Merge branch 'stable/bug-fixes-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45
46 struct compressed_bio {
47         /* number of bios pending for this compressed extent */
48         atomic_t pending_bios;
49
50         /* the pages with the compressed data on them */
51         struct page **compressed_pages;
52
53         /* inode that owns this data */
54         struct inode *inode;
55
56         /* starting offset in the inode for our pages */
57         u64 start;
58
59         /* number of bytes in the inode we're working on */
60         unsigned long len;
61
62         /* number of bytes on disk */
63         unsigned long compressed_len;
64
65         /* the compression algorithm for this bio */
66         int compress_type;
67
68         /* number of compressed pages in the array */
69         unsigned long nr_pages;
70
71         /* IO errors */
72         int errors;
73         int mirror_num;
74
75         /* for reads, this is the bio we are copying the data into */
76         struct bio *orig_bio;
77
78         /*
79          * the start of a variable length array of checksums only
80          * used by reads
81          */
82         u32 sums;
83 };
84
85 static inline int compressed_bio_size(struct btrfs_root *root,
86                                       unsigned long disk_size)
87 {
88         u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89         return sizeof(struct compressed_bio) +
90                 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
91                 csum_size;
92 }
93
94 static struct bio *compressed_bio_alloc(struct block_device *bdev,
95                                         u64 first_byte, gfp_t gfp_flags)
96 {
97         int nr_vecs;
98
99         nr_vecs = bio_get_nr_vecs(bdev);
100         return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
101 }
102
103 static int check_compressed_csum(struct inode *inode,
104                                  struct compressed_bio *cb,
105                                  u64 disk_start)
106 {
107         int ret;
108         struct btrfs_root *root = BTRFS_I(inode)->root;
109         struct page *page;
110         unsigned long i;
111         char *kaddr;
112         u32 csum;
113         u32 *cb_sum = &cb->sums;
114
115         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116                 return 0;
117
118         for (i = 0; i < cb->nr_pages; i++) {
119                 page = cb->compressed_pages[i];
120                 csum = ~(u32)0;
121
122                 kaddr = kmap_atomic(page, KM_USER0);
123                 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124                 btrfs_csum_final(csum, (char *)&csum);
125                 kunmap_atomic(kaddr, KM_USER0);
126
127                 if (csum != *cb_sum) {
128                         printk(KERN_INFO "btrfs csum failed ino %lu "
129                                "extent %llu csum %u "
130                                "wanted %u mirror %d\n", inode->i_ino,
131                                (unsigned long long)disk_start,
132                                csum, *cb_sum, cb->mirror_num);
133                         ret = -EIO;
134                         goto fail;
135                 }
136                 cb_sum++;
137
138         }
139         ret = 0;
140 fail:
141         return ret;
142 }
143
144 /* when we finish reading compressed pages from the disk, we
145  * decompress them and then run the bio end_io routines on the
146  * decompressed pages (in the inode address space).
147  *
148  * This allows the checksumming and other IO error handling routines
149  * to work normally
150  *
151  * The compressed pages are freed here, and it must be run
152  * in process context
153  */
154 static void end_compressed_bio_read(struct bio *bio, int err)
155 {
156         struct compressed_bio *cb = bio->bi_private;
157         struct inode *inode;
158         struct page *page;
159         unsigned long index;
160         int ret;
161
162         if (err)
163                 cb->errors = 1;
164
165         /* if there are more bios still pending for this compressed
166          * extent, just exit
167          */
168         if (!atomic_dec_and_test(&cb->pending_bios))
169                 goto out;
170
171         inode = cb->inode;
172         ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
173         if (ret)
174                 goto csum_failed;
175
176         /* ok, we're the last bio for this extent, lets start
177          * the decompression.
178          */
179         ret = btrfs_decompress_biovec(cb->compress_type,
180                                       cb->compressed_pages,
181                                       cb->start,
182                                       cb->orig_bio->bi_io_vec,
183                                       cb->orig_bio->bi_vcnt,
184                                       cb->compressed_len);
185 csum_failed:
186         if (ret)
187                 cb->errors = 1;
188
189         /* release the compressed pages */
190         index = 0;
191         for (index = 0; index < cb->nr_pages; index++) {
192                 page = cb->compressed_pages[index];
193                 page->mapping = NULL;
194                 page_cache_release(page);
195         }
196
197         /* do io completion on the original bio */
198         if (cb->errors) {
199                 bio_io_error(cb->orig_bio);
200         } else {
201                 int bio_index = 0;
202                 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
203
204                 /*
205                  * we have verified the checksum already, set page
206                  * checked so the end_io handlers know about it
207                  */
208                 while (bio_index < cb->orig_bio->bi_vcnt) {
209                         SetPageChecked(bvec->bv_page);
210                         bvec++;
211                         bio_index++;
212                 }
213                 bio_endio(cb->orig_bio, 0);
214         }
215
216         /* finally free the cb struct */
217         kfree(cb->compressed_pages);
218         kfree(cb);
219 out:
220         bio_put(bio);
221 }
222
223 /*
224  * Clear the writeback bits on all of the file
225  * pages for a compressed write
226  */
227 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
228                                              unsigned long ram_size)
229 {
230         unsigned long index = start >> PAGE_CACHE_SHIFT;
231         unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
232         struct page *pages[16];
233         unsigned long nr_pages = end_index - index + 1;
234         int i;
235         int ret;
236
237         while (nr_pages > 0) {
238                 ret = find_get_pages_contig(inode->i_mapping, index,
239                                      min_t(unsigned long,
240                                      nr_pages, ARRAY_SIZE(pages)), pages);
241                 if (ret == 0) {
242                         nr_pages -= 1;
243                         index += 1;
244                         continue;
245                 }
246                 for (i = 0; i < ret; i++) {
247                         end_page_writeback(pages[i]);
248                         page_cache_release(pages[i]);
249                 }
250                 nr_pages -= ret;
251                 index += ret;
252         }
253         /* the inode may be gone now */
254         return 0;
255 }
256
257 /*
258  * do the cleanup once all the compressed pages hit the disk.
259  * This will clear writeback on the file pages and free the compressed
260  * pages.
261  *
262  * This also calls the writeback end hooks for the file pages so that
263  * metadata and checksums can be updated in the file.
264  */
265 static void end_compressed_bio_write(struct bio *bio, int err)
266 {
267         struct extent_io_tree *tree;
268         struct compressed_bio *cb = bio->bi_private;
269         struct inode *inode;
270         struct page *page;
271         unsigned long index;
272
273         if (err)
274                 cb->errors = 1;
275
276         /* if there are more bios still pending for this compressed
277          * extent, just exit
278          */
279         if (!atomic_dec_and_test(&cb->pending_bios))
280                 goto out;
281
282         /* ok, we're the last bio for this extent, step one is to
283          * call back into the FS and do all the end_io operations
284          */
285         inode = cb->inode;
286         tree = &BTRFS_I(inode)->io_tree;
287         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
288         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
289                                          cb->start,
290                                          cb->start + cb->len - 1,
291                                          NULL, 1);
292         cb->compressed_pages[0]->mapping = NULL;
293
294         end_compressed_writeback(inode, cb->start, cb->len);
295         /* note, our inode could be gone now */
296
297         /*
298          * release the compressed pages, these came from alloc_page and
299          * are not attached to the inode at all
300          */
301         index = 0;
302         for (index = 0; index < cb->nr_pages; index++) {
303                 page = cb->compressed_pages[index];
304                 page->mapping = NULL;
305                 page_cache_release(page);
306         }
307
308         /* finally free the cb struct */
309         kfree(cb->compressed_pages);
310         kfree(cb);
311 out:
312         bio_put(bio);
313 }
314
315 /*
316  * worker function to build and submit bios for previously compressed pages.
317  * The corresponding pages in the inode should be marked for writeback
318  * and the compressed pages should have a reference on them for dropping
319  * when the IO is complete.
320  *
321  * This also checksums the file bytes and gets things ready for
322  * the end io hooks.
323  */
324 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
325                                  unsigned long len, u64 disk_start,
326                                  unsigned long compressed_len,
327                                  struct page **compressed_pages,
328                                  unsigned long nr_pages)
329 {
330         struct bio *bio = NULL;
331         struct btrfs_root *root = BTRFS_I(inode)->root;
332         struct compressed_bio *cb;
333         unsigned long bytes_left;
334         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
335         int page_index = 0;
336         struct page *page;
337         u64 first_byte = disk_start;
338         struct block_device *bdev;
339         int ret;
340
341         WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
342         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
343         if (!cb)
344                 return -ENOMEM;
345         atomic_set(&cb->pending_bios, 0);
346         cb->errors = 0;
347         cb->inode = inode;
348         cb->start = start;
349         cb->len = len;
350         cb->mirror_num = 0;
351         cb->compressed_pages = compressed_pages;
352         cb->compressed_len = compressed_len;
353         cb->orig_bio = NULL;
354         cb->nr_pages = nr_pages;
355
356         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
357
358         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
359         if(!bio) {
360                 kfree(cb);
361                 return -ENOMEM;
362         }
363         bio->bi_private = cb;
364         bio->bi_end_io = end_compressed_bio_write;
365         atomic_inc(&cb->pending_bios);
366
367         /* create and submit bios for the compressed pages */
368         bytes_left = compressed_len;
369         for (page_index = 0; page_index < cb->nr_pages; page_index++) {
370                 page = compressed_pages[page_index];
371                 page->mapping = inode->i_mapping;
372                 if (bio->bi_size)
373                         ret = io_tree->ops->merge_bio_hook(page, 0,
374                                                            PAGE_CACHE_SIZE,
375                                                            bio, 0);
376                 else
377                         ret = 0;
378
379                 page->mapping = NULL;
380                 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
381                     PAGE_CACHE_SIZE) {
382                         bio_get(bio);
383
384                         /*
385                          * inc the count before we submit the bio so
386                          * we know the end IO handler won't happen before
387                          * we inc the count.  Otherwise, the cb might get
388                          * freed before we're done setting it up
389                          */
390                         atomic_inc(&cb->pending_bios);
391                         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
392                         BUG_ON(ret);
393
394                         ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
395                         BUG_ON(ret);
396
397                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
398                         BUG_ON(ret);
399
400                         bio_put(bio);
401
402                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
403                         bio->bi_private = cb;
404                         bio->bi_end_io = end_compressed_bio_write;
405                         bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
406                 }
407                 if (bytes_left < PAGE_CACHE_SIZE) {
408                         printk("bytes left %lu compress len %lu nr %lu\n",
409                                bytes_left, cb->compressed_len, cb->nr_pages);
410                 }
411                 bytes_left -= PAGE_CACHE_SIZE;
412                 first_byte += PAGE_CACHE_SIZE;
413                 cond_resched();
414         }
415         bio_get(bio);
416
417         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
418         BUG_ON(ret);
419
420         ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
421         BUG_ON(ret);
422
423         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
424         BUG_ON(ret);
425
426         bio_put(bio);
427         return 0;
428 }
429
430 static noinline int add_ra_bio_pages(struct inode *inode,
431                                      u64 compressed_end,
432                                      struct compressed_bio *cb)
433 {
434         unsigned long end_index;
435         unsigned long page_index;
436         u64 last_offset;
437         u64 isize = i_size_read(inode);
438         int ret;
439         struct page *page;
440         unsigned long nr_pages = 0;
441         struct extent_map *em;
442         struct address_space *mapping = inode->i_mapping;
443         struct extent_map_tree *em_tree;
444         struct extent_io_tree *tree;
445         u64 end;
446         int misses = 0;
447
448         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
449         last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
450         em_tree = &BTRFS_I(inode)->extent_tree;
451         tree = &BTRFS_I(inode)->io_tree;
452
453         if (isize == 0)
454                 return 0;
455
456         end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
457
458         while (last_offset < compressed_end) {
459                 page_index = last_offset >> PAGE_CACHE_SHIFT;
460
461                 if (page_index > end_index)
462                         break;
463
464                 rcu_read_lock();
465                 page = radix_tree_lookup(&mapping->page_tree, page_index);
466                 rcu_read_unlock();
467                 if (page) {
468                         misses++;
469                         if (misses > 4)
470                                 break;
471                         goto next;
472                 }
473
474                 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
475                                                                 ~__GFP_FS);
476                 if (!page)
477                         break;
478
479                 if (add_to_page_cache_lru(page, mapping, page_index,
480                                                                 GFP_NOFS)) {
481                         page_cache_release(page);
482                         goto next;
483                 }
484
485                 end = last_offset + PAGE_CACHE_SIZE - 1;
486                 /*
487                  * at this point, we have a locked page in the page cache
488                  * for these bytes in the file.  But, we have to make
489                  * sure they map to this compressed extent on disk.
490                  */
491                 set_page_extent_mapped(page);
492                 lock_extent(tree, last_offset, end, GFP_NOFS);
493                 read_lock(&em_tree->lock);
494                 em = lookup_extent_mapping(em_tree, last_offset,
495                                            PAGE_CACHE_SIZE);
496                 read_unlock(&em_tree->lock);
497
498                 if (!em || last_offset < em->start ||
499                     (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
500                     (em->block_start >> 9) != cb->orig_bio->bi_sector) {
501                         free_extent_map(em);
502                         unlock_extent(tree, last_offset, end, GFP_NOFS);
503                         unlock_page(page);
504                         page_cache_release(page);
505                         break;
506                 }
507                 free_extent_map(em);
508
509                 if (page->index == end_index) {
510                         char *userpage;
511                         size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
512
513                         if (zero_offset) {
514                                 int zeros;
515                                 zeros = PAGE_CACHE_SIZE - zero_offset;
516                                 userpage = kmap_atomic(page, KM_USER0);
517                                 memset(userpage + zero_offset, 0, zeros);
518                                 flush_dcache_page(page);
519                                 kunmap_atomic(userpage, KM_USER0);
520                         }
521                 }
522
523                 ret = bio_add_page(cb->orig_bio, page,
524                                    PAGE_CACHE_SIZE, 0);
525
526                 if (ret == PAGE_CACHE_SIZE) {
527                         nr_pages++;
528                         page_cache_release(page);
529                 } else {
530                         unlock_extent(tree, last_offset, end, GFP_NOFS);
531                         unlock_page(page);
532                         page_cache_release(page);
533                         break;
534                 }
535 next:
536                 last_offset += PAGE_CACHE_SIZE;
537         }
538         return 0;
539 }
540
541 /*
542  * for a compressed read, the bio we get passed has all the inode pages
543  * in it.  We don't actually do IO on those pages but allocate new ones
544  * to hold the compressed pages on disk.
545  *
546  * bio->bi_sector points to the compressed extent on disk
547  * bio->bi_io_vec points to all of the inode pages
548  * bio->bi_vcnt is a count of pages
549  *
550  * After the compressed pages are read, we copy the bytes into the
551  * bio we were passed and then call the bio end_io calls
552  */
553 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
554                                  int mirror_num, unsigned long bio_flags)
555 {
556         struct extent_io_tree *tree;
557         struct extent_map_tree *em_tree;
558         struct compressed_bio *cb;
559         struct btrfs_root *root = BTRFS_I(inode)->root;
560         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
561         unsigned long compressed_len;
562         unsigned long nr_pages;
563         unsigned long page_index;
564         struct page *page;
565         struct block_device *bdev;
566         struct bio *comp_bio;
567         u64 cur_disk_byte = (u64)bio->bi_sector << 9;
568         u64 em_len;
569         u64 em_start;
570         struct extent_map *em;
571         int ret = -ENOMEM;
572         u32 *sums;
573
574         tree = &BTRFS_I(inode)->io_tree;
575         em_tree = &BTRFS_I(inode)->extent_tree;
576
577         /* we need the actual starting offset of this extent in the file */
578         read_lock(&em_tree->lock);
579         em = lookup_extent_mapping(em_tree,
580                                    page_offset(bio->bi_io_vec->bv_page),
581                                    PAGE_CACHE_SIZE);
582         read_unlock(&em_tree->lock);
583
584         compressed_len = em->block_len;
585         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
586         if (!cb)
587                 goto out;
588
589         atomic_set(&cb->pending_bios, 0);
590         cb->errors = 0;
591         cb->inode = inode;
592         cb->mirror_num = mirror_num;
593         sums = &cb->sums;
594
595         cb->start = em->orig_start;
596         em_len = em->len;
597         em_start = em->start;
598
599         free_extent_map(em);
600         em = NULL;
601
602         cb->len = uncompressed_len;
603         cb->compressed_len = compressed_len;
604         cb->compress_type = extent_compress_type(bio_flags);
605         cb->orig_bio = bio;
606
607         nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
608                                  PAGE_CACHE_SIZE;
609         cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
610                                        GFP_NOFS);
611         if (!cb->compressed_pages)
612                 goto fail1;
613
614         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
615
616         for (page_index = 0; page_index < nr_pages; page_index++) {
617                 cb->compressed_pages[page_index] = alloc_page(GFP_NOFS |
618                                                               __GFP_HIGHMEM);
619                 if (!cb->compressed_pages[page_index])
620                         goto fail2;
621         }
622         cb->nr_pages = nr_pages;
623
624         add_ra_bio_pages(inode, em_start + em_len, cb);
625
626         /* include any pages we added in add_ra-bio_pages */
627         uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
628         cb->len = uncompressed_len;
629
630         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
631         if (!comp_bio)
632                 goto fail2;
633         comp_bio->bi_private = cb;
634         comp_bio->bi_end_io = end_compressed_bio_read;
635         atomic_inc(&cb->pending_bios);
636
637         for (page_index = 0; page_index < nr_pages; page_index++) {
638                 page = cb->compressed_pages[page_index];
639                 page->mapping = inode->i_mapping;
640                 page->index = em_start >> PAGE_CACHE_SHIFT;
641
642                 if (comp_bio->bi_size)
643                         ret = tree->ops->merge_bio_hook(page, 0,
644                                                         PAGE_CACHE_SIZE,
645                                                         comp_bio, 0);
646                 else
647                         ret = 0;
648
649                 page->mapping = NULL;
650                 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
651                     PAGE_CACHE_SIZE) {
652                         bio_get(comp_bio);
653
654                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
655                         BUG_ON(ret);
656
657                         /*
658                          * inc the count before we submit the bio so
659                          * we know the end IO handler won't happen before
660                          * we inc the count.  Otherwise, the cb might get
661                          * freed before we're done setting it up
662                          */
663                         atomic_inc(&cb->pending_bios);
664
665                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
666                                 ret = btrfs_lookup_bio_sums(root, inode,
667                                                         comp_bio, sums);
668                                 BUG_ON(ret);
669                         }
670                         sums += (comp_bio->bi_size + root->sectorsize - 1) /
671                                 root->sectorsize;
672
673                         ret = btrfs_map_bio(root, READ, comp_bio,
674                                             mirror_num, 0);
675                         BUG_ON(ret);
676
677                         bio_put(comp_bio);
678
679                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
680                                                         GFP_NOFS);
681                         comp_bio->bi_private = cb;
682                         comp_bio->bi_end_io = end_compressed_bio_read;
683
684                         bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
685                 }
686                 cur_disk_byte += PAGE_CACHE_SIZE;
687         }
688         bio_get(comp_bio);
689
690         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
691         BUG_ON(ret);
692
693         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
694                 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
695                 BUG_ON(ret);
696         }
697
698         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
699         BUG_ON(ret);
700
701         bio_put(comp_bio);
702         return 0;
703
704 fail2:
705         for (page_index = 0; page_index < nr_pages; page_index++)
706                 free_page((unsigned long)cb->compressed_pages[page_index]);
707
708         kfree(cb->compressed_pages);
709 fail1:
710         kfree(cb);
711 out:
712         free_extent_map(em);
713         return ret;
714 }
715
716 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
717 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
718 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
719 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
720 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
721
722 struct btrfs_compress_op *btrfs_compress_op[] = {
723         &btrfs_zlib_compress,
724         &btrfs_lzo_compress,
725 };
726
727 int __init btrfs_init_compress(void)
728 {
729         int i;
730
731         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
732                 INIT_LIST_HEAD(&comp_idle_workspace[i]);
733                 spin_lock_init(&comp_workspace_lock[i]);
734                 atomic_set(&comp_alloc_workspace[i], 0);
735                 init_waitqueue_head(&comp_workspace_wait[i]);
736         }
737         return 0;
738 }
739
740 /*
741  * this finds an available workspace or allocates a new one
742  * ERR_PTR is returned if things go bad.
743  */
744 static struct list_head *find_workspace(int type)
745 {
746         struct list_head *workspace;
747         int cpus = num_online_cpus();
748         int idx = type - 1;
749
750         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
751         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
752         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
753         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
754         int *num_workspace                      = &comp_num_workspace[idx];
755 again:
756         spin_lock(workspace_lock);
757         if (!list_empty(idle_workspace)) {
758                 workspace = idle_workspace->next;
759                 list_del(workspace);
760                 (*num_workspace)--;
761                 spin_unlock(workspace_lock);
762                 return workspace;
763
764         }
765         if (atomic_read(alloc_workspace) > cpus) {
766                 DEFINE_WAIT(wait);
767
768                 spin_unlock(workspace_lock);
769                 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
770                 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
771                         schedule();
772                 finish_wait(workspace_wait, &wait);
773                 goto again;
774         }
775         atomic_inc(alloc_workspace);
776         spin_unlock(workspace_lock);
777
778         workspace = btrfs_compress_op[idx]->alloc_workspace();
779         if (IS_ERR(workspace)) {
780                 atomic_dec(alloc_workspace);
781                 wake_up(workspace_wait);
782         }
783         return workspace;
784 }
785
786 /*
787  * put a workspace struct back on the list or free it if we have enough
788  * idle ones sitting around
789  */
790 static void free_workspace(int type, struct list_head *workspace)
791 {
792         int idx = type - 1;
793         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
794         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
795         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
796         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
797         int *num_workspace                      = &comp_num_workspace[idx];
798
799         spin_lock(workspace_lock);
800         if (*num_workspace < num_online_cpus()) {
801                 list_add_tail(workspace, idle_workspace);
802                 (*num_workspace)++;
803                 spin_unlock(workspace_lock);
804                 goto wake;
805         }
806         spin_unlock(workspace_lock);
807
808         btrfs_compress_op[idx]->free_workspace(workspace);
809         atomic_dec(alloc_workspace);
810 wake:
811         if (waitqueue_active(workspace_wait))
812                 wake_up(workspace_wait);
813 }
814
815 /*
816  * cleanup function for module exit
817  */
818 static void free_workspaces(void)
819 {
820         struct list_head *workspace;
821         int i;
822
823         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
824                 while (!list_empty(&comp_idle_workspace[i])) {
825                         workspace = comp_idle_workspace[i].next;
826                         list_del(workspace);
827                         btrfs_compress_op[i]->free_workspace(workspace);
828                         atomic_dec(&comp_alloc_workspace[i]);
829                 }
830         }
831 }
832
833 /*
834  * given an address space and start/len, compress the bytes.
835  *
836  * pages are allocated to hold the compressed result and stored
837  * in 'pages'
838  *
839  * out_pages is used to return the number of pages allocated.  There
840  * may be pages allocated even if we return an error
841  *
842  * total_in is used to return the number of bytes actually read.  It
843  * may be smaller then len if we had to exit early because we
844  * ran out of room in the pages array or because we cross the
845  * max_out threshold.
846  *
847  * total_out is used to return the total number of compressed bytes
848  *
849  * max_out tells us the max number of bytes that we're allowed to
850  * stuff into pages
851  */
852 int btrfs_compress_pages(int type, struct address_space *mapping,
853                          u64 start, unsigned long len,
854                          struct page **pages,
855                          unsigned long nr_dest_pages,
856                          unsigned long *out_pages,
857                          unsigned long *total_in,
858                          unsigned long *total_out,
859                          unsigned long max_out)
860 {
861         struct list_head *workspace;
862         int ret;
863
864         workspace = find_workspace(type);
865         if (IS_ERR(workspace))
866                 return -1;
867
868         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
869                                                       start, len, pages,
870                                                       nr_dest_pages, out_pages,
871                                                       total_in, total_out,
872                                                       max_out);
873         free_workspace(type, workspace);
874         return ret;
875 }
876
877 /*
878  * pages_in is an array of pages with compressed data.
879  *
880  * disk_start is the starting logical offset of this array in the file
881  *
882  * bvec is a bio_vec of pages from the file that we want to decompress into
883  *
884  * vcnt is the count of pages in the biovec
885  *
886  * srclen is the number of bytes in pages_in
887  *
888  * The basic idea is that we have a bio that was created by readpages.
889  * The pages in the bio are for the uncompressed data, and they may not
890  * be contiguous.  They all correspond to the range of bytes covered by
891  * the compressed extent.
892  */
893 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
894                             struct bio_vec *bvec, int vcnt, size_t srclen)
895 {
896         struct list_head *workspace;
897         int ret;
898
899         workspace = find_workspace(type);
900         if (IS_ERR(workspace))
901                 return -ENOMEM;
902
903         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
904                                                          disk_start,
905                                                          bvec, vcnt, srclen);
906         free_workspace(type, workspace);
907         return ret;
908 }
909
910 /*
911  * a less complex decompression routine.  Our compressed data fits in a
912  * single page, and we want to read a single page out of it.
913  * start_byte tells us the offset into the compressed data we're interested in
914  */
915 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
916                      unsigned long start_byte, size_t srclen, size_t destlen)
917 {
918         struct list_head *workspace;
919         int ret;
920
921         workspace = find_workspace(type);
922         if (IS_ERR(workspace))
923                 return -ENOMEM;
924
925         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
926                                                   dest_page, start_byte,
927                                                   srclen, destlen);
928
929         free_workspace(type, workspace);
930         return ret;
931 }
932
933 void btrfs_exit_compress(void)
934 {
935         free_workspaces();
936 }
937
938 /*
939  * Copy uncompressed data from working buffer to pages.
940  *
941  * buf_start is the byte offset we're of the start of our workspace buffer.
942  *
943  * total_out is the last byte of the buffer
944  */
945 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
946                               unsigned long total_out, u64 disk_start,
947                               struct bio_vec *bvec, int vcnt,
948                               unsigned long *page_index,
949                               unsigned long *pg_offset)
950 {
951         unsigned long buf_offset;
952         unsigned long current_buf_start;
953         unsigned long start_byte;
954         unsigned long working_bytes = total_out - buf_start;
955         unsigned long bytes;
956         char *kaddr;
957         struct page *page_out = bvec[*page_index].bv_page;
958
959         /*
960          * start byte is the first byte of the page we're currently
961          * copying into relative to the start of the compressed data.
962          */
963         start_byte = page_offset(page_out) - disk_start;
964
965         /* we haven't yet hit data corresponding to this page */
966         if (total_out <= start_byte)
967                 return 1;
968
969         /*
970          * the start of the data we care about is offset into
971          * the middle of our working buffer
972          */
973         if (total_out > start_byte && buf_start < start_byte) {
974                 buf_offset = start_byte - buf_start;
975                 working_bytes -= buf_offset;
976         } else {
977                 buf_offset = 0;
978         }
979         current_buf_start = buf_start;
980
981         /* copy bytes from the working buffer into the pages */
982         while (working_bytes > 0) {
983                 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
984                             PAGE_CACHE_SIZE - buf_offset);
985                 bytes = min(bytes, working_bytes);
986                 kaddr = kmap_atomic(page_out, KM_USER0);
987                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
988                 kunmap_atomic(kaddr, KM_USER0);
989                 flush_dcache_page(page_out);
990
991                 *pg_offset += bytes;
992                 buf_offset += bytes;
993                 working_bytes -= bytes;
994                 current_buf_start += bytes;
995
996                 /* check if we need to pick another page */
997                 if (*pg_offset == PAGE_CACHE_SIZE) {
998                         (*page_index)++;
999                         if (*page_index >= vcnt)
1000                                 return 0;
1001
1002                         page_out = bvec[*page_index].bv_page;
1003                         *pg_offset = 0;
1004                         start_byte = page_offset(page_out) - disk_start;
1005
1006                         /*
1007                          * make sure our new page is covered by this
1008                          * working buffer
1009                          */
1010                         if (total_out <= start_byte)
1011                                 return 1;
1012
1013                         /*
1014                          * the next page in the biovec might not be adjacent
1015                          * to the last page, but it might still be found
1016                          * inside this working buffer. bump our offset pointer
1017                          */
1018                         if (total_out > start_byte &&
1019                             current_buf_start < start_byte) {
1020                                 buf_offset = start_byte - buf_start;
1021                                 working_bytes = total_out - start_byte;
1022                                 current_buf_start = buf_start + buf_offset;
1023                         }
1024                 }
1025         }
1026
1027         return 1;
1028 }