Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[pandora-kernel.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45
46 struct compressed_bio {
47         /* number of bios pending for this compressed extent */
48         atomic_t pending_bios;
49
50         /* the pages with the compressed data on them */
51         struct page **compressed_pages;
52
53         /* inode that owns this data */
54         struct inode *inode;
55
56         /* starting offset in the inode for our pages */
57         u64 start;
58
59         /* number of bytes in the inode we're working on */
60         unsigned long len;
61
62         /* number of bytes on disk */
63         unsigned long compressed_len;
64
65         /* the compression algorithm for this bio */
66         int compress_type;
67
68         /* number of compressed pages in the array */
69         unsigned long nr_pages;
70
71         /* IO errors */
72         int errors;
73         int mirror_num;
74
75         /* for reads, this is the bio we are copying the data into */
76         struct bio *orig_bio;
77
78         /*
79          * the start of a variable length array of checksums only
80          * used by reads
81          */
82         u32 sums;
83 };
84
85 static inline int compressed_bio_size(struct btrfs_root *root,
86                                       unsigned long disk_size)
87 {
88         u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89         return sizeof(struct compressed_bio) +
90                 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
91                 csum_size;
92 }
93
94 static struct bio *compressed_bio_alloc(struct block_device *bdev,
95                                         u64 first_byte, gfp_t gfp_flags)
96 {
97         int nr_vecs;
98
99         nr_vecs = bio_get_nr_vecs(bdev);
100         return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
101 }
102
103 static int check_compressed_csum(struct inode *inode,
104                                  struct compressed_bio *cb,
105                                  u64 disk_start)
106 {
107         int ret;
108         struct btrfs_root *root = BTRFS_I(inode)->root;
109         struct page *page;
110         unsigned long i;
111         char *kaddr;
112         u32 csum;
113         u32 *cb_sum = &cb->sums;
114
115         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116                 return 0;
117
118         for (i = 0; i < cb->nr_pages; i++) {
119                 page = cb->compressed_pages[i];
120                 csum = ~(u32)0;
121
122                 kaddr = kmap_atomic(page, KM_USER0);
123                 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124                 btrfs_csum_final(csum, (char *)&csum);
125                 kunmap_atomic(kaddr, KM_USER0);
126
127                 if (csum != *cb_sum) {
128                         printk(KERN_INFO "btrfs csum failed ino %llu "
129                                "extent %llu csum %u "
130                                "wanted %u mirror %d\n",
131                                (unsigned long long)btrfs_ino(inode),
132                                (unsigned long long)disk_start,
133                                csum, *cb_sum, cb->mirror_num);
134                         ret = -EIO;
135                         goto fail;
136                 }
137                 cb_sum++;
138
139         }
140         ret = 0;
141 fail:
142         return ret;
143 }
144
145 /* when we finish reading compressed pages from the disk, we
146  * decompress them and then run the bio end_io routines on the
147  * decompressed pages (in the inode address space).
148  *
149  * This allows the checksumming and other IO error handling routines
150  * to work normally
151  *
152  * The compressed pages are freed here, and it must be run
153  * in process context
154  */
155 static void end_compressed_bio_read(struct bio *bio, int err)
156 {
157         struct compressed_bio *cb = bio->bi_private;
158         struct inode *inode;
159         struct page *page;
160         unsigned long index;
161         int ret;
162
163         if (err)
164                 cb->errors = 1;
165
166         /* if there are more bios still pending for this compressed
167          * extent, just exit
168          */
169         if (!atomic_dec_and_test(&cb->pending_bios))
170                 goto out;
171
172         inode = cb->inode;
173         ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
174         if (ret)
175                 goto csum_failed;
176
177         /* ok, we're the last bio for this extent, lets start
178          * the decompression.
179          */
180         ret = btrfs_decompress_biovec(cb->compress_type,
181                                       cb->compressed_pages,
182                                       cb->start,
183                                       cb->orig_bio->bi_io_vec,
184                                       cb->orig_bio->bi_vcnt,
185                                       cb->compressed_len);
186 csum_failed:
187         if (ret)
188                 cb->errors = 1;
189
190         /* release the compressed pages */
191         index = 0;
192         for (index = 0; index < cb->nr_pages; index++) {
193                 page = cb->compressed_pages[index];
194                 page->mapping = NULL;
195                 page_cache_release(page);
196         }
197
198         /* do io completion on the original bio */
199         if (cb->errors) {
200                 bio_io_error(cb->orig_bio);
201         } else {
202                 int bio_index = 0;
203                 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
204
205                 /*
206                  * we have verified the checksum already, set page
207                  * checked so the end_io handlers know about it
208                  */
209                 while (bio_index < cb->orig_bio->bi_vcnt) {
210                         SetPageChecked(bvec->bv_page);
211                         bvec++;
212                         bio_index++;
213                 }
214                 bio_endio(cb->orig_bio, 0);
215         }
216
217         /* finally free the cb struct */
218         kfree(cb->compressed_pages);
219         kfree(cb);
220 out:
221         bio_put(bio);
222 }
223
224 /*
225  * Clear the writeback bits on all of the file
226  * pages for a compressed write
227  */
228 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
229                                              unsigned long ram_size)
230 {
231         unsigned long index = start >> PAGE_CACHE_SHIFT;
232         unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
233         struct page *pages[16];
234         unsigned long nr_pages = end_index - index + 1;
235         int i;
236         int ret;
237
238         while (nr_pages > 0) {
239                 ret = find_get_pages_contig(inode->i_mapping, index,
240                                      min_t(unsigned long,
241                                      nr_pages, ARRAY_SIZE(pages)), pages);
242                 if (ret == 0) {
243                         nr_pages -= 1;
244                         index += 1;
245                         continue;
246                 }
247                 for (i = 0; i < ret; i++) {
248                         end_page_writeback(pages[i]);
249                         page_cache_release(pages[i]);
250                 }
251                 nr_pages -= ret;
252                 index += ret;
253         }
254         /* the inode may be gone now */
255         return 0;
256 }
257
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio, int err)
267 {
268         struct extent_io_tree *tree;
269         struct compressed_bio *cb = bio->bi_private;
270         struct inode *inode;
271         struct page *page;
272         unsigned long index;
273
274         if (err)
275                 cb->errors = 1;
276
277         /* if there are more bios still pending for this compressed
278          * extent, just exit
279          */
280         if (!atomic_dec_and_test(&cb->pending_bios))
281                 goto out;
282
283         /* ok, we're the last bio for this extent, step one is to
284          * call back into the FS and do all the end_io operations
285          */
286         inode = cb->inode;
287         tree = &BTRFS_I(inode)->io_tree;
288         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290                                          cb->start,
291                                          cb->start + cb->len - 1,
292                                          NULL, 1);
293         cb->compressed_pages[0]->mapping = NULL;
294
295         end_compressed_writeback(inode, cb->start, cb->len);
296         /* note, our inode could be gone now */
297
298         /*
299          * release the compressed pages, these came from alloc_page and
300          * are not attached to the inode at all
301          */
302         index = 0;
303         for (index = 0; index < cb->nr_pages; index++) {
304                 page = cb->compressed_pages[index];
305                 page->mapping = NULL;
306                 page_cache_release(page);
307         }
308
309         /* finally free the cb struct */
310         kfree(cb->compressed_pages);
311         kfree(cb);
312 out:
313         bio_put(bio);
314 }
315
316 /*
317  * worker function to build and submit bios for previously compressed pages.
318  * The corresponding pages in the inode should be marked for writeback
319  * and the compressed pages should have a reference on them for dropping
320  * when the IO is complete.
321  *
322  * This also checksums the file bytes and gets things ready for
323  * the end io hooks.
324  */
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326                                  unsigned long len, u64 disk_start,
327                                  unsigned long compressed_len,
328                                  struct page **compressed_pages,
329                                  unsigned long nr_pages)
330 {
331         struct bio *bio = NULL;
332         struct btrfs_root *root = BTRFS_I(inode)->root;
333         struct compressed_bio *cb;
334         unsigned long bytes_left;
335         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336         int pg_index = 0;
337         struct page *page;
338         u64 first_byte = disk_start;
339         struct block_device *bdev;
340         int ret;
341
342         WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
343         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
344         if (!cb)
345                 return -ENOMEM;
346         atomic_set(&cb->pending_bios, 0);
347         cb->errors = 0;
348         cb->inode = inode;
349         cb->start = start;
350         cb->len = len;
351         cb->mirror_num = 0;
352         cb->compressed_pages = compressed_pages;
353         cb->compressed_len = compressed_len;
354         cb->orig_bio = NULL;
355         cb->nr_pages = nr_pages;
356
357         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
358
359         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
360         if(!bio) {
361                 kfree(cb);
362                 return -ENOMEM;
363         }
364         bio->bi_private = cb;
365         bio->bi_end_io = end_compressed_bio_write;
366         atomic_inc(&cb->pending_bios);
367
368         /* create and submit bios for the compressed pages */
369         bytes_left = compressed_len;
370         for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
371                 page = compressed_pages[pg_index];
372                 page->mapping = inode->i_mapping;
373                 if (bio->bi_size)
374                         ret = io_tree->ops->merge_bio_hook(page, 0,
375                                                            PAGE_CACHE_SIZE,
376                                                            bio, 0);
377                 else
378                         ret = 0;
379
380                 page->mapping = NULL;
381                 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
382                     PAGE_CACHE_SIZE) {
383                         bio_get(bio);
384
385                         /*
386                          * inc the count before we submit the bio so
387                          * we know the end IO handler won't happen before
388                          * we inc the count.  Otherwise, the cb might get
389                          * freed before we're done setting it up
390                          */
391                         atomic_inc(&cb->pending_bios);
392                         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393                         BUG_ON(ret);
394
395                         ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
396                         BUG_ON(ret);
397
398                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
399                         BUG_ON(ret);
400
401                         bio_put(bio);
402
403                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
404                         bio->bi_private = cb;
405                         bio->bi_end_io = end_compressed_bio_write;
406                         bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
407                 }
408                 if (bytes_left < PAGE_CACHE_SIZE) {
409                         printk("bytes left %lu compress len %lu nr %lu\n",
410                                bytes_left, cb->compressed_len, cb->nr_pages);
411                 }
412                 bytes_left -= PAGE_CACHE_SIZE;
413                 first_byte += PAGE_CACHE_SIZE;
414                 cond_resched();
415         }
416         bio_get(bio);
417
418         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
419         BUG_ON(ret);
420
421         ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
422         BUG_ON(ret);
423
424         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
425         BUG_ON(ret);
426
427         bio_put(bio);
428         return 0;
429 }
430
431 static noinline int add_ra_bio_pages(struct inode *inode,
432                                      u64 compressed_end,
433                                      struct compressed_bio *cb)
434 {
435         unsigned long end_index;
436         unsigned long pg_index;
437         u64 last_offset;
438         u64 isize = i_size_read(inode);
439         int ret;
440         struct page *page;
441         unsigned long nr_pages = 0;
442         struct extent_map *em;
443         struct address_space *mapping = inode->i_mapping;
444         struct extent_map_tree *em_tree;
445         struct extent_io_tree *tree;
446         u64 end;
447         int misses = 0;
448
449         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
450         last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
451         em_tree = &BTRFS_I(inode)->extent_tree;
452         tree = &BTRFS_I(inode)->io_tree;
453
454         if (isize == 0)
455                 return 0;
456
457         end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
458
459         while (last_offset < compressed_end) {
460                 pg_index = last_offset >> PAGE_CACHE_SHIFT;
461
462                 if (pg_index > end_index)
463                         break;
464
465                 rcu_read_lock();
466                 page = radix_tree_lookup(&mapping->page_tree, pg_index);
467                 rcu_read_unlock();
468                 if (page) {
469                         misses++;
470                         if (misses > 4)
471                                 break;
472                         goto next;
473                 }
474
475                 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
476                                                                 ~__GFP_FS);
477                 if (!page)
478                         break;
479
480                 if (add_to_page_cache_lru(page, mapping, pg_index,
481                                                                 GFP_NOFS)) {
482                         page_cache_release(page);
483                         goto next;
484                 }
485
486                 end = last_offset + PAGE_CACHE_SIZE - 1;
487                 /*
488                  * at this point, we have a locked page in the page cache
489                  * for these bytes in the file.  But, we have to make
490                  * sure they map to this compressed extent on disk.
491                  */
492                 set_page_extent_mapped(page);
493                 lock_extent(tree, last_offset, end, GFP_NOFS);
494                 read_lock(&em_tree->lock);
495                 em = lookup_extent_mapping(em_tree, last_offset,
496                                            PAGE_CACHE_SIZE);
497                 read_unlock(&em_tree->lock);
498
499                 if (!em || last_offset < em->start ||
500                     (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
501                     (em->block_start >> 9) != cb->orig_bio->bi_sector) {
502                         free_extent_map(em);
503                         unlock_extent(tree, last_offset, end, GFP_NOFS);
504                         unlock_page(page);
505                         page_cache_release(page);
506                         break;
507                 }
508                 free_extent_map(em);
509
510                 if (page->index == end_index) {
511                         char *userpage;
512                         size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
513
514                         if (zero_offset) {
515                                 int zeros;
516                                 zeros = PAGE_CACHE_SIZE - zero_offset;
517                                 userpage = kmap_atomic(page, KM_USER0);
518                                 memset(userpage + zero_offset, 0, zeros);
519                                 flush_dcache_page(page);
520                                 kunmap_atomic(userpage, KM_USER0);
521                         }
522                 }
523
524                 ret = bio_add_page(cb->orig_bio, page,
525                                    PAGE_CACHE_SIZE, 0);
526
527                 if (ret == PAGE_CACHE_SIZE) {
528                         nr_pages++;
529                         page_cache_release(page);
530                 } else {
531                         unlock_extent(tree, last_offset, end, GFP_NOFS);
532                         unlock_page(page);
533                         page_cache_release(page);
534                         break;
535                 }
536 next:
537                 last_offset += PAGE_CACHE_SIZE;
538         }
539         return 0;
540 }
541
542 /*
543  * for a compressed read, the bio we get passed has all the inode pages
544  * in it.  We don't actually do IO on those pages but allocate new ones
545  * to hold the compressed pages on disk.
546  *
547  * bio->bi_sector points to the compressed extent on disk
548  * bio->bi_io_vec points to all of the inode pages
549  * bio->bi_vcnt is a count of pages
550  *
551  * After the compressed pages are read, we copy the bytes into the
552  * bio we were passed and then call the bio end_io calls
553  */
554 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
555                                  int mirror_num, unsigned long bio_flags)
556 {
557         struct extent_io_tree *tree;
558         struct extent_map_tree *em_tree;
559         struct compressed_bio *cb;
560         struct btrfs_root *root = BTRFS_I(inode)->root;
561         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
562         unsigned long compressed_len;
563         unsigned long nr_pages;
564         unsigned long pg_index;
565         struct page *page;
566         struct block_device *bdev;
567         struct bio *comp_bio;
568         u64 cur_disk_byte = (u64)bio->bi_sector << 9;
569         u64 em_len;
570         u64 em_start;
571         struct extent_map *em;
572         int ret = -ENOMEM;
573         u32 *sums;
574
575         tree = &BTRFS_I(inode)->io_tree;
576         em_tree = &BTRFS_I(inode)->extent_tree;
577
578         /* we need the actual starting offset of this extent in the file */
579         read_lock(&em_tree->lock);
580         em = lookup_extent_mapping(em_tree,
581                                    page_offset(bio->bi_io_vec->bv_page),
582                                    PAGE_CACHE_SIZE);
583         read_unlock(&em_tree->lock);
584
585         compressed_len = em->block_len;
586         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
587         if (!cb)
588                 goto out;
589
590         atomic_set(&cb->pending_bios, 0);
591         cb->errors = 0;
592         cb->inode = inode;
593         cb->mirror_num = mirror_num;
594         sums = &cb->sums;
595
596         cb->start = em->orig_start;
597         em_len = em->len;
598         em_start = em->start;
599
600         free_extent_map(em);
601         em = NULL;
602
603         cb->len = uncompressed_len;
604         cb->compressed_len = compressed_len;
605         cb->compress_type = extent_compress_type(bio_flags);
606         cb->orig_bio = bio;
607
608         nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
609                                  PAGE_CACHE_SIZE;
610         cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
611                                        GFP_NOFS);
612         if (!cb->compressed_pages)
613                 goto fail1;
614
615         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
616
617         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
618                 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
619                                                               __GFP_HIGHMEM);
620                 if (!cb->compressed_pages[pg_index])
621                         goto fail2;
622         }
623         cb->nr_pages = nr_pages;
624
625         add_ra_bio_pages(inode, em_start + em_len, cb);
626
627         /* include any pages we added in add_ra-bio_pages */
628         uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
629         cb->len = uncompressed_len;
630
631         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
632         if (!comp_bio)
633                 goto fail2;
634         comp_bio->bi_private = cb;
635         comp_bio->bi_end_io = end_compressed_bio_read;
636         atomic_inc(&cb->pending_bios);
637
638         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
639                 page = cb->compressed_pages[pg_index];
640                 page->mapping = inode->i_mapping;
641                 page->index = em_start >> PAGE_CACHE_SHIFT;
642
643                 if (comp_bio->bi_size)
644                         ret = tree->ops->merge_bio_hook(page, 0,
645                                                         PAGE_CACHE_SIZE,
646                                                         comp_bio, 0);
647                 else
648                         ret = 0;
649
650                 page->mapping = NULL;
651                 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
652                     PAGE_CACHE_SIZE) {
653                         bio_get(comp_bio);
654
655                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
656                         BUG_ON(ret);
657
658                         /*
659                          * inc the count before we submit the bio so
660                          * we know the end IO handler won't happen before
661                          * we inc the count.  Otherwise, the cb might get
662                          * freed before we're done setting it up
663                          */
664                         atomic_inc(&cb->pending_bios);
665
666                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
667                                 ret = btrfs_lookup_bio_sums(root, inode,
668                                                         comp_bio, sums);
669                                 BUG_ON(ret);
670                         }
671                         sums += (comp_bio->bi_size + root->sectorsize - 1) /
672                                 root->sectorsize;
673
674                         ret = btrfs_map_bio(root, READ, comp_bio,
675                                             mirror_num, 0);
676                         BUG_ON(ret);
677
678                         bio_put(comp_bio);
679
680                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
681                                                         GFP_NOFS);
682                         comp_bio->bi_private = cb;
683                         comp_bio->bi_end_io = end_compressed_bio_read;
684
685                         bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
686                 }
687                 cur_disk_byte += PAGE_CACHE_SIZE;
688         }
689         bio_get(comp_bio);
690
691         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
692         BUG_ON(ret);
693
694         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
695                 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
696                 BUG_ON(ret);
697         }
698
699         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
700         BUG_ON(ret);
701
702         bio_put(comp_bio);
703         return 0;
704
705 fail2:
706         for (pg_index = 0; pg_index < nr_pages; pg_index++)
707                 free_page((unsigned long)cb->compressed_pages[pg_index]);
708
709         kfree(cb->compressed_pages);
710 fail1:
711         kfree(cb);
712 out:
713         free_extent_map(em);
714         return ret;
715 }
716
717 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
718 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
719 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
720 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
721 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
722
723 struct btrfs_compress_op *btrfs_compress_op[] = {
724         &btrfs_zlib_compress,
725         &btrfs_lzo_compress,
726 };
727
728 int __init btrfs_init_compress(void)
729 {
730         int i;
731
732         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
733                 INIT_LIST_HEAD(&comp_idle_workspace[i]);
734                 spin_lock_init(&comp_workspace_lock[i]);
735                 atomic_set(&comp_alloc_workspace[i], 0);
736                 init_waitqueue_head(&comp_workspace_wait[i]);
737         }
738         return 0;
739 }
740
741 /*
742  * this finds an available workspace or allocates a new one
743  * ERR_PTR is returned if things go bad.
744  */
745 static struct list_head *find_workspace(int type)
746 {
747         struct list_head *workspace;
748         int cpus = num_online_cpus();
749         int idx = type - 1;
750
751         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
752         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
753         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
754         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
755         int *num_workspace                      = &comp_num_workspace[idx];
756 again:
757         spin_lock(workspace_lock);
758         if (!list_empty(idle_workspace)) {
759                 workspace = idle_workspace->next;
760                 list_del(workspace);
761                 (*num_workspace)--;
762                 spin_unlock(workspace_lock);
763                 return workspace;
764
765         }
766         if (atomic_read(alloc_workspace) > cpus) {
767                 DEFINE_WAIT(wait);
768
769                 spin_unlock(workspace_lock);
770                 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
771                 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
772                         schedule();
773                 finish_wait(workspace_wait, &wait);
774                 goto again;
775         }
776         atomic_inc(alloc_workspace);
777         spin_unlock(workspace_lock);
778
779         workspace = btrfs_compress_op[idx]->alloc_workspace();
780         if (IS_ERR(workspace)) {
781                 atomic_dec(alloc_workspace);
782                 wake_up(workspace_wait);
783         }
784         return workspace;
785 }
786
787 /*
788  * put a workspace struct back on the list or free it if we have enough
789  * idle ones sitting around
790  */
791 static void free_workspace(int type, struct list_head *workspace)
792 {
793         int idx = type - 1;
794         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
795         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
796         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
797         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
798         int *num_workspace                      = &comp_num_workspace[idx];
799
800         spin_lock(workspace_lock);
801         if (*num_workspace < num_online_cpus()) {
802                 list_add_tail(workspace, idle_workspace);
803                 (*num_workspace)++;
804                 spin_unlock(workspace_lock);
805                 goto wake;
806         }
807         spin_unlock(workspace_lock);
808
809         btrfs_compress_op[idx]->free_workspace(workspace);
810         atomic_dec(alloc_workspace);
811 wake:
812         if (waitqueue_active(workspace_wait))
813                 wake_up(workspace_wait);
814 }
815
816 /*
817  * cleanup function for module exit
818  */
819 static void free_workspaces(void)
820 {
821         struct list_head *workspace;
822         int i;
823
824         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
825                 while (!list_empty(&comp_idle_workspace[i])) {
826                         workspace = comp_idle_workspace[i].next;
827                         list_del(workspace);
828                         btrfs_compress_op[i]->free_workspace(workspace);
829                         atomic_dec(&comp_alloc_workspace[i]);
830                 }
831         }
832 }
833
834 /*
835  * given an address space and start/len, compress the bytes.
836  *
837  * pages are allocated to hold the compressed result and stored
838  * in 'pages'
839  *
840  * out_pages is used to return the number of pages allocated.  There
841  * may be pages allocated even if we return an error
842  *
843  * total_in is used to return the number of bytes actually read.  It
844  * may be smaller then len if we had to exit early because we
845  * ran out of room in the pages array or because we cross the
846  * max_out threshold.
847  *
848  * total_out is used to return the total number of compressed bytes
849  *
850  * max_out tells us the max number of bytes that we're allowed to
851  * stuff into pages
852  */
853 int btrfs_compress_pages(int type, struct address_space *mapping,
854                          u64 start, unsigned long len,
855                          struct page **pages,
856                          unsigned long nr_dest_pages,
857                          unsigned long *out_pages,
858                          unsigned long *total_in,
859                          unsigned long *total_out,
860                          unsigned long max_out)
861 {
862         struct list_head *workspace;
863         int ret;
864
865         workspace = find_workspace(type);
866         if (IS_ERR(workspace))
867                 return -1;
868
869         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
870                                                       start, len, pages,
871                                                       nr_dest_pages, out_pages,
872                                                       total_in, total_out,
873                                                       max_out);
874         free_workspace(type, workspace);
875         return ret;
876 }
877
878 /*
879  * pages_in is an array of pages with compressed data.
880  *
881  * disk_start is the starting logical offset of this array in the file
882  *
883  * bvec is a bio_vec of pages from the file that we want to decompress into
884  *
885  * vcnt is the count of pages in the biovec
886  *
887  * srclen is the number of bytes in pages_in
888  *
889  * The basic idea is that we have a bio that was created by readpages.
890  * The pages in the bio are for the uncompressed data, and they may not
891  * be contiguous.  They all correspond to the range of bytes covered by
892  * the compressed extent.
893  */
894 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
895                             struct bio_vec *bvec, int vcnt, size_t srclen)
896 {
897         struct list_head *workspace;
898         int ret;
899
900         workspace = find_workspace(type);
901         if (IS_ERR(workspace))
902                 return -ENOMEM;
903
904         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
905                                                          disk_start,
906                                                          bvec, vcnt, srclen);
907         free_workspace(type, workspace);
908         return ret;
909 }
910
911 /*
912  * a less complex decompression routine.  Our compressed data fits in a
913  * single page, and we want to read a single page out of it.
914  * start_byte tells us the offset into the compressed data we're interested in
915  */
916 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
917                      unsigned long start_byte, size_t srclen, size_t destlen)
918 {
919         struct list_head *workspace;
920         int ret;
921
922         workspace = find_workspace(type);
923         if (IS_ERR(workspace))
924                 return -ENOMEM;
925
926         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
927                                                   dest_page, start_byte,
928                                                   srclen, destlen);
929
930         free_workspace(type, workspace);
931         return ret;
932 }
933
934 void btrfs_exit_compress(void)
935 {
936         free_workspaces();
937 }
938
939 /*
940  * Copy uncompressed data from working buffer to pages.
941  *
942  * buf_start is the byte offset we're of the start of our workspace buffer.
943  *
944  * total_out is the last byte of the buffer
945  */
946 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
947                               unsigned long total_out, u64 disk_start,
948                               struct bio_vec *bvec, int vcnt,
949                               unsigned long *pg_index,
950                               unsigned long *pg_offset)
951 {
952         unsigned long buf_offset;
953         unsigned long current_buf_start;
954         unsigned long start_byte;
955         unsigned long working_bytes = total_out - buf_start;
956         unsigned long bytes;
957         char *kaddr;
958         struct page *page_out = bvec[*pg_index].bv_page;
959
960         /*
961          * start byte is the first byte of the page we're currently
962          * copying into relative to the start of the compressed data.
963          */
964         start_byte = page_offset(page_out) - disk_start;
965
966         /* we haven't yet hit data corresponding to this page */
967         if (total_out <= start_byte)
968                 return 1;
969
970         /*
971          * the start of the data we care about is offset into
972          * the middle of our working buffer
973          */
974         if (total_out > start_byte && buf_start < start_byte) {
975                 buf_offset = start_byte - buf_start;
976                 working_bytes -= buf_offset;
977         } else {
978                 buf_offset = 0;
979         }
980         current_buf_start = buf_start;
981
982         /* copy bytes from the working buffer into the pages */
983         while (working_bytes > 0) {
984                 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
985                             PAGE_CACHE_SIZE - buf_offset);
986                 bytes = min(bytes, working_bytes);
987                 kaddr = kmap_atomic(page_out, KM_USER0);
988                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
989                 kunmap_atomic(kaddr, KM_USER0);
990                 flush_dcache_page(page_out);
991
992                 *pg_offset += bytes;
993                 buf_offset += bytes;
994                 working_bytes -= bytes;
995                 current_buf_start += bytes;
996
997                 /* check if we need to pick another page */
998                 if (*pg_offset == PAGE_CACHE_SIZE) {
999                         (*pg_index)++;
1000                         if (*pg_index >= vcnt)
1001                                 return 0;
1002
1003                         page_out = bvec[*pg_index].bv_page;
1004                         *pg_offset = 0;
1005                         start_byte = page_offset(page_out) - disk_start;
1006
1007                         /*
1008                          * make sure our new page is covered by this
1009                          * working buffer
1010                          */
1011                         if (total_out <= start_byte)
1012                                 return 1;
1013
1014                         /*
1015                          * the next page in the biovec might not be adjacent
1016                          * to the last page, but it might still be found
1017                          * inside this working buffer. bump our offset pointer
1018                          */
1019                         if (total_out > start_byte &&
1020                             current_buf_start < start_byte) {
1021                                 buf_offset = start_byte - buf_start;
1022                                 working_bytes = total_out - start_byte;
1023                                 current_buf_start = buf_start + buf_offset;
1024                         }
1025                 }
1026         }
1027
1028         return 1;
1029 }