Merge branch 'rmobile-latest' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal...
[pandora-kernel.git] / drivers / video / vermilion / vermilion.c
1 /*
2  * Copyright (c) Intel Corp. 2007.
3  * All Rights Reserved.
4  *
5  * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
6  * develop this driver.
7  *
8  * This file is part of the Vermilion Range fb driver.
9  * The Vermilion Range fb driver is free software;
10  * you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * The Vermilion Range fb driver is distributed
16  * in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this driver; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
24  *
25  * Authors:
26  *   Thomas Hellström <thomas-at-tungstengraphics-dot-com>
27  *   Michel Dänzer <michel-at-tungstengraphics-dot-com>
28  *   Alan Hourihane <alanh-at-tungstengraphics-dot-com>
29  */
30
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/delay.h>
36 #include <linux/slab.h>
37 #include <linux/mm.h>
38 #include <linux/fb.h>
39 #include <linux/pci.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <linux/mmzone.h>
43
44 /* #define VERMILION_DEBUG */
45
46 #include "vermilion.h"
47
48 #define MODULE_NAME "vmlfb"
49
50 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
51
52 static struct mutex vml_mutex;
53 static struct list_head global_no_mode;
54 static struct list_head global_has_mode;
55 static struct fb_ops vmlfb_ops;
56 static struct vml_sys *subsys = NULL;
57 static char *vml_default_mode = "1024x768@60";
58 static struct fb_videomode defaultmode = {
59         NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
60         0, FB_VMODE_NONINTERLACED
61 };
62
63 static u32 vml_mem_requested = (10 * 1024 * 1024);
64 static u32 vml_mem_contig = (4 * 1024 * 1024);
65 static u32 vml_mem_min = (4 * 1024 * 1024);
66
67 static u32 vml_clocks[] = {
68         6750,
69         13500,
70         27000,
71         29700,
72         37125,
73         54000,
74         59400,
75         74250,
76         120000,
77         148500
78 };
79
80 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
81
82 /*
83  * Allocate a contiguous vram area and make its linear kernel map
84  * uncached.
85  */
86
87 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
88                                  unsigned min_order)
89 {
90         gfp_t flags;
91         unsigned long i;
92
93         max_order++;
94         do {
95                 /*
96                  * Really try hard to get the needed memory.
97                  * We need memory below the first 32MB, so we
98                  * add the __GFP_DMA flag that guarantees that we are
99                  * below the first 16MB.
100                  */
101
102                 flags = __GFP_DMA | __GFP_HIGH;
103                 va->logical =
104                          __get_free_pages(flags, --max_order);
105         } while (va->logical == 0 && max_order > min_order);
106
107         if (!va->logical)
108                 return -ENOMEM;
109
110         va->phys = virt_to_phys((void *)va->logical);
111         va->size = PAGE_SIZE << max_order;
112         va->order = max_order;
113
114         /*
115          * It seems like __get_free_pages only ups the usage count
116          * of the first page. This doesn't work with fault mapping, so
117          * up the usage count once more (XXX: should use split_page or
118          * compound page).
119          */
120
121         memset((void *)va->logical, 0x00, va->size);
122         for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
123                 get_page(virt_to_page(i));
124         }
125
126         /*
127          * Change caching policy of the linear kernel map to avoid
128          * mapping type conflicts with user-space mappings.
129          */
130         set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
131
132         printk(KERN_DEBUG MODULE_NAME
133                ": Allocated %ld bytes vram area at 0x%08lx\n",
134                va->size, va->phys);
135
136         return 0;
137 }
138
139 /*
140  * Free a contiguous vram area and reset its linear kernel map
141  * mapping type.
142  */
143
144 static void vmlfb_free_vram_area(struct vram_area *va)
145 {
146         unsigned long j;
147
148         if (va->logical) {
149
150                 /*
151                  * Reset the linear kernel map caching policy.
152                  */
153
154                 set_pages_wb(virt_to_page(va->logical),
155                                  va->size >> PAGE_SHIFT);
156
157                 /*
158                  * Decrease the usage count on the pages we've used
159                  * to compensate for upping when allocating.
160                  */
161
162                 for (j = va->logical; j < va->logical + va->size;
163                      j += PAGE_SIZE) {
164                         (void)put_page_testzero(virt_to_page(j));
165                 }
166
167                 printk(KERN_DEBUG MODULE_NAME
168                        ": Freeing %ld bytes vram area at 0x%08lx\n",
169                        va->size, va->phys);
170                 free_pages(va->logical, va->order);
171
172                 va->logical = 0;
173         }
174 }
175
176 /*
177  * Free allocated vram.
178  */
179
180 static void vmlfb_free_vram(struct vml_info *vinfo)
181 {
182         int i;
183
184         for (i = 0; i < vinfo->num_areas; ++i) {
185                 vmlfb_free_vram_area(&vinfo->vram[i]);
186         }
187         vinfo->num_areas = 0;
188 }
189
190 /*
191  * Allocate vram. Currently we try to allocate contiguous areas from the
192  * __GFP_DMA zone and puzzle them together. A better approach would be to
193  * allocate one contiguous area for scanout and use one-page allocations for
194  * offscreen areas. This requires user-space and GPU virtual mappings.
195  */
196
197 static int vmlfb_alloc_vram(struct vml_info *vinfo,
198                             size_t requested,
199                             size_t min_total, size_t min_contig)
200 {
201         int i, j;
202         int order;
203         int contiguous;
204         int err;
205         struct vram_area *va;
206         struct vram_area *va2;
207
208         vinfo->num_areas = 0;
209         for (i = 0; i < VML_VRAM_AREAS; ++i) {
210                 va = &vinfo->vram[i];
211                 order = 0;
212
213                 while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
214                         order++;
215
216                 err = vmlfb_alloc_vram_area(va, order, 0);
217
218                 if (err)
219                         break;
220
221                 if (i == 0) {
222                         vinfo->vram_start = va->phys;
223                         vinfo->vram_logical = (void __iomem *) va->logical;
224                         vinfo->vram_contig_size = va->size;
225                         vinfo->num_areas = 1;
226                 } else {
227                         contiguous = 0;
228
229                         for (j = 0; j < i; ++j) {
230                                 va2 = &vinfo->vram[j];
231                                 if (va->phys + va->size == va2->phys ||
232                                     va2->phys + va2->size == va->phys) {
233                                         contiguous = 1;
234                                         break;
235                                 }
236                         }
237
238                         if (contiguous) {
239                                 vinfo->num_areas++;
240                                 if (va->phys < vinfo->vram_start) {
241                                         vinfo->vram_start = va->phys;
242                                         vinfo->vram_logical =
243                                                 (void __iomem *)va->logical;
244                                 }
245                                 vinfo->vram_contig_size += va->size;
246                         } else {
247                                 vmlfb_free_vram_area(va);
248                                 break;
249                         }
250                 }
251
252                 if (requested < va->size)
253                         break;
254                 else
255                         requested -= va->size;
256         }
257
258         if (vinfo->vram_contig_size > min_total &&
259             vinfo->vram_contig_size > min_contig) {
260
261                 printk(KERN_DEBUG MODULE_NAME
262                        ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
263                        (unsigned long)vinfo->vram_contig_size,
264                        (unsigned long)vinfo->vram_start);
265
266                 return 0;
267         }
268
269         printk(KERN_ERR MODULE_NAME
270                ": Could not allocate requested minimal amount of vram.\n");
271
272         vmlfb_free_vram(vinfo);
273
274         return -ENOMEM;
275 }
276
277 /*
278  * Find the GPU to use with our display controller.
279  */
280
281 static int vmlfb_get_gpu(struct vml_par *par)
282 {
283         mutex_lock(&vml_mutex);
284
285         par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
286
287         if (!par->gpu) {
288                 mutex_unlock(&vml_mutex);
289                 return -ENODEV;
290         }
291
292         mutex_unlock(&vml_mutex);
293
294         if (pci_enable_device(par->gpu) < 0)
295                 return -ENODEV;
296
297         return 0;
298 }
299
300 /*
301  * Find a contiguous vram area that contains a given offset from vram start.
302  */
303 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
304 {
305         unsigned long aoffset;
306         unsigned i;
307
308         for (i = 0; i < vinfo->num_areas; ++i) {
309                 aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
310
311                 if (aoffset < vinfo->vram[i].size) {
312                         return 0;
313                 }
314         }
315
316         return -EINVAL;
317 }
318
319 /*
320  * Remap the MMIO register spaces of the VDC and the GPU.
321  */
322
323 static int vmlfb_enable_mmio(struct vml_par *par)
324 {
325         int err;
326
327         par->vdc_mem_base = pci_resource_start(par->vdc, 0);
328         par->vdc_mem_size = pci_resource_len(par->vdc, 0);
329         if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
330                 printk(KERN_ERR MODULE_NAME
331                        ": Could not claim display controller MMIO.\n");
332                 return -EBUSY;
333         }
334         par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
335         if (par->vdc_mem == NULL) {
336                 printk(KERN_ERR MODULE_NAME
337                        ": Could not map display controller MMIO.\n");
338                 err = -ENOMEM;
339                 goto out_err_0;
340         }
341
342         par->gpu_mem_base = pci_resource_start(par->gpu, 0);
343         par->gpu_mem_size = pci_resource_len(par->gpu, 0);
344         if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
345                 printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
346                 err = -EBUSY;
347                 goto out_err_1;
348         }
349         par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
350         if (par->gpu_mem == NULL) {
351                 printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
352                 err = -ENOMEM;
353                 goto out_err_2;
354         }
355
356         return 0;
357
358 out_err_2:
359         release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
360 out_err_1:
361         iounmap(par->vdc_mem);
362 out_err_0:
363         release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
364         return err;
365 }
366
367 /*
368  * Unmap the VDC and GPU register spaces.
369  */
370
371 static void vmlfb_disable_mmio(struct vml_par *par)
372 {
373         iounmap(par->gpu_mem);
374         release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
375         iounmap(par->vdc_mem);
376         release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
377 }
378
379 /*
380  * Release and uninit the VDC and GPU.
381  */
382
383 static void vmlfb_release_devices(struct vml_par *par)
384 {
385         if (atomic_dec_and_test(&par->refcount)) {
386                 pci_set_drvdata(par->vdc, NULL);
387                 pci_disable_device(par->gpu);
388                 pci_disable_device(par->vdc);
389         }
390 }
391
392 /*
393  * Free up allocated resources for a device.
394  */
395
396 static void __devexit vml_pci_remove(struct pci_dev *dev)
397 {
398         struct fb_info *info;
399         struct vml_info *vinfo;
400         struct vml_par *par;
401
402         info = pci_get_drvdata(dev);
403         if (info) {
404                 vinfo = container_of(info, struct vml_info, info);
405                 par = vinfo->par;
406                 mutex_lock(&vml_mutex);
407                 unregister_framebuffer(info);
408                 fb_dealloc_cmap(&info->cmap);
409                 vmlfb_free_vram(vinfo);
410                 vmlfb_disable_mmio(par);
411                 vmlfb_release_devices(par);
412                 kfree(vinfo);
413                 kfree(par);
414                 mutex_unlock(&vml_mutex);
415         }
416 }
417
418 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
419 {
420         switch (var->bits_per_pixel) {
421         case 16:
422                 var->blue.offset = 0;
423                 var->blue.length = 5;
424                 var->green.offset = 5;
425                 var->green.length = 5;
426                 var->red.offset = 10;
427                 var->red.length = 5;
428                 var->transp.offset = 15;
429                 var->transp.length = 1;
430                 break;
431         case 32:
432                 var->blue.offset = 0;
433                 var->blue.length = 8;
434                 var->green.offset = 8;
435                 var->green.length = 8;
436                 var->red.offset = 16;
437                 var->red.length = 8;
438                 var->transp.offset = 24;
439                 var->transp.length = 0;
440                 break;
441         default:
442                 break;
443         }
444
445         var->blue.msb_right = var->green.msb_right =
446             var->red.msb_right = var->transp.msb_right = 0;
447 }
448
449 /*
450  * Device initialization.
451  * We initialize one vml_par struct per device and one vml_info
452  * struct per pipe. Currently we have only one pipe.
453  */
454
455 static int __devinit vml_pci_probe(struct pci_dev *dev,
456                                    const struct pci_device_id *id)
457 {
458         struct vml_info *vinfo;
459         struct fb_info *info;
460         struct vml_par *par;
461         int err = 0;
462
463         par = kzalloc(sizeof(*par), GFP_KERNEL);
464         if (par == NULL)
465                 return -ENOMEM;
466
467         vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
468         if (vinfo == NULL) {
469                 err = -ENOMEM;
470                 goto out_err_0;
471         }
472
473         vinfo->par = par;
474         par->vdc = dev;
475         atomic_set(&par->refcount, 1);
476
477         switch (id->device) {
478         case VML_DEVICE_VDC:
479                 if ((err = vmlfb_get_gpu(par)))
480                         goto out_err_1;
481                 pci_set_drvdata(dev, &vinfo->info);
482                 break;
483         default:
484                 err = -ENODEV;
485                 goto out_err_1;
486                 break;
487         }
488
489         info = &vinfo->info;
490         info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
491
492         err = vmlfb_enable_mmio(par);
493         if (err)
494                 goto out_err_2;
495
496         err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
497                                vml_mem_contig, vml_mem_min);
498         if (err)
499                 goto out_err_3;
500
501         strcpy(info->fix.id, "Vermilion Range");
502         info->fix.mmio_start = 0;
503         info->fix.mmio_len = 0;
504         info->fix.smem_start = vinfo->vram_start;
505         info->fix.smem_len = vinfo->vram_contig_size;
506         info->fix.type = FB_TYPE_PACKED_PIXELS;
507         info->fix.visual = FB_VISUAL_TRUECOLOR;
508         info->fix.ypanstep = 1;
509         info->fix.xpanstep = 1;
510         info->fix.ywrapstep = 0;
511         info->fix.accel = FB_ACCEL_NONE;
512         info->screen_base = vinfo->vram_logical;
513         info->pseudo_palette = vinfo->pseudo_palette;
514         info->par = par;
515         info->fbops = &vmlfb_ops;
516         info->device = &dev->dev;
517
518         INIT_LIST_HEAD(&vinfo->head);
519         vinfo->pipe_disabled = 1;
520         vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
521
522         info->var.grayscale = 0;
523         info->var.bits_per_pixel = 16;
524         vmlfb_set_pref_pixel_format(&info->var);
525
526         if (!fb_find_mode
527             (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
528                 printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
529         }
530
531         if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
532                 err = -ENOMEM;
533                 goto out_err_4;
534         }
535
536         err = register_framebuffer(info);
537         if (err) {
538                 printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
539                 goto out_err_5;
540         }
541
542         printk("Initialized vmlfb\n");
543
544         return 0;
545
546 out_err_5:
547         fb_dealloc_cmap(&info->cmap);
548 out_err_4:
549         vmlfb_free_vram(vinfo);
550 out_err_3:
551         vmlfb_disable_mmio(par);
552 out_err_2:
553         vmlfb_release_devices(par);
554 out_err_1:
555         kfree(vinfo);
556 out_err_0:
557         kfree(par);
558         return err;
559 }
560
561 static int vmlfb_open(struct fb_info *info, int user)
562 {
563         /*
564          * Save registers here?
565          */
566         return 0;
567 }
568
569 static int vmlfb_release(struct fb_info *info, int user)
570 {
571         /*
572          * Restore registers here.
573          */
574
575         return 0;
576 }
577
578 static int vml_nearest_clock(int clock)
579 {
580
581         int i;
582         int cur_index;
583         int cur_diff;
584         int diff;
585
586         cur_index = 0;
587         cur_diff = clock - vml_clocks[0];
588         cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
589         for (i = 1; i < vml_num_clocks; ++i) {
590                 diff = clock - vml_clocks[i];
591                 diff = (diff < 0) ? -diff : diff;
592                 if (diff < cur_diff) {
593                         cur_index = i;
594                         cur_diff = diff;
595                 }
596         }
597         return vml_clocks[cur_index];
598 }
599
600 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
601                                   struct vml_info *vinfo)
602 {
603         u32 pitch;
604         u64 mem;
605         int nearest_clock;
606         int clock;
607         int clock_diff;
608         struct fb_var_screeninfo v;
609
610         v = *var;
611         clock = PICOS2KHZ(var->pixclock);
612
613         if (subsys && subsys->nearest_clock) {
614                 nearest_clock = subsys->nearest_clock(subsys, clock);
615         } else {
616                 nearest_clock = vml_nearest_clock(clock);
617         }
618
619         /*
620          * Accept a 20% diff.
621          */
622
623         clock_diff = nearest_clock - clock;
624         clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
625         if (clock_diff > clock / 5) {
626 #if 0
627                 printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
628 #endif
629                 return -EINVAL;
630         }
631
632         v.pixclock = KHZ2PICOS(nearest_clock);
633
634         if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
635                 printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
636                 return -EINVAL;
637         }
638         if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
639                 printk(KERN_DEBUG MODULE_NAME
640                        ": Virtual resolution failure.\n");
641                 return -EINVAL;
642         }
643         switch (v.bits_per_pixel) {
644         case 0 ... 16:
645                 v.bits_per_pixel = 16;
646                 break;
647         case 17 ... 32:
648                 v.bits_per_pixel = 32;
649                 break;
650         default:
651                 printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
652                        var->bits_per_pixel);
653                 return -EINVAL;
654         }
655
656         pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
657         mem = pitch * var->yres_virtual;
658         if (mem > vinfo->vram_contig_size) {
659                 return -ENOMEM;
660         }
661
662         switch (v.bits_per_pixel) {
663         case 16:
664                 if (var->blue.offset != 0 ||
665                     var->blue.length != 5 ||
666                     var->green.offset != 5 ||
667                     var->green.length != 5 ||
668                     var->red.offset != 10 ||
669                     var->red.length != 5 ||
670                     var->transp.offset != 15 || var->transp.length != 1) {
671                         vmlfb_set_pref_pixel_format(&v);
672                 }
673                 break;
674         case 32:
675                 if (var->blue.offset != 0 ||
676                     var->blue.length != 8 ||
677                     var->green.offset != 8 ||
678                     var->green.length != 8 ||
679                     var->red.offset != 16 ||
680                     var->red.length != 8 ||
681                     (var->transp.length != 0 && var->transp.length != 8) ||
682                     (var->transp.length == 8 && var->transp.offset != 24)) {
683                         vmlfb_set_pref_pixel_format(&v);
684                 }
685                 break;
686         default:
687                 return -EINVAL;
688         }
689
690         *var = v;
691
692         return 0;
693 }
694
695 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
696 {
697         struct vml_info *vinfo = container_of(info, struct vml_info, info);
698         int ret;
699
700         mutex_lock(&vml_mutex);
701         ret = vmlfb_check_var_locked(var, vinfo);
702         mutex_unlock(&vml_mutex);
703
704         return ret;
705 }
706
707 static void vml_wait_vblank(struct vml_info *vinfo)
708 {
709         /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
710         mdelay(20);
711 }
712
713 static void vmlfb_disable_pipe(struct vml_info *vinfo)
714 {
715         struct vml_par *par = vinfo->par;
716
717         /* Disable the MDVO pad */
718         VML_WRITE32(par, VML_RCOMPSTAT, 0);
719         while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
720
721         /* Disable display planes */
722         VML_WRITE32(par, VML_DSPCCNTR,
723                     VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
724         (void)VML_READ32(par, VML_DSPCCNTR);
725         /* Wait for vblank for the disable to take effect */
726         vml_wait_vblank(vinfo);
727
728         /* Next, disable display pipes */
729         VML_WRITE32(par, VML_PIPEACONF, 0);
730         (void)VML_READ32(par, VML_PIPEACONF);
731
732         vinfo->pipe_disabled = 1;
733 }
734
735 #ifdef VERMILION_DEBUG
736 static void vml_dump_regs(struct vml_info *vinfo)
737 {
738         struct vml_par *par = vinfo->par;
739
740         printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
741         printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A         : 0x%08x\n",
742                (unsigned)VML_READ32(par, VML_HTOTAL_A));
743         printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A         : 0x%08x\n",
744                (unsigned)VML_READ32(par, VML_HBLANK_A));
745         printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A          : 0x%08x\n",
746                (unsigned)VML_READ32(par, VML_HSYNC_A));
747         printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A         : 0x%08x\n",
748                (unsigned)VML_READ32(par, VML_VTOTAL_A));
749         printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A         : 0x%08x\n",
750                (unsigned)VML_READ32(par, VML_VBLANK_A));
751         printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A          : 0x%08x\n",
752                (unsigned)VML_READ32(par, VML_VSYNC_A));
753         printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE       : 0x%08x\n",
754                (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
755         printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE         : 0x%08x\n",
756                (unsigned)VML_READ32(par, VML_DSPCSIZE));
757         printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS          : 0x%08x\n",
758                (unsigned)VML_READ32(par, VML_DSPCPOS));
759         printk(KERN_DEBUG MODULE_NAME ": \tDSPARB           : 0x%08x\n",
760                (unsigned)VML_READ32(par, VML_DSPARB));
761         printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR         : 0x%08x\n",
762                (unsigned)VML_READ32(par, VML_DSPCADDR));
763         printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A        : 0x%08x\n",
764                (unsigned)VML_READ32(par, VML_BCLRPAT_A));
765         printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A       : 0x%08x\n",
766                (unsigned)VML_READ32(par, VML_CANVSCLR_A));
767         printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC         : 0x%08x\n",
768                (unsigned)VML_READ32(par, VML_PIPEASRC));
769         printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF        : 0x%08x\n",
770                (unsigned)VML_READ32(par, VML_PIPEACONF));
771         printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR         : 0x%08x\n",
772                (unsigned)VML_READ32(par, VML_DSPCCNTR));
773         printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT        : 0x%08x\n",
774                (unsigned)VML_READ32(par, VML_RCOMPSTAT));
775         printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
776 }
777 #endif
778
779 static int vmlfb_set_par_locked(struct vml_info *vinfo)
780 {
781         struct vml_par *par = vinfo->par;
782         struct fb_info *info = &vinfo->info;
783         struct fb_var_screeninfo *var = &info->var;
784         u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
785         u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
786         u32 dspcntr;
787         int clock;
788
789         vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
790         vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
791         info->fix.line_length = vinfo->stride;
792
793         if (!subsys)
794                 return 0;
795
796         htotal =
797             var->xres + var->right_margin + var->hsync_len + var->left_margin;
798         hactive = var->xres;
799         hblank_start = var->xres;
800         hblank_end = htotal;
801         hsync_start = hactive + var->right_margin;
802         hsync_end = hsync_start + var->hsync_len;
803
804         vtotal =
805             var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
806         vactive = var->yres;
807         vblank_start = var->yres;
808         vblank_end = vtotal;
809         vsync_start = vactive + var->lower_margin;
810         vsync_end = vsync_start + var->vsync_len;
811
812         dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
813         clock = PICOS2KHZ(var->pixclock);
814
815         if (subsys->nearest_clock) {
816                 clock = subsys->nearest_clock(subsys, clock);
817         } else {
818                 clock = vml_nearest_clock(clock);
819         }
820         printk(KERN_DEBUG MODULE_NAME
821                ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
822                ((clock / htotal) * 1000) / vtotal);
823
824         switch (var->bits_per_pixel) {
825         case 16:
826                 dspcntr |= VML_GFX_ARGB1555;
827                 break;
828         case 32:
829                 if (var->transp.length == 8)
830                         dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
831                 else
832                         dspcntr |= VML_GFX_RGB0888;
833                 break;
834         default:
835                 return -EINVAL;
836         }
837
838         vmlfb_disable_pipe(vinfo);
839         mb();
840
841         if (subsys->set_clock)
842                 subsys->set_clock(subsys, clock);
843         else
844                 return -EINVAL;
845
846         VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
847         VML_WRITE32(par, VML_HBLANK_A,
848                     ((hblank_end - 1) << 16) | (hblank_start - 1));
849         VML_WRITE32(par, VML_HSYNC_A,
850                     ((hsync_end - 1) << 16) | (hsync_start - 1));
851         VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
852         VML_WRITE32(par, VML_VBLANK_A,
853                     ((vblank_end - 1) << 16) | (vblank_start - 1));
854         VML_WRITE32(par, VML_VSYNC_A,
855                     ((vsync_end - 1) << 16) | (vsync_start - 1));
856         VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
857         VML_WRITE32(par, VML_DSPCSIZE,
858                     ((var->yres - 1) << 16) | (var->xres - 1));
859         VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
860         VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
861         VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
862         VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
863         VML_WRITE32(par, VML_PIPEASRC,
864                     ((var->xres - 1) << 16) | (var->yres - 1));
865
866         wmb();
867         VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
868         wmb();
869         VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
870         wmb();
871         VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
872                     var->yoffset * vinfo->stride +
873                     var->xoffset * vinfo->bytes_per_pixel);
874
875         VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
876
877         while (!(VML_READ32(par, VML_RCOMPSTAT) &
878                  (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
879
880         vinfo->pipe_disabled = 0;
881 #ifdef VERMILION_DEBUG
882         vml_dump_regs(vinfo);
883 #endif
884
885         return 0;
886 }
887
888 static int vmlfb_set_par(struct fb_info *info)
889 {
890         struct vml_info *vinfo = container_of(info, struct vml_info, info);
891         int ret;
892
893         mutex_lock(&vml_mutex);
894         list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
895         ret = vmlfb_set_par_locked(vinfo);
896
897         mutex_unlock(&vml_mutex);
898         return ret;
899 }
900
901 static int vmlfb_blank_locked(struct vml_info *vinfo)
902 {
903         struct vml_par *par = vinfo->par;
904         u32 cur = VML_READ32(par, VML_PIPEACONF);
905
906         switch (vinfo->cur_blank_mode) {
907         case FB_BLANK_UNBLANK:
908                 if (vinfo->pipe_disabled) {
909                         vmlfb_set_par_locked(vinfo);
910                 }
911                 VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
912                 (void)VML_READ32(par, VML_PIPEACONF);
913                 break;
914         case FB_BLANK_NORMAL:
915                 if (vinfo->pipe_disabled) {
916                         vmlfb_set_par_locked(vinfo);
917                 }
918                 VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
919                 (void)VML_READ32(par, VML_PIPEACONF);
920                 break;
921         case FB_BLANK_VSYNC_SUSPEND:
922         case FB_BLANK_HSYNC_SUSPEND:
923                 if (!vinfo->pipe_disabled) {
924                         vmlfb_disable_pipe(vinfo);
925                 }
926                 break;
927         case FB_BLANK_POWERDOWN:
928                 if (!vinfo->pipe_disabled) {
929                         vmlfb_disable_pipe(vinfo);
930                 }
931                 break;
932         default:
933                 return -EINVAL;
934         }
935
936         return 0;
937 }
938
939 static int vmlfb_blank(int blank_mode, struct fb_info *info)
940 {
941         struct vml_info *vinfo = container_of(info, struct vml_info, info);
942         int ret;
943
944         mutex_lock(&vml_mutex);
945         vinfo->cur_blank_mode = blank_mode;
946         ret = vmlfb_blank_locked(vinfo);
947         mutex_unlock(&vml_mutex);
948         return ret;
949 }
950
951 static int vmlfb_pan_display(struct fb_var_screeninfo *var,
952                              struct fb_info *info)
953 {
954         struct vml_info *vinfo = container_of(info, struct vml_info, info);
955         struct vml_par *par = vinfo->par;
956
957         mutex_lock(&vml_mutex);
958         VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
959                     var->yoffset * vinfo->stride +
960                     var->xoffset * vinfo->bytes_per_pixel);
961         (void)VML_READ32(par, VML_DSPCADDR);
962         mutex_unlock(&vml_mutex);
963
964         return 0;
965 }
966
967 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
968                            u_int transp, struct fb_info *info)
969 {
970         u32 v;
971
972         if (regno >= 16)
973                 return -EINVAL;
974
975         if (info->var.grayscale) {
976                 red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
977         }
978
979         if (info->fix.visual != FB_VISUAL_TRUECOLOR)
980                 return -EINVAL;
981
982         red = VML_TOHW(red, info->var.red.length);
983         blue = VML_TOHW(blue, info->var.blue.length);
984         green = VML_TOHW(green, info->var.green.length);
985         transp = VML_TOHW(transp, info->var.transp.length);
986
987         v = (red << info->var.red.offset) |
988             (green << info->var.green.offset) |
989             (blue << info->var.blue.offset) |
990             (transp << info->var.transp.offset);
991
992         switch (info->var.bits_per_pixel) {
993         case 16:
994                 ((u32 *) info->pseudo_palette)[regno] = v;
995                 break;
996         case 24:
997         case 32:
998                 ((u32 *) info->pseudo_palette)[regno] = v;
999                 break;
1000         }
1001         return 0;
1002 }
1003
1004 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
1005 {
1006         struct vml_info *vinfo = container_of(info, struct vml_info, info);
1007         unsigned long size = vma->vm_end - vma->vm_start;
1008         unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1009         int ret;
1010
1011         if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
1012                 return -EINVAL;
1013         if (offset + size > vinfo->vram_contig_size)
1014                 return -EINVAL;
1015         ret = vmlfb_vram_offset(vinfo, offset);
1016         if (ret)
1017                 return -EINVAL;
1018         offset += vinfo->vram_start;
1019         pgprot_val(vma->vm_page_prot) |= _PAGE_PCD;
1020         pgprot_val(vma->vm_page_prot) &= ~_PAGE_PWT;
1021         vma->vm_flags |= VM_RESERVED | VM_IO;
1022         if (remap_pfn_range(vma, vma->vm_start, offset >> PAGE_SHIFT,
1023                                                 size, vma->vm_page_prot))
1024                 return -EAGAIN;
1025         return 0;
1026 }
1027
1028 static int vmlfb_sync(struct fb_info *info)
1029 {
1030         return 0;
1031 }
1032
1033 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1034 {
1035         return -EINVAL; /* just to force soft_cursor() call */
1036 }
1037
1038 static struct fb_ops vmlfb_ops = {
1039         .owner = THIS_MODULE,
1040         .fb_open = vmlfb_open,
1041         .fb_release = vmlfb_release,
1042         .fb_check_var = vmlfb_check_var,
1043         .fb_set_par = vmlfb_set_par,
1044         .fb_blank = vmlfb_blank,
1045         .fb_pan_display = vmlfb_pan_display,
1046         .fb_fillrect = cfb_fillrect,
1047         .fb_copyarea = cfb_copyarea,
1048         .fb_imageblit = cfb_imageblit,
1049         .fb_cursor = vmlfb_cursor,
1050         .fb_sync = vmlfb_sync,
1051         .fb_mmap = vmlfb_mmap,
1052         .fb_setcolreg = vmlfb_setcolreg
1053 };
1054
1055 static struct pci_device_id vml_ids[] = {
1056         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1057         {0}
1058 };
1059
1060 static struct pci_driver vmlfb_pci_driver = {
1061         .name = "vmlfb",
1062         .id_table = vml_ids,
1063         .probe = vml_pci_probe,
1064         .remove = __devexit_p(vml_pci_remove)
1065 };
1066
1067 static void __exit vmlfb_cleanup(void)
1068 {
1069         pci_unregister_driver(&vmlfb_pci_driver);
1070 }
1071
1072 static int __init vmlfb_init(void)
1073 {
1074
1075 #ifndef MODULE
1076         char *option = NULL;
1077
1078         if (fb_get_options(MODULE_NAME, &option))
1079                 return -ENODEV;
1080 #endif
1081
1082         printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1083         mutex_init(&vml_mutex);
1084         INIT_LIST_HEAD(&global_no_mode);
1085         INIT_LIST_HEAD(&global_has_mode);
1086
1087         return pci_register_driver(&vmlfb_pci_driver);
1088 }
1089
1090 int vmlfb_register_subsys(struct vml_sys *sys)
1091 {
1092         struct vml_info *entry;
1093         struct list_head *list;
1094         u32 save_activate;
1095
1096         mutex_lock(&vml_mutex);
1097         if (subsys != NULL) {
1098                 subsys->restore(subsys);
1099         }
1100         subsys = sys;
1101         subsys->save(subsys);
1102
1103         /*
1104          * We need to restart list traversal for each item, since we
1105          * release the list mutex in the loop.
1106          */
1107
1108         list = global_no_mode.next;
1109         while (list != &global_no_mode) {
1110                 list_del_init(list);
1111                 entry = list_entry(list, struct vml_info, head);
1112
1113                 /*
1114                  * First, try the current mode which might not be
1115                  * completely validated with respect to the pixel clock.
1116                  */
1117
1118                 if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1119                         vmlfb_set_par_locked(entry);
1120                         list_add_tail(list, &global_has_mode);
1121                 } else {
1122
1123                         /*
1124                          * Didn't work. Try to find another mode,
1125                          * that matches this subsys.
1126                          */
1127
1128                         mutex_unlock(&vml_mutex);
1129                         save_activate = entry->info.var.activate;
1130                         entry->info.var.bits_per_pixel = 16;
1131                         vmlfb_set_pref_pixel_format(&entry->info.var);
1132                         if (fb_find_mode(&entry->info.var,
1133                                          &entry->info,
1134                                          vml_default_mode, NULL, 0, NULL, 16)) {
1135                                 entry->info.var.activate |=
1136                                     FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1137                                 fb_set_var(&entry->info, &entry->info.var);
1138                         } else {
1139                                 printk(KERN_ERR MODULE_NAME
1140                                        ": Sorry. no mode found for this subsys.\n");
1141                         }
1142                         entry->info.var.activate = save_activate;
1143                         mutex_lock(&vml_mutex);
1144                 }
1145                 vmlfb_blank_locked(entry);
1146                 list = global_no_mode.next;
1147         }
1148         mutex_unlock(&vml_mutex);
1149
1150         printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1151                                 subsys->name ? subsys->name : "unknown");
1152         return 0;
1153 }
1154
1155 EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1156
1157 void vmlfb_unregister_subsys(struct vml_sys *sys)
1158 {
1159         struct vml_info *entry, *next;
1160
1161         mutex_lock(&vml_mutex);
1162         if (subsys != sys) {
1163                 mutex_unlock(&vml_mutex);
1164                 return;
1165         }
1166         subsys->restore(subsys);
1167         subsys = NULL;
1168         list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1169                 printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1170                 vmlfb_disable_pipe(entry);
1171                 list_del(&entry->head);
1172                 list_add_tail(&entry->head, &global_no_mode);
1173         }
1174         mutex_unlock(&vml_mutex);
1175 }
1176
1177 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1178
1179 module_init(vmlfb_init);
1180 module_exit(vmlfb_cleanup);
1181
1182 MODULE_AUTHOR("Tungsten Graphics");
1183 MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1184 MODULE_VERSION("1.0.0");
1185 MODULE_LICENSE("GPL");