874 {
2875         int ret;
2876
2877         ret = write_all_supers(root, max_mirrors);
2878         return ret;
2879 }
2880
2881 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2882 {
2883         spin_lock(&fs_info->fs_roots_radix_lock);
2884         radix_tree_delete(&fs_info->fs_roots_radix,
2885                           (unsigned long)root->root_key.objectid);
2886         spin_unlock(&fs_info->fs_roots_radix_lock);
2887
2888         if (btrfs_root_refs(&root->root_item) == 0)
2889                 synchronize_srcu(&fs_info->subvol_srcu);
2890
2891         __btrfs_remove_free_space_cache(root->free_ino_pinned);
2892         __btrfs_remove_free_space_cache(root->free_ino_ctl);
2893         free_fs_root(root);
2894         return 0;
2895 }
2896
2897 static void free_fs_root(struct btrfs_root *root)
2898 {
2899         iput(root->cache_inode);
2900         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2901         if (root->anon_dev)
2902                 free_anon_bdev(root->anon_dev);
2903         free_extent_buffer(root->node);
2904         free_extent_buffer(root->commit_root);
2905         kfree(root->free_ino_ctl);
2906         kfree(root->free_ino_pinned);
2907         kfree(root->name);
2908         kfree(root);
2909 }
2910
2911 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2912 {
2913         int ret;
2914         struct btrfs_root *gang[8];
2915         int i;
2916
2917         while (!list_empty(&fs_info->dead_roots)) {
2918                 gang[0] = list_entry(fs_info->dead_roots.next,
2919                                      struct btrfs_root, root_list);
2920                 list_del(&gang[0]->root_list);
2921
2922                 if (gang[0]->in_radix) {
2923                         btrfs_free_fs_root(fs_info, gang[0]);
2924                 } else {
2925                         free_extent_buffer(gang[0]->node);
2926                         free_extent_buffer(gang[0]->commit_root);
2927                         kfree(gang[0]);
2928                 }
2929         }
2930
2931         while (1) {
2932                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2933                                              (void **)gang, 0,
2934                                              ARRAY_SIZE(gang));
2935                 if (!ret)
2936                         break;
2937                 for (i = 0; i < ret; i++)
2938                         btrfs_free_fs_root(fs_info, gang[i]);
2939         }
2940         return 0;
2941 }
2942
2943 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2944 {
2945         u64 root_objectid = 0;
2946         struct btrfs_root *gang[8];
2947         int i;
2948         int ret;
2949
2950         while (1) {
2951                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2952                                              (void **)gang, root_objectid,
2953                                              ARRAY_SIZE(gang));
2954                 if (!ret)
2955                         break;
2956
2957                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2958                 for (i = 0; i < ret; i++) {
2959                         int err;
2960
2961                         root_objectid = gang[i]->root_key.objectid;
2962                         err = btrfs_orphan_cleanup(gang[i]);
2963                         if (err)
2964                                 return err;
2965                 }
2966                 root_objectid++;
2967         }
2968         return 0;
2969 }
2970
2971 int btrfs_commit_super(struct btrfs_root *root)
2972 {
2973         struct btrfs_trans_handle *trans;
2974         int ret;
2975
2976         mutex_lock(&root->fs_info->cleaner_mutex);
2977         btrfs_run_delayed_iputs(root);
2978         btrfs_clean_old_snapshots(root);
2979         mutex_unlock(&root->fs_info->cleaner_mutex);
2980
2981         /* wait until ongoing cleanup work done */
2982         down_write(&root->fs_info->cleanup_work_sem);
2983         up_write(&root->fs_info->cleanup_work_sem);
2984
2985         trans = btrfs_join_transaction(root);
2986         if (IS_ERR(trans))
2987                 return PTR_ERR(trans);
2988         ret = btrfs_commit_transaction(trans, root);
2989         BUG_ON(ret);
2990         /* run commit again to drop the original snapshot */
2991         trans = btrfs_join_transaction(root);
2992         if (IS_ERR(trans))
2993                 return PTR_ERR(trans);
2994         btrfs_commit_transaction(trans, root);
2995         ret = btrfs_write_and_wait_transaction(NULL, root);
2996         BUG_ON(ret);
2997
2998         ret = write_ctree_super(NULL, root, 0);
2999         return ret;
3000 }
3001
3002 int close_ctree(struct btrfs_root *root)
3003 {
3004         struct btrfs_fs_info *fs_info = root->fs_info;
3005         int ret;
3006
3007         fs_info->closing = 1;
3008         smp_mb();
3009
3010         /* pause restriper - we want to resume on mount */
3011         btrfs_pause_balance(root->fs_info);
3012
3013         btrfs_scrub_cancel(root);
3014
3015         /* wait for any defraggers to finish */
3016         wait_event(fs_info->transaction_wait,
3017                    (atomic_read(&fs_info->defrag_running) == 0));
3018
3019         /* clear out the rbtree of defraggable inodes */
3020         btrfs_run_defrag_inodes(root->fs_info);
3021
3022         /*
3023          * Here come 2 situations when btrfs is broken to flip readonly:
3024          *
3025          * 1. when btrfs flips readonly somewhere else before
3026          * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3027          * and btrfs will skip to write sb directly to keep
3028          * ERROR state on disk.
3029          *
3030          * 2. when btrfs flips readonly just in btrfs_commit_super,
3031          * and in such case, btrfs cannot write sb via btrfs_commit_super,
3032          * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3033          * btrfs will cleanup all FS resources first and write sb then.
3034          */
3035         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3036                 ret = btrfs_commit_super(root);
3037                 if (ret)
3038                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3039         }
3040
3041         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3042                 ret = btrfs_error_commit_super(root);
3043                 if (ret)
3044                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3045         }
3046
3047         btrfs_put_block_group_cache(fs_info);
3048
3049         kthread_stop(root->fs_info->transaction_kthread);
3050         kthread_stop(root->fs_info->cleaner_kthread);
3051
3052         fs_info->closing = 2;
3053         smp_mb();
3054
3055         if (fs_info->delalloc_bytes) {
3056                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3057                        (unsigned long long)fs_info->delalloc_bytes);
3058         }
3059         if (fs_info->total_ref_cache_size) {
3060                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3061                        (unsigned long long)fs_info->total_ref_cache_size);
3062         }
3063
3064         free_extent_buffer(fs_info->extent_root->node);
3065         free_extent_buffer(fs_info->extent_root->commit_root);
3066         free_extent_buffer(fs_info->tree_root->node);
3067         free_extent_buffer(fs_info->tree_root->commit_root);
3068         free_extent_buffer(root->fs_info->chunk_root->node);
3069         free_extent_buffer(root->fs_info->chunk_root->commit_root);
3070         free_extent_buffer(root->fs_info->dev_root->node);
3071         free_extent_buffer(root->fs_info->dev_root->commit_root);
3072         free_extent_buffer(root->fs_info->csum_root->node);
3073         free_extent_buffer(root->fs_info->csum_root->commit_root);
3074
3075         btrfs_free_block_groups(root->fs_info);
3076
3077         del_fs_roots(fs_info);
3078
3079         iput(fs_info->btree_inode);
3080
3081         btrfs_stop_workers(&fs_info->generic_worker);
3082         btrfs_stop_workers(&fs_info->fixup_workers);
3083         btrfs_stop_workers(&fs_info->delalloc_workers);
3084         btrfs_stop_workers(&fs_info->workers);
3085         btrfs_stop_workers(&fs_info->endio_workers);
3086         btrfs_stop_workers(&fs_info->endio_meta_workers);
3087         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3088         btrfs_stop_workers(&fs_info->endio_write_workers);
3089         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3090         btrfs_stop_workers(&fs_info->submit_workers);
3091         btrfs_stop_workers(&fs_info->delayed_workers);
3092         btrfs_stop_workers(&fs_info->caching_workers);
3093         btrfs_stop_workers(&fs_info->readahead_workers);
3094
3095 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3096         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3097                 btrfsic_unmount(root, fs_info->fs_devices);
3098 #endif
3099
3100         btrfs_close_devices(fs_info->fs_devices);
3101         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3102
3103         bdi_destroy(&fs_info->bdi);
3104         cleanup_srcu_struct(&fs_info->subvol_srcu);
3105
3106         free_fs_info(fs_info);
3107
3108         return 0;
3109 }
3110
3111 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3112 {
3113         int ret;
3114         struct inode *btree_inode = buf->first_page->mapping->host;
3115
3116         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3117                                      NULL);
3118         if (!ret)
3119                 return ret;
3120
3121         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3122                                     parent_transid);
3123         return !ret;
3124 }
3125
3126 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3127 {
3128         struct inode *btree_inode = buf->first_page->mapping->host;
3129         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
3130                                           buf);
3131 }
3132
3133 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3134 {
3135         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3136         u64 transid = btrfs_header_generation(buf);
3137         struct inode *btree_inode = root->fs_info->btree_inode;
3138         int was_dirty;
3139
3140         btrfs_assert_tree_locked(buf);
3141         if (transid != root->fs_info->generation) {
3142                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3143                        "found %llu running %llu\n",
3144                         (unsigned long long)buf->start,
3145                         (unsigned long long)transid,
3146                         (unsigned long long)root->fs_info->generation);
3147                 WARN_ON(1);
3148         }
3149         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3150                                             buf);
3151         if (!was_dirty) {
3152                 spin_lock(&root->fs_info->delalloc_lock);
3153                 root->fs_info->dirty_metadata_bytes += buf->len;
3154                 spin_unlock(&root->fs_info->delalloc_lock);
3155         }
3156 }
3157
3158 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3159 {
3160         /*
3161          * looks as though older kernels can get into trouble with
3162          * this code, they end up stuck in balance_dirty_pages forever
3163          */
3164         u64 num_dirty;
3165         unsigned long thresh = 32 * 1024 * 1024;
3166
3167         if (current->flags & PF_MEMALLOC)
3168                 return;
3169
3170         btrfs_balance_delayed_items(root);
3171
3172         num_dirty = root->fs_info->dirty_metadata_bytes;
3173
3174         if (num_dirty > thresh) {
3175                 balance_dirty_pages_ratelimited_nr(
3176                                    root->fs_info->btree_inode->i_mapping, 1);
3177         }
3178         return;
3179 }
3180
3181 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3182 {
3183         /*
3184          * looks as though older kernels can get into trouble with
3185          * this code, they end up stuck in balance_dirty_pages forever
3186          */
3187         u64 num_dirty;
3188         unsigned long thresh = 32 * 1024 * 1024;
3189
3190         if (current->flags & PF_MEMALLOC)
3191                 return;
3192
3193         num_dirty = root->fs_info->dirty_metadata_bytes;
3194
3195         if (num_dirty > thresh) {
3196                 balance_dirty_pages_ratelimited_nr(
3197                                    root->fs_info->btree_inode->i_mapping, 1);
3198         }
3199         return;
3200 }
3201
3202 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3203 {
3204         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3205         int ret;
3206         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3207         if (ret == 0)
3208                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
3209         return ret;
3210 }
3211
3212 static int btree_lock_page_hook(struct page *page, void *data,
3213                                 void (*flush_fn)(void *))
3214 {
3215         struct inode *inode = page->mapping->host;
3216         struct btrfs_root *root = BTRFS_I(inode)->root;
3217         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3218         struct extent_buffer *eb;
3219         unsigned long len;
3220         u64 bytenr = page_offset(page);
3221
3222         if (page->private == EXTENT_PAGE_PRIVATE)
3223                 goto out;
3224
3225         len = page->private >> 2;
3226         eb = find_extent_buffer(io_tree, bytenr, len);
3227         if (!eb)
3228                 goto out;
3229
3230         if (!btrfs_try_tree_write_lock(eb)) {
3231                 flush_fn(data);
3232                 btrfs_tree_lock(eb);
3233         }
3234         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3235
3236         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3237                 spin_lock(&root->fs_info->delalloc_lock);
3238                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3239                         root->fs_info->dirty_metadata_bytes -= eb->len;
3240                 else
3241                         WARN_ON(1);
3242                 spin_unlock(&root->fs_info->delalloc_lock);
3243         }
3244
3245         btrfs_tree_unlock(eb);
3246         free_extent_buffer(eb);
3247 out:
3248         if (!trylock_page(page)) {
3249                 flush_fn(data);
3250                 lock_page(page);
3251         }
3252         return 0;
3253 }
3254
3255 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3256                               int read_only)
3257 {
3258         if (read_only)
3259                 return;
3260
3261         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3262                 printk(KERN_WARNING "warning: mount fs with errors, "
3263                        "running btrfsck is recommended\n");
3264 }
3265
3266 int btrfs_error_commit_super(struct btrfs_root *root)
3267 {
3268         int ret;
3269
3270         mutex_lock(&root->fs_info->cleaner_mutex);
3271         btrfs_run_delayed_iputs(root);
3272         mutex_unlock(&root->fs_info->cleaner_mutex);
3273
3274         down_write(&root->fs_info->cleanup_work_sem);
3275         up_write(&root->fs_info->cleanup_work_sem);
3276
3277         /* cleanup FS via transaction */
3278         btrfs_cleanup_transaction(root);
3279
3280         ret = write_ctree_super(NULL, root, 0);
3281
3282         return ret;
3283 }
3284
3285 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3286 {
3287         struct btrfs_inode *btrfs_inode;
3288         struct list_head splice;
3289
3290         INIT_LIST_HEAD(&splice);
3291
3292         mutex_lock(&root->fs_info->ordered_operations_mutex);
3293         spin_lock(&root->fs_info->ordered_extent_lock);
3294
3295         list_splice_init(&root->fs_info->ordered_operations, &splice);
3296         while (!list_empty(&splice)) {
3297                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3298                                          ordered_operations);
3299
3300                 list_del_init(&btrfs_inode->ordered_operations);
3301
3302                 btrfs_invalidate_inodes(btrfs_inode->root);
3303         }
3304
3305         spin_unlock(&root->fs_info->ordered_extent_lock);
3306         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3307
3308         return 0;
3309 }
3310
3311 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3312 {
3313         struct list_head splice;
3314         struct btrfs_ordered_extent *ordered;
3315         struct inode *inode;
3316
3317         INIT_LIST_HEAD(&splice);
3318
3319         spin_lock(&root->fs_info->ordered_extent_lock);
3320
3321         list_splice_init(&root->fs_info->ordered_extents, &splice);
3322         while (!list_empty(&splice)) {
3323                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3324                                      root_extent_list);
3325
3326                 list_del_init(&ordered->root_extent_list);
3327                 atomic_inc(&ordered->refs);
3328
3329                 /* the inode may be getting freed (in sys_unlink path). */
3330                 inode = igrab(ordered->inode);
3331
3332                 spin_unlock(&root->fs_info->ordered_extent_lock);
3333                 if (inode)
3334                         iput(inode);
3335
3336                 atomic_set(&ordered->refs, 1);
3337                 btrfs_put_ordered_extent(ordered);
3338
3339                 spin_lock(&root->fs_info->ordered_extent_lock);
3340         }
3341
3342         spin_unlock(&root->fs_info->ordered_extent_lock);
3343
3344         return 0;
3345 }
3346
3347 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3348                                       struct btrfs_root *root)
3349 {
3350         struct rb_node *node;
3351         struct btrfs_delayed_ref_root *delayed_refs;
3352         struct btrfs_delayed_ref_node *ref;
3353         int ret = 0;
3354
3355         delayed_refs = &trans->delayed_refs;
3356
3357         spin_lock(&delayed_refs->lock);
3358         if (delayed_refs->num_entries == 0) {
3359                 spin_unlock(&delayed_refs->lock);
3360                 printk(KERN_INFO "delayed_refs has NO entry\n");
3361                 return ret;
3362         }
3363
3364         node = rb_first(&delayed_refs->root);
3365         while (node) {
3366                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3367                 node = rb_next(node);
3368
3369                 ref->in_tree = 0;
3370                 rb_erase(&ref->rb_node, &delayed_refs->root);
3371                 delayed_refs->num_entries--;
3372
3373                 atomic_set(&ref->refs, 1);
3374                 if (btrfs_delayed_ref_is_head(ref)) {
3375                         struct btrfs_delayed_ref_head *head;
3376
3377                         head = btrfs_delayed_node_to_head(ref);
3378                         mutex_lock(&head->mutex);
3379                         kfree(head->extent_op);
3380                         delayed_refs->num_heads--;
3381                         if (list_empty(&head->cluster))
3382                                 delayed_refs->num_heads_ready--;
3383                         list_del_init(&head->cluster);
3384                         mutex_unlock(&head->mutex);
3385                 }
3386
3387                 spin_unlock(&delayed_refs->lock);
3388                 btrfs_put_delayed_ref(ref);
3389
3390                 cond_resched();
3391                 spin_lock(&delayed_refs->lock);
3392         }
3393
3394         spin_unlock(&delayed_refs->lock);
3395
3396         return ret;
3397 }
3398
3399 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3400 {
3401         struct btrfs_pending_snapshot *snapshot;
3402         struct list_head splice;
3403
3404         INIT_LIST_HEAD(&splice);
3405
3406         list_splice_init(&t->pending_snapshots, &splice);
3407
3408         while (!list_empty(&splice)) {
3409                 snapshot = list_entry(splice.next,
3410                                       struct btrfs_pending_snapshot,
3411                                       list);
3412
3413                 list_del_init(&snapshot->list);
3414
3415                 kfree(snapshot);
3416         }
3417
3418         return 0;
3419 }
3420
3421 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3422 {
3423         struct btrfs_inode *btrfs_inode;
3424         struct list_head splice;
3425
3426         INIT_LIST_HEAD(&splice);
3427
3428         spin_lock(&root->fs_info->delalloc_lock);
3429         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3430
3431         while (!list_empty(&splice)) {
3432                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3433                                     delalloc_inodes);
3434
3435                 list_del_init(&btrfs_inode->delalloc_inodes);
3436
3437                 btrfs_invalidate_inodes(btrfs_inode->root);
3438         }
3439
3440         spin_unlock(&root->fs_info->delalloc_lock);
3441
3442         return 0;
3443 }
3444
3445 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3446                                         struct extent_io_tree *dirty_pages,
3447                                         int mark)
3448 {
3449         int ret;
3450         struct page *page;
3451         struct inode *btree_inode = root->fs_info->btree_inode;
3452         struct extent_buffer *eb;
3453         u64 start = 0;
3454         u64 end;
3455         u64 offset;
3456         unsigned long index;
3457
3458         while (1) {
3459                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3460                                             mark);
3461                 if (ret)
3462                         break;
3463
3464                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3465                 while (start <= end) {
3466                         index = start >> PAGE_CACHE_SHIFT;
3467                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3468                         page = find_get_page(btree_inode->i_mapping, index);
3469                         if (!page)
3470                                 continue;
3471                         offset = page_offset(page);
3472
3473                         spin_lock(&dirty_pages->buffer_lock);
3474                         eb = radix_tree_lookup(
3475                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3476                                                offset >> PAGE_CACHE_SHIFT);
3477                         spin_unlock(&dirty_pages->buffer_lock);
3478                         if (eb) {
3479                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3480                                                          &eb->bflags);
3481                                 atomic_set(&eb->refs, 1);
3482                         }
3483                         if (PageWriteback(page))
3484                                 end_page_writeback(page);
3485
3486                         lock_page(page);
3487                         if (PageDirty(page)) {
3488                                 clear_page_dirty_for_io(page);
3489                                 spin_lock_irq(&page->mapping->tree_lock);
3490                                 radix_tree_tag_clear(&page->mapping->page_tree,
3491                                                         page_index(page),
3492                                                         PAGECACHE_TAG_DIRTY);
3493                                 spin_unlock_irq(&page->mapping->tree_lock);
3494                         }
3495
3496                         page->mapping->a_ops->invalidatepage(page, 0);
3497                         unlock_page(page);
3498                 }
3499         }
3500
3501         return ret;
3502 }
3503
3504 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3505                                        struct extent_io_tree *pinned_extents)
3506 {
3507         struct extent_io_tree *unpin;
3508         u64 start;
3509         u64 end;
3510         int ret;
3511
3512         unpin = pinned_extents;
3513         while (1) {
3514                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3515                                             EXTENT_DIRTY);
3516                 if (ret)
3517                         break;
3518
3519                 /* opt_discard */
3520                 if (btrfs_test_opt(root, DISCARD))
3521                         ret = btrfs_error_discard_extent(root, start,
3522                                                          end + 1 - start,
3523                                                          NULL);
3524
3525                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3526                 btrfs_error_unpin_extent_range(root, start, end);
3527                 cond_resched();
3528         }
3529
3530         return 0;
3531 }
3532
3533 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3534 {
3535         struct btrfs_transaction *t;
3536         LIST_HEAD(list);
3537
3538         WARN_ON(1);
3539
3540         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3541
3542         spin_lock(&root->fs_info->trans_lock);
3543         list_splice_init(&root->fs_info->trans_list, &list);
3544         root->fs_info->trans_no_join = 1;
3545         spin_unlock(&root->fs_info->trans_lock);
3546
3547         while (!list_empty(&list)) {
3548                 t = list_entry(list.next, struct btrfs_transaction, list);
3549                 if (!t)
3550                         break;
3551
3552                 btrfs_destroy_ordered_operations(root);
3553
3554                 btrfs_destroy_ordered_extents(root);
3555
3556                 btrfs_destroy_delayed_refs(t, root);
3557
3558                 btrfs_block_rsv_release(root,
3559                                         &root->fs_info->trans_block_rsv,
3560                                         t->dirty_pages.dirty_bytes);
3561
3562                 /* FIXME: cleanup wait for commit */
3563                 t->in_commit = 1;
3564                 t->blocked = 1;
3565                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3566                         wake_up(&root->fs_info->transaction_blocked_wait);
3567
3568                 t->blocked = 0;
3569                 if (waitqueue_active(&root->fs_info->transaction_wait))
3570                         wake_up(&root->fs_info->transaction_wait);
3571
3572                 t->commit_done = 1;
3573                 if (waitqueue_active(&t->commit_wait))
3574                         wake_up(&t->commit_wait);
3575
3576                 btrfs_destroy_pending_snapshots(t);
3577
3578                 btrfs_destroy_delalloc_inodes(root);
3579
3580                 spin_lock(&root->fs_info->trans_lock);
3581                 root->fs_info->running_transaction = NULL;
3582                 spin_unlock(&root->fs_info->trans_lock);
3583
3584                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3585                                              EXTENT_DIRTY);
3586
3587                 btrfs_destroy_pinned_extent(root,
3588                                             root->fs_info->pinned_extents);
3589
3590                 atomic_set(&t->use_count, 0);
3591                 list_del_init(&t->list);
3592                 memset(t, 0, sizeof(*t));
3593                 kmem_cache_free(btrfs_transaction_cachep, t);
3594         }
3595
3596         spin_lock(&root->fs_info->trans_lock);
3597         root->fs_info->trans_no_join = 0;
3598         spin_unlock(&root->fs_info->trans_lock);
3599         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3600
3601         return 0;
3602 }
3603
3604 static struct extent_io_ops btree_extent_io_ops = {
3605         .write_cache_pages_lock_hook = btree_lock_page_hook,
3606         .readpage_end_io_hook = btree_readpage_end_io_hook,
3607         .readpage_io_failed_hook = btree_io_failed_hook,
3608         .submit_bio_hook = btree_submit_bio_hook,
3609         /* note we're sharing with inode.c for the merge bio hook */
3610         .merge_bio_hook = btrfs_merge_bio_hook,
3611 };