x86/mm: Fix {pmd,pud}_{set,clear}_flags()
[pandora-kernel.git] / fs / btrfs / async-thread.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kthread.h>
20 #include <linux/slab.h>
21 #include <linux/list.h>
22 #include <linux/spinlock.h>
23 #include <linux/freezer.h>
24 #include "async-thread.h"
25
26 #define WORK_QUEUED_BIT 0
27 #define WORK_DONE_BIT 1
28 #define WORK_ORDER_DONE_BIT 2
29 #define WORK_HIGH_PRIO_BIT 3
30
31 /*
32  * container for the kthread task pointer and the list of pending work
33  * One of these is allocated per thread.
34  */
35 struct btrfs_worker_thread {
36         /* pool we belong to */
37         struct btrfs_workers *workers;
38
39         /* list of struct btrfs_work that are waiting for service */
40         struct list_head pending;
41         struct list_head prio_pending;
42
43         /* list of worker threads from struct btrfs_workers */
44         struct list_head worker_list;
45
46         /* kthread */
47         struct task_struct *task;
48
49         /* number of things on the pending list */
50         atomic_t num_pending;
51
52         /* reference counter for this struct */
53         atomic_t refs;
54
55         unsigned long sequence;
56
57         /* protects the pending list. */
58         spinlock_t lock;
59
60         /* set to non-zero when this thread is already awake and kicking */
61         int working;
62
63         /* are we currently idle */
64         int idle;
65 };
66
67 static int __btrfs_start_workers(struct btrfs_workers *workers);
68
69 /*
70  * btrfs_start_workers uses kthread_run, which can block waiting for memory
71  * for a very long time.  It will actually throttle on page writeback,
72  * and so it may not make progress until after our btrfs worker threads
73  * process all of the pending work structs in their queue
74  *
75  * This means we can't use btrfs_start_workers from inside a btrfs worker
76  * thread that is used as part of cleaning dirty memory, which pretty much
77  * involves all of the worker threads.
78  *
79  * Instead we have a helper queue who never has more than one thread
80  * where we scheduler thread start operations.  This worker_start struct
81  * is used to contain the work and hold a pointer to the queue that needs
82  * another worker.
83  */
84 struct worker_start {
85         struct btrfs_work work;
86         struct btrfs_workers *queue;
87 };
88
89 static void start_new_worker_func(struct btrfs_work *work)
90 {
91         struct worker_start *start;
92         start = container_of(work, struct worker_start, work);
93         __btrfs_start_workers(start->queue);
94         kfree(start);
95 }
96
97 /*
98  * helper function to move a thread onto the idle list after it
99  * has finished some requests.
100  */
101 static void check_idle_worker(struct btrfs_worker_thread *worker)
102 {
103         if (!worker->idle && atomic_read(&worker->num_pending) <
104             worker->workers->idle_thresh / 2) {
105                 unsigned long flags;
106                 spin_lock_irqsave(&worker->workers->lock, flags);
107                 worker->idle = 1;
108
109                 /* the list may be empty if the worker is just starting */
110                 if (!list_empty(&worker->worker_list)) {
111                         list_move(&worker->worker_list,
112                                  &worker->workers->idle_list);
113                 }
114                 spin_unlock_irqrestore(&worker->workers->lock, flags);
115         }
116 }
117
118 /*
119  * helper function to move a thread off the idle list after new
120  * pending work is added.
121  */
122 static void check_busy_worker(struct btrfs_worker_thread *worker)
123 {
124         if (worker->idle && atomic_read(&worker->num_pending) >=
125             worker->workers->idle_thresh) {
126                 unsigned long flags;
127                 spin_lock_irqsave(&worker->workers->lock, flags);
128                 worker->idle = 0;
129
130                 if (!list_empty(&worker->worker_list)) {
131                         list_move_tail(&worker->worker_list,
132                                       &worker->workers->worker_list);
133                 }
134                 spin_unlock_irqrestore(&worker->workers->lock, flags);
135         }
136 }
137
138 static void check_pending_worker_creates(struct btrfs_worker_thread *worker)
139 {
140         struct btrfs_workers *workers = worker->workers;
141         struct worker_start *start;
142         unsigned long flags;
143
144         rmb();
145         if (!workers->atomic_start_pending)
146                 return;
147
148         start = kzalloc(sizeof(*start), GFP_NOFS);
149         if (!start)
150                 return;
151
152         start->work.func = start_new_worker_func;
153         start->queue = workers;
154
155         spin_lock_irqsave(&workers->lock, flags);
156         if (!workers->atomic_start_pending)
157                 goto out;
158
159         workers->atomic_start_pending = 0;
160         if (workers->num_workers + workers->num_workers_starting >=
161             workers->max_workers)
162                 goto out;
163
164         workers->num_workers_starting += 1;
165         spin_unlock_irqrestore(&workers->lock, flags);
166         btrfs_queue_worker(workers->atomic_worker_start, &start->work);
167         return;
168
169 out:
170         kfree(start);
171         spin_unlock_irqrestore(&workers->lock, flags);
172 }
173
174 static noinline int run_ordered_completions(struct btrfs_workers *workers,
175                                             struct btrfs_work *work)
176 {
177         if (!workers->ordered)
178                 return 0;
179
180         set_bit(WORK_DONE_BIT, &work->flags);
181
182         spin_lock(&workers->order_lock);
183
184         while (1) {
185                 if (!list_empty(&workers->prio_order_list)) {
186                         work = list_entry(workers->prio_order_list.next,
187                                           struct btrfs_work, order_list);
188                 } else if (!list_empty(&workers->order_list)) {
189                         work = list_entry(workers->order_list.next,
190                                           struct btrfs_work, order_list);
191                 } else {
192                         break;
193                 }
194                 if (!test_bit(WORK_DONE_BIT, &work->flags))
195                         break;
196
197                 /* we are going to call the ordered done function, but
198                  * we leave the work item on the list as a barrier so
199                  * that later work items that are done don't have their
200                  * functions called before this one returns
201                  */
202                 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
203                         break;
204
205                 spin_unlock(&workers->order_lock);
206
207                 work->ordered_func(work);
208
209                 /* now take the lock again and drop our item from the list */
210                 spin_lock(&workers->order_lock);
211                 list_del(&work->order_list);
212                 spin_unlock(&workers->order_lock);
213
214                 /*
215                  * we don't want to call the ordered free functions
216                  * with the lock held though
217                  */
218                 work->ordered_free(work);
219                 spin_lock(&workers->order_lock);
220         }
221
222         spin_unlock(&workers->order_lock);
223         return 0;
224 }
225
226 static void put_worker(struct btrfs_worker_thread *worker)
227 {
228         if (atomic_dec_and_test(&worker->refs))
229                 kfree(worker);
230 }
231
232 static int try_worker_shutdown(struct btrfs_worker_thread *worker)
233 {
234         int freeit = 0;
235
236         spin_lock_irq(&worker->lock);
237         spin_lock(&worker->workers->lock);
238         if (worker->workers->num_workers > 1 &&
239             worker->idle &&
240             !worker->working &&
241             !list_empty(&worker->worker_list) &&
242             list_empty(&worker->prio_pending) &&
243             list_empty(&worker->pending) &&
244             atomic_read(&worker->num_pending) == 0) {
245                 freeit = 1;
246                 list_del_init(&worker->worker_list);
247                 worker->workers->num_workers--;
248         }
249         spin_unlock(&worker->workers->lock);
250         spin_unlock_irq(&worker->lock);
251
252         if (freeit)
253                 put_worker(worker);
254         return freeit;
255 }
256
257 static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker,
258                                         struct list_head *prio_head,
259                                         struct list_head *head)
260 {
261         struct btrfs_work *work = NULL;
262         struct list_head *cur = NULL;
263
264         if(!list_empty(prio_head))
265                 cur = prio_head->next;
266
267         smp_mb();
268         if (!list_empty(&worker->prio_pending))
269                 goto refill;
270
271         if (!list_empty(head))
272                 cur = head->next;
273
274         if (cur)
275                 goto out;
276
277 refill:
278         spin_lock_irq(&worker->lock);
279         list_splice_tail_init(&worker->prio_pending, prio_head);
280         list_splice_tail_init(&worker->pending, head);
281
282         if (!list_empty(prio_head))
283                 cur = prio_head->next;
284         else if (!list_empty(head))
285                 cur = head->next;
286         spin_unlock_irq(&worker->lock);
287
288         if (!cur)
289                 goto out_fail;
290
291 out:
292         work = list_entry(cur, struct btrfs_work, list);
293
294 out_fail:
295         return work;
296 }
297
298 /*
299  * main loop for servicing work items
300  */
301 static int worker_loop(void *arg)
302 {
303         struct btrfs_worker_thread *worker = arg;
304         struct list_head head;
305         struct list_head prio_head;
306         struct btrfs_work *work;
307
308         INIT_LIST_HEAD(&head);
309         INIT_LIST_HEAD(&prio_head);
310
311         do {
312 again:
313                 while (1) {
314
315
316                         work = get_next_work(worker, &prio_head, &head);
317                         if (!work)
318                                 break;
319
320                         list_del(&work->list);
321                         clear_bit(WORK_QUEUED_BIT, &work->flags);
322
323                         work->worker = worker;
324
325                         work->func(work);
326
327                         atomic_dec(&worker->num_pending);
328                         /*
329                          * unless this is an ordered work queue,
330                          * 'work' was probably freed by func above.
331                          */
332                         run_ordered_completions(worker->workers, work);
333
334                         check_pending_worker_creates(worker);
335                         cond_resched();
336                 }
337
338                 spin_lock_irq(&worker->lock);
339                 check_idle_worker(worker);
340
341                 if (freezing(current)) {
342                         worker->working = 0;
343                         spin_unlock_irq(&worker->lock);
344                         refrigerator();
345                 } else {
346                         spin_unlock_irq(&worker->lock);
347                         if (!kthread_should_stop()) {
348                                 cpu_relax();
349                                 /*
350                                  * we've dropped the lock, did someone else
351                                  * jump_in?
352                                  */
353                                 smp_mb();
354                                 if (!list_empty(&worker->pending) ||
355                                     !list_empty(&worker->prio_pending))
356                                         continue;
357
358                                 /*
359                                  * this short schedule allows more work to
360                                  * come in without the queue functions
361                                  * needing to go through wake_up_process()
362                                  *
363                                  * worker->working is still 1, so nobody
364                                  * is going to try and wake us up
365                                  */
366                                 schedule_timeout(1);
367                                 smp_mb();
368                                 if (!list_empty(&worker->pending) ||
369                                     !list_empty(&worker->prio_pending))
370                                         continue;
371
372                                 if (kthread_should_stop())
373                                         break;
374
375                                 /* still no more work?, sleep for real */
376                                 spin_lock_irq(&worker->lock);
377                                 set_current_state(TASK_INTERRUPTIBLE);
378                                 if (!list_empty(&worker->pending) ||
379                                     !list_empty(&worker->prio_pending)) {
380                                         spin_unlock_irq(&worker->lock);
381                                         set_current_state(TASK_RUNNING);
382                                         goto again;
383                                 }
384
385                                 /*
386                                  * this makes sure we get a wakeup when someone
387                                  * adds something new to the queue
388                                  */
389                                 worker->working = 0;
390                                 spin_unlock_irq(&worker->lock);
391
392                                 if (!kthread_should_stop()) {
393                                         schedule_timeout(HZ * 120);
394                                         if (!worker->working &&
395                                             try_worker_shutdown(worker)) {
396                                                 return 0;
397                                         }
398                                 }
399                         }
400                         __set_current_state(TASK_RUNNING);
401                 }
402         } while (!kthread_should_stop());
403         return 0;
404 }
405
406 /*
407  * this will wait for all the worker threads to shutdown
408  */
409 int btrfs_stop_workers(struct btrfs_workers *workers)
410 {
411         struct list_head *cur;
412         struct btrfs_worker_thread *worker;
413         int can_stop;
414
415         spin_lock_irq(&workers->lock);
416         list_splice_init(&workers->idle_list, &workers->worker_list);
417         while (!list_empty(&workers->worker_list)) {
418                 cur = workers->worker_list.next;
419                 worker = list_entry(cur, struct btrfs_worker_thread,
420                                     worker_list);
421
422                 atomic_inc(&worker->refs);
423                 workers->num_workers -= 1;
424                 if (!list_empty(&worker->worker_list)) {
425                         list_del_init(&worker->worker_list);
426                         put_worker(worker);
427                         can_stop = 1;
428                 } else
429                         can_stop = 0;
430                 spin_unlock_irq(&workers->lock);
431                 if (can_stop)
432                         kthread_stop(worker->task);
433                 spin_lock_irq(&workers->lock);
434                 put_worker(worker);
435         }
436         spin_unlock_irq(&workers->lock);
437         return 0;
438 }
439
440 /*
441  * simple init on struct btrfs_workers
442  */
443 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max,
444                         struct btrfs_workers *async_helper)
445 {
446         workers->num_workers = 0;
447         workers->num_workers_starting = 0;
448         INIT_LIST_HEAD(&workers->worker_list);
449         INIT_LIST_HEAD(&workers->idle_list);
450         INIT_LIST_HEAD(&workers->order_list);
451         INIT_LIST_HEAD(&workers->prio_order_list);
452         spin_lock_init(&workers->lock);
453         spin_lock_init(&workers->order_lock);
454         workers->max_workers = max;
455         workers->idle_thresh = 32;
456         workers->name = name;
457         workers->ordered = 0;
458         workers->atomic_start_pending = 0;
459         workers->atomic_worker_start = async_helper;
460 }
461
462 /*
463  * starts new worker threads.  This does not enforce the max worker
464  * count in case you need to temporarily go past it.
465  */
466 static int __btrfs_start_workers(struct btrfs_workers *workers)
467 {
468         struct btrfs_worker_thread *worker;
469         int ret = 0;
470
471         worker = kzalloc(sizeof(*worker), GFP_NOFS);
472         if (!worker) {
473                 ret = -ENOMEM;
474                 goto fail;
475         }
476
477         INIT_LIST_HEAD(&worker->pending);
478         INIT_LIST_HEAD(&worker->prio_pending);
479         INIT_LIST_HEAD(&worker->worker_list);
480         spin_lock_init(&worker->lock);
481
482         atomic_set(&worker->num_pending, 0);
483         atomic_set(&worker->refs, 1);
484         worker->workers = workers;
485         worker->task = kthread_run(worker_loop, worker,
486                                    "btrfs-%s-%d", workers->name,
487                                    workers->num_workers + 1);
488         if (IS_ERR(worker->task)) {
489                 ret = PTR_ERR(worker->task);
490                 kfree(worker);
491                 goto fail;
492         }
493         spin_lock_irq(&workers->lock);
494         list_add_tail(&worker->worker_list, &workers->idle_list);
495         worker->idle = 1;
496         workers->num_workers++;
497         workers->num_workers_starting--;
498         WARN_ON(workers->num_workers_starting < 0);
499         spin_unlock_irq(&workers->lock);
500
501         return 0;
502 fail:
503         spin_lock_irq(&workers->lock);
504         workers->num_workers_starting--;
505         spin_unlock_irq(&workers->lock);
506         return ret;
507 }
508
509 int btrfs_start_workers(struct btrfs_workers *workers)
510 {
511         spin_lock_irq(&workers->lock);
512         workers->num_workers_starting++;
513         spin_unlock_irq(&workers->lock);
514         return __btrfs_start_workers(workers);
515 }
516
517 /*
518  * run through the list and find a worker thread that doesn't have a lot
519  * to do right now.  This can return null if we aren't yet at the thread
520  * count limit and all of the threads are busy.
521  */
522 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
523 {
524         struct btrfs_worker_thread *worker;
525         struct list_head *next;
526         int enforce_min;
527
528         enforce_min = (workers->num_workers + workers->num_workers_starting) <
529                 workers->max_workers;
530
531         /*
532          * if we find an idle thread, don't move it to the end of the
533          * idle list.  This improves the chance that the next submission
534          * will reuse the same thread, and maybe catch it while it is still
535          * working
536          */
537         if (!list_empty(&workers->idle_list)) {
538                 next = workers->idle_list.next;
539                 worker = list_entry(next, struct btrfs_worker_thread,
540                                     worker_list);
541                 return worker;
542         }
543         if (enforce_min || list_empty(&workers->worker_list))
544                 return NULL;
545
546         /*
547          * if we pick a busy task, move the task to the end of the list.
548          * hopefully this will keep things somewhat evenly balanced.
549          * Do the move in batches based on the sequence number.  This groups
550          * requests submitted at roughly the same time onto the same worker.
551          */
552         next = workers->worker_list.next;
553         worker = list_entry(next, struct btrfs_worker_thread, worker_list);
554         worker->sequence++;
555
556         if (worker->sequence % workers->idle_thresh == 0)
557                 list_move_tail(next, &workers->worker_list);
558         return worker;
559 }
560
561 /*
562  * selects a worker thread to take the next job.  This will either find
563  * an idle worker, start a new worker up to the max count, or just return
564  * one of the existing busy workers.
565  */
566 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
567 {
568         struct btrfs_worker_thread *worker;
569         unsigned long flags;
570         struct list_head *fallback;
571         int ret;
572
573         spin_lock_irqsave(&workers->lock, flags);
574 again:
575         worker = next_worker(workers);
576
577         if (!worker) {
578                 if (workers->num_workers + workers->num_workers_starting >=
579                     workers->max_workers) {
580                         goto fallback;
581                 } else if (workers->atomic_worker_start) {
582                         workers->atomic_start_pending = 1;
583                         goto fallback;
584                 } else {
585                         workers->num_workers_starting++;
586                         spin_unlock_irqrestore(&workers->lock, flags);
587                         /* we're below the limit, start another worker */
588                         ret = __btrfs_start_workers(workers);
589                         spin_lock_irqsave(&workers->lock, flags);
590                         if (ret)
591                                 goto fallback;
592                         goto again;
593                 }
594         }
595         goto found;
596
597 fallback:
598         fallback = NULL;
599         /*
600          * we have failed to find any workers, just
601          * return the first one we can find.
602          */
603         if (!list_empty(&workers->worker_list))
604                 fallback = workers->worker_list.next;
605         if (!list_empty(&workers->idle_list))
606                 fallback = workers->idle_list.next;
607         BUG_ON(!fallback);
608         worker = list_entry(fallback,
609                   struct btrfs_worker_thread, worker_list);
610 found:
611         /*
612          * this makes sure the worker doesn't exit before it is placed
613          * onto a busy/idle list
614          */
615         atomic_inc(&worker->num_pending);
616         spin_unlock_irqrestore(&workers->lock, flags);
617         return worker;
618 }
619
620 /*
621  * btrfs_requeue_work just puts the work item back on the tail of the list
622  * it was taken from.  It is intended for use with long running work functions
623  * that make some progress and want to give the cpu up for others.
624  */
625 int btrfs_requeue_work(struct btrfs_work *work)
626 {
627         struct btrfs_worker_thread *worker = work->worker;
628         unsigned long flags;
629         int wake = 0;
630
631         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
632                 goto out;
633
634         spin_lock_irqsave(&worker->lock, flags);
635         if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
636                 list_add_tail(&work->list, &worker->prio_pending);
637         else
638                 list_add_tail(&work->list, &worker->pending);
639         atomic_inc(&worker->num_pending);
640
641         /* by definition we're busy, take ourselves off the idle
642          * list
643          */
644         if (worker->idle) {
645                 spin_lock(&worker->workers->lock);
646                 worker->idle = 0;
647                 list_move_tail(&worker->worker_list,
648                               &worker->workers->worker_list);
649                 spin_unlock(&worker->workers->lock);
650         }
651         if (!worker->working) {
652                 wake = 1;
653                 worker->working = 1;
654         }
655
656         if (wake)
657                 wake_up_process(worker->task);
658         spin_unlock_irqrestore(&worker->lock, flags);
659 out:
660
661         return 0;
662 }
663
664 void btrfs_set_work_high_prio(struct btrfs_work *work)
665 {
666         set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
667 }
668
669 /*
670  * places a struct btrfs_work into the pending queue of one of the kthreads
671  */
672 void btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
673 {
674         struct btrfs_worker_thread *worker;
675         unsigned long flags;
676         int wake = 0;
677
678         /* don't requeue something already on a list */
679         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
680                 return;
681
682         worker = find_worker(workers);
683         if (workers->ordered) {
684                 /*
685                  * you're not allowed to do ordered queues from an
686                  * interrupt handler
687                  */
688                 spin_lock(&workers->order_lock);
689                 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
690                         list_add_tail(&work->order_list,
691                                       &workers->prio_order_list);
692                 } else {
693                         list_add_tail(&work->order_list, &workers->order_list);
694                 }
695                 spin_unlock(&workers->order_lock);
696         } else {
697                 INIT_LIST_HEAD(&work->order_list);
698         }
699
700         spin_lock_irqsave(&worker->lock, flags);
701
702         if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
703                 list_add_tail(&work->list, &worker->prio_pending);
704         else
705                 list_add_tail(&work->list, &worker->pending);
706         check_busy_worker(worker);
707
708         /*
709          * avoid calling into wake_up_process if this thread has already
710          * been kicked
711          */
712         if (!worker->working)
713                 wake = 1;
714         worker->working = 1;
715
716         if (wake)
717                 wake_up_process(worker->task);
718         spin_unlock_irqrestore(&worker->lock, flags);
719 }