xhci: Calculate old endpoints correctly on device reset
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
44 /*
45  * handshake - spin reading hc until handshake completes or fails
46  * @ptr: address of hc register to be read
47  * @mask: bits to look at in result of read
48  * @done: value of those bits when handshake succeeds
49  * @usec: timeout in microseconds
50  *
51  * Returns negative errno, or zero on success
52  *
53  * Success happens when the "mask" bits have the specified value (hardware
54  * handshake done).  There are two failure modes:  "usec" have passed (major
55  * hardware flakeout), or the register reads as all-ones (hardware removed).
56  */
57 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58                       u32 mask, u32 done, int usec)
59 {
60         u32     result;
61
62         do {
63                 result = xhci_readl(xhci, ptr);
64                 if (result == ~(u32)0)          /* card removed */
65                         return -ENODEV;
66                 result &= mask;
67                 if (result == done)
68                         return 0;
69                 udelay(1);
70                 usec--;
71         } while (usec > 0);
72         return -ETIMEDOUT;
73 }
74
75 /*
76  * Disable interrupts and begin the xHCI halting process.
77  */
78 void xhci_quiesce(struct xhci_hcd *xhci)
79 {
80         u32 halted;
81         u32 cmd;
82         u32 mask;
83
84         mask = ~(XHCI_IRQS);
85         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86         if (!halted)
87                 mask &= ~CMD_RUN;
88
89         cmd = xhci_readl(xhci, &xhci->op_regs->command);
90         cmd &= mask;
91         xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 }
93
94 /*
95  * Force HC into halt state.
96  *
97  * Disable any IRQs and clear the run/stop bit.
98  * HC will complete any current and actively pipelined transactions, and
99  * should halt within 16 ms of the run/stop bit being cleared.
100  * Read HC Halted bit in the status register to see when the HC is finished.
101  */
102 int xhci_halt(struct xhci_hcd *xhci)
103 {
104         int ret;
105         xhci_dbg(xhci, "// Halt the HC\n");
106         xhci_quiesce(xhci);
107
108         ret = handshake(xhci, &xhci->op_regs->status,
109                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110         if (!ret) {
111                 xhci->xhc_state |= XHCI_STATE_HALTED;
112                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113         } else
114                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115                                 XHCI_MAX_HALT_USEC);
116         return ret;
117 }
118
119 /*
120  * Set the run bit and wait for the host to be running.
121  */
122 static int xhci_start(struct xhci_hcd *xhci)
123 {
124         u32 temp;
125         int ret;
126
127         temp = xhci_readl(xhci, &xhci->op_regs->command);
128         temp |= (CMD_RUN);
129         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
130                         temp);
131         xhci_writel(xhci, temp, &xhci->op_regs->command);
132
133         /*
134          * Wait for the HCHalted Status bit to be 0 to indicate the host is
135          * running.
136          */
137         ret = handshake(xhci, &xhci->op_regs->status,
138                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
139         if (ret == -ETIMEDOUT)
140                 xhci_err(xhci, "Host took too long to start, "
141                                 "waited %u microseconds.\n",
142                                 XHCI_MAX_HALT_USEC);
143         if (!ret)
144                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
145         return ret;
146 }
147
148 /*
149  * Reset a halted HC.
150  *
151  * This resets pipelines, timers, counters, state machines, etc.
152  * Transactions will be terminated immediately, and operational registers
153  * will be set to their defaults.
154  */
155 int xhci_reset(struct xhci_hcd *xhci)
156 {
157         u32 command;
158         u32 state;
159         int ret;
160
161         state = xhci_readl(xhci, &xhci->op_regs->status);
162         if ((state & STS_HALT) == 0) {
163                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164                 return 0;
165         }
166
167         xhci_dbg(xhci, "// Reset the HC\n");
168         command = xhci_readl(xhci, &xhci->op_regs->command);
169         command |= CMD_RESET;
170         xhci_writel(xhci, command, &xhci->op_regs->command);
171
172         ret = handshake(xhci, &xhci->op_regs->command,
173                         CMD_RESET, 0, 10 * 1000 * 1000);
174         if (ret)
175                 return ret;
176
177         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
178         /*
179          * xHCI cannot write to any doorbells or operational registers other
180          * than status until the "Controller Not Ready" flag is cleared.
181          */
182         return handshake(xhci, &xhci->op_regs->status,
183                          STS_CNR, 0, 10 * 1000 * 1000);
184 }
185
186 #ifdef CONFIG_PCI
187 static int xhci_free_msi(struct xhci_hcd *xhci)
188 {
189         int i;
190
191         if (!xhci->msix_entries)
192                 return -EINVAL;
193
194         for (i = 0; i < xhci->msix_count; i++)
195                 if (xhci->msix_entries[i].vector)
196                         free_irq(xhci->msix_entries[i].vector,
197                                         xhci_to_hcd(xhci));
198         return 0;
199 }
200
201 /*
202  * Set up MSI
203  */
204 static int xhci_setup_msi(struct xhci_hcd *xhci)
205 {
206         int ret;
207         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
208
209         ret = pci_enable_msi(pdev);
210         if (ret) {
211                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
212                 return ret;
213         }
214
215         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
216                                 0, "xhci_hcd", xhci_to_hcd(xhci));
217         if (ret) {
218                 xhci_dbg(xhci, "disable MSI interrupt\n");
219                 pci_disable_msi(pdev);
220         }
221
222         return ret;
223 }
224
225 /*
226  * Free IRQs
227  * free all IRQs request
228  */
229 static void xhci_free_irq(struct xhci_hcd *xhci)
230 {
231         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
232         int ret;
233
234         /* return if using legacy interrupt */
235         if (xhci_to_hcd(xhci)->irq >= 0)
236                 return;
237
238         ret = xhci_free_msi(xhci);
239         if (!ret)
240                 return;
241         if (pdev->irq >= 0)
242                 free_irq(pdev->irq, xhci_to_hcd(xhci));
243
244         return;
245 }
246
247 /*
248  * Set up MSI-X
249  */
250 static int xhci_setup_msix(struct xhci_hcd *xhci)
251 {
252         int i, ret = 0;
253         struct usb_hcd *hcd = xhci_to_hcd(xhci);
254         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
255
256         /*
257          * calculate number of msi-x vectors supported.
258          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
259          *   with max number of interrupters based on the xhci HCSPARAMS1.
260          * - num_online_cpus: maximum msi-x vectors per CPUs core.
261          *   Add additional 1 vector to ensure always available interrupt.
262          */
263         xhci->msix_count = min(num_online_cpus() + 1,
264                                 HCS_MAX_INTRS(xhci->hcs_params1));
265
266         xhci->msix_entries =
267                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
268                                 GFP_KERNEL);
269         if (!xhci->msix_entries) {
270                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
271                 return -ENOMEM;
272         }
273
274         for (i = 0; i < xhci->msix_count; i++) {
275                 xhci->msix_entries[i].entry = i;
276                 xhci->msix_entries[i].vector = 0;
277         }
278
279         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
280         if (ret) {
281                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
282                 goto free_entries;
283         }
284
285         for (i = 0; i < xhci->msix_count; i++) {
286                 ret = request_irq(xhci->msix_entries[i].vector,
287                                 (irq_handler_t)xhci_msi_irq,
288                                 0, "xhci_hcd", xhci_to_hcd(xhci));
289                 if (ret)
290                         goto disable_msix;
291         }
292
293         hcd->msix_enabled = 1;
294         return ret;
295
296 disable_msix:
297         xhci_dbg(xhci, "disable MSI-X interrupt\n");
298         xhci_free_irq(xhci);
299         pci_disable_msix(pdev);
300 free_entries:
301         kfree(xhci->msix_entries);
302         xhci->msix_entries = NULL;
303         return ret;
304 }
305
306 /* Free any IRQs and disable MSI-X */
307 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
308 {
309         struct usb_hcd *hcd = xhci_to_hcd(xhci);
310         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
311
312         xhci_free_irq(xhci);
313
314         if (xhci->msix_entries) {
315                 pci_disable_msix(pdev);
316                 kfree(xhci->msix_entries);
317                 xhci->msix_entries = NULL;
318         } else {
319                 pci_disable_msi(pdev);
320         }
321
322         hcd->msix_enabled = 0;
323         return;
324 }
325
326 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
327 {
328         int i;
329
330         if (xhci->msix_entries) {
331                 for (i = 0; i < xhci->msix_count; i++)
332                         synchronize_irq(xhci->msix_entries[i].vector);
333         }
334 }
335
336 static int xhci_try_enable_msi(struct usb_hcd *hcd)
337 {
338         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
339         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
340         int ret;
341
342         /*
343          * Some Fresco Logic host controllers advertise MSI, but fail to
344          * generate interrupts.  Don't even try to enable MSI.
345          */
346         if (xhci->quirks & XHCI_BROKEN_MSI)
347                 goto legacy_irq;
348
349         /* unregister the legacy interrupt */
350         if (hcd->irq)
351                 free_irq(hcd->irq, hcd);
352         hcd->irq = -1;
353
354         ret = xhci_setup_msix(xhci);
355         if (ret)
356                 /* fall back to msi*/
357                 ret = xhci_setup_msi(xhci);
358
359         if (!ret)
360                 /* hcd->irq is -1, we have MSI */
361                 return 0;
362
363         if (!pdev->irq) {
364                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
365                 return -EINVAL;
366         }
367
368  legacy_irq:
369         /* fall back to legacy interrupt*/
370         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
371                         hcd->irq_descr, hcd);
372         if (ret) {
373                 xhci_err(xhci, "request interrupt %d failed\n",
374                                 pdev->irq);
375                 return ret;
376         }
377         hcd->irq = pdev->irq;
378         return 0;
379 }
380
381 #else
382
383 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
384 {
385         return 0;
386 }
387
388 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
389 {
390 }
391
392 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 {
394 }
395
396 #endif
397
398 static void compliance_mode_recovery(unsigned long arg)
399 {
400         struct xhci_hcd *xhci;
401         struct usb_hcd *hcd;
402         u32 temp;
403         int i;
404
405         xhci = (struct xhci_hcd *)arg;
406
407         for (i = 0; i < xhci->num_usb3_ports; i++) {
408                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
409                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
410                         /*
411                          * Compliance Mode Detected. Letting USB Core
412                          * handle the Warm Reset
413                          */
414                         xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
415                                         i + 1);
416                         xhci_dbg(xhci, "Attempting Recovery routine!\n");
417                         hcd = xhci->shared_hcd;
418
419                         if (hcd->state == HC_STATE_SUSPENDED)
420                                 usb_hcd_resume_root_hub(hcd);
421
422                         usb_hcd_poll_rh_status(hcd);
423                 }
424         }
425
426         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
427                 mod_timer(&xhci->comp_mode_recovery_timer,
428                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
429 }
430
431 /*
432  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
433  * that causes ports behind that hardware to enter compliance mode sometimes.
434  * The quirk creates a timer that polls every 2 seconds the link state of
435  * each host controller's port and recovers it by issuing a Warm reset
436  * if Compliance mode is detected, otherwise the port will become "dead" (no
437  * device connections or disconnections will be detected anymore). Becasue no
438  * status event is generated when entering compliance mode (per xhci spec),
439  * this quirk is needed on systems that have the failing hardware installed.
440  */
441 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
442 {
443         xhci->port_status_u0 = 0;
444         init_timer(&xhci->comp_mode_recovery_timer);
445
446         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
447         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
448         xhci->comp_mode_recovery_timer.expires = jiffies +
449                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
450
451         set_timer_slack(&xhci->comp_mode_recovery_timer,
452                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
453         add_timer(&xhci->comp_mode_recovery_timer);
454         xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
455 }
456
457 /*
458  * This function identifies the systems that have installed the SN65LVPE502CP
459  * USB3.0 re-driver and that need the Compliance Mode Quirk.
460  * Systems:
461  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462  */
463 static bool compliance_mode_recovery_timer_quirk_check(void)
464 {
465         const char *dmi_product_name, *dmi_sys_vendor;
466
467         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469         if (!dmi_product_name || !dmi_sys_vendor)
470                 return false;
471
472         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473                 return false;
474
475         if (strstr(dmi_product_name, "Z420") ||
476                         strstr(dmi_product_name, "Z620") ||
477                         strstr(dmi_product_name, "Z820") ||
478                         strstr(dmi_product_name, "Z1 Workstation"))
479                 return true;
480
481         return false;
482 }
483
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488
489
490 /*
491  * Initialize memory for HCD and xHC (one-time init).
492  *
493  * Program the PAGESIZE register, initialize the device context array, create
494  * device contexts (?), set up a command ring segment (or two?), create event
495  * ring (one for now).
496  */
497 int xhci_init(struct usb_hcd *hcd)
498 {
499         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500         int retval = 0;
501
502         xhci_dbg(xhci, "xhci_init\n");
503         spin_lock_init(&xhci->lock);
504         if (xhci->hci_version == 0x95 && link_quirk) {
505                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
506                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
507         } else {
508                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
509         }
510         retval = xhci_mem_init(xhci, GFP_KERNEL);
511         xhci_dbg(xhci, "Finished xhci_init\n");
512
513         /* Initializing Compliance Mode Recovery Data If Needed */
514         if (compliance_mode_recovery_timer_quirk_check()) {
515                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
516                 compliance_mode_recovery_timer_init(xhci);
517         }
518
519         return retval;
520 }
521
522 /*-------------------------------------------------------------------------*/
523
524
525 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
526 static void xhci_event_ring_work(unsigned long arg)
527 {
528         unsigned long flags;
529         int temp;
530         u64 temp_64;
531         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
532         int i, j;
533
534         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
535
536         spin_lock_irqsave(&xhci->lock, flags);
537         temp = xhci_readl(xhci, &xhci->op_regs->status);
538         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
539         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
540                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
541                 xhci_dbg(xhci, "HW died, polling stopped.\n");
542                 spin_unlock_irqrestore(&xhci->lock, flags);
543                 return;
544         }
545
546         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
547         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
548         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
549         xhci->error_bitmask = 0;
550         xhci_dbg(xhci, "Event ring:\n");
551         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
552         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
553         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
554         temp_64 &= ~ERST_PTR_MASK;
555         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
556         xhci_dbg(xhci, "Command ring:\n");
557         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
558         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
559         xhci_dbg_cmd_ptrs(xhci);
560         for (i = 0; i < MAX_HC_SLOTS; ++i) {
561                 if (!xhci->devs[i])
562                         continue;
563                 for (j = 0; j < 31; ++j) {
564                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
565                 }
566         }
567         spin_unlock_irqrestore(&xhci->lock, flags);
568
569         if (!xhci->zombie)
570                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
571         else
572                 xhci_dbg(xhci, "Quit polling the event ring.\n");
573 }
574 #endif
575
576 static int xhci_run_finished(struct xhci_hcd *xhci)
577 {
578         if (xhci_start(xhci)) {
579                 xhci_halt(xhci);
580                 return -ENODEV;
581         }
582         xhci->shared_hcd->state = HC_STATE_RUNNING;
583         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
584
585         if (xhci->quirks & XHCI_NEC_HOST)
586                 xhci_ring_cmd_db(xhci);
587
588         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
589         return 0;
590 }
591
592 /*
593  * Start the HC after it was halted.
594  *
595  * This function is called by the USB core when the HC driver is added.
596  * Its opposite is xhci_stop().
597  *
598  * xhci_init() must be called once before this function can be called.
599  * Reset the HC, enable device slot contexts, program DCBAAP, and
600  * set command ring pointer and event ring pointer.
601  *
602  * Setup MSI-X vectors and enable interrupts.
603  */
604 int xhci_run(struct usb_hcd *hcd)
605 {
606         u32 temp;
607         u64 temp_64;
608         int ret;
609         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
610
611         /* Start the xHCI host controller running only after the USB 2.0 roothub
612          * is setup.
613          */
614
615         hcd->uses_new_polling = 1;
616         if (!usb_hcd_is_primary_hcd(hcd))
617                 return xhci_run_finished(xhci);
618
619         xhci_dbg(xhci, "xhci_run\n");
620
621         ret = xhci_try_enable_msi(hcd);
622         if (ret)
623                 return ret;
624
625 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
626         init_timer(&xhci->event_ring_timer);
627         xhci->event_ring_timer.data = (unsigned long) xhci;
628         xhci->event_ring_timer.function = xhci_event_ring_work;
629         /* Poll the event ring */
630         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
631         xhci->zombie = 0;
632         xhci_dbg(xhci, "Setting event ring polling timer\n");
633         add_timer(&xhci->event_ring_timer);
634 #endif
635
636         xhci_dbg(xhci, "Command ring memory map follows:\n");
637         xhci_debug_ring(xhci, xhci->cmd_ring);
638         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
639         xhci_dbg_cmd_ptrs(xhci);
640
641         xhci_dbg(xhci, "ERST memory map follows:\n");
642         xhci_dbg_erst(xhci, &xhci->erst);
643         xhci_dbg(xhci, "Event ring:\n");
644         xhci_debug_ring(xhci, xhci->event_ring);
645         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
646         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
647         temp_64 &= ~ERST_PTR_MASK;
648         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
649
650         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
651         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
652         temp &= ~ER_IRQ_INTERVAL_MASK;
653         temp |= (u32) 160;
654         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
655
656         /* Set the HCD state before we enable the irqs */
657         temp = xhci_readl(xhci, &xhci->op_regs->command);
658         temp |= (CMD_EIE);
659         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
660                         temp);
661         xhci_writel(xhci, temp, &xhci->op_regs->command);
662
663         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
664         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
665                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
666         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
667                         &xhci->ir_set->irq_pending);
668         xhci_print_ir_set(xhci, 0);
669
670         if (xhci->quirks & XHCI_NEC_HOST)
671                 xhci_queue_vendor_command(xhci, 0, 0, 0,
672                                 TRB_TYPE(TRB_NEC_GET_FW));
673
674         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
675         return 0;
676 }
677
678 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
679 {
680         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681
682         spin_lock_irq(&xhci->lock);
683         xhci_halt(xhci);
684
685         /* The shared_hcd is going to be deallocated shortly (the USB core only
686          * calls this function when allocation fails in usb_add_hcd(), or
687          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
688          */
689         xhci->shared_hcd = NULL;
690         spin_unlock_irq(&xhci->lock);
691 }
692
693 /*
694  * Stop xHCI driver.
695  *
696  * This function is called by the USB core when the HC driver is removed.
697  * Its opposite is xhci_run().
698  *
699  * Disable device contexts, disable IRQs, and quiesce the HC.
700  * Reset the HC, finish any completed transactions, and cleanup memory.
701  */
702 void xhci_stop(struct usb_hcd *hcd)
703 {
704         u32 temp;
705         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
706
707         if (!usb_hcd_is_primary_hcd(hcd)) {
708                 xhci_only_stop_hcd(xhci->shared_hcd);
709                 return;
710         }
711
712         spin_lock_irq(&xhci->lock);
713         /* Make sure the xHC is halted for a USB3 roothub
714          * (xhci_stop() could be called as part of failed init).
715          */
716         xhci_halt(xhci);
717         xhci_reset(xhci);
718         spin_unlock_irq(&xhci->lock);
719
720         xhci_cleanup_msix(xhci);
721
722 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
723         /* Tell the event ring poll function not to reschedule */
724         xhci->zombie = 1;
725         del_timer_sync(&xhci->event_ring_timer);
726 #endif
727
728         /* Deleting Compliance Mode Recovery Timer */
729         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
730                         (!(xhci_all_ports_seen_u0(xhci))))
731                 del_timer_sync(&xhci->comp_mode_recovery_timer);
732
733         if (xhci->quirks & XHCI_AMD_PLL_FIX)
734                 usb_amd_dev_put();
735
736         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
737         temp = xhci_readl(xhci, &xhci->op_regs->status);
738         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
739         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
740         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
741                         &xhci->ir_set->irq_pending);
742         xhci_print_ir_set(xhci, 0);
743
744         xhci_dbg(xhci, "cleaning up memory\n");
745         xhci_mem_cleanup(xhci);
746         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
747                     xhci_readl(xhci, &xhci->op_regs->status));
748 }
749
750 /*
751  * Shutdown HC (not bus-specific)
752  *
753  * This is called when the machine is rebooting or halting.  We assume that the
754  * machine will be powered off, and the HC's internal state will be reset.
755  * Don't bother to free memory.
756  *
757  * This will only ever be called with the main usb_hcd (the USB3 roothub).
758  */
759 void xhci_shutdown(struct usb_hcd *hcd)
760 {
761         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
762
763         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
764                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
765
766         spin_lock_irq(&xhci->lock);
767         xhci_halt(xhci);
768         /* Workaround for spurious wakeups at shutdown with HSW */
769         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
770                 xhci_reset(xhci);
771         spin_unlock_irq(&xhci->lock);
772
773         xhci_cleanup_msix(xhci);
774
775         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
776                     xhci_readl(xhci, &xhci->op_regs->status));
777
778         /* Yet another workaround for spurious wakeups at shutdown with HSW */
779         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
780                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
781 }
782
783 #ifdef CONFIG_PM
784 static void xhci_save_registers(struct xhci_hcd *xhci)
785 {
786         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
787         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
788         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
789         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
790         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
791         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
792         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
793         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
794         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
795 }
796
797 static void xhci_restore_registers(struct xhci_hcd *xhci)
798 {
799         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
800         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
801         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
802         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
803         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
804         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
805         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
806         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
807         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
808 }
809
810 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
811 {
812         u64     val_64;
813
814         /* step 2: initialize command ring buffer */
815         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
816         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
817                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
818                                       xhci->cmd_ring->dequeue) &
819                  (u64) ~CMD_RING_RSVD_BITS) |
820                 xhci->cmd_ring->cycle_state;
821         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
822                         (long unsigned long) val_64);
823         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
824 }
825
826 /*
827  * The whole command ring must be cleared to zero when we suspend the host.
828  *
829  * The host doesn't save the command ring pointer in the suspend well, so we
830  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
831  * aligned, because of the reserved bits in the command ring dequeue pointer
832  * register.  Therefore, we can't just set the dequeue pointer back in the
833  * middle of the ring (TRBs are 16-byte aligned).
834  */
835 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
836 {
837         struct xhci_ring *ring;
838         struct xhci_segment *seg;
839
840         ring = xhci->cmd_ring;
841         seg = ring->deq_seg;
842         do {
843                 memset(seg->trbs, 0,
844                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
845                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
846                         cpu_to_le32(~TRB_CYCLE);
847                 seg = seg->next;
848         } while (seg != ring->deq_seg);
849
850         /* Reset the software enqueue and dequeue pointers */
851         ring->deq_seg = ring->first_seg;
852         ring->dequeue = ring->first_seg->trbs;
853         ring->enq_seg = ring->deq_seg;
854         ring->enqueue = ring->dequeue;
855
856         /*
857          * Ring is now zeroed, so the HW should look for change of ownership
858          * when the cycle bit is set to 1.
859          */
860         ring->cycle_state = 1;
861
862         /*
863          * Reset the hardware dequeue pointer.
864          * Yes, this will need to be re-written after resume, but we're paranoid
865          * and want to make sure the hardware doesn't access bogus memory
866          * because, say, the BIOS or an SMI started the host without changing
867          * the command ring pointers.
868          */
869         xhci_set_cmd_ring_deq(xhci);
870 }
871
872 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
873 {
874         int port_index;
875         __le32 __iomem **port_array;
876         unsigned long flags;
877         u32 t1, t2;
878
879         spin_lock_irqsave(&xhci->lock, flags);
880
881         /* disble usb3 ports Wake bits*/
882         port_index = xhci->num_usb3_ports;
883         port_array = xhci->usb3_ports;
884         while (port_index--) {
885                 t1 = readl(port_array[port_index]);
886                 t1 = xhci_port_state_to_neutral(t1);
887                 t2 = t1 & ~PORT_WAKE_BITS;
888                 if (t1 != t2)
889                         writel(t2, port_array[port_index]);
890         }
891
892         /* disble usb2 ports Wake bits*/
893         port_index = xhci->num_usb2_ports;
894         port_array = xhci->usb2_ports;
895         while (port_index--) {
896                 t1 = readl(port_array[port_index]);
897                 t1 = xhci_port_state_to_neutral(t1);
898                 t2 = t1 & ~PORT_WAKE_BITS;
899                 if (t1 != t2)
900                         writel(t2, port_array[port_index]);
901         }
902
903         spin_unlock_irqrestore(&xhci->lock, flags);
904 }
905
906 /*
907  * Stop HC (not bus-specific)
908  *
909  * This is called when the machine transition into S3/S4 mode.
910  *
911  */
912 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
913 {
914         int                     rc = 0;
915         unsigned int            delay = XHCI_MAX_HALT_USEC;
916         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
917         u32                     command;
918
919         /* Clear root port wake on bits if wakeup not allowed. */
920         if (!do_wakeup)
921                 xhci_disable_port_wake_on_bits(xhci);
922
923         /* Don't poll the roothubs on bus suspend. */
924         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
925         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
926         del_timer_sync(&hcd->rh_timer);
927
928         spin_lock_irq(&xhci->lock);
929         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
930         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
931         /* step 1: stop endpoint */
932         /* skipped assuming that port suspend has done */
933
934         /* step 2: clear Run/Stop bit */
935         command = xhci_readl(xhci, &xhci->op_regs->command);
936         command &= ~CMD_RUN;
937         xhci_writel(xhci, command, &xhci->op_regs->command);
938
939         /* Some chips from Fresco Logic need an extraordinary delay */
940         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
941
942         if (handshake(xhci, &xhci->op_regs->status,
943                       STS_HALT, STS_HALT, delay)) {
944                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
945                 spin_unlock_irq(&xhci->lock);
946                 return -ETIMEDOUT;
947         }
948         xhci_clear_command_ring(xhci);
949
950         /* step 3: save registers */
951         xhci_save_registers(xhci);
952
953         /* step 4: set CSS flag */
954         command = xhci_readl(xhci, &xhci->op_regs->command);
955         command |= CMD_CSS;
956         xhci_writel(xhci, command, &xhci->op_regs->command);
957         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
958                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
959                 spin_unlock_irq(&xhci->lock);
960                 return -ETIMEDOUT;
961         }
962         spin_unlock_irq(&xhci->lock);
963
964         /*
965          * Deleting Compliance Mode Recovery Timer because the xHCI Host
966          * is about to be suspended.
967          */
968         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969                         (!(xhci_all_ports_seen_u0(xhci)))) {
970                 del_timer_sync(&xhci->comp_mode_recovery_timer);
971                 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
972         }
973
974         /* step 5: remove core well power */
975         /* synchronize irq when using MSI-X */
976         xhci_msix_sync_irqs(xhci);
977
978         return rc;
979 }
980
981 /*
982  * start xHC (not bus-specific)
983  *
984  * This is called when the machine transition from S3/S4 mode.
985  *
986  */
987 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
988 {
989         u32                     command, temp = 0, status;
990         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
991         struct usb_hcd          *secondary_hcd;
992         int                     retval = 0;
993         bool                    comp_timer_running = false;
994
995         /* Wait a bit if either of the roothubs need to settle from the
996          * transition into bus suspend.
997          */
998         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
999                         time_before(jiffies,
1000                                 xhci->bus_state[1].next_statechange))
1001                 msleep(100);
1002
1003         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1004         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1005
1006         spin_lock_irq(&xhci->lock);
1007         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1008                 hibernated = true;
1009
1010         if (!hibernated) {
1011                 /* step 1: restore register */
1012                 xhci_restore_registers(xhci);
1013                 /* step 2: initialize command ring buffer */
1014                 xhci_set_cmd_ring_deq(xhci);
1015                 /* step 3: restore state and start state*/
1016                 /* step 3: set CRS flag */
1017                 command = xhci_readl(xhci, &xhci->op_regs->command);
1018                 command |= CMD_CRS;
1019                 xhci_writel(xhci, command, &xhci->op_regs->command);
1020                 if (handshake(xhci, &xhci->op_regs->status,
1021                               STS_RESTORE, 0, 10 * 1000)) {
1022                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1023                         spin_unlock_irq(&xhci->lock);
1024                         return -ETIMEDOUT;
1025                 }
1026                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1027         }
1028
1029         /* If restore operation fails, re-initialize the HC during resume */
1030         if ((temp & STS_SRE) || hibernated) {
1031
1032                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1033                                 !(xhci_all_ports_seen_u0(xhci))) {
1034                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1035                         xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1036                 }
1037
1038                 /* Let the USB core know _both_ roothubs lost power. */
1039                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1040                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1041
1042                 xhci_dbg(xhci, "Stop HCD\n");
1043                 xhci_halt(xhci);
1044                 xhci_reset(xhci);
1045                 spin_unlock_irq(&xhci->lock);
1046                 xhci_cleanup_msix(xhci);
1047
1048 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1049                 /* Tell the event ring poll function not to reschedule */
1050                 xhci->zombie = 1;
1051                 del_timer_sync(&xhci->event_ring_timer);
1052 #endif
1053
1054                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1055                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1056                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1057                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1058                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1059                                 &xhci->ir_set->irq_pending);
1060                 xhci_print_ir_set(xhci, 0);
1061
1062                 xhci_dbg(xhci, "cleaning up memory\n");
1063                 xhci_mem_cleanup(xhci);
1064                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065                             xhci_readl(xhci, &xhci->op_regs->status));
1066
1067                 /* USB core calls the PCI reinit and start functions twice:
1068                  * first with the primary HCD, and then with the secondary HCD.
1069                  * If we don't do the same, the host will never be started.
1070                  */
1071                 if (!usb_hcd_is_primary_hcd(hcd))
1072                         secondary_hcd = hcd;
1073                 else
1074                         secondary_hcd = xhci->shared_hcd;
1075
1076                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077                 retval = xhci_init(hcd->primary_hcd);
1078                 if (retval)
1079                         return retval;
1080                 comp_timer_running = true;
1081
1082                 xhci_dbg(xhci, "Start the primary HCD\n");
1083                 retval = xhci_run(hcd->primary_hcd);
1084                 if (!retval) {
1085                         xhci_dbg(xhci, "Start the secondary HCD\n");
1086                         retval = xhci_run(secondary_hcd);
1087                 }
1088                 hcd->state = HC_STATE_SUSPENDED;
1089                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090                 goto done;
1091         }
1092
1093         /* step 4: set Run/Stop bit */
1094         command = xhci_readl(xhci, &xhci->op_regs->command);
1095         command |= CMD_RUN;
1096         xhci_writel(xhci, command, &xhci->op_regs->command);
1097         handshake(xhci, &xhci->op_regs->status, STS_HALT,
1098                   0, 250 * 1000);
1099
1100         /* step 5: walk topology and initialize portsc,
1101          * portpmsc and portli
1102          */
1103         /* this is done in bus_resume */
1104
1105         /* step 6: restart each of the previously
1106          * Running endpoints by ringing their doorbells
1107          */
1108
1109         spin_unlock_irq(&xhci->lock);
1110
1111  done:
1112         if (retval == 0) {
1113                 /* Resume root hubs only when have pending events. */
1114                 status = readl(&xhci->op_regs->status);
1115                 if (status & STS_EINT) {
1116                         usb_hcd_resume_root_hub(hcd);
1117                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1118                 }
1119         }
1120
1121         /*
1122          * If system is subject to the Quirk, Compliance Mode Timer needs to
1123          * be re-initialized Always after a system resume. Ports are subject
1124          * to suffer the Compliance Mode issue again. It doesn't matter if
1125          * ports have entered previously to U0 before system's suspension.
1126          */
1127         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128                 compliance_mode_recovery_timer_init(xhci);
1129
1130         /* Re-enable port polling. */
1131         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1133         usb_hcd_poll_rh_status(hcd);
1134
1135         return retval;
1136 }
1137 #endif  /* CONFIG_PM */
1138
1139 /*-------------------------------------------------------------------------*/
1140
1141 /**
1142  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1143  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1144  * value to right shift 1 for the bitmask.
1145  *
1146  * Index  = (epnum * 2) + direction - 1,
1147  * where direction = 0 for OUT, 1 for IN.
1148  * For control endpoints, the IN index is used (OUT index is unused), so
1149  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1150  */
1151 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1152 {
1153         unsigned int index;
1154         if (usb_endpoint_xfer_control(desc))
1155                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1156         else
1157                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1158                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1159         return index;
1160 }
1161
1162 /* Find the flag for this endpoint (for use in the control context).  Use the
1163  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1164  * bit 1, etc.
1165  */
1166 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1167 {
1168         return 1 << (xhci_get_endpoint_index(desc) + 1);
1169 }
1170
1171 /* Find the flag for this endpoint (for use in the control context).  Use the
1172  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1173  * bit 1, etc.
1174  */
1175 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1176 {
1177         return 1 << (ep_index + 1);
1178 }
1179
1180 /* Compute the last valid endpoint context index.  Basically, this is the
1181  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1182  * we find the most significant bit set in the added contexts flags.
1183  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1184  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1185  */
1186 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1187 {
1188         return fls(added_ctxs) - 1;
1189 }
1190
1191 /* Returns 1 if the arguments are OK;
1192  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1193  */
1194 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1195                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1196                 const char *func) {
1197         struct xhci_hcd *xhci;
1198         struct xhci_virt_device *virt_dev;
1199
1200         if (!hcd || (check_ep && !ep) || !udev) {
1201                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1202                                 func);
1203                 return -EINVAL;
1204         }
1205         if (!udev->parent) {
1206                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1207                                 func);
1208                 return 0;
1209         }
1210
1211         xhci = hcd_to_xhci(hcd);
1212         if (check_virt_dev) {
1213                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1214                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1215                                                 "device\n", func);
1216                         return -EINVAL;
1217                 }
1218
1219                 virt_dev = xhci->devs[udev->slot_id];
1220                 if (virt_dev->udev != udev) {
1221                         printk(KERN_DEBUG "xHCI %s called with udev and "
1222                                           "virt_dev does not match\n", func);
1223                         return -EINVAL;
1224                 }
1225         }
1226
1227         if (xhci->xhc_state & XHCI_STATE_HALTED)
1228                 return -ENODEV;
1229
1230         return 1;
1231 }
1232
1233 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1234                 struct usb_device *udev, struct xhci_command *command,
1235                 bool ctx_change, bool must_succeed);
1236
1237 /*
1238  * Full speed devices may have a max packet size greater than 8 bytes, but the
1239  * USB core doesn't know that until it reads the first 8 bytes of the
1240  * descriptor.  If the usb_device's max packet size changes after that point,
1241  * we need to issue an evaluate context command and wait on it.
1242  */
1243 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1244                 unsigned int ep_index, struct urb *urb)
1245 {
1246         struct xhci_container_ctx *in_ctx;
1247         struct xhci_container_ctx *out_ctx;
1248         struct xhci_input_control_ctx *ctrl_ctx;
1249         struct xhci_ep_ctx *ep_ctx;
1250         int max_packet_size;
1251         int hw_max_packet_size;
1252         int ret = 0;
1253
1254         out_ctx = xhci->devs[slot_id]->out_ctx;
1255         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1256         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1257         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1258         if (hw_max_packet_size != max_packet_size) {
1259                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1260                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1261                                 max_packet_size);
1262                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1263                                 hw_max_packet_size);
1264                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1265
1266                 /* Set up the modified control endpoint 0 */
1267                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1268                                 xhci->devs[slot_id]->out_ctx, ep_index);
1269                 in_ctx = xhci->devs[slot_id]->in_ctx;
1270                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1271                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1272                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1273
1274                 /* Set up the input context flags for the command */
1275                 /* FIXME: This won't work if a non-default control endpoint
1276                  * changes max packet sizes.
1277                  */
1278                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1279                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1280                 ctrl_ctx->drop_flags = 0;
1281
1282                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1283                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1284                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1285                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1286
1287                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1288                                 true, false);
1289
1290                 /* Clean up the input context for later use by bandwidth
1291                  * functions.
1292                  */
1293                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1294         }
1295         return ret;
1296 }
1297
1298 /*
1299  * non-error returns are a promise to giveback() the urb later
1300  * we drop ownership so next owner (or urb unlink) can get it
1301  */
1302 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1303 {
1304         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1305         struct xhci_td *buffer;
1306         unsigned long flags;
1307         int ret = 0;
1308         unsigned int slot_id, ep_index;
1309         struct urb_priv *urb_priv;
1310         int size, i;
1311
1312         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1313                                         true, true, __func__) <= 0)
1314                 return -EINVAL;
1315
1316         slot_id = urb->dev->slot_id;
1317         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1318
1319         if (!HCD_HW_ACCESSIBLE(hcd)) {
1320                 if (!in_interrupt())
1321                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1322                 ret = -ESHUTDOWN;
1323                 goto exit;
1324         }
1325
1326         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1327                 size = urb->number_of_packets;
1328         else
1329                 size = 1;
1330
1331         urb_priv = kzalloc(sizeof(struct urb_priv) +
1332                                   size * sizeof(struct xhci_td *), mem_flags);
1333         if (!urb_priv)
1334                 return -ENOMEM;
1335
1336         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1337         if (!buffer) {
1338                 kfree(urb_priv);
1339                 return -ENOMEM;
1340         }
1341
1342         for (i = 0; i < size; i++) {
1343                 urb_priv->td[i] = buffer;
1344                 buffer++;
1345         }
1346
1347         urb_priv->length = size;
1348         urb_priv->td_cnt = 0;
1349         urb->hcpriv = urb_priv;
1350
1351         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1352                 /* Check to see if the max packet size for the default control
1353                  * endpoint changed during FS device enumeration
1354                  */
1355                 if (urb->dev->speed == USB_SPEED_FULL) {
1356                         ret = xhci_check_maxpacket(xhci, slot_id,
1357                                         ep_index, urb);
1358                         if (ret < 0) {
1359                                 xhci_urb_free_priv(xhci, urb_priv);
1360                                 urb->hcpriv = NULL;
1361                                 return ret;
1362                         }
1363                 }
1364
1365                 /* We have a spinlock and interrupts disabled, so we must pass
1366                  * atomic context to this function, which may allocate memory.
1367                  */
1368                 spin_lock_irqsave(&xhci->lock, flags);
1369                 if (xhci->xhc_state & XHCI_STATE_DYING)
1370                         goto dying;
1371                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1372                                 slot_id, ep_index);
1373                 if (ret)
1374                         goto free_priv;
1375                 spin_unlock_irqrestore(&xhci->lock, flags);
1376         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1377                 spin_lock_irqsave(&xhci->lock, flags);
1378                 if (xhci->xhc_state & XHCI_STATE_DYING)
1379                         goto dying;
1380                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1381                                 EP_GETTING_STREAMS) {
1382                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1383                                         "is transitioning to using streams.\n");
1384                         ret = -EINVAL;
1385                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1386                                 EP_GETTING_NO_STREAMS) {
1387                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1388                                         "is transitioning to "
1389                                         "not having streams.\n");
1390                         ret = -EINVAL;
1391                 } else {
1392                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1393                                         slot_id, ep_index);
1394                 }
1395                 if (ret)
1396                         goto free_priv;
1397                 spin_unlock_irqrestore(&xhci->lock, flags);
1398         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1399                 spin_lock_irqsave(&xhci->lock, flags);
1400                 if (xhci->xhc_state & XHCI_STATE_DYING)
1401                         goto dying;
1402                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1403                                 slot_id, ep_index);
1404                 if (ret)
1405                         goto free_priv;
1406                 spin_unlock_irqrestore(&xhci->lock, flags);
1407         } else {
1408                 spin_lock_irqsave(&xhci->lock, flags);
1409                 if (xhci->xhc_state & XHCI_STATE_DYING)
1410                         goto dying;
1411                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1412                                 slot_id, ep_index);
1413                 if (ret)
1414                         goto free_priv;
1415                 spin_unlock_irqrestore(&xhci->lock, flags);
1416         }
1417 exit:
1418         return ret;
1419 dying:
1420         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1421                         "non-responsive xHCI host.\n",
1422                         urb->ep->desc.bEndpointAddress, urb);
1423         ret = -ESHUTDOWN;
1424 free_priv:
1425         xhci_urb_free_priv(xhci, urb_priv);
1426         urb->hcpriv = NULL;
1427         spin_unlock_irqrestore(&xhci->lock, flags);
1428         return ret;
1429 }
1430
1431 /* Get the right ring for the given URB.
1432  * If the endpoint supports streams, boundary check the URB's stream ID.
1433  * If the endpoint doesn't support streams, return the singular endpoint ring.
1434  */
1435 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1436                 struct urb *urb)
1437 {
1438         unsigned int slot_id;
1439         unsigned int ep_index;
1440         unsigned int stream_id;
1441         struct xhci_virt_ep *ep;
1442
1443         slot_id = urb->dev->slot_id;
1444         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1445         stream_id = urb->stream_id;
1446         ep = &xhci->devs[slot_id]->eps[ep_index];
1447         /* Common case: no streams */
1448         if (!(ep->ep_state & EP_HAS_STREAMS))
1449                 return ep->ring;
1450
1451         if (stream_id == 0) {
1452                 xhci_warn(xhci,
1453                                 "WARN: Slot ID %u, ep index %u has streams, "
1454                                 "but URB has no stream ID.\n",
1455                                 slot_id, ep_index);
1456                 return NULL;
1457         }
1458
1459         if (stream_id < ep->stream_info->num_streams)
1460                 return ep->stream_info->stream_rings[stream_id];
1461
1462         xhci_warn(xhci,
1463                         "WARN: Slot ID %u, ep index %u has "
1464                         "stream IDs 1 to %u allocated, "
1465                         "but stream ID %u is requested.\n",
1466                         slot_id, ep_index,
1467                         ep->stream_info->num_streams - 1,
1468                         stream_id);
1469         return NULL;
1470 }
1471
1472 /*
1473  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1474  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1475  * should pick up where it left off in the TD, unless a Set Transfer Ring
1476  * Dequeue Pointer is issued.
1477  *
1478  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1479  * the ring.  Since the ring is a contiguous structure, they can't be physically
1480  * removed.  Instead, there are two options:
1481  *
1482  *  1) If the HC is in the middle of processing the URB to be canceled, we
1483  *     simply move the ring's dequeue pointer past those TRBs using the Set
1484  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1485  *     when drivers timeout on the last submitted URB and attempt to cancel.
1486  *
1487  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1488  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1489  *     HC will need to invalidate the any TRBs it has cached after the stop
1490  *     endpoint command, as noted in the xHCI 0.95 errata.
1491  *
1492  *  3) The TD may have completed by the time the Stop Endpoint Command
1493  *     completes, so software needs to handle that case too.
1494  *
1495  * This function should protect against the TD enqueueing code ringing the
1496  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1497  * It also needs to account for multiple cancellations on happening at the same
1498  * time for the same endpoint.
1499  *
1500  * Note that this function can be called in any context, or so says
1501  * usb_hcd_unlink_urb()
1502  */
1503 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1504 {
1505         unsigned long flags;
1506         int ret, i;
1507         u32 temp;
1508         struct xhci_hcd *xhci;
1509         struct urb_priv *urb_priv;
1510         struct xhci_td *td;
1511         unsigned int ep_index;
1512         struct xhci_ring *ep_ring;
1513         struct xhci_virt_ep *ep;
1514
1515         xhci = hcd_to_xhci(hcd);
1516         spin_lock_irqsave(&xhci->lock, flags);
1517         /* Make sure the URB hasn't completed or been unlinked already */
1518         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1519         if (ret || !urb->hcpriv)
1520                 goto done;
1521         temp = xhci_readl(xhci, &xhci->op_regs->status);
1522         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1523                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1524                 urb_priv = urb->hcpriv;
1525                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1526                         td = urb_priv->td[i];
1527                         if (!list_empty(&td->td_list))
1528                                 list_del_init(&td->td_list);
1529                         if (!list_empty(&td->cancelled_td_list))
1530                                 list_del_init(&td->cancelled_td_list);
1531                 }
1532
1533                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1534                 spin_unlock_irqrestore(&xhci->lock, flags);
1535                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1536                 xhci_urb_free_priv(xhci, urb_priv);
1537                 return ret;
1538         }
1539         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1540                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1541                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1542                                 "non-responsive xHCI host.\n",
1543                                 urb->ep->desc.bEndpointAddress, urb);
1544                 /* Let the stop endpoint command watchdog timer (which set this
1545                  * state) finish cleaning up the endpoint TD lists.  We must
1546                  * have caught it in the middle of dropping a lock and giving
1547                  * back an URB.
1548                  */
1549                 goto done;
1550         }
1551
1552         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1553         xhci_dbg(xhci, "Event ring:\n");
1554         xhci_debug_ring(xhci, xhci->event_ring);
1555         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1556         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1557         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1558         if (!ep_ring) {
1559                 ret = -EINVAL;
1560                 goto done;
1561         }
1562
1563         xhci_dbg(xhci, "Endpoint ring:\n");
1564         xhci_debug_ring(xhci, ep_ring);
1565
1566         urb_priv = urb->hcpriv;
1567
1568         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1569                 td = urb_priv->td[i];
1570                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1571         }
1572
1573         /* Queue a stop endpoint command, but only if this is
1574          * the first cancellation to be handled.
1575          */
1576         if (!(ep->ep_state & EP_HALT_PENDING)) {
1577                 ep->ep_state |= EP_HALT_PENDING;
1578                 ep->stop_cmds_pending++;
1579                 ep->stop_cmd_timer.expires = jiffies +
1580                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1581                 add_timer(&ep->stop_cmd_timer);
1582                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1583                 xhci_ring_cmd_db(xhci);
1584         }
1585 done:
1586         spin_unlock_irqrestore(&xhci->lock, flags);
1587         return ret;
1588 }
1589
1590 /* Drop an endpoint from a new bandwidth configuration for this device.
1591  * Only one call to this function is allowed per endpoint before
1592  * check_bandwidth() or reset_bandwidth() must be called.
1593  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1594  * add the endpoint to the schedule with possibly new parameters denoted by a
1595  * different endpoint descriptor in usb_host_endpoint.
1596  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1597  * not allowed.
1598  *
1599  * The USB core will not allow URBs to be queued to an endpoint that is being
1600  * disabled, so there's no need for mutual exclusion to protect
1601  * the xhci->devs[slot_id] structure.
1602  */
1603 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1604                 struct usb_host_endpoint *ep)
1605 {
1606         struct xhci_hcd *xhci;
1607         struct xhci_container_ctx *in_ctx, *out_ctx;
1608         struct xhci_input_control_ctx *ctrl_ctx;
1609         struct xhci_slot_ctx *slot_ctx;
1610         unsigned int last_ctx;
1611         unsigned int ep_index;
1612         struct xhci_ep_ctx *ep_ctx;
1613         u32 drop_flag;
1614         u32 new_add_flags, new_drop_flags, new_slot_info;
1615         int ret;
1616
1617         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1618         if (ret <= 0)
1619                 return ret;
1620         xhci = hcd_to_xhci(hcd);
1621         if (xhci->xhc_state & XHCI_STATE_DYING)
1622                 return -ENODEV;
1623
1624         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1625         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1626         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1627                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1628                                 __func__, drop_flag);
1629                 return 0;
1630         }
1631
1632         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1633         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1634         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1635         ep_index = xhci_get_endpoint_index(&ep->desc);
1636         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1637         /* If the HC already knows the endpoint is disabled,
1638          * or the HCD has noted it is disabled, ignore this request
1639          */
1640         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1641              cpu_to_le32(EP_STATE_DISABLED)) ||
1642             le32_to_cpu(ctrl_ctx->drop_flags) &
1643             xhci_get_endpoint_flag(&ep->desc)) {
1644                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1645                                 __func__, ep);
1646                 return 0;
1647         }
1648
1649         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1650         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1651
1652         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1653         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1654
1655         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1656         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1657         /* Update the last valid endpoint context, if we deleted the last one */
1658         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1659             LAST_CTX(last_ctx)) {
1660                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1661                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1662         }
1663         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1664
1665         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1666
1667         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1668                         (unsigned int) ep->desc.bEndpointAddress,
1669                         udev->slot_id,
1670                         (unsigned int) new_drop_flags,
1671                         (unsigned int) new_add_flags,
1672                         (unsigned int) new_slot_info);
1673         return 0;
1674 }
1675
1676 /* Add an endpoint to a new possible bandwidth configuration for this device.
1677  * Only one call to this function is allowed per endpoint before
1678  * check_bandwidth() or reset_bandwidth() must be called.
1679  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1680  * add the endpoint to the schedule with possibly new parameters denoted by a
1681  * different endpoint descriptor in usb_host_endpoint.
1682  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1683  * not allowed.
1684  *
1685  * The USB core will not allow URBs to be queued to an endpoint until the
1686  * configuration or alt setting is installed in the device, so there's no need
1687  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1688  */
1689 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1690                 struct usb_host_endpoint *ep)
1691 {
1692         struct xhci_hcd *xhci;
1693         struct xhci_container_ctx *in_ctx, *out_ctx;
1694         unsigned int ep_index;
1695         struct xhci_ep_ctx *ep_ctx;
1696         struct xhci_slot_ctx *slot_ctx;
1697         struct xhci_input_control_ctx *ctrl_ctx;
1698         u32 added_ctxs;
1699         unsigned int last_ctx;
1700         u32 new_add_flags, new_drop_flags, new_slot_info;
1701         struct xhci_virt_device *virt_dev;
1702         int ret = 0;
1703
1704         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1705         if (ret <= 0) {
1706                 /* So we won't queue a reset ep command for a root hub */
1707                 ep->hcpriv = NULL;
1708                 return ret;
1709         }
1710         xhci = hcd_to_xhci(hcd);
1711         if (xhci->xhc_state & XHCI_STATE_DYING)
1712                 return -ENODEV;
1713
1714         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1715         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1716         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1717                 /* FIXME when we have to issue an evaluate endpoint command to
1718                  * deal with ep0 max packet size changing once we get the
1719                  * descriptors
1720                  */
1721                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1722                                 __func__, added_ctxs);
1723                 return 0;
1724         }
1725
1726         virt_dev = xhci->devs[udev->slot_id];
1727         in_ctx = virt_dev->in_ctx;
1728         out_ctx = virt_dev->out_ctx;
1729         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1730         ep_index = xhci_get_endpoint_index(&ep->desc);
1731         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1732
1733         /* If this endpoint is already in use, and the upper layers are trying
1734          * to add it again without dropping it, reject the addition.
1735          */
1736         if (virt_dev->eps[ep_index].ring &&
1737                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1738                                 xhci_get_endpoint_flag(&ep->desc))) {
1739                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1740                                 "without dropping it.\n",
1741                                 (unsigned int) ep->desc.bEndpointAddress);
1742                 return -EINVAL;
1743         }
1744
1745         /* If the HCD has already noted the endpoint is enabled,
1746          * ignore this request.
1747          */
1748         if (le32_to_cpu(ctrl_ctx->add_flags) &
1749             xhci_get_endpoint_flag(&ep->desc)) {
1750                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1751                                 __func__, ep);
1752                 return 0;
1753         }
1754
1755         /*
1756          * Configuration and alternate setting changes must be done in
1757          * process context, not interrupt context (or so documenation
1758          * for usb_set_interface() and usb_set_configuration() claim).
1759          */
1760         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1761                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1762                                 __func__, ep->desc.bEndpointAddress);
1763                 return -ENOMEM;
1764         }
1765
1766         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1767         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1768
1769         /* If xhci_endpoint_disable() was called for this endpoint, but the
1770          * xHC hasn't been notified yet through the check_bandwidth() call,
1771          * this re-adds a new state for the endpoint from the new endpoint
1772          * descriptors.  We must drop and re-add this endpoint, so we leave the
1773          * drop flags alone.
1774          */
1775         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1776
1777         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1778         /* Update the last valid endpoint context, if we just added one past */
1779         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1780             LAST_CTX(last_ctx)) {
1781                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1782                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1783         }
1784         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1785
1786         /* Store the usb_device pointer for later use */
1787         ep->hcpriv = udev;
1788
1789         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1790                         (unsigned int) ep->desc.bEndpointAddress,
1791                         udev->slot_id,
1792                         (unsigned int) new_drop_flags,
1793                         (unsigned int) new_add_flags,
1794                         (unsigned int) new_slot_info);
1795         return 0;
1796 }
1797
1798 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1799 {
1800         struct xhci_input_control_ctx *ctrl_ctx;
1801         struct xhci_ep_ctx *ep_ctx;
1802         struct xhci_slot_ctx *slot_ctx;
1803         int i;
1804
1805         /* When a device's add flag and drop flag are zero, any subsequent
1806          * configure endpoint command will leave that endpoint's state
1807          * untouched.  Make sure we don't leave any old state in the input
1808          * endpoint contexts.
1809          */
1810         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1811         ctrl_ctx->drop_flags = 0;
1812         ctrl_ctx->add_flags = 0;
1813         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1814         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1815         /* Endpoint 0 is always valid */
1816         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1817         for (i = 1; i < 31; ++i) {
1818                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1819                 ep_ctx->ep_info = 0;
1820                 ep_ctx->ep_info2 = 0;
1821                 ep_ctx->deq = 0;
1822                 ep_ctx->tx_info = 0;
1823         }
1824 }
1825
1826 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1827                 struct usb_device *udev, u32 *cmd_status)
1828 {
1829         int ret;
1830
1831         switch (*cmd_status) {
1832         case COMP_ENOMEM:
1833                 dev_warn(&udev->dev, "Not enough host controller resources "
1834                                 "for new device state.\n");
1835                 ret = -ENOMEM;
1836                 /* FIXME: can we allocate more resources for the HC? */
1837                 break;
1838         case COMP_BW_ERR:
1839         case COMP_2ND_BW_ERR:
1840                 dev_warn(&udev->dev, "Not enough bandwidth "
1841                                 "for new device state.\n");
1842                 ret = -ENOSPC;
1843                 /* FIXME: can we go back to the old state? */
1844                 break;
1845         case COMP_TRB_ERR:
1846                 /* the HCD set up something wrong */
1847                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1848                                 "add flag = 1, "
1849                                 "and endpoint is not disabled.\n");
1850                 ret = -EINVAL;
1851                 break;
1852         case COMP_DEV_ERR:
1853                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1854                                 "configure command.\n");
1855                 ret = -ENODEV;
1856                 break;
1857         case COMP_SUCCESS:
1858                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1859                 ret = 0;
1860                 break;
1861         default:
1862                 xhci_err(xhci, "ERROR: unexpected command completion "
1863                                 "code 0x%x.\n", *cmd_status);
1864                 ret = -EINVAL;
1865                 break;
1866         }
1867         return ret;
1868 }
1869
1870 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1871                 struct usb_device *udev, u32 *cmd_status)
1872 {
1873         int ret;
1874         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1875
1876         switch (*cmd_status) {
1877         case COMP_EINVAL:
1878                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1879                                 "context command.\n");
1880                 ret = -EINVAL;
1881                 break;
1882         case COMP_EBADSLT:
1883                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1884                                 "evaluate context command.\n");
1885         case COMP_CTX_STATE:
1886                 dev_warn(&udev->dev, "WARN: invalid context state for "
1887                                 "evaluate context command.\n");
1888                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1889                 ret = -EINVAL;
1890                 break;
1891         case COMP_DEV_ERR:
1892                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1893                                 "context command.\n");
1894                 ret = -ENODEV;
1895                 break;
1896         case COMP_MEL_ERR:
1897                 /* Max Exit Latency too large error */
1898                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1899                 ret = -EINVAL;
1900                 break;
1901         case COMP_SUCCESS:
1902                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1903                 ret = 0;
1904                 break;
1905         default:
1906                 xhci_err(xhci, "ERROR: unexpected command completion "
1907                                 "code 0x%x.\n", *cmd_status);
1908                 ret = -EINVAL;
1909                 break;
1910         }
1911         return ret;
1912 }
1913
1914 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1915                 struct xhci_container_ctx *in_ctx)
1916 {
1917         struct xhci_input_control_ctx *ctrl_ctx;
1918         u32 valid_add_flags;
1919         u32 valid_drop_flags;
1920
1921         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1922         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1923          * (bit 1).  The default control endpoint is added during the Address
1924          * Device command and is never removed until the slot is disabled.
1925          */
1926         valid_add_flags = ctrl_ctx->add_flags >> 2;
1927         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1928
1929         /* Use hweight32 to count the number of ones in the add flags, or
1930          * number of endpoints added.  Don't count endpoints that are changed
1931          * (both added and dropped).
1932          */
1933         return hweight32(valid_add_flags) -
1934                 hweight32(valid_add_flags & valid_drop_flags);
1935 }
1936
1937 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1938                 struct xhci_container_ctx *in_ctx)
1939 {
1940         struct xhci_input_control_ctx *ctrl_ctx;
1941         u32 valid_add_flags;
1942         u32 valid_drop_flags;
1943
1944         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1945         valid_add_flags = ctrl_ctx->add_flags >> 2;
1946         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1947
1948         return hweight32(valid_drop_flags) -
1949                 hweight32(valid_add_flags & valid_drop_flags);
1950 }
1951
1952 /*
1953  * We need to reserve the new number of endpoints before the configure endpoint
1954  * command completes.  We can't subtract the dropped endpoints from the number
1955  * of active endpoints until the command completes because we can oversubscribe
1956  * the host in this case:
1957  *
1958  *  - the first configure endpoint command drops more endpoints than it adds
1959  *  - a second configure endpoint command that adds more endpoints is queued
1960  *  - the first configure endpoint command fails, so the config is unchanged
1961  *  - the second command may succeed, even though there isn't enough resources
1962  *
1963  * Must be called with xhci->lock held.
1964  */
1965 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1966                 struct xhci_container_ctx *in_ctx)
1967 {
1968         u32 added_eps;
1969
1970         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1971         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1972                 xhci_dbg(xhci, "Not enough ep ctxs: "
1973                                 "%u active, need to add %u, limit is %u.\n",
1974                                 xhci->num_active_eps, added_eps,
1975                                 xhci->limit_active_eps);
1976                 return -ENOMEM;
1977         }
1978         xhci->num_active_eps += added_eps;
1979         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1980                         xhci->num_active_eps);
1981         return 0;
1982 }
1983
1984 /*
1985  * The configure endpoint was failed by the xHC for some other reason, so we
1986  * need to revert the resources that failed configuration would have used.
1987  *
1988  * Must be called with xhci->lock held.
1989  */
1990 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1991                 struct xhci_container_ctx *in_ctx)
1992 {
1993         u32 num_failed_eps;
1994
1995         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1996         xhci->num_active_eps -= num_failed_eps;
1997         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1998                         num_failed_eps,
1999                         xhci->num_active_eps);
2000 }
2001
2002 /*
2003  * Now that the command has completed, clean up the active endpoint count by
2004  * subtracting out the endpoints that were dropped (but not changed).
2005  *
2006  * Must be called with xhci->lock held.
2007  */
2008 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2009                 struct xhci_container_ctx *in_ctx)
2010 {
2011         u32 num_dropped_eps;
2012
2013         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
2014         xhci->num_active_eps -= num_dropped_eps;
2015         if (num_dropped_eps)
2016                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
2017                                 num_dropped_eps,
2018                                 xhci->num_active_eps);
2019 }
2020
2021 unsigned int xhci_get_block_size(struct usb_device *udev)
2022 {
2023         switch (udev->speed) {
2024         case USB_SPEED_LOW:
2025         case USB_SPEED_FULL:
2026                 return FS_BLOCK;
2027         case USB_SPEED_HIGH:
2028                 return HS_BLOCK;
2029         case USB_SPEED_SUPER:
2030                 return SS_BLOCK;
2031         case USB_SPEED_UNKNOWN:
2032         case USB_SPEED_WIRELESS:
2033         default:
2034                 /* Should never happen */
2035                 return 1;
2036         }
2037 }
2038
2039 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2040 {
2041         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2042                 return LS_OVERHEAD;
2043         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2044                 return FS_OVERHEAD;
2045         return HS_OVERHEAD;
2046 }
2047
2048 /* If we are changing a LS/FS device under a HS hub,
2049  * make sure (if we are activating a new TT) that the HS bus has enough
2050  * bandwidth for this new TT.
2051  */
2052 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2053                 struct xhci_virt_device *virt_dev,
2054                 int old_active_eps)
2055 {
2056         struct xhci_interval_bw_table *bw_table;
2057         struct xhci_tt_bw_info *tt_info;
2058
2059         /* Find the bandwidth table for the root port this TT is attached to. */
2060         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2061         tt_info = virt_dev->tt_info;
2062         /* If this TT already had active endpoints, the bandwidth for this TT
2063          * has already been added.  Removing all periodic endpoints (and thus
2064          * making the TT enactive) will only decrease the bandwidth used.
2065          */
2066         if (old_active_eps)
2067                 return 0;
2068         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2069                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2070                         return -ENOMEM;
2071                 return 0;
2072         }
2073         /* Not sure why we would have no new active endpoints...
2074          *
2075          * Maybe because of an Evaluate Context change for a hub update or a
2076          * control endpoint 0 max packet size change?
2077          * FIXME: skip the bandwidth calculation in that case.
2078          */
2079         return 0;
2080 }
2081
2082 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2083                 struct xhci_virt_device *virt_dev)
2084 {
2085         unsigned int bw_reserved;
2086
2087         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2088         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2089                 return -ENOMEM;
2090
2091         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2092         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2093                 return -ENOMEM;
2094
2095         return 0;
2096 }
2097
2098 /*
2099  * This algorithm is a very conservative estimate of the worst-case scheduling
2100  * scenario for any one interval.  The hardware dynamically schedules the
2101  * packets, so we can't tell which microframe could be the limiting factor in
2102  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2103  *
2104  * Obviously, we can't solve an NP complete problem to find the minimum worst
2105  * case scenario.  Instead, we come up with an estimate that is no less than
2106  * the worst case bandwidth used for any one microframe, but may be an
2107  * over-estimate.
2108  *
2109  * We walk the requirements for each endpoint by interval, starting with the
2110  * smallest interval, and place packets in the schedule where there is only one
2111  * possible way to schedule packets for that interval.  In order to simplify
2112  * this algorithm, we record the largest max packet size for each interval, and
2113  * assume all packets will be that size.
2114  *
2115  * For interval 0, we obviously must schedule all packets for each interval.
2116  * The bandwidth for interval 0 is just the amount of data to be transmitted
2117  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2118  * the number of packets).
2119  *
2120  * For interval 1, we have two possible microframes to schedule those packets
2121  * in.  For this algorithm, if we can schedule the same number of packets for
2122  * each possible scheduling opportunity (each microframe), we will do so.  The
2123  * remaining number of packets will be saved to be transmitted in the gaps in
2124  * the next interval's scheduling sequence.
2125  *
2126  * As we move those remaining packets to be scheduled with interval 2 packets,
2127  * we have to double the number of remaining packets to transmit.  This is
2128  * because the intervals are actually powers of 2, and we would be transmitting
2129  * the previous interval's packets twice in this interval.  We also have to be
2130  * sure that when we look at the largest max packet size for this interval, we
2131  * also look at the largest max packet size for the remaining packets and take
2132  * the greater of the two.
2133  *
2134  * The algorithm continues to evenly distribute packets in each scheduling
2135  * opportunity, and push the remaining packets out, until we get to the last
2136  * interval.  Then those packets and their associated overhead are just added
2137  * to the bandwidth used.
2138  */
2139 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2140                 struct xhci_virt_device *virt_dev,
2141                 int old_active_eps)
2142 {
2143         unsigned int bw_reserved;
2144         unsigned int max_bandwidth;
2145         unsigned int bw_used;
2146         unsigned int block_size;
2147         struct xhci_interval_bw_table *bw_table;
2148         unsigned int packet_size = 0;
2149         unsigned int overhead = 0;
2150         unsigned int packets_transmitted = 0;
2151         unsigned int packets_remaining = 0;
2152         unsigned int i;
2153
2154         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2155                 return xhci_check_ss_bw(xhci, virt_dev);
2156
2157         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2158                 max_bandwidth = HS_BW_LIMIT;
2159                 /* Convert percent of bus BW reserved to blocks reserved */
2160                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2161         } else {
2162                 max_bandwidth = FS_BW_LIMIT;
2163                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2164         }
2165
2166         bw_table = virt_dev->bw_table;
2167         /* We need to translate the max packet size and max ESIT payloads into
2168          * the units the hardware uses.
2169          */
2170         block_size = xhci_get_block_size(virt_dev->udev);
2171
2172         /* If we are manipulating a LS/FS device under a HS hub, double check
2173          * that the HS bus has enough bandwidth if we are activing a new TT.
2174          */
2175         if (virt_dev->tt_info) {
2176                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2177                                 virt_dev->real_port);
2178                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2179                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2180                                         "newly activated TT.\n");
2181                         return -ENOMEM;
2182                 }
2183                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2184                                 virt_dev->tt_info->slot_id,
2185                                 virt_dev->tt_info->ttport);
2186         } else {
2187                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2188                                 virt_dev->real_port);
2189         }
2190
2191         /* Add in how much bandwidth will be used for interval zero, or the
2192          * rounded max ESIT payload + number of packets * largest overhead.
2193          */
2194         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2195                 bw_table->interval_bw[0].num_packets *
2196                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2197
2198         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2199                 unsigned int bw_added;
2200                 unsigned int largest_mps;
2201                 unsigned int interval_overhead;
2202
2203                 /*
2204                  * How many packets could we transmit in this interval?
2205                  * If packets didn't fit in the previous interval, we will need
2206                  * to transmit that many packets twice within this interval.
2207                  */
2208                 packets_remaining = 2 * packets_remaining +
2209                         bw_table->interval_bw[i].num_packets;
2210
2211                 /* Find the largest max packet size of this or the previous
2212                  * interval.
2213                  */
2214                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2215                         largest_mps = 0;
2216                 else {
2217                         struct xhci_virt_ep *virt_ep;
2218                         struct list_head *ep_entry;
2219
2220                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2221                         virt_ep = list_entry(ep_entry,
2222                                         struct xhci_virt_ep, bw_endpoint_list);
2223                         /* Convert to blocks, rounding up */
2224                         largest_mps = DIV_ROUND_UP(
2225                                         virt_ep->bw_info.max_packet_size,
2226                                         block_size);
2227                 }
2228                 if (largest_mps > packet_size)
2229                         packet_size = largest_mps;
2230
2231                 /* Use the larger overhead of this or the previous interval. */
2232                 interval_overhead = xhci_get_largest_overhead(
2233                                 &bw_table->interval_bw[i]);
2234                 if (interval_overhead > overhead)
2235                         overhead = interval_overhead;
2236
2237                 /* How many packets can we evenly distribute across
2238                  * (1 << (i + 1)) possible scheduling opportunities?
2239                  */
2240                 packets_transmitted = packets_remaining >> (i + 1);
2241
2242                 /* Add in the bandwidth used for those scheduled packets */
2243                 bw_added = packets_transmitted * (overhead + packet_size);
2244
2245                 /* How many packets do we have remaining to transmit? */
2246                 packets_remaining = packets_remaining % (1 << (i + 1));
2247
2248                 /* What largest max packet size should those packets have? */
2249                 /* If we've transmitted all packets, don't carry over the
2250                  * largest packet size.
2251                  */
2252                 if (packets_remaining == 0) {
2253                         packet_size = 0;
2254                         overhead = 0;
2255                 } else if (packets_transmitted > 0) {
2256                         /* Otherwise if we do have remaining packets, and we've
2257                          * scheduled some packets in this interval, take the
2258                          * largest max packet size from endpoints with this
2259                          * interval.
2260                          */
2261                         packet_size = largest_mps;
2262                         overhead = interval_overhead;
2263                 }
2264                 /* Otherwise carry over packet_size and overhead from the last
2265                  * time we had a remainder.
2266                  */
2267                 bw_used += bw_added;
2268                 if (bw_used > max_bandwidth) {
2269                         xhci_warn(xhci, "Not enough bandwidth. "
2270                                         "Proposed: %u, Max: %u\n",
2271                                 bw_used, max_bandwidth);
2272                         return -ENOMEM;
2273                 }
2274         }
2275         /*
2276          * Ok, we know we have some packets left over after even-handedly
2277          * scheduling interval 15.  We don't know which microframes they will
2278          * fit into, so we over-schedule and say they will be scheduled every
2279          * microframe.
2280          */
2281         if (packets_remaining > 0)
2282                 bw_used += overhead + packet_size;
2283
2284         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2285                 unsigned int port_index = virt_dev->real_port - 1;
2286
2287                 /* OK, we're manipulating a HS device attached to a
2288                  * root port bandwidth domain.  Include the number of active TTs
2289                  * in the bandwidth used.
2290                  */
2291                 bw_used += TT_HS_OVERHEAD *
2292                         xhci->rh_bw[port_index].num_active_tts;
2293         }
2294
2295         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2296                 "Available: %u " "percent\n",
2297                 bw_used, max_bandwidth, bw_reserved,
2298                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2299                 max_bandwidth);
2300
2301         bw_used += bw_reserved;
2302         if (bw_used > max_bandwidth) {
2303                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2304                                 bw_used, max_bandwidth);
2305                 return -ENOMEM;
2306         }
2307
2308         bw_table->bw_used = bw_used;
2309         return 0;
2310 }
2311
2312 static bool xhci_is_async_ep(unsigned int ep_type)
2313 {
2314         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2315                                         ep_type != ISOC_IN_EP &&
2316                                         ep_type != INT_IN_EP);
2317 }
2318
2319 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2320 {
2321         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2322 }
2323
2324 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2325 {
2326         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2327
2328         if (ep_bw->ep_interval == 0)
2329                 return SS_OVERHEAD_BURST +
2330                         (ep_bw->mult * ep_bw->num_packets *
2331                                         (SS_OVERHEAD + mps));
2332         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2333                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2334                                 1 << ep_bw->ep_interval);
2335
2336 }
2337
2338 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2339                 struct xhci_bw_info *ep_bw,
2340                 struct xhci_interval_bw_table *bw_table,
2341                 struct usb_device *udev,
2342                 struct xhci_virt_ep *virt_ep,
2343                 struct xhci_tt_bw_info *tt_info)
2344 {
2345         struct xhci_interval_bw *interval_bw;
2346         int normalized_interval;
2347
2348         if (xhci_is_async_ep(ep_bw->type))
2349                 return;
2350
2351         if (udev->speed == USB_SPEED_SUPER) {
2352                 if (xhci_is_sync_in_ep(ep_bw->type))
2353                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2354                                 xhci_get_ss_bw_consumed(ep_bw);
2355                 else
2356                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2357                                 xhci_get_ss_bw_consumed(ep_bw);
2358                 return;
2359         }
2360
2361         /* SuperSpeed endpoints never get added to intervals in the table, so
2362          * this check is only valid for HS/FS/LS devices.
2363          */
2364         if (list_empty(&virt_ep->bw_endpoint_list))
2365                 return;
2366         /* For LS/FS devices, we need to translate the interval expressed in
2367          * microframes to frames.
2368          */
2369         if (udev->speed == USB_SPEED_HIGH)
2370                 normalized_interval = ep_bw->ep_interval;
2371         else
2372                 normalized_interval = ep_bw->ep_interval - 3;
2373
2374         if (normalized_interval == 0)
2375                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2376         interval_bw = &bw_table->interval_bw[normalized_interval];
2377         interval_bw->num_packets -= ep_bw->num_packets;
2378         switch (udev->speed) {
2379         case USB_SPEED_LOW:
2380                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2381                 break;
2382         case USB_SPEED_FULL:
2383                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2384                 break;
2385         case USB_SPEED_HIGH:
2386                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2387                 break;
2388         case USB_SPEED_SUPER:
2389         case USB_SPEED_UNKNOWN:
2390         case USB_SPEED_WIRELESS:
2391                 /* Should never happen because only LS/FS/HS endpoints will get
2392                  * added to the endpoint list.
2393                  */
2394                 return;
2395         }
2396         if (tt_info)
2397                 tt_info->active_eps -= 1;
2398         list_del_init(&virt_ep->bw_endpoint_list);
2399 }
2400
2401 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2402                 struct xhci_bw_info *ep_bw,
2403                 struct xhci_interval_bw_table *bw_table,
2404                 struct usb_device *udev,
2405                 struct xhci_virt_ep *virt_ep,
2406                 struct xhci_tt_bw_info *tt_info)
2407 {
2408         struct xhci_interval_bw *interval_bw;
2409         struct xhci_virt_ep *smaller_ep;
2410         int normalized_interval;
2411
2412         if (xhci_is_async_ep(ep_bw->type))
2413                 return;
2414
2415         if (udev->speed == USB_SPEED_SUPER) {
2416                 if (xhci_is_sync_in_ep(ep_bw->type))
2417                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2418                                 xhci_get_ss_bw_consumed(ep_bw);
2419                 else
2420                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2421                                 xhci_get_ss_bw_consumed(ep_bw);
2422                 return;
2423         }
2424
2425         /* For LS/FS devices, we need to translate the interval expressed in
2426          * microframes to frames.
2427          */
2428         if (udev->speed == USB_SPEED_HIGH)
2429                 normalized_interval = ep_bw->ep_interval;
2430         else
2431                 normalized_interval = ep_bw->ep_interval - 3;
2432
2433         if (normalized_interval == 0)
2434                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2435         interval_bw = &bw_table->interval_bw[normalized_interval];
2436         interval_bw->num_packets += ep_bw->num_packets;
2437         switch (udev->speed) {
2438         case USB_SPEED_LOW:
2439                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2440                 break;
2441         case USB_SPEED_FULL:
2442                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2443                 break;
2444         case USB_SPEED_HIGH:
2445                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2446                 break;
2447         case USB_SPEED_SUPER:
2448         case USB_SPEED_UNKNOWN:
2449         case USB_SPEED_WIRELESS:
2450                 /* Should never happen because only LS/FS/HS endpoints will get
2451                  * added to the endpoint list.
2452                  */
2453                 return;
2454         }
2455
2456         if (tt_info)
2457                 tt_info->active_eps += 1;
2458         /* Insert the endpoint into the list, largest max packet size first. */
2459         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2460                         bw_endpoint_list) {
2461                 if (ep_bw->max_packet_size >=
2462                                 smaller_ep->bw_info.max_packet_size) {
2463                         /* Add the new ep before the smaller endpoint */
2464                         list_add_tail(&virt_ep->bw_endpoint_list,
2465                                         &smaller_ep->bw_endpoint_list);
2466                         return;
2467                 }
2468         }
2469         /* Add the new endpoint at the end of the list. */
2470         list_add_tail(&virt_ep->bw_endpoint_list,
2471                         &interval_bw->endpoints);
2472 }
2473
2474 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2475                 struct xhci_virt_device *virt_dev,
2476                 int old_active_eps)
2477 {
2478         struct xhci_root_port_bw_info *rh_bw_info;
2479         if (!virt_dev->tt_info)
2480                 return;
2481
2482         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2483         if (old_active_eps == 0 &&
2484                                 virt_dev->tt_info->active_eps != 0) {
2485                 rh_bw_info->num_active_tts += 1;
2486                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2487         } else if (old_active_eps != 0 &&
2488                                 virt_dev->tt_info->active_eps == 0) {
2489                 rh_bw_info->num_active_tts -= 1;
2490                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2491         }
2492 }
2493
2494 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2495                 struct xhci_virt_device *virt_dev,
2496                 struct xhci_container_ctx *in_ctx)
2497 {
2498         struct xhci_bw_info ep_bw_info[31];
2499         int i;
2500         struct xhci_input_control_ctx *ctrl_ctx;
2501         int old_active_eps = 0;
2502
2503         if (virt_dev->tt_info)
2504                 old_active_eps = virt_dev->tt_info->active_eps;
2505
2506         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2507
2508         for (i = 0; i < 31; i++) {
2509                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2510                         continue;
2511
2512                 /* Make a copy of the BW info in case we need to revert this */
2513                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2514                                 sizeof(ep_bw_info[i]));
2515                 /* Drop the endpoint from the interval table if the endpoint is
2516                  * being dropped or changed.
2517                  */
2518                 if (EP_IS_DROPPED(ctrl_ctx, i))
2519                         xhci_drop_ep_from_interval_table(xhci,
2520                                         &virt_dev->eps[i].bw_info,
2521                                         virt_dev->bw_table,
2522                                         virt_dev->udev,
2523                                         &virt_dev->eps[i],
2524                                         virt_dev->tt_info);
2525         }
2526         /* Overwrite the information stored in the endpoints' bw_info */
2527         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2528         for (i = 0; i < 31; i++) {
2529                 /* Add any changed or added endpoints to the interval table */
2530                 if (EP_IS_ADDED(ctrl_ctx, i))
2531                         xhci_add_ep_to_interval_table(xhci,
2532                                         &virt_dev->eps[i].bw_info,
2533                                         virt_dev->bw_table,
2534                                         virt_dev->udev,
2535                                         &virt_dev->eps[i],
2536                                         virt_dev->tt_info);
2537         }
2538
2539         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2540                 /* Ok, this fits in the bandwidth we have.
2541                  * Update the number of active TTs.
2542                  */
2543                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2544                 return 0;
2545         }
2546
2547         /* We don't have enough bandwidth for this, revert the stored info. */
2548         for (i = 0; i < 31; i++) {
2549                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2550                         continue;
2551
2552                 /* Drop the new copies of any added or changed endpoints from
2553                  * the interval table.
2554                  */
2555                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2556                         xhci_drop_ep_from_interval_table(xhci,
2557                                         &virt_dev->eps[i].bw_info,
2558                                         virt_dev->bw_table,
2559                                         virt_dev->udev,
2560                                         &virt_dev->eps[i],
2561                                         virt_dev->tt_info);
2562                 }
2563                 /* Revert the endpoint back to its old information */
2564                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2565                                 sizeof(ep_bw_info[i]));
2566                 /* Add any changed or dropped endpoints back into the table */
2567                 if (EP_IS_DROPPED(ctrl_ctx, i))
2568                         xhci_add_ep_to_interval_table(xhci,
2569                                         &virt_dev->eps[i].bw_info,
2570                                         virt_dev->bw_table,
2571                                         virt_dev->udev,
2572                                         &virt_dev->eps[i],
2573                                         virt_dev->tt_info);
2574         }
2575         return -ENOMEM;
2576 }
2577
2578
2579 /* Issue a configure endpoint command or evaluate context command
2580  * and wait for it to finish.
2581  */
2582 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2583                 struct usb_device *udev,
2584                 struct xhci_command *command,
2585                 bool ctx_change, bool must_succeed)
2586 {
2587         int ret;
2588         int timeleft;
2589         unsigned long flags;
2590         struct xhci_container_ctx *in_ctx;
2591         struct completion *cmd_completion;
2592         u32 *cmd_status;
2593         struct xhci_virt_device *virt_dev;
2594         union xhci_trb *cmd_trb;
2595
2596         spin_lock_irqsave(&xhci->lock, flags);
2597         virt_dev = xhci->devs[udev->slot_id];
2598
2599         if (command)
2600                 in_ctx = command->in_ctx;
2601         else
2602                 in_ctx = virt_dev->in_ctx;
2603
2604         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2605                         xhci_reserve_host_resources(xhci, in_ctx)) {
2606                 spin_unlock_irqrestore(&xhci->lock, flags);
2607                 xhci_warn(xhci, "Not enough host resources, "
2608                                 "active endpoint contexts = %u\n",
2609                                 xhci->num_active_eps);
2610                 return -ENOMEM;
2611         }
2612         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2613                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2614                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2615                         xhci_free_host_resources(xhci, in_ctx);
2616                 spin_unlock_irqrestore(&xhci->lock, flags);
2617                 xhci_warn(xhci, "Not enough bandwidth\n");
2618                 return -ENOMEM;
2619         }
2620
2621         if (command) {
2622                 cmd_completion = command->completion;
2623                 cmd_status = &command->status;
2624                 command->command_trb = xhci->cmd_ring->enqueue;
2625
2626                 /* Enqueue pointer can be left pointing to the link TRB,
2627                  * we must handle that
2628                  */
2629                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2630                         command->command_trb =
2631                                 xhci->cmd_ring->enq_seg->next->trbs;
2632
2633                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2634         } else {
2635                 cmd_completion = &virt_dev->cmd_completion;
2636                 cmd_status = &virt_dev->cmd_status;
2637         }
2638         init_completion(cmd_completion);
2639
2640         cmd_trb = xhci->cmd_ring->dequeue;
2641         if (!ctx_change)
2642                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2643                                 udev->slot_id, must_succeed);
2644         else
2645                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2646                                 udev->slot_id);
2647         if (ret < 0) {
2648                 if (command)
2649                         list_del(&command->cmd_list);
2650                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2651                         xhci_free_host_resources(xhci, in_ctx);
2652                 spin_unlock_irqrestore(&xhci->lock, flags);
2653                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2654                 return -ENOMEM;
2655         }
2656         xhci_ring_cmd_db(xhci);
2657         spin_unlock_irqrestore(&xhci->lock, flags);
2658
2659         /* Wait for the configure endpoint command to complete */
2660         timeleft = wait_for_completion_interruptible_timeout(
2661                         cmd_completion,
2662                         XHCI_CMD_DEFAULT_TIMEOUT);
2663         if (timeleft <= 0) {
2664                 xhci_warn(xhci, "%s while waiting for %s command\n",
2665                                 timeleft == 0 ? "Timeout" : "Signal",
2666                                 ctx_change == 0 ?
2667                                         "configure endpoint" :
2668                                         "evaluate context");
2669                 /* cancel the configure endpoint command */
2670                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2671                 if (ret < 0)
2672                         return ret;
2673                 return -ETIME;
2674         }
2675
2676         if (!ctx_change)
2677                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2678         else
2679                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2680
2681         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2682                 spin_lock_irqsave(&xhci->lock, flags);
2683                 /* If the command failed, remove the reserved resources.
2684                  * Otherwise, clean up the estimate to include dropped eps.
2685                  */
2686                 if (ret)
2687                         xhci_free_host_resources(xhci, in_ctx);
2688                 else
2689                         xhci_finish_resource_reservation(xhci, in_ctx);
2690                 spin_unlock_irqrestore(&xhci->lock, flags);
2691         }
2692         return ret;
2693 }
2694
2695 /* Called after one or more calls to xhci_add_endpoint() or
2696  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2697  * to call xhci_reset_bandwidth().
2698  *
2699  * Since we are in the middle of changing either configuration or
2700  * installing a new alt setting, the USB core won't allow URBs to be
2701  * enqueued for any endpoint on the old config or interface.  Nothing
2702  * else should be touching the xhci->devs[slot_id] structure, so we
2703  * don't need to take the xhci->lock for manipulating that.
2704  */
2705 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2706 {
2707         int i;
2708         int ret = 0;
2709         struct xhci_hcd *xhci;
2710         struct xhci_virt_device *virt_dev;
2711         struct xhci_input_control_ctx *ctrl_ctx;
2712         struct xhci_slot_ctx *slot_ctx;
2713
2714         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2715         if (ret <= 0)
2716                 return ret;
2717         xhci = hcd_to_xhci(hcd);
2718         if (xhci->xhc_state & XHCI_STATE_DYING)
2719                 return -ENODEV;
2720
2721         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2722         virt_dev = xhci->devs[udev->slot_id];
2723
2724         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2725         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2726         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2727         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2728         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2729
2730         /* Don't issue the command if there's no endpoints to update. */
2731         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2732                         ctrl_ctx->drop_flags == 0)
2733                 return 0;
2734
2735         xhci_dbg(xhci, "New Input Control Context:\n");
2736         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2737         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2738                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2739
2740         ret = xhci_configure_endpoint(xhci, udev, NULL,
2741                         false, false);
2742         if (ret) {
2743                 /* Callee should call reset_bandwidth() */
2744                 return ret;
2745         }
2746
2747         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2748         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2749                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2750
2751         /* Free any rings that were dropped, but not changed. */
2752         for (i = 1; i < 31; ++i) {
2753                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2754                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2755                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2756         }
2757         xhci_zero_in_ctx(xhci, virt_dev);
2758         /*
2759          * Install any rings for completely new endpoints or changed endpoints,
2760          * and free or cache any old rings from changed endpoints.
2761          */
2762         for (i = 1; i < 31; ++i) {
2763                 if (!virt_dev->eps[i].new_ring)
2764                         continue;
2765                 /* Only cache or free the old ring if it exists.
2766                  * It may not if this is the first add of an endpoint.
2767                  */
2768                 if (virt_dev->eps[i].ring) {
2769                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2770                 }
2771                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2772                 virt_dev->eps[i].new_ring = NULL;
2773         }
2774
2775         return ret;
2776 }
2777
2778 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2779 {
2780         struct xhci_hcd *xhci;
2781         struct xhci_virt_device *virt_dev;
2782         int i, ret;
2783
2784         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2785         if (ret <= 0)
2786                 return;
2787         xhci = hcd_to_xhci(hcd);
2788
2789         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2790         virt_dev = xhci->devs[udev->slot_id];
2791         /* Free any rings allocated for added endpoints */
2792         for (i = 0; i < 31; ++i) {
2793                 if (virt_dev->eps[i].new_ring) {
2794                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2795                         virt_dev->eps[i].new_ring = NULL;
2796                 }
2797         }
2798         xhci_zero_in_ctx(xhci, virt_dev);
2799 }
2800
2801 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2802                 struct xhci_container_ctx *in_ctx,
2803                 struct xhci_container_ctx *out_ctx,
2804                 u32 add_flags, u32 drop_flags)
2805 {
2806         struct xhci_input_control_ctx *ctrl_ctx;
2807         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2808         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2809         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2810         xhci_slot_copy(xhci, in_ctx, out_ctx);
2811         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2812
2813         xhci_dbg(xhci, "Input Context:\n");
2814         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2815 }
2816
2817 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2818                 unsigned int slot_id, unsigned int ep_index,
2819                 struct xhci_dequeue_state *deq_state)
2820 {
2821         struct xhci_container_ctx *in_ctx;
2822         struct xhci_ep_ctx *ep_ctx;
2823         u32 added_ctxs;
2824         dma_addr_t addr;
2825
2826         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2827                         xhci->devs[slot_id]->out_ctx, ep_index);
2828         in_ctx = xhci->devs[slot_id]->in_ctx;
2829         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2830         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2831                         deq_state->new_deq_ptr);
2832         if (addr == 0) {
2833                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2834                                 "reset ep command\n");
2835                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2836                                 deq_state->new_deq_seg,
2837                                 deq_state->new_deq_ptr);
2838                 return;
2839         }
2840         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2841
2842         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2843         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2844                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2845 }
2846
2847 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2848                 struct usb_device *udev, unsigned int ep_index)
2849 {
2850         struct xhci_dequeue_state deq_state;
2851         struct xhci_virt_ep *ep;
2852
2853         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2854         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2855         /* We need to move the HW's dequeue pointer past this TD,
2856          * or it will attempt to resend it on the next doorbell ring.
2857          */
2858         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2859                         ep_index, ep->stopped_stream, ep->stopped_td,
2860                         &deq_state);
2861
2862         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2863                 return;
2864
2865         /* HW with the reset endpoint quirk will use the saved dequeue state to
2866          * issue a configure endpoint command later.
2867          */
2868         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2869                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2870                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2871                                 ep_index, ep->stopped_stream, &deq_state);
2872         } else {
2873                 /* Better hope no one uses the input context between now and the
2874                  * reset endpoint completion!
2875                  * XXX: No idea how this hardware will react when stream rings
2876                  * are enabled.
2877                  */
2878                 xhci_dbg(xhci, "Setting up input context for "
2879                                 "configure endpoint command\n");
2880                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2881                                 ep_index, &deq_state);
2882         }
2883 }
2884
2885 /* Called when clearing halted device. The core should have sent the control
2886  * message to clear the device halt condition. The host side of the halt should
2887  * already be cleared with a reset endpoint command issued when the STALL tx
2888  * event was received.
2889  *
2890  * Context: in_interrupt
2891  */
2892
2893 void xhci_endpoint_reset(struct usb_hcd *hcd,
2894                 struct usb_host_endpoint *ep)
2895 {
2896         struct xhci_hcd *xhci;
2897
2898         xhci = hcd_to_xhci(hcd);
2899
2900         /*
2901          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2902          * The Reset Endpoint Command may only be issued to endpoints in the
2903          * Halted state. If software wishes reset the Data Toggle or Sequence
2904          * Number of an endpoint that isn't in the Halted state, then software
2905          * may issue a Configure Endpoint Command with the Drop and Add bits set
2906          * for the target endpoint. that is in the Stopped state.
2907          */
2908
2909         /* For now just print debug to follow the situation */
2910         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2911                  ep->desc.bEndpointAddress);
2912 }
2913
2914 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2915                 struct usb_device *udev, struct usb_host_endpoint *ep,
2916                 unsigned int slot_id)
2917 {
2918         int ret;
2919         unsigned int ep_index;
2920         unsigned int ep_state;
2921
2922         if (!ep)
2923                 return -EINVAL;
2924         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2925         if (ret <= 0)
2926                 return -EINVAL;
2927         if (ep->ss_ep_comp.bmAttributes == 0) {
2928                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2929                                 " descriptor for ep 0x%x does not support streams\n",
2930                                 ep->desc.bEndpointAddress);
2931                 return -EINVAL;
2932         }
2933
2934         ep_index = xhci_get_endpoint_index(&ep->desc);
2935         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2936         if (ep_state & EP_HAS_STREAMS ||
2937                         ep_state & EP_GETTING_STREAMS) {
2938                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2939                                 "already has streams set up.\n",
2940                                 ep->desc.bEndpointAddress);
2941                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2942                                 "dynamic stream context array reallocation.\n");
2943                 return -EINVAL;
2944         }
2945         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2946                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2947                                 "endpoint 0x%x; URBs are pending.\n",
2948                                 ep->desc.bEndpointAddress);
2949                 return -EINVAL;
2950         }
2951         return 0;
2952 }
2953
2954 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2955                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2956 {
2957         unsigned int max_streams;
2958
2959         /* The stream context array size must be a power of two */
2960         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2961         /*
2962          * Find out how many primary stream array entries the host controller
2963          * supports.  Later we may use secondary stream arrays (similar to 2nd
2964          * level page entries), but that's an optional feature for xHCI host
2965          * controllers. xHCs must support at least 4 stream IDs.
2966          */
2967         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2968         if (*num_stream_ctxs > max_streams) {
2969                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2970                                 max_streams);
2971                 *num_stream_ctxs = max_streams;
2972                 *num_streams = max_streams;
2973         }
2974 }
2975
2976 /* Returns an error code if one of the endpoint already has streams.
2977  * This does not change any data structures, it only checks and gathers
2978  * information.
2979  */
2980 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2981                 struct usb_device *udev,
2982                 struct usb_host_endpoint **eps, unsigned int num_eps,
2983                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2984 {
2985         unsigned int max_streams;
2986         unsigned int endpoint_flag;
2987         int i;
2988         int ret;
2989
2990         for (i = 0; i < num_eps; i++) {
2991                 ret = xhci_check_streams_endpoint(xhci, udev,
2992                                 eps[i], udev->slot_id);
2993                 if (ret < 0)
2994                         return ret;
2995
2996                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2997                 if (max_streams < (*num_streams - 1)) {
2998                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2999                                         eps[i]->desc.bEndpointAddress,
3000                                         max_streams);
3001                         *num_streams = max_streams+1;
3002                 }
3003
3004                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3005                 if (*changed_ep_bitmask & endpoint_flag)
3006                         return -EINVAL;
3007                 *changed_ep_bitmask |= endpoint_flag;
3008         }
3009         return 0;
3010 }
3011
3012 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3013                 struct usb_device *udev,
3014                 struct usb_host_endpoint **eps, unsigned int num_eps)
3015 {
3016         u32 changed_ep_bitmask = 0;
3017         unsigned int slot_id;
3018         unsigned int ep_index;
3019         unsigned int ep_state;
3020         int i;
3021
3022         slot_id = udev->slot_id;
3023         if (!xhci->devs[slot_id])
3024                 return 0;
3025
3026         for (i = 0; i < num_eps; i++) {
3027                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3028                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3029                 /* Are streams already being freed for the endpoint? */
3030                 if (ep_state & EP_GETTING_NO_STREAMS) {
3031                         xhci_warn(xhci, "WARN Can't disable streams for "
3032                                         "endpoint 0x%x\n, "
3033                                         "streams are being disabled already.",
3034                                         eps[i]->desc.bEndpointAddress);
3035                         return 0;
3036                 }
3037                 /* Are there actually any streams to free? */
3038                 if (!(ep_state & EP_HAS_STREAMS) &&
3039                                 !(ep_state & EP_GETTING_STREAMS)) {
3040                         xhci_warn(xhci, "WARN Can't disable streams for "
3041                                         "endpoint 0x%x\n, "
3042                                         "streams are already disabled!",
3043                                         eps[i]->desc.bEndpointAddress);
3044                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3045                                         "with non-streams endpoint\n");
3046                         return 0;
3047                 }
3048                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3049         }
3050         return changed_ep_bitmask;
3051 }
3052
3053 /*
3054  * The USB device drivers use this function (though the HCD interface in USB
3055  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3056  * coordinate mass storage command queueing across multiple endpoints (basically
3057  * a stream ID == a task ID).
3058  *
3059  * Setting up streams involves allocating the same size stream context array
3060  * for each endpoint and issuing a configure endpoint command for all endpoints.
3061  *
3062  * Don't allow the call to succeed if one endpoint only supports one stream
3063  * (which means it doesn't support streams at all).
3064  *
3065  * Drivers may get less stream IDs than they asked for, if the host controller
3066  * hardware or endpoints claim they can't support the number of requested
3067  * stream IDs.
3068  */
3069 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3070                 struct usb_host_endpoint **eps, unsigned int num_eps,
3071                 unsigned int num_streams, gfp_t mem_flags)
3072 {
3073         int i, ret;
3074         struct xhci_hcd *xhci;
3075         struct xhci_virt_device *vdev;
3076         struct xhci_command *config_cmd;
3077         unsigned int ep_index;
3078         unsigned int num_stream_ctxs;
3079         unsigned long flags;
3080         u32 changed_ep_bitmask = 0;
3081
3082         if (!eps)
3083                 return -EINVAL;
3084
3085         /* Add one to the number of streams requested to account for
3086          * stream 0 that is reserved for xHCI usage.
3087          */
3088         num_streams += 1;
3089         xhci = hcd_to_xhci(hcd);
3090         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3091                         num_streams);
3092
3093         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3094         if (!config_cmd) {
3095                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3096                 return -ENOMEM;
3097         }
3098
3099         /* Check to make sure all endpoints are not already configured for
3100          * streams.  While we're at it, find the maximum number of streams that
3101          * all the endpoints will support and check for duplicate endpoints.
3102          */
3103         spin_lock_irqsave(&xhci->lock, flags);
3104         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3105                         num_eps, &num_streams, &changed_ep_bitmask);
3106         if (ret < 0) {
3107                 xhci_free_command(xhci, config_cmd);
3108                 spin_unlock_irqrestore(&xhci->lock, flags);
3109                 return ret;
3110         }
3111         if (num_streams <= 1) {
3112                 xhci_warn(xhci, "WARN: endpoints can't handle "
3113                                 "more than one stream.\n");
3114                 xhci_free_command(xhci, config_cmd);
3115                 spin_unlock_irqrestore(&xhci->lock, flags);
3116                 return -EINVAL;
3117         }
3118         vdev = xhci->devs[udev->slot_id];
3119         /* Mark each endpoint as being in transition, so
3120          * xhci_urb_enqueue() will reject all URBs.
3121          */
3122         for (i = 0; i < num_eps; i++) {
3123                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3124                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3125         }
3126         spin_unlock_irqrestore(&xhci->lock, flags);
3127
3128         /* Setup internal data structures and allocate HW data structures for
3129          * streams (but don't install the HW structures in the input context
3130          * until we're sure all memory allocation succeeded).
3131          */
3132         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3133         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3134                         num_stream_ctxs, num_streams);
3135
3136         for (i = 0; i < num_eps; i++) {
3137                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3138                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3139                                 num_stream_ctxs,
3140                                 num_streams, mem_flags);
3141                 if (!vdev->eps[ep_index].stream_info)
3142                         goto cleanup;
3143                 /* Set maxPstreams in endpoint context and update deq ptr to
3144                  * point to stream context array. FIXME
3145                  */
3146         }
3147
3148         /* Set up the input context for a configure endpoint command. */
3149         for (i = 0; i < num_eps; i++) {
3150                 struct xhci_ep_ctx *ep_ctx;
3151
3152                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3153                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3154
3155                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3156                                 vdev->out_ctx, ep_index);
3157                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3158                                 vdev->eps[ep_index].stream_info);
3159         }
3160         /* Tell the HW to drop its old copy of the endpoint context info
3161          * and add the updated copy from the input context.
3162          */
3163         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3164                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3165
3166         /* Issue and wait for the configure endpoint command */
3167         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3168                         false, false);
3169
3170         /* xHC rejected the configure endpoint command for some reason, so we
3171          * leave the old ring intact and free our internal streams data
3172          * structure.
3173          */
3174         if (ret < 0)
3175                 goto cleanup;
3176
3177         spin_lock_irqsave(&xhci->lock, flags);
3178         for (i = 0; i < num_eps; i++) {
3179                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3180                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3181                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3182                          udev->slot_id, ep_index);
3183                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3184         }
3185         xhci_free_command(xhci, config_cmd);
3186         spin_unlock_irqrestore(&xhci->lock, flags);
3187
3188         /* Subtract 1 for stream 0, which drivers can't use */
3189         return num_streams - 1;
3190
3191 cleanup:
3192         /* If it didn't work, free the streams! */
3193         for (i = 0; i < num_eps; i++) {
3194                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3195                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3196                 vdev->eps[ep_index].stream_info = NULL;
3197                 /* FIXME Unset maxPstreams in endpoint context and
3198                  * update deq ptr to point to normal string ring.
3199                  */
3200                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3201                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3202                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3203         }
3204         xhci_free_command(xhci, config_cmd);
3205         return -ENOMEM;
3206 }
3207
3208 /* Transition the endpoint from using streams to being a "normal" endpoint
3209  * without streams.
3210  *
3211  * Modify the endpoint context state, submit a configure endpoint command,
3212  * and free all endpoint rings for streams if that completes successfully.
3213  */
3214 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3215                 struct usb_host_endpoint **eps, unsigned int num_eps,
3216                 gfp_t mem_flags)
3217 {
3218         int i, ret;
3219         struct xhci_hcd *xhci;
3220         struct xhci_virt_device *vdev;
3221         struct xhci_command *command;
3222         unsigned int ep_index;
3223         unsigned long flags;
3224         u32 changed_ep_bitmask;
3225
3226         xhci = hcd_to_xhci(hcd);
3227         vdev = xhci->devs[udev->slot_id];
3228
3229         /* Set up a configure endpoint command to remove the streams rings */
3230         spin_lock_irqsave(&xhci->lock, flags);
3231         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3232                         udev, eps, num_eps);
3233         if (changed_ep_bitmask == 0) {
3234                 spin_unlock_irqrestore(&xhci->lock, flags);
3235                 return -EINVAL;
3236         }
3237
3238         /* Use the xhci_command structure from the first endpoint.  We may have
3239          * allocated too many, but the driver may call xhci_free_streams() for
3240          * each endpoint it grouped into one call to xhci_alloc_streams().
3241          */
3242         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3243         command = vdev->eps[ep_index].stream_info->free_streams_command;
3244         for (i = 0; i < num_eps; i++) {
3245                 struct xhci_ep_ctx *ep_ctx;
3246
3247                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3249                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3250                         EP_GETTING_NO_STREAMS;
3251
3252                 xhci_endpoint_copy(xhci, command->in_ctx,
3253                                 vdev->out_ctx, ep_index);
3254                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3255                                 &vdev->eps[ep_index]);
3256         }
3257         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3258                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3259         spin_unlock_irqrestore(&xhci->lock, flags);
3260
3261         /* Issue and wait for the configure endpoint command,
3262          * which must succeed.
3263          */
3264         ret = xhci_configure_endpoint(xhci, udev, command,
3265                         false, true);
3266
3267         /* xHC rejected the configure endpoint command for some reason, so we
3268          * leave the streams rings intact.
3269          */
3270         if (ret < 0)
3271                 return ret;
3272
3273         spin_lock_irqsave(&xhci->lock, flags);
3274         for (i = 0; i < num_eps; i++) {
3275                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3277                 vdev->eps[ep_index].stream_info = NULL;
3278                 /* FIXME Unset maxPstreams in endpoint context and
3279                  * update deq ptr to point to normal string ring.
3280                  */
3281                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3282                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3283         }
3284         spin_unlock_irqrestore(&xhci->lock, flags);
3285
3286         return 0;
3287 }
3288
3289 /*
3290  * Deletes endpoint resources for endpoints that were active before a Reset
3291  * Device command, or a Disable Slot command.  The Reset Device command leaves
3292  * the control endpoint intact, whereas the Disable Slot command deletes it.
3293  *
3294  * Must be called with xhci->lock held.
3295  */
3296 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3297         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3298 {
3299         int i;
3300         unsigned int num_dropped_eps = 0;
3301         unsigned int drop_flags = 0;
3302
3303         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3304                 if (virt_dev->eps[i].ring) {
3305                         drop_flags |= 1 << i;
3306                         num_dropped_eps++;
3307                 }
3308         }
3309         xhci->num_active_eps -= num_dropped_eps;
3310         if (num_dropped_eps)
3311                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3312                                 "%u now active.\n",
3313                                 num_dropped_eps, drop_flags,
3314                                 xhci->num_active_eps);
3315 }
3316
3317 /*
3318  * This submits a Reset Device Command, which will set the device state to 0,
3319  * set the device address to 0, and disable all the endpoints except the default
3320  * control endpoint.  The USB core should come back and call
3321  * xhci_address_device(), and then re-set up the configuration.  If this is
3322  * called because of a usb_reset_and_verify_device(), then the old alternate
3323  * settings will be re-installed through the normal bandwidth allocation
3324  * functions.
3325  *
3326  * Wait for the Reset Device command to finish.  Remove all structures
3327  * associated with the endpoints that were disabled.  Clear the input device
3328  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3329  *
3330  * If the virt_dev to be reset does not exist or does not match the udev,
3331  * it means the device is lost, possibly due to the xHC restore error and
3332  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3333  * re-allocate the device.
3334  */
3335 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3336 {
3337         int ret, i;
3338         unsigned long flags;
3339         struct xhci_hcd *xhci;
3340         unsigned int slot_id;
3341         struct xhci_virt_device *virt_dev;
3342         struct xhci_command *reset_device_cmd;
3343         int timeleft;
3344         int last_freed_endpoint;
3345         struct xhci_slot_ctx *slot_ctx;
3346         int old_active_eps = 0;
3347
3348         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3349         if (ret <= 0)
3350                 return ret;
3351         xhci = hcd_to_xhci(hcd);
3352         slot_id = udev->slot_id;
3353         virt_dev = xhci->devs[slot_id];
3354         if (!virt_dev) {
3355                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3356                                 "not exist. Re-allocate the device\n", slot_id);
3357                 ret = xhci_alloc_dev(hcd, udev);
3358                 if (ret == 1)
3359                         return 0;
3360                 else
3361                         return -EINVAL;
3362         }
3363
3364         if (virt_dev->tt_info)
3365                 old_active_eps = virt_dev->tt_info->active_eps;
3366
3367         if (virt_dev->udev != udev) {
3368                 /* If the virt_dev and the udev does not match, this virt_dev
3369                  * may belong to another udev.
3370                  * Re-allocate the device.
3371                  */
3372                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3373                                 "not match the udev. Re-allocate the device\n",
3374                                 slot_id);
3375                 ret = xhci_alloc_dev(hcd, udev);
3376                 if (ret == 1)
3377                         return 0;
3378                 else
3379                         return -EINVAL;
3380         }
3381
3382         /* If device is not setup, there is no point in resetting it */
3383         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3384         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3385                                                 SLOT_STATE_DISABLED)
3386                 return 0;
3387
3388         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3389         /* Allocate the command structure that holds the struct completion.
3390          * Assume we're in process context, since the normal device reset
3391          * process has to wait for the device anyway.  Storage devices are
3392          * reset as part of error handling, so use GFP_NOIO instead of
3393          * GFP_KERNEL.
3394          */
3395         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3396         if (!reset_device_cmd) {
3397                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3398                 return -ENOMEM;
3399         }
3400
3401         /* Attempt to submit the Reset Device command to the command ring */
3402         spin_lock_irqsave(&xhci->lock, flags);
3403         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3404
3405         /* Enqueue pointer can be left pointing to the link TRB,
3406          * we must handle that
3407          */
3408         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3409                 reset_device_cmd->command_trb =
3410                         xhci->cmd_ring->enq_seg->next->trbs;
3411
3412         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3413         ret = xhci_queue_reset_device(xhci, slot_id);
3414         if (ret) {
3415                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3416                 list_del(&reset_device_cmd->cmd_list);
3417                 spin_unlock_irqrestore(&xhci->lock, flags);
3418                 goto command_cleanup;
3419         }
3420         xhci_ring_cmd_db(xhci);
3421         spin_unlock_irqrestore(&xhci->lock, flags);
3422
3423         /* Wait for the Reset Device command to finish */
3424         timeleft = wait_for_completion_interruptible_timeout(
3425                         reset_device_cmd->completion,
3426                         USB_CTRL_SET_TIMEOUT);
3427         if (timeleft <= 0) {
3428                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3429                                 timeleft == 0 ? "Timeout" : "Signal");
3430                 spin_lock_irqsave(&xhci->lock, flags);
3431                 /* The timeout might have raced with the event ring handler, so
3432                  * only delete from the list if the item isn't poisoned.
3433                  */
3434                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3435                         list_del(&reset_device_cmd->cmd_list);
3436                 spin_unlock_irqrestore(&xhci->lock, flags);
3437                 ret = -ETIME;
3438                 goto command_cleanup;
3439         }
3440
3441         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3442          * unless we tried to reset a slot ID that wasn't enabled,
3443          * or the device wasn't in the addressed or configured state.
3444          */
3445         ret = reset_device_cmd->status;
3446         switch (ret) {
3447         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3448         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3449                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3450                                 slot_id,
3451                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3452                 xhci_info(xhci, "Not freeing device rings.\n");
3453                 /* Don't treat this as an error.  May change my mind later. */
3454                 ret = 0;
3455                 goto command_cleanup;
3456         case COMP_SUCCESS:
3457                 xhci_dbg(xhci, "Successful reset device command.\n");
3458                 break;
3459         default:
3460                 if (xhci_is_vendor_info_code(xhci, ret))
3461                         break;
3462                 xhci_warn(xhci, "Unknown completion code %u for "
3463                                 "reset device command.\n", ret);
3464                 ret = -EINVAL;
3465                 goto command_cleanup;
3466         }
3467
3468         /* Free up host controller endpoint resources */
3469         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3470                 spin_lock_irqsave(&xhci->lock, flags);
3471                 /* Don't delete the default control endpoint resources */
3472                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3473                 spin_unlock_irqrestore(&xhci->lock, flags);
3474         }
3475
3476         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3477         last_freed_endpoint = 1;
3478         for (i = 1; i < 31; ++i) {
3479                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3480
3481                 if (ep->ep_state & EP_HAS_STREAMS) {
3482                         xhci_free_stream_info(xhci, ep->stream_info);
3483                         ep->stream_info = NULL;
3484                         ep->ep_state &= ~EP_HAS_STREAMS;
3485                 }
3486
3487                 if (ep->ring) {
3488                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3489                         last_freed_endpoint = i;
3490                 }
3491                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3492                         xhci_drop_ep_from_interval_table(xhci,
3493                                         &virt_dev->eps[i].bw_info,
3494                                         virt_dev->bw_table,
3495                                         udev,
3496                                         &virt_dev->eps[i],
3497                                         virt_dev->tt_info);
3498                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3499         }
3500         /* If necessary, update the number of active TTs on this root port */
3501         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3502
3503         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3504         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3505         ret = 0;
3506
3507 command_cleanup:
3508         xhci_free_command(xhci, reset_device_cmd);
3509         return ret;
3510 }
3511
3512 /*
3513  * At this point, the struct usb_device is about to go away, the device has
3514  * disconnected, and all traffic has been stopped and the endpoints have been
3515  * disabled.  Free any HC data structures associated with that device.
3516  */
3517 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3518 {
3519         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3520         struct xhci_virt_device *virt_dev;
3521         struct device *dev = hcd->self.controller;
3522         unsigned long flags;
3523         u32 state;
3524         int i, ret;
3525
3526 #ifndef CONFIG_USB_DEFAULT_PERSIST
3527         /*
3528          * We called pm_runtime_get_noresume when the device was attached.
3529          * Decrement the counter here to allow controller to runtime suspend
3530          * if no devices remain.
3531          */
3532         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3533                 pm_runtime_put_noidle(dev);
3534 #endif
3535
3536         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3537         /* If the host is halted due to driver unload, we still need to free the
3538          * device.
3539          */
3540         if (ret <= 0 && ret != -ENODEV)
3541                 return;
3542
3543         virt_dev = xhci->devs[udev->slot_id];
3544
3545         /* Stop any wayward timer functions (which may grab the lock) */
3546         for (i = 0; i < 31; ++i) {
3547                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3548                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3549         }
3550
3551         if (udev->usb2_hw_lpm_enabled) {
3552                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3553                 udev->usb2_hw_lpm_enabled = 0;
3554         }
3555
3556         spin_lock_irqsave(&xhci->lock, flags);
3557         /* Don't disable the slot if the host controller is dead. */
3558         state = xhci_readl(xhci, &xhci->op_regs->status);
3559         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3560                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3561                 xhci_free_virt_device(xhci, udev->slot_id);
3562                 spin_unlock_irqrestore(&xhci->lock, flags);
3563                 return;
3564         }
3565
3566         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3567                 spin_unlock_irqrestore(&xhci->lock, flags);
3568                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3569                 return;
3570         }
3571         xhci_ring_cmd_db(xhci);
3572         spin_unlock_irqrestore(&xhci->lock, flags);
3573         /*
3574          * Event command completion handler will free any data structures
3575          * associated with the slot.  XXX Can free sleep?
3576          */
3577 }
3578
3579 /*
3580  * Checks if we have enough host controller resources for the default control
3581  * endpoint.
3582  *
3583  * Must be called with xhci->lock held.
3584  */
3585 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3586 {
3587         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3588                 xhci_dbg(xhci, "Not enough ep ctxs: "
3589                                 "%u active, need to add 1, limit is %u.\n",
3590                                 xhci->num_active_eps, xhci->limit_active_eps);
3591                 return -ENOMEM;
3592         }
3593         xhci->num_active_eps += 1;
3594         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3595                         xhci->num_active_eps);
3596         return 0;
3597 }
3598
3599
3600 /*
3601  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3602  * timed out, or allocating memory failed.  Returns 1 on success.
3603  */
3604 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3605 {
3606         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3607         struct device *dev = hcd->self.controller;
3608         unsigned long flags;
3609         int timeleft;
3610         int ret;
3611         union xhci_trb *cmd_trb;
3612
3613         spin_lock_irqsave(&xhci->lock, flags);
3614         cmd_trb = xhci->cmd_ring->dequeue;
3615         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3616         if (ret) {
3617                 spin_unlock_irqrestore(&xhci->lock, flags);
3618                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3619                 return 0;
3620         }
3621         xhci_ring_cmd_db(xhci);
3622         spin_unlock_irqrestore(&xhci->lock, flags);
3623
3624         /* XXX: how much time for xHC slot assignment? */
3625         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3626                         XHCI_CMD_DEFAULT_TIMEOUT);
3627         if (timeleft <= 0) {
3628                 xhci_warn(xhci, "%s while waiting for a slot\n",
3629                                 timeleft == 0 ? "Timeout" : "Signal");
3630                 /* cancel the enable slot request */
3631                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3632         }
3633
3634         if (!xhci->slot_id) {
3635                 xhci_err(xhci, "Error while assigning device slot ID\n");
3636                 return 0;
3637         }
3638
3639         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3640                 spin_lock_irqsave(&xhci->lock, flags);
3641                 ret = xhci_reserve_host_control_ep_resources(xhci);
3642                 if (ret) {
3643                         spin_unlock_irqrestore(&xhci->lock, flags);
3644                         xhci_warn(xhci, "Not enough host resources, "
3645                                         "active endpoint contexts = %u\n",
3646                                         xhci->num_active_eps);
3647                         goto disable_slot;
3648                 }
3649                 spin_unlock_irqrestore(&xhci->lock, flags);
3650         }
3651         /* Use GFP_NOIO, since this function can be called from
3652          * xhci_discover_or_reset_device(), which may be called as part of
3653          * mass storage driver error handling.
3654          */
3655         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3656                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3657                 goto disable_slot;
3658         }
3659         udev->slot_id = xhci->slot_id;
3660
3661 #ifndef CONFIG_USB_DEFAULT_PERSIST
3662         /*
3663          * If resetting upon resume, we can't put the controller into runtime
3664          * suspend if there is a device attached.
3665          */
3666         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3667                 pm_runtime_get_noresume(dev);
3668 #endif
3669
3670         /* Is this a LS or FS device under a HS hub? */
3671         /* Hub or peripherial? */
3672         return 1;
3673
3674 disable_slot:
3675         /* Disable slot, if we can do it without mem alloc */
3676         spin_lock_irqsave(&xhci->lock, flags);
3677         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3678                 xhci_ring_cmd_db(xhci);
3679         spin_unlock_irqrestore(&xhci->lock, flags);
3680         return 0;
3681 }
3682
3683 /*
3684  * Issue an Address Device command (which will issue a SetAddress request to
3685  * the device).
3686  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3687  * we should only issue and wait on one address command at the same time.
3688  *
3689  * We add one to the device address issued by the hardware because the USB core
3690  * uses address 1 for the root hubs (even though they're not really devices).
3691  */
3692 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3693 {
3694         unsigned long flags;
3695         int timeleft;
3696         struct xhci_virt_device *virt_dev;
3697         int ret = 0;
3698         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3699         struct xhci_slot_ctx *slot_ctx;
3700         struct xhci_input_control_ctx *ctrl_ctx;
3701         u64 temp_64;
3702         union xhci_trb *cmd_trb;
3703
3704         if (!udev->slot_id) {
3705                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3706                 return -EINVAL;
3707         }
3708
3709         virt_dev = xhci->devs[udev->slot_id];
3710
3711         if (WARN_ON(!virt_dev)) {
3712                 /*
3713                  * In plug/unplug torture test with an NEC controller,
3714                  * a zero-dereference was observed once due to virt_dev = 0.
3715                  * Print useful debug rather than crash if it is observed again!
3716                  */
3717                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3718                         udev->slot_id);
3719                 return -EINVAL;
3720         }
3721
3722         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3723         /*
3724          * If this is the first Set Address since device plug-in or
3725          * virt_device realloaction after a resume with an xHCI power loss,
3726          * then set up the slot context.
3727          */
3728         if (!slot_ctx->dev_info)
3729                 xhci_setup_addressable_virt_dev(xhci, udev);
3730         /* Otherwise, update the control endpoint ring enqueue pointer. */
3731         else
3732                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3733         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3734         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3735         ctrl_ctx->drop_flags = 0;
3736
3737         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3738         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3739
3740         spin_lock_irqsave(&xhci->lock, flags);
3741         cmd_trb = xhci->cmd_ring->dequeue;
3742         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3743                                         udev->slot_id);
3744         if (ret) {
3745                 spin_unlock_irqrestore(&xhci->lock, flags);
3746                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3747                 return ret;
3748         }
3749         xhci_ring_cmd_db(xhci);
3750         spin_unlock_irqrestore(&xhci->lock, flags);
3751
3752         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3753         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3754                         XHCI_CMD_DEFAULT_TIMEOUT);
3755         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3756          * the SetAddress() "recovery interval" required by USB and aborting the
3757          * command on a timeout.
3758          */
3759         if (timeleft <= 0) {
3760                 xhci_warn(xhci, "%s while waiting for address device command\n",
3761                                 timeleft == 0 ? "Timeout" : "Signal");
3762                 /* cancel the address device command */
3763                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3764                 if (ret < 0)
3765                         return ret;
3766                 return -ETIME;
3767         }
3768
3769         switch (virt_dev->cmd_status) {
3770         case COMP_CTX_STATE:
3771         case COMP_EBADSLT:
3772                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3773                                 udev->slot_id);
3774                 ret = -EINVAL;
3775                 break;
3776         case COMP_TX_ERR:
3777                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3778                 ret = -EPROTO;
3779                 break;
3780         case COMP_DEV_ERR:
3781                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3782                                 "device command.\n");
3783                 ret = -ENODEV;
3784                 break;
3785         case COMP_SUCCESS:
3786                 xhci_dbg(xhci, "Successful Address Device command\n");
3787                 break;
3788         default:
3789                 xhci_err(xhci, "ERROR: unexpected command completion "
3790                                 "code 0x%x.\n", virt_dev->cmd_status);
3791                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3792                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3793                 ret = -EINVAL;
3794                 break;
3795         }
3796         if (ret) {
3797                 return ret;
3798         }
3799         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3800         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3801         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3802                  udev->slot_id,
3803                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3804                  (unsigned long long)
3805                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3806         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3807                         (unsigned long long)virt_dev->out_ctx->dma);
3808         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3809         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3810         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3811         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3812         /*
3813          * USB core uses address 1 for the roothubs, so we add one to the
3814          * address given back to us by the HC.
3815          */
3816         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3817         /* Use kernel assigned address for devices; store xHC assigned
3818          * address locally. */
3819         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3820                 + 1;
3821         /* Zero the input context control for later use */
3822         ctrl_ctx->add_flags = 0;
3823         ctrl_ctx->drop_flags = 0;
3824
3825         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3826
3827         return 0;
3828 }
3829
3830 #ifdef CONFIG_USB_SUSPEND
3831
3832 /* BESL to HIRD Encoding array for USB2 LPM */
3833 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3834         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3835
3836 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3837 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3838 {
3839         int hird;
3840
3841         if (use_besl) {
3842                 for (hird = 0; hird < 16; hird++) {
3843                         if (xhci_besl_encoding[hird] >= u2del)
3844                                 break;
3845                 }
3846         } else {
3847                 if (u2del <= 50)
3848                         hird = 0;
3849                 else
3850                         hird = (u2del - 51) / 75 + 1;
3851
3852                 if (hird > 15)
3853                         hird = 15;
3854         }
3855
3856         return hird;
3857 }
3858
3859 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3860                                         struct usb_device *udev)
3861 {
3862         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3863         struct dev_info *dev_info;
3864         __le32 __iomem  **port_array;
3865         __le32 __iomem  *addr, *pm_addr;
3866         u32             temp, dev_id;
3867         unsigned int    port_num;
3868         unsigned long   flags;
3869         int             u2del, hird;
3870         int             ret;
3871
3872         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3873                         !udev->lpm_capable)
3874                 return -EINVAL;
3875
3876         /* we only support lpm for non-hub device connected to root hub yet */
3877         if (!udev->parent || udev->parent->parent ||
3878                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3879                 return -EINVAL;
3880
3881         spin_lock_irqsave(&xhci->lock, flags);
3882
3883         /* Look for devices in lpm_failed_devs list */
3884         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3885                         le16_to_cpu(udev->descriptor.idProduct);
3886         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3887                 if (dev_info->dev_id == dev_id) {
3888                         ret = -EINVAL;
3889                         goto finish;
3890                 }
3891         }
3892
3893         port_array = xhci->usb2_ports;
3894         port_num = udev->portnum - 1;
3895
3896         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3897                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3898                 ret = -EINVAL;
3899                 goto finish;
3900         }
3901
3902         /*
3903          * Test USB 2.0 software LPM.
3904          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3905          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3906          * in the June 2011 errata release.
3907          */
3908         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3909         /*
3910          * Set L1 Device Slot and HIRD/BESL.
3911          * Check device's USB 2.0 extension descriptor to determine whether
3912          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3913          */
3914         pm_addr = port_array[port_num] + 1;
3915         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3916         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3917                 hird = xhci_calculate_hird_besl(u2del, 1);
3918         else
3919                 hird = xhci_calculate_hird_besl(u2del, 0);
3920
3921         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3922         xhci_writel(xhci, temp, pm_addr);
3923
3924         /* Set port link state to U2(L1) */
3925         addr = port_array[port_num];
3926         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3927
3928         /* wait for ACK */
3929         spin_unlock_irqrestore(&xhci->lock, flags);
3930         msleep(10);
3931         spin_lock_irqsave(&xhci->lock, flags);
3932
3933         /* Check L1 Status */
3934         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3935         if (ret != -ETIMEDOUT) {
3936                 /* enter L1 successfully */
3937                 temp = xhci_readl(xhci, addr);
3938                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3939                                 port_num, temp);
3940                 ret = 0;
3941         } else {
3942                 temp = xhci_readl(xhci, pm_addr);
3943                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3944                                 port_num, temp & PORT_L1S_MASK);
3945                 ret = -EINVAL;
3946         }
3947
3948         /* Resume the port */
3949         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3950
3951         spin_unlock_irqrestore(&xhci->lock, flags);
3952         msleep(10);
3953         spin_lock_irqsave(&xhci->lock, flags);
3954
3955         /* Clear PLC */
3956         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3957
3958         /* Check PORTSC to make sure the device is in the right state */
3959         if (!ret) {
3960                 temp = xhci_readl(xhci, addr);
3961                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3962                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3963                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3964                         xhci_dbg(xhci, "port L1 resume fail\n");
3965                         ret = -EINVAL;
3966                 }
3967         }
3968
3969         if (ret) {
3970                 /* Insert dev to lpm_failed_devs list */
3971                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3972                                 "re-enumerate\n");
3973                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3974                 if (!dev_info) {
3975                         ret = -ENOMEM;
3976                         goto finish;
3977                 }
3978                 dev_info->dev_id = dev_id;
3979                 INIT_LIST_HEAD(&dev_info->list);
3980                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3981         } else {
3982                 xhci_ring_device(xhci, udev->slot_id);
3983         }
3984
3985 finish:
3986         spin_unlock_irqrestore(&xhci->lock, flags);
3987         return ret;
3988 }
3989
3990 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3991                         struct usb_device *udev, int enable)
3992 {
3993         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3994         __le32 __iomem  **port_array;
3995         __le32 __iomem  *pm_addr;
3996         u32             temp;
3997         unsigned int    port_num;
3998         unsigned long   flags;
3999         int             u2del, hird;
4000
4001         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4002                         !udev->lpm_capable)
4003                 return -EPERM;
4004
4005         if (!udev->parent || udev->parent->parent ||
4006                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4007                 return -EPERM;
4008
4009         if (udev->usb2_hw_lpm_capable != 1)
4010                 return -EPERM;
4011
4012         spin_lock_irqsave(&xhci->lock, flags);
4013
4014         port_array = xhci->usb2_ports;
4015         port_num = udev->portnum - 1;
4016         pm_addr = port_array[port_num] + 1;
4017         temp = xhci_readl(xhci, pm_addr);
4018
4019         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4020                         enable ? "enable" : "disable", port_num);
4021
4022         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4023         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
4024                 hird = xhci_calculate_hird_besl(u2del, 1);
4025         else
4026                 hird = xhci_calculate_hird_besl(u2del, 0);
4027
4028         if (enable) {
4029                 temp &= ~PORT_HIRD_MASK;
4030                 temp |= PORT_HIRD(hird) | PORT_RWE;
4031                 xhci_writel(xhci, temp, pm_addr);
4032                 temp = xhci_readl(xhci, pm_addr);
4033                 temp |= PORT_HLE;
4034                 xhci_writel(xhci, temp, pm_addr);
4035         } else {
4036                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4037                 xhci_writel(xhci, temp, pm_addr);
4038         }
4039
4040         spin_unlock_irqrestore(&xhci->lock, flags);
4041         return 0;
4042 }
4043
4044 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4045 {
4046         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4047         int             ret;
4048
4049         ret = xhci_usb2_software_lpm_test(hcd, udev);
4050         if (!ret) {
4051                 xhci_dbg(xhci, "software LPM test succeed\n");
4052                 if (xhci->hw_lpm_support == 1) {
4053                         udev->usb2_hw_lpm_capable = 1;
4054                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4055                         if (!ret)
4056                                 udev->usb2_hw_lpm_enabled = 1;
4057                 }
4058         }
4059
4060         return 0;
4061 }
4062
4063 #else
4064
4065 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4066                                 struct usb_device *udev, int enable)
4067 {
4068         return 0;
4069 }
4070
4071 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4072 {
4073         return 0;
4074 }
4075
4076 #endif /* CONFIG_USB_SUSPEND */
4077
4078 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4079  * internal data structures for the device.
4080  */
4081 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4082                         struct usb_tt *tt, gfp_t mem_flags)
4083 {
4084         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4085         struct xhci_virt_device *vdev;
4086         struct xhci_command *config_cmd;
4087         struct xhci_input_control_ctx *ctrl_ctx;
4088         struct xhci_slot_ctx *slot_ctx;
4089         unsigned long flags;
4090         unsigned think_time;
4091         int ret;
4092
4093         /* Ignore root hubs */
4094         if (!hdev->parent)
4095                 return 0;
4096
4097         vdev = xhci->devs[hdev->slot_id];
4098         if (!vdev) {
4099                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4100                 return -EINVAL;
4101         }
4102         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4103         if (!config_cmd) {
4104                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4105                 return -ENOMEM;
4106         }
4107
4108         spin_lock_irqsave(&xhci->lock, flags);
4109         if (hdev->speed == USB_SPEED_HIGH &&
4110                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4111                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4112                 xhci_free_command(xhci, config_cmd);
4113                 spin_unlock_irqrestore(&xhci->lock, flags);
4114                 return -ENOMEM;
4115         }
4116
4117         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4118         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4119         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4120         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4121         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4122         if (tt->multi)
4123                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4124         if (xhci->hci_version > 0x95) {
4125                 xhci_dbg(xhci, "xHCI version %x needs hub "
4126                                 "TT think time and number of ports\n",
4127                                 (unsigned int) xhci->hci_version);
4128                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4129                 /* Set TT think time - convert from ns to FS bit times.
4130                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4131                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4132                  *
4133                  * xHCI 1.0: this field shall be 0 if the device is not a
4134                  * High-spped hub.
4135                  */
4136                 think_time = tt->think_time;
4137                 if (think_time != 0)
4138                         think_time = (think_time / 666) - 1;
4139                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4140                         slot_ctx->tt_info |=
4141                                 cpu_to_le32(TT_THINK_TIME(think_time));
4142         } else {
4143                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4144                                 "TT think time or number of ports\n",
4145                                 (unsigned int) xhci->hci_version);
4146         }
4147         slot_ctx->dev_state = 0;
4148         spin_unlock_irqrestore(&xhci->lock, flags);
4149
4150         xhci_dbg(xhci, "Set up %s for hub device.\n",
4151                         (xhci->hci_version > 0x95) ?
4152                         "configure endpoint" : "evaluate context");
4153         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4154         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4155
4156         /* Issue and wait for the configure endpoint or
4157          * evaluate context command.
4158          */
4159         if (xhci->hci_version > 0x95)
4160                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4161                                 false, false);
4162         else
4163                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4164                                 true, false);
4165
4166         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4167         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4168
4169         xhci_free_command(xhci, config_cmd);
4170         return ret;
4171 }
4172
4173 int xhci_get_frame(struct usb_hcd *hcd)
4174 {
4175         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4176         /* EHCI mods by the periodic size.  Why? */
4177         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4178 }
4179
4180 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4181 {
4182         struct xhci_hcd         *xhci;
4183         struct device           *dev = hcd->self.controller;
4184         int                     retval;
4185         u32                     temp;
4186
4187         hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
4188
4189         if (usb_hcd_is_primary_hcd(hcd)) {
4190                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4191                 if (!xhci)
4192                         return -ENOMEM;
4193                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4194                 xhci->main_hcd = hcd;
4195                 /* Mark the first roothub as being USB 2.0.
4196                  * The xHCI driver will register the USB 3.0 roothub.
4197                  */
4198                 hcd->speed = HCD_USB2;
4199                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4200                 /*
4201                  * USB 2.0 roothub under xHCI has an integrated TT,
4202                  * (rate matching hub) as opposed to having an OHCI/UHCI
4203                  * companion controller.
4204                  */
4205                 hcd->has_tt = 1;
4206         } else {
4207                 /* xHCI private pointer was set in xhci_pci_probe for the second
4208                  * registered roothub.
4209                  */
4210                 xhci = hcd_to_xhci(hcd);
4211                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4212                 if (HCC_64BIT_ADDR(temp)) {
4213                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4214                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4215                 } else {
4216                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4217                 }
4218                 return 0;
4219         }
4220
4221         xhci->cap_regs = hcd->regs;
4222         xhci->op_regs = hcd->regs +
4223                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4224         xhci->run_regs = hcd->regs +
4225                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4226         /* Cache read-only capability registers */
4227         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4228         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4229         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4230         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4231         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4232         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4233         xhci_print_registers(xhci);
4234
4235         get_quirks(dev, xhci);
4236
4237         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4238          * success event after a short transfer. This quirk will ignore such
4239          * spurious event.
4240          */
4241         if (xhci->hci_version > 0x96)
4242                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4243
4244         /* Make sure the HC is halted. */
4245         retval = xhci_halt(xhci);
4246         if (retval)
4247                 goto error;
4248
4249         xhci_dbg(xhci, "Resetting HCD\n");
4250         /* Reset the internal HC memory state and registers. */
4251         retval = xhci_reset(xhci);
4252         if (retval)
4253                 goto error;
4254         xhci_dbg(xhci, "Reset complete\n");
4255
4256         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4257         if (HCC_64BIT_ADDR(temp)) {
4258                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4259                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4260         } else {
4261                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4262         }
4263
4264         xhci_dbg(xhci, "Calling HCD init\n");
4265         /* Initialize HCD and host controller data structures. */
4266         retval = xhci_init(hcd);
4267         if (retval)
4268                 goto error;
4269         xhci_dbg(xhci, "Called HCD init\n");
4270         return 0;
4271 error:
4272         kfree(xhci);
4273         return retval;
4274 }
4275
4276 MODULE_DESCRIPTION(DRIVER_DESC);
4277 MODULE_AUTHOR(DRIVER_AUTHOR);
4278 MODULE_LICENSE("GPL");
4279
4280 static int __init xhci_hcd_init(void)
4281 {
4282         int retval;
4283
4284         retval = xhci_register_pci();
4285         if (retval < 0) {
4286                 printk(KERN_DEBUG "Problem registering PCI driver.");
4287                 return retval;
4288         }
4289         /*
4290          * Check the compiler generated sizes of structures that must be laid
4291          * out in specific ways for hardware access.
4292          */
4293         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4294         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4295         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4296         /* xhci_device_control has eight fields, and also
4297          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4298          */
4299         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4300         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4301         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4302         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4303         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4304         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4305         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4306         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4307         return 0;
4308 }
4309 module_init(xhci_hcd_init);
4310
4311 static void __exit xhci_hcd_cleanup(void)
4312 {
4313         xhci_unregister_pci();
4314 }
4315 module_exit(xhci_hcd_cleanup);