Btrfs: Add BH_Defrag to mark buffers that are in need of defragging
[pandora-kernel.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22
23 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
24                       *root, struct btrfs_path *path, int level);
25 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
26                       *root, struct btrfs_key *ins_key,
27                       struct btrfs_path *path, int data_size);
28 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
29                           *root, struct buffer_head *dst, struct buffer_head
30                           *src);
31 static int balance_node_right(struct btrfs_trans_handle *trans, struct
32                               btrfs_root *root, struct buffer_head *dst_buf,
33                               struct buffer_head *src_buf);
34 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
35                    struct btrfs_path *path, int level, int slot);
36
37 inline void btrfs_init_path(struct btrfs_path *p)
38 {
39         memset(p, 0, sizeof(*p));
40 }
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44         struct btrfs_path *path;
45         path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
46         if (path)
47                 btrfs_init_path(path);
48         return path;
49 }
50
51 void btrfs_free_path(struct btrfs_path *p)
52 {
53         btrfs_release_path(NULL, p);
54         kmem_cache_free(btrfs_path_cachep, p);
55 }
56
57 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i])
62                         break;
63                 btrfs_block_release(root, p->nodes[i]);
64         }
65         memset(p, 0, sizeof(*p));
66 }
67
68 static int __btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
69                            *root, struct buffer_head *buf, struct buffer_head
70                            *parent, int parent_slot, struct buffer_head
71                            **cow_ret, u64 search_start, u64 empty_size)
72 {
73         struct buffer_head *cow;
74         struct btrfs_node *cow_node;
75         int ret = 0;
76         int different_trans = 0;
77
78         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
79         WARN_ON(!buffer_uptodate(buf));
80         cow = btrfs_alloc_free_block(trans, root, search_start, empty_size);
81         if (IS_ERR(cow))
82                 return PTR_ERR(cow);
83
84         cow_node = btrfs_buffer_node(cow);
85         if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
86                 WARN_ON(1);
87
88         memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
89         btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
90         btrfs_set_header_generation(&cow_node->header, trans->transid);
91         btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
92
93         WARN_ON(btrfs_header_generation(btrfs_buffer_header(buf)) >
94                 trans->transid);
95         if (btrfs_header_generation(btrfs_buffer_header(buf)) !=
96                                     trans->transid) {
97                 different_trans = 1;
98                 ret = btrfs_inc_ref(trans, root, buf);
99                 if (ret)
100                         return ret;
101         } else {
102                 clean_tree_block(trans, root, buf);
103         }
104
105         if (buf == root->node) {
106                 root->node = cow;
107                 get_bh(cow);
108                 if (buf != root->commit_root) {
109                         btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
110                 }
111                 btrfs_block_release(root, buf);
112         } else {
113                 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
114                                         bh_blocknr(cow));
115                 btrfs_mark_buffer_dirty(parent);
116                 WARN_ON(btrfs_header_generation(btrfs_buffer_header(parent)) !=
117                                     trans->transid);
118                 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
119         }
120         btrfs_block_release(root, buf);
121         btrfs_mark_buffer_dirty(cow);
122         *cow_ret = cow;
123         return 0;
124 }
125
126 int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
127                            *root, struct buffer_head *buf, struct buffer_head
128                            *parent, int parent_slot, struct buffer_head
129                            **cow_ret)
130 {
131         u64 search_start;
132         if (trans->transaction != root->fs_info->running_transaction) {
133                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
134                        root->fs_info->running_transaction->transid);
135                 WARN_ON(1);
136         }
137         if (trans->transid != root->fs_info->generation) {
138                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
139                        root->fs_info->generation);
140                 WARN_ON(1);
141         }
142         if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
143                                     trans->transid) {
144                 *cow_ret = buf;
145                 return 0;
146         }
147
148         search_start = bh_blocknr(buf) & ~((u64)65535);
149         return __btrfs_cow_block(trans, root, buf, parent,
150                                  parent_slot, cow_ret, search_start, 0);
151 }
152
153 static int close_blocks(u64 blocknr, u64 other)
154 {
155         if (blocknr < other && other - blocknr < 8)
156                 return 1;
157         if (blocknr > other && blocknr - other < 8)
158                 return 1;
159         return 0;
160 }
161
162 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
163                        struct btrfs_root *root, struct buffer_head *parent,
164                        int cache_only, u64 *last_ret)
165 {
166         struct btrfs_node *parent_node;
167         struct buffer_head *cur_bh;
168         struct buffer_head *tmp_bh;
169         u64 blocknr;
170         u64 search_start = *last_ret;
171         u64 last_block = 0;
172         u64 other;
173         u32 parent_nritems;
174         int start_slot;
175         int end_slot;
176         int i;
177         int err = 0;
178         int parent_level;
179
180         if (trans->transaction != root->fs_info->running_transaction) {
181                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
182                        root->fs_info->running_transaction->transid);
183                 WARN_ON(1);
184         }
185         if (trans->transid != root->fs_info->generation) {
186                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
187                        root->fs_info->generation);
188                 WARN_ON(1);
189         }
190         parent_node = btrfs_buffer_node(parent);
191         parent_nritems = btrfs_header_nritems(&parent_node->header);
192         parent_level = btrfs_header_level(&parent_node->header);
193
194         start_slot = 0;
195         end_slot = parent_nritems;
196
197         if (parent_nritems == 1)
198                 return 0;
199
200         for (i = start_slot; i < end_slot; i++) {
201                 int close = 1;
202                 blocknr = btrfs_node_blockptr(parent_node, i);
203                 if (last_block == 0)
204                         last_block = blocknr;
205                 if (i > 0) {
206                         other = btrfs_node_blockptr(parent_node, i - 1);
207                         close = close_blocks(blocknr, other);
208                 }
209                 if (close && i < end_slot - 1) {
210                         other = btrfs_node_blockptr(parent_node, i + 1);
211                         close = close_blocks(blocknr, other);
212                 }
213                 if (close) {
214                         last_block = blocknr;
215                         continue;
216                 }
217
218                 cur_bh = btrfs_find_tree_block(root, blocknr);
219                 if (!cur_bh || !buffer_uptodate(cur_bh) ||
220                     buffer_locked(cur_bh) || !buffer_defrag(cur_bh)) {
221                         if (cache_only) {
222                                 brelse(cur_bh);
223                                 continue;
224                         }
225                         if (!cur_bh || !buffer_uptodate(cur_bh) ||
226                             buffer_locked(cur_bh)) {
227                                 brelse(cur_bh);
228                                 cur_bh = read_tree_block(root, blocknr);
229                         }
230                 }
231                 if (search_start == 0)
232                         search_start = last_block & ~((u64)65535);
233
234                 err = __btrfs_cow_block(trans, root, cur_bh, parent, i,
235                                         &tmp_bh, search_start,
236                                         min(8, end_slot - i));
237                 if (err)
238                         break;
239                 search_start = bh_blocknr(tmp_bh);
240                 *last_ret = search_start;
241                 if (parent_level == 1)
242                         clear_buffer_defrag(tmp_bh);
243                 brelse(tmp_bh);
244         }
245         return err;
246 }
247
248 /*
249  * The leaf data grows from end-to-front in the node.
250  * this returns the address of the start of the last item,
251  * which is the stop of the leaf data stack
252  */
253 static inline unsigned int leaf_data_end(struct btrfs_root *root,
254                                          struct btrfs_leaf *leaf)
255 {
256         u32 nr = btrfs_header_nritems(&leaf->header);
257         if (nr == 0)
258                 return BTRFS_LEAF_DATA_SIZE(root);
259         return btrfs_item_offset(leaf->items + nr - 1);
260 }
261
262 /*
263  * compare two keys in a memcmp fashion
264  */
265 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
266 {
267         struct btrfs_key k1;
268
269         btrfs_disk_key_to_cpu(&k1, disk);
270
271         if (k1.objectid > k2->objectid)
272                 return 1;
273         if (k1.objectid < k2->objectid)
274                 return -1;
275         if (k1.flags > k2->flags)
276                 return 1;
277         if (k1.flags < k2->flags)
278                 return -1;
279         if (k1.offset > k2->offset)
280                 return 1;
281         if (k1.offset < k2->offset)
282                 return -1;
283         return 0;
284 }
285
286 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
287                       int level)
288 {
289         struct btrfs_node *parent = NULL;
290         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
291         int parent_slot;
292         int slot;
293         struct btrfs_key cpukey;
294         u32 nritems = btrfs_header_nritems(&node->header);
295
296         if (path->nodes[level + 1])
297                 parent = btrfs_buffer_node(path->nodes[level + 1]);
298
299         slot = path->slots[level];
300         BUG_ON(nritems == 0);
301         if (parent) {
302                 struct btrfs_disk_key *parent_key;
303
304                 parent_slot = path->slots[level + 1];
305                 parent_key = &parent->ptrs[parent_slot].key;
306                 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
307                               sizeof(struct btrfs_disk_key)));
308                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
309                        btrfs_header_blocknr(&node->header));
310         }
311         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
312         if (slot != 0) {
313                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
314                 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
315         }
316         if (slot < nritems - 1) {
317                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
318                 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
319         }
320         return 0;
321 }
322
323 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
324                       int level)
325 {
326         struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
327         struct btrfs_node *parent = NULL;
328         int parent_slot;
329         int slot = path->slots[0];
330         struct btrfs_key cpukey;
331
332         u32 nritems = btrfs_header_nritems(&leaf->header);
333
334         if (path->nodes[level + 1])
335                 parent = btrfs_buffer_node(path->nodes[level + 1]);
336
337         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
338
339         if (nritems == 0)
340                 return 0;
341
342         if (parent) {
343                 struct btrfs_disk_key *parent_key;
344
345                 parent_slot = path->slots[level + 1];
346                 parent_key = &parent->ptrs[parent_slot].key;
347
348                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
349                        sizeof(struct btrfs_disk_key)));
350                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
351                        btrfs_header_blocknr(&leaf->header));
352         }
353         if (slot != 0) {
354                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
355                 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
356                 BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
357                         btrfs_item_end(leaf->items + slot));
358         }
359         if (slot < nritems - 1) {
360                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
361                 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
362                 BUG_ON(btrfs_item_offset(leaf->items + slot) !=
363                         btrfs_item_end(leaf->items + slot + 1));
364         }
365         BUG_ON(btrfs_item_offset(leaf->items) +
366                btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
367         return 0;
368 }
369
370 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
371                         int level)
372 {
373         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
374         if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
375                    sizeof(node->header.fsid)))
376                 BUG();
377         if (level == 0)
378                 return check_leaf(root, path, level);
379         return check_node(root, path, level);
380 }
381
382 /*
383  * search for key in the array p.  items p are item_size apart
384  * and there are 'max' items in p
385  * the slot in the array is returned via slot, and it points to
386  * the place where you would insert key if it is not found in
387  * the array.
388  *
389  * slot may point to max if the key is bigger than all of the keys
390  */
391 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
392                        int max, int *slot)
393 {
394         int low = 0;
395         int high = max;
396         int mid;
397         int ret;
398         struct btrfs_disk_key *tmp;
399
400         while(low < high) {
401                 mid = (low + high) / 2;
402                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
403                 ret = comp_keys(tmp, key);
404
405                 if (ret < 0)
406                         low = mid + 1;
407                 else if (ret > 0)
408                         high = mid;
409                 else {
410                         *slot = mid;
411                         return 0;
412                 }
413         }
414         *slot = low;
415         return 1;
416 }
417
418 /*
419  * simple bin_search frontend that does the right thing for
420  * leaves vs nodes
421  */
422 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
423 {
424         if (btrfs_is_leaf(c)) {
425                 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
426                 return generic_bin_search((void *)l->items,
427                                           sizeof(struct btrfs_item),
428                                           key, btrfs_header_nritems(&c->header),
429                                           slot);
430         } else {
431                 return generic_bin_search((void *)c->ptrs,
432                                           sizeof(struct btrfs_key_ptr),
433                                           key, btrfs_header_nritems(&c->header),
434                                           slot);
435         }
436         return -1;
437 }
438
439 static struct buffer_head *read_node_slot(struct btrfs_root *root,
440                                    struct buffer_head *parent_buf,
441                                    int slot)
442 {
443         struct btrfs_node *node = btrfs_buffer_node(parent_buf);
444         if (slot < 0)
445                 return NULL;
446         if (slot >= btrfs_header_nritems(&node->header))
447                 return NULL;
448         return read_tree_block(root, btrfs_node_blockptr(node, slot));
449 }
450
451 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
452                          *root, struct btrfs_path *path, int level)
453 {
454         struct buffer_head *right_buf;
455         struct buffer_head *mid_buf;
456         struct buffer_head *left_buf;
457         struct buffer_head *parent_buf = NULL;
458         struct btrfs_node *right = NULL;
459         struct btrfs_node *mid;
460         struct btrfs_node *left = NULL;
461         struct btrfs_node *parent = NULL;
462         int ret = 0;
463         int wret;
464         int pslot;
465         int orig_slot = path->slots[level];
466         int err_on_enospc = 0;
467         u64 orig_ptr;
468
469         if (level == 0)
470                 return 0;
471
472         mid_buf = path->nodes[level];
473         mid = btrfs_buffer_node(mid_buf);
474         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
475
476         if (level < BTRFS_MAX_LEVEL - 1)
477                 parent_buf = path->nodes[level + 1];
478         pslot = path->slots[level + 1];
479
480         /*
481          * deal with the case where there is only one pointer in the root
482          * by promoting the node below to a root
483          */
484         if (!parent_buf) {
485                 struct buffer_head *child;
486                 u64 blocknr = bh_blocknr(mid_buf);
487
488                 if (btrfs_header_nritems(&mid->header) != 1)
489                         return 0;
490
491                 /* promote the child to a root */
492                 child = read_node_slot(root, mid_buf, 0);
493                 BUG_ON(!child);
494                 root->node = child;
495                 path->nodes[level] = NULL;
496                 clean_tree_block(trans, root, mid_buf);
497                 wait_on_buffer(mid_buf);
498                 /* once for the path */
499                 btrfs_block_release(root, mid_buf);
500                 /* once for the root ptr */
501                 btrfs_block_release(root, mid_buf);
502                 return btrfs_free_extent(trans, root, blocknr, 1, 1);
503         }
504         parent = btrfs_buffer_node(parent_buf);
505
506         if (btrfs_header_nritems(&mid->header) >
507             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
508                 return 0;
509
510         if (btrfs_header_nritems(&mid->header) < 2)
511                 err_on_enospc = 1;
512
513         left_buf = read_node_slot(root, parent_buf, pslot - 1);
514         right_buf = read_node_slot(root, parent_buf, pslot + 1);
515
516         /* first, try to make some room in the middle buffer */
517         if (left_buf) {
518                 wret = btrfs_cow_block(trans, root, left_buf,
519                                        parent_buf, pslot - 1, &left_buf);
520                 if (wret) {
521                         ret = wret;
522                         goto enospc;
523                 }
524                 left = btrfs_buffer_node(left_buf);
525                 orig_slot += btrfs_header_nritems(&left->header);
526                 wret = push_node_left(trans, root, left_buf, mid_buf);
527                 if (wret < 0)
528                         ret = wret;
529                 if (btrfs_header_nritems(&mid->header) < 2)
530                         err_on_enospc = 1;
531         }
532
533         /*
534          * then try to empty the right most buffer into the middle
535          */
536         if (right_buf) {
537                 wret = btrfs_cow_block(trans, root, right_buf,
538                                        parent_buf, pslot + 1, &right_buf);
539                 if (wret) {
540                         ret = wret;
541                         goto enospc;
542                 }
543
544                 right = btrfs_buffer_node(right_buf);
545                 wret = push_node_left(trans, root, mid_buf, right_buf);
546                 if (wret < 0 && wret != -ENOSPC)
547                         ret = wret;
548                 if (btrfs_header_nritems(&right->header) == 0) {
549                         u64 blocknr = bh_blocknr(right_buf);
550                         clean_tree_block(trans, root, right_buf);
551                         wait_on_buffer(right_buf);
552                         btrfs_block_release(root, right_buf);
553                         right_buf = NULL;
554                         right = NULL;
555                         wret = del_ptr(trans, root, path, level + 1, pslot +
556                                        1);
557                         if (wret)
558                                 ret = wret;
559                         wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
560                         if (wret)
561                                 ret = wret;
562                 } else {
563                         btrfs_memcpy(root, parent,
564                                      &parent->ptrs[pslot + 1].key,
565                                      &right->ptrs[0].key,
566                                      sizeof(struct btrfs_disk_key));
567                         btrfs_mark_buffer_dirty(parent_buf);
568                 }
569         }
570         if (btrfs_header_nritems(&mid->header) == 1) {
571                 /*
572                  * we're not allowed to leave a node with one item in the
573                  * tree during a delete.  A deletion from lower in the tree
574                  * could try to delete the only pointer in this node.
575                  * So, pull some keys from the left.
576                  * There has to be a left pointer at this point because
577                  * otherwise we would have pulled some pointers from the
578                  * right
579                  */
580                 BUG_ON(!left_buf);
581                 wret = balance_node_right(trans, root, mid_buf, left_buf);
582                 if (wret < 0) {
583                         ret = wret;
584                         goto enospc;
585                 }
586                 BUG_ON(wret == 1);
587         }
588         if (btrfs_header_nritems(&mid->header) == 0) {
589                 /* we've managed to empty the middle node, drop it */
590                 u64 blocknr = bh_blocknr(mid_buf);
591                 clean_tree_block(trans, root, mid_buf);
592                 wait_on_buffer(mid_buf);
593                 btrfs_block_release(root, mid_buf);
594                 mid_buf = NULL;
595                 mid = NULL;
596                 wret = del_ptr(trans, root, path, level + 1, pslot);
597                 if (wret)
598                         ret = wret;
599                 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
600                 if (wret)
601                         ret = wret;
602         } else {
603                 /* update the parent key to reflect our changes */
604                 btrfs_memcpy(root, parent,
605                              &parent->ptrs[pslot].key, &mid->ptrs[0].key,
606                              sizeof(struct btrfs_disk_key));
607                 btrfs_mark_buffer_dirty(parent_buf);
608         }
609
610         /* update the path */
611         if (left_buf) {
612                 if (btrfs_header_nritems(&left->header) > orig_slot) {
613                         get_bh(left_buf);
614                         path->nodes[level] = left_buf;
615                         path->slots[level + 1] -= 1;
616                         path->slots[level] = orig_slot;
617                         if (mid_buf)
618                                 btrfs_block_release(root, mid_buf);
619                 } else {
620                         orig_slot -= btrfs_header_nritems(&left->header);
621                         path->slots[level] = orig_slot;
622                 }
623         }
624         /* double check we haven't messed things up */
625         check_block(root, path, level);
626         if (orig_ptr !=
627             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
628                                 path->slots[level]))
629                 BUG();
630 enospc:
631         if (right_buf)
632                 btrfs_block_release(root, right_buf);
633         if (left_buf)
634                 btrfs_block_release(root, left_buf);
635         return ret;
636 }
637
638 /* returns zero if the push worked, non-zero otherwise */
639 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
640                                 struct btrfs_root *root,
641                                 struct btrfs_path *path, int level)
642 {
643         struct buffer_head *right_buf;
644         struct buffer_head *mid_buf;
645         struct buffer_head *left_buf;
646         struct buffer_head *parent_buf = NULL;
647         struct btrfs_node *right = NULL;
648         struct btrfs_node *mid;
649         struct btrfs_node *left = NULL;
650         struct btrfs_node *parent = NULL;
651         int ret = 0;
652         int wret;
653         int pslot;
654         int orig_slot = path->slots[level];
655         u64 orig_ptr;
656
657         if (level == 0)
658                 return 1;
659
660         mid_buf = path->nodes[level];
661         mid = btrfs_buffer_node(mid_buf);
662         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
663
664         if (level < BTRFS_MAX_LEVEL - 1)
665                 parent_buf = path->nodes[level + 1];
666         pslot = path->slots[level + 1];
667
668         if (!parent_buf)
669                 return 1;
670         parent = btrfs_buffer_node(parent_buf);
671
672         left_buf = read_node_slot(root, parent_buf, pslot - 1);
673
674         /* first, try to make some room in the middle buffer */
675         if (left_buf) {
676                 u32 left_nr;
677                 left = btrfs_buffer_node(left_buf);
678                 left_nr = btrfs_header_nritems(&left->header);
679                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
680                         wret = 1;
681                 } else {
682                         ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
683                                               pslot - 1, &left_buf);
684                         if (ret)
685                                 wret = 1;
686                         else {
687                                 left = btrfs_buffer_node(left_buf);
688                                 wret = push_node_left(trans, root,
689                                                       left_buf, mid_buf);
690                         }
691                 }
692                 if (wret < 0)
693                         ret = wret;
694                 if (wret == 0) {
695                         orig_slot += left_nr;
696                         btrfs_memcpy(root, parent,
697                                      &parent->ptrs[pslot].key,
698                                      &mid->ptrs[0].key,
699                                      sizeof(struct btrfs_disk_key));
700                         btrfs_mark_buffer_dirty(parent_buf);
701                         if (btrfs_header_nritems(&left->header) > orig_slot) {
702                                 path->nodes[level] = left_buf;
703                                 path->slots[level + 1] -= 1;
704                                 path->slots[level] = orig_slot;
705                                 btrfs_block_release(root, mid_buf);
706                         } else {
707                                 orig_slot -=
708                                         btrfs_header_nritems(&left->header);
709                                 path->slots[level] = orig_slot;
710                                 btrfs_block_release(root, left_buf);
711                         }
712                         check_node(root, path, level);
713                         return 0;
714                 }
715                 btrfs_block_release(root, left_buf);
716         }
717         right_buf = read_node_slot(root, parent_buf, pslot + 1);
718
719         /*
720          * then try to empty the right most buffer into the middle
721          */
722         if (right_buf) {
723                 u32 right_nr;
724                 right = btrfs_buffer_node(right_buf);
725                 right_nr = btrfs_header_nritems(&right->header);
726                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
727                         wret = 1;
728                 } else {
729                         ret = btrfs_cow_block(trans, root, right_buf,
730                                               parent_buf, pslot + 1,
731                                               &right_buf);
732                         if (ret)
733                                 wret = 1;
734                         else {
735                                 right = btrfs_buffer_node(right_buf);
736                                 wret = balance_node_right(trans, root,
737                                                           right_buf, mid_buf);
738                         }
739                 }
740                 if (wret < 0)
741                         ret = wret;
742                 if (wret == 0) {
743                         btrfs_memcpy(root, parent,
744                                      &parent->ptrs[pslot + 1].key,
745                                      &right->ptrs[0].key,
746                                      sizeof(struct btrfs_disk_key));
747                         btrfs_mark_buffer_dirty(parent_buf);
748                         if (btrfs_header_nritems(&mid->header) <= orig_slot) {
749                                 path->nodes[level] = right_buf;
750                                 path->slots[level + 1] += 1;
751                                 path->slots[level] = orig_slot -
752                                         btrfs_header_nritems(&mid->header);
753                                 btrfs_block_release(root, mid_buf);
754                         } else {
755                                 btrfs_block_release(root, right_buf);
756                         }
757                         check_node(root, path, level);
758                         return 0;
759                 }
760                 btrfs_block_release(root, right_buf);
761         }
762         check_node(root, path, level);
763         return 1;
764 }
765
766 /*
767  * readahead one full node of leaves
768  */
769 static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
770                              int level, int slot)
771 {
772         struct btrfs_node *node;
773         int i;
774         u32 nritems;
775         u64 item_objectid;
776         u64 blocknr;
777         u64 search;
778         u64 cluster_start;
779         int ret;
780         int nread = 0;
781         int direction = path->reada;
782         struct radix_tree_root found;
783         unsigned long gang[8];
784         struct buffer_head *bh;
785
786         if (level == 0)
787                 return;
788
789         if (!path->nodes[level])
790                 return;
791
792         node = btrfs_buffer_node(path->nodes[level]);
793         search = btrfs_node_blockptr(node, slot);
794         bh = btrfs_find_tree_block(root, search);
795         if (bh) {
796                 brelse(bh);
797                 return;
798         }
799
800         init_bit_radix(&found);
801         nritems = btrfs_header_nritems(&node->header);
802         for (i = slot; i < nritems; i++) {
803                 item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
804                 blocknr = btrfs_node_blockptr(node, i);
805                 set_radix_bit(&found, blocknr);
806         }
807         if (direction > 0) {
808                 cluster_start = search - 4;
809                 if (cluster_start > search)
810                         cluster_start = 0;
811         } else
812                 cluster_start = search + 4;
813         while(1) {
814                 ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
815                 if (!ret)
816                         break;
817                 for (i = 0; i < ret; i++) {
818                         blocknr = gang[i];
819                         clear_radix_bit(&found, blocknr);
820                         if (nread > 32)
821                                 continue;
822                         if (close_blocks(cluster_start, blocknr)) {
823                                 readahead_tree_block(root, blocknr);
824                                 nread++;
825                                 cluster_start = blocknr;
826                         }
827                 }
828         }
829 }
830 /*
831  * look for key in the tree.  path is filled in with nodes along the way
832  * if key is found, we return zero and you can find the item in the leaf
833  * level of the path (level 0)
834  *
835  * If the key isn't found, the path points to the slot where it should
836  * be inserted, and 1 is returned.  If there are other errors during the
837  * search a negative error number is returned.
838  *
839  * if ins_len > 0, nodes and leaves will be split as we walk down the
840  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
841  * possible)
842  */
843 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
844                       *root, struct btrfs_key *key, struct btrfs_path *p, int
845                       ins_len, int cow)
846 {
847         struct buffer_head *b;
848         struct buffer_head *cow_buf;
849         struct btrfs_node *c;
850         u64 blocknr;
851         int slot;
852         int ret;
853         int level;
854         int should_reada = p->reada;
855         u8 lowest_level = 0;
856
857         lowest_level = p->lowest_level;
858         WARN_ON(lowest_level && ins_len);
859         WARN_ON(p->nodes[0] != NULL);
860         WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
861 again:
862         b = root->node;
863         get_bh(b);
864         while (b) {
865                 c = btrfs_buffer_node(b);
866                 level = btrfs_header_level(&c->header);
867                 if (cow) {
868                         int wret;
869                         wret = btrfs_cow_block(trans, root, b,
870                                                p->nodes[level + 1],
871                                                p->slots[level + 1],
872                                                &cow_buf);
873                         if (wret) {
874                                 btrfs_block_release(root, cow_buf);
875                                 return wret;
876                         }
877                         b = cow_buf;
878                         c = btrfs_buffer_node(b);
879                 }
880                 BUG_ON(!cow && ins_len);
881                 if (level != btrfs_header_level(&c->header))
882                         WARN_ON(1);
883                 level = btrfs_header_level(&c->header);
884                 p->nodes[level] = b;
885                 ret = check_block(root, p, level);
886                 if (ret)
887                         return -1;
888                 ret = bin_search(c, key, &slot);
889                 if (!btrfs_is_leaf(c)) {
890                         if (ret && slot > 0)
891                                 slot -= 1;
892                         p->slots[level] = slot;
893                         if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
894                             BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
895                                 int sret = split_node(trans, root, p, level);
896                                 BUG_ON(sret > 0);
897                                 if (sret)
898                                         return sret;
899                                 b = p->nodes[level];
900                                 c = btrfs_buffer_node(b);
901                                 slot = p->slots[level];
902                         } else if (ins_len < 0) {
903                                 int sret = balance_level(trans, root, p,
904                                                          level);
905                                 if (sret)
906                                         return sret;
907                                 b = p->nodes[level];
908                                 if (!b)
909                                         goto again;
910                                 c = btrfs_buffer_node(b);
911                                 slot = p->slots[level];
912                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
913                         }
914                         /* this is only true while dropping a snapshot */
915                         if (level == lowest_level)
916                                 break;
917                         blocknr = btrfs_node_blockptr(c, slot);
918                         if (should_reada)
919                                 reada_for_search(root, p, level, slot);
920                         b = read_tree_block(root, btrfs_node_blockptr(c, slot));
921
922                 } else {
923                         struct btrfs_leaf *l = (struct btrfs_leaf *)c;
924                         p->slots[level] = slot;
925                         if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
926                             sizeof(struct btrfs_item) + ins_len) {
927                                 int sret = split_leaf(trans, root, key,
928                                                       p, ins_len);
929                                 BUG_ON(sret > 0);
930                                 if (sret)
931                                         return sret;
932                         }
933                         return ret;
934                 }
935         }
936         return 1;
937 }
938
939 /*
940  * adjust the pointers going up the tree, starting at level
941  * making sure the right key of each node is points to 'key'.
942  * This is used after shifting pointers to the left, so it stops
943  * fixing up pointers when a given leaf/node is not in slot 0 of the
944  * higher levels
945  *
946  * If this fails to write a tree block, it returns -1, but continues
947  * fixing up the blocks in ram so the tree is consistent.
948  */
949 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
950                           *root, struct btrfs_path *path, struct btrfs_disk_key
951                           *key, int level)
952 {
953         int i;
954         int ret = 0;
955         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
956                 struct btrfs_node *t;
957                 int tslot = path->slots[i];
958                 if (!path->nodes[i])
959                         break;
960                 t = btrfs_buffer_node(path->nodes[i]);
961                 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
962                 btrfs_mark_buffer_dirty(path->nodes[i]);
963                 if (tslot != 0)
964                         break;
965         }
966         return ret;
967 }
968
969 /*
970  * try to push data from one node into the next node left in the
971  * tree.
972  *
973  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
974  * error, and > 0 if there was no room in the left hand block.
975  */
976 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
977                           *root, struct buffer_head *dst_buf, struct
978                           buffer_head *src_buf)
979 {
980         struct btrfs_node *src = btrfs_buffer_node(src_buf);
981         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
982         int push_items = 0;
983         int src_nritems;
984         int dst_nritems;
985         int ret = 0;
986
987         src_nritems = btrfs_header_nritems(&src->header);
988         dst_nritems = btrfs_header_nritems(&dst->header);
989         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
990
991         if (push_items <= 0) {
992                 return 1;
993         }
994
995         if (src_nritems < push_items)
996                 push_items = src_nritems;
997
998         btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
999                      push_items * sizeof(struct btrfs_key_ptr));
1000         if (push_items < src_nritems) {
1001                 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
1002                         (src_nritems - push_items) *
1003                         sizeof(struct btrfs_key_ptr));
1004         }
1005         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
1006         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
1007         btrfs_mark_buffer_dirty(src_buf);
1008         btrfs_mark_buffer_dirty(dst_buf);
1009         return ret;
1010 }
1011
1012 /*
1013  * try to push data from one node into the next node right in the
1014  * tree.
1015  *
1016  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1017  * error, and > 0 if there was no room in the right hand block.
1018  *
1019  * this will  only push up to 1/2 the contents of the left node over
1020  */
1021 static int balance_node_right(struct btrfs_trans_handle *trans, struct
1022                               btrfs_root *root, struct buffer_head *dst_buf,
1023                               struct buffer_head *src_buf)
1024 {
1025         struct btrfs_node *src = btrfs_buffer_node(src_buf);
1026         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
1027         int push_items = 0;
1028         int max_push;
1029         int src_nritems;
1030         int dst_nritems;
1031         int ret = 0;
1032
1033         src_nritems = btrfs_header_nritems(&src->header);
1034         dst_nritems = btrfs_header_nritems(&dst->header);
1035         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1036         if (push_items <= 0) {
1037                 return 1;
1038         }
1039
1040         max_push = src_nritems / 2 + 1;
1041         /* don't try to empty the node */
1042         if (max_push > src_nritems)
1043                 return 1;
1044         if (max_push < push_items)
1045                 push_items = max_push;
1046
1047         btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
1048                       dst_nritems * sizeof(struct btrfs_key_ptr));
1049
1050         btrfs_memcpy(root, dst, dst->ptrs,
1051                      src->ptrs + src_nritems - push_items,
1052                      push_items * sizeof(struct btrfs_key_ptr));
1053
1054         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
1055         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
1056
1057         btrfs_mark_buffer_dirty(src_buf);
1058         btrfs_mark_buffer_dirty(dst_buf);
1059         return ret;
1060 }
1061
1062 /*
1063  * helper function to insert a new root level in the tree.
1064  * A new node is allocated, and a single item is inserted to
1065  * point to the existing root
1066  *
1067  * returns zero on success or < 0 on failure.
1068  */
1069 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
1070                            *root, struct btrfs_path *path, int level)
1071 {
1072         struct buffer_head *t;
1073         struct btrfs_node *lower;
1074         struct btrfs_node *c;
1075         struct btrfs_disk_key *lower_key;
1076
1077         BUG_ON(path->nodes[level]);
1078         BUG_ON(path->nodes[level-1] != root->node);
1079
1080         t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr, 0);
1081         if (IS_ERR(t))
1082                 return PTR_ERR(t);
1083         c = btrfs_buffer_node(t);
1084         memset(c, 0, root->blocksize);
1085         btrfs_set_header_nritems(&c->header, 1);
1086         btrfs_set_header_level(&c->header, level);
1087         btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
1088         btrfs_set_header_generation(&c->header, trans->transid);
1089         btrfs_set_header_owner(&c->header, root->root_key.objectid);
1090         lower = btrfs_buffer_node(path->nodes[level-1]);
1091         memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
1092                sizeof(c->header.fsid));
1093         if (btrfs_is_leaf(lower))
1094                 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
1095         else
1096                 lower_key = &lower->ptrs[0].key;
1097         btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
1098                      sizeof(struct btrfs_disk_key));
1099         btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
1100
1101         btrfs_mark_buffer_dirty(t);
1102
1103         /* the super has an extra ref to root->node */
1104         btrfs_block_release(root, root->node);
1105         root->node = t;
1106         get_bh(t);
1107         path->nodes[level] = t;
1108         path->slots[level] = 0;
1109         return 0;
1110 }
1111
1112 /*
1113  * worker function to insert a single pointer in a node.
1114  * the node should have enough room for the pointer already
1115  *
1116  * slot and level indicate where you want the key to go, and
1117  * blocknr is the block the key points to.
1118  *
1119  * returns zero on success and < 0 on any error
1120  */
1121 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1122                       *root, struct btrfs_path *path, struct btrfs_disk_key
1123                       *key, u64 blocknr, int slot, int level)
1124 {
1125         struct btrfs_node *lower;
1126         int nritems;
1127
1128         BUG_ON(!path->nodes[level]);
1129         lower = btrfs_buffer_node(path->nodes[level]);
1130         nritems = btrfs_header_nritems(&lower->header);
1131         if (slot > nritems)
1132                 BUG();
1133         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1134                 BUG();
1135         if (slot != nritems) {
1136                 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
1137                               lower->ptrs + slot,
1138                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
1139         }
1140         btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
1141                      key, sizeof(struct btrfs_disk_key));
1142         btrfs_set_node_blockptr(lower, slot, blocknr);
1143         btrfs_set_header_nritems(&lower->header, nritems + 1);
1144         btrfs_mark_buffer_dirty(path->nodes[level]);
1145         check_node(root, path, level);
1146         return 0;
1147 }
1148
1149 /*
1150  * split the node at the specified level in path in two.
1151  * The path is corrected to point to the appropriate node after the split
1152  *
1153  * Before splitting this tries to make some room in the node by pushing
1154  * left and right, if either one works, it returns right away.
1155  *
1156  * returns 0 on success and < 0 on failure
1157  */
1158 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1159                       *root, struct btrfs_path *path, int level)
1160 {
1161         struct buffer_head *t;
1162         struct btrfs_node *c;
1163         struct buffer_head *split_buffer;
1164         struct btrfs_node *split;
1165         int mid;
1166         int ret;
1167         int wret;
1168         u32 c_nritems;
1169
1170         t = path->nodes[level];
1171         c = btrfs_buffer_node(t);
1172         if (t == root->node) {
1173                 /* trying to split the root, lets make a new one */
1174                 ret = insert_new_root(trans, root, path, level + 1);
1175                 if (ret)
1176                         return ret;
1177         } else {
1178                 ret = push_nodes_for_insert(trans, root, path, level);
1179                 t = path->nodes[level];
1180                 c = btrfs_buffer_node(t);
1181                 if (!ret &&
1182                     btrfs_header_nritems(&c->header) <
1183                     BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
1184                         return 0;
1185                 if (ret < 0)
1186                         return ret;
1187         }
1188
1189         c_nritems = btrfs_header_nritems(&c->header);
1190         split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr, 0);
1191         if (IS_ERR(split_buffer))
1192                 return PTR_ERR(split_buffer);
1193
1194         split = btrfs_buffer_node(split_buffer);
1195         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
1196         btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
1197         btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
1198         btrfs_set_header_generation(&split->header, trans->transid);
1199         btrfs_set_header_owner(&split->header, root->root_key.objectid);
1200         memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
1201                sizeof(split->header.fsid));
1202         mid = (c_nritems + 1) / 2;
1203         btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
1204                      (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1205         btrfs_set_header_nritems(&split->header, c_nritems - mid);
1206         btrfs_set_header_nritems(&c->header, mid);
1207         ret = 0;
1208
1209         btrfs_mark_buffer_dirty(t);
1210         btrfs_mark_buffer_dirty(split_buffer);
1211         wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
1212                           bh_blocknr(split_buffer), path->slots[level + 1] + 1,
1213                           level + 1);
1214         if (wret)
1215                 ret = wret;
1216
1217         if (path->slots[level] >= mid) {
1218                 path->slots[level] -= mid;
1219                 btrfs_block_release(root, t);
1220                 path->nodes[level] = split_buffer;
1221                 path->slots[level + 1] += 1;
1222         } else {
1223                 btrfs_block_release(root, split_buffer);
1224         }
1225         return ret;
1226 }
1227
1228 /*
1229  * how many bytes are required to store the items in a leaf.  start
1230  * and nr indicate which items in the leaf to check.  This totals up the
1231  * space used both by the item structs and the item data
1232  */
1233 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
1234 {
1235         int data_len;
1236         int nritems = btrfs_header_nritems(&l->header);
1237         int end = min(nritems, start + nr) - 1;
1238
1239         if (!nr)
1240                 return 0;
1241         data_len = btrfs_item_end(l->items + start);
1242         data_len = data_len - btrfs_item_offset(l->items + end);
1243         data_len += sizeof(struct btrfs_item) * nr;
1244         WARN_ON(data_len < 0);
1245         return data_len;
1246 }
1247
1248 /*
1249  * The space between the end of the leaf items and
1250  * the start of the leaf data.  IOW, how much room
1251  * the leaf has left for both items and data
1252  */
1253 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
1254 {
1255         int nritems = btrfs_header_nritems(&leaf->header);
1256         return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1257 }
1258
1259 /*
1260  * push some data in the path leaf to the right, trying to free up at
1261  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1262  *
1263  * returns 1 if the push failed because the other node didn't have enough
1264  * room, 0 if everything worked out and < 0 if there were major errors.
1265  */
1266 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1267                            *root, struct btrfs_path *path, int data_size)
1268 {
1269         struct buffer_head *left_buf = path->nodes[0];
1270         struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
1271         struct btrfs_leaf *right;
1272         struct buffer_head *right_buf;
1273         struct buffer_head *upper;
1274         struct btrfs_node *upper_node;
1275         int slot;
1276         int i;
1277         int free_space;
1278         int push_space = 0;
1279         int push_items = 0;
1280         struct btrfs_item *item;
1281         u32 left_nritems;
1282         u32 right_nritems;
1283         int ret;
1284
1285         slot = path->slots[1];
1286         if (!path->nodes[1]) {
1287                 return 1;
1288         }
1289         upper = path->nodes[1];
1290         upper_node = btrfs_buffer_node(upper);
1291         if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1292                 return 1;
1293         }
1294         right_buf = read_tree_block(root,
1295                     btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1296         right = btrfs_buffer_leaf(right_buf);
1297         free_space = btrfs_leaf_free_space(root, right);
1298         if (free_space < data_size + sizeof(struct btrfs_item)) {
1299                 btrfs_block_release(root, right_buf);
1300                 return 1;
1301         }
1302         /* cow and double check */
1303         ret = btrfs_cow_block(trans, root, right_buf, upper,
1304                               slot + 1, &right_buf);
1305         if (ret) {
1306                 btrfs_block_release(root, right_buf);
1307                 return 1;
1308         }
1309         right = btrfs_buffer_leaf(right_buf);
1310         free_space = btrfs_leaf_free_space(root, right);
1311         if (free_space < data_size + sizeof(struct btrfs_item)) {
1312                 btrfs_block_release(root, right_buf);
1313                 return 1;
1314         }
1315
1316         left_nritems = btrfs_header_nritems(&left->header);
1317         if (left_nritems == 0) {
1318                 btrfs_block_release(root, right_buf);
1319                 return 1;
1320         }
1321         for (i = left_nritems - 1; i >= 1; i--) {
1322                 item = left->items + i;
1323                 if (path->slots[0] == i)
1324                         push_space += data_size + sizeof(*item);
1325                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1326                     free_space)
1327                         break;
1328                 push_items++;
1329                 push_space += btrfs_item_size(item) + sizeof(*item);
1330         }
1331         if (push_items == 0) {
1332                 btrfs_block_release(root, right_buf);
1333                 return 1;
1334         }
1335         if (push_items == left_nritems)
1336                 WARN_ON(1);
1337         right_nritems = btrfs_header_nritems(&right->header);
1338         /* push left to right */
1339         push_space = btrfs_item_end(left->items + left_nritems - push_items);
1340         push_space -= leaf_data_end(root, left);
1341         /* make room in the right data area */
1342         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1343                       leaf_data_end(root, right) - push_space,
1344                       btrfs_leaf_data(right) +
1345                       leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1346                       leaf_data_end(root, right));
1347         /* copy from the left data area */
1348         btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1349                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
1350                      btrfs_leaf_data(left) + leaf_data_end(root, left),
1351                      push_space);
1352         btrfs_memmove(root, right, right->items + push_items, right->items,
1353                 right_nritems * sizeof(struct btrfs_item));
1354         /* copy the items from left to right */
1355         btrfs_memcpy(root, right, right->items, left->items +
1356                      left_nritems - push_items,
1357                      push_items * sizeof(struct btrfs_item));
1358
1359         /* update the item pointers */
1360         right_nritems += push_items;
1361         btrfs_set_header_nritems(&right->header, right_nritems);
1362         push_space = BTRFS_LEAF_DATA_SIZE(root);
1363         for (i = 0; i < right_nritems; i++) {
1364                 btrfs_set_item_offset(right->items + i, push_space -
1365                                       btrfs_item_size(right->items + i));
1366                 push_space = btrfs_item_offset(right->items + i);
1367         }
1368         left_nritems -= push_items;
1369         btrfs_set_header_nritems(&left->header, left_nritems);
1370
1371         btrfs_mark_buffer_dirty(left_buf);
1372         btrfs_mark_buffer_dirty(right_buf);
1373
1374         btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1375                 &right->items[0].key, sizeof(struct btrfs_disk_key));
1376         btrfs_mark_buffer_dirty(upper);
1377
1378         /* then fixup the leaf pointer in the path */
1379         if (path->slots[0] >= left_nritems) {
1380                 path->slots[0] -= left_nritems;
1381                 btrfs_block_release(root, path->nodes[0]);
1382                 path->nodes[0] = right_buf;
1383                 path->slots[1] += 1;
1384         } else {
1385                 btrfs_block_release(root, right_buf);
1386         }
1387         if (path->nodes[1])
1388                 check_node(root, path, 1);
1389         return 0;
1390 }
1391 /*
1392  * push some data in the path leaf to the left, trying to free up at
1393  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1394  */
1395 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1396                           *root, struct btrfs_path *path, int data_size)
1397 {
1398         struct buffer_head *right_buf = path->nodes[0];
1399         struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1400         struct buffer_head *t;
1401         struct btrfs_leaf *left;
1402         int slot;
1403         int i;
1404         int free_space;
1405         int push_space = 0;
1406         int push_items = 0;
1407         struct btrfs_item *item;
1408         u32 old_left_nritems;
1409         int ret = 0;
1410         int wret;
1411
1412         slot = path->slots[1];
1413         if (slot == 0) {
1414                 return 1;
1415         }
1416         if (!path->nodes[1]) {
1417                 return 1;
1418         }
1419         t = read_tree_block(root,
1420             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1421         left = btrfs_buffer_leaf(t);
1422         free_space = btrfs_leaf_free_space(root, left);
1423         if (free_space < data_size + sizeof(struct btrfs_item)) {
1424                 btrfs_block_release(root, t);
1425                 return 1;
1426         }
1427
1428         /* cow and double check */
1429         ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1430         if (ret) {
1431                 /* we hit -ENOSPC, but it isn't fatal here */
1432                 return 1;
1433         }
1434         left = btrfs_buffer_leaf(t);
1435         free_space = btrfs_leaf_free_space(root, left);
1436         if (free_space < data_size + sizeof(struct btrfs_item)) {
1437                 btrfs_block_release(root, t);
1438                 return 1;
1439         }
1440
1441         if (btrfs_header_nritems(&right->header) == 0) {
1442                 btrfs_block_release(root, t);
1443                 return 1;
1444         }
1445
1446         for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1447                 item = right->items + i;
1448                 if (path->slots[0] == i)
1449                         push_space += data_size + sizeof(*item);
1450                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1451                     free_space)
1452                         break;
1453                 push_items++;
1454                 push_space += btrfs_item_size(item) + sizeof(*item);
1455         }
1456         if (push_items == 0) {
1457                 btrfs_block_release(root, t);
1458                 return 1;
1459         }
1460         if (push_items == btrfs_header_nritems(&right->header))
1461                 WARN_ON(1);
1462         /* push data from right to left */
1463         btrfs_memcpy(root, left, left->items +
1464                      btrfs_header_nritems(&left->header),
1465                      right->items, push_items * sizeof(struct btrfs_item));
1466         push_space = BTRFS_LEAF_DATA_SIZE(root) -
1467                      btrfs_item_offset(right->items + push_items -1);
1468         btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1469                      leaf_data_end(root, left) - push_space,
1470                      btrfs_leaf_data(right) +
1471                      btrfs_item_offset(right->items + push_items - 1),
1472                      push_space);
1473         old_left_nritems = btrfs_header_nritems(&left->header);
1474         BUG_ON(old_left_nritems < 0);
1475
1476         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1477                 u32 ioff = btrfs_item_offset(left->items + i);
1478                 btrfs_set_item_offset(left->items + i, ioff -
1479                                      (BTRFS_LEAF_DATA_SIZE(root) -
1480                                       btrfs_item_offset(left->items +
1481                                                         old_left_nritems - 1)));
1482         }
1483         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1484
1485         /* fixup right node */
1486         push_space = btrfs_item_offset(right->items + push_items - 1) -
1487                      leaf_data_end(root, right);
1488         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1489                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
1490                       btrfs_leaf_data(right) +
1491                       leaf_data_end(root, right), push_space);
1492         btrfs_memmove(root, right, right->items, right->items + push_items,
1493                 (btrfs_header_nritems(&right->header) - push_items) *
1494                 sizeof(struct btrfs_item));
1495         btrfs_set_header_nritems(&right->header,
1496                                  btrfs_header_nritems(&right->header) -
1497                                  push_items);
1498         push_space = BTRFS_LEAF_DATA_SIZE(root);
1499
1500         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1501                 btrfs_set_item_offset(right->items + i, push_space -
1502                                       btrfs_item_size(right->items + i));
1503                 push_space = btrfs_item_offset(right->items + i);
1504         }
1505
1506         btrfs_mark_buffer_dirty(t);
1507         btrfs_mark_buffer_dirty(right_buf);
1508
1509         wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1510         if (wret)
1511                 ret = wret;
1512
1513         /* then fixup the leaf pointer in the path */
1514         if (path->slots[0] < push_items) {
1515                 path->slots[0] += old_left_nritems;
1516                 btrfs_block_release(root, path->nodes[0]);
1517                 path->nodes[0] = t;
1518                 path->slots[1] -= 1;
1519         } else {
1520                 btrfs_block_release(root, t);
1521                 path->slots[0] -= push_items;
1522         }
1523         BUG_ON(path->slots[0] < 0);
1524         if (path->nodes[1])
1525                 check_node(root, path, 1);
1526         return ret;
1527 }
1528
1529 /*
1530  * split the path's leaf in two, making sure there is at least data_size
1531  * available for the resulting leaf level of the path.
1532  *
1533  * returns 0 if all went well and < 0 on failure.
1534  */
1535 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1536                       *root, struct btrfs_key *ins_key,
1537                       struct btrfs_path *path, int data_size)
1538 {
1539         struct buffer_head *l_buf;
1540         struct btrfs_leaf *l;
1541         u32 nritems;
1542         int mid;
1543         int slot;
1544         struct btrfs_leaf *right;
1545         struct buffer_head *right_buffer;
1546         int space_needed = data_size + sizeof(struct btrfs_item);
1547         int data_copy_size;
1548         int rt_data_off;
1549         int i;
1550         int ret = 0;
1551         int wret;
1552         int double_split = 0;
1553         struct btrfs_disk_key disk_key;
1554
1555         /* first try to make some room by pushing left and right */
1556         wret = push_leaf_left(trans, root, path, data_size);
1557         if (wret < 0)
1558                 return wret;
1559         if (wret) {
1560                 wret = push_leaf_right(trans, root, path, data_size);
1561                 if (wret < 0)
1562                         return wret;
1563         }
1564         l_buf = path->nodes[0];
1565         l = btrfs_buffer_leaf(l_buf);
1566
1567         /* did the pushes work? */
1568         if (btrfs_leaf_free_space(root, l) >=
1569             sizeof(struct btrfs_item) + data_size)
1570                 return 0;
1571
1572         if (!path->nodes[1]) {
1573                 ret = insert_new_root(trans, root, path, 1);
1574                 if (ret)
1575                         return ret;
1576         }
1577         slot = path->slots[0];
1578         nritems = btrfs_header_nritems(&l->header);
1579         mid = (nritems + 1)/ 2;
1580
1581         right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
1582         if (IS_ERR(right_buffer))
1583                 return PTR_ERR(right_buffer);
1584
1585         right = btrfs_buffer_leaf(right_buffer);
1586         memset(&right->header, 0, sizeof(right->header));
1587         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1588         btrfs_set_header_generation(&right->header, trans->transid);
1589         btrfs_set_header_owner(&right->header, root->root_key.objectid);
1590         btrfs_set_header_level(&right->header, 0);
1591         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1592                sizeof(right->header.fsid));
1593         if (mid <= slot) {
1594                 if (nritems == 1 ||
1595                     leaf_space_used(l, mid, nritems - mid) + space_needed >
1596                         BTRFS_LEAF_DATA_SIZE(root)) {
1597                         if (slot >= nritems) {
1598                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1599                                 btrfs_set_header_nritems(&right->header, 0);
1600                                 wret = insert_ptr(trans, root, path,
1601                                                   &disk_key,
1602                                                   bh_blocknr(right_buffer),
1603                                                   path->slots[1] + 1, 1);
1604                                 if (wret)
1605                                         ret = wret;
1606                                 btrfs_block_release(root, path->nodes[0]);
1607                                 path->nodes[0] = right_buffer;
1608                                 path->slots[0] = 0;
1609                                 path->slots[1] += 1;
1610                                 return ret;
1611                         }
1612                         mid = slot;
1613                         double_split = 1;
1614                 }
1615         } else {
1616                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1617                         BTRFS_LEAF_DATA_SIZE(root)) {
1618                         if (slot == 0) {
1619                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1620                                 btrfs_set_header_nritems(&right->header, 0);
1621                                 wret = insert_ptr(trans, root, path,
1622                                                   &disk_key,
1623                                                   bh_blocknr(right_buffer),
1624                                                   path->slots[1], 1);
1625                                 if (wret)
1626                                         ret = wret;
1627                                 btrfs_block_release(root, path->nodes[0]);
1628                                 path->nodes[0] = right_buffer;
1629                                 path->slots[0] = 0;
1630                                 if (path->slots[1] == 0) {
1631                                         wret = fixup_low_keys(trans, root,
1632                                                    path, &disk_key, 1);
1633                                         if (wret)
1634                                                 ret = wret;
1635                                 }
1636                                 return ret;
1637                         }
1638                         mid = slot;
1639                         double_split = 1;
1640                 }
1641         }
1642         btrfs_set_header_nritems(&right->header, nritems - mid);
1643         data_copy_size = btrfs_item_end(l->items + mid) -
1644                          leaf_data_end(root, l);
1645         btrfs_memcpy(root, right, right->items, l->items + mid,
1646                      (nritems - mid) * sizeof(struct btrfs_item));
1647         btrfs_memcpy(root, right,
1648                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1649                      data_copy_size, btrfs_leaf_data(l) +
1650                      leaf_data_end(root, l), data_copy_size);
1651         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1652                       btrfs_item_end(l->items + mid);
1653
1654         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1655                 u32 ioff = btrfs_item_offset(right->items + i);
1656                 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1657         }
1658
1659         btrfs_set_header_nritems(&l->header, mid);
1660         ret = 0;
1661         wret = insert_ptr(trans, root, path, &right->items[0].key,
1662                           bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1663         if (wret)
1664                 ret = wret;
1665         btrfs_mark_buffer_dirty(right_buffer);
1666         btrfs_mark_buffer_dirty(l_buf);
1667         BUG_ON(path->slots[0] != slot);
1668         if (mid <= slot) {
1669                 btrfs_block_release(root, path->nodes[0]);
1670                 path->nodes[0] = right_buffer;
1671                 path->slots[0] -= mid;
1672                 path->slots[1] += 1;
1673         } else
1674                 btrfs_block_release(root, right_buffer);
1675         BUG_ON(path->slots[0] < 0);
1676         check_node(root, path, 1);
1677
1678         if (!double_split)
1679                 return ret;
1680         right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
1681         if (IS_ERR(right_buffer))
1682                 return PTR_ERR(right_buffer);
1683
1684         right = btrfs_buffer_leaf(right_buffer);
1685         memset(&right->header, 0, sizeof(right->header));
1686         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1687         btrfs_set_header_generation(&right->header, trans->transid);
1688         btrfs_set_header_owner(&right->header, root->root_key.objectid);
1689         btrfs_set_header_level(&right->header, 0);
1690         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1691                sizeof(right->header.fsid));
1692         btrfs_cpu_key_to_disk(&disk_key, ins_key);
1693         btrfs_set_header_nritems(&right->header, 0);
1694         wret = insert_ptr(trans, root, path,
1695                           &disk_key,
1696                           bh_blocknr(right_buffer),
1697                           path->slots[1], 1);
1698         if (wret)
1699                 ret = wret;
1700         if (path->slots[1] == 0) {
1701                 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1702                 if (wret)
1703                         ret = wret;
1704         }
1705         btrfs_block_release(root, path->nodes[0]);
1706         path->nodes[0] = right_buffer;
1707         path->slots[0] = 0;
1708         check_node(root, path, 1);
1709         check_leaf(root, path, 0);
1710         return ret;
1711 }
1712
1713 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1714                         struct btrfs_root *root,
1715                         struct btrfs_path *path,
1716                         u32 new_size)
1717 {
1718         int ret = 0;
1719         int slot;
1720         int slot_orig;
1721         struct btrfs_leaf *leaf;
1722         struct buffer_head *leaf_buf;
1723         u32 nritems;
1724         unsigned int data_end;
1725         unsigned int old_data_start;
1726         unsigned int old_size;
1727         unsigned int size_diff;
1728         int i;
1729
1730         slot_orig = path->slots[0];
1731         leaf_buf = path->nodes[0];
1732         leaf = btrfs_buffer_leaf(leaf_buf);
1733
1734         nritems = btrfs_header_nritems(&leaf->header);
1735         data_end = leaf_data_end(root, leaf);
1736
1737         slot = path->slots[0];
1738         old_data_start = btrfs_item_offset(leaf->items + slot);
1739         old_size = btrfs_item_size(leaf->items + slot);
1740         BUG_ON(old_size <= new_size);
1741         size_diff = old_size - new_size;
1742
1743         BUG_ON(slot < 0);
1744         BUG_ON(slot >= nritems);
1745
1746         /*
1747          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1748          */
1749         /* first correct the data pointers */
1750         for (i = slot; i < nritems; i++) {
1751                 u32 ioff = btrfs_item_offset(leaf->items + i);
1752                 btrfs_set_item_offset(leaf->items + i,
1753                                       ioff + size_diff);
1754         }
1755         /* shift the data */
1756         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1757                       data_end + size_diff, btrfs_leaf_data(leaf) +
1758                       data_end, old_data_start + new_size - data_end);
1759         btrfs_set_item_size(leaf->items + slot, new_size);
1760         btrfs_mark_buffer_dirty(leaf_buf);
1761
1762         ret = 0;
1763         if (btrfs_leaf_free_space(root, leaf) < 0)
1764                 BUG();
1765         check_leaf(root, path, 0);
1766         return ret;
1767 }
1768
1769 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1770                       *root, struct btrfs_path *path, u32 data_size)
1771 {
1772         int ret = 0;
1773         int slot;
1774         int slot_orig;
1775         struct btrfs_leaf *leaf;
1776         struct buffer_head *leaf_buf;
1777         u32 nritems;
1778         unsigned int data_end;
1779         unsigned int old_data;
1780         unsigned int old_size;
1781         int i;
1782
1783         slot_orig = path->slots[0];
1784         leaf_buf = path->nodes[0];
1785         leaf = btrfs_buffer_leaf(leaf_buf);
1786
1787         nritems = btrfs_header_nritems(&leaf->header);
1788         data_end = leaf_data_end(root, leaf);
1789
1790         if (btrfs_leaf_free_space(root, leaf) < data_size)
1791                 BUG();
1792         slot = path->slots[0];
1793         old_data = btrfs_item_end(leaf->items + slot);
1794
1795         BUG_ON(slot < 0);
1796         BUG_ON(slot >= nritems);
1797
1798         /*
1799          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1800          */
1801         /* first correct the data pointers */
1802         for (i = slot; i < nritems; i++) {
1803                 u32 ioff = btrfs_item_offset(leaf->items + i);
1804                 btrfs_set_item_offset(leaf->items + i,
1805                                       ioff - data_size);
1806         }
1807         /* shift the data */
1808         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1809                       data_end - data_size, btrfs_leaf_data(leaf) +
1810                       data_end, old_data - data_end);
1811         data_end = old_data;
1812         old_size = btrfs_item_size(leaf->items + slot);
1813         btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1814         btrfs_mark_buffer_dirty(leaf_buf);
1815
1816         ret = 0;
1817         if (btrfs_leaf_free_space(root, leaf) < 0)
1818                 BUG();
1819         check_leaf(root, path, 0);
1820         return ret;
1821 }
1822
1823 /*
1824  * Given a key and some data, insert an item into the tree.
1825  * This does all the path init required, making room in the tree if needed.
1826  */
1827 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1828                             *root, struct btrfs_path *path, struct btrfs_key
1829                             *cpu_key, u32 data_size)
1830 {
1831         int ret = 0;
1832         int slot;
1833         int slot_orig;
1834         struct btrfs_leaf *leaf;
1835         struct buffer_head *leaf_buf;
1836         u32 nritems;
1837         unsigned int data_end;
1838         struct btrfs_disk_key disk_key;
1839
1840         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1841
1842         /* create a root if there isn't one */
1843         if (!root->node)
1844                 BUG();
1845         ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1846         if (ret == 0) {
1847                 return -EEXIST;
1848         }
1849         if (ret < 0)
1850                 goto out;
1851
1852         slot_orig = path->slots[0];
1853         leaf_buf = path->nodes[0];
1854         leaf = btrfs_buffer_leaf(leaf_buf);
1855
1856         nritems = btrfs_header_nritems(&leaf->header);
1857         data_end = leaf_data_end(root, leaf);
1858
1859         if (btrfs_leaf_free_space(root, leaf) <
1860             sizeof(struct btrfs_item) + data_size) {
1861                 BUG();
1862         }
1863         slot = path->slots[0];
1864         BUG_ON(slot < 0);
1865         if (slot != nritems) {
1866                 int i;
1867                 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1868
1869                 /*
1870                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1871                  */
1872                 /* first correct the data pointers */
1873                 for (i = slot; i < nritems; i++) {
1874                         u32 ioff = btrfs_item_offset(leaf->items + i);
1875                         btrfs_set_item_offset(leaf->items + i,
1876                                               ioff - data_size);
1877                 }
1878
1879                 /* shift the items */
1880                 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1881                               leaf->items + slot,
1882                               (nritems - slot) * sizeof(struct btrfs_item));
1883
1884                 /* shift the data */
1885                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1886                               data_end - data_size, btrfs_leaf_data(leaf) +
1887                               data_end, old_data - data_end);
1888                 data_end = old_data;
1889         }
1890         /* setup the item for the new data */
1891         btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1892                      sizeof(struct btrfs_disk_key));
1893         btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1894         btrfs_set_item_size(leaf->items + slot, data_size);
1895         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1896         btrfs_mark_buffer_dirty(leaf_buf);
1897
1898         ret = 0;
1899         if (slot == 0)
1900                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1901
1902         if (btrfs_leaf_free_space(root, leaf) < 0)
1903                 BUG();
1904         check_leaf(root, path, 0);
1905 out:
1906         return ret;
1907 }
1908
1909 /*
1910  * Given a key and some data, insert an item into the tree.
1911  * This does all the path init required, making room in the tree if needed.
1912  */
1913 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1914                       *root, struct btrfs_key *cpu_key, void *data, u32
1915                       data_size)
1916 {
1917         int ret = 0;
1918         struct btrfs_path *path;
1919         u8 *ptr;
1920
1921         path = btrfs_alloc_path();
1922         BUG_ON(!path);
1923         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1924         if (!ret) {
1925                 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1926                                      path->slots[0], u8);
1927                 btrfs_memcpy(root, path->nodes[0]->b_data,
1928                              ptr, data, data_size);
1929                 btrfs_mark_buffer_dirty(path->nodes[0]);
1930         }
1931         btrfs_free_path(path);
1932         return ret;
1933 }
1934
1935 /*
1936  * delete the pointer from a given node.
1937  *
1938  * If the delete empties a node, the node is removed from the tree,
1939  * continuing all the way the root if required.  The root is converted into
1940  * a leaf if all the nodes are emptied.
1941  */
1942 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1943                    struct btrfs_path *path, int level, int slot)
1944 {
1945         struct btrfs_node *node;
1946         struct buffer_head *parent = path->nodes[level];
1947         u32 nritems;
1948         int ret = 0;
1949         int wret;
1950
1951         node = btrfs_buffer_node(parent);
1952         nritems = btrfs_header_nritems(&node->header);
1953         if (slot != nritems -1) {
1954                 btrfs_memmove(root, node, node->ptrs + slot,
1955                               node->ptrs + slot + 1,
1956                               sizeof(struct btrfs_key_ptr) *
1957                               (nritems - slot - 1));
1958         }
1959         nritems--;
1960         btrfs_set_header_nritems(&node->header, nritems);
1961         if (nritems == 0 && parent == root->node) {
1962                 struct btrfs_header *header = btrfs_buffer_header(root->node);
1963                 BUG_ON(btrfs_header_level(header) != 1);
1964                 /* just turn the root into a leaf and break */
1965                 btrfs_set_header_level(header, 0);
1966         } else if (slot == 0) {
1967                 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1968                                       level + 1);
1969                 if (wret)
1970                         ret = wret;
1971         }
1972         btrfs_mark_buffer_dirty(parent);
1973         return ret;
1974 }
1975
1976 /*
1977  * delete the item at the leaf level in path.  If that empties
1978  * the leaf, remove it from the tree
1979  */
1980 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1981                    struct btrfs_path *path)
1982 {
1983         int slot;
1984         struct btrfs_leaf *leaf;
1985         struct buffer_head *leaf_buf;
1986         int doff;
1987         int dsize;
1988         int ret = 0;
1989         int wret;
1990         u32 nritems;
1991
1992         leaf_buf = path->nodes[0];
1993         leaf = btrfs_buffer_leaf(leaf_buf);
1994         slot = path->slots[0];
1995         doff = btrfs_item_offset(leaf->items + slot);
1996         dsize = btrfs_item_size(leaf->items + slot);
1997         nritems = btrfs_header_nritems(&leaf->header);
1998
1999         if (slot != nritems - 1) {
2000                 int i;
2001                 int data_end = leaf_data_end(root, leaf);
2002                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
2003                               data_end + dsize,
2004                               btrfs_leaf_data(leaf) + data_end,
2005                               doff - data_end);
2006                 for (i = slot + 1; i < nritems; i++) {
2007                         u32 ioff = btrfs_item_offset(leaf->items + i);
2008                         btrfs_set_item_offset(leaf->items + i, ioff + dsize);
2009                 }
2010                 btrfs_memmove(root, leaf, leaf->items + slot,
2011                               leaf->items + slot + 1,
2012                               sizeof(struct btrfs_item) *
2013                               (nritems - slot - 1));
2014         }
2015         btrfs_set_header_nritems(&leaf->header, nritems - 1);
2016         nritems--;
2017         /* delete the leaf if we've emptied it */
2018         if (nritems == 0) {
2019                 if (leaf_buf == root->node) {
2020                         btrfs_set_header_level(&leaf->header, 0);
2021                 } else {
2022                         clean_tree_block(trans, root, leaf_buf);
2023                         wait_on_buffer(leaf_buf);
2024                         wret = del_ptr(trans, root, path, 1, path->slots[1]);
2025                         if (wret)
2026                                 ret = wret;
2027                         wret = btrfs_free_extent(trans, root,
2028                                                  bh_blocknr(leaf_buf), 1, 1);
2029                         if (wret)
2030                                 ret = wret;
2031                 }
2032         } else {
2033                 int used = leaf_space_used(leaf, 0, nritems);
2034                 if (slot == 0) {
2035                         wret = fixup_low_keys(trans, root, path,
2036                                               &leaf->items[0].key, 1);
2037                         if (wret)
2038                                 ret = wret;
2039                 }
2040
2041                 /* delete the leaf if it is mostly empty */
2042                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
2043                         /* push_leaf_left fixes the path.
2044                          * make sure the path still points to our leaf
2045                          * for possible call to del_ptr below
2046                          */
2047                         slot = path->slots[1];
2048                         get_bh(leaf_buf);
2049                         wret = push_leaf_left(trans, root, path, 1);
2050                         if (wret < 0 && wret != -ENOSPC)
2051                                 ret = wret;
2052                         if (path->nodes[0] == leaf_buf &&
2053                             btrfs_header_nritems(&leaf->header)) {
2054                                 wret = push_leaf_right(trans, root, path, 1);
2055                                 if (wret < 0 && wret != -ENOSPC)
2056                                         ret = wret;
2057                         }
2058                         if (btrfs_header_nritems(&leaf->header) == 0) {
2059                                 u64 blocknr = bh_blocknr(leaf_buf);
2060                                 clean_tree_block(trans, root, leaf_buf);
2061                                 wait_on_buffer(leaf_buf);
2062                                 wret = del_ptr(trans, root, path, 1, slot);
2063                                 if (wret)
2064                                         ret = wret;
2065                                 btrfs_block_release(root, leaf_buf);
2066                                 wret = btrfs_free_extent(trans, root, blocknr,
2067                                                          1, 1);
2068                                 if (wret)
2069                                         ret = wret;
2070                         } else {
2071                                 btrfs_mark_buffer_dirty(leaf_buf);
2072                                 btrfs_block_release(root, leaf_buf);
2073                         }
2074                 } else {
2075                         btrfs_mark_buffer_dirty(leaf_buf);
2076                 }
2077         }
2078         return ret;
2079 }
2080
2081 /*
2082  * walk up the tree as far as required to find the next leaf.
2083  * returns 0 if it found something or 1 if there are no greater leaves.
2084  * returns < 0 on io errors.
2085  */
2086 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2087 {
2088         int slot;
2089         int level = 1;
2090         u64 blocknr;
2091         struct buffer_head *c;
2092         struct btrfs_node *c_node;
2093         struct buffer_head *next = NULL;
2094
2095         while(level < BTRFS_MAX_LEVEL) {
2096                 if (!path->nodes[level])
2097                         return 1;
2098                 slot = path->slots[level] + 1;
2099                 c = path->nodes[level];
2100                 c_node = btrfs_buffer_node(c);
2101                 if (slot >= btrfs_header_nritems(&c_node->header)) {
2102                         level++;
2103                         continue;
2104                 }
2105                 blocknr = btrfs_node_blockptr(c_node, slot);
2106                 if (next)
2107                         btrfs_block_release(root, next);
2108                 if (path->reada)
2109                         reada_for_search(root, path, level, slot);
2110                 next = read_tree_block(root, blocknr);
2111                 break;
2112         }
2113         path->slots[level] = slot;
2114         while(1) {
2115                 level--;
2116                 c = path->nodes[level];
2117                 btrfs_block_release(root, c);
2118                 path->nodes[level] = next;
2119                 path->slots[level] = 0;
2120                 if (!level)
2121                         break;
2122                 if (path->reada)
2123                         reada_for_search(root, path, level, slot);
2124                 next = read_tree_block(root,
2125                        btrfs_node_blockptr(btrfs_buffer_node(next), 0));
2126         }
2127         return 0;
2128 }