Merge branch 'for-chris' of git://github.com/sensille/linux into integration
[pandora-kernel.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46
47 static struct extent_io_ops btree_extent_io_ops;
48 static void end_workqueue_fn(struct btrfs_work *work);
49 static void free_fs_root(struct btrfs_root *root);
50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51                                     int read_only);
52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55                                       struct btrfs_root *root);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_root *root);
64
65 /*
66  * end_io_wq structs are used to do processing in task context when an IO is
67  * complete.  This is used during reads to verify checksums, and it is used
68  * by writes to insert metadata for new file extents after IO is complete.
69  */
70 struct end_io_wq {
71         struct bio *bio;
72         bio_end_io_t *end_io;
73         void *private;
74         struct btrfs_fs_info *info;
75         int error;
76         int metadata;
77         struct list_head list;
78         struct btrfs_work work;
79 };
80
81 /*
82  * async submit bios are used to offload expensive checksumming
83  * onto the worker threads.  They checksum file and metadata bios
84  * just before they are sent down the IO stack.
85  */
86 struct async_submit_bio {
87         struct inode *inode;
88         struct bio *bio;
89         struct list_head list;
90         extent_submit_bio_hook_t *submit_bio_start;
91         extent_submit_bio_hook_t *submit_bio_done;
92         int rw;
93         int mirror_num;
94         unsigned long bio_flags;
95         /*
96          * bio_offset is optional, can be used if the pages in the bio
97          * can't tell us where in the file the bio should go
98          */
99         u64 bio_offset;
100         struct btrfs_work work;
101 };
102
103 /*
104  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
105  * eb, the lockdep key is determined by the btrfs_root it belongs to and
106  * the level the eb occupies in the tree.
107  *
108  * Different roots are used for different purposes and may nest inside each
109  * other and they require separate keysets.  As lockdep keys should be
110  * static, assign keysets according to the purpose of the root as indicated
111  * by btrfs_root->objectid.  This ensures that all special purpose roots
112  * have separate keysets.
113  *
114  * Lock-nesting across peer nodes is always done with the immediate parent
115  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
116  * subclass to avoid triggering lockdep warning in such cases.
117  *
118  * The key is set by the readpage_end_io_hook after the buffer has passed
119  * csum validation but before the pages are unlocked.  It is also set by
120  * btrfs_init_new_buffer on freshly allocated blocks.
121  *
122  * We also add a check to make sure the highest level of the tree is the
123  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
124  * needs update as well.
125  */
126 #ifdef CONFIG_DEBUG_LOCK_ALLOC
127 # if BTRFS_MAX_LEVEL != 8
128 #  error
129 # endif
130
131 static struct btrfs_lockdep_keyset {
132         u64                     id;             /* root objectid */
133         const char              *name_stem;     /* lock name stem */
134         char                    names[BTRFS_MAX_LEVEL + 1][20];
135         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
136 } btrfs_lockdep_keysets[] = {
137         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
138         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
139         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
140         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
141         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
142         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
143         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
144         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
145         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
146         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
147         { .id = 0,                              .name_stem = "tree"     },
148 };
149
150 void __init btrfs_init_lockdep(void)
151 {
152         int i, j;
153
154         /* initialize lockdep class names */
155         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
156                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
157
158                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
159                         snprintf(ks->names[j], sizeof(ks->names[j]),
160                                  "btrfs-%s-%02d", ks->name_stem, j);
161         }
162 }
163
164 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
165                                     int level)
166 {
167         struct btrfs_lockdep_keyset *ks;
168
169         BUG_ON(level >= ARRAY_SIZE(ks->keys));
170
171         /* find the matching keyset, id 0 is the default entry */
172         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
173                 if (ks->id == objectid)
174                         break;
175
176         lockdep_set_class_and_name(&eb->lock,
177                                    &ks->keys[level], ks->names[level]);
178 }
179
180 #endif
181
182 /*
183  * extents on the btree inode are pretty simple, there's one extent
184  * that covers the entire device
185  */
186 static struct extent_map *btree_get_extent(struct inode *inode,
187                 struct page *page, size_t pg_offset, u64 start, u64 len,
188                 int create)
189 {
190         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
191         struct extent_map *em;
192         int ret;
193
194         read_lock(&em_tree->lock);
195         em = lookup_extent_mapping(em_tree, start, len);
196         if (em) {
197                 em->bdev =
198                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
199                 read_unlock(&em_tree->lock);
200                 goto out;
201         }
202         read_unlock(&em_tree->lock);
203
204         em = alloc_extent_map();
205         if (!em) {
206                 em = ERR_PTR(-ENOMEM);
207                 goto out;
208         }
209         em->start = 0;
210         em->len = (u64)-1;
211         em->block_len = (u64)-1;
212         em->block_start = 0;
213         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
214
215         write_lock(&em_tree->lock);
216         ret = add_extent_mapping(em_tree, em);
217         if (ret == -EEXIST) {
218                 u64 failed_start = em->start;
219                 u64 failed_len = em->len;
220
221                 free_extent_map(em);
222                 em = lookup_extent_mapping(em_tree, start, len);
223                 if (em) {
224                         ret = 0;
225                 } else {
226                         em = lookup_extent_mapping(em_tree, failed_start,
227                                                    failed_len);
228                         ret = -EIO;
229                 }
230         } else if (ret) {
231                 free_extent_map(em);
232                 em = NULL;
233         }
234         write_unlock(&em_tree->lock);
235
236         if (ret)
237                 em = ERR_PTR(ret);
238 out:
239         return em;
240 }
241
242 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
243 {
244         return crc32c(seed, data, len);
245 }
246
247 void btrfs_csum_final(u32 crc, char *result)
248 {
249         put_unaligned_le32(~crc, result);
250 }
251
252 /*
253  * compute the csum for a btree block, and either verify it or write it
254  * into the csum field of the block.
255  */
256 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257                            int verify)
258 {
259         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
260         char *result = NULL;
261         unsigned long len;
262         unsigned long cur_len;
263         unsigned long offset = BTRFS_CSUM_SIZE;
264         char *kaddr;
265         unsigned long map_start;
266         unsigned long map_len;
267         int err;
268         u32 crc = ~(u32)0;
269         unsigned long inline_result;
270
271         len = buf->len - offset;
272         while (len > 0) {
273                 err = map_private_extent_buffer(buf, offset, 32,
274                                         &kaddr, &map_start, &map_len);
275                 if (err)
276                         return 1;
277                 cur_len = min(len, map_len - (offset - map_start));
278                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
279                                       crc, cur_len);
280                 len -= cur_len;
281                 offset += cur_len;
282         }
283         if (csum_size > sizeof(inline_result)) {
284                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
285                 if (!result)
286                         return 1;
287         } else {
288                 result = (char *)&inline_result;
289         }
290
291         btrfs_csum_final(crc, result);
292
293         if (verify) {
294                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
295                         u32 val;
296                         u32 found = 0;
297                         memcpy(&found, result, csum_size);
298
299                         read_extent_buffer(buf, &val, 0, csum_size);
300                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
301                                        "failed on %llu wanted %X found %X "
302                                        "level %d\n",
303                                        root->fs_info->sb->s_id,
304                                        (unsigned long long)buf->start, val, found,
305                                        btrfs_header_level(buf));
306                         if (result != (char *)&inline_result)
307                                 kfree(result);
308                         return 1;
309                 }
310         } else {
311                 write_extent_buffer(buf, result, 0, csum_size);
312         }
313         if (result != (char *)&inline_result)
314                 kfree(result);
315         return 0;
316 }
317
318 /*
319  * we can't consider a given block up to date unless the transid of the
320  * block matches the transid in the parent node's pointer.  This is how we
321  * detect blocks that either didn't get written at all or got written
322  * in the wrong place.
323  */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325                                  struct extent_buffer *eb, u64 parent_transid)
326 {
327         struct extent_state *cached_state = NULL;
328         int ret;
329
330         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331                 return 0;
332
333         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
334                          0, &cached_state, GFP_NOFS);
335         if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
336             btrfs_header_generation(eb) == parent_transid) {
337                 ret = 0;
338                 goto out;
339         }
340         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
341                        "found %llu\n",
342                        (unsigned long long)eb->start,
343                        (unsigned long long)parent_transid,
344                        (unsigned long long)btrfs_header_generation(eb));
345         ret = 1;
346         clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
347 out:
348         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349                              &cached_state, GFP_NOFS);
350         return ret;
351 }
352
353 /*
354  * helper to read a given tree block, doing retries as required when
355  * the checksums don't match and we have alternate mirrors to try.
356  */
357 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358                                           struct extent_buffer *eb,
359                                           u64 start, u64 parent_transid)
360 {
361         struct extent_io_tree *io_tree;
362         int ret;
363         int num_copies = 0;
364         int mirror_num = 0;
365
366         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
367         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
368         while (1) {
369                 ret = read_extent_buffer_pages(io_tree, eb, start,
370                                                WAIT_COMPLETE,
371                                                btree_get_extent, mirror_num);
372                 if (!ret &&
373                     !verify_parent_transid(io_tree, eb, parent_transid))
374                         return ret;
375
376                 /*
377                  * This buffer's crc is fine, but its contents are corrupted, so
378                  * there is no reason to read the other copies, they won't be
379                  * any less wrong.
380                  */
381                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
382                         return ret;
383
384                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
385                                               eb->start, eb->len);
386                 if (num_copies == 1)
387                         return ret;
388
389                 mirror_num++;
390                 if (mirror_num > num_copies)
391                         return ret;
392         }
393         return -EIO;
394 }
395
396 /*
397  * checksum a dirty tree block before IO.  This has extra checks to make sure
398  * we only fill in the checksum field in the first page of a multi-page block
399  */
400
401 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
402 {
403         struct extent_io_tree *tree;
404         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
405         u64 found_start;
406         unsigned long len;
407         struct extent_buffer *eb;
408         int ret;
409
410         tree = &BTRFS_I(page->mapping->host)->io_tree;
411
412         if (page->private == EXTENT_PAGE_PRIVATE) {
413                 WARN_ON(1);
414                 goto out;
415         }
416         if (!page->private) {
417                 WARN_ON(1);
418                 goto out;
419         }
420         len = page->private >> 2;
421         WARN_ON(len == 0);
422
423         eb = alloc_extent_buffer(tree, start, len, page);
424         if (eb == NULL) {
425                 WARN_ON(1);
426                 goto out;
427         }
428         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
429                                              btrfs_header_generation(eb));
430         BUG_ON(ret);
431         WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
432
433         found_start = btrfs_header_bytenr(eb);
434         if (found_start != start) {
435                 WARN_ON(1);
436                 goto err;
437         }
438         if (eb->first_page != page) {
439                 WARN_ON(1);
440                 goto err;
441         }
442         if (!PageUptodate(page)) {
443                 WARN_ON(1);
444                 goto err;
445         }
446         csum_tree_block(root, eb, 0);
447 err:
448         free_extent_buffer(eb);
449 out:
450         return 0;
451 }
452
453 static int check_tree_block_fsid(struct btrfs_root *root,
454                                  struct extent_buffer *eb)
455 {
456         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
457         u8 fsid[BTRFS_UUID_SIZE];
458         int ret = 1;
459
460         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
461                            BTRFS_FSID_SIZE);
462         while (fs_devices) {
463                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
464                         ret = 0;
465                         break;
466                 }
467                 fs_devices = fs_devices->seed;
468         }
469         return ret;
470 }
471
472 #define CORRUPT(reason, eb, root, slot)                         \
473         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
474                "root=%llu, slot=%d\n", reason,                  \
475                (unsigned long long)btrfs_header_bytenr(eb),     \
476                (unsigned long long)root->objectid, slot)
477
478 static noinline int check_leaf(struct btrfs_root *root,
479                                struct extent_buffer *leaf)
480 {
481         struct btrfs_key key;
482         struct btrfs_key leaf_key;
483         u32 nritems = btrfs_header_nritems(leaf);
484         int slot;
485
486         if (nritems == 0)
487                 return 0;
488
489         /* Check the 0 item */
490         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
491             BTRFS_LEAF_DATA_SIZE(root)) {
492                 CORRUPT("invalid item offset size pair", leaf, root, 0);
493                 return -EIO;
494         }
495
496         /*
497          * Check to make sure each items keys are in the correct order and their
498          * offsets make sense.  We only have to loop through nritems-1 because
499          * we check the current slot against the next slot, which verifies the
500          * next slot's offset+size makes sense and that the current's slot
501          * offset is correct.
502          */
503         for (slot = 0; slot < nritems - 1; slot++) {
504                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
505                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
506
507                 /* Make sure the keys are in the right order */
508                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
509                         CORRUPT("bad key order", leaf, root, slot);
510                         return -EIO;
511                 }
512
513                 /*
514                  * Make sure the offset and ends are right, remember that the
515                  * item data starts at the end of the leaf and grows towards the
516                  * front.
517                  */
518                 if (btrfs_item_offset_nr(leaf, slot) !=
519                         btrfs_item_end_nr(leaf, slot + 1)) {
520                         CORRUPT("slot offset bad", leaf, root, slot);
521                         return -EIO;
522                 }
523
524                 /*
525                  * Check to make sure that we don't point outside of the leaf,
526                  * just incase all the items are consistent to eachother, but
527                  * all point outside of the leaf.
528                  */
529                 if (btrfs_item_end_nr(leaf, slot) >
530                     BTRFS_LEAF_DATA_SIZE(root)) {
531                         CORRUPT("slot end outside of leaf", leaf, root, slot);
532                         return -EIO;
533                 }
534         }
535
536         return 0;
537 }
538
539 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
540                                struct extent_state *state)
541 {
542         struct extent_io_tree *tree;
543         u64 found_start;
544         int found_level;
545         unsigned long len;
546         struct extent_buffer *eb;
547         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
548         int ret = 0;
549
550         tree = &BTRFS_I(page->mapping->host)->io_tree;
551         if (page->private == EXTENT_PAGE_PRIVATE)
552                 goto out;
553         if (!page->private)
554                 goto out;
555
556         len = page->private >> 2;
557         WARN_ON(len == 0);
558
559         eb = alloc_extent_buffer(tree, start, len, page);
560         if (eb == NULL) {
561                 ret = -EIO;
562                 goto out;
563         }
564
565         found_start = btrfs_header_bytenr(eb);
566         if (found_start != start) {
567                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
568                                "%llu %llu\n",
569                                (unsigned long long)found_start,
570                                (unsigned long long)eb->start);
571                 ret = -EIO;
572                 goto err;
573         }
574         if (eb->first_page != page) {
575                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
576                        eb->first_page->index, page->index);
577                 WARN_ON(1);
578                 ret = -EIO;
579                 goto err;
580         }
581         if (check_tree_block_fsid(root, eb)) {
582                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
583                                (unsigned long long)eb->start);
584                 ret = -EIO;
585                 goto err;
586         }
587         found_level = btrfs_header_level(eb);
588
589         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
590                                        eb, found_level);
591
592         ret = csum_tree_block(root, eb, 1);
593         if (ret) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         /*
599          * If this is a leaf block and it is corrupt, set the corrupt bit so
600          * that we don't try and read the other copies of this block, just
601          * return -EIO.
602          */
603         if (found_level == 0 && check_leaf(root, eb)) {
604                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
605                 ret = -EIO;
606         }
607
608         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
609         end = eb->start + end - 1;
610 err:
611         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
612                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
613                 btree_readahead_hook(root, eb, eb->start, ret);
614         }
615
616         free_extent_buffer(eb);
617 out:
618         return ret;
619 }
620
621 static int btree_io_failed_hook(struct bio *failed_bio,
622                          struct page *page, u64 start, u64 end,
623                          struct extent_state *state)
624 {
625         struct extent_io_tree *tree;
626         unsigned long len;
627         struct extent_buffer *eb;
628         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
629
630         tree = &BTRFS_I(page->mapping->host)->io_tree;
631         if (page->private == EXTENT_PAGE_PRIVATE)
632                 goto out;
633         if (!page->private)
634                 goto out;
635
636         len = page->private >> 2;
637         WARN_ON(len == 0);
638
639         eb = alloc_extent_buffer(tree, start, len, page);
640         if (eb == NULL)
641                 goto out;
642
643         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
644                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
645                 btree_readahead_hook(root, eb, eb->start, -EIO);
646         }
647
648 out:
649         return -EIO;    /* we fixed nothing */
650 }
651
652 static void end_workqueue_bio(struct bio *bio, int err)
653 {
654         struct end_io_wq *end_io_wq = bio->bi_private;
655         struct btrfs_fs_info *fs_info;
656
657         fs_info = end_io_wq->info;
658         end_io_wq->error = err;
659         end_io_wq->work.func = end_workqueue_fn;
660         end_io_wq->work.flags = 0;
661
662         if (bio->bi_rw & REQ_WRITE) {
663                 if (end_io_wq->metadata == 1)
664                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
665                                            &end_io_wq->work);
666                 else if (end_io_wq->metadata == 2)
667                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
668                                            &end_io_wq->work);
669                 else
670                         btrfs_queue_worker(&fs_info->endio_write_workers,
671                                            &end_io_wq->work);
672         } else {
673                 if (end_io_wq->metadata)
674                         btrfs_queue_worker(&fs_info->endio_meta_workers,
675                                            &end_io_wq->work);
676                 else
677                         btrfs_queue_worker(&fs_info->endio_workers,
678                                            &end_io_wq->work);
679         }
680 }
681
682 /*
683  * For the metadata arg you want
684  *
685  * 0 - if data
686  * 1 - if normal metadta
687  * 2 - if writing to the free space cache area
688  */
689 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
690                         int metadata)
691 {
692         struct end_io_wq *end_io_wq;
693         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
694         if (!end_io_wq)
695                 return -ENOMEM;
696
697         end_io_wq->private = bio->bi_private;
698         end_io_wq->end_io = bio->bi_end_io;
699         end_io_wq->info = info;
700         end_io_wq->error = 0;
701         end_io_wq->bio = bio;
702         end_io_wq->metadata = metadata;
703
704         bio->bi_private = end_io_wq;
705         bio->bi_end_io = end_workqueue_bio;
706         return 0;
707 }
708
709 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
710 {
711         unsigned long limit = min_t(unsigned long,
712                                     info->workers.max_workers,
713                                     info->fs_devices->open_devices);
714         return 256 * limit;
715 }
716
717 static void run_one_async_start(struct btrfs_work *work)
718 {
719         struct async_submit_bio *async;
720
721         async = container_of(work, struct  async_submit_bio, work);
722         async->submit_bio_start(async->inode, async->rw, async->bio,
723                                async->mirror_num, async->bio_flags,
724                                async->bio_offset);
725 }
726
727 static void run_one_async_done(struct btrfs_work *work)
728 {
729         struct btrfs_fs_info *fs_info;
730         struct async_submit_bio *async;
731         int limit;
732
733         async = container_of(work, struct  async_submit_bio, work);
734         fs_info = BTRFS_I(async->inode)->root->fs_info;
735
736         limit = btrfs_async_submit_limit(fs_info);
737         limit = limit * 2 / 3;
738
739         atomic_dec(&fs_info->nr_async_submits);
740
741         if (atomic_read(&fs_info->nr_async_submits) < limit &&
742             waitqueue_active(&fs_info->async_submit_wait))
743                 wake_up(&fs_info->async_submit_wait);
744
745         async->submit_bio_done(async->inode, async->rw, async->bio,
746                                async->mirror_num, async->bio_flags,
747                                async->bio_offset);
748 }
749
750 static void run_one_async_free(struct btrfs_work *work)
751 {
752         struct async_submit_bio *async;
753
754         async = container_of(work, struct  async_submit_bio, work);
755         kfree(async);
756 }
757
758 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
759                         int rw, struct bio *bio, int mirror_num,
760                         unsigned long bio_flags,
761                         u64 bio_offset,
762                         extent_submit_bio_hook_t *submit_bio_start,
763                         extent_submit_bio_hook_t *submit_bio_done)
764 {
765         struct async_submit_bio *async;
766
767         async = kmalloc(sizeof(*async), GFP_NOFS);
768         if (!async)
769                 return -ENOMEM;
770
771         async->inode = inode;
772         async->rw = rw;
773         async->bio = bio;
774         async->mirror_num = mirror_num;
775         async->submit_bio_start = submit_bio_start;
776         async->submit_bio_done = submit_bio_done;
777
778         async->work.func = run_one_async_start;
779         async->work.ordered_func = run_one_async_done;
780         async->work.ordered_free = run_one_async_free;
781
782         async->work.flags = 0;
783         async->bio_flags = bio_flags;
784         async->bio_offset = bio_offset;
785
786         atomic_inc(&fs_info->nr_async_submits);
787
788         if (rw & REQ_SYNC)
789                 btrfs_set_work_high_prio(&async->work);
790
791         btrfs_queue_worker(&fs_info->workers, &async->work);
792
793         while (atomic_read(&fs_info->async_submit_draining) &&
794               atomic_read(&fs_info->nr_async_submits)) {
795                 wait_event(fs_info->async_submit_wait,
796                            (atomic_read(&fs_info->nr_async_submits) == 0));
797         }
798
799         return 0;
800 }
801
802 static int btree_csum_one_bio(struct bio *bio)
803 {
804         struct bio_vec *bvec = bio->bi_io_vec;
805         int bio_index = 0;
806         struct btrfs_root *root;
807
808         WARN_ON(bio->bi_vcnt <= 0);
809         while (bio_index < bio->bi_vcnt) {
810                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
811                 csum_dirty_buffer(root, bvec->bv_page);
812                 bio_index++;
813                 bvec++;
814         }
815         return 0;
816 }
817
818 static int __btree_submit_bio_start(struct inode *inode, int rw,
819                                     struct bio *bio, int mirror_num,
820                                     unsigned long bio_flags,
821                                     u64 bio_offset)
822 {
823         /*
824          * when we're called for a write, we're already in the async
825          * submission context.  Just jump into btrfs_map_bio
826          */
827         btree_csum_one_bio(bio);
828         return 0;
829 }
830
831 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
832                                  int mirror_num, unsigned long bio_flags,
833                                  u64 bio_offset)
834 {
835         /*
836          * when we're called for a write, we're already in the async
837          * submission context.  Just jump into btrfs_map_bio
838          */
839         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
840 }
841
842 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
843                                  int mirror_num, unsigned long bio_flags,
844                                  u64 bio_offset)
845 {
846         int ret;
847
848         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
849                                           bio, 1);
850         BUG_ON(ret);
851
852         if (!(rw & REQ_WRITE)) {
853                 /*
854                  * called for a read, do the setup so that checksum validation
855                  * can happen in the async kernel threads
856                  */
857                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
858                                      mirror_num, 0);
859         }
860
861         /*
862          * kthread helpers are used to submit writes so that checksumming
863          * can happen in parallel across all CPUs
864          */
865         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
866                                    inode, rw, bio, mirror_num, 0,
867                                    bio_offset,
868                                    __btree_submit_bio_start,
869                                    __btree_submit_bio_done);
870 }
871
872 #ifdef CONFIG_MIGRATION
873 static int btree_migratepage(struct address_space *mapping,
874                         struct page *newpage, struct page *page)
875 {
876         /*
877          * we can't safely write a btree page from here,
878          * we haven't done the locking hook
879          */
880         if (PageDirty(page))
881                 return -EAGAIN;
882         /*
883          * Buffers may be managed in a filesystem specific way.
884          * We must have no buffers or drop them.
885          */
886         if (page_has_private(page) &&
887             !try_to_release_page(page, GFP_KERNEL))
888                 return -EAGAIN;
889         return migrate_page(mapping, newpage, page);
890 }
891 #endif
892
893 static int btree_writepage(struct page *page, struct writeback_control *wbc)
894 {
895         struct extent_io_tree *tree;
896         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
897         struct extent_buffer *eb;
898         int was_dirty;
899
900         tree = &BTRFS_I(page->mapping->host)->io_tree;
901         if (!(current->flags & PF_MEMALLOC)) {
902                 return extent_write_full_page(tree, page,
903                                               btree_get_extent, wbc);
904         }
905
906         redirty_page_for_writepage(wbc, page);
907         eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
908         WARN_ON(!eb);
909
910         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
911         if (!was_dirty) {
912                 spin_lock(&root->fs_info->delalloc_lock);
913                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
914                 spin_unlock(&root->fs_info->delalloc_lock);
915         }
916         free_extent_buffer(eb);
917
918         unlock_page(page);
919         return 0;
920 }
921
922 static int btree_writepages(struct address_space *mapping,
923                             struct writeback_control *wbc)
924 {
925         struct extent_io_tree *tree;
926         tree = &BTRFS_I(mapping->host)->io_tree;
927         if (wbc->sync_mode == WB_SYNC_NONE) {
928                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
929                 u64 num_dirty;
930                 unsigned long thresh = 32 * 1024 * 1024;
931
932                 if (wbc->for_kupdate)
933                         return 0;
934
935                 /* this is a bit racy, but that's ok */
936                 num_dirty = root->fs_info->dirty_metadata_bytes;
937                 if (num_dirty < thresh)
938                         return 0;
939         }
940         return extent_writepages(tree, mapping, btree_get_extent, wbc);
941 }
942
943 static int btree_readpage(struct file *file, struct page *page)
944 {
945         struct extent_io_tree *tree;
946         tree = &BTRFS_I(page->mapping->host)->io_tree;
947         return extent_read_full_page(tree, page, btree_get_extent);
948 }
949
950 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
951 {
952         struct extent_io_tree *tree;
953         struct extent_map_tree *map;
954         int ret;
955
956         if (PageWriteback(page) || PageDirty(page))
957                 return 0;
958
959         tree = &BTRFS_I(page->mapping->host)->io_tree;
960         map = &BTRFS_I(page->mapping->host)->extent_tree;
961
962         ret = try_release_extent_state(map, tree, page, gfp_flags);
963         if (!ret)
964                 return 0;
965
966         ret = try_release_extent_buffer(tree, page);
967         if (ret == 1) {
968                 ClearPagePrivate(page);
969                 set_page_private(page, 0);
970                 page_cache_release(page);
971         }
972
973         return ret;
974 }
975
976 static void btree_invalidatepage(struct page *page, unsigned long offset)
977 {
978         struct extent_io_tree *tree;
979         tree = &BTRFS_I(page->mapping->host)->io_tree;
980         extent_invalidatepage(tree, page, offset);
981         btree_releasepage(page, GFP_NOFS);
982         if (PagePrivate(page)) {
983                 printk(KERN_WARNING "btrfs warning page private not zero "
984                        "on page %llu\n", (unsigned long long)page_offset(page));
985                 ClearPagePrivate(page);
986                 set_page_private(page, 0);
987                 page_cache_release(page);
988         }
989 }
990
991 static const struct address_space_operations btree_aops = {
992         .readpage       = btree_readpage,
993         .writepage      = btree_writepage,
994         .writepages     = btree_writepages,
995         .releasepage    = btree_releasepage,
996         .invalidatepage = btree_invalidatepage,
997 #ifdef CONFIG_MIGRATION
998         .migratepage    = btree_migratepage,
999 #endif
1000 };
1001
1002 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1003                          u64 parent_transid)
1004 {
1005         struct extent_buffer *buf = NULL;
1006         struct inode *btree_inode = root->fs_info->btree_inode;
1007         int ret = 0;
1008
1009         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1010         if (!buf)
1011                 return 0;
1012         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1013                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1014         free_extent_buffer(buf);
1015         return ret;
1016 }
1017
1018 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1019                          int mirror_num, struct extent_buffer **eb)
1020 {
1021         struct extent_buffer *buf = NULL;
1022         struct inode *btree_inode = root->fs_info->btree_inode;
1023         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1024         int ret;
1025
1026         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1027         if (!buf)
1028                 return 0;
1029
1030         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1031
1032         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1033                                        btree_get_extent, mirror_num);
1034         if (ret) {
1035                 free_extent_buffer(buf);
1036                 return ret;
1037         }
1038
1039         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1040                 free_extent_buffer(buf);
1041                 return -EIO;
1042         } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1043                 *eb = buf;
1044         } else {
1045                 free_extent_buffer(buf);
1046         }
1047         return 0;
1048 }
1049
1050 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1051                                             u64 bytenr, u32 blocksize)
1052 {
1053         struct inode *btree_inode = root->fs_info->btree_inode;
1054         struct extent_buffer *eb;
1055         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1056                                 bytenr, blocksize);
1057         return eb;
1058 }
1059
1060 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1061                                                  u64 bytenr, u32 blocksize)
1062 {
1063         struct inode *btree_inode = root->fs_info->btree_inode;
1064         struct extent_buffer *eb;
1065
1066         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1067                                  bytenr, blocksize, NULL);
1068         return eb;
1069 }
1070
1071
1072 int btrfs_write_tree_block(struct extent_buffer *buf)
1073 {
1074         return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1075                                         buf->start + buf->len - 1);
1076 }
1077
1078 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1079 {
1080         return filemap_fdatawait_range(buf->first_page->mapping,
1081                                        buf->start, buf->start + buf->len - 1);
1082 }
1083
1084 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1085                                       u32 blocksize, u64 parent_transid)
1086 {
1087         struct extent_buffer *buf = NULL;
1088         int ret;
1089
1090         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1091         if (!buf)
1092                 return NULL;
1093
1094         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1095
1096         if (ret == 0)
1097                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1098         return buf;
1099
1100 }
1101
1102 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103                      struct extent_buffer *buf)
1104 {
1105         struct inode *btree_inode = root->fs_info->btree_inode;
1106         if (btrfs_header_generation(buf) ==
1107             root->fs_info->running_transaction->transid) {
1108                 btrfs_assert_tree_locked(buf);
1109
1110                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1111                         spin_lock(&root->fs_info->delalloc_lock);
1112                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1113                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1114                         else
1115                                 WARN_ON(1);
1116                         spin_unlock(&root->fs_info->delalloc_lock);
1117                 }
1118
1119                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1120                 btrfs_set_lock_blocking(buf);
1121                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1122                                           buf);
1123         }
1124         return 0;
1125 }
1126
1127 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1128                         u32 stripesize, struct btrfs_root *root,
1129                         struct btrfs_fs_info *fs_info,
1130                         u64 objectid)
1131 {
1132         root->node = NULL;
1133         root->commit_root = NULL;
1134         root->sectorsize = sectorsize;
1135         root->nodesize = nodesize;
1136         root->leafsize = leafsize;
1137         root->stripesize = stripesize;
1138         root->ref_cows = 0;
1139         root->track_dirty = 0;
1140         root->in_radix = 0;
1141         root->orphan_item_inserted = 0;
1142         root->orphan_cleanup_state = 0;
1143
1144         root->fs_info = fs_info;
1145         root->objectid = objectid;
1146         root->last_trans = 0;
1147         root->highest_objectid = 0;
1148         root->name = NULL;
1149         root->inode_tree = RB_ROOT;
1150         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1151         root->block_rsv = NULL;
1152         root->orphan_block_rsv = NULL;
1153
1154         INIT_LIST_HEAD(&root->dirty_list);
1155         INIT_LIST_HEAD(&root->orphan_list);
1156         INIT_LIST_HEAD(&root->root_list);
1157         spin_lock_init(&root->orphan_lock);
1158         spin_lock_init(&root->inode_lock);
1159         spin_lock_init(&root->accounting_lock);
1160         mutex_init(&root->objectid_mutex);
1161         mutex_init(&root->log_mutex);
1162         init_waitqueue_head(&root->log_writer_wait);
1163         init_waitqueue_head(&root->log_commit_wait[0]);
1164         init_waitqueue_head(&root->log_commit_wait[1]);
1165         atomic_set(&root->log_commit[0], 0);
1166         atomic_set(&root->log_commit[1], 0);
1167         atomic_set(&root->log_writers, 0);
1168         root->log_batch = 0;
1169         root->log_transid = 0;
1170         root->last_log_commit = 0;
1171         extent_io_tree_init(&root->dirty_log_pages,
1172                              fs_info->btree_inode->i_mapping);
1173
1174         memset(&root->root_key, 0, sizeof(root->root_key));
1175         memset(&root->root_item, 0, sizeof(root->root_item));
1176         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1177         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1178         root->defrag_trans_start = fs_info->generation;
1179         init_completion(&root->kobj_unregister);
1180         root->defrag_running = 0;
1181         root->root_key.objectid = objectid;
1182         root->anon_dev = 0;
1183         return 0;
1184 }
1185
1186 static int find_and_setup_root(struct btrfs_root *tree_root,
1187                                struct btrfs_fs_info *fs_info,
1188                                u64 objectid,
1189                                struct btrfs_root *root)
1190 {
1191         int ret;
1192         u32 blocksize;
1193         u64 generation;
1194
1195         __setup_root(tree_root->nodesize, tree_root->leafsize,
1196                      tree_root->sectorsize, tree_root->stripesize,
1197                      root, fs_info, objectid);
1198         ret = btrfs_find_last_root(tree_root, objectid,
1199                                    &root->root_item, &root->root_key);
1200         if (ret > 0)
1201                 return -ENOENT;
1202         BUG_ON(ret);
1203
1204         generation = btrfs_root_generation(&root->root_item);
1205         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1206         root->commit_root = NULL;
1207         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1208                                      blocksize, generation);
1209         if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1210                 free_extent_buffer(root->node);
1211                 root->node = NULL;
1212                 return -EIO;
1213         }
1214         root->commit_root = btrfs_root_node(root);
1215         return 0;
1216 }
1217
1218 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1219                                          struct btrfs_fs_info *fs_info)
1220 {
1221         struct btrfs_root *root;
1222         struct btrfs_root *tree_root = fs_info->tree_root;
1223         struct extent_buffer *leaf;
1224
1225         root = kzalloc(sizeof(*root), GFP_NOFS);
1226         if (!root)
1227                 return ERR_PTR(-ENOMEM);
1228
1229         __setup_root(tree_root->nodesize, tree_root->leafsize,
1230                      tree_root->sectorsize, tree_root->stripesize,
1231                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1232
1233         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1234         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1235         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1236         /*
1237          * log trees do not get reference counted because they go away
1238          * before a real commit is actually done.  They do store pointers
1239          * to file data extents, and those reference counts still get
1240          * updated (along with back refs to the log tree).
1241          */
1242         root->ref_cows = 0;
1243
1244         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1245                                       BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1246         if (IS_ERR(leaf)) {
1247                 kfree(root);
1248                 return ERR_CAST(leaf);
1249         }
1250
1251         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1252         btrfs_set_header_bytenr(leaf, leaf->start);
1253         btrfs_set_header_generation(leaf, trans->transid);
1254         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1255         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1256         root->node = leaf;
1257
1258         write_extent_buffer(root->node, root->fs_info->fsid,
1259                             (unsigned long)btrfs_header_fsid(root->node),
1260                             BTRFS_FSID_SIZE);
1261         btrfs_mark_buffer_dirty(root->node);
1262         btrfs_tree_unlock(root->node);
1263         return root;
1264 }
1265
1266 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1267                              struct btrfs_fs_info *fs_info)
1268 {
1269         struct btrfs_root *log_root;
1270
1271         log_root = alloc_log_tree(trans, fs_info);
1272         if (IS_ERR(log_root))
1273                 return PTR_ERR(log_root);
1274         WARN_ON(fs_info->log_root_tree);
1275         fs_info->log_root_tree = log_root;
1276         return 0;
1277 }
1278
1279 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1280                        struct btrfs_root *root)
1281 {
1282         struct btrfs_root *log_root;
1283         struct btrfs_inode_item *inode_item;
1284
1285         log_root = alloc_log_tree(trans, root->fs_info);
1286         if (IS_ERR(log_root))
1287                 return PTR_ERR(log_root);
1288
1289         log_root->last_trans = trans->transid;
1290         log_root->root_key.offset = root->root_key.objectid;
1291
1292         inode_item = &log_root->root_item.inode;
1293         inode_item->generation = cpu_to_le64(1);
1294         inode_item->size = cpu_to_le64(3);
1295         inode_item->nlink = cpu_to_le32(1);
1296         inode_item->nbytes = cpu_to_le64(root->leafsize);
1297         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1298
1299         btrfs_set_root_node(&log_root->root_item, log_root->node);
1300
1301         WARN_ON(root->log_root);
1302         root->log_root = log_root;
1303         root->log_transid = 0;
1304         root->last_log_commit = 0;
1305         return 0;
1306 }
1307
1308 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1309                                                struct btrfs_key *location)
1310 {
1311         struct btrfs_root *root;
1312         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1313         struct btrfs_path *path;
1314         struct extent_buffer *l;
1315         u64 generation;
1316         u32 blocksize;
1317         int ret = 0;
1318
1319         root = kzalloc(sizeof(*root), GFP_NOFS);
1320         if (!root)
1321                 return ERR_PTR(-ENOMEM);
1322         if (location->offset == (u64)-1) {
1323                 ret = find_and_setup_root(tree_root, fs_info,
1324                                           location->objectid, root);
1325                 if (ret) {
1326                         kfree(root);
1327                         return ERR_PTR(ret);
1328                 }
1329                 goto out;
1330         }
1331
1332         __setup_root(tree_root->nodesize, tree_root->leafsize,
1333                      tree_root->sectorsize, tree_root->stripesize,
1334                      root, fs_info, location->objectid);
1335
1336         path = btrfs_alloc_path();
1337         if (!path) {
1338                 kfree(root);
1339                 return ERR_PTR(-ENOMEM);
1340         }
1341         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1342         if (ret == 0) {
1343                 l = path->nodes[0];
1344                 read_extent_buffer(l, &root->root_item,
1345                                 btrfs_item_ptr_offset(l, path->slots[0]),
1346                                 sizeof(root->root_item));
1347                 memcpy(&root->root_key, location, sizeof(*location));
1348         }
1349         btrfs_free_path(path);
1350         if (ret) {
1351                 kfree(root);
1352                 if (ret > 0)
1353                         ret = -ENOENT;
1354                 return ERR_PTR(ret);
1355         }
1356
1357         generation = btrfs_root_generation(&root->root_item);
1358         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1359         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1360                                      blocksize, generation);
1361         root->commit_root = btrfs_root_node(root);
1362         BUG_ON(!root->node);
1363 out:
1364         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1365                 root->ref_cows = 1;
1366                 btrfs_check_and_init_root_item(&root->root_item);
1367         }
1368
1369         return root;
1370 }
1371
1372 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1373                                               struct btrfs_key *location)
1374 {
1375         struct btrfs_root *root;
1376         int ret;
1377
1378         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1379                 return fs_info->tree_root;
1380         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1381                 return fs_info->extent_root;
1382         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1383                 return fs_info->chunk_root;
1384         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1385                 return fs_info->dev_root;
1386         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1387                 return fs_info->csum_root;
1388 again:
1389         spin_lock(&fs_info->fs_roots_radix_lock);
1390         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1391                                  (unsigned long)location->objectid);
1392         spin_unlock(&fs_info->fs_roots_radix_lock);
1393         if (root)
1394                 return root;
1395
1396         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1397         if (IS_ERR(root))
1398                 return root;
1399
1400         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1401         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1402                                         GFP_NOFS);
1403         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1404                 ret = -ENOMEM;
1405                 goto fail;
1406         }
1407
1408         btrfs_init_free_ino_ctl(root);
1409         mutex_init(&root->fs_commit_mutex);
1410         spin_lock_init(&root->cache_lock);
1411         init_waitqueue_head(&root->cache_wait);
1412
1413         ret = get_anon_bdev(&root->anon_dev);
1414         if (ret)
1415                 goto fail;
1416
1417         if (btrfs_root_refs(&root->root_item) == 0) {
1418                 ret = -ENOENT;
1419                 goto fail;
1420         }
1421
1422         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1423         if (ret < 0)
1424                 goto fail;
1425         if (ret == 0)
1426                 root->orphan_item_inserted = 1;
1427
1428         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1429         if (ret)
1430                 goto fail;
1431
1432         spin_lock(&fs_info->fs_roots_radix_lock);
1433         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1434                                 (unsigned long)root->root_key.objectid,
1435                                 root);
1436         if (ret == 0)
1437                 root->in_radix = 1;
1438
1439         spin_unlock(&fs_info->fs_roots_radix_lock);
1440         radix_tree_preload_end();
1441         if (ret) {
1442                 if (ret == -EEXIST) {
1443                         free_fs_root(root);
1444                         goto again;
1445                 }
1446                 goto fail;
1447         }
1448
1449         ret = btrfs_find_dead_roots(fs_info->tree_root,
1450                                     root->root_key.objectid);
1451         WARN_ON(ret);
1452         return root;
1453 fail:
1454         free_fs_root(root);
1455         return ERR_PTR(ret);
1456 }
1457
1458 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1459 {
1460         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1461         int ret = 0;
1462         struct btrfs_device *device;
1463         struct backing_dev_info *bdi;
1464
1465         rcu_read_lock();
1466         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1467                 if (!device->bdev)
1468                         continue;
1469                 bdi = blk_get_backing_dev_info(device->bdev);
1470                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1471                         ret = 1;
1472                         break;
1473                 }
1474         }
1475         rcu_read_unlock();
1476         return ret;
1477 }
1478
1479 /*
1480  * If this fails, caller must call bdi_destroy() to get rid of the
1481  * bdi again.
1482  */
1483 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1484 {
1485         int err;
1486
1487         bdi->capabilities = BDI_CAP_MAP_COPY;
1488         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1489         if (err)
1490                 return err;
1491
1492         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1493         bdi->congested_fn       = btrfs_congested_fn;
1494         bdi->congested_data     = info;
1495         return 0;
1496 }
1497
1498 static int bio_ready_for_csum(struct bio *bio)
1499 {
1500         u64 length = 0;
1501         u64 buf_len = 0;
1502         u64 start = 0;
1503         struct page *page;
1504         struct extent_io_tree *io_tree = NULL;
1505         struct bio_vec *bvec;
1506         int i;
1507         int ret;
1508
1509         bio_for_each_segment(bvec, bio, i) {
1510                 page = bvec->bv_page;
1511                 if (page->private == EXTENT_PAGE_PRIVATE) {
1512                         length += bvec->bv_len;
1513                         continue;
1514                 }
1515                 if (!page->private) {
1516                         length += bvec->bv_len;
1517                         continue;
1518                 }
1519                 length = bvec->bv_len;
1520                 buf_len = page->private >> 2;
1521                 start = page_offset(page) + bvec->bv_offset;
1522                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1523         }
1524         /* are we fully contained in this bio? */
1525         if (buf_len <= length)
1526                 return 1;
1527
1528         ret = extent_range_uptodate(io_tree, start + length,
1529                                     start + buf_len - 1);
1530         return ret;
1531 }
1532
1533 /*
1534  * called by the kthread helper functions to finally call the bio end_io
1535  * functions.  This is where read checksum verification actually happens
1536  */
1537 static void end_workqueue_fn(struct btrfs_work *work)
1538 {
1539         struct bio *bio;
1540         struct end_io_wq *end_io_wq;
1541         struct btrfs_fs_info *fs_info;
1542         int error;
1543
1544         end_io_wq = container_of(work, struct end_io_wq, work);
1545         bio = end_io_wq->bio;
1546         fs_info = end_io_wq->info;
1547
1548         /* metadata bio reads are special because the whole tree block must
1549          * be checksummed at once.  This makes sure the entire block is in
1550          * ram and up to date before trying to verify things.  For
1551          * blocksize <= pagesize, it is basically a noop
1552          */
1553         if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1554             !bio_ready_for_csum(bio)) {
1555                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1556                                    &end_io_wq->work);
1557                 return;
1558         }
1559         error = end_io_wq->error;
1560         bio->bi_private = end_io_wq->private;
1561         bio->bi_end_io = end_io_wq->end_io;
1562         kfree(end_io_wq);
1563         bio_endio(bio, error);
1564 }
1565
1566 static int cleaner_kthread(void *arg)
1567 {
1568         struct btrfs_root *root = arg;
1569
1570         do {
1571                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1572
1573                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1574                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1575                         btrfs_run_delayed_iputs(root);
1576                         btrfs_clean_old_snapshots(root);
1577                         mutex_unlock(&root->fs_info->cleaner_mutex);
1578                         btrfs_run_defrag_inodes(root->fs_info);
1579                 }
1580
1581                 if (freezing(current)) {
1582                         refrigerator();
1583                 } else {
1584                         set_current_state(TASK_INTERRUPTIBLE);
1585                         if (!kthread_should_stop())
1586                                 schedule();
1587                         __set_current_state(TASK_RUNNING);
1588                 }
1589         } while (!kthread_should_stop());
1590         return 0;
1591 }
1592
1593 static int transaction_kthread(void *arg)
1594 {
1595         struct btrfs_root *root = arg;
1596         struct btrfs_trans_handle *trans;
1597         struct btrfs_transaction *cur;
1598         u64 transid;
1599         unsigned long now;
1600         unsigned long delay;
1601         int ret;
1602
1603         do {
1604                 delay = HZ * 30;
1605                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1606                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1607
1608                 spin_lock(&root->fs_info->trans_lock);
1609                 cur = root->fs_info->running_transaction;
1610                 if (!cur) {
1611                         spin_unlock(&root->fs_info->trans_lock);
1612                         goto sleep;
1613                 }
1614
1615                 now = get_seconds();
1616                 if (!cur->blocked &&
1617                     (now < cur->start_time || now - cur->start_time < 30)) {
1618                         spin_unlock(&root->fs_info->trans_lock);
1619                         delay = HZ * 5;
1620                         goto sleep;
1621                 }
1622                 transid = cur->transid;
1623                 spin_unlock(&root->fs_info->trans_lock);
1624
1625                 trans = btrfs_join_transaction(root);
1626                 BUG_ON(IS_ERR(trans));
1627                 if (transid == trans->transid) {
1628                         ret = btrfs_commit_transaction(trans, root);
1629                         BUG_ON(ret);
1630                 } else {
1631                         btrfs_end_transaction(trans, root);
1632                 }
1633 sleep:
1634                 wake_up_process(root->fs_info->cleaner_kthread);
1635                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1636
1637                 if (freezing(current)) {
1638                         refrigerator();
1639                 } else {
1640                         set_current_state(TASK_INTERRUPTIBLE);
1641                         if (!kthread_should_stop() &&
1642                             !btrfs_transaction_blocked(root->fs_info))
1643                                 schedule_timeout(delay);
1644                         __set_current_state(TASK_RUNNING);
1645                 }
1646         } while (!kthread_should_stop());
1647         return 0;
1648 }
1649
1650 /*
1651  * this will find the highest generation in the array of
1652  * root backups.  The index of the highest array is returned,
1653  * or -1 if we can't find anything.
1654  *
1655  * We check to make sure the array is valid by comparing the
1656  * generation of the latest  root in the array with the generation
1657  * in the super block.  If they don't match we pitch it.
1658  */
1659 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1660 {
1661         u64 cur;
1662         int newest_index = -1;
1663         struct btrfs_root_backup *root_backup;
1664         int i;
1665
1666         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1667                 root_backup = info->super_copy->super_roots + i;
1668                 cur = btrfs_backup_tree_root_gen(root_backup);
1669                 if (cur == newest_gen)
1670                         newest_index = i;
1671         }
1672
1673         /* check to see if we actually wrapped around */
1674         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1675                 root_backup = info->super_copy->super_roots;
1676                 cur = btrfs_backup_tree_root_gen(root_backup);
1677                 if (cur == newest_gen)
1678                         newest_index = 0;
1679         }
1680         return newest_index;
1681 }
1682
1683
1684 /*
1685  * find the oldest backup so we know where to store new entries
1686  * in the backup array.  This will set the backup_root_index
1687  * field in the fs_info struct
1688  */
1689 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1690                                      u64 newest_gen)
1691 {
1692         int newest_index = -1;
1693
1694         newest_index = find_newest_super_backup(info, newest_gen);
1695         /* if there was garbage in there, just move along */
1696         if (newest_index == -1) {
1697                 info->backup_root_index = 0;
1698         } else {
1699                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1700         }
1701 }
1702
1703 /*
1704  * copy all the root pointers into the super backup array.
1705  * this will bump the backup pointer by one when it is
1706  * done
1707  */
1708 static void backup_super_roots(struct btrfs_fs_info *info)
1709 {
1710         int next_backup;
1711         struct btrfs_root_backup *root_backup;
1712         int last_backup;
1713
1714         next_backup = info->backup_root_index;
1715         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1716                 BTRFS_NUM_BACKUP_ROOTS;
1717
1718         /*
1719          * just overwrite the last backup if we're at the same generation
1720          * this happens only at umount
1721          */
1722         root_backup = info->super_for_commit->super_roots + last_backup;
1723         if (btrfs_backup_tree_root_gen(root_backup) ==
1724             btrfs_header_generation(info->tree_root->node))
1725                 next_backup = last_backup;
1726
1727         root_backup = info->super_for_commit->super_roots + next_backup;
1728
1729         /*
1730          * make sure all of our padding and empty slots get zero filled
1731          * regardless of which ones we use today
1732          */
1733         memset(root_backup, 0, sizeof(*root_backup));
1734
1735         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1736
1737         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1738         btrfs_set_backup_tree_root_gen(root_backup,
1739                                btrfs_header_generation(info->tree_root->node));
1740
1741         btrfs_set_backup_tree_root_level(root_backup,
1742                                btrfs_header_level(info->tree_root->node));
1743
1744         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1745         btrfs_set_backup_chunk_root_gen(root_backup,
1746                                btrfs_header_generation(info->chunk_root->node));
1747         btrfs_set_backup_chunk_root_level(root_backup,
1748                                btrfs_header_level(info->chunk_root->node));
1749
1750         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1751         btrfs_set_backup_extent_root_gen(root_backup,
1752                                btrfs_header_generation(info->extent_root->node));
1753         btrfs_set_backup_extent_root_level(root_backup,
1754                                btrfs_header_level(info->extent_root->node));
1755
1756         btrfs_set_backup_fs_root(root_backup, info->fs_root->node->start);
1757         btrfs_set_backup_fs_root_gen(root_backup,
1758                                btrfs_header_generation(info->fs_root->node));
1759         btrfs_set_backup_fs_root_level(root_backup,
1760                                btrfs_header_level(info->fs_root->node));
1761
1762         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1763         btrfs_set_backup_dev_root_gen(root_backup,
1764                                btrfs_header_generation(info->dev_root->node));
1765         btrfs_set_backup_dev_root_level(root_backup,
1766                                        btrfs_header_level(info->dev_root->node));
1767
1768         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1769         btrfs_set_backup_csum_root_gen(root_backup,
1770                                btrfs_header_generation(info->csum_root->node));
1771         btrfs_set_backup_csum_root_level(root_backup,
1772                                btrfs_header_level(info->csum_root->node));
1773
1774         btrfs_set_backup_total_bytes(root_backup,
1775                              btrfs_super_total_bytes(info->super_copy));
1776         btrfs_set_backup_bytes_used(root_backup,
1777                              btrfs_super_bytes_used(info->super_copy));
1778         btrfs_set_backup_num_devices(root_backup,
1779                              btrfs_super_num_devices(info->super_copy));
1780
1781         /*
1782          * if we don't copy this out to the super_copy, it won't get remembered
1783          * for the next commit
1784          */
1785         memcpy(&info->super_copy->super_roots,
1786                &info->super_for_commit->super_roots,
1787                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1788 }
1789
1790 /*
1791  * this copies info out of the root backup array and back into
1792  * the in-memory super block.  It is meant to help iterate through
1793  * the array, so you send it the number of backups you've already
1794  * tried and the last backup index you used.
1795  *
1796  * this returns -1 when it has tried all the backups
1797  */
1798 static noinline int next_root_backup(struct btrfs_fs_info *info,
1799                                      struct btrfs_super_block *super,
1800                                      int *num_backups_tried, int *backup_index)
1801 {
1802         struct btrfs_root_backup *root_backup;
1803         int newest = *backup_index;
1804
1805         if (*num_backups_tried == 0) {
1806                 u64 gen = btrfs_super_generation(super);
1807
1808                 newest = find_newest_super_backup(info, gen);
1809                 if (newest == -1)
1810                         return -1;
1811
1812                 *backup_index = newest;
1813                 *num_backups_tried = 1;
1814         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1815                 /* we've tried all the backups, all done */
1816                 return -1;
1817         } else {
1818                 /* jump to the next oldest backup */
1819                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1820                         BTRFS_NUM_BACKUP_ROOTS;
1821                 *backup_index = newest;
1822                 *num_backups_tried += 1;
1823         }
1824         root_backup = super->super_roots + newest;
1825
1826         btrfs_set_super_generation(super,
1827                                    btrfs_backup_tree_root_gen(root_backup));
1828         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1829         btrfs_set_super_root_level(super,
1830                                    btrfs_backup_tree_root_level(root_backup));
1831         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1832
1833         /*
1834          * fixme: the total bytes and num_devices need to match or we should
1835          * need a fsck
1836          */
1837         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1838         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1839         return 0;
1840 }
1841
1842 /* helper to cleanup tree roots */
1843 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1844 {
1845         free_extent_buffer(info->tree_root->node);
1846         free_extent_buffer(info->tree_root->commit_root);
1847         free_extent_buffer(info->dev_root->node);
1848         free_extent_buffer(info->dev_root->commit_root);
1849         free_extent_buffer(info->extent_root->node);
1850         free_extent_buffer(info->extent_root->commit_root);
1851         free_extent_buffer(info->csum_root->node);
1852         free_extent_buffer(info->csum_root->commit_root);
1853
1854         info->tree_root->node = NULL;
1855         info->tree_root->commit_root = NULL;
1856         info->dev_root->node = NULL;
1857         info->dev_root->commit_root = NULL;
1858         info->extent_root->node = NULL;
1859         info->extent_root->commit_root = NULL;
1860         info->csum_root->node = NULL;
1861         info->csum_root->commit_root = NULL;
1862
1863         if (chunk_root) {
1864                 free_extent_buffer(info->chunk_root->node);
1865                 free_extent_buffer(info->chunk_root->commit_root);
1866                 info->chunk_root->node = NULL;
1867                 info->chunk_root->commit_root = NULL;
1868         }
1869 }
1870
1871
1872 struct btrfs_root *open_ctree(struct super_block *sb,
1873                               struct btrfs_fs_devices *fs_devices,
1874                               char *options)
1875 {
1876         u32 sectorsize;
1877         u32 nodesize;
1878         u32 leafsize;
1879         u32 blocksize;
1880         u32 stripesize;
1881         u64 generation;
1882         u64 features;
1883         struct btrfs_key location;
1884         struct buffer_head *bh;
1885         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1886                                                  GFP_NOFS);
1887         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1888                                                  GFP_NOFS);
1889         struct btrfs_root *tree_root = btrfs_sb(sb);
1890         struct btrfs_fs_info *fs_info = NULL;
1891         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1892                                                 GFP_NOFS);
1893         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1894                                               GFP_NOFS);
1895         struct btrfs_root *log_tree_root;
1896
1897         int ret;
1898         int err = -EINVAL;
1899         int num_backups_tried = 0;
1900         int backup_index = 0;
1901
1902         struct btrfs_super_block *disk_super;
1903
1904         if (!extent_root || !tree_root || !tree_root->fs_info ||
1905             !chunk_root || !dev_root || !csum_root) {
1906                 err = -ENOMEM;
1907                 goto fail;
1908         }
1909         fs_info = tree_root->fs_info;
1910
1911         ret = init_srcu_struct(&fs_info->subvol_srcu);
1912         if (ret) {
1913                 err = ret;
1914                 goto fail;
1915         }
1916
1917         ret = setup_bdi(fs_info, &fs_info->bdi);
1918         if (ret) {
1919                 err = ret;
1920                 goto fail_srcu;
1921         }
1922
1923         fs_info->btree_inode = new_inode(sb);
1924         if (!fs_info->btree_inode) {
1925                 err = -ENOMEM;
1926                 goto fail_bdi;
1927         }
1928
1929         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1930
1931         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1932         INIT_LIST_HEAD(&fs_info->trans_list);
1933         INIT_LIST_HEAD(&fs_info->dead_roots);
1934         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1935         INIT_LIST_HEAD(&fs_info->hashers);
1936         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1937         INIT_LIST_HEAD(&fs_info->ordered_operations);
1938         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1939         spin_lock_init(&fs_info->delalloc_lock);
1940         spin_lock_init(&fs_info->trans_lock);
1941         spin_lock_init(&fs_info->ref_cache_lock);
1942         spin_lock_init(&fs_info->fs_roots_radix_lock);
1943         spin_lock_init(&fs_info->delayed_iput_lock);
1944         spin_lock_init(&fs_info->defrag_inodes_lock);
1945         spin_lock_init(&fs_info->free_chunk_lock);
1946         mutex_init(&fs_info->reloc_mutex);
1947
1948         init_completion(&fs_info->kobj_unregister);
1949         fs_info->tree_root = tree_root;
1950         fs_info->extent_root = extent_root;
1951         fs_info->csum_root = csum_root;
1952         fs_info->chunk_root = chunk_root;
1953         fs_info->dev_root = dev_root;
1954         fs_info->fs_devices = fs_devices;
1955         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1956         INIT_LIST_HEAD(&fs_info->space_info);
1957         btrfs_mapping_init(&fs_info->mapping_tree);
1958         btrfs_init_block_rsv(&fs_info->global_block_rsv);
1959         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1960         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1961         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1962         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1963         btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1964         atomic_set(&fs_info->nr_async_submits, 0);
1965         atomic_set(&fs_info->async_delalloc_pages, 0);
1966         atomic_set(&fs_info->async_submit_draining, 0);
1967         atomic_set(&fs_info->nr_async_bios, 0);
1968         atomic_set(&fs_info->defrag_running, 0);
1969         fs_info->sb = sb;
1970         fs_info->max_inline = 8192 * 1024;
1971         fs_info->metadata_ratio = 0;
1972         fs_info->defrag_inodes = RB_ROOT;
1973         fs_info->trans_no_join = 0;
1974         fs_info->free_chunk_space = 0;
1975
1976         /* readahead state */
1977         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1978         spin_lock_init(&fs_info->reada_lock);
1979
1980         fs_info->thread_pool_size = min_t(unsigned long,
1981                                           num_online_cpus() + 2, 8);
1982
1983         INIT_LIST_HEAD(&fs_info->ordered_extents);
1984         spin_lock_init(&fs_info->ordered_extent_lock);
1985         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1986                                         GFP_NOFS);
1987         if (!fs_info->delayed_root) {
1988                 err = -ENOMEM;
1989                 goto fail_iput;
1990         }
1991         btrfs_init_delayed_root(fs_info->delayed_root);
1992
1993         mutex_init(&fs_info->scrub_lock);
1994         atomic_set(&fs_info->scrubs_running, 0);
1995         atomic_set(&fs_info->scrub_pause_req, 0);
1996         atomic_set(&fs_info->scrubs_paused, 0);
1997         atomic_set(&fs_info->scrub_cancel_req, 0);
1998         init_waitqueue_head(&fs_info->scrub_pause_wait);
1999         init_rwsem(&fs_info->scrub_super_lock);
2000         fs_info->scrub_workers_refcnt = 0;
2001
2002         sb->s_blocksize = 4096;
2003         sb->s_blocksize_bits = blksize_bits(4096);
2004         sb->s_bdi = &fs_info->bdi;
2005
2006         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2007         fs_info->btree_inode->i_nlink = 1;
2008         /*
2009          * we set the i_size on the btree inode to the max possible int.
2010          * the real end of the address space is determined by all of
2011          * the devices in the system
2012          */
2013         fs_info->btree_inode->i_size = OFFSET_MAX;
2014         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2015         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2016
2017         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2018         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2019                              fs_info->btree_inode->i_mapping);
2020         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2021
2022         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2023
2024         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2025         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2026                sizeof(struct btrfs_key));
2027         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2028         insert_inode_hash(fs_info->btree_inode);
2029
2030         spin_lock_init(&fs_info->block_group_cache_lock);
2031         fs_info->block_group_cache_tree = RB_ROOT;
2032
2033         extent_io_tree_init(&fs_info->freed_extents[0],
2034                              fs_info->btree_inode->i_mapping);
2035         extent_io_tree_init(&fs_info->freed_extents[1],
2036                              fs_info->btree_inode->i_mapping);
2037         fs_info->pinned_extents = &fs_info->freed_extents[0];
2038         fs_info->do_barriers = 1;
2039
2040
2041         mutex_init(&fs_info->ordered_operations_mutex);
2042         mutex_init(&fs_info->tree_log_mutex);
2043         mutex_init(&fs_info->chunk_mutex);
2044         mutex_init(&fs_info->transaction_kthread_mutex);
2045         mutex_init(&fs_info->cleaner_mutex);
2046         mutex_init(&fs_info->volume_mutex);
2047         init_rwsem(&fs_info->extent_commit_sem);
2048         init_rwsem(&fs_info->cleanup_work_sem);
2049         init_rwsem(&fs_info->subvol_sem);
2050
2051         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2052         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2053
2054         init_waitqueue_head(&fs_info->transaction_throttle);
2055         init_waitqueue_head(&fs_info->transaction_wait);
2056         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2057         init_waitqueue_head(&fs_info->async_submit_wait);
2058
2059         __setup_root(4096, 4096, 4096, 4096, tree_root,
2060                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2061
2062         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2063         if (!bh) {
2064                 err = -EINVAL;
2065                 goto fail_alloc;
2066         }
2067
2068         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2069         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2070                sizeof(*fs_info->super_for_commit));
2071         brelse(bh);
2072
2073         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2074
2075         disk_super = fs_info->super_copy;
2076         if (!btrfs_super_root(disk_super))
2077                 goto fail_alloc;
2078
2079         /* check FS state, whether FS is broken. */
2080         fs_info->fs_state |= btrfs_super_flags(disk_super);
2081
2082         btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2083
2084         /*
2085          * run through our array of backup supers and setup
2086          * our ring pointer to the oldest one
2087          */
2088         generation = btrfs_super_generation(disk_super);
2089         find_oldest_super_backup(fs_info, generation);
2090
2091         /*
2092          * In the long term, we'll store the compression type in the super
2093          * block, and it'll be used for per file compression control.
2094          */
2095         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2096
2097         ret = btrfs_parse_options(tree_root, options);
2098         if (ret) {
2099                 err = ret;
2100                 goto fail_alloc;
2101         }
2102
2103         features = btrfs_super_incompat_flags(disk_super) &
2104                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2105         if (features) {
2106                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2107                        "unsupported optional features (%Lx).\n",
2108                        (unsigned long long)features);
2109                 err = -EINVAL;
2110                 goto fail_alloc;
2111         }
2112
2113         features = btrfs_super_incompat_flags(disk_super);
2114         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2115         if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2116                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2117         btrfs_set_super_incompat_flags(disk_super, features);
2118
2119         features = btrfs_super_compat_ro_flags(disk_super) &
2120                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2121         if (!(sb->s_flags & MS_RDONLY) && features) {
2122                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2123                        "unsupported option features (%Lx).\n",
2124                        (unsigned long long)features);
2125                 err = -EINVAL;
2126                 goto fail_alloc;
2127         }
2128
2129         btrfs_init_workers(&fs_info->generic_worker,
2130                            "genwork", 1, NULL);
2131
2132         btrfs_init_workers(&fs_info->workers, "worker",
2133                            fs_info->thread_pool_size,
2134                            &fs_info->generic_worker);
2135
2136         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2137                            fs_info->thread_pool_size,
2138                            &fs_info->generic_worker);
2139
2140         btrfs_init_workers(&fs_info->submit_workers, "submit",
2141                            min_t(u64, fs_devices->num_devices,
2142                            fs_info->thread_pool_size),
2143                            &fs_info->generic_worker);
2144
2145         btrfs_init_workers(&fs_info->caching_workers, "cache",
2146                            2, &fs_info->generic_worker);
2147
2148         /* a higher idle thresh on the submit workers makes it much more
2149          * likely that bios will be send down in a sane order to the
2150          * devices
2151          */
2152         fs_info->submit_workers.idle_thresh = 64;
2153
2154         fs_info->workers.idle_thresh = 16;
2155         fs_info->workers.ordered = 1;
2156
2157         fs_info->delalloc_workers.idle_thresh = 2;
2158         fs_info->delalloc_workers.ordered = 1;
2159
2160         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2161                            &fs_info->generic_worker);
2162         btrfs_init_workers(&fs_info->endio_workers, "endio",
2163                            fs_info->thread_pool_size,
2164                            &fs_info->generic_worker);
2165         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2166                            fs_info->thread_pool_size,
2167                            &fs_info->generic_worker);
2168         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2169                            "endio-meta-write", fs_info->thread_pool_size,
2170                            &fs_info->generic_worker);
2171         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2172                            fs_info->thread_pool_size,
2173                            &fs_info->generic_worker);
2174         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2175                            1, &fs_info->generic_worker);
2176         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2177                            fs_info->thread_pool_size,
2178                            &fs_info->generic_worker);
2179         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2180                            fs_info->thread_pool_size,
2181                            &fs_info->generic_worker);
2182
2183         /*
2184          * endios are largely parallel and should have a very
2185          * low idle thresh
2186          */
2187         fs_info->endio_workers.idle_thresh = 4;
2188         fs_info->endio_meta_workers.idle_thresh = 4;
2189
2190         fs_info->endio_write_workers.idle_thresh = 2;
2191         fs_info->endio_meta_write_workers.idle_thresh = 2;
2192         fs_info->readahead_workers.idle_thresh = 2;
2193
2194         btrfs_start_workers(&fs_info->workers, 1);
2195         btrfs_start_workers(&fs_info->generic_worker, 1);
2196         btrfs_start_workers(&fs_info->submit_workers, 1);
2197         btrfs_start_workers(&fs_info->delalloc_workers, 1);
2198         btrfs_start_workers(&fs_info->fixup_workers, 1);
2199         btrfs_start_workers(&fs_info->endio_workers, 1);
2200         btrfs_start_workers(&fs_info->endio_meta_workers, 1);
2201         btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
2202         btrfs_start_workers(&fs_info->endio_write_workers, 1);
2203         btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
2204         btrfs_start_workers(&fs_info->delayed_workers, 1);
2205         btrfs_start_workers(&fs_info->caching_workers, 1);
2206         btrfs_start_workers(&fs_info->readahead_workers, 1);
2207
2208         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2209         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2210                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2211
2212         nodesize = btrfs_super_nodesize(disk_super);
2213         leafsize = btrfs_super_leafsize(disk_super);
2214         sectorsize = btrfs_super_sectorsize(disk_super);
2215         stripesize = btrfs_super_stripesize(disk_super);
2216         tree_root->nodesize = nodesize;
2217         tree_root->leafsize = leafsize;
2218         tree_root->sectorsize = sectorsize;
2219         tree_root->stripesize = stripesize;
2220
2221         sb->s_blocksize = sectorsize;
2222         sb->s_blocksize_bits = blksize_bits(sectorsize);
2223
2224         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2225                     sizeof(disk_super->magic))) {
2226                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2227                 goto fail_sb_buffer;
2228         }
2229
2230         mutex_lock(&fs_info->chunk_mutex);
2231         ret = btrfs_read_sys_array(tree_root);
2232         mutex_unlock(&fs_info->chunk_mutex);
2233         if (ret) {
2234                 printk(KERN_WARNING "btrfs: failed to read the system "
2235                        "array on %s\n", sb->s_id);
2236                 goto fail_sb_buffer;
2237         }
2238
2239         blocksize = btrfs_level_size(tree_root,
2240                                      btrfs_super_chunk_root_level(disk_super));
2241         generation = btrfs_super_chunk_root_generation(disk_super);
2242
2243         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2244                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2245
2246         chunk_root->node = read_tree_block(chunk_root,
2247                                            btrfs_super_chunk_root(disk_super),
2248                                            blocksize, generation);
2249         BUG_ON(!chunk_root->node);
2250         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2251                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2252                        sb->s_id);
2253                 goto fail_tree_roots;
2254         }
2255         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2256         chunk_root->commit_root = btrfs_root_node(chunk_root);
2257
2258         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2259            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2260            BTRFS_UUID_SIZE);
2261
2262         mutex_lock(&fs_info->chunk_mutex);
2263         ret = btrfs_read_chunk_tree(chunk_root);
2264         mutex_unlock(&fs_info->chunk_mutex);
2265         if (ret) {
2266                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2267                        sb->s_id);
2268                 goto fail_tree_roots;
2269         }
2270
2271         btrfs_close_extra_devices(fs_devices);
2272
2273 retry_root_backup:
2274         blocksize = btrfs_level_size(tree_root,
2275                                      btrfs_super_root_level(disk_super));
2276         generation = btrfs_super_generation(disk_super);
2277
2278         tree_root->node = read_tree_block(tree_root,
2279                                           btrfs_super_root(disk_super),
2280                                           blocksize, generation);
2281         if (!tree_root->node ||
2282             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2283                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2284                        sb->s_id);
2285
2286                 goto recovery_tree_root;
2287         }
2288
2289         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2290         tree_root->commit_root = btrfs_root_node(tree_root);
2291
2292         ret = find_and_setup_root(tree_root, fs_info,
2293                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2294         if (ret)
2295                 goto recovery_tree_root;
2296         extent_root->track_dirty = 1;
2297
2298         ret = find_and_setup_root(tree_root, fs_info,
2299                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2300         if (ret)
2301                 goto recovery_tree_root;
2302         dev_root->track_dirty = 1;
2303
2304         ret = find_and_setup_root(tree_root, fs_info,
2305                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2306         if (ret)
2307                 goto recovery_tree_root;
2308
2309         csum_root->track_dirty = 1;
2310
2311         fs_info->generation = generation;
2312         fs_info->last_trans_committed = generation;
2313         fs_info->data_alloc_profile = (u64)-1;
2314         fs_info->metadata_alloc_profile = (u64)-1;
2315         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2316
2317         ret = btrfs_init_space_info(fs_info);
2318         if (ret) {
2319                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2320                 goto fail_block_groups;
2321         }
2322
2323         ret = btrfs_read_block_groups(extent_root);
2324         if (ret) {
2325                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2326                 goto fail_block_groups;
2327         }
2328
2329         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2330                                                "btrfs-cleaner");
2331         if (IS_ERR(fs_info->cleaner_kthread))
2332                 goto fail_block_groups;
2333
2334         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2335                                                    tree_root,
2336                                                    "btrfs-transaction");
2337         if (IS_ERR(fs_info->transaction_kthread))
2338                 goto fail_cleaner;
2339
2340         if (!btrfs_test_opt(tree_root, SSD) &&
2341             !btrfs_test_opt(tree_root, NOSSD) &&
2342             !fs_info->fs_devices->rotating) {
2343                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2344                        "mode\n");
2345                 btrfs_set_opt(fs_info->mount_opt, SSD);
2346         }
2347
2348         /* do not make disk changes in broken FS */
2349         if (btrfs_super_log_root(disk_super) != 0 &&
2350             !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2351                 u64 bytenr = btrfs_super_log_root(disk_super);
2352
2353                 if (fs_devices->rw_devices == 0) {
2354                         printk(KERN_WARNING "Btrfs log replay required "
2355                                "on RO media\n");
2356                         err = -EIO;
2357                         goto fail_trans_kthread;
2358                 }
2359                 blocksize =
2360                      btrfs_level_size(tree_root,
2361                                       btrfs_super_log_root_level(disk_super));
2362
2363                 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2364                 if (!log_tree_root) {
2365                         err = -ENOMEM;
2366                         goto fail_trans_kthread;
2367                 }
2368
2369                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2370                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2371
2372                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2373                                                       blocksize,
2374                                                       generation + 1);
2375                 ret = btrfs_recover_log_trees(log_tree_root);
2376                 BUG_ON(ret);
2377
2378                 if (sb->s_flags & MS_RDONLY) {
2379                         ret =  btrfs_commit_super(tree_root);
2380                         BUG_ON(ret);
2381                 }
2382         }
2383
2384         ret = btrfs_find_orphan_roots(tree_root);
2385         BUG_ON(ret);
2386
2387         if (!(sb->s_flags & MS_RDONLY)) {
2388                 ret = btrfs_cleanup_fs_roots(fs_info);
2389                 BUG_ON(ret);
2390
2391                 ret = btrfs_recover_relocation(tree_root);
2392                 if (ret < 0) {
2393                         printk(KERN_WARNING
2394                                "btrfs: failed to recover relocation\n");
2395                         err = -EINVAL;
2396                         goto fail_trans_kthread;
2397                 }
2398         }
2399
2400         location.objectid = BTRFS_FS_TREE_OBJECTID;
2401         location.type = BTRFS_ROOT_ITEM_KEY;
2402         location.offset = (u64)-1;
2403
2404         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2405         if (!fs_info->fs_root)
2406                 goto fail_trans_kthread;
2407         if (IS_ERR(fs_info->fs_root)) {
2408                 err = PTR_ERR(fs_info->fs_root);
2409                 goto fail_trans_kthread;
2410         }
2411
2412         if (!(sb->s_flags & MS_RDONLY)) {
2413                 down_read(&fs_info->cleanup_work_sem);
2414                 err = btrfs_orphan_cleanup(fs_info->fs_root);
2415                 if (!err)
2416                         err = btrfs_orphan_cleanup(fs_info->tree_root);
2417                 up_read(&fs_info->cleanup_work_sem);
2418                 if (err) {
2419                         close_ctree(tree_root);
2420                         return ERR_PTR(err);
2421                 }
2422         }
2423
2424         return tree_root;
2425
2426 fail_trans_kthread:
2427         kthread_stop(fs_info->transaction_kthread);
2428 fail_cleaner:
2429         kthread_stop(fs_info->cleaner_kthread);
2430
2431         /*
2432          * make sure we're done with the btree inode before we stop our
2433          * kthreads
2434          */
2435         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2436         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2437
2438 fail_block_groups:
2439         btrfs_free_block_groups(fs_info);
2440
2441 fail_tree_roots:
2442         free_root_pointers(fs_info, 1);
2443
2444 fail_sb_buffer:
2445         btrfs_stop_workers(&fs_info->generic_worker);
2446         btrfs_stop_workers(&fs_info->fixup_workers);
2447         btrfs_stop_workers(&fs_info->delalloc_workers);
2448         btrfs_stop_workers(&fs_info->workers);
2449         btrfs_stop_workers(&fs_info->endio_workers);
2450         btrfs_stop_workers(&fs_info->endio_meta_workers);
2451         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2452         btrfs_stop_workers(&fs_info->endio_write_workers);
2453         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2454         btrfs_stop_workers(&fs_info->submit_workers);
2455         btrfs_stop_workers(&fs_info->delayed_workers);
2456         btrfs_stop_workers(&fs_info->caching_workers);
2457 fail_alloc:
2458 fail_iput:
2459         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2460         iput(fs_info->btree_inode);
2461
2462         btrfs_close_devices(fs_info->fs_devices);
2463         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2464 fail_bdi:
2465         bdi_destroy(&fs_info->bdi);
2466 fail_srcu:
2467         cleanup_srcu_struct(&fs_info->subvol_srcu);
2468 fail:
2469         free_fs_info(fs_info);
2470         return ERR_PTR(err);
2471
2472 recovery_tree_root:
2473
2474         if (!btrfs_test_opt(tree_root, RECOVERY))
2475                 goto fail_tree_roots;
2476
2477         free_root_pointers(fs_info, 0);
2478
2479         /* don't use the log in recovery mode, it won't be valid */
2480         btrfs_set_super_log_root(disk_super, 0);
2481
2482         /* we can't trust the free space cache either */
2483         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2484
2485         ret = next_root_backup(fs_info, fs_info->super_copy,
2486                                &num_backups_tried, &backup_index);
2487         if (ret == -1)
2488                 goto fail_block_groups;
2489         goto retry_root_backup;
2490 }
2491
2492 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2493 {
2494         char b[BDEVNAME_SIZE];
2495
2496         if (uptodate) {
2497                 set_buffer_uptodate(bh);
2498         } else {
2499                 printk_ratelimited(KERN_WARNING "lost page write due to "
2500                                         "I/O error on %s\n",
2501                                        bdevname(bh->b_bdev, b));
2502                 /* note, we dont' set_buffer_write_io_error because we have
2503                  * our own ways of dealing with the IO errors
2504                  */
2505                 clear_buffer_uptodate(bh);
2506         }
2507         unlock_buffer(bh);
2508         put_bh(bh);
2509 }
2510
2511 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2512 {
2513         struct buffer_head *bh;
2514         struct buffer_head *latest = NULL;
2515         struct btrfs_super_block *super;
2516         int i;
2517         u64 transid = 0;
2518         u64 bytenr;
2519
2520         /* we would like to check all the supers, but that would make
2521          * a btrfs mount succeed after a mkfs from a different FS.
2522          * So, we need to add a special mount option to scan for
2523          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2524          */
2525         for (i = 0; i < 1; i++) {
2526                 bytenr = btrfs_sb_offset(i);
2527                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2528                         break;
2529                 bh = __bread(bdev, bytenr / 4096, 4096);
2530                 if (!bh)
2531                         continue;
2532
2533                 super = (struct btrfs_super_block *)bh->b_data;
2534                 if (btrfs_super_bytenr(super) != bytenr ||
2535                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2536                             sizeof(super->magic))) {
2537                         brelse(bh);
2538                         continue;
2539                 }
2540
2541                 if (!latest || btrfs_super_generation(super) > transid) {
2542                         brelse(latest);
2543                         latest = bh;
2544                         transid = btrfs_super_generation(super);
2545                 } else {
2546                         brelse(bh);
2547                 }
2548         }
2549         return latest;
2550 }
2551
2552 /*
2553  * this should be called twice, once with wait == 0 and
2554  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2555  * we write are pinned.
2556  *
2557  * They are released when wait == 1 is done.
2558  * max_mirrors must be the same for both runs, and it indicates how
2559  * many supers on this one device should be written.
2560  *
2561  * max_mirrors == 0 means to write them all.
2562  */
2563 static int write_dev_supers(struct btrfs_device *device,
2564                             struct btrfs_super_block *sb,
2565                             int do_barriers, int wait, int max_mirrors)
2566 {
2567         struct buffer_head *bh;
2568         int i;
2569         int ret;
2570         int errors = 0;
2571         u32 crc;
2572         u64 bytenr;
2573         int last_barrier = 0;
2574
2575         if (max_mirrors == 0)
2576                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2577
2578         /* make sure only the last submit_bh does a barrier */
2579         if (do_barriers) {
2580                 for (i = 0; i < max_mirrors; i++) {
2581                         bytenr = btrfs_sb_offset(i);
2582                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2583                             device->total_bytes)
2584                                 break;
2585                         last_barrier = i;
2586                 }
2587         }
2588
2589         for (i = 0; i < max_mirrors; i++) {
2590                 bytenr = btrfs_sb_offset(i);
2591                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2592                         break;
2593
2594                 if (wait) {
2595                         bh = __find_get_block(device->bdev, bytenr / 4096,
2596                                               BTRFS_SUPER_INFO_SIZE);
2597                         BUG_ON(!bh);
2598                         wait_on_buffer(bh);
2599                         if (!buffer_uptodate(bh))
2600                                 errors++;
2601
2602                         /* drop our reference */
2603                         brelse(bh);
2604
2605                         /* drop the reference from the wait == 0 run */
2606                         brelse(bh);
2607                         continue;
2608                 } else {
2609                         btrfs_set_super_bytenr(sb, bytenr);
2610
2611                         crc = ~(u32)0;
2612                         crc = btrfs_csum_data(NULL, (char *)sb +
2613                                               BTRFS_CSUM_SIZE, crc,
2614                                               BTRFS_SUPER_INFO_SIZE -
2615                                               BTRFS_CSUM_SIZE);
2616                         btrfs_csum_final(crc, sb->csum);
2617
2618                         /*
2619                          * one reference for us, and we leave it for the
2620                          * caller
2621                          */
2622                         bh = __getblk(device->bdev, bytenr / 4096,
2623                                       BTRFS_SUPER_INFO_SIZE);
2624                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2625
2626                         /* one reference for submit_bh */
2627                         get_bh(bh);
2628
2629                         set_buffer_uptodate(bh);
2630                         lock_buffer(bh);
2631                         bh->b_end_io = btrfs_end_buffer_write_sync;
2632                 }
2633
2634                 if (i == last_barrier && do_barriers)
2635                         ret = submit_bh(WRITE_FLUSH_FUA, bh);
2636                 else
2637                         ret = submit_bh(WRITE_SYNC, bh);
2638
2639                 if (ret)
2640                         errors++;
2641         }
2642         return errors < i ? 0 : -1;
2643 }
2644
2645 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2646 {
2647         struct list_head *head;
2648         struct btrfs_device *dev;
2649         struct btrfs_super_block *sb;
2650         struct btrfs_dev_item *dev_item;
2651         int ret;
2652         int do_barriers;
2653         int max_errors;
2654         int total_errors = 0;
2655         u64 flags;
2656
2657         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2658         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2659         backup_super_roots(root->fs_info);
2660
2661         sb = root->fs_info->super_for_commit;
2662         dev_item = &sb->dev_item;
2663
2664         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2665         head = &root->fs_info->fs_devices->devices;
2666         list_for_each_entry_rcu(dev, head, dev_list) {
2667                 if (!dev->bdev) {
2668                         total_errors++;
2669                         continue;
2670                 }
2671                 if (!dev->in_fs_metadata || !dev->writeable)
2672                         continue;
2673
2674                 btrfs_set_stack_device_generation(dev_item, 0);
2675                 btrfs_set_stack_device_type(dev_item, dev->type);
2676                 btrfs_set_stack_device_id(dev_item, dev->devid);
2677                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2678                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2679                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2680                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2681                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2682                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2683                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2684
2685                 flags = btrfs_super_flags(sb);
2686                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2687
2688                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2689                 if (ret)
2690                         total_errors++;
2691         }
2692         if (total_errors > max_errors) {
2693                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2694                        total_errors);
2695                 BUG();
2696         }
2697
2698         total_errors = 0;
2699         list_for_each_entry_rcu(dev, head, dev_list) {
2700                 if (!dev->bdev)
2701                         continue;
2702                 if (!dev->in_fs_metadata || !dev->writeable)
2703                         continue;
2704
2705                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2706                 if (ret)
2707                         total_errors++;
2708         }
2709         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2710         if (total_errors > max_errors) {
2711                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2712                        total_errors);
2713                 BUG();
2714         }
2715         return 0;
2716 }
2717
2718 int write_ctree_super(struct btrfs_trans_handle *trans,
2719                       struct btrfs_root *root, int max_mirrors)
2720 {
2721         int ret;
2722
2723         ret = write_all_supers(root, max_mirrors);
2724         return ret;
2725 }
2726
2727 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2728 {
2729         spin_lock(&fs_info->fs_roots_radix_lock);
2730         radix_tree_delete(&fs_info->fs_roots_radix,
2731                           (unsigned long)root->root_key.objectid);
2732         spin_unlock(&fs_info->fs_roots_radix_lock);
2733
2734         if (btrfs_root_refs(&root->root_item) == 0)
2735                 synchronize_srcu(&fs_info->subvol_srcu);
2736
2737         __btrfs_remove_free_space_cache(root->free_ino_pinned);
2738         __btrfs_remove_free_space_cache(root->free_ino_ctl);
2739         free_fs_root(root);
2740         return 0;
2741 }
2742
2743 static void free_fs_root(struct btrfs_root *root)
2744 {
2745         iput(root->cache_inode);
2746         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2747         if (root->anon_dev)
2748                 free_anon_bdev(root->anon_dev);
2749         free_extent_buffer(root->node);
2750         free_extent_buffer(root->commit_root);
2751         kfree(root->free_ino_ctl);
2752         kfree(root->free_ino_pinned);
2753         kfree(root->name);
2754         kfree(root);
2755 }
2756
2757 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2758 {
2759         int ret;
2760         struct btrfs_root *gang[8];
2761         int i;
2762
2763         while (!list_empty(&fs_info->dead_roots)) {
2764                 gang[0] = list_entry(fs_info->dead_roots.next,
2765                                      struct btrfs_root, root_list);
2766                 list_del(&gang[0]->root_list);
2767
2768                 if (gang[0]->in_radix) {
2769                         btrfs_free_fs_root(fs_info, gang[0]);
2770                 } else {
2771                         free_extent_buffer(gang[0]->node);
2772                         free_extent_buffer(gang[0]->commit_root);
2773                         kfree(gang[0]);
2774                 }
2775         }
2776
2777         while (1) {
2778                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2779                                              (void **)gang, 0,
2780                                              ARRAY_SIZE(gang));
2781                 if (!ret)
2782                         break;
2783                 for (i = 0; i < ret; i++)
2784                         btrfs_free_fs_root(fs_info, gang[i]);
2785         }
2786         return 0;
2787 }
2788
2789 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2790 {
2791         u64 root_objectid = 0;
2792         struct btrfs_root *gang[8];
2793         int i;
2794         int ret;
2795
2796         while (1) {
2797                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2798                                              (void **)gang, root_objectid,
2799                                              ARRAY_SIZE(gang));
2800                 if (!ret)
2801                         break;
2802
2803                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2804                 for (i = 0; i < ret; i++) {
2805                         int err;
2806
2807                         root_objectid = gang[i]->root_key.objectid;
2808                         err = btrfs_orphan_cleanup(gang[i]);
2809                         if (err)
2810                                 return err;
2811                 }
2812                 root_objectid++;
2813         }
2814         return 0;
2815 }
2816
2817 int btrfs_commit_super(struct btrfs_root *root)
2818 {
2819         struct btrfs_trans_handle *trans;
2820         int ret;
2821
2822         mutex_lock(&root->fs_info->cleaner_mutex);
2823         btrfs_run_delayed_iputs(root);
2824         btrfs_clean_old_snapshots(root);
2825         mutex_unlock(&root->fs_info->cleaner_mutex);
2826
2827         /* wait until ongoing cleanup work done */
2828         down_write(&root->fs_info->cleanup_work_sem);
2829         up_write(&root->fs_info->cleanup_work_sem);
2830
2831         trans = btrfs_join_transaction(root);
2832         if (IS_ERR(trans))
2833                 return PTR_ERR(trans);
2834         ret = btrfs_commit_transaction(trans, root);
2835         BUG_ON(ret);
2836         /* run commit again to drop the original snapshot */
2837         trans = btrfs_join_transaction(root);
2838         if (IS_ERR(trans))
2839                 return PTR_ERR(trans);
2840         btrfs_commit_transaction(trans, root);
2841         ret = btrfs_write_and_wait_transaction(NULL, root);
2842         BUG_ON(ret);
2843
2844         ret = write_ctree_super(NULL, root, 0);
2845         return ret;
2846 }
2847
2848 int close_ctree(struct btrfs_root *root)
2849 {
2850         struct btrfs_fs_info *fs_info = root->fs_info;
2851         int ret;
2852
2853         fs_info->closing = 1;
2854         smp_mb();
2855
2856         btrfs_scrub_cancel(root);
2857
2858         /* wait for any defraggers to finish */
2859         wait_event(fs_info->transaction_wait,
2860                    (atomic_read(&fs_info->defrag_running) == 0));
2861
2862         /* clear out the rbtree of defraggable inodes */
2863         btrfs_run_defrag_inodes(root->fs_info);
2864
2865         /*
2866          * Here come 2 situations when btrfs is broken to flip readonly:
2867          *
2868          * 1. when btrfs flips readonly somewhere else before
2869          * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2870          * and btrfs will skip to write sb directly to keep
2871          * ERROR state on disk.
2872          *
2873          * 2. when btrfs flips readonly just in btrfs_commit_super,
2874          * and in such case, btrfs cannot write sb via btrfs_commit_super,
2875          * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2876          * btrfs will cleanup all FS resources first and write sb then.
2877          */
2878         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2879                 ret = btrfs_commit_super(root);
2880                 if (ret)
2881                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2882         }
2883
2884         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2885                 ret = btrfs_error_commit_super(root);
2886                 if (ret)
2887                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2888         }
2889
2890         btrfs_put_block_group_cache(fs_info);
2891
2892         kthread_stop(root->fs_info->transaction_kthread);
2893         kthread_stop(root->fs_info->cleaner_kthread);
2894
2895         fs_info->closing = 2;
2896         smp_mb();
2897
2898         if (fs_info->delalloc_bytes) {
2899                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2900                        (unsigned long long)fs_info->delalloc_bytes);
2901         }
2902         if (fs_info->total_ref_cache_size) {
2903                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2904                        (unsigned long long)fs_info->total_ref_cache_size);
2905         }
2906
2907         free_extent_buffer(fs_info->extent_root->node);
2908         free_extent_buffer(fs_info->extent_root->commit_root);
2909         free_extent_buffer(fs_info->tree_root->node);
2910         free_extent_buffer(fs_info->tree_root->commit_root);
2911         free_extent_buffer(root->fs_info->chunk_root->node);
2912         free_extent_buffer(root->fs_info->chunk_root->commit_root);
2913         free_extent_buffer(root->fs_info->dev_root->node);
2914         free_extent_buffer(root->fs_info->dev_root->commit_root);
2915         free_extent_buffer(root->fs_info->csum_root->node);
2916         free_extent_buffer(root->fs_info->csum_root->commit_root);
2917
2918         btrfs_free_block_groups(root->fs_info);
2919
2920         del_fs_roots(fs_info);
2921
2922         iput(fs_info->btree_inode);
2923
2924         btrfs_stop_workers(&fs_info->generic_worker);
2925         btrfs_stop_workers(&fs_info->fixup_workers);
2926         btrfs_stop_workers(&fs_info->delalloc_workers);
2927         btrfs_stop_workers(&fs_info->workers);
2928         btrfs_stop_workers(&fs_info->endio_workers);
2929         btrfs_stop_workers(&fs_info->endio_meta_workers);
2930         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2931         btrfs_stop_workers(&fs_info->endio_write_workers);
2932         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2933         btrfs_stop_workers(&fs_info->submit_workers);
2934         btrfs_stop_workers(&fs_info->delayed_workers);
2935         btrfs_stop_workers(&fs_info->caching_workers);
2936         btrfs_stop_workers(&fs_info->readahead_workers);
2937
2938         btrfs_close_devices(fs_info->fs_devices);
2939         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2940
2941         bdi_destroy(&fs_info->bdi);
2942         cleanup_srcu_struct(&fs_info->subvol_srcu);
2943
2944         free_fs_info(fs_info);
2945
2946         return 0;
2947 }
2948
2949 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2950 {
2951         int ret;
2952         struct inode *btree_inode = buf->first_page->mapping->host;
2953
2954         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2955                                      NULL);
2956         if (!ret)
2957                 return ret;
2958
2959         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2960                                     parent_transid);
2961         return !ret;
2962 }
2963
2964 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2965 {
2966         struct inode *btree_inode = buf->first_page->mapping->host;
2967         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2968                                           buf);
2969 }
2970
2971 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2972 {
2973         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2974         u64 transid = btrfs_header_generation(buf);
2975         struct inode *btree_inode = root->fs_info->btree_inode;
2976         int was_dirty;
2977
2978         btrfs_assert_tree_locked(buf);
2979         if (transid != root->fs_info->generation) {
2980                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2981                        "found %llu running %llu\n",
2982                         (unsigned long long)buf->start,
2983                         (unsigned long long)transid,
2984                         (unsigned long long)root->fs_info->generation);
2985                 WARN_ON(1);
2986         }
2987         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2988                                             buf);
2989         if (!was_dirty) {
2990                 spin_lock(&root->fs_info->delalloc_lock);
2991                 root->fs_info->dirty_metadata_bytes += buf->len;
2992                 spin_unlock(&root->fs_info->delalloc_lock);
2993         }
2994 }
2995
2996 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2997 {
2998         /*
2999          * looks as though older kernels can get into trouble with
3000          * this code, they end up stuck in balance_dirty_pages forever
3001          */
3002         u64 num_dirty;
3003         unsigned long thresh = 32 * 1024 * 1024;
3004
3005         if (current->flags & PF_MEMALLOC)
3006                 return;
3007
3008         btrfs_balance_delayed_items(root);
3009
3010         num_dirty = root->fs_info->dirty_metadata_bytes;
3011
3012         if (num_dirty > thresh) {
3013                 balance_dirty_pages_ratelimited_nr(
3014                                    root->fs_info->btree_inode->i_mapping, 1);
3015         }
3016         return;
3017 }
3018
3019 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3020 {
3021         /*
3022          * looks as though older kernels can get into trouble with
3023          * this code, they end up stuck in balance_dirty_pages forever
3024          */
3025         u64 num_dirty;
3026         unsigned long thresh = 32 * 1024 * 1024;
3027
3028         if (current->flags & PF_MEMALLOC)
3029                 return;
3030
3031         num_dirty = root->fs_info->dirty_metadata_bytes;
3032
3033         if (num_dirty > thresh) {
3034                 balance_dirty_pages_ratelimited_nr(
3035                                    root->fs_info->btree_inode->i_mapping, 1);
3036         }
3037         return;
3038 }
3039
3040 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3041 {
3042         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3043         int ret;
3044         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3045         if (ret == 0)
3046                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
3047         return ret;
3048 }
3049
3050 static int btree_lock_page_hook(struct page *page, void *data,
3051                                 void (*flush_fn)(void *))
3052 {
3053         struct inode *inode = page->mapping->host;
3054         struct btrfs_root *root = BTRFS_I(inode)->root;
3055         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3056         struct extent_buffer *eb;
3057         unsigned long len;
3058         u64 bytenr = page_offset(page);
3059
3060         if (page->private == EXTENT_PAGE_PRIVATE)
3061                 goto out;
3062
3063         len = page->private >> 2;
3064         eb = find_extent_buffer(io_tree, bytenr, len);
3065         if (!eb)
3066                 goto out;
3067
3068         if (!btrfs_try_tree_write_lock(eb)) {
3069                 flush_fn(data);
3070                 btrfs_tree_lock(eb);
3071         }
3072         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3073
3074         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3075                 spin_lock(&root->fs_info->delalloc_lock);
3076                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3077                         root->fs_info->dirty_metadata_bytes -= eb->len;
3078                 else
3079                         WARN_ON(1);
3080                 spin_unlock(&root->fs_info->delalloc_lock);
3081         }
3082
3083         btrfs_tree_unlock(eb);
3084         free_extent_buffer(eb);
3085 out:
3086         if (!trylock_page(page)) {
3087                 flush_fn(data);
3088                 lock_page(page);
3089         }
3090         return 0;
3091 }
3092
3093 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3094                               int read_only)
3095 {
3096         if (read_only)
3097                 return;
3098
3099         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3100                 printk(KERN_WARNING "warning: mount fs with errors, "
3101                        "running btrfsck is recommended\n");
3102 }
3103
3104 int btrfs_error_commit_super(struct btrfs_root *root)
3105 {
3106         int ret;
3107
3108         mutex_lock(&root->fs_info->cleaner_mutex);
3109         btrfs_run_delayed_iputs(root);
3110         mutex_unlock(&root->fs_info->cleaner_mutex);
3111
3112         down_write(&root->fs_info->cleanup_work_sem);
3113         up_write(&root->fs_info->cleanup_work_sem);
3114
3115         /* cleanup FS via transaction */
3116         btrfs_cleanup_transaction(root);
3117
3118         ret = write_ctree_super(NULL, root, 0);
3119
3120         return ret;
3121 }
3122
3123 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3124 {
3125         struct btrfs_inode *btrfs_inode;
3126         struct list_head splice;
3127
3128         INIT_LIST_HEAD(&splice);
3129
3130         mutex_lock(&root->fs_info->ordered_operations_mutex);
3131         spin_lock(&root->fs_info->ordered_extent_lock);
3132
3133         list_splice_init(&root->fs_info->ordered_operations, &splice);
3134         while (!list_empty(&splice)) {
3135                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3136                                          ordered_operations);
3137
3138                 list_del_init(&btrfs_inode->ordered_operations);
3139
3140                 btrfs_invalidate_inodes(btrfs_inode->root);
3141         }
3142
3143         spin_unlock(&root->fs_info->ordered_extent_lock);
3144         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3145
3146         return 0;
3147 }
3148
3149 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3150 {
3151         struct list_head splice;
3152         struct btrfs_ordered_extent *ordered;
3153         struct inode *inode;
3154
3155         INIT_LIST_HEAD(&splice);
3156
3157         spin_lock(&root->fs_info->ordered_extent_lock);
3158
3159         list_splice_init(&root->fs_info->ordered_extents, &splice);
3160         while (!list_empty(&splice)) {
3161                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3162                                      root_extent_list);
3163
3164                 list_del_init(&ordered->root_extent_list);
3165                 atomic_inc(&ordered->refs);
3166
3167                 /* the inode may be getting freed (in sys_unlink path). */
3168                 inode = igrab(ordered->inode);
3169
3170                 spin_unlock(&root->fs_info->ordered_extent_lock);
3171                 if (inode)
3172                         iput(inode);
3173
3174                 atomic_set(&ordered->refs, 1);
3175                 btrfs_put_ordered_extent(ordered);
3176
3177                 spin_lock(&root->fs_info->ordered_extent_lock);
3178         }
3179
3180         spin_unlock(&root->fs_info->ordered_extent_lock);
3181
3182         return 0;
3183 }
3184
3185 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3186                                       struct btrfs_root *root)
3187 {
3188         struct rb_node *node;
3189         struct btrfs_delayed_ref_root *delayed_refs;
3190         struct btrfs_delayed_ref_node *ref;
3191         int ret = 0;
3192
3193         delayed_refs = &trans->delayed_refs;
3194
3195         spin_lock(&delayed_refs->lock);
3196         if (delayed_refs->num_entries == 0) {
3197                 spin_unlock(&delayed_refs->lock);
3198                 printk(KERN_INFO "delayed_refs has NO entry\n");
3199                 return ret;
3200         }
3201
3202         node = rb_first(&delayed_refs->root);
3203         while (node) {
3204                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3205                 node = rb_next(node);
3206
3207                 ref->in_tree = 0;
3208                 rb_erase(&ref->rb_node, &delayed_refs->root);
3209                 delayed_refs->num_entries--;
3210
3211                 atomic_set(&ref->refs, 1);
3212                 if (btrfs_delayed_ref_is_head(ref)) {
3213                         struct btrfs_delayed_ref_head *head;
3214
3215                         head = btrfs_delayed_node_to_head(ref);
3216                         mutex_lock(&head->mutex);
3217                         kfree(head->extent_op);
3218                         delayed_refs->num_heads--;
3219                         if (list_empty(&head->cluster))
3220                                 delayed_refs->num_heads_ready--;
3221                         list_del_init(&head->cluster);
3222                         mutex_unlock(&head->mutex);
3223                 }
3224
3225                 spin_unlock(&delayed_refs->lock);
3226                 btrfs_put_delayed_ref(ref);
3227
3228                 cond_resched();
3229                 spin_lock(&delayed_refs->lock);
3230         }
3231
3232         spin_unlock(&delayed_refs->lock);
3233
3234         return ret;
3235 }
3236
3237 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3238 {
3239         struct btrfs_pending_snapshot *snapshot;
3240         struct list_head splice;
3241
3242         INIT_LIST_HEAD(&splice);
3243
3244         list_splice_init(&t->pending_snapshots, &splice);
3245
3246         while (!list_empty(&splice)) {
3247                 snapshot = list_entry(splice.next,
3248                                       struct btrfs_pending_snapshot,
3249                                       list);
3250
3251                 list_del_init(&snapshot->list);
3252
3253                 kfree(snapshot);
3254         }
3255
3256         return 0;
3257 }
3258
3259 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3260 {
3261         struct btrfs_inode *btrfs_inode;
3262         struct list_head splice;
3263
3264         INIT_LIST_HEAD(&splice);
3265
3266         spin_lock(&root->fs_info->delalloc_lock);
3267         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3268
3269         while (!list_empty(&splice)) {
3270                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3271                                     delalloc_inodes);
3272
3273                 list_del_init(&btrfs_inode->delalloc_inodes);
3274
3275                 btrfs_invalidate_inodes(btrfs_inode->root);
3276         }
3277
3278         spin_unlock(&root->fs_info->delalloc_lock);
3279
3280         return 0;
3281 }
3282
3283 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3284                                         struct extent_io_tree *dirty_pages,
3285                                         int mark)
3286 {
3287         int ret;
3288         struct page *page;
3289         struct inode *btree_inode = root->fs_info->btree_inode;
3290         struct extent_buffer *eb;
3291         u64 start = 0;
3292         u64 end;
3293         u64 offset;
3294         unsigned long index;
3295
3296         while (1) {
3297                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3298                                             mark);
3299                 if (ret)
3300                         break;
3301
3302                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3303                 while (start <= end) {
3304                         index = start >> PAGE_CACHE_SHIFT;
3305                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3306                         page = find_get_page(btree_inode->i_mapping, index);
3307                         if (!page)
3308                                 continue;
3309                         offset = page_offset(page);
3310
3311                         spin_lock(&dirty_pages->buffer_lock);
3312                         eb = radix_tree_lookup(
3313                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3314                                                offset >> PAGE_CACHE_SHIFT);
3315                         spin_unlock(&dirty_pages->buffer_lock);
3316                         if (eb) {
3317                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3318                                                          &eb->bflags);
3319                                 atomic_set(&eb->refs, 1);
3320                         }
3321                         if (PageWriteback(page))
3322                                 end_page_writeback(page);
3323
3324                         lock_page(page);
3325                         if (PageDirty(page)) {
3326                                 clear_page_dirty_for_io(page);
3327                                 spin_lock_irq(&page->mapping->tree_lock);
3328                                 radix_tree_tag_clear(&page->mapping->page_tree,
3329                                                         page_index(page),
3330                                                         PAGECACHE_TAG_DIRTY);
3331                                 spin_unlock_irq(&page->mapping->tree_lock);
3332                         }
3333
3334                         page->mapping->a_ops->invalidatepage(page, 0);
3335                         unlock_page(page);
3336                 }
3337         }
3338
3339         return ret;
3340 }
3341
3342 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3343                                        struct extent_io_tree *pinned_extents)
3344 {
3345         struct extent_io_tree *unpin;
3346         u64 start;
3347         u64 end;
3348         int ret;
3349
3350         unpin = pinned_extents;
3351         while (1) {
3352                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3353                                             EXTENT_DIRTY);
3354                 if (ret)
3355                         break;
3356
3357                 /* opt_discard */
3358                 if (btrfs_test_opt(root, DISCARD))
3359                         ret = btrfs_error_discard_extent(root, start,
3360                                                          end + 1 - start,
3361                                                          NULL);
3362
3363                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3364                 btrfs_error_unpin_extent_range(root, start, end);
3365                 cond_resched();
3366         }
3367
3368         return 0;
3369 }
3370
3371 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3372 {
3373         struct btrfs_transaction *t;
3374         LIST_HEAD(list);
3375
3376         WARN_ON(1);
3377
3378         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3379
3380         spin_lock(&root->fs_info->trans_lock);
3381         list_splice_init(&root->fs_info->trans_list, &list);
3382         root->fs_info->trans_no_join = 1;
3383         spin_unlock(&root->fs_info->trans_lock);
3384
3385         while (!list_empty(&list)) {
3386                 t = list_entry(list.next, struct btrfs_transaction, list);
3387                 if (!t)
3388                         break;
3389
3390                 btrfs_destroy_ordered_operations(root);
3391
3392                 btrfs_destroy_ordered_extents(root);
3393
3394                 btrfs_destroy_delayed_refs(t, root);
3395
3396                 btrfs_block_rsv_release(root,
3397                                         &root->fs_info->trans_block_rsv,
3398                                         t->dirty_pages.dirty_bytes);
3399
3400                 /* FIXME: cleanup wait for commit */
3401                 t->in_commit = 1;
3402                 t->blocked = 1;
3403                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3404                         wake_up(&root->fs_info->transaction_blocked_wait);
3405
3406                 t->blocked = 0;
3407                 if (waitqueue_active(&root->fs_info->transaction_wait))
3408                         wake_up(&root->fs_info->transaction_wait);
3409
3410                 t->commit_done = 1;
3411                 if (waitqueue_active(&t->commit_wait))
3412                         wake_up(&t->commit_wait);
3413
3414                 btrfs_destroy_pending_snapshots(t);
3415
3416                 btrfs_destroy_delalloc_inodes(root);
3417
3418                 spin_lock(&root->fs_info->trans_lock);
3419                 root->fs_info->running_transaction = NULL;
3420                 spin_unlock(&root->fs_info->trans_lock);
3421
3422                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3423                                              EXTENT_DIRTY);
3424
3425                 btrfs_destroy_pinned_extent(root,
3426                                             root->fs_info->pinned_extents);
3427
3428                 atomic_set(&t->use_count, 0);
3429                 list_del_init(&t->list);
3430                 memset(t, 0, sizeof(*t));
3431                 kmem_cache_free(btrfs_transaction_cachep, t);
3432         }
3433
3434         spin_lock(&root->fs_info->trans_lock);
3435         root->fs_info->trans_no_join = 0;
3436         spin_unlock(&root->fs_info->trans_lock);
3437         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3438
3439         return 0;
3440 }
3441
3442 static struct extent_io_ops btree_extent_io_ops = {
3443         .write_cache_pages_lock_hook = btree_lock_page_hook,
3444         .readpage_end_io_hook = btree_readpage_end_io_hook,
3445         .readpage_io_failed_hook = btree_io_failed_hook,
3446         .submit_bio_hook = btree_submit_bio_hook,
3447         /* note we're sharing with inode.c for the merge bio hook */
3448         .merge_bio_hook = btrfs_merge_bio_hook,
3449 };