Merge branch 'for-usb-linus' of git.kernel.org/pub/scm/linux/kernel/git/sarah/xhci...
[pandora-kernel.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28                       *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_key *ins_key,
31                       struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33                           struct btrfs_root *root, struct extent_buffer *dst,
34                           struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36                               struct btrfs_root *root,
37                               struct extent_buffer *dst_buf,
38                               struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40                    struct btrfs_path *path, int level, int slot);
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44         struct btrfs_path *path;
45         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46         return path;
47 }
48
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55         int i;
56         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57                 if (!p->nodes[i] || !p->locks[i])
58                         continue;
59                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60                 if (p->locks[i] == BTRFS_READ_LOCK)
61                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
63                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64         }
65 }
66
67 /*
68  * reset all the locked nodes in the patch to spinning locks.
69  *
70  * held is used to keep lockdep happy, when lockdep is enabled
71  * we set held to a blocking lock before we go around and
72  * retake all the spinlocks in the path.  You can safely use NULL
73  * for held
74  */
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76                                         struct extent_buffer *held, int held_rw)
77 {
78         int i;
79
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81         /* lockdep really cares that we take all of these spinlocks
82          * in the right order.  If any of the locks in the path are not
83          * currently blocking, it is going to complain.  So, make really
84          * really sure by forcing the path to blocking before we clear
85          * the path blocking.
86          */
87         if (held) {
88                 btrfs_set_lock_blocking_rw(held, held_rw);
89                 if (held_rw == BTRFS_WRITE_LOCK)
90                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91                 else if (held_rw == BTRFS_READ_LOCK)
92                         held_rw = BTRFS_READ_LOCK_BLOCKING;
93         }
94         btrfs_set_path_blocking(p);
95 #endif
96
97         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98                 if (p->nodes[i] && p->locks[i]) {
99                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101                                 p->locks[i] = BTRFS_WRITE_LOCK;
102                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103                                 p->locks[i] = BTRFS_READ_LOCK;
104                 }
105         }
106
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108         if (held)
109                 btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
115 {
116         if (!p)
117                 return;
118         btrfs_release_path(p);
119         kmem_cache_free(btrfs_path_cachep, p);
120 }
121
122 /*
123  * path release drops references on the extent buffers in the path
124  * and it drops any locks held by this path
125  *
126  * It is safe to call this on paths that no locks or extent buffers held.
127  */
128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130         int i;
131
132         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133                 p->slots[i] = 0;
134                 if (!p->nodes[i])
135                         continue;
136                 if (p->locks[i]) {
137                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138                         p->locks[i] = 0;
139                 }
140                 free_extent_buffer(p->nodes[i]);
141                 p->nodes[i] = NULL;
142         }
143 }
144
145 /*
146  * safely gets a reference on the root node of a tree.  A lock
147  * is not taken, so a concurrent writer may put a different node
148  * at the root of the tree.  See btrfs_lock_root_node for the
149  * looping required.
150  *
151  * The extent buffer returned by this has a reference taken, so
152  * it won't disappear.  It may stop being the root of the tree
153  * at any time because there are no locks held.
154  */
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157         struct extent_buffer *eb;
158
159         rcu_read_lock();
160         eb = rcu_dereference(root->node);
161         extent_buffer_get(eb);
162         rcu_read_unlock();
163         return eb;
164 }
165
166 /* loop around taking references on and locking the root node of the
167  * tree until you end up with a lock on the root.  A locked buffer
168  * is returned, with a reference held.
169  */
170 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
171 {
172         struct extent_buffer *eb;
173
174         while (1) {
175                 eb = btrfs_root_node(root);
176                 btrfs_tree_lock(eb);
177                 if (eb == root->node)
178                         break;
179                 btrfs_tree_unlock(eb);
180                 free_extent_buffer(eb);
181         }
182         return eb;
183 }
184
185 /* loop around taking references on and locking the root node of the
186  * tree until you end up with a lock on the root.  A locked buffer
187  * is returned, with a reference held.
188  */
189 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
190 {
191         struct extent_buffer *eb;
192
193         while (1) {
194                 eb = btrfs_root_node(root);
195                 btrfs_tree_read_lock(eb);
196                 if (eb == root->node)
197                         break;
198                 btrfs_tree_read_unlock(eb);
199                 free_extent_buffer(eb);
200         }
201         return eb;
202 }
203
204 /* cowonly root (everything not a reference counted cow subvolume), just get
205  * put onto a simple dirty list.  transaction.c walks this to make sure they
206  * get properly updated on disk.
207  */
208 static void add_root_to_dirty_list(struct btrfs_root *root)
209 {
210         if (root->track_dirty && list_empty(&root->dirty_list)) {
211                 list_add(&root->dirty_list,
212                          &root->fs_info->dirty_cowonly_roots);
213         }
214 }
215
216 /*
217  * used by snapshot creation to make a copy of a root for a tree with
218  * a given objectid.  The buffer with the new root node is returned in
219  * cow_ret, and this func returns zero on success or a negative error code.
220  */
221 int btrfs_copy_root(struct btrfs_trans_handle *trans,
222                       struct btrfs_root *root,
223                       struct extent_buffer *buf,
224                       struct extent_buffer **cow_ret, u64 new_root_objectid)
225 {
226         struct extent_buffer *cow;
227         int ret = 0;
228         int level;
229         struct btrfs_disk_key disk_key;
230
231         WARN_ON(root->ref_cows && trans->transid !=
232                 root->fs_info->running_transaction->transid);
233         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
234
235         level = btrfs_header_level(buf);
236         if (level == 0)
237                 btrfs_item_key(buf, &disk_key, 0);
238         else
239                 btrfs_node_key(buf, &disk_key, 0);
240
241         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
242                                      new_root_objectid, &disk_key, level,
243                                      buf->start, 0);
244         if (IS_ERR(cow))
245                 return PTR_ERR(cow);
246
247         copy_extent_buffer(cow, buf, 0, 0, cow->len);
248         btrfs_set_header_bytenr(cow, cow->start);
249         btrfs_set_header_generation(cow, trans->transid);
250         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
251         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
252                                      BTRFS_HEADER_FLAG_RELOC);
253         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
254                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
255         else
256                 btrfs_set_header_owner(cow, new_root_objectid);
257
258         write_extent_buffer(cow, root->fs_info->fsid,
259                             (unsigned long)btrfs_header_fsid(cow),
260                             BTRFS_FSID_SIZE);
261
262         WARN_ON(btrfs_header_generation(buf) > trans->transid);
263         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
264                 ret = btrfs_inc_ref(trans, root, cow, 1);
265         else
266                 ret = btrfs_inc_ref(trans, root, cow, 0);
267
268         if (ret)
269                 return ret;
270
271         btrfs_mark_buffer_dirty(cow);
272         *cow_ret = cow;
273         return 0;
274 }
275
276 /*
277  * check if the tree block can be shared by multiple trees
278  */
279 int btrfs_block_can_be_shared(struct btrfs_root *root,
280                               struct extent_buffer *buf)
281 {
282         /*
283          * Tree blocks not in refernece counted trees and tree roots
284          * are never shared. If a block was allocated after the last
285          * snapshot and the block was not allocated by tree relocation,
286          * we know the block is not shared.
287          */
288         if (root->ref_cows &&
289             buf != root->node && buf != root->commit_root &&
290             (btrfs_header_generation(buf) <=
291              btrfs_root_last_snapshot(&root->root_item) ||
292              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
293                 return 1;
294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
295         if (root->ref_cows &&
296             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
297                 return 1;
298 #endif
299         return 0;
300 }
301
302 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
303                                        struct btrfs_root *root,
304                                        struct extent_buffer *buf,
305                                        struct extent_buffer *cow,
306                                        int *last_ref)
307 {
308         u64 refs;
309         u64 owner;
310         u64 flags;
311         u64 new_flags = 0;
312         int ret;
313
314         /*
315          * Backrefs update rules:
316          *
317          * Always use full backrefs for extent pointers in tree block
318          * allocated by tree relocation.
319          *
320          * If a shared tree block is no longer referenced by its owner
321          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
322          * use full backrefs for extent pointers in tree block.
323          *
324          * If a tree block is been relocating
325          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
326          * use full backrefs for extent pointers in tree block.
327          * The reason for this is some operations (such as drop tree)
328          * are only allowed for blocks use full backrefs.
329          */
330
331         if (btrfs_block_can_be_shared(root, buf)) {
332                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
333                                                buf->len, &refs, &flags);
334                 BUG_ON(ret);
335                 BUG_ON(refs == 0);
336         } else {
337                 refs = 1;
338                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
339                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
340                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
341                 else
342                         flags = 0;
343         }
344
345         owner = btrfs_header_owner(buf);
346         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
347                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
348
349         if (refs > 1) {
350                 if ((owner == root->root_key.objectid ||
351                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
352                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
353                         ret = btrfs_inc_ref(trans, root, buf, 1);
354                         BUG_ON(ret);
355
356                         if (root->root_key.objectid ==
357                             BTRFS_TREE_RELOC_OBJECTID) {
358                                 ret = btrfs_dec_ref(trans, root, buf, 0);
359                                 BUG_ON(ret);
360                                 ret = btrfs_inc_ref(trans, root, cow, 1);
361                                 BUG_ON(ret);
362                         }
363                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
364                 } else {
365
366                         if (root->root_key.objectid ==
367                             BTRFS_TREE_RELOC_OBJECTID)
368                                 ret = btrfs_inc_ref(trans, root, cow, 1);
369                         else
370                                 ret = btrfs_inc_ref(trans, root, cow, 0);
371                         BUG_ON(ret);
372                 }
373                 if (new_flags != 0) {
374                         ret = btrfs_set_disk_extent_flags(trans, root,
375                                                           buf->start,
376                                                           buf->len,
377                                                           new_flags, 0);
378                         BUG_ON(ret);
379                 }
380         } else {
381                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
382                         if (root->root_key.objectid ==
383                             BTRFS_TREE_RELOC_OBJECTID)
384                                 ret = btrfs_inc_ref(trans, root, cow, 1);
385                         else
386                                 ret = btrfs_inc_ref(trans, root, cow, 0);
387                         BUG_ON(ret);
388                         ret = btrfs_dec_ref(trans, root, buf, 1);
389                         BUG_ON(ret);
390                 }
391                 clean_tree_block(trans, root, buf);
392                 *last_ref = 1;
393         }
394         return 0;
395 }
396
397 /*
398  * does the dirty work in cow of a single block.  The parent block (if
399  * supplied) is updated to point to the new cow copy.  The new buffer is marked
400  * dirty and returned locked.  If you modify the block it needs to be marked
401  * dirty again.
402  *
403  * search_start -- an allocation hint for the new block
404  *
405  * empty_size -- a hint that you plan on doing more cow.  This is the size in
406  * bytes the allocator should try to find free next to the block it returns.
407  * This is just a hint and may be ignored by the allocator.
408  */
409 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
410                              struct btrfs_root *root,
411                              struct extent_buffer *buf,
412                              struct extent_buffer *parent, int parent_slot,
413                              struct extent_buffer **cow_ret,
414                              u64 search_start, u64 empty_size)
415 {
416         struct btrfs_disk_key disk_key;
417         struct extent_buffer *cow;
418         int level;
419         int last_ref = 0;
420         int unlock_orig = 0;
421         u64 parent_start;
422
423         if (*cow_ret == buf)
424                 unlock_orig = 1;
425
426         btrfs_assert_tree_locked(buf);
427
428         WARN_ON(root->ref_cows && trans->transid !=
429                 root->fs_info->running_transaction->transid);
430         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
431
432         level = btrfs_header_level(buf);
433
434         if (level == 0)
435                 btrfs_item_key(buf, &disk_key, 0);
436         else
437                 btrfs_node_key(buf, &disk_key, 0);
438
439         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
440                 if (parent)
441                         parent_start = parent->start;
442                 else
443                         parent_start = 0;
444         } else
445                 parent_start = 0;
446
447         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
448                                      root->root_key.objectid, &disk_key,
449                                      level, search_start, empty_size);
450         if (IS_ERR(cow))
451                 return PTR_ERR(cow);
452
453         /* cow is set to blocking by btrfs_init_new_buffer */
454
455         copy_extent_buffer(cow, buf, 0, 0, cow->len);
456         btrfs_set_header_bytenr(cow, cow->start);
457         btrfs_set_header_generation(cow, trans->transid);
458         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
459         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
460                                      BTRFS_HEADER_FLAG_RELOC);
461         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
462                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
463         else
464                 btrfs_set_header_owner(cow, root->root_key.objectid);
465
466         write_extent_buffer(cow, root->fs_info->fsid,
467                             (unsigned long)btrfs_header_fsid(cow),
468                             BTRFS_FSID_SIZE);
469
470         update_ref_for_cow(trans, root, buf, cow, &last_ref);
471
472         if (root->ref_cows)
473                 btrfs_reloc_cow_block(trans, root, buf, cow);
474
475         if (buf == root->node) {
476                 WARN_ON(parent && parent != buf);
477                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
478                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
479                         parent_start = buf->start;
480                 else
481                         parent_start = 0;
482
483                 extent_buffer_get(cow);
484                 rcu_assign_pointer(root->node, cow);
485
486                 btrfs_free_tree_block(trans, root, buf, parent_start,
487                                       last_ref);
488                 free_extent_buffer(buf);
489                 add_root_to_dirty_list(root);
490         } else {
491                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
492                         parent_start = parent->start;
493                 else
494                         parent_start = 0;
495
496                 WARN_ON(trans->transid != btrfs_header_generation(parent));
497                 btrfs_set_node_blockptr(parent, parent_slot,
498                                         cow->start);
499                 btrfs_set_node_ptr_generation(parent, parent_slot,
500                                               trans->transid);
501                 btrfs_mark_buffer_dirty(parent);
502                 btrfs_free_tree_block(trans, root, buf, parent_start,
503                                       last_ref);
504         }
505         if (unlock_orig)
506                 btrfs_tree_unlock(buf);
507         free_extent_buffer(buf);
508         btrfs_mark_buffer_dirty(cow);
509         *cow_ret = cow;
510         return 0;
511 }
512
513 static inline int should_cow_block(struct btrfs_trans_handle *trans,
514                                    struct btrfs_root *root,
515                                    struct extent_buffer *buf)
516 {
517         if (btrfs_header_generation(buf) == trans->transid &&
518             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
519             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
520               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
521                 return 0;
522         return 1;
523 }
524
525 /*
526  * cows a single block, see __btrfs_cow_block for the real work.
527  * This version of it has extra checks so that a block isn't cow'd more than
528  * once per transaction, as long as it hasn't been written yet
529  */
530 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
531                     struct btrfs_root *root, struct extent_buffer *buf,
532                     struct extent_buffer *parent, int parent_slot,
533                     struct extent_buffer **cow_ret)
534 {
535         u64 search_start;
536         int ret;
537
538         if (trans->transaction != root->fs_info->running_transaction) {
539                 printk(KERN_CRIT "trans %llu running %llu\n",
540                        (unsigned long long)trans->transid,
541                        (unsigned long long)
542                        root->fs_info->running_transaction->transid);
543                 WARN_ON(1);
544         }
545         if (trans->transid != root->fs_info->generation) {
546                 printk(KERN_CRIT "trans %llu running %llu\n",
547                        (unsigned long long)trans->transid,
548                        (unsigned long long)root->fs_info->generation);
549                 WARN_ON(1);
550         }
551
552         if (!should_cow_block(trans, root, buf)) {
553                 *cow_ret = buf;
554                 return 0;
555         }
556
557         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
558
559         if (parent)
560                 btrfs_set_lock_blocking(parent);
561         btrfs_set_lock_blocking(buf);
562
563         ret = __btrfs_cow_block(trans, root, buf, parent,
564                                  parent_slot, cow_ret, search_start, 0);
565
566         trace_btrfs_cow_block(root, buf, *cow_ret);
567
568         return ret;
569 }
570
571 /*
572  * helper function for defrag to decide if two blocks pointed to by a
573  * node are actually close by
574  */
575 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
576 {
577         if (blocknr < other && other - (blocknr + blocksize) < 32768)
578                 return 1;
579         if (blocknr > other && blocknr - (other + blocksize) < 32768)
580                 return 1;
581         return 0;
582 }
583
584 /*
585  * compare two keys in a memcmp fashion
586  */
587 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
588 {
589         struct btrfs_key k1;
590
591         btrfs_disk_key_to_cpu(&k1, disk);
592
593         return btrfs_comp_cpu_keys(&k1, k2);
594 }
595
596 /*
597  * same as comp_keys only with two btrfs_key's
598  */
599 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
600 {
601         if (k1->objectid > k2->objectid)
602                 return 1;
603         if (k1->objectid < k2->objectid)
604                 return -1;
605         if (k1->type > k2->type)
606                 return 1;
607         if (k1->type < k2->type)
608                 return -1;
609         if (k1->offset > k2->offset)
610                 return 1;
611         if (k1->offset < k2->offset)
612                 return -1;
613         return 0;
614 }
615
616 /*
617  * this is used by the defrag code to go through all the
618  * leaves pointed to by a node and reallocate them so that
619  * disk order is close to key order
620  */
621 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
622                        struct btrfs_root *root, struct extent_buffer *parent,
623                        int start_slot, int cache_only, u64 *last_ret,
624                        struct btrfs_key *progress)
625 {
626         struct extent_buffer *cur;
627         u64 blocknr;
628         u64 gen;
629         u64 search_start = *last_ret;
630         u64 last_block = 0;
631         u64 other;
632         u32 parent_nritems;
633         int end_slot;
634         int i;
635         int err = 0;
636         int parent_level;
637         int uptodate;
638         u32 blocksize;
639         int progress_passed = 0;
640         struct btrfs_disk_key disk_key;
641
642         parent_level = btrfs_header_level(parent);
643         if (cache_only && parent_level != 1)
644                 return 0;
645
646         if (trans->transaction != root->fs_info->running_transaction)
647                 WARN_ON(1);
648         if (trans->transid != root->fs_info->generation)
649                 WARN_ON(1);
650
651         parent_nritems = btrfs_header_nritems(parent);
652         blocksize = btrfs_level_size(root, parent_level - 1);
653         end_slot = parent_nritems;
654
655         if (parent_nritems == 1)
656                 return 0;
657
658         btrfs_set_lock_blocking(parent);
659
660         for (i = start_slot; i < end_slot; i++) {
661                 int close = 1;
662
663                 btrfs_node_key(parent, &disk_key, i);
664                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
665                         continue;
666
667                 progress_passed = 1;
668                 blocknr = btrfs_node_blockptr(parent, i);
669                 gen = btrfs_node_ptr_generation(parent, i);
670                 if (last_block == 0)
671                         last_block = blocknr;
672
673                 if (i > 0) {
674                         other = btrfs_node_blockptr(parent, i - 1);
675                         close = close_blocks(blocknr, other, blocksize);
676                 }
677                 if (!close && i < end_slot - 2) {
678                         other = btrfs_node_blockptr(parent, i + 1);
679                         close = close_blocks(blocknr, other, blocksize);
680                 }
681                 if (close) {
682                         last_block = blocknr;
683                         continue;
684                 }
685
686                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
687                 if (cur)
688                         uptodate = btrfs_buffer_uptodate(cur, gen);
689                 else
690                         uptodate = 0;
691                 if (!cur || !uptodate) {
692                         if (cache_only) {
693                                 free_extent_buffer(cur);
694                                 continue;
695                         }
696                         if (!cur) {
697                                 cur = read_tree_block(root, blocknr,
698                                                          blocksize, gen);
699                                 if (!cur)
700                                         return -EIO;
701                         } else if (!uptodate) {
702                                 btrfs_read_buffer(cur, gen);
703                         }
704                 }
705                 if (search_start == 0)
706                         search_start = last_block;
707
708                 btrfs_tree_lock(cur);
709                 btrfs_set_lock_blocking(cur);
710                 err = __btrfs_cow_block(trans, root, cur, parent, i,
711                                         &cur, search_start,
712                                         min(16 * blocksize,
713                                             (end_slot - i) * blocksize));
714                 if (err) {
715                         btrfs_tree_unlock(cur);
716                         free_extent_buffer(cur);
717                         break;
718                 }
719                 search_start = cur->start;
720                 last_block = cur->start;
721                 *last_ret = search_start;
722                 btrfs_tree_unlock(cur);
723                 free_extent_buffer(cur);
724         }
725         return err;
726 }
727
728 /*
729  * The leaf data grows from end-to-front in the node.
730  * this returns the address of the start of the last item,
731  * which is the stop of the leaf data stack
732  */
733 static inline unsigned int leaf_data_end(struct btrfs_root *root,
734                                          struct extent_buffer *leaf)
735 {
736         u32 nr = btrfs_header_nritems(leaf);
737         if (nr == 0)
738                 return BTRFS_LEAF_DATA_SIZE(root);
739         return btrfs_item_offset_nr(leaf, nr - 1);
740 }
741
742
743 /*
744  * search for key in the extent_buffer.  The items start at offset p,
745  * and they are item_size apart.  There are 'max' items in p.
746  *
747  * the slot in the array is returned via slot, and it points to
748  * the place where you would insert key if it is not found in
749  * the array.
750  *
751  * slot may point to max if the key is bigger than all of the keys
752  */
753 static noinline int generic_bin_search(struct extent_buffer *eb,
754                                        unsigned long p,
755                                        int item_size, struct btrfs_key *key,
756                                        int max, int *slot)
757 {
758         int low = 0;
759         int high = max;
760         int mid;
761         int ret;
762         struct btrfs_disk_key *tmp = NULL;
763         struct btrfs_disk_key unaligned;
764         unsigned long offset;
765         char *kaddr = NULL;
766         unsigned long map_start = 0;
767         unsigned long map_len = 0;
768         int err;
769
770         while (low < high) {
771                 mid = (low + high) / 2;
772                 offset = p + mid * item_size;
773
774                 if (!kaddr || offset < map_start ||
775                     (offset + sizeof(struct btrfs_disk_key)) >
776                     map_start + map_len) {
777
778                         err = map_private_extent_buffer(eb, offset,
779                                                 sizeof(struct btrfs_disk_key),
780                                                 &kaddr, &map_start, &map_len);
781
782                         if (!err) {
783                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
784                                                         map_start);
785                         } else {
786                                 read_extent_buffer(eb, &unaligned,
787                                                    offset, sizeof(unaligned));
788                                 tmp = &unaligned;
789                         }
790
791                 } else {
792                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
793                                                         map_start);
794                 }
795                 ret = comp_keys(tmp, key);
796
797                 if (ret < 0)
798                         low = mid + 1;
799                 else if (ret > 0)
800                         high = mid;
801                 else {
802                         *slot = mid;
803                         return 0;
804                 }
805         }
806         *slot = low;
807         return 1;
808 }
809
810 /*
811  * simple bin_search frontend that does the right thing for
812  * leaves vs nodes
813  */
814 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
815                       int level, int *slot)
816 {
817         if (level == 0) {
818                 return generic_bin_search(eb,
819                                           offsetof(struct btrfs_leaf, items),
820                                           sizeof(struct btrfs_item),
821                                           key, btrfs_header_nritems(eb),
822                                           slot);
823         } else {
824                 return generic_bin_search(eb,
825                                           offsetof(struct btrfs_node, ptrs),
826                                           sizeof(struct btrfs_key_ptr),
827                                           key, btrfs_header_nritems(eb),
828                                           slot);
829         }
830         return -1;
831 }
832
833 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
834                      int level, int *slot)
835 {
836         return bin_search(eb, key, level, slot);
837 }
838
839 static void root_add_used(struct btrfs_root *root, u32 size)
840 {
841         spin_lock(&root->accounting_lock);
842         btrfs_set_root_used(&root->root_item,
843                             btrfs_root_used(&root->root_item) + size);
844         spin_unlock(&root->accounting_lock);
845 }
846
847 static void root_sub_used(struct btrfs_root *root, u32 size)
848 {
849         spin_lock(&root->accounting_lock);
850         btrfs_set_root_used(&root->root_item,
851                             btrfs_root_used(&root->root_item) - size);
852         spin_unlock(&root->accounting_lock);
853 }
854
855 /* given a node and slot number, this reads the blocks it points to.  The
856  * extent buffer is returned with a reference taken (but unlocked).
857  * NULL is returned on error.
858  */
859 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
860                                    struct extent_buffer *parent, int slot)
861 {
862         int level = btrfs_header_level(parent);
863         if (slot < 0)
864                 return NULL;
865         if (slot >= btrfs_header_nritems(parent))
866                 return NULL;
867
868         BUG_ON(level == 0);
869
870         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
871                        btrfs_level_size(root, level - 1),
872                        btrfs_node_ptr_generation(parent, slot));
873 }
874
875 /*
876  * node level balancing, used to make sure nodes are in proper order for
877  * item deletion.  We balance from the top down, so we have to make sure
878  * that a deletion won't leave an node completely empty later on.
879  */
880 static noinline int balance_level(struct btrfs_trans_handle *trans,
881                          struct btrfs_root *root,
882                          struct btrfs_path *path, int level)
883 {
884         struct extent_buffer *right = NULL;
885         struct extent_buffer *mid;
886         struct extent_buffer *left = NULL;
887         struct extent_buffer *parent = NULL;
888         int ret = 0;
889         int wret;
890         int pslot;
891         int orig_slot = path->slots[level];
892         u64 orig_ptr;
893
894         if (level == 0)
895                 return 0;
896
897         mid = path->nodes[level];
898
899         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
900                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
901         WARN_ON(btrfs_header_generation(mid) != trans->transid);
902
903         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
904
905         if (level < BTRFS_MAX_LEVEL - 1) {
906                 parent = path->nodes[level + 1];
907                 pslot = path->slots[level + 1];
908         }
909
910         /*
911          * deal with the case where there is only one pointer in the root
912          * by promoting the node below to a root
913          */
914         if (!parent) {
915                 struct extent_buffer *child;
916
917                 if (btrfs_header_nritems(mid) != 1)
918                         return 0;
919
920                 /* promote the child to a root */
921                 child = read_node_slot(root, mid, 0);
922                 BUG_ON(!child);
923                 btrfs_tree_lock(child);
924                 btrfs_set_lock_blocking(child);
925                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
926                 if (ret) {
927                         btrfs_tree_unlock(child);
928                         free_extent_buffer(child);
929                         goto enospc;
930                 }
931
932                 rcu_assign_pointer(root->node, child);
933
934                 add_root_to_dirty_list(root);
935                 btrfs_tree_unlock(child);
936
937                 path->locks[level] = 0;
938                 path->nodes[level] = NULL;
939                 clean_tree_block(trans, root, mid);
940                 btrfs_tree_unlock(mid);
941                 /* once for the path */
942                 free_extent_buffer(mid);
943
944                 root_sub_used(root, mid->len);
945                 btrfs_free_tree_block(trans, root, mid, 0, 1);
946                 /* once for the root ptr */
947                 free_extent_buffer(mid);
948                 return 0;
949         }
950         if (btrfs_header_nritems(mid) >
951             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
952                 return 0;
953
954         btrfs_header_nritems(mid);
955
956         left = read_node_slot(root, parent, pslot - 1);
957         if (left) {
958                 btrfs_tree_lock(left);
959                 btrfs_set_lock_blocking(left);
960                 wret = btrfs_cow_block(trans, root, left,
961                                        parent, pslot - 1, &left);
962                 if (wret) {
963                         ret = wret;
964                         goto enospc;
965                 }
966         }
967         right = read_node_slot(root, parent, pslot + 1);
968         if (right) {
969                 btrfs_tree_lock(right);
970                 btrfs_set_lock_blocking(right);
971                 wret = btrfs_cow_block(trans, root, right,
972                                        parent, pslot + 1, &right);
973                 if (wret) {
974                         ret = wret;
975                         goto enospc;
976                 }
977         }
978
979         /* first, try to make some room in the middle buffer */
980         if (left) {
981                 orig_slot += btrfs_header_nritems(left);
982                 wret = push_node_left(trans, root, left, mid, 1);
983                 if (wret < 0)
984                         ret = wret;
985                 btrfs_header_nritems(mid);
986         }
987
988         /*
989          * then try to empty the right most buffer into the middle
990          */
991         if (right) {
992                 wret = push_node_left(trans, root, mid, right, 1);
993                 if (wret < 0 && wret != -ENOSPC)
994                         ret = wret;
995                 if (btrfs_header_nritems(right) == 0) {
996                         clean_tree_block(trans, root, right);
997                         btrfs_tree_unlock(right);
998                         wret = del_ptr(trans, root, path, level + 1, pslot +
999                                        1);
1000                         if (wret)
1001                                 ret = wret;
1002                         root_sub_used(root, right->len);
1003                         btrfs_free_tree_block(trans, root, right, 0, 1);
1004                         free_extent_buffer(right);
1005                         right = NULL;
1006                 } else {
1007                         struct btrfs_disk_key right_key;
1008                         btrfs_node_key(right, &right_key, 0);
1009                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1010                         btrfs_mark_buffer_dirty(parent);
1011                 }
1012         }
1013         if (btrfs_header_nritems(mid) == 1) {
1014                 /*
1015                  * we're not allowed to leave a node with one item in the
1016                  * tree during a delete.  A deletion from lower in the tree
1017                  * could try to delete the only pointer in this node.
1018                  * So, pull some keys from the left.
1019                  * There has to be a left pointer at this point because
1020                  * otherwise we would have pulled some pointers from the
1021                  * right
1022                  */
1023                 BUG_ON(!left);
1024                 wret = balance_node_right(trans, root, mid, left);
1025                 if (wret < 0) {
1026                         ret = wret;
1027                         goto enospc;
1028                 }
1029                 if (wret == 1) {
1030                         wret = push_node_left(trans, root, left, mid, 1);
1031                         if (wret < 0)
1032                                 ret = wret;
1033                 }
1034                 BUG_ON(wret == 1);
1035         }
1036         if (btrfs_header_nritems(mid) == 0) {
1037                 clean_tree_block(trans, root, mid);
1038                 btrfs_tree_unlock(mid);
1039                 wret = del_ptr(trans, root, path, level + 1, pslot);
1040                 if (wret)
1041                         ret = wret;
1042                 root_sub_used(root, mid->len);
1043                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1044                 free_extent_buffer(mid);
1045                 mid = NULL;
1046         } else {
1047                 /* update the parent key to reflect our changes */
1048                 struct btrfs_disk_key mid_key;
1049                 btrfs_node_key(mid, &mid_key, 0);
1050                 btrfs_set_node_key(parent, &mid_key, pslot);
1051                 btrfs_mark_buffer_dirty(parent);
1052         }
1053
1054         /* update the path */
1055         if (left) {
1056                 if (btrfs_header_nritems(left) > orig_slot) {
1057                         extent_buffer_get(left);
1058                         /* left was locked after cow */
1059                         path->nodes[level] = left;
1060                         path->slots[level + 1] -= 1;
1061                         path->slots[level] = orig_slot;
1062                         if (mid) {
1063                                 btrfs_tree_unlock(mid);
1064                                 free_extent_buffer(mid);
1065                         }
1066                 } else {
1067                         orig_slot -= btrfs_header_nritems(left);
1068                         path->slots[level] = orig_slot;
1069                 }
1070         }
1071         /* double check we haven't messed things up */
1072         if (orig_ptr !=
1073             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1074                 BUG();
1075 enospc:
1076         if (right) {
1077                 btrfs_tree_unlock(right);
1078                 free_extent_buffer(right);
1079         }
1080         if (left) {
1081                 if (path->nodes[level] != left)
1082                         btrfs_tree_unlock(left);
1083                 free_extent_buffer(left);
1084         }
1085         return ret;
1086 }
1087
1088 /* Node balancing for insertion.  Here we only split or push nodes around
1089  * when they are completely full.  This is also done top down, so we
1090  * have to be pessimistic.
1091  */
1092 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1093                                           struct btrfs_root *root,
1094                                           struct btrfs_path *path, int level)
1095 {
1096         struct extent_buffer *right = NULL;
1097         struct extent_buffer *mid;
1098         struct extent_buffer *left = NULL;
1099         struct extent_buffer *parent = NULL;
1100         int ret = 0;
1101         int wret;
1102         int pslot;
1103         int orig_slot = path->slots[level];
1104
1105         if (level == 0)
1106                 return 1;
1107
1108         mid = path->nodes[level];
1109         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1110
1111         if (level < BTRFS_MAX_LEVEL - 1) {
1112                 parent = path->nodes[level + 1];
1113                 pslot = path->slots[level + 1];
1114         }
1115
1116         if (!parent)
1117                 return 1;
1118
1119         left = read_node_slot(root, parent, pslot - 1);
1120
1121         /* first, try to make some room in the middle buffer */
1122         if (left) {
1123                 u32 left_nr;
1124
1125                 btrfs_tree_lock(left);
1126                 btrfs_set_lock_blocking(left);
1127
1128                 left_nr = btrfs_header_nritems(left);
1129                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1130                         wret = 1;
1131                 } else {
1132                         ret = btrfs_cow_block(trans, root, left, parent,
1133                                               pslot - 1, &left);
1134                         if (ret)
1135                                 wret = 1;
1136                         else {
1137                                 wret = push_node_left(trans, root,
1138                                                       left, mid, 0);
1139                         }
1140                 }
1141                 if (wret < 0)
1142                         ret = wret;
1143                 if (wret == 0) {
1144                         struct btrfs_disk_key disk_key;
1145                         orig_slot += left_nr;
1146                         btrfs_node_key(mid, &disk_key, 0);
1147                         btrfs_set_node_key(parent, &disk_key, pslot);
1148                         btrfs_mark_buffer_dirty(parent);
1149                         if (btrfs_header_nritems(left) > orig_slot) {
1150                                 path->nodes[level] = left;
1151                                 path->slots[level + 1] -= 1;
1152                                 path->slots[level] = orig_slot;
1153                                 btrfs_tree_unlock(mid);
1154                                 free_extent_buffer(mid);
1155                         } else {
1156                                 orig_slot -=
1157                                         btrfs_header_nritems(left);
1158                                 path->slots[level] = orig_slot;
1159                                 btrfs_tree_unlock(left);
1160                                 free_extent_buffer(left);
1161                         }
1162                         return 0;
1163                 }
1164                 btrfs_tree_unlock(left);
1165                 free_extent_buffer(left);
1166         }
1167         right = read_node_slot(root, parent, pslot + 1);
1168
1169         /*
1170          * then try to empty the right most buffer into the middle
1171          */
1172         if (right) {
1173                 u32 right_nr;
1174
1175                 btrfs_tree_lock(right);
1176                 btrfs_set_lock_blocking(right);
1177
1178                 right_nr = btrfs_header_nritems(right);
1179                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1180                         wret = 1;
1181                 } else {
1182                         ret = btrfs_cow_block(trans, root, right,
1183                                               parent, pslot + 1,
1184                                               &right);
1185                         if (ret)
1186                                 wret = 1;
1187                         else {
1188                                 wret = balance_node_right(trans, root,
1189                                                           right, mid);
1190                         }
1191                 }
1192                 if (wret < 0)
1193                         ret = wret;
1194                 if (wret == 0) {
1195                         struct btrfs_disk_key disk_key;
1196
1197                         btrfs_node_key(right, &disk_key, 0);
1198                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1199                         btrfs_mark_buffer_dirty(parent);
1200
1201                         if (btrfs_header_nritems(mid) <= orig_slot) {
1202                                 path->nodes[level] = right;
1203                                 path->slots[level + 1] += 1;
1204                                 path->slots[level] = orig_slot -
1205                                         btrfs_header_nritems(mid);
1206                                 btrfs_tree_unlock(mid);
1207                                 free_extent_buffer(mid);
1208                         } else {
1209                                 btrfs_tree_unlock(right);
1210                                 free_extent_buffer(right);
1211                         }
1212                         return 0;
1213                 }
1214                 btrfs_tree_unlock(right);
1215                 free_extent_buffer(right);
1216         }
1217         return 1;
1218 }
1219
1220 /*
1221  * readahead one full node of leaves, finding things that are close
1222  * to the block in 'slot', and triggering ra on them.
1223  */
1224 static void reada_for_search(struct btrfs_root *root,
1225                              struct btrfs_path *path,
1226                              int level, int slot, u64 objectid)
1227 {
1228         struct extent_buffer *node;
1229         struct btrfs_disk_key disk_key;
1230         u32 nritems;
1231         u64 search;
1232         u64 target;
1233         u64 nread = 0;
1234         u64 gen;
1235         int direction = path->reada;
1236         struct extent_buffer *eb;
1237         u32 nr;
1238         u32 blocksize;
1239         u32 nscan = 0;
1240
1241         if (level != 1)
1242                 return;
1243
1244         if (!path->nodes[level])
1245                 return;
1246
1247         node = path->nodes[level];
1248
1249         search = btrfs_node_blockptr(node, slot);
1250         blocksize = btrfs_level_size(root, level - 1);
1251         eb = btrfs_find_tree_block(root, search, blocksize);
1252         if (eb) {
1253                 free_extent_buffer(eb);
1254                 return;
1255         }
1256
1257         target = search;
1258
1259         nritems = btrfs_header_nritems(node);
1260         nr = slot;
1261
1262         while (1) {
1263                 if (direction < 0) {
1264                         if (nr == 0)
1265                                 break;
1266                         nr--;
1267                 } else if (direction > 0) {
1268                         nr++;
1269                         if (nr >= nritems)
1270                                 break;
1271                 }
1272                 if (path->reada < 0 && objectid) {
1273                         btrfs_node_key(node, &disk_key, nr);
1274                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1275                                 break;
1276                 }
1277                 search = btrfs_node_blockptr(node, nr);
1278                 if ((search <= target && target - search <= 65536) ||
1279                     (search > target && search - target <= 65536)) {
1280                         gen = btrfs_node_ptr_generation(node, nr);
1281                         readahead_tree_block(root, search, blocksize, gen);
1282                         nread += blocksize;
1283                 }
1284                 nscan++;
1285                 if ((nread > 65536 || nscan > 32))
1286                         break;
1287         }
1288 }
1289
1290 /*
1291  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1292  * cache
1293  */
1294 static noinline int reada_for_balance(struct btrfs_root *root,
1295                                       struct btrfs_path *path, int level)
1296 {
1297         int slot;
1298         int nritems;
1299         struct extent_buffer *parent;
1300         struct extent_buffer *eb;
1301         u64 gen;
1302         u64 block1 = 0;
1303         u64 block2 = 0;
1304         int ret = 0;
1305         int blocksize;
1306
1307         parent = path->nodes[level + 1];
1308         if (!parent)
1309                 return 0;
1310
1311         nritems = btrfs_header_nritems(parent);
1312         slot = path->slots[level + 1];
1313         blocksize = btrfs_level_size(root, level);
1314
1315         if (slot > 0) {
1316                 block1 = btrfs_node_blockptr(parent, slot - 1);
1317                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1318                 eb = btrfs_find_tree_block(root, block1, blocksize);
1319                 if (eb && btrfs_buffer_uptodate(eb, gen))
1320                         block1 = 0;
1321                 free_extent_buffer(eb);
1322         }
1323         if (slot + 1 < nritems) {
1324                 block2 = btrfs_node_blockptr(parent, slot + 1);
1325                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1326                 eb = btrfs_find_tree_block(root, block2, blocksize);
1327                 if (eb && btrfs_buffer_uptodate(eb, gen))
1328                         block2 = 0;
1329                 free_extent_buffer(eb);
1330         }
1331         if (block1 || block2) {
1332                 ret = -EAGAIN;
1333
1334                 /* release the whole path */
1335                 btrfs_release_path(path);
1336
1337                 /* read the blocks */
1338                 if (block1)
1339                         readahead_tree_block(root, block1, blocksize, 0);
1340                 if (block2)
1341                         readahead_tree_block(root, block2, blocksize, 0);
1342
1343                 if (block1) {
1344                         eb = read_tree_block(root, block1, blocksize, 0);
1345                         free_extent_buffer(eb);
1346                 }
1347                 if (block2) {
1348                         eb = read_tree_block(root, block2, blocksize, 0);
1349                         free_extent_buffer(eb);
1350                 }
1351         }
1352         return ret;
1353 }
1354
1355
1356 /*
1357  * when we walk down the tree, it is usually safe to unlock the higher layers
1358  * in the tree.  The exceptions are when our path goes through slot 0, because
1359  * operations on the tree might require changing key pointers higher up in the
1360  * tree.
1361  *
1362  * callers might also have set path->keep_locks, which tells this code to keep
1363  * the lock if the path points to the last slot in the block.  This is part of
1364  * walking through the tree, and selecting the next slot in the higher block.
1365  *
1366  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1367  * if lowest_unlock is 1, level 0 won't be unlocked
1368  */
1369 static noinline void unlock_up(struct btrfs_path *path, int level,
1370                                int lowest_unlock)
1371 {
1372         int i;
1373         int skip_level = level;
1374         int no_skips = 0;
1375         struct extent_buffer *t;
1376
1377         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1378                 if (!path->nodes[i])
1379                         break;
1380                 if (!path->locks[i])
1381                         break;
1382                 if (!no_skips && path->slots[i] == 0) {
1383                         skip_level = i + 1;
1384                         continue;
1385                 }
1386                 if (!no_skips && path->keep_locks) {
1387                         u32 nritems;
1388                         t = path->nodes[i];
1389                         nritems = btrfs_header_nritems(t);
1390                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1391                                 skip_level = i + 1;
1392                                 continue;
1393                         }
1394                 }
1395                 if (skip_level < i && i >= lowest_unlock)
1396                         no_skips = 1;
1397
1398                 t = path->nodes[i];
1399                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1400                         btrfs_tree_unlock_rw(t, path->locks[i]);
1401                         path->locks[i] = 0;
1402                 }
1403         }
1404 }
1405
1406 /*
1407  * This releases any locks held in the path starting at level and
1408  * going all the way up to the root.
1409  *
1410  * btrfs_search_slot will keep the lock held on higher nodes in a few
1411  * corner cases, such as COW of the block at slot zero in the node.  This
1412  * ignores those rules, and it should only be called when there are no
1413  * more updates to be done higher up in the tree.
1414  */
1415 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1416 {
1417         int i;
1418
1419         if (path->keep_locks)
1420                 return;
1421
1422         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1423                 if (!path->nodes[i])
1424                         continue;
1425                 if (!path->locks[i])
1426                         continue;
1427                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1428                 path->locks[i] = 0;
1429         }
1430 }
1431
1432 /*
1433  * helper function for btrfs_search_slot.  The goal is to find a block
1434  * in cache without setting the path to blocking.  If we find the block
1435  * we return zero and the path is unchanged.
1436  *
1437  * If we can't find the block, we set the path blocking and do some
1438  * reada.  -EAGAIN is returned and the search must be repeated.
1439  */
1440 static int
1441 read_block_for_search(struct btrfs_trans_handle *trans,
1442                        struct btrfs_root *root, struct btrfs_path *p,
1443                        struct extent_buffer **eb_ret, int level, int slot,
1444                        struct btrfs_key *key)
1445 {
1446         u64 blocknr;
1447         u64 gen;
1448         u32 blocksize;
1449         struct extent_buffer *b = *eb_ret;
1450         struct extent_buffer *tmp;
1451         int ret;
1452
1453         blocknr = btrfs_node_blockptr(b, slot);
1454         gen = btrfs_node_ptr_generation(b, slot);
1455         blocksize = btrfs_level_size(root, level - 1);
1456
1457         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1458         if (tmp) {
1459                 if (btrfs_buffer_uptodate(tmp, 0)) {
1460                         if (btrfs_buffer_uptodate(tmp, gen)) {
1461                                 /*
1462                                  * we found an up to date block without
1463                                  * sleeping, return
1464                                  * right away
1465                                  */
1466                                 *eb_ret = tmp;
1467                                 return 0;
1468                         }
1469                         /* the pages were up to date, but we failed
1470                          * the generation number check.  Do a full
1471                          * read for the generation number that is correct.
1472                          * We must do this without dropping locks so
1473                          * we can trust our generation number
1474                          */
1475                         free_extent_buffer(tmp);
1476                         btrfs_set_path_blocking(p);
1477
1478                         tmp = read_tree_block(root, blocknr, blocksize, gen);
1479                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1480                                 *eb_ret = tmp;
1481                                 return 0;
1482                         }
1483                         free_extent_buffer(tmp);
1484                         btrfs_release_path(p);
1485                         return -EIO;
1486                 }
1487         }
1488
1489         /*
1490          * reduce lock contention at high levels
1491          * of the btree by dropping locks before
1492          * we read.  Don't release the lock on the current
1493          * level because we need to walk this node to figure
1494          * out which blocks to read.
1495          */
1496         btrfs_unlock_up_safe(p, level + 1);
1497         btrfs_set_path_blocking(p);
1498
1499         free_extent_buffer(tmp);
1500         if (p->reada)
1501                 reada_for_search(root, p, level, slot, key->objectid);
1502
1503         btrfs_release_path(p);
1504
1505         ret = -EAGAIN;
1506         tmp = read_tree_block(root, blocknr, blocksize, 0);
1507         if (tmp) {
1508                 /*
1509                  * If the read above didn't mark this buffer up to date,
1510                  * it will never end up being up to date.  Set ret to EIO now
1511                  * and give up so that our caller doesn't loop forever
1512                  * on our EAGAINs.
1513                  */
1514                 if (!btrfs_buffer_uptodate(tmp, 0))
1515                         ret = -EIO;
1516                 free_extent_buffer(tmp);
1517         }
1518         return ret;
1519 }
1520
1521 /*
1522  * helper function for btrfs_search_slot.  This does all of the checks
1523  * for node-level blocks and does any balancing required based on
1524  * the ins_len.
1525  *
1526  * If no extra work was required, zero is returned.  If we had to
1527  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1528  * start over
1529  */
1530 static int
1531 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1532                        struct btrfs_root *root, struct btrfs_path *p,
1533                        struct extent_buffer *b, int level, int ins_len,
1534                        int *write_lock_level)
1535 {
1536         int ret;
1537         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1538             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1539                 int sret;
1540
1541                 if (*write_lock_level < level + 1) {
1542                         *write_lock_level = level + 1;
1543                         btrfs_release_path(p);
1544                         goto again;
1545                 }
1546
1547                 sret = reada_for_balance(root, p, level);
1548                 if (sret)
1549                         goto again;
1550
1551                 btrfs_set_path_blocking(p);
1552                 sret = split_node(trans, root, p, level);
1553                 btrfs_clear_path_blocking(p, NULL, 0);
1554
1555                 BUG_ON(sret > 0);
1556                 if (sret) {
1557                         ret = sret;
1558                         goto done;
1559                 }
1560                 b = p->nodes[level];
1561         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1562                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1563                 int sret;
1564
1565                 if (*write_lock_level < level + 1) {
1566                         *write_lock_level = level + 1;
1567                         btrfs_release_path(p);
1568                         goto again;
1569                 }
1570
1571                 sret = reada_for_balance(root, p, level);
1572                 if (sret)
1573                         goto again;
1574
1575                 btrfs_set_path_blocking(p);
1576                 sret = balance_level(trans, root, p, level);
1577                 btrfs_clear_path_blocking(p, NULL, 0);
1578
1579                 if (sret) {
1580                         ret = sret;
1581                         goto done;
1582                 }
1583                 b = p->nodes[level];
1584                 if (!b) {
1585                         btrfs_release_path(p);
1586                         goto again;
1587                 }
1588                 BUG_ON(btrfs_header_nritems(b) == 1);
1589         }
1590         return 0;
1591
1592 again:
1593         ret = -EAGAIN;
1594 done:
1595         return ret;
1596 }
1597
1598 /*
1599  * look for key in the tree.  path is filled in with nodes along the way
1600  * if key is found, we return zero and you can find the item in the leaf
1601  * level of the path (level 0)
1602  *
1603  * If the key isn't found, the path points to the slot where it should
1604  * be inserted, and 1 is returned.  If there are other errors during the
1605  * search a negative error number is returned.
1606  *
1607  * if ins_len > 0, nodes and leaves will be split as we walk down the
1608  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1609  * possible)
1610  */
1611 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1612                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1613                       ins_len, int cow)
1614 {
1615         struct extent_buffer *b;
1616         int slot;
1617         int ret;
1618         int err;
1619         int level;
1620         int lowest_unlock = 1;
1621         int root_lock;
1622         /* everything at write_lock_level or lower must be write locked */
1623         int write_lock_level = 0;
1624         u8 lowest_level = 0;
1625
1626         lowest_level = p->lowest_level;
1627         WARN_ON(lowest_level && ins_len > 0);
1628         WARN_ON(p->nodes[0] != NULL);
1629
1630         if (ins_len < 0) {
1631                 lowest_unlock = 2;
1632
1633                 /* when we are removing items, we might have to go up to level
1634                  * two as we update tree pointers  Make sure we keep write
1635                  * for those levels as well
1636                  */
1637                 write_lock_level = 2;
1638         } else if (ins_len > 0) {
1639                 /*
1640                  * for inserting items, make sure we have a write lock on
1641                  * level 1 so we can update keys
1642                  */
1643                 write_lock_level = 1;
1644         }
1645
1646         if (!cow)
1647                 write_lock_level = -1;
1648
1649         if (cow && (p->keep_locks || p->lowest_level))
1650                 write_lock_level = BTRFS_MAX_LEVEL;
1651
1652 again:
1653         /*
1654          * we try very hard to do read locks on the root
1655          */
1656         root_lock = BTRFS_READ_LOCK;
1657         level = 0;
1658         if (p->search_commit_root) {
1659                 /*
1660                  * the commit roots are read only
1661                  * so we always do read locks
1662                  */
1663                 b = root->commit_root;
1664                 extent_buffer_get(b);
1665                 level = btrfs_header_level(b);
1666                 if (!p->skip_locking)
1667                         btrfs_tree_read_lock(b);
1668         } else {
1669                 if (p->skip_locking) {
1670                         b = btrfs_root_node(root);
1671                         level = btrfs_header_level(b);
1672                 } else {
1673                         /* we don't know the level of the root node
1674                          * until we actually have it read locked
1675                          */
1676                         b = btrfs_read_lock_root_node(root);
1677                         level = btrfs_header_level(b);
1678                         if (level <= write_lock_level) {
1679                                 /* whoops, must trade for write lock */
1680                                 btrfs_tree_read_unlock(b);
1681                                 free_extent_buffer(b);
1682                                 b = btrfs_lock_root_node(root);
1683                                 root_lock = BTRFS_WRITE_LOCK;
1684
1685                                 /* the level might have changed, check again */
1686                                 level = btrfs_header_level(b);
1687                         }
1688                 }
1689         }
1690         p->nodes[level] = b;
1691         if (!p->skip_locking)
1692                 p->locks[level] = root_lock;
1693
1694         while (b) {
1695                 level = btrfs_header_level(b);
1696
1697                 /*
1698                  * setup the path here so we can release it under lock
1699                  * contention with the cow code
1700                  */
1701                 if (cow) {
1702                         /*
1703                          * if we don't really need to cow this block
1704                          * then we don't want to set the path blocking,
1705                          * so we test it here
1706                          */
1707                         if (!should_cow_block(trans, root, b))
1708                                 goto cow_done;
1709
1710                         btrfs_set_path_blocking(p);
1711
1712                         /*
1713                          * must have write locks on this node and the
1714                          * parent
1715                          */
1716                         if (level + 1 > write_lock_level) {
1717                                 write_lock_level = level + 1;
1718                                 btrfs_release_path(p);
1719                                 goto again;
1720                         }
1721
1722                         err = btrfs_cow_block(trans, root, b,
1723                                               p->nodes[level + 1],
1724                                               p->slots[level + 1], &b);
1725                         if (err) {
1726                                 ret = err;
1727                                 goto done;
1728                         }
1729                 }
1730 cow_done:
1731                 BUG_ON(!cow && ins_len);
1732
1733                 p->nodes[level] = b;
1734                 btrfs_clear_path_blocking(p, NULL, 0);
1735
1736                 /*
1737                  * we have a lock on b and as long as we aren't changing
1738                  * the tree, there is no way to for the items in b to change.
1739                  * It is safe to drop the lock on our parent before we
1740                  * go through the expensive btree search on b.
1741                  *
1742                  * If cow is true, then we might be changing slot zero,
1743                  * which may require changing the parent.  So, we can't
1744                  * drop the lock until after we know which slot we're
1745                  * operating on.
1746                  */
1747                 if (!cow)
1748                         btrfs_unlock_up_safe(p, level + 1);
1749
1750                 ret = bin_search(b, key, level, &slot);
1751
1752                 if (level != 0) {
1753                         int dec = 0;
1754                         if (ret && slot > 0) {
1755                                 dec = 1;
1756                                 slot -= 1;
1757                         }
1758                         p->slots[level] = slot;
1759                         err = setup_nodes_for_search(trans, root, p, b, level,
1760                                              ins_len, &write_lock_level);
1761                         if (err == -EAGAIN)
1762                                 goto again;
1763                         if (err) {
1764                                 ret = err;
1765                                 goto done;
1766                         }
1767                         b = p->nodes[level];
1768                         slot = p->slots[level];
1769
1770                         /*
1771                          * slot 0 is special, if we change the key
1772                          * we have to update the parent pointer
1773                          * which means we must have a write lock
1774                          * on the parent
1775                          */
1776                         if (slot == 0 && cow &&
1777                             write_lock_level < level + 1) {
1778                                 write_lock_level = level + 1;
1779                                 btrfs_release_path(p);
1780                                 goto again;
1781                         }
1782
1783                         unlock_up(p, level, lowest_unlock);
1784
1785                         if (level == lowest_level) {
1786                                 if (dec)
1787                                         p->slots[level]++;
1788                                 goto done;
1789                         }
1790
1791                         err = read_block_for_search(trans, root, p,
1792                                                     &b, level, slot, key);
1793                         if (err == -EAGAIN)
1794                                 goto again;
1795                         if (err) {
1796                                 ret = err;
1797                                 goto done;
1798                         }
1799
1800                         if (!p->skip_locking) {
1801                                 level = btrfs_header_level(b);
1802                                 if (level <= write_lock_level) {
1803                                         err = btrfs_try_tree_write_lock(b);
1804                                         if (!err) {
1805                                                 btrfs_set_path_blocking(p);
1806                                                 btrfs_tree_lock(b);
1807                                                 btrfs_clear_path_blocking(p, b,
1808                                                                   BTRFS_WRITE_LOCK);
1809                                         }
1810                                         p->locks[level] = BTRFS_WRITE_LOCK;
1811                                 } else {
1812                                         err = btrfs_try_tree_read_lock(b);
1813                                         if (!err) {
1814                                                 btrfs_set_path_blocking(p);
1815                                                 btrfs_tree_read_lock(b);
1816                                                 btrfs_clear_path_blocking(p, b,
1817                                                                   BTRFS_READ_LOCK);
1818                                         }
1819                                         p->locks[level] = BTRFS_READ_LOCK;
1820                                 }
1821                                 p->nodes[level] = b;
1822                         }
1823                 } else {
1824                         p->slots[level] = slot;
1825                         if (ins_len > 0 &&
1826                             btrfs_leaf_free_space(root, b) < ins_len) {
1827                                 if (write_lock_level < 1) {
1828                                         write_lock_level = 1;
1829                                         btrfs_release_path(p);
1830                                         goto again;
1831                                 }
1832
1833                                 btrfs_set_path_blocking(p);
1834                                 err = split_leaf(trans, root, key,
1835                                                  p, ins_len, ret == 0);
1836                                 btrfs_clear_path_blocking(p, NULL, 0);
1837
1838                                 BUG_ON(err > 0);
1839                                 if (err) {
1840                                         ret = err;
1841                                         goto done;
1842                                 }
1843                         }
1844                         if (!p->search_for_split)
1845                                 unlock_up(p, level, lowest_unlock);
1846                         goto done;
1847                 }
1848         }
1849         ret = 1;
1850 done:
1851         /*
1852          * we don't really know what they plan on doing with the path
1853          * from here on, so for now just mark it as blocking
1854          */
1855         if (!p->leave_spinning)
1856                 btrfs_set_path_blocking(p);
1857         if (ret < 0)
1858                 btrfs_release_path(p);
1859         return ret;
1860 }
1861
1862 /*
1863  * adjust the pointers going up the tree, starting at level
1864  * making sure the right key of each node is points to 'key'.
1865  * This is used after shifting pointers to the left, so it stops
1866  * fixing up pointers when a given leaf/node is not in slot 0 of the
1867  * higher levels
1868  *
1869  * If this fails to write a tree block, it returns -1, but continues
1870  * fixing up the blocks in ram so the tree is consistent.
1871  */
1872 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1873                           struct btrfs_root *root, struct btrfs_path *path,
1874                           struct btrfs_disk_key *key, int level)
1875 {
1876         int i;
1877         int ret = 0;
1878         struct extent_buffer *t;
1879
1880         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1881                 int tslot = path->slots[i];
1882                 if (!path->nodes[i])
1883                         break;
1884                 t = path->nodes[i];
1885                 btrfs_set_node_key(t, key, tslot);
1886                 btrfs_mark_buffer_dirty(path->nodes[i]);
1887                 if (tslot != 0)
1888                         break;
1889         }
1890         return ret;
1891 }
1892
1893 /*
1894  * update item key.
1895  *
1896  * This function isn't completely safe. It's the caller's responsibility
1897  * that the new key won't break the order
1898  */
1899 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1900                             struct btrfs_root *root, struct btrfs_path *path,
1901                             struct btrfs_key *new_key)
1902 {
1903         struct btrfs_disk_key disk_key;
1904         struct extent_buffer *eb;
1905         int slot;
1906
1907         eb = path->nodes[0];
1908         slot = path->slots[0];
1909         if (slot > 0) {
1910                 btrfs_item_key(eb, &disk_key, slot - 1);
1911                 if (comp_keys(&disk_key, new_key) >= 0)
1912                         return -1;
1913         }
1914         if (slot < btrfs_header_nritems(eb) - 1) {
1915                 btrfs_item_key(eb, &disk_key, slot + 1);
1916                 if (comp_keys(&disk_key, new_key) <= 0)
1917                         return -1;
1918         }
1919
1920         btrfs_cpu_key_to_disk(&disk_key, new_key);
1921         btrfs_set_item_key(eb, &disk_key, slot);
1922         btrfs_mark_buffer_dirty(eb);
1923         if (slot == 0)
1924                 fixup_low_keys(trans, root, path, &disk_key, 1);
1925         return 0;
1926 }
1927
1928 /*
1929  * try to push data from one node into the next node left in the
1930  * tree.
1931  *
1932  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1933  * error, and > 0 if there was no room in the left hand block.
1934  */
1935 static int push_node_left(struct btrfs_trans_handle *trans,
1936                           struct btrfs_root *root, struct extent_buffer *dst,
1937                           struct extent_buffer *src, int empty)
1938 {
1939         int push_items = 0;
1940         int src_nritems;
1941         int dst_nritems;
1942         int ret = 0;
1943
1944         src_nritems = btrfs_header_nritems(src);
1945         dst_nritems = btrfs_header_nritems(dst);
1946         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1947         WARN_ON(btrfs_header_generation(src) != trans->transid);
1948         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1949
1950         if (!empty && src_nritems <= 8)
1951                 return 1;
1952
1953         if (push_items <= 0)
1954                 return 1;
1955
1956         if (empty) {
1957                 push_items = min(src_nritems, push_items);
1958                 if (push_items < src_nritems) {
1959                         /* leave at least 8 pointers in the node if
1960                          * we aren't going to empty it
1961                          */
1962                         if (src_nritems - push_items < 8) {
1963                                 if (push_items <= 8)
1964                                         return 1;
1965                                 push_items -= 8;
1966                         }
1967                 }
1968         } else
1969                 push_items = min(src_nritems - 8, push_items);
1970
1971         copy_extent_buffer(dst, src,
1972                            btrfs_node_key_ptr_offset(dst_nritems),
1973                            btrfs_node_key_ptr_offset(0),
1974                            push_items * sizeof(struct btrfs_key_ptr));
1975
1976         if (push_items < src_nritems) {
1977                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1978                                       btrfs_node_key_ptr_offset(push_items),
1979                                       (src_nritems - push_items) *
1980                                       sizeof(struct btrfs_key_ptr));
1981         }
1982         btrfs_set_header_nritems(src, src_nritems - push_items);
1983         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1984         btrfs_mark_buffer_dirty(src);
1985         btrfs_mark_buffer_dirty(dst);
1986
1987         return ret;
1988 }
1989
1990 /*
1991  * try to push data from one node into the next node right in the
1992  * tree.
1993  *
1994  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1995  * error, and > 0 if there was no room in the right hand block.
1996  *
1997  * this will  only push up to 1/2 the contents of the left node over
1998  */
1999 static int balance_node_right(struct btrfs_trans_handle *trans,
2000                               struct btrfs_root *root,
2001                               struct extent_buffer *dst,
2002                               struct extent_buffer *src)
2003 {
2004         int push_items = 0;
2005         int max_push;
2006         int src_nritems;
2007         int dst_nritems;
2008         int ret = 0;
2009
2010         WARN_ON(btrfs_header_generation(src) != trans->transid);
2011         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2012
2013         src_nritems = btrfs_header_nritems(src);
2014         dst_nritems = btrfs_header_nritems(dst);
2015         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2016         if (push_items <= 0)
2017                 return 1;
2018
2019         if (src_nritems < 4)
2020                 return 1;
2021
2022         max_push = src_nritems / 2 + 1;
2023         /* don't try to empty the node */
2024         if (max_push >= src_nritems)
2025                 return 1;
2026
2027         if (max_push < push_items)
2028                 push_items = max_push;
2029
2030         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2031                                       btrfs_node_key_ptr_offset(0),
2032                                       (dst_nritems) *
2033                                       sizeof(struct btrfs_key_ptr));
2034
2035         copy_extent_buffer(dst, src,
2036                            btrfs_node_key_ptr_offset(0),
2037                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2038                            push_items * sizeof(struct btrfs_key_ptr));
2039
2040         btrfs_set_header_nritems(src, src_nritems - push_items);
2041         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2042
2043         btrfs_mark_buffer_dirty(src);
2044         btrfs_mark_buffer_dirty(dst);
2045
2046         return ret;
2047 }
2048
2049 /*
2050  * helper function to insert a new root level in the tree.
2051  * A new node is allocated, and a single item is inserted to
2052  * point to the existing root
2053  *
2054  * returns zero on success or < 0 on failure.
2055  */
2056 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2057                            struct btrfs_root *root,
2058                            struct btrfs_path *path, int level)
2059 {
2060         u64 lower_gen;
2061         struct extent_buffer *lower;
2062         struct extent_buffer *c;
2063         struct extent_buffer *old;
2064         struct btrfs_disk_key lower_key;
2065
2066         BUG_ON(path->nodes[level]);
2067         BUG_ON(path->nodes[level-1] != root->node);
2068
2069         lower = path->nodes[level-1];
2070         if (level == 1)
2071                 btrfs_item_key(lower, &lower_key, 0);
2072         else
2073                 btrfs_node_key(lower, &lower_key, 0);
2074
2075         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2076                                    root->root_key.objectid, &lower_key,
2077                                    level, root->node->start, 0);
2078         if (IS_ERR(c))
2079                 return PTR_ERR(c);
2080
2081         root_add_used(root, root->nodesize);
2082
2083         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2084         btrfs_set_header_nritems(c, 1);
2085         btrfs_set_header_level(c, level);
2086         btrfs_set_header_bytenr(c, c->start);
2087         btrfs_set_header_generation(c, trans->transid);
2088         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2089         btrfs_set_header_owner(c, root->root_key.objectid);
2090
2091         write_extent_buffer(c, root->fs_info->fsid,
2092                             (unsigned long)btrfs_header_fsid(c),
2093                             BTRFS_FSID_SIZE);
2094
2095         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2096                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2097                             BTRFS_UUID_SIZE);
2098
2099         btrfs_set_node_key(c, &lower_key, 0);
2100         btrfs_set_node_blockptr(c, 0, lower->start);
2101         lower_gen = btrfs_header_generation(lower);
2102         WARN_ON(lower_gen != trans->transid);
2103
2104         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2105
2106         btrfs_mark_buffer_dirty(c);
2107
2108         old = root->node;
2109         rcu_assign_pointer(root->node, c);
2110
2111         /* the super has an extra ref to root->node */
2112         free_extent_buffer(old);
2113
2114         add_root_to_dirty_list(root);
2115         extent_buffer_get(c);
2116         path->nodes[level] = c;
2117         path->locks[level] = BTRFS_WRITE_LOCK;
2118         path->slots[level] = 0;
2119         return 0;
2120 }
2121
2122 /*
2123  * worker function to insert a single pointer in a node.
2124  * the node should have enough room for the pointer already
2125  *
2126  * slot and level indicate where you want the key to go, and
2127  * blocknr is the block the key points to.
2128  *
2129  * returns zero on success and < 0 on any error
2130  */
2131 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2132                       *root, struct btrfs_path *path, struct btrfs_disk_key
2133                       *key, u64 bytenr, int slot, int level)
2134 {
2135         struct extent_buffer *lower;
2136         int nritems;
2137
2138         BUG_ON(!path->nodes[level]);
2139         btrfs_assert_tree_locked(path->nodes[level]);
2140         lower = path->nodes[level];
2141         nritems = btrfs_header_nritems(lower);
2142         BUG_ON(slot > nritems);
2143         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2144                 BUG();
2145         if (slot != nritems) {
2146                 memmove_extent_buffer(lower,
2147                               btrfs_node_key_ptr_offset(slot + 1),
2148                               btrfs_node_key_ptr_offset(slot),
2149                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2150         }
2151         btrfs_set_node_key(lower, key, slot);
2152         btrfs_set_node_blockptr(lower, slot, bytenr);
2153         WARN_ON(trans->transid == 0);
2154         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2155         btrfs_set_header_nritems(lower, nritems + 1);
2156         btrfs_mark_buffer_dirty(lower);
2157         return 0;
2158 }
2159
2160 /*
2161  * split the node at the specified level in path in two.
2162  * The path is corrected to point to the appropriate node after the split
2163  *
2164  * Before splitting this tries to make some room in the node by pushing
2165  * left and right, if either one works, it returns right away.
2166  *
2167  * returns 0 on success and < 0 on failure
2168  */
2169 static noinline int split_node(struct btrfs_trans_handle *trans,
2170                                struct btrfs_root *root,
2171                                struct btrfs_path *path, int level)
2172 {
2173         struct extent_buffer *c;
2174         struct extent_buffer *split;
2175         struct btrfs_disk_key disk_key;
2176         int mid;
2177         int ret;
2178         int wret;
2179         u32 c_nritems;
2180
2181         c = path->nodes[level];
2182         WARN_ON(btrfs_header_generation(c) != trans->transid);
2183         if (c == root->node) {
2184                 /* trying to split the root, lets make a new one */
2185                 ret = insert_new_root(trans, root, path, level + 1);
2186                 if (ret)
2187                         return ret;
2188         } else {
2189                 ret = push_nodes_for_insert(trans, root, path, level);
2190                 c = path->nodes[level];
2191                 if (!ret && btrfs_header_nritems(c) <
2192                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2193                         return 0;
2194                 if (ret < 0)
2195                         return ret;
2196         }
2197
2198         c_nritems = btrfs_header_nritems(c);
2199         mid = (c_nritems + 1) / 2;
2200         btrfs_node_key(c, &disk_key, mid);
2201
2202         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2203                                         root->root_key.objectid,
2204                                         &disk_key, level, c->start, 0);
2205         if (IS_ERR(split))
2206                 return PTR_ERR(split);
2207
2208         root_add_used(root, root->nodesize);
2209
2210         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2211         btrfs_set_header_level(split, btrfs_header_level(c));
2212         btrfs_set_header_bytenr(split, split->start);
2213         btrfs_set_header_generation(split, trans->transid);
2214         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2215         btrfs_set_header_owner(split, root->root_key.objectid);
2216         write_extent_buffer(split, root->fs_info->fsid,
2217                             (unsigned long)btrfs_header_fsid(split),
2218                             BTRFS_FSID_SIZE);
2219         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2220                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2221                             BTRFS_UUID_SIZE);
2222
2223
2224         copy_extent_buffer(split, c,
2225                            btrfs_node_key_ptr_offset(0),
2226                            btrfs_node_key_ptr_offset(mid),
2227                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2228         btrfs_set_header_nritems(split, c_nritems - mid);
2229         btrfs_set_header_nritems(c, mid);
2230         ret = 0;
2231
2232         btrfs_mark_buffer_dirty(c);
2233         btrfs_mark_buffer_dirty(split);
2234
2235         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2236                           path->slots[level + 1] + 1,
2237                           level + 1);
2238         if (wret)
2239                 ret = wret;
2240
2241         if (path->slots[level] >= mid) {
2242                 path->slots[level] -= mid;
2243                 btrfs_tree_unlock(c);
2244                 free_extent_buffer(c);
2245                 path->nodes[level] = split;
2246                 path->slots[level + 1] += 1;
2247         } else {
2248                 btrfs_tree_unlock(split);
2249                 free_extent_buffer(split);
2250         }
2251         return ret;
2252 }
2253
2254 /*
2255  * how many bytes are required to store the items in a leaf.  start
2256  * and nr indicate which items in the leaf to check.  This totals up the
2257  * space used both by the item structs and the item data
2258  */
2259 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2260 {
2261         int data_len;
2262         int nritems = btrfs_header_nritems(l);
2263         int end = min(nritems, start + nr) - 1;
2264
2265         if (!nr)
2266                 return 0;
2267         data_len = btrfs_item_end_nr(l, start);
2268         data_len = data_len - btrfs_item_offset_nr(l, end);
2269         data_len += sizeof(struct btrfs_item) * nr;
2270         WARN_ON(data_len < 0);
2271         return data_len;
2272 }
2273
2274 /*
2275  * The space between the end of the leaf items and
2276  * the start of the leaf data.  IOW, how much room
2277  * the leaf has left for both items and data
2278  */
2279 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2280                                    struct extent_buffer *leaf)
2281 {
2282         int nritems = btrfs_header_nritems(leaf);
2283         int ret;
2284         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2285         if (ret < 0) {
2286                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2287                        "used %d nritems %d\n",
2288                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2289                        leaf_space_used(leaf, 0, nritems), nritems);
2290         }
2291         return ret;
2292 }
2293
2294 /*
2295  * min slot controls the lowest index we're willing to push to the
2296  * right.  We'll push up to and including min_slot, but no lower
2297  */
2298 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2299                                       struct btrfs_root *root,
2300                                       struct btrfs_path *path,
2301                                       int data_size, int empty,
2302                                       struct extent_buffer *right,
2303                                       int free_space, u32 left_nritems,
2304                                       u32 min_slot)
2305 {
2306         struct extent_buffer *left = path->nodes[0];
2307         struct extent_buffer *upper = path->nodes[1];
2308         struct btrfs_disk_key disk_key;
2309         int slot;
2310         u32 i;
2311         int push_space = 0;
2312         int push_items = 0;
2313         struct btrfs_item *item;
2314         u32 nr;
2315         u32 right_nritems;
2316         u32 data_end;
2317         u32 this_item_size;
2318
2319         if (empty)
2320                 nr = 0;
2321         else
2322                 nr = max_t(u32, 1, min_slot);
2323
2324         if (path->slots[0] >= left_nritems)
2325                 push_space += data_size;
2326
2327         slot = path->slots[1];
2328         i = left_nritems - 1;
2329         while (i >= nr) {
2330                 item = btrfs_item_nr(left, i);
2331
2332                 if (!empty && push_items > 0) {
2333                         if (path->slots[0] > i)
2334                                 break;
2335                         if (path->slots[0] == i) {
2336                                 int space = btrfs_leaf_free_space(root, left);
2337                                 if (space + push_space * 2 > free_space)
2338                                         break;
2339                         }
2340                 }
2341
2342                 if (path->slots[0] == i)
2343                         push_space += data_size;
2344
2345                 this_item_size = btrfs_item_size(left, item);
2346                 if (this_item_size + sizeof(*item) + push_space > free_space)
2347                         break;
2348
2349                 push_items++;
2350                 push_space += this_item_size + sizeof(*item);
2351                 if (i == 0)
2352                         break;
2353                 i--;
2354         }
2355
2356         if (push_items == 0)
2357                 goto out_unlock;
2358
2359         if (!empty && push_items == left_nritems)
2360                 WARN_ON(1);
2361
2362         /* push left to right */
2363         right_nritems = btrfs_header_nritems(right);
2364
2365         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2366         push_space -= leaf_data_end(root, left);
2367
2368         /* make room in the right data area */
2369         data_end = leaf_data_end(root, right);
2370         memmove_extent_buffer(right,
2371                               btrfs_leaf_data(right) + data_end - push_space,
2372                               btrfs_leaf_data(right) + data_end,
2373                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2374
2375         /* copy from the left data area */
2376         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2377                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2378                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2379                      push_space);
2380
2381         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2382                               btrfs_item_nr_offset(0),
2383                               right_nritems * sizeof(struct btrfs_item));
2384
2385         /* copy the items from left to right */
2386         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2387                    btrfs_item_nr_offset(left_nritems - push_items),
2388                    push_items * sizeof(struct btrfs_item));
2389
2390         /* update the item pointers */
2391         right_nritems += push_items;
2392         btrfs_set_header_nritems(right, right_nritems);
2393         push_space = BTRFS_LEAF_DATA_SIZE(root);
2394         for (i = 0; i < right_nritems; i++) {
2395                 item = btrfs_item_nr(right, i);
2396                 push_space -= btrfs_item_size(right, item);
2397                 btrfs_set_item_offset(right, item, push_space);
2398         }
2399
2400         left_nritems -= push_items;
2401         btrfs_set_header_nritems(left, left_nritems);
2402
2403         if (left_nritems)
2404                 btrfs_mark_buffer_dirty(left);
2405         else
2406                 clean_tree_block(trans, root, left);
2407
2408         btrfs_mark_buffer_dirty(right);
2409
2410         btrfs_item_key(right, &disk_key, 0);
2411         btrfs_set_node_key(upper, &disk_key, slot + 1);
2412         btrfs_mark_buffer_dirty(upper);
2413
2414         /* then fixup the leaf pointer in the path */
2415         if (path->slots[0] >= left_nritems) {
2416                 path->slots[0] -= left_nritems;
2417                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2418                         clean_tree_block(trans, root, path->nodes[0]);
2419                 btrfs_tree_unlock(path->nodes[0]);
2420                 free_extent_buffer(path->nodes[0]);
2421                 path->nodes[0] = right;
2422                 path->slots[1] += 1;
2423         } else {
2424                 btrfs_tree_unlock(right);
2425                 free_extent_buffer(right);
2426         }
2427         return 0;
2428
2429 out_unlock:
2430         btrfs_tree_unlock(right);
2431         free_extent_buffer(right);
2432         return 1;
2433 }
2434
2435 /*
2436  * push some data in the path leaf to the right, trying to free up at
2437  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2438  *
2439  * returns 1 if the push failed because the other node didn't have enough
2440  * room, 0 if everything worked out and < 0 if there were major errors.
2441  *
2442  * this will push starting from min_slot to the end of the leaf.  It won't
2443  * push any slot lower than min_slot
2444  */
2445 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2446                            *root, struct btrfs_path *path,
2447                            int min_data_size, int data_size,
2448                            int empty, u32 min_slot)
2449 {
2450         struct extent_buffer *left = path->nodes[0];
2451         struct extent_buffer *right;
2452         struct extent_buffer *upper;
2453         int slot;
2454         int free_space;
2455         u32 left_nritems;
2456         int ret;
2457
2458         if (!path->nodes[1])
2459                 return 1;
2460
2461         slot = path->slots[1];
2462         upper = path->nodes[1];
2463         if (slot >= btrfs_header_nritems(upper) - 1)
2464                 return 1;
2465
2466         btrfs_assert_tree_locked(path->nodes[1]);
2467
2468         right = read_node_slot(root, upper, slot + 1);
2469         if (right == NULL)
2470                 return 1;
2471
2472         btrfs_tree_lock(right);
2473         btrfs_set_lock_blocking(right);
2474
2475         free_space = btrfs_leaf_free_space(root, right);
2476         if (free_space < data_size)
2477                 goto out_unlock;
2478
2479         /* cow and double check */
2480         ret = btrfs_cow_block(trans, root, right, upper,
2481                               slot + 1, &right);
2482         if (ret)
2483                 goto out_unlock;
2484
2485         free_space = btrfs_leaf_free_space(root, right);
2486         if (free_space < data_size)
2487                 goto out_unlock;
2488
2489         left_nritems = btrfs_header_nritems(left);
2490         if (left_nritems == 0)
2491                 goto out_unlock;
2492
2493         return __push_leaf_right(trans, root, path, min_data_size, empty,
2494                                 right, free_space, left_nritems, min_slot);
2495 out_unlock:
2496         btrfs_tree_unlock(right);
2497         free_extent_buffer(right);
2498         return 1;
2499 }
2500
2501 /*
2502  * push some data in the path leaf to the left, trying to free up at
2503  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2504  *
2505  * max_slot can put a limit on how far into the leaf we'll push items.  The
2506  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2507  * items
2508  */
2509 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2510                                      struct btrfs_root *root,
2511                                      struct btrfs_path *path, int data_size,
2512                                      int empty, struct extent_buffer *left,
2513                                      int free_space, u32 right_nritems,
2514                                      u32 max_slot)
2515 {
2516         struct btrfs_disk_key disk_key;
2517         struct extent_buffer *right = path->nodes[0];
2518         int i;
2519         int push_space = 0;
2520         int push_items = 0;
2521         struct btrfs_item *item;
2522         u32 old_left_nritems;
2523         u32 nr;
2524         int ret = 0;
2525         int wret;
2526         u32 this_item_size;
2527         u32 old_left_item_size;
2528
2529         if (empty)
2530                 nr = min(right_nritems, max_slot);
2531         else
2532                 nr = min(right_nritems - 1, max_slot);
2533
2534         for (i = 0; i < nr; i++) {
2535                 item = btrfs_item_nr(right, i);
2536
2537                 if (!empty && push_items > 0) {
2538                         if (path->slots[0] < i)
2539                                 break;
2540                         if (path->slots[0] == i) {
2541                                 int space = btrfs_leaf_free_space(root, right);
2542                                 if (space + push_space * 2 > free_space)
2543                                         break;
2544                         }
2545                 }
2546
2547                 if (path->slots[0] == i)
2548                         push_space += data_size;
2549
2550                 this_item_size = btrfs_item_size(right, item);
2551                 if (this_item_size + sizeof(*item) + push_space > free_space)
2552                         break;
2553
2554                 push_items++;
2555                 push_space += this_item_size + sizeof(*item);
2556         }
2557
2558         if (push_items == 0) {
2559                 ret = 1;
2560                 goto out;
2561         }
2562         if (!empty && push_items == btrfs_header_nritems(right))
2563                 WARN_ON(1);
2564
2565         /* push data from right to left */
2566         copy_extent_buffer(left, right,
2567                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2568                            btrfs_item_nr_offset(0),
2569                            push_items * sizeof(struct btrfs_item));
2570
2571         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2572                      btrfs_item_offset_nr(right, push_items - 1);
2573
2574         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2575                      leaf_data_end(root, left) - push_space,
2576                      btrfs_leaf_data(right) +
2577                      btrfs_item_offset_nr(right, push_items - 1),
2578                      push_space);
2579         old_left_nritems = btrfs_header_nritems(left);
2580         BUG_ON(old_left_nritems <= 0);
2581
2582         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2583         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2584                 u32 ioff;
2585
2586                 item = btrfs_item_nr(left, i);
2587
2588                 ioff = btrfs_item_offset(left, item);
2589                 btrfs_set_item_offset(left, item,
2590                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2591         }
2592         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2593
2594         /* fixup right node */
2595         if (push_items > right_nritems) {
2596                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2597                        right_nritems);
2598                 WARN_ON(1);
2599         }
2600
2601         if (push_items < right_nritems) {
2602                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2603                                                   leaf_data_end(root, right);
2604                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2605                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2606                                       btrfs_leaf_data(right) +
2607                                       leaf_data_end(root, right), push_space);
2608
2609                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2610                               btrfs_item_nr_offset(push_items),
2611                              (btrfs_header_nritems(right) - push_items) *
2612                              sizeof(struct btrfs_item));
2613         }
2614         right_nritems -= push_items;
2615         btrfs_set_header_nritems(right, right_nritems);
2616         push_space = BTRFS_LEAF_DATA_SIZE(root);
2617         for (i = 0; i < right_nritems; i++) {
2618                 item = btrfs_item_nr(right, i);
2619
2620                 push_space = push_space - btrfs_item_size(right, item);
2621                 btrfs_set_item_offset(right, item, push_space);
2622         }
2623
2624         btrfs_mark_buffer_dirty(left);
2625         if (right_nritems)
2626                 btrfs_mark_buffer_dirty(right);
2627         else
2628                 clean_tree_block(trans, root, right);
2629
2630         btrfs_item_key(right, &disk_key, 0);
2631         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2632         if (wret)
2633                 ret = wret;
2634
2635         /* then fixup the leaf pointer in the path */
2636         if (path->slots[0] < push_items) {
2637                 path->slots[0] += old_left_nritems;
2638                 btrfs_tree_unlock(path->nodes[0]);
2639                 free_extent_buffer(path->nodes[0]);
2640                 path->nodes[0] = left;
2641                 path->slots[1] -= 1;
2642         } else {
2643                 btrfs_tree_unlock(left);
2644                 free_extent_buffer(left);
2645                 path->slots[0] -= push_items;
2646         }
2647         BUG_ON(path->slots[0] < 0);
2648         return ret;
2649 out:
2650         btrfs_tree_unlock(left);
2651         free_extent_buffer(left);
2652         return ret;
2653 }
2654
2655 /*
2656  * push some data in the path leaf to the left, trying to free up at
2657  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2658  *
2659  * max_slot can put a limit on how far into the leaf we'll push items.  The
2660  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2661  * items
2662  */
2663 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2664                           *root, struct btrfs_path *path, int min_data_size,
2665                           int data_size, int empty, u32 max_slot)
2666 {
2667         struct extent_buffer *right = path->nodes[0];
2668         struct extent_buffer *left;
2669         int slot;
2670         int free_space;
2671         u32 right_nritems;
2672         int ret = 0;
2673
2674         slot = path->slots[1];
2675         if (slot == 0)
2676                 return 1;
2677         if (!path->nodes[1])
2678                 return 1;
2679
2680         right_nritems = btrfs_header_nritems(right);
2681         if (right_nritems == 0)
2682                 return 1;
2683
2684         btrfs_assert_tree_locked(path->nodes[1]);
2685
2686         left = read_node_slot(root, path->nodes[1], slot - 1);
2687         if (left == NULL)
2688                 return 1;
2689
2690         btrfs_tree_lock(left);
2691         btrfs_set_lock_blocking(left);
2692
2693         free_space = btrfs_leaf_free_space(root, left);
2694         if (free_space < data_size) {
2695                 ret = 1;
2696                 goto out;
2697         }
2698
2699         /* cow and double check */
2700         ret = btrfs_cow_block(trans, root, left,
2701                               path->nodes[1], slot - 1, &left);
2702         if (ret) {
2703                 /* we hit -ENOSPC, but it isn't fatal here */
2704                 ret = 1;
2705                 goto out;
2706         }
2707
2708         free_space = btrfs_leaf_free_space(root, left);
2709         if (free_space < data_size) {
2710                 ret = 1;
2711                 goto out;
2712         }
2713
2714         return __push_leaf_left(trans, root, path, min_data_size,
2715                                empty, left, free_space, right_nritems,
2716                                max_slot);
2717 out:
2718         btrfs_tree_unlock(left);
2719         free_extent_buffer(left);
2720         return ret;
2721 }
2722
2723 /*
2724  * split the path's leaf in two, making sure there is at least data_size
2725  * available for the resulting leaf level of the path.
2726  *
2727  * returns 0 if all went well and < 0 on failure.
2728  */
2729 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2730                                struct btrfs_root *root,
2731                                struct btrfs_path *path,
2732                                struct extent_buffer *l,
2733                                struct extent_buffer *right,
2734                                int slot, int mid, int nritems)
2735 {
2736         int data_copy_size;
2737         int rt_data_off;
2738         int i;
2739         int ret = 0;
2740         int wret;
2741         struct btrfs_disk_key disk_key;
2742
2743         nritems = nritems - mid;
2744         btrfs_set_header_nritems(right, nritems);
2745         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2746
2747         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2748                            btrfs_item_nr_offset(mid),
2749                            nritems * sizeof(struct btrfs_item));
2750
2751         copy_extent_buffer(right, l,
2752                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2753                      data_copy_size, btrfs_leaf_data(l) +
2754                      leaf_data_end(root, l), data_copy_size);
2755
2756         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2757                       btrfs_item_end_nr(l, mid);
2758
2759         for (i = 0; i < nritems; i++) {
2760                 struct btrfs_item *item = btrfs_item_nr(right, i);
2761                 u32 ioff;
2762
2763                 ioff = btrfs_item_offset(right, item);
2764                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2765         }
2766
2767         btrfs_set_header_nritems(l, mid);
2768         ret = 0;
2769         btrfs_item_key(right, &disk_key, 0);
2770         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2771                           path->slots[1] + 1, 1);
2772         if (wret)
2773                 ret = wret;
2774
2775         btrfs_mark_buffer_dirty(right);
2776         btrfs_mark_buffer_dirty(l);
2777         BUG_ON(path->slots[0] != slot);
2778
2779         if (mid <= slot) {
2780                 btrfs_tree_unlock(path->nodes[0]);
2781                 free_extent_buffer(path->nodes[0]);
2782                 path->nodes[0] = right;
2783                 path->slots[0] -= mid;
2784                 path->slots[1] += 1;
2785         } else {
2786                 btrfs_tree_unlock(right);
2787                 free_extent_buffer(right);
2788         }
2789
2790         BUG_ON(path->slots[0] < 0);
2791
2792         return ret;
2793 }
2794
2795 /*
2796  * double splits happen when we need to insert a big item in the middle
2797  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2798  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2799  *          A                 B                 C
2800  *
2801  * We avoid this by trying to push the items on either side of our target
2802  * into the adjacent leaves.  If all goes well we can avoid the double split
2803  * completely.
2804  */
2805 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2806                                           struct btrfs_root *root,
2807                                           struct btrfs_path *path,
2808                                           int data_size)
2809 {
2810         int ret;
2811         int progress = 0;
2812         int slot;
2813         u32 nritems;
2814
2815         slot = path->slots[0];
2816
2817         /*
2818          * try to push all the items after our slot into the
2819          * right leaf
2820          */
2821         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2822         if (ret < 0)
2823                 return ret;
2824
2825         if (ret == 0)
2826                 progress++;
2827
2828         nritems = btrfs_header_nritems(path->nodes[0]);
2829         /*
2830          * our goal is to get our slot at the start or end of a leaf.  If
2831          * we've done so we're done
2832          */
2833         if (path->slots[0] == 0 || path->slots[0] == nritems)
2834                 return 0;
2835
2836         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2837                 return 0;
2838
2839         /* try to push all the items before our slot into the next leaf */
2840         slot = path->slots[0];
2841         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2842         if (ret < 0)
2843                 return ret;
2844
2845         if (ret == 0)
2846                 progress++;
2847
2848         if (progress)
2849                 return 0;
2850         return 1;
2851 }
2852
2853 /*
2854  * split the path's leaf in two, making sure there is at least data_size
2855  * available for the resulting leaf level of the path.
2856  *
2857  * returns 0 if all went well and < 0 on failure.
2858  */
2859 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2860                                struct btrfs_root *root,
2861                                struct btrfs_key *ins_key,
2862                                struct btrfs_path *path, int data_size,
2863                                int extend)
2864 {
2865         struct btrfs_disk_key disk_key;
2866         struct extent_buffer *l;
2867         u32 nritems;
2868         int mid;
2869         int slot;
2870         struct extent_buffer *right;
2871         int ret = 0;
2872         int wret;
2873         int split;
2874         int num_doubles = 0;
2875         int tried_avoid_double = 0;
2876
2877         l = path->nodes[0];
2878         slot = path->slots[0];
2879         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2880             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2881                 return -EOVERFLOW;
2882
2883         /* first try to make some room by pushing left and right */
2884         if (data_size) {
2885                 wret = push_leaf_right(trans, root, path, data_size,
2886                                        data_size, 0, 0);
2887                 if (wret < 0)
2888                         return wret;
2889                 if (wret) {
2890                         wret = push_leaf_left(trans, root, path, data_size,
2891                                               data_size, 0, (u32)-1);
2892                         if (wret < 0)
2893                                 return wret;
2894                 }
2895                 l = path->nodes[0];
2896
2897                 /* did the pushes work? */
2898                 if (btrfs_leaf_free_space(root, l) >= data_size)
2899                         return 0;
2900         }
2901
2902         if (!path->nodes[1]) {
2903                 ret = insert_new_root(trans, root, path, 1);
2904                 if (ret)
2905                         return ret;
2906         }
2907 again:
2908         split = 1;
2909         l = path->nodes[0];
2910         slot = path->slots[0];
2911         nritems = btrfs_header_nritems(l);
2912         mid = (nritems + 1) / 2;
2913
2914         if (mid <= slot) {
2915                 if (nritems == 1 ||
2916                     leaf_space_used(l, mid, nritems - mid) + data_size >
2917                         BTRFS_LEAF_DATA_SIZE(root)) {
2918                         if (slot >= nritems) {
2919                                 split = 0;
2920                         } else {
2921                                 mid = slot;
2922                                 if (mid != nritems &&
2923                                     leaf_space_used(l, mid, nritems - mid) +
2924                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2925                                         if (data_size && !tried_avoid_double)
2926                                                 goto push_for_double;
2927                                         split = 2;
2928                                 }
2929                         }
2930                 }
2931         } else {
2932                 if (leaf_space_used(l, 0, mid) + data_size >
2933                         BTRFS_LEAF_DATA_SIZE(root)) {
2934                         if (!extend && data_size && slot == 0) {
2935                                 split = 0;
2936                         } else if ((extend || !data_size) && slot == 0) {
2937                                 mid = 1;
2938                         } else {
2939                                 mid = slot;
2940                                 if (mid != nritems &&
2941                                     leaf_space_used(l, mid, nritems - mid) +
2942                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2943                                         if (data_size && !tried_avoid_double)
2944                                                 goto push_for_double;
2945                                         split = 2 ;
2946                                 }
2947                         }
2948                 }
2949         }
2950
2951         if (split == 0)
2952                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2953         else
2954                 btrfs_item_key(l, &disk_key, mid);
2955
2956         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2957                                         root->root_key.objectid,
2958                                         &disk_key, 0, l->start, 0);
2959         if (IS_ERR(right))
2960                 return PTR_ERR(right);
2961
2962         root_add_used(root, root->leafsize);
2963
2964         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2965         btrfs_set_header_bytenr(right, right->start);
2966         btrfs_set_header_generation(right, trans->transid);
2967         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2968         btrfs_set_header_owner(right, root->root_key.objectid);
2969         btrfs_set_header_level(right, 0);
2970         write_extent_buffer(right, root->fs_info->fsid,
2971                             (unsigned long)btrfs_header_fsid(right),
2972                             BTRFS_FSID_SIZE);
2973
2974         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2975                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
2976                             BTRFS_UUID_SIZE);
2977
2978         if (split == 0) {
2979                 if (mid <= slot) {
2980                         btrfs_set_header_nritems(right, 0);
2981                         wret = insert_ptr(trans, root, path,
2982                                           &disk_key, right->start,
2983                                           path->slots[1] + 1, 1);
2984                         if (wret)
2985                                 ret = wret;
2986
2987                         btrfs_tree_unlock(path->nodes[0]);
2988                         free_extent_buffer(path->nodes[0]);
2989                         path->nodes[0] = right;
2990                         path->slots[0] = 0;
2991                         path->slots[1] += 1;
2992                 } else {
2993                         btrfs_set_header_nritems(right, 0);
2994                         wret = insert_ptr(trans, root, path,
2995                                           &disk_key,
2996                                           right->start,
2997                                           path->slots[1], 1);
2998                         if (wret)
2999                                 ret = wret;
3000                         btrfs_tree_unlock(path->nodes[0]);
3001                         free_extent_buffer(path->nodes[0]);
3002                         path->nodes[0] = right;
3003                         path->slots[0] = 0;
3004                         if (path->slots[1] == 0) {
3005                                 wret = fixup_low_keys(trans, root,
3006                                                 path, &disk_key, 1);
3007                                 if (wret)
3008                                         ret = wret;
3009                         }
3010                 }
3011                 btrfs_mark_buffer_dirty(right);
3012                 return ret;
3013         }
3014
3015         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3016         BUG_ON(ret);
3017
3018         if (split == 2) {
3019                 BUG_ON(num_doubles != 0);
3020                 num_doubles++;
3021                 goto again;
3022         }
3023
3024         return ret;
3025
3026 push_for_double:
3027         push_for_double_split(trans, root, path, data_size);
3028         tried_avoid_double = 1;
3029         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3030                 return 0;
3031         goto again;
3032 }
3033
3034 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3035                                          struct btrfs_root *root,
3036                                          struct btrfs_path *path, int ins_len)
3037 {
3038         struct btrfs_key key;
3039         struct extent_buffer *leaf;
3040         struct btrfs_file_extent_item *fi;
3041         u64 extent_len = 0;
3042         u32 item_size;
3043         int ret;
3044
3045         leaf = path->nodes[0];
3046         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3047
3048         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3049                key.type != BTRFS_EXTENT_CSUM_KEY);
3050
3051         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3052                 return 0;
3053
3054         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3055         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3056                 fi = btrfs_item_ptr(leaf, path->slots[0],
3057                                     struct btrfs_file_extent_item);
3058                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3059         }
3060         btrfs_release_path(path);
3061
3062         path->keep_locks = 1;
3063         path->search_for_split = 1;
3064         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3065         path->search_for_split = 0;
3066         if (ret < 0)
3067                 goto err;
3068
3069         ret = -EAGAIN;
3070         leaf = path->nodes[0];
3071         /* if our item isn't there or got smaller, return now */
3072         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3073                 goto err;
3074
3075         /* the leaf has  changed, it now has room.  return now */
3076         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3077                 goto err;
3078
3079         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3080                 fi = btrfs_item_ptr(leaf, path->slots[0],
3081                                     struct btrfs_file_extent_item);
3082                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3083                         goto err;
3084         }
3085
3086         btrfs_set_path_blocking(path);
3087         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3088         if (ret)
3089                 goto err;
3090
3091         path->keep_locks = 0;
3092         btrfs_unlock_up_safe(path, 1);
3093         return 0;
3094 err:
3095         path->keep_locks = 0;
3096         return ret;
3097 }
3098
3099 static noinline int split_item(struct btrfs_trans_handle *trans,
3100                                struct btrfs_root *root,
3101                                struct btrfs_path *path,
3102                                struct btrfs_key *new_key,
3103                                unsigned long split_offset)
3104 {
3105         struct extent_buffer *leaf;
3106         struct btrfs_item *item;
3107         struct btrfs_item *new_item;
3108         int slot;
3109         char *buf;
3110         u32 nritems;
3111         u32 item_size;
3112         u32 orig_offset;
3113         struct btrfs_disk_key disk_key;
3114
3115         leaf = path->nodes[0];
3116         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3117
3118         btrfs_set_path_blocking(path);
3119
3120         item = btrfs_item_nr(leaf, path->slots[0]);
3121         orig_offset = btrfs_item_offset(leaf, item);
3122         item_size = btrfs_item_size(leaf, item);
3123
3124         buf = kmalloc(item_size, GFP_NOFS);
3125         if (!buf)
3126                 return -ENOMEM;
3127
3128         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3129                             path->slots[0]), item_size);
3130
3131         slot = path->slots[0] + 1;
3132         nritems = btrfs_header_nritems(leaf);
3133         if (slot != nritems) {
3134                 /* shift the items */
3135                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3136                                 btrfs_item_nr_offset(slot),
3137                                 (nritems - slot) * sizeof(struct btrfs_item));
3138         }
3139
3140         btrfs_cpu_key_to_disk(&disk_key, new_key);
3141         btrfs_set_item_key(leaf, &disk_key, slot);
3142
3143         new_item = btrfs_item_nr(leaf, slot);
3144
3145         btrfs_set_item_offset(leaf, new_item, orig_offset);
3146         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3147
3148         btrfs_set_item_offset(leaf, item,
3149                               orig_offset + item_size - split_offset);
3150         btrfs_set_item_size(leaf, item, split_offset);
3151
3152         btrfs_set_header_nritems(leaf, nritems + 1);
3153
3154         /* write the data for the start of the original item */
3155         write_extent_buffer(leaf, buf,
3156                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3157                             split_offset);
3158
3159         /* write the data for the new item */
3160         write_extent_buffer(leaf, buf + split_offset,
3161                             btrfs_item_ptr_offset(leaf, slot),
3162                             item_size - split_offset);
3163         btrfs_mark_buffer_dirty(leaf);
3164
3165         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3166         kfree(buf);
3167         return 0;
3168 }
3169
3170 /*
3171  * This function splits a single item into two items,
3172  * giving 'new_key' to the new item and splitting the
3173  * old one at split_offset (from the start of the item).
3174  *
3175  * The path may be released by this operation.  After
3176  * the split, the path is pointing to the old item.  The
3177  * new item is going to be in the same node as the old one.
3178  *
3179  * Note, the item being split must be smaller enough to live alone on
3180  * a tree block with room for one extra struct btrfs_item
3181  *
3182  * This allows us to split the item in place, keeping a lock on the
3183  * leaf the entire time.
3184  */
3185 int btrfs_split_item(struct btrfs_trans_handle *trans,
3186                      struct btrfs_root *root,
3187                      struct btrfs_path *path,
3188                      struct btrfs_key *new_key,
3189                      unsigned long split_offset)
3190 {
3191         int ret;
3192         ret = setup_leaf_for_split(trans, root, path,
3193                                    sizeof(struct btrfs_item));
3194         if (ret)
3195                 return ret;
3196
3197         ret = split_item(trans, root, path, new_key, split_offset);
3198         return ret;
3199 }
3200
3201 /*
3202  * This function duplicate a item, giving 'new_key' to the new item.
3203  * It guarantees both items live in the same tree leaf and the new item
3204  * is contiguous with the original item.
3205  *
3206  * This allows us to split file extent in place, keeping a lock on the
3207  * leaf the entire time.
3208  */
3209 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3210                          struct btrfs_root *root,
3211                          struct btrfs_path *path,
3212                          struct btrfs_key *new_key)
3213 {
3214         struct extent_buffer *leaf;
3215         int ret;
3216         u32 item_size;
3217
3218         leaf = path->nodes[0];
3219         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3220         ret = setup_leaf_for_split(trans, root, path,
3221                                    item_size + sizeof(struct btrfs_item));
3222         if (ret)
3223                 return ret;
3224
3225         path->slots[0]++;
3226         ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3227                                      item_size, item_size +
3228                                      sizeof(struct btrfs_item), 1);
3229         BUG_ON(ret);
3230
3231         leaf = path->nodes[0];
3232         memcpy_extent_buffer(leaf,
3233                              btrfs_item_ptr_offset(leaf, path->slots[0]),
3234                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3235                              item_size);
3236         return 0;
3237 }
3238
3239 /*
3240  * make the item pointed to by the path smaller.  new_size indicates
3241  * how small to make it, and from_end tells us if we just chop bytes
3242  * off the end of the item or if we shift the item to chop bytes off
3243  * the front.
3244  */
3245 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3246                         struct btrfs_root *root,
3247                         struct btrfs_path *path,
3248                         u32 new_size, int from_end)
3249 {
3250         int slot;
3251         struct extent_buffer *leaf;
3252         struct btrfs_item *item;
3253         u32 nritems;
3254         unsigned int data_end;
3255         unsigned int old_data_start;
3256         unsigned int old_size;
3257         unsigned int size_diff;
3258         int i;
3259
3260         leaf = path->nodes[0];
3261         slot = path->slots[0];
3262
3263         old_size = btrfs_item_size_nr(leaf, slot);
3264         if (old_size == new_size)
3265                 return 0;
3266
3267         nritems = btrfs_header_nritems(leaf);
3268         data_end = leaf_data_end(root, leaf);
3269
3270         old_data_start = btrfs_item_offset_nr(leaf, slot);
3271
3272         size_diff = old_size - new_size;
3273
3274         BUG_ON(slot < 0);
3275         BUG_ON(slot >= nritems);
3276
3277         /*
3278          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3279          */
3280         /* first correct the data pointers */
3281         for (i = slot; i < nritems; i++) {
3282                 u32 ioff;
3283                 item = btrfs_item_nr(leaf, i);
3284
3285                 ioff = btrfs_item_offset(leaf, item);
3286                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3287         }
3288
3289         /* shift the data */
3290         if (from_end) {
3291                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3292                               data_end + size_diff, btrfs_leaf_data(leaf) +
3293                               data_end, old_data_start + new_size - data_end);
3294         } else {
3295                 struct btrfs_disk_key disk_key;
3296                 u64 offset;
3297
3298                 btrfs_item_key(leaf, &disk_key, slot);
3299
3300                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3301                         unsigned long ptr;
3302                         struct btrfs_file_extent_item *fi;
3303
3304                         fi = btrfs_item_ptr(leaf, slot,
3305                                             struct btrfs_file_extent_item);
3306                         fi = (struct btrfs_file_extent_item *)(
3307                              (unsigned long)fi - size_diff);
3308
3309                         if (btrfs_file_extent_type(leaf, fi) ==
3310                             BTRFS_FILE_EXTENT_INLINE) {
3311                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3312                                 memmove_extent_buffer(leaf, ptr,
3313                                       (unsigned long)fi,
3314                                       offsetof(struct btrfs_file_extent_item,
3315                                                  disk_bytenr));
3316                         }
3317                 }
3318
3319                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3320                               data_end + size_diff, btrfs_leaf_data(leaf) +
3321                               data_end, old_data_start - data_end);
3322
3323                 offset = btrfs_disk_key_offset(&disk_key);
3324                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3325                 btrfs_set_item_key(leaf, &disk_key, slot);
3326                 if (slot == 0)
3327                         fixup_low_keys(trans, root, path, &disk_key, 1);
3328         }
3329
3330         item = btrfs_item_nr(leaf, slot);
3331         btrfs_set_item_size(leaf, item, new_size);
3332         btrfs_mark_buffer_dirty(leaf);
3333
3334         if (btrfs_leaf_free_space(root, leaf) < 0) {
3335                 btrfs_print_leaf(root, leaf);
3336                 BUG();
3337         }
3338         return 0;
3339 }
3340
3341 /*
3342  * make the item pointed to by the path bigger, data_size is the new size.
3343  */
3344 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3345                       struct btrfs_root *root, struct btrfs_path *path,
3346                       u32 data_size)
3347 {
3348         int slot;
3349         struct extent_buffer *leaf;
3350         struct btrfs_item *item;
3351         u32 nritems;
3352         unsigned int data_end;
3353         unsigned int old_data;
3354         unsigned int old_size;
3355         int i;
3356
3357         leaf = path->nodes[0];
3358
3359         nritems = btrfs_header_nritems(leaf);
3360         data_end = leaf_data_end(root, leaf);
3361
3362         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3363                 btrfs_print_leaf(root, leaf);
3364                 BUG();
3365         }
3366         slot = path->slots[0];
3367         old_data = btrfs_item_end_nr(leaf, slot);
3368
3369         BUG_ON(slot < 0);
3370         if (slot >= nritems) {
3371                 btrfs_print_leaf(root, leaf);
3372                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3373                        slot, nritems);
3374                 BUG_ON(1);
3375         }
3376
3377         /*
3378          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3379          */
3380         /* first correct the data pointers */
3381         for (i = slot; i < nritems; i++) {
3382                 u32 ioff;
3383                 item = btrfs_item_nr(leaf, i);
3384
3385                 ioff = btrfs_item_offset(leaf, item);
3386                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3387         }
3388
3389         /* shift the data */
3390         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3391                       data_end - data_size, btrfs_leaf_data(leaf) +
3392                       data_end, old_data - data_end);
3393
3394         data_end = old_data;
3395         old_size = btrfs_item_size_nr(leaf, slot);
3396         item = btrfs_item_nr(leaf, slot);
3397         btrfs_set_item_size(leaf, item, old_size + data_size);
3398         btrfs_mark_buffer_dirty(leaf);
3399
3400         if (btrfs_leaf_free_space(root, leaf) < 0) {
3401                 btrfs_print_leaf(root, leaf);
3402                 BUG();
3403         }
3404         return 0;
3405 }
3406
3407 /*
3408  * Given a key and some data, insert items into the tree.
3409  * This does all the path init required, making room in the tree if needed.
3410  * Returns the number of keys that were inserted.
3411  */
3412 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3413                             struct btrfs_root *root,
3414                             struct btrfs_path *path,
3415                             struct btrfs_key *cpu_key, u32 *data_size,
3416                             int nr)
3417 {
3418         struct extent_buffer *leaf;
3419         struct btrfs_item *item;
3420         int ret = 0;
3421         int slot;
3422         int i;
3423         u32 nritems;
3424         u32 total_data = 0;
3425         u32 total_size = 0;
3426         unsigned int data_end;
3427         struct btrfs_disk_key disk_key;
3428         struct btrfs_key found_key;
3429
3430         for (i = 0; i < nr; i++) {
3431                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3432                     BTRFS_LEAF_DATA_SIZE(root)) {
3433                         break;
3434                         nr = i;
3435                 }
3436                 total_data += data_size[i];
3437                 total_size += data_size[i] + sizeof(struct btrfs_item);
3438         }
3439         BUG_ON(nr == 0);
3440
3441         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3442         if (ret == 0)
3443                 return -EEXIST;
3444         if (ret < 0)
3445                 goto out;
3446
3447         leaf = path->nodes[0];
3448
3449         nritems = btrfs_header_nritems(leaf);
3450         data_end = leaf_data_end(root, leaf);
3451
3452         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3453                 for (i = nr; i >= 0; i--) {
3454                         total_data -= data_size[i];
3455                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3456                         if (total_size < btrfs_leaf_free_space(root, leaf))
3457                                 break;
3458                 }
3459                 nr = i;
3460         }
3461
3462         slot = path->slots[0];
3463         BUG_ON(slot < 0);
3464
3465         if (slot != nritems) {
3466                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3467
3468                 item = btrfs_item_nr(leaf, slot);
3469                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3470
3471                 /* figure out how many keys we can insert in here */
3472                 total_data = data_size[0];
3473                 for (i = 1; i < nr; i++) {
3474                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3475                                 break;
3476                         total_data += data_size[i];
3477                 }
3478                 nr = i;
3479
3480                 if (old_data < data_end) {
3481                         btrfs_print_leaf(root, leaf);
3482                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3483                                slot, old_data, data_end);
3484                         BUG_ON(1);
3485                 }
3486                 /*
3487                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3488                  */
3489                 /* first correct the data pointers */
3490                 for (i = slot; i < nritems; i++) {
3491                         u32 ioff;
3492
3493                         item = btrfs_item_nr(leaf, i);
3494                         ioff = btrfs_item_offset(leaf, item);
3495                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3496                 }
3497                 /* shift the items */
3498                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3499                               btrfs_item_nr_offset(slot),
3500                               (nritems - slot) * sizeof(struct btrfs_item));
3501
3502                 /* shift the data */
3503                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3504                               data_end - total_data, btrfs_leaf_data(leaf) +
3505                               data_end, old_data - data_end);
3506                 data_end = old_data;
3507         } else {
3508                 /*
3509                  * this sucks but it has to be done, if we are inserting at
3510                  * the end of the leaf only insert 1 of the items, since we
3511                  * have no way of knowing whats on the next leaf and we'd have
3512                  * to drop our current locks to figure it out
3513                  */
3514                 nr = 1;
3515         }
3516
3517         /* setup the item for the new data */
3518         for (i = 0; i < nr; i++) {
3519                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3520                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3521                 item = btrfs_item_nr(leaf, slot + i);
3522                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3523                 data_end -= data_size[i];
3524                 btrfs_set_item_size(leaf, item, data_size[i]);
3525         }
3526         btrfs_set_header_nritems(leaf, nritems + nr);
3527         btrfs_mark_buffer_dirty(leaf);
3528
3529         ret = 0;
3530         if (slot == 0) {
3531                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3532                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3533         }
3534
3535         if (btrfs_leaf_free_space(root, leaf) < 0) {
3536                 btrfs_print_leaf(root, leaf);
3537                 BUG();
3538         }
3539 out:
3540         if (!ret)
3541                 ret = nr;
3542         return ret;
3543 }
3544
3545 /*
3546  * this is a helper for btrfs_insert_empty_items, the main goal here is
3547  * to save stack depth by doing the bulk of the work in a function
3548  * that doesn't call btrfs_search_slot
3549  */
3550 int setup_items_for_insert(struct btrfs_trans_handle *trans,
3551                            struct btrfs_root *root, struct btrfs_path *path,
3552                            struct btrfs_key *cpu_key, u32 *data_size,
3553                            u32 total_data, u32 total_size, int nr)
3554 {
3555         struct btrfs_item *item;
3556         int i;
3557         u32 nritems;
3558         unsigned int data_end;
3559         struct btrfs_disk_key disk_key;
3560         int ret;
3561         struct extent_buffer *leaf;
3562         int slot;
3563
3564         leaf = path->nodes[0];
3565         slot = path->slots[0];
3566
3567         nritems = btrfs_header_nritems(leaf);
3568         data_end = leaf_data_end(root, leaf);
3569
3570         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3571                 btrfs_print_leaf(root, leaf);
3572                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3573                        total_size, btrfs_leaf_free_space(root, leaf));
3574                 BUG();
3575         }
3576
3577         if (slot != nritems) {
3578                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3579
3580                 if (old_data < data_end) {
3581                         btrfs_print_leaf(root, leaf);
3582                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3583                                slot, old_data, data_end);
3584                         BUG_ON(1);
3585                 }
3586                 /*
3587                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3588                  */
3589                 /* first correct the data pointers */
3590                 for (i = slot; i < nritems; i++) {
3591                         u32 ioff;
3592
3593                         item = btrfs_item_nr(leaf, i);
3594                         ioff = btrfs_item_offset(leaf, item);
3595                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3596                 }
3597                 /* shift the items */
3598                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3599                               btrfs_item_nr_offset(slot),
3600                               (nritems - slot) * sizeof(struct btrfs_item));
3601
3602                 /* shift the data */
3603                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3604                               data_end - total_data, btrfs_leaf_data(leaf) +
3605                               data_end, old_data - data_end);
3606                 data_end = old_data;
3607         }
3608
3609         /* setup the item for the new data */
3610         for (i = 0; i < nr; i++) {
3611                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3612                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3613                 item = btrfs_item_nr(leaf, slot + i);
3614                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3615                 data_end -= data_size[i];
3616                 btrfs_set_item_size(leaf, item, data_size[i]);
3617         }
3618
3619         btrfs_set_header_nritems(leaf, nritems + nr);
3620
3621         ret = 0;
3622         if (slot == 0) {
3623                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3624                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3625         }
3626         btrfs_unlock_up_safe(path, 1);
3627         btrfs_mark_buffer_dirty(leaf);
3628
3629         if (btrfs_leaf_free_space(root, leaf) < 0) {
3630                 btrfs_print_leaf(root, leaf);
3631                 BUG();
3632         }
3633         return ret;
3634 }
3635
3636 /*
3637  * Given a key and some data, insert items into the tree.
3638  * This does all the path init required, making room in the tree if needed.
3639  */
3640 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3641                             struct btrfs_root *root,
3642                             struct btrfs_path *path,
3643                             struct btrfs_key *cpu_key, u32 *data_size,
3644                             int nr)
3645 {
3646         int ret = 0;
3647         int slot;
3648         int i;
3649         u32 total_size = 0;
3650         u32 total_data = 0;
3651
3652         for (i = 0; i < nr; i++)
3653                 total_data += data_size[i];
3654
3655         total_size = total_data + (nr * sizeof(struct btrfs_item));
3656         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3657         if (ret == 0)
3658                 return -EEXIST;
3659         if (ret < 0)
3660                 goto out;
3661
3662         slot = path->slots[0];
3663         BUG_ON(slot < 0);
3664
3665         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3666                                total_data, total_size, nr);
3667
3668 out:
3669         return ret;
3670 }
3671
3672 /*
3673  * Given a key and some data, insert an item into the tree.
3674  * This does all the path init required, making room in the tree if needed.
3675  */
3676 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3677                       *root, struct btrfs_key *cpu_key, void *data, u32
3678                       data_size)
3679 {
3680         int ret = 0;
3681         struct btrfs_path *path;
3682         struct extent_buffer *leaf;
3683         unsigned long ptr;
3684
3685         path = btrfs_alloc_path();
3686         if (!path)
3687                 return -ENOMEM;
3688         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3689         if (!ret) {
3690                 leaf = path->nodes[0];
3691                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3692                 write_extent_buffer(leaf, data, ptr, data_size);
3693                 btrfs_mark_buffer_dirty(leaf);
3694         }
3695         btrfs_free_path(path);
3696         return ret;
3697 }
3698
3699 /*
3700  * delete the pointer from a given node.
3701  *
3702  * the tree should have been previously balanced so the deletion does not
3703  * empty a node.
3704  */
3705 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3706                    struct btrfs_path *path, int level, int slot)
3707 {
3708         struct extent_buffer *parent = path->nodes[level];
3709         u32 nritems;
3710         int ret = 0;
3711         int wret;
3712
3713         nritems = btrfs_header_nritems(parent);
3714         if (slot != nritems - 1) {
3715                 memmove_extent_buffer(parent,
3716                               btrfs_node_key_ptr_offset(slot),
3717                               btrfs_node_key_ptr_offset(slot + 1),
3718                               sizeof(struct btrfs_key_ptr) *
3719                               (nritems - slot - 1));
3720         }
3721         nritems--;
3722         btrfs_set_header_nritems(parent, nritems);
3723         if (nritems == 0 && parent == root->node) {
3724                 BUG_ON(btrfs_header_level(root->node) != 1);
3725                 /* just turn the root into a leaf and break */
3726                 btrfs_set_header_level(root->node, 0);
3727         } else if (slot == 0) {
3728                 struct btrfs_disk_key disk_key;
3729
3730                 btrfs_node_key(parent, &disk_key, 0);
3731                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3732                 if (wret)
3733                         ret = wret;
3734         }
3735         btrfs_mark_buffer_dirty(parent);
3736         return ret;
3737 }
3738
3739 /*
3740  * a helper function to delete the leaf pointed to by path->slots[1] and
3741  * path->nodes[1].
3742  *
3743  * This deletes the pointer in path->nodes[1] and frees the leaf
3744  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3745  *
3746  * The path must have already been setup for deleting the leaf, including
3747  * all the proper balancing.  path->nodes[1] must be locked.
3748  */
3749 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3750                                    struct btrfs_root *root,
3751                                    struct btrfs_path *path,
3752                                    struct extent_buffer *leaf)
3753 {
3754         int ret;
3755
3756         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3757         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3758         if (ret)
3759                 return ret;
3760
3761         /*
3762          * btrfs_free_extent is expensive, we want to make sure we
3763          * aren't holding any locks when we call it
3764          */
3765         btrfs_unlock_up_safe(path, 0);
3766
3767         root_sub_used(root, leaf->len);
3768
3769         btrfs_free_tree_block(trans, root, leaf, 0, 1);
3770         return 0;
3771 }
3772 /*
3773  * delete the item at the leaf level in path.  If that empties
3774  * the leaf, remove it from the tree
3775  */
3776 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3777                     struct btrfs_path *path, int slot, int nr)
3778 {
3779         struct extent_buffer *leaf;
3780         struct btrfs_item *item;
3781         int last_off;
3782         int dsize = 0;
3783         int ret = 0;
3784         int wret;
3785         int i;
3786         u32 nritems;
3787
3788         leaf = path->nodes[0];
3789         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3790
3791         for (i = 0; i < nr; i++)
3792                 dsize += btrfs_item_size_nr(leaf, slot + i);
3793
3794         nritems = btrfs_header_nritems(leaf);
3795
3796         if (slot + nr != nritems) {
3797                 int data_end = leaf_data_end(root, leaf);
3798
3799                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3800                               data_end + dsize,
3801                               btrfs_leaf_data(leaf) + data_end,
3802                               last_off - data_end);
3803
3804                 for (i = slot + nr; i < nritems; i++) {
3805                         u32 ioff;
3806
3807                         item = btrfs_item_nr(leaf, i);
3808                         ioff = btrfs_item_offset(leaf, item);
3809                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3810                 }
3811
3812                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3813                               btrfs_item_nr_offset(slot + nr),
3814                               sizeof(struct btrfs_item) *
3815                               (nritems - slot - nr));
3816         }
3817         btrfs_set_header_nritems(leaf, nritems - nr);
3818         nritems -= nr;
3819
3820         /* delete the leaf if we've emptied it */
3821         if (nritems == 0) {
3822                 if (leaf == root->node) {
3823                         btrfs_set_header_level(leaf, 0);
3824                 } else {
3825                         btrfs_set_path_blocking(path);
3826                         clean_tree_block(trans, root, leaf);
3827                         ret = btrfs_del_leaf(trans, root, path, leaf);
3828                         BUG_ON(ret);
3829                 }
3830         } else {
3831                 int used = leaf_space_used(leaf, 0, nritems);
3832                 if (slot == 0) {
3833                         struct btrfs_disk_key disk_key;
3834
3835                         btrfs_item_key(leaf, &disk_key, 0);
3836                         wret = fixup_low_keys(trans, root, path,
3837                                               &disk_key, 1);
3838                         if (wret)
3839                                 ret = wret;
3840                 }
3841
3842                 /* delete the leaf if it is mostly empty */
3843                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3844                         /* push_leaf_left fixes the path.
3845                          * make sure the path still points to our leaf
3846                          * for possible call to del_ptr below
3847                          */
3848                         slot = path->slots[1];
3849                         extent_buffer_get(leaf);
3850
3851                         btrfs_set_path_blocking(path);
3852                         wret = push_leaf_left(trans, root, path, 1, 1,
3853                                               1, (u32)-1);
3854                         if (wret < 0 && wret != -ENOSPC)
3855                                 ret = wret;
3856
3857                         if (path->nodes[0] == leaf &&
3858                             btrfs_header_nritems(leaf)) {
3859                                 wret = push_leaf_right(trans, root, path, 1,
3860                                                        1, 1, 0);
3861                                 if (wret < 0 && wret != -ENOSPC)
3862                                         ret = wret;
3863                         }
3864
3865                         if (btrfs_header_nritems(leaf) == 0) {
3866                                 path->slots[1] = slot;
3867                                 ret = btrfs_del_leaf(trans, root, path, leaf);
3868                                 BUG_ON(ret);
3869                                 free_extent_buffer(leaf);
3870                         } else {
3871                                 /* if we're still in the path, make sure
3872                                  * we're dirty.  Otherwise, one of the
3873                                  * push_leaf functions must have already
3874                                  * dirtied this buffer
3875                                  */
3876                                 if (path->nodes[0] == leaf)
3877                                         btrfs_mark_buffer_dirty(leaf);
3878                                 free_extent_buffer(leaf);
3879                         }
3880                 } else {
3881                         btrfs_mark_buffer_dirty(leaf);
3882                 }
3883         }
3884         return ret;
3885 }
3886
3887 /*
3888  * search the tree again to find a leaf with lesser keys
3889  * returns 0 if it found something or 1 if there are no lesser leaves.
3890  * returns < 0 on io errors.
3891  *
3892  * This may release the path, and so you may lose any locks held at the
3893  * time you call it.
3894  */
3895 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3896 {
3897         struct btrfs_key key;
3898         struct btrfs_disk_key found_key;
3899         int ret;
3900
3901         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3902
3903         if (key.offset > 0)
3904                 key.offset--;
3905         else if (key.type > 0)
3906                 key.type--;
3907         else if (key.objectid > 0)
3908                 key.objectid--;
3909         else
3910                 return 1;
3911
3912         btrfs_release_path(path);
3913         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3914         if (ret < 0)
3915                 return ret;
3916         btrfs_item_key(path->nodes[0], &found_key, 0);
3917         ret = comp_keys(&found_key, &key);
3918         if (ret < 0)
3919                 return 0;
3920         return 1;
3921 }
3922
3923 /*
3924  * A helper function to walk down the tree starting at min_key, and looking
3925  * for nodes or leaves that are either in cache or have a minimum
3926  * transaction id.  This is used by the btree defrag code, and tree logging
3927  *
3928  * This does not cow, but it does stuff the starting key it finds back
3929  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3930  * key and get a writable path.
3931  *
3932  * This does lock as it descends, and path->keep_locks should be set
3933  * to 1 by the caller.
3934  *
3935  * This honors path->lowest_level to prevent descent past a given level
3936  * of the tree.
3937  *
3938  * min_trans indicates the oldest transaction that you are interested
3939  * in walking through.  Any nodes or leaves older than min_trans are
3940  * skipped over (without reading them).
3941  *
3942  * returns zero if something useful was found, < 0 on error and 1 if there
3943  * was nothing in the tree that matched the search criteria.
3944  */
3945 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3946                          struct btrfs_key *max_key,
3947                          struct btrfs_path *path, int cache_only,
3948                          u64 min_trans)
3949 {
3950         struct extent_buffer *cur;
3951         struct btrfs_key found_key;
3952         int slot;
3953         int sret;
3954         u32 nritems;
3955         int level;
3956         int ret = 1;
3957
3958         WARN_ON(!path->keep_locks);
3959 again:
3960         cur = btrfs_read_lock_root_node(root);
3961         level = btrfs_header_level(cur);
3962         WARN_ON(path->nodes[level]);
3963         path->nodes[level] = cur;
3964         path->locks[level] = BTRFS_READ_LOCK;
3965
3966         if (btrfs_header_generation(cur) < min_trans) {
3967                 ret = 1;
3968                 goto out;
3969         }
3970         while (1) {
3971                 nritems = btrfs_header_nritems(cur);
3972                 level = btrfs_header_level(cur);
3973                 sret = bin_search(cur, min_key, level, &slot);
3974
3975                 /* at the lowest level, we're done, setup the path and exit */
3976                 if (level == path->lowest_level) {
3977                         if (slot >= nritems)
3978                                 goto find_next_key;
3979                         ret = 0;
3980                         path->slots[level] = slot;
3981                         btrfs_item_key_to_cpu(cur, &found_key, slot);
3982                         goto out;
3983                 }
3984                 if (sret && slot > 0)
3985                         slot--;
3986                 /*
3987                  * check this node pointer against the cache_only and
3988                  * min_trans parameters.  If it isn't in cache or is too
3989                  * old, skip to the next one.
3990                  */
3991                 while (slot < nritems) {
3992                         u64 blockptr;
3993                         u64 gen;
3994                         struct extent_buffer *tmp;
3995                         struct btrfs_disk_key disk_key;
3996
3997                         blockptr = btrfs_node_blockptr(cur, slot);
3998                         gen = btrfs_node_ptr_generation(cur, slot);
3999                         if (gen < min_trans) {
4000                                 slot++;
4001                                 continue;
4002                         }
4003                         if (!cache_only)
4004                                 break;
4005
4006                         if (max_key) {
4007                                 btrfs_node_key(cur, &disk_key, slot);
4008                                 if (comp_keys(&disk_key, max_key) >= 0) {
4009                                         ret = 1;
4010                                         goto out;
4011                                 }
4012                         }
4013
4014                         tmp = btrfs_find_tree_block(root, blockptr,
4015                                             btrfs_level_size(root, level - 1));
4016
4017                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4018                                 free_extent_buffer(tmp);
4019                                 break;
4020                         }
4021                         if (tmp)
4022                                 free_extent_buffer(tmp);
4023                         slot++;
4024                 }
4025 find_next_key:
4026                 /*
4027                  * we didn't find a candidate key in this node, walk forward
4028                  * and find another one
4029                  */
4030                 if (slot >= nritems) {
4031                         path->slots[level] = slot;
4032                         btrfs_set_path_blocking(path);
4033                         sret = btrfs_find_next_key(root, path, min_key, level,
4034                                                   cache_only, min_trans);
4035                         if (sret == 0) {
4036                                 btrfs_release_path(path);
4037                                 goto again;
4038                         } else {
4039                                 goto out;
4040                         }
4041                 }
4042                 /* save our key for returning back */
4043                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4044                 path->slots[level] = slot;
4045                 if (level == path->lowest_level) {
4046                         ret = 0;
4047                         unlock_up(path, level, 1);
4048                         goto out;
4049                 }
4050                 btrfs_set_path_blocking(path);
4051                 cur = read_node_slot(root, cur, slot);
4052                 BUG_ON(!cur);
4053
4054                 btrfs_tree_read_lock(cur);
4055
4056                 path->locks[level - 1] = BTRFS_READ_LOCK;
4057                 path->nodes[level - 1] = cur;
4058                 unlock_up(path, level, 1);
4059                 btrfs_clear_path_blocking(path, NULL, 0);
4060         }
4061 out:
4062         if (ret == 0)
4063                 memcpy(min_key, &found_key, sizeof(found_key));
4064         btrfs_set_path_blocking(path);
4065         return ret;
4066 }
4067
4068 /*
4069  * this is similar to btrfs_next_leaf, but does not try to preserve
4070  * and fixup the path.  It looks for and returns the next key in the
4071  * tree based on the current path and the cache_only and min_trans
4072  * parameters.
4073  *
4074  * 0 is returned if another key is found, < 0 if there are any errors
4075  * and 1 is returned if there are no higher keys in the tree
4076  *
4077  * path->keep_locks should be set to 1 on the search made before
4078  * calling this function.
4079  */
4080 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4081                         struct btrfs_key *key, int level,
4082                         int cache_only, u64 min_trans)
4083 {
4084         int slot;
4085         struct extent_buffer *c;
4086
4087         WARN_ON(!path->keep_locks);
4088         while (level < BTRFS_MAX_LEVEL) {
4089                 if (!path->nodes[level])
4090                         return 1;
4091
4092                 slot = path->slots[level] + 1;
4093                 c = path->nodes[level];
4094 next:
4095                 if (slot >= btrfs_header_nritems(c)) {
4096                         int ret;
4097                         int orig_lowest;
4098                         struct btrfs_key cur_key;
4099                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4100                             !path->nodes[level + 1])
4101                                 return 1;
4102
4103                         if (path->locks[level + 1]) {
4104                                 level++;
4105                                 continue;
4106                         }
4107
4108                         slot = btrfs_header_nritems(c) - 1;
4109                         if (level == 0)
4110                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4111                         else
4112                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4113
4114                         orig_lowest = path->lowest_level;
4115                         btrfs_release_path(path);
4116                         path->lowest_level = level;
4117                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4118                                                 0, 0);
4119                         path->lowest_level = orig_lowest;
4120                         if (ret < 0)
4121                                 return ret;
4122
4123                         c = path->nodes[level];
4124                         slot = path->slots[level];
4125                         if (ret == 0)
4126                                 slot++;
4127                         goto next;
4128                 }
4129
4130                 if (level == 0)
4131                         btrfs_item_key_to_cpu(c, key, slot);
4132                 else {
4133                         u64 blockptr = btrfs_node_blockptr(c, slot);
4134                         u64 gen = btrfs_node_ptr_generation(c, slot);
4135
4136                         if (cache_only) {
4137                                 struct extent_buffer *cur;
4138                                 cur = btrfs_find_tree_block(root, blockptr,
4139                                             btrfs_level_size(root, level - 1));
4140                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4141                                         slot++;
4142                                         if (cur)
4143                                                 free_extent_buffer(cur);
4144                                         goto next;
4145                                 }
4146                                 free_extent_buffer(cur);
4147                         }
4148                         if (gen < min_trans) {
4149                                 slot++;
4150                                 goto next;
4151                         }
4152                         btrfs_node_key_to_cpu(c, key, slot);
4153                 }
4154                 return 0;
4155         }
4156         return 1;
4157 }
4158
4159 /*
4160  * search the tree again to find a leaf with greater keys
4161  * returns 0 if it found something or 1 if there are no greater leaves.
4162  * returns < 0 on io errors.
4163  */
4164 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4165 {
4166         int slot;
4167         int level;
4168         struct extent_buffer *c;
4169         struct extent_buffer *next;
4170         struct btrfs_key key;
4171         u32 nritems;
4172         int ret;
4173         int old_spinning = path->leave_spinning;
4174         int next_rw_lock = 0;
4175
4176         nritems = btrfs_header_nritems(path->nodes[0]);
4177         if (nritems == 0)
4178                 return 1;
4179
4180         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4181 again:
4182         level = 1;
4183         next = NULL;
4184         next_rw_lock = 0;
4185         btrfs_release_path(path);
4186
4187         path->keep_locks = 1;
4188         path->leave_spinning = 1;
4189
4190         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4191         path->keep_locks = 0;
4192
4193         if (ret < 0)
4194                 return ret;
4195
4196         nritems = btrfs_header_nritems(path->nodes[0]);
4197         /*
4198          * by releasing the path above we dropped all our locks.  A balance
4199          * could have added more items next to the key that used to be
4200          * at the very end of the block.  So, check again here and
4201          * advance the path if there are now more items available.
4202          */
4203         if (nritems > 0 && path->slots[0] < nritems - 1) {
4204                 if (ret == 0)
4205                         path->slots[0]++;
4206                 ret = 0;
4207                 goto done;
4208         }
4209
4210         while (level < BTRFS_MAX_LEVEL) {
4211                 if (!path->nodes[level]) {
4212                         ret = 1;
4213                         goto done;
4214                 }
4215
4216                 slot = path->slots[level] + 1;
4217                 c = path->nodes[level];
4218                 if (slot >= btrfs_header_nritems(c)) {
4219                         level++;
4220                         if (level == BTRFS_MAX_LEVEL) {
4221                                 ret = 1;
4222                                 goto done;
4223                         }
4224                         continue;
4225                 }
4226
4227                 if (next) {
4228                         btrfs_tree_unlock_rw(next, next_rw_lock);
4229                         free_extent_buffer(next);
4230                 }
4231
4232                 next = c;
4233                 next_rw_lock = path->locks[level];
4234                 ret = read_block_for_search(NULL, root, path, &next, level,
4235                                             slot, &key);
4236                 if (ret == -EAGAIN)
4237                         goto again;
4238
4239                 if (ret < 0) {
4240                         btrfs_release_path(path);
4241                         goto done;
4242                 }
4243
4244                 if (!path->skip_locking) {
4245                         ret = btrfs_try_tree_read_lock(next);
4246                         if (!ret) {
4247                                 btrfs_set_path_blocking(path);
4248                                 btrfs_tree_read_lock(next);
4249                                 btrfs_clear_path_blocking(path, next,
4250                                                           BTRFS_READ_LOCK);
4251                         }
4252                         next_rw_lock = BTRFS_READ_LOCK;
4253                 }
4254                 break;
4255         }
4256         path->slots[level] = slot;
4257         while (1) {
4258                 level--;
4259                 c = path->nodes[level];
4260                 if (path->locks[level])
4261                         btrfs_tree_unlock_rw(c, path->locks[level]);
4262
4263                 free_extent_buffer(c);
4264                 path->nodes[level] = next;
4265                 path->slots[level] = 0;
4266                 if (!path->skip_locking)
4267                         path->locks[level] = next_rw_lock;
4268                 if (!level)
4269                         break;
4270
4271                 ret = read_block_for_search(NULL, root, path, &next, level,
4272                                             0, &key);
4273                 if (ret == -EAGAIN)
4274                         goto again;
4275
4276                 if (ret < 0) {
4277                         btrfs_release_path(path);
4278                         goto done;
4279                 }
4280
4281                 if (!path->skip_locking) {
4282                         ret = btrfs_try_tree_read_lock(next);
4283                         if (!ret) {
4284                                 btrfs_set_path_blocking(path);
4285                                 btrfs_tree_read_lock(next);
4286                                 btrfs_clear_path_blocking(path, next,
4287                                                           BTRFS_READ_LOCK);
4288                         }
4289                         next_rw_lock = BTRFS_READ_LOCK;
4290                 }
4291         }
4292         ret = 0;
4293 done:
4294         unlock_up(path, 0, 1);
4295         path->leave_spinning = old_spinning;
4296         if (!old_spinning)
4297                 btrfs_set_path_blocking(path);
4298
4299         return ret;
4300 }
4301
4302 /*
4303  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4304  * searching until it gets past min_objectid or finds an item of 'type'
4305  *
4306  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4307  */
4308 int btrfs_previous_item(struct btrfs_root *root,
4309                         struct btrfs_path *path, u64 min_objectid,
4310                         int type)
4311 {
4312         struct btrfs_key found_key;
4313         struct extent_buffer *leaf;
4314         u32 nritems;
4315         int ret;
4316
4317         while (1) {
4318                 if (path->slots[0] == 0) {
4319                         btrfs_set_path_blocking(path);
4320                         ret = btrfs_prev_leaf(root, path);
4321                         if (ret != 0)
4322                                 return ret;
4323                 } else {
4324                         path->slots[0]--;
4325                 }
4326                 leaf = path->nodes[0];
4327                 nritems = btrfs_header_nritems(leaf);
4328                 if (nritems == 0)
4329                         return 1;
4330                 if (path->slots[0] == nritems)
4331                         path->slots[0]--;
4332
4333                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4334                 if (found_key.objectid < min_objectid)
4335                         break;
4336                 if (found_key.type == type)
4337                         return 0;
4338                 if (found_key.objectid == min_objectid &&
4339                     found_key.type < type)
4340                         break;
4341         }
4342         return 1;
4343 }