USB: xhci: Reset a halted endpoint immediately when we encounter a stall.
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret) {
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111         } else
112                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113                                 XHCI_MAX_HALT_USEC);
114         return ret;
115 }
116
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122         u32 temp;
123         int ret;
124
125         temp = xhci_readl(xhci, &xhci->op_regs->command);
126         temp |= (CMD_RUN);
127         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128                         temp);
129         xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131         /*
132          * Wait for the HCHalted Status bit to be 0 to indicate the host is
133          * running.
134          */
135         ret = handshake(xhci, &xhci->op_regs->status,
136                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
137         if (ret == -ETIMEDOUT)
138                 xhci_err(xhci, "Host took too long to start, "
139                                 "waited %u microseconds.\n",
140                                 XHCI_MAX_HALT_USEC);
141         if (!ret)
142                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret;
158
159         state = xhci_readl(xhci, &xhci->op_regs->status);
160         if ((state & STS_HALT) == 0) {
161                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162                 return 0;
163         }
164
165         xhci_dbg(xhci, "// Reset the HC\n");
166         command = xhci_readl(xhci, &xhci->op_regs->command);
167         command |= CMD_RESET;
168         xhci_writel(xhci, command, &xhci->op_regs->command);
169
170         ret = handshake(xhci, &xhci->op_regs->command,
171                         CMD_RESET, 0, 10 * 1000 * 1000);
172         if (ret)
173                 return ret;
174
175         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176         /*
177          * xHCI cannot write to any doorbells or operational registers other
178          * than status until the "Controller Not Ready" flag is cleared.
179          */
180         return handshake(xhci, &xhci->op_regs->status,
181                          STS_CNR, 0, 10 * 1000 * 1000);
182 }
183
184 #ifdef CONFIG_PCI
185 static int xhci_free_msi(struct xhci_hcd *xhci)
186 {
187         int i;
188
189         if (!xhci->msix_entries)
190                 return -EINVAL;
191
192         for (i = 0; i < xhci->msix_count; i++)
193                 if (xhci->msix_entries[i].vector)
194                         free_irq(xhci->msix_entries[i].vector,
195                                         xhci_to_hcd(xhci));
196         return 0;
197 }
198
199 /*
200  * Set up MSI
201  */
202 static int xhci_setup_msi(struct xhci_hcd *xhci)
203 {
204         int ret;
205         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
206
207         ret = pci_enable_msi(pdev);
208         if (ret) {
209                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
210                 return ret;
211         }
212
213         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
214                                 0, "xhci_hcd", xhci_to_hcd(xhci));
215         if (ret) {
216                 xhci_dbg(xhci, "disable MSI interrupt\n");
217                 pci_disable_msi(pdev);
218         }
219
220         return ret;
221 }
222
223 /*
224  * Free IRQs
225  * free all IRQs request
226  */
227 static void xhci_free_irq(struct xhci_hcd *xhci)
228 {
229         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
230         int ret;
231
232         /* return if using legacy interrupt */
233         if (xhci_to_hcd(xhci)->irq >= 0)
234                 return;
235
236         ret = xhci_free_msi(xhci);
237         if (!ret)
238                 return;
239         if (pdev->irq >= 0)
240                 free_irq(pdev->irq, xhci_to_hcd(xhci));
241
242         return;
243 }
244
245 /*
246  * Set up MSI-X
247  */
248 static int xhci_setup_msix(struct xhci_hcd *xhci)
249 {
250         int i, ret = 0;
251         struct usb_hcd *hcd = xhci_to_hcd(xhci);
252         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
253
254         /*
255          * calculate number of msi-x vectors supported.
256          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
257          *   with max number of interrupters based on the xhci HCSPARAMS1.
258          * - num_online_cpus: maximum msi-x vectors per CPUs core.
259          *   Add additional 1 vector to ensure always available interrupt.
260          */
261         xhci->msix_count = min(num_online_cpus() + 1,
262                                 HCS_MAX_INTRS(xhci->hcs_params1));
263
264         xhci->msix_entries =
265                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
266                                 GFP_KERNEL);
267         if (!xhci->msix_entries) {
268                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
269                 return -ENOMEM;
270         }
271
272         for (i = 0; i < xhci->msix_count; i++) {
273                 xhci->msix_entries[i].entry = i;
274                 xhci->msix_entries[i].vector = 0;
275         }
276
277         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
278         if (ret) {
279                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
280                 goto free_entries;
281         }
282
283         for (i = 0; i < xhci->msix_count; i++) {
284                 ret = request_irq(xhci->msix_entries[i].vector,
285                                 (irq_handler_t)xhci_msi_irq,
286                                 0, "xhci_hcd", xhci_to_hcd(xhci));
287                 if (ret)
288                         goto disable_msix;
289         }
290
291         hcd->msix_enabled = 1;
292         return ret;
293
294 disable_msix:
295         xhci_dbg(xhci, "disable MSI-X interrupt\n");
296         xhci_free_irq(xhci);
297         pci_disable_msix(pdev);
298 free_entries:
299         kfree(xhci->msix_entries);
300         xhci->msix_entries = NULL;
301         return ret;
302 }
303
304 /* Free any IRQs and disable MSI-X */
305 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
306 {
307         struct usb_hcd *hcd = xhci_to_hcd(xhci);
308         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
309
310         xhci_free_irq(xhci);
311
312         if (xhci->msix_entries) {
313                 pci_disable_msix(pdev);
314                 kfree(xhci->msix_entries);
315                 xhci->msix_entries = NULL;
316         } else {
317                 pci_disable_msi(pdev);
318         }
319
320         hcd->msix_enabled = 0;
321         return;
322 }
323
324 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
325 {
326         int i;
327
328         if (xhci->msix_entries) {
329                 for (i = 0; i < xhci->msix_count; i++)
330                         synchronize_irq(xhci->msix_entries[i].vector);
331         }
332 }
333
334 static int xhci_try_enable_msi(struct usb_hcd *hcd)
335 {
336         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
337         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338         int ret;
339
340         /*
341          * Some Fresco Logic host controllers advertise MSI, but fail to
342          * generate interrupts.  Don't even try to enable MSI.
343          */
344         if (xhci->quirks & XHCI_BROKEN_MSI)
345                 goto legacy_irq;
346
347         /* unregister the legacy interrupt */
348         if (hcd->irq)
349                 free_irq(hcd->irq, hcd);
350         hcd->irq = -1;
351
352         ret = xhci_setup_msix(xhci);
353         if (ret)
354                 /* fall back to msi*/
355                 ret = xhci_setup_msi(xhci);
356
357         if (!ret)
358                 /* hcd->irq is -1, we have MSI */
359                 return 0;
360
361         if (!pdev->irq) {
362                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
363                 return -EINVAL;
364         }
365
366  legacy_irq:
367         /* fall back to legacy interrupt*/
368         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
369                         hcd->irq_descr, hcd);
370         if (ret) {
371                 xhci_err(xhci, "request interrupt %d failed\n",
372                                 pdev->irq);
373                 return ret;
374         }
375         hcd->irq = pdev->irq;
376         return 0;
377 }
378
379 #else
380
381 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
382 {
383         return 0;
384 }
385
386 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
387 {
388 }
389
390 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 }
393
394 #endif
395
396 static void compliance_mode_recovery(unsigned long arg)
397 {
398         struct xhci_hcd *xhci;
399         struct usb_hcd *hcd;
400         u32 temp;
401         int i;
402
403         xhci = (struct xhci_hcd *)arg;
404
405         for (i = 0; i < xhci->num_usb3_ports; i++) {
406                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
407                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
408                         /*
409                          * Compliance Mode Detected. Letting USB Core
410                          * handle the Warm Reset
411                          */
412                         xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
413                                         i + 1);
414                         xhci_dbg(xhci, "Attempting Recovery routine!\n");
415                         hcd = xhci->shared_hcd;
416
417                         if (hcd->state == HC_STATE_SUSPENDED)
418                                 usb_hcd_resume_root_hub(hcd);
419
420                         usb_hcd_poll_rh_status(hcd);
421                 }
422         }
423
424         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
425                 mod_timer(&xhci->comp_mode_recovery_timer,
426                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
427 }
428
429 /*
430  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
431  * that causes ports behind that hardware to enter compliance mode sometimes.
432  * The quirk creates a timer that polls every 2 seconds the link state of
433  * each host controller's port and recovers it by issuing a Warm reset
434  * if Compliance mode is detected, otherwise the port will become "dead" (no
435  * device connections or disconnections will be detected anymore). Becasue no
436  * status event is generated when entering compliance mode (per xhci spec),
437  * this quirk is needed on systems that have the failing hardware installed.
438  */
439 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
440 {
441         xhci->port_status_u0 = 0;
442         init_timer(&xhci->comp_mode_recovery_timer);
443
444         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
445         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
446         xhci->comp_mode_recovery_timer.expires = jiffies +
447                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
448
449         set_timer_slack(&xhci->comp_mode_recovery_timer,
450                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
451         add_timer(&xhci->comp_mode_recovery_timer);
452         xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
453 }
454
455 /*
456  * This function identifies the systems that have installed the SN65LVPE502CP
457  * USB3.0 re-driver and that need the Compliance Mode Quirk.
458  * Systems:
459  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
460  */
461 static bool compliance_mode_recovery_timer_quirk_check(void)
462 {
463         const char *dmi_product_name, *dmi_sys_vendor;
464
465         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
466         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
467         if (!dmi_product_name || !dmi_sys_vendor)
468                 return false;
469
470         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
471                 return false;
472
473         if (strstr(dmi_product_name, "Z420") ||
474                         strstr(dmi_product_name, "Z620") ||
475                         strstr(dmi_product_name, "Z820") ||
476                         strstr(dmi_product_name, "Z1 Workstation"))
477                 return true;
478
479         return false;
480 }
481
482 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
483 {
484         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
485 }
486
487
488 /*
489  * Initialize memory for HCD and xHC (one-time init).
490  *
491  * Program the PAGESIZE register, initialize the device context array, create
492  * device contexts (?), set up a command ring segment (or two?), create event
493  * ring (one for now).
494  */
495 int xhci_init(struct usb_hcd *hcd)
496 {
497         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
498         int retval = 0;
499
500         xhci_dbg(xhci, "xhci_init\n");
501         spin_lock_init(&xhci->lock);
502         if (xhci->hci_version == 0x95 && link_quirk) {
503                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
504                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
505         } else {
506                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
507         }
508         retval = xhci_mem_init(xhci, GFP_KERNEL);
509         xhci_dbg(xhci, "Finished xhci_init\n");
510
511         /* Initializing Compliance Mode Recovery Data If Needed */
512         if (compliance_mode_recovery_timer_quirk_check()) {
513                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
514                 compliance_mode_recovery_timer_init(xhci);
515         }
516
517         return retval;
518 }
519
520 /*-------------------------------------------------------------------------*/
521
522
523 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
524 static void xhci_event_ring_work(unsigned long arg)
525 {
526         unsigned long flags;
527         int temp;
528         u64 temp_64;
529         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
530         int i, j;
531
532         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
533
534         spin_lock_irqsave(&xhci->lock, flags);
535         temp = xhci_readl(xhci, &xhci->op_regs->status);
536         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
537         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
538                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
539                 xhci_dbg(xhci, "HW died, polling stopped.\n");
540                 spin_unlock_irqrestore(&xhci->lock, flags);
541                 return;
542         }
543
544         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
545         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
546         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
547         xhci->error_bitmask = 0;
548         xhci_dbg(xhci, "Event ring:\n");
549         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
550         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
551         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
552         temp_64 &= ~ERST_PTR_MASK;
553         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
554         xhci_dbg(xhci, "Command ring:\n");
555         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
556         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
557         xhci_dbg_cmd_ptrs(xhci);
558         for (i = 0; i < MAX_HC_SLOTS; ++i) {
559                 if (!xhci->devs[i])
560                         continue;
561                 for (j = 0; j < 31; ++j) {
562                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
563                 }
564         }
565         spin_unlock_irqrestore(&xhci->lock, flags);
566
567         if (!xhci->zombie)
568                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
569         else
570                 xhci_dbg(xhci, "Quit polling the event ring.\n");
571 }
572 #endif
573
574 static int xhci_run_finished(struct xhci_hcd *xhci)
575 {
576         if (xhci_start(xhci)) {
577                 xhci_halt(xhci);
578                 return -ENODEV;
579         }
580         xhci->shared_hcd->state = HC_STATE_RUNNING;
581         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
582
583         if (xhci->quirks & XHCI_NEC_HOST)
584                 xhci_ring_cmd_db(xhci);
585
586         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
587         return 0;
588 }
589
590 /*
591  * Start the HC after it was halted.
592  *
593  * This function is called by the USB core when the HC driver is added.
594  * Its opposite is xhci_stop().
595  *
596  * xhci_init() must be called once before this function can be called.
597  * Reset the HC, enable device slot contexts, program DCBAAP, and
598  * set command ring pointer and event ring pointer.
599  *
600  * Setup MSI-X vectors and enable interrupts.
601  */
602 int xhci_run(struct usb_hcd *hcd)
603 {
604         u32 temp;
605         u64 temp_64;
606         int ret;
607         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
608
609         /* Start the xHCI host controller running only after the USB 2.0 roothub
610          * is setup.
611          */
612
613         hcd->uses_new_polling = 1;
614         if (!usb_hcd_is_primary_hcd(hcd))
615                 return xhci_run_finished(xhci);
616
617         xhci_dbg(xhci, "xhci_run\n");
618
619         ret = xhci_try_enable_msi(hcd);
620         if (ret)
621                 return ret;
622
623 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
624         init_timer(&xhci->event_ring_timer);
625         xhci->event_ring_timer.data = (unsigned long) xhci;
626         xhci->event_ring_timer.function = xhci_event_ring_work;
627         /* Poll the event ring */
628         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
629         xhci->zombie = 0;
630         xhci_dbg(xhci, "Setting event ring polling timer\n");
631         add_timer(&xhci->event_ring_timer);
632 #endif
633
634         xhci_dbg(xhci, "Command ring memory map follows:\n");
635         xhci_debug_ring(xhci, xhci->cmd_ring);
636         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
637         xhci_dbg_cmd_ptrs(xhci);
638
639         xhci_dbg(xhci, "ERST memory map follows:\n");
640         xhci_dbg_erst(xhci, &xhci->erst);
641         xhci_dbg(xhci, "Event ring:\n");
642         xhci_debug_ring(xhci, xhci->event_ring);
643         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
644         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
645         temp_64 &= ~ERST_PTR_MASK;
646         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
647
648         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
649         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
650         temp &= ~ER_IRQ_INTERVAL_MASK;
651         temp |= (u32) 160;
652         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
653
654         /* Set the HCD state before we enable the irqs */
655         temp = xhci_readl(xhci, &xhci->op_regs->command);
656         temp |= (CMD_EIE);
657         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
658                         temp);
659         xhci_writel(xhci, temp, &xhci->op_regs->command);
660
661         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
662         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
663                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
664         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
665                         &xhci->ir_set->irq_pending);
666         xhci_print_ir_set(xhci, 0);
667
668         if (xhci->quirks & XHCI_NEC_HOST)
669                 xhci_queue_vendor_command(xhci, 0, 0, 0,
670                                 TRB_TYPE(TRB_NEC_GET_FW));
671
672         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
673         return 0;
674 }
675
676 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
677 {
678         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
679
680         spin_lock_irq(&xhci->lock);
681         xhci_halt(xhci);
682
683         /* The shared_hcd is going to be deallocated shortly (the USB core only
684          * calls this function when allocation fails in usb_add_hcd(), or
685          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
686          */
687         xhci->shared_hcd = NULL;
688         spin_unlock_irq(&xhci->lock);
689 }
690
691 /*
692  * Stop xHCI driver.
693  *
694  * This function is called by the USB core when the HC driver is removed.
695  * Its opposite is xhci_run().
696  *
697  * Disable device contexts, disable IRQs, and quiesce the HC.
698  * Reset the HC, finish any completed transactions, and cleanup memory.
699  */
700 void xhci_stop(struct usb_hcd *hcd)
701 {
702         u32 temp;
703         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
704
705         if (!usb_hcd_is_primary_hcd(hcd)) {
706                 xhci_only_stop_hcd(xhci->shared_hcd);
707                 return;
708         }
709
710         spin_lock_irq(&xhci->lock);
711         /* Make sure the xHC is halted for a USB3 roothub
712          * (xhci_stop() could be called as part of failed init).
713          */
714         xhci_halt(xhci);
715         xhci_reset(xhci);
716         spin_unlock_irq(&xhci->lock);
717
718         xhci_cleanup_msix(xhci);
719
720 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
721         /* Tell the event ring poll function not to reschedule */
722         xhci->zombie = 1;
723         del_timer_sync(&xhci->event_ring_timer);
724 #endif
725
726         /* Deleting Compliance Mode Recovery Timer */
727         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
728                         (!(xhci_all_ports_seen_u0(xhci))))
729                 del_timer_sync(&xhci->comp_mode_recovery_timer);
730
731         if (xhci->quirks & XHCI_AMD_PLL_FIX)
732                 usb_amd_dev_put();
733
734         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
735         temp = xhci_readl(xhci, &xhci->op_regs->status);
736         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
737         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
738         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
739                         &xhci->ir_set->irq_pending);
740         xhci_print_ir_set(xhci, 0);
741
742         xhci_dbg(xhci, "cleaning up memory\n");
743         xhci_mem_cleanup(xhci);
744         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
745                     xhci_readl(xhci, &xhci->op_regs->status));
746 }
747
748 /*
749  * Shutdown HC (not bus-specific)
750  *
751  * This is called when the machine is rebooting or halting.  We assume that the
752  * machine will be powered off, and the HC's internal state will be reset.
753  * Don't bother to free memory.
754  *
755  * This will only ever be called with the main usb_hcd (the USB3 roothub).
756  */
757 void xhci_shutdown(struct usb_hcd *hcd)
758 {
759         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
760
761         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
762                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
763
764         spin_lock_irq(&xhci->lock);
765         xhci_halt(xhci);
766         /* Workaround for spurious wakeups at shutdown with HSW */
767         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768                 xhci_reset(xhci);
769         spin_unlock_irq(&xhci->lock);
770
771         xhci_cleanup_msix(xhci);
772
773         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
774                     xhci_readl(xhci, &xhci->op_regs->status));
775
776         /* Yet another workaround for spurious wakeups at shutdown with HSW */
777         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
778                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
779 }
780
781 #ifdef CONFIG_PM
782 static void xhci_save_registers(struct xhci_hcd *xhci)
783 {
784         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
785         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
786         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
787         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
788         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
789         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
790         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
791         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
792         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
793 }
794
795 static void xhci_restore_registers(struct xhci_hcd *xhci)
796 {
797         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
798         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
799         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
800         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
801         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
802         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
803         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
804         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
805         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
806 }
807
808 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
809 {
810         u64     val_64;
811
812         /* step 2: initialize command ring buffer */
813         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
814         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
815                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
816                                       xhci->cmd_ring->dequeue) &
817                  (u64) ~CMD_RING_RSVD_BITS) |
818                 xhci->cmd_ring->cycle_state;
819         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
820                         (long unsigned long) val_64);
821         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
822 }
823
824 /*
825  * The whole command ring must be cleared to zero when we suspend the host.
826  *
827  * The host doesn't save the command ring pointer in the suspend well, so we
828  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
829  * aligned, because of the reserved bits in the command ring dequeue pointer
830  * register.  Therefore, we can't just set the dequeue pointer back in the
831  * middle of the ring (TRBs are 16-byte aligned).
832  */
833 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
834 {
835         struct xhci_ring *ring;
836         struct xhci_segment *seg;
837
838         ring = xhci->cmd_ring;
839         seg = ring->deq_seg;
840         do {
841                 memset(seg->trbs, 0,
842                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
843                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
844                         cpu_to_le32(~TRB_CYCLE);
845                 seg = seg->next;
846         } while (seg != ring->deq_seg);
847
848         /* Reset the software enqueue and dequeue pointers */
849         ring->deq_seg = ring->first_seg;
850         ring->dequeue = ring->first_seg->trbs;
851         ring->enq_seg = ring->deq_seg;
852         ring->enqueue = ring->dequeue;
853
854         /*
855          * Ring is now zeroed, so the HW should look for change of ownership
856          * when the cycle bit is set to 1.
857          */
858         ring->cycle_state = 1;
859
860         /*
861          * Reset the hardware dequeue pointer.
862          * Yes, this will need to be re-written after resume, but we're paranoid
863          * and want to make sure the hardware doesn't access bogus memory
864          * because, say, the BIOS or an SMI started the host without changing
865          * the command ring pointers.
866          */
867         xhci_set_cmd_ring_deq(xhci);
868 }
869
870 /*
871  * Stop HC (not bus-specific)
872  *
873  * This is called when the machine transition into S3/S4 mode.
874  *
875  */
876 int xhci_suspend(struct xhci_hcd *xhci)
877 {
878         int                     rc = 0;
879         unsigned int            delay = XHCI_MAX_HALT_USEC;
880         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
881         u32                     command;
882
883         /* Don't poll the roothubs on bus suspend. */
884         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
885         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
886         del_timer_sync(&hcd->rh_timer);
887
888         spin_lock_irq(&xhci->lock);
889         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
890         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
891         /* step 1: stop endpoint */
892         /* skipped assuming that port suspend has done */
893
894         /* step 2: clear Run/Stop bit */
895         command = xhci_readl(xhci, &xhci->op_regs->command);
896         command &= ~CMD_RUN;
897         xhci_writel(xhci, command, &xhci->op_regs->command);
898
899         /* Some chips from Fresco Logic need an extraordinary delay */
900         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
901
902         if (handshake(xhci, &xhci->op_regs->status,
903                       STS_HALT, STS_HALT, delay)) {
904                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
905                 spin_unlock_irq(&xhci->lock);
906                 return -ETIMEDOUT;
907         }
908         xhci_clear_command_ring(xhci);
909
910         /* step 3: save registers */
911         xhci_save_registers(xhci);
912
913         /* step 4: set CSS flag */
914         command = xhci_readl(xhci, &xhci->op_regs->command);
915         command |= CMD_CSS;
916         xhci_writel(xhci, command, &xhci->op_regs->command);
917         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
918                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
919                 spin_unlock_irq(&xhci->lock);
920                 return -ETIMEDOUT;
921         }
922         spin_unlock_irq(&xhci->lock);
923
924         /*
925          * Deleting Compliance Mode Recovery Timer because the xHCI Host
926          * is about to be suspended.
927          */
928         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
929                         (!(xhci_all_ports_seen_u0(xhci)))) {
930                 del_timer_sync(&xhci->comp_mode_recovery_timer);
931                 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
932         }
933
934         /* step 5: remove core well power */
935         /* synchronize irq when using MSI-X */
936         xhci_msix_sync_irqs(xhci);
937
938         return rc;
939 }
940
941 /*
942  * start xHC (not bus-specific)
943  *
944  * This is called when the machine transition from S3/S4 mode.
945  *
946  */
947 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
948 {
949         u32                     command, temp = 0, status;
950         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
951         struct usb_hcd          *secondary_hcd;
952         int                     retval = 0;
953         bool                    comp_timer_running = false;
954
955         /* Wait a bit if either of the roothubs need to settle from the
956          * transition into bus suspend.
957          */
958         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
959                         time_before(jiffies,
960                                 xhci->bus_state[1].next_statechange))
961                 msleep(100);
962
963         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
964         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
965
966         spin_lock_irq(&xhci->lock);
967         if (xhci->quirks & XHCI_RESET_ON_RESUME)
968                 hibernated = true;
969
970         if (!hibernated) {
971                 /* step 1: restore register */
972                 xhci_restore_registers(xhci);
973                 /* step 2: initialize command ring buffer */
974                 xhci_set_cmd_ring_deq(xhci);
975                 /* step 3: restore state and start state*/
976                 /* step 3: set CRS flag */
977                 command = xhci_readl(xhci, &xhci->op_regs->command);
978                 command |= CMD_CRS;
979                 xhci_writel(xhci, command, &xhci->op_regs->command);
980                 if (handshake(xhci, &xhci->op_regs->status,
981                               STS_RESTORE, 0, 10 * 1000)) {
982                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
983                         spin_unlock_irq(&xhci->lock);
984                         return -ETIMEDOUT;
985                 }
986                 temp = xhci_readl(xhci, &xhci->op_regs->status);
987         }
988
989         /* If restore operation fails, re-initialize the HC during resume */
990         if ((temp & STS_SRE) || hibernated) {
991
992                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
993                                 !(xhci_all_ports_seen_u0(xhci))) {
994                         del_timer_sync(&xhci->comp_mode_recovery_timer);
995                         xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
996                 }
997
998                 /* Let the USB core know _both_ roothubs lost power. */
999                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1000                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1001
1002                 xhci_dbg(xhci, "Stop HCD\n");
1003                 xhci_halt(xhci);
1004                 xhci_reset(xhci);
1005                 spin_unlock_irq(&xhci->lock);
1006                 xhci_cleanup_msix(xhci);
1007
1008 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1009                 /* Tell the event ring poll function not to reschedule */
1010                 xhci->zombie = 1;
1011                 del_timer_sync(&xhci->event_ring_timer);
1012 #endif
1013
1014                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1015                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1016                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1017                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1018                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1019                                 &xhci->ir_set->irq_pending);
1020                 xhci_print_ir_set(xhci, 0);
1021
1022                 xhci_dbg(xhci, "cleaning up memory\n");
1023                 xhci_mem_cleanup(xhci);
1024                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1025                             xhci_readl(xhci, &xhci->op_regs->status));
1026
1027                 /* USB core calls the PCI reinit and start functions twice:
1028                  * first with the primary HCD, and then with the secondary HCD.
1029                  * If we don't do the same, the host will never be started.
1030                  */
1031                 if (!usb_hcd_is_primary_hcd(hcd))
1032                         secondary_hcd = hcd;
1033                 else
1034                         secondary_hcd = xhci->shared_hcd;
1035
1036                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1037                 retval = xhci_init(hcd->primary_hcd);
1038                 if (retval)
1039                         return retval;
1040                 comp_timer_running = true;
1041
1042                 xhci_dbg(xhci, "Start the primary HCD\n");
1043                 retval = xhci_run(hcd->primary_hcd);
1044                 if (!retval) {
1045                         xhci_dbg(xhci, "Start the secondary HCD\n");
1046                         retval = xhci_run(secondary_hcd);
1047                 }
1048                 hcd->state = HC_STATE_SUSPENDED;
1049                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1050                 goto done;
1051         }
1052
1053         /* step 4: set Run/Stop bit */
1054         command = xhci_readl(xhci, &xhci->op_regs->command);
1055         command |= CMD_RUN;
1056         xhci_writel(xhci, command, &xhci->op_regs->command);
1057         handshake(xhci, &xhci->op_regs->status, STS_HALT,
1058                   0, 250 * 1000);
1059
1060         /* step 5: walk topology and initialize portsc,
1061          * portpmsc and portli
1062          */
1063         /* this is done in bus_resume */
1064
1065         /* step 6: restart each of the previously
1066          * Running endpoints by ringing their doorbells
1067          */
1068
1069         spin_unlock_irq(&xhci->lock);
1070
1071  done:
1072         if (retval == 0) {
1073                 /* Resume root hubs only when have pending events. */
1074                 status = readl(&xhci->op_regs->status);
1075                 if (status & STS_EINT) {
1076                         usb_hcd_resume_root_hub(hcd);
1077                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1078                 }
1079         }
1080
1081         /*
1082          * If system is subject to the Quirk, Compliance Mode Timer needs to
1083          * be re-initialized Always after a system resume. Ports are subject
1084          * to suffer the Compliance Mode issue again. It doesn't matter if
1085          * ports have entered previously to U0 before system's suspension.
1086          */
1087         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1088                 compliance_mode_recovery_timer_init(xhci);
1089
1090         /* Re-enable port polling. */
1091         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1092         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1093         usb_hcd_poll_rh_status(hcd);
1094
1095         return retval;
1096 }
1097 #endif  /* CONFIG_PM */
1098
1099 /*-------------------------------------------------------------------------*/
1100
1101 /**
1102  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1103  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1104  * value to right shift 1 for the bitmask.
1105  *
1106  * Index  = (epnum * 2) + direction - 1,
1107  * where direction = 0 for OUT, 1 for IN.
1108  * For control endpoints, the IN index is used (OUT index is unused), so
1109  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1110  */
1111 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1112 {
1113         unsigned int index;
1114         if (usb_endpoint_xfer_control(desc))
1115                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1116         else
1117                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1118                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1119         return index;
1120 }
1121
1122 /* Find the flag for this endpoint (for use in the control context).  Use the
1123  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1124  * bit 1, etc.
1125  */
1126 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1127 {
1128         return 1 << (xhci_get_endpoint_index(desc) + 1);
1129 }
1130
1131 /* Find the flag for this endpoint (for use in the control context).  Use the
1132  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1133  * bit 1, etc.
1134  */
1135 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1136 {
1137         return 1 << (ep_index + 1);
1138 }
1139
1140 /* Compute the last valid endpoint context index.  Basically, this is the
1141  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1142  * we find the most significant bit set in the added contexts flags.
1143  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1144  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1145  */
1146 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1147 {
1148         return fls(added_ctxs) - 1;
1149 }
1150
1151 /* Returns 1 if the arguments are OK;
1152  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1153  */
1154 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1155                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1156                 const char *func) {
1157         struct xhci_hcd *xhci;
1158         struct xhci_virt_device *virt_dev;
1159
1160         if (!hcd || (check_ep && !ep) || !udev) {
1161                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1162                                 func);
1163                 return -EINVAL;
1164         }
1165         if (!udev->parent) {
1166                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1167                                 func);
1168                 return 0;
1169         }
1170
1171         xhci = hcd_to_xhci(hcd);
1172         if (check_virt_dev) {
1173                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1174                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1175                                                 "device\n", func);
1176                         return -EINVAL;
1177                 }
1178
1179                 virt_dev = xhci->devs[udev->slot_id];
1180                 if (virt_dev->udev != udev) {
1181                         printk(KERN_DEBUG "xHCI %s called with udev and "
1182                                           "virt_dev does not match\n", func);
1183                         return -EINVAL;
1184                 }
1185         }
1186
1187         if (xhci->xhc_state & XHCI_STATE_HALTED)
1188                 return -ENODEV;
1189
1190         return 1;
1191 }
1192
1193 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1194                 struct usb_device *udev, struct xhci_command *command,
1195                 bool ctx_change, bool must_succeed);
1196
1197 /*
1198  * Full speed devices may have a max packet size greater than 8 bytes, but the
1199  * USB core doesn't know that until it reads the first 8 bytes of the
1200  * descriptor.  If the usb_device's max packet size changes after that point,
1201  * we need to issue an evaluate context command and wait on it.
1202  */
1203 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1204                 unsigned int ep_index, struct urb *urb)
1205 {
1206         struct xhci_container_ctx *in_ctx;
1207         struct xhci_container_ctx *out_ctx;
1208         struct xhci_input_control_ctx *ctrl_ctx;
1209         struct xhci_ep_ctx *ep_ctx;
1210         int max_packet_size;
1211         int hw_max_packet_size;
1212         int ret = 0;
1213
1214         out_ctx = xhci->devs[slot_id]->out_ctx;
1215         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1216         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1217         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1218         if (hw_max_packet_size != max_packet_size) {
1219                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1220                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1221                                 max_packet_size);
1222                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1223                                 hw_max_packet_size);
1224                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1225
1226                 /* Set up the modified control endpoint 0 */
1227                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1228                                 xhci->devs[slot_id]->out_ctx, ep_index);
1229                 in_ctx = xhci->devs[slot_id]->in_ctx;
1230                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1231                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1232                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1233
1234                 /* Set up the input context flags for the command */
1235                 /* FIXME: This won't work if a non-default control endpoint
1236                  * changes max packet sizes.
1237                  */
1238                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1239                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1240                 ctrl_ctx->drop_flags = 0;
1241
1242                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1243                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1244                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1245                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1246
1247                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1248                                 true, false);
1249
1250                 /* Clean up the input context for later use by bandwidth
1251                  * functions.
1252                  */
1253                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1254         }
1255         return ret;
1256 }
1257
1258 /*
1259  * non-error returns are a promise to giveback() the urb later
1260  * we drop ownership so next owner (or urb unlink) can get it
1261  */
1262 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1263 {
1264         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1265         struct xhci_td *buffer;
1266         unsigned long flags;
1267         int ret = 0;
1268         unsigned int slot_id, ep_index;
1269         struct urb_priv *urb_priv;
1270         int size, i;
1271
1272         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1273                                         true, true, __func__) <= 0)
1274                 return -EINVAL;
1275
1276         slot_id = urb->dev->slot_id;
1277         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1278
1279         if (!HCD_HW_ACCESSIBLE(hcd)) {
1280                 if (!in_interrupt())
1281                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1282                 ret = -ESHUTDOWN;
1283                 goto exit;
1284         }
1285
1286         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1287                 size = urb->number_of_packets;
1288         else
1289                 size = 1;
1290
1291         urb_priv = kzalloc(sizeof(struct urb_priv) +
1292                                   size * sizeof(struct xhci_td *), mem_flags);
1293         if (!urb_priv)
1294                 return -ENOMEM;
1295
1296         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1297         if (!buffer) {
1298                 kfree(urb_priv);
1299                 return -ENOMEM;
1300         }
1301
1302         for (i = 0; i < size; i++) {
1303                 urb_priv->td[i] = buffer;
1304                 buffer++;
1305         }
1306
1307         urb_priv->length = size;
1308         urb_priv->td_cnt = 0;
1309         urb->hcpriv = urb_priv;
1310
1311         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1312                 /* Check to see if the max packet size for the default control
1313                  * endpoint changed during FS device enumeration
1314                  */
1315                 if (urb->dev->speed == USB_SPEED_FULL) {
1316                         ret = xhci_check_maxpacket(xhci, slot_id,
1317                                         ep_index, urb);
1318                         if (ret < 0) {
1319                                 xhci_urb_free_priv(xhci, urb_priv);
1320                                 urb->hcpriv = NULL;
1321                                 return ret;
1322                         }
1323                 }
1324
1325                 /* We have a spinlock and interrupts disabled, so we must pass
1326                  * atomic context to this function, which may allocate memory.
1327                  */
1328                 spin_lock_irqsave(&xhci->lock, flags);
1329                 if (xhci->xhc_state & XHCI_STATE_DYING)
1330                         goto dying;
1331                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1332                                 slot_id, ep_index);
1333                 if (ret)
1334                         goto free_priv;
1335                 spin_unlock_irqrestore(&xhci->lock, flags);
1336         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1337                 spin_lock_irqsave(&xhci->lock, flags);
1338                 if (xhci->xhc_state & XHCI_STATE_DYING)
1339                         goto dying;
1340                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1341                                 EP_GETTING_STREAMS) {
1342                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1343                                         "is transitioning to using streams.\n");
1344                         ret = -EINVAL;
1345                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1346                                 EP_GETTING_NO_STREAMS) {
1347                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1348                                         "is transitioning to "
1349                                         "not having streams.\n");
1350                         ret = -EINVAL;
1351                 } else {
1352                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1353                                         slot_id, ep_index);
1354                 }
1355                 if (ret)
1356                         goto free_priv;
1357                 spin_unlock_irqrestore(&xhci->lock, flags);
1358         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1359                 spin_lock_irqsave(&xhci->lock, flags);
1360                 if (xhci->xhc_state & XHCI_STATE_DYING)
1361                         goto dying;
1362                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1363                                 slot_id, ep_index);
1364                 if (ret)
1365                         goto free_priv;
1366                 spin_unlock_irqrestore(&xhci->lock, flags);
1367         } else {
1368                 spin_lock_irqsave(&xhci->lock, flags);
1369                 if (xhci->xhc_state & XHCI_STATE_DYING)
1370                         goto dying;
1371                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1372                                 slot_id, ep_index);
1373                 if (ret)
1374                         goto free_priv;
1375                 spin_unlock_irqrestore(&xhci->lock, flags);
1376         }
1377 exit:
1378         return ret;
1379 dying:
1380         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1381                         "non-responsive xHCI host.\n",
1382                         urb->ep->desc.bEndpointAddress, urb);
1383         ret = -ESHUTDOWN;
1384 free_priv:
1385         xhci_urb_free_priv(xhci, urb_priv);
1386         urb->hcpriv = NULL;
1387         spin_unlock_irqrestore(&xhci->lock, flags);
1388         return ret;
1389 }
1390
1391 /* Get the right ring for the given URB.
1392  * If the endpoint supports streams, boundary check the URB's stream ID.
1393  * If the endpoint doesn't support streams, return the singular endpoint ring.
1394  */
1395 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1396                 struct urb *urb)
1397 {
1398         unsigned int slot_id;
1399         unsigned int ep_index;
1400         unsigned int stream_id;
1401         struct xhci_virt_ep *ep;
1402
1403         slot_id = urb->dev->slot_id;
1404         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1405         stream_id = urb->stream_id;
1406         ep = &xhci->devs[slot_id]->eps[ep_index];
1407         /* Common case: no streams */
1408         if (!(ep->ep_state & EP_HAS_STREAMS))
1409                 return ep->ring;
1410
1411         if (stream_id == 0) {
1412                 xhci_warn(xhci,
1413                                 "WARN: Slot ID %u, ep index %u has streams, "
1414                                 "but URB has no stream ID.\n",
1415                                 slot_id, ep_index);
1416                 return NULL;
1417         }
1418
1419         if (stream_id < ep->stream_info->num_streams)
1420                 return ep->stream_info->stream_rings[stream_id];
1421
1422         xhci_warn(xhci,
1423                         "WARN: Slot ID %u, ep index %u has "
1424                         "stream IDs 1 to %u allocated, "
1425                         "but stream ID %u is requested.\n",
1426                         slot_id, ep_index,
1427                         ep->stream_info->num_streams - 1,
1428                         stream_id);
1429         return NULL;
1430 }
1431
1432 /*
1433  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1434  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1435  * should pick up where it left off in the TD, unless a Set Transfer Ring
1436  * Dequeue Pointer is issued.
1437  *
1438  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1439  * the ring.  Since the ring is a contiguous structure, they can't be physically
1440  * removed.  Instead, there are two options:
1441  *
1442  *  1) If the HC is in the middle of processing the URB to be canceled, we
1443  *     simply move the ring's dequeue pointer past those TRBs using the Set
1444  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1445  *     when drivers timeout on the last submitted URB and attempt to cancel.
1446  *
1447  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1448  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1449  *     HC will need to invalidate the any TRBs it has cached after the stop
1450  *     endpoint command, as noted in the xHCI 0.95 errata.
1451  *
1452  *  3) The TD may have completed by the time the Stop Endpoint Command
1453  *     completes, so software needs to handle that case too.
1454  *
1455  * This function should protect against the TD enqueueing code ringing the
1456  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1457  * It also needs to account for multiple cancellations on happening at the same
1458  * time for the same endpoint.
1459  *
1460  * Note that this function can be called in any context, or so says
1461  * usb_hcd_unlink_urb()
1462  */
1463 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1464 {
1465         unsigned long flags;
1466         int ret, i;
1467         u32 temp;
1468         struct xhci_hcd *xhci;
1469         struct urb_priv *urb_priv;
1470         struct xhci_td *td;
1471         unsigned int ep_index;
1472         struct xhci_ring *ep_ring;
1473         struct xhci_virt_ep *ep;
1474
1475         xhci = hcd_to_xhci(hcd);
1476         spin_lock_irqsave(&xhci->lock, flags);
1477         /* Make sure the URB hasn't completed or been unlinked already */
1478         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1479         if (ret || !urb->hcpriv)
1480                 goto done;
1481         temp = xhci_readl(xhci, &xhci->op_regs->status);
1482         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1483                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1484                 urb_priv = urb->hcpriv;
1485                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1486                         td = urb_priv->td[i];
1487                         if (!list_empty(&td->td_list))
1488                                 list_del_init(&td->td_list);
1489                         if (!list_empty(&td->cancelled_td_list))
1490                                 list_del_init(&td->cancelled_td_list);
1491                 }
1492
1493                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1494                 spin_unlock_irqrestore(&xhci->lock, flags);
1495                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1496                 xhci_urb_free_priv(xhci, urb_priv);
1497                 return ret;
1498         }
1499         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1500                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1501                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1502                                 "non-responsive xHCI host.\n",
1503                                 urb->ep->desc.bEndpointAddress, urb);
1504                 /* Let the stop endpoint command watchdog timer (which set this
1505                  * state) finish cleaning up the endpoint TD lists.  We must
1506                  * have caught it in the middle of dropping a lock and giving
1507                  * back an URB.
1508                  */
1509                 goto done;
1510         }
1511
1512         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1513         xhci_dbg(xhci, "Event ring:\n");
1514         xhci_debug_ring(xhci, xhci->event_ring);
1515         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1516         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1517         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1518         if (!ep_ring) {
1519                 ret = -EINVAL;
1520                 goto done;
1521         }
1522
1523         xhci_dbg(xhci, "Endpoint ring:\n");
1524         xhci_debug_ring(xhci, ep_ring);
1525
1526         urb_priv = urb->hcpriv;
1527
1528         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1529                 td = urb_priv->td[i];
1530                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1531         }
1532
1533         /* Queue a stop endpoint command, but only if this is
1534          * the first cancellation to be handled.
1535          */
1536         if (!(ep->ep_state & EP_HALT_PENDING)) {
1537                 ep->ep_state |= EP_HALT_PENDING;
1538                 ep->stop_cmds_pending++;
1539                 ep->stop_cmd_timer.expires = jiffies +
1540                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1541                 add_timer(&ep->stop_cmd_timer);
1542                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1543                 xhci_ring_cmd_db(xhci);
1544         }
1545 done:
1546         spin_unlock_irqrestore(&xhci->lock, flags);
1547         return ret;
1548 }
1549
1550 /* Drop an endpoint from a new bandwidth configuration for this device.
1551  * Only one call to this function is allowed per endpoint before
1552  * check_bandwidth() or reset_bandwidth() must be called.
1553  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1554  * add the endpoint to the schedule with possibly new parameters denoted by a
1555  * different endpoint descriptor in usb_host_endpoint.
1556  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1557  * not allowed.
1558  *
1559  * The USB core will not allow URBs to be queued to an endpoint that is being
1560  * disabled, so there's no need for mutual exclusion to protect
1561  * the xhci->devs[slot_id] structure.
1562  */
1563 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1564                 struct usb_host_endpoint *ep)
1565 {
1566         struct xhci_hcd *xhci;
1567         struct xhci_container_ctx *in_ctx, *out_ctx;
1568         struct xhci_input_control_ctx *ctrl_ctx;
1569         struct xhci_slot_ctx *slot_ctx;
1570         unsigned int last_ctx;
1571         unsigned int ep_index;
1572         struct xhci_ep_ctx *ep_ctx;
1573         u32 drop_flag;
1574         u32 new_add_flags, new_drop_flags, new_slot_info;
1575         int ret;
1576
1577         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1578         if (ret <= 0)
1579                 return ret;
1580         xhci = hcd_to_xhci(hcd);
1581         if (xhci->xhc_state & XHCI_STATE_DYING)
1582                 return -ENODEV;
1583
1584         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1585         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1586         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1587                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1588                                 __func__, drop_flag);
1589                 return 0;
1590         }
1591
1592         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1593         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1594         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1595         ep_index = xhci_get_endpoint_index(&ep->desc);
1596         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1597         /* If the HC already knows the endpoint is disabled,
1598          * or the HCD has noted it is disabled, ignore this request
1599          */
1600         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1601              cpu_to_le32(EP_STATE_DISABLED)) ||
1602             le32_to_cpu(ctrl_ctx->drop_flags) &
1603             xhci_get_endpoint_flag(&ep->desc)) {
1604                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1605                                 __func__, ep);
1606                 return 0;
1607         }
1608
1609         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1610         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1611
1612         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1613         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1614
1615         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1616         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1617         /* Update the last valid endpoint context, if we deleted the last one */
1618         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1619             LAST_CTX(last_ctx)) {
1620                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1621                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1622         }
1623         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1624
1625         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1626
1627         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1628                         (unsigned int) ep->desc.bEndpointAddress,
1629                         udev->slot_id,
1630                         (unsigned int) new_drop_flags,
1631                         (unsigned int) new_add_flags,
1632                         (unsigned int) new_slot_info);
1633         return 0;
1634 }
1635
1636 /* Add an endpoint to a new possible bandwidth configuration for this device.
1637  * Only one call to this function is allowed per endpoint before
1638  * check_bandwidth() or reset_bandwidth() must be called.
1639  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1640  * add the endpoint to the schedule with possibly new parameters denoted by a
1641  * different endpoint descriptor in usb_host_endpoint.
1642  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1643  * not allowed.
1644  *
1645  * The USB core will not allow URBs to be queued to an endpoint until the
1646  * configuration or alt setting is installed in the device, so there's no need
1647  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1648  */
1649 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1650                 struct usb_host_endpoint *ep)
1651 {
1652         struct xhci_hcd *xhci;
1653         struct xhci_container_ctx *in_ctx, *out_ctx;
1654         unsigned int ep_index;
1655         struct xhci_ep_ctx *ep_ctx;
1656         struct xhci_slot_ctx *slot_ctx;
1657         struct xhci_input_control_ctx *ctrl_ctx;
1658         u32 added_ctxs;
1659         unsigned int last_ctx;
1660         u32 new_add_flags, new_drop_flags, new_slot_info;
1661         struct xhci_virt_device *virt_dev;
1662         int ret = 0;
1663
1664         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1665         if (ret <= 0) {
1666                 /* So we won't queue a reset ep command for a root hub */
1667                 ep->hcpriv = NULL;
1668                 return ret;
1669         }
1670         xhci = hcd_to_xhci(hcd);
1671         if (xhci->xhc_state & XHCI_STATE_DYING)
1672                 return -ENODEV;
1673
1674         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1675         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1676         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1677                 /* FIXME when we have to issue an evaluate endpoint command to
1678                  * deal with ep0 max packet size changing once we get the
1679                  * descriptors
1680                  */
1681                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1682                                 __func__, added_ctxs);
1683                 return 0;
1684         }
1685
1686         virt_dev = xhci->devs[udev->slot_id];
1687         in_ctx = virt_dev->in_ctx;
1688         out_ctx = virt_dev->out_ctx;
1689         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1690         ep_index = xhci_get_endpoint_index(&ep->desc);
1691         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1692
1693         /* If this endpoint is already in use, and the upper layers are trying
1694          * to add it again without dropping it, reject the addition.
1695          */
1696         if (virt_dev->eps[ep_index].ring &&
1697                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1698                                 xhci_get_endpoint_flag(&ep->desc))) {
1699                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1700                                 "without dropping it.\n",
1701                                 (unsigned int) ep->desc.bEndpointAddress);
1702                 return -EINVAL;
1703         }
1704
1705         /* If the HCD has already noted the endpoint is enabled,
1706          * ignore this request.
1707          */
1708         if (le32_to_cpu(ctrl_ctx->add_flags) &
1709             xhci_get_endpoint_flag(&ep->desc)) {
1710                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1711                                 __func__, ep);
1712                 return 0;
1713         }
1714
1715         /*
1716          * Configuration and alternate setting changes must be done in
1717          * process context, not interrupt context (or so documenation
1718          * for usb_set_interface() and usb_set_configuration() claim).
1719          */
1720         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1721                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1722                                 __func__, ep->desc.bEndpointAddress);
1723                 return -ENOMEM;
1724         }
1725
1726         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1727         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1728
1729         /* If xhci_endpoint_disable() was called for this endpoint, but the
1730          * xHC hasn't been notified yet through the check_bandwidth() call,
1731          * this re-adds a new state for the endpoint from the new endpoint
1732          * descriptors.  We must drop and re-add this endpoint, so we leave the
1733          * drop flags alone.
1734          */
1735         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1736
1737         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1738         /* Update the last valid endpoint context, if we just added one past */
1739         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1740             LAST_CTX(last_ctx)) {
1741                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1742                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1743         }
1744         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1745
1746         /* Store the usb_device pointer for later use */
1747         ep->hcpriv = udev;
1748
1749         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1750                         (unsigned int) ep->desc.bEndpointAddress,
1751                         udev->slot_id,
1752                         (unsigned int) new_drop_flags,
1753                         (unsigned int) new_add_flags,
1754                         (unsigned int) new_slot_info);
1755         return 0;
1756 }
1757
1758 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1759 {
1760         struct xhci_input_control_ctx *ctrl_ctx;
1761         struct xhci_ep_ctx *ep_ctx;
1762         struct xhci_slot_ctx *slot_ctx;
1763         int i;
1764
1765         /* When a device's add flag and drop flag are zero, any subsequent
1766          * configure endpoint command will leave that endpoint's state
1767          * untouched.  Make sure we don't leave any old state in the input
1768          * endpoint contexts.
1769          */
1770         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1771         ctrl_ctx->drop_flags = 0;
1772         ctrl_ctx->add_flags = 0;
1773         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1774         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1775         /* Endpoint 0 is always valid */
1776         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1777         for (i = 1; i < 31; ++i) {
1778                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1779                 ep_ctx->ep_info = 0;
1780                 ep_ctx->ep_info2 = 0;
1781                 ep_ctx->deq = 0;
1782                 ep_ctx->tx_info = 0;
1783         }
1784 }
1785
1786 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1787                 struct usb_device *udev, u32 *cmd_status)
1788 {
1789         int ret;
1790
1791         switch (*cmd_status) {
1792         case COMP_ENOMEM:
1793                 dev_warn(&udev->dev, "Not enough host controller resources "
1794                                 "for new device state.\n");
1795                 ret = -ENOMEM;
1796                 /* FIXME: can we allocate more resources for the HC? */
1797                 break;
1798         case COMP_BW_ERR:
1799         case COMP_2ND_BW_ERR:
1800                 dev_warn(&udev->dev, "Not enough bandwidth "
1801                                 "for new device state.\n");
1802                 ret = -ENOSPC;
1803                 /* FIXME: can we go back to the old state? */
1804                 break;
1805         case COMP_TRB_ERR:
1806                 /* the HCD set up something wrong */
1807                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1808                                 "add flag = 1, "
1809                                 "and endpoint is not disabled.\n");
1810                 ret = -EINVAL;
1811                 break;
1812         case COMP_DEV_ERR:
1813                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1814                                 "configure command.\n");
1815                 ret = -ENODEV;
1816                 break;
1817         case COMP_SUCCESS:
1818                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1819                 ret = 0;
1820                 break;
1821         default:
1822                 xhci_err(xhci, "ERROR: unexpected command completion "
1823                                 "code 0x%x.\n", *cmd_status);
1824                 ret = -EINVAL;
1825                 break;
1826         }
1827         return ret;
1828 }
1829
1830 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1831                 struct usb_device *udev, u32 *cmd_status)
1832 {
1833         int ret;
1834         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1835
1836         switch (*cmd_status) {
1837         case COMP_EINVAL:
1838                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1839                                 "context command.\n");
1840                 ret = -EINVAL;
1841                 break;
1842         case COMP_EBADSLT:
1843                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1844                                 "evaluate context command.\n");
1845         case COMP_CTX_STATE:
1846                 dev_warn(&udev->dev, "WARN: invalid context state for "
1847                                 "evaluate context command.\n");
1848                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1849                 ret = -EINVAL;
1850                 break;
1851         case COMP_DEV_ERR:
1852                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1853                                 "context command.\n");
1854                 ret = -ENODEV;
1855                 break;
1856         case COMP_MEL_ERR:
1857                 /* Max Exit Latency too large error */
1858                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1859                 ret = -EINVAL;
1860                 break;
1861         case COMP_SUCCESS:
1862                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1863                 ret = 0;
1864                 break;
1865         default:
1866                 xhci_err(xhci, "ERROR: unexpected command completion "
1867                                 "code 0x%x.\n", *cmd_status);
1868                 ret = -EINVAL;
1869                 break;
1870         }
1871         return ret;
1872 }
1873
1874 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1875                 struct xhci_container_ctx *in_ctx)
1876 {
1877         struct xhci_input_control_ctx *ctrl_ctx;
1878         u32 valid_add_flags;
1879         u32 valid_drop_flags;
1880
1881         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1882         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1883          * (bit 1).  The default control endpoint is added during the Address
1884          * Device command and is never removed until the slot is disabled.
1885          */
1886         valid_add_flags = ctrl_ctx->add_flags >> 2;
1887         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1888
1889         /* Use hweight32 to count the number of ones in the add flags, or
1890          * number of endpoints added.  Don't count endpoints that are changed
1891          * (both added and dropped).
1892          */
1893         return hweight32(valid_add_flags) -
1894                 hweight32(valid_add_flags & valid_drop_flags);
1895 }
1896
1897 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1898                 struct xhci_container_ctx *in_ctx)
1899 {
1900         struct xhci_input_control_ctx *ctrl_ctx;
1901         u32 valid_add_flags;
1902         u32 valid_drop_flags;
1903
1904         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1905         valid_add_flags = ctrl_ctx->add_flags >> 2;
1906         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1907
1908         return hweight32(valid_drop_flags) -
1909                 hweight32(valid_add_flags & valid_drop_flags);
1910 }
1911
1912 /*
1913  * We need to reserve the new number of endpoints before the configure endpoint
1914  * command completes.  We can't subtract the dropped endpoints from the number
1915  * of active endpoints until the command completes because we can oversubscribe
1916  * the host in this case:
1917  *
1918  *  - the first configure endpoint command drops more endpoints than it adds
1919  *  - a second configure endpoint command that adds more endpoints is queued
1920  *  - the first configure endpoint command fails, so the config is unchanged
1921  *  - the second command may succeed, even though there isn't enough resources
1922  *
1923  * Must be called with xhci->lock held.
1924  */
1925 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1926                 struct xhci_container_ctx *in_ctx)
1927 {
1928         u32 added_eps;
1929
1930         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1931         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1932                 xhci_dbg(xhci, "Not enough ep ctxs: "
1933                                 "%u active, need to add %u, limit is %u.\n",
1934                                 xhci->num_active_eps, added_eps,
1935                                 xhci->limit_active_eps);
1936                 return -ENOMEM;
1937         }
1938         xhci->num_active_eps += added_eps;
1939         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1940                         xhci->num_active_eps);
1941         return 0;
1942 }
1943
1944 /*
1945  * The configure endpoint was failed by the xHC for some other reason, so we
1946  * need to revert the resources that failed configuration would have used.
1947  *
1948  * Must be called with xhci->lock held.
1949  */
1950 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1951                 struct xhci_container_ctx *in_ctx)
1952 {
1953         u32 num_failed_eps;
1954
1955         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1956         xhci->num_active_eps -= num_failed_eps;
1957         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1958                         num_failed_eps,
1959                         xhci->num_active_eps);
1960 }
1961
1962 /*
1963  * Now that the command has completed, clean up the active endpoint count by
1964  * subtracting out the endpoints that were dropped (but not changed).
1965  *
1966  * Must be called with xhci->lock held.
1967  */
1968 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1969                 struct xhci_container_ctx *in_ctx)
1970 {
1971         u32 num_dropped_eps;
1972
1973         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1974         xhci->num_active_eps -= num_dropped_eps;
1975         if (num_dropped_eps)
1976                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1977                                 num_dropped_eps,
1978                                 xhci->num_active_eps);
1979 }
1980
1981 unsigned int xhci_get_block_size(struct usb_device *udev)
1982 {
1983         switch (udev->speed) {
1984         case USB_SPEED_LOW:
1985         case USB_SPEED_FULL:
1986                 return FS_BLOCK;
1987         case USB_SPEED_HIGH:
1988                 return HS_BLOCK;
1989         case USB_SPEED_SUPER:
1990                 return SS_BLOCK;
1991         case USB_SPEED_UNKNOWN:
1992         case USB_SPEED_WIRELESS:
1993         default:
1994                 /* Should never happen */
1995                 return 1;
1996         }
1997 }
1998
1999 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2000 {
2001         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2002                 return LS_OVERHEAD;
2003         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2004                 return FS_OVERHEAD;
2005         return HS_OVERHEAD;
2006 }
2007
2008 /* If we are changing a LS/FS device under a HS hub,
2009  * make sure (if we are activating a new TT) that the HS bus has enough
2010  * bandwidth for this new TT.
2011  */
2012 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2013                 struct xhci_virt_device *virt_dev,
2014                 int old_active_eps)
2015 {
2016         struct xhci_interval_bw_table *bw_table;
2017         struct xhci_tt_bw_info *tt_info;
2018
2019         /* Find the bandwidth table for the root port this TT is attached to. */
2020         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2021         tt_info = virt_dev->tt_info;
2022         /* If this TT already had active endpoints, the bandwidth for this TT
2023          * has already been added.  Removing all periodic endpoints (and thus
2024          * making the TT enactive) will only decrease the bandwidth used.
2025          */
2026         if (old_active_eps)
2027                 return 0;
2028         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2029                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2030                         return -ENOMEM;
2031                 return 0;
2032         }
2033         /* Not sure why we would have no new active endpoints...
2034          *
2035          * Maybe because of an Evaluate Context change for a hub update or a
2036          * control endpoint 0 max packet size change?
2037          * FIXME: skip the bandwidth calculation in that case.
2038          */
2039         return 0;
2040 }
2041
2042 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2043                 struct xhci_virt_device *virt_dev)
2044 {
2045         unsigned int bw_reserved;
2046
2047         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2048         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2049                 return -ENOMEM;
2050
2051         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2052         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2053                 return -ENOMEM;
2054
2055         return 0;
2056 }
2057
2058 /*
2059  * This algorithm is a very conservative estimate of the worst-case scheduling
2060  * scenario for any one interval.  The hardware dynamically schedules the
2061  * packets, so we can't tell which microframe could be the limiting factor in
2062  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2063  *
2064  * Obviously, we can't solve an NP complete problem to find the minimum worst
2065  * case scenario.  Instead, we come up with an estimate that is no less than
2066  * the worst case bandwidth used for any one microframe, but may be an
2067  * over-estimate.
2068  *
2069  * We walk the requirements for each endpoint by interval, starting with the
2070  * smallest interval, and place packets in the schedule where there is only one
2071  * possible way to schedule packets for that interval.  In order to simplify
2072  * this algorithm, we record the largest max packet size for each interval, and
2073  * assume all packets will be that size.
2074  *
2075  * For interval 0, we obviously must schedule all packets for each interval.
2076  * The bandwidth for interval 0 is just the amount of data to be transmitted
2077  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2078  * the number of packets).
2079  *
2080  * For interval 1, we have two possible microframes to schedule those packets
2081  * in.  For this algorithm, if we can schedule the same number of packets for
2082  * each possible scheduling opportunity (each microframe), we will do so.  The
2083  * remaining number of packets will be saved to be transmitted in the gaps in
2084  * the next interval's scheduling sequence.
2085  *
2086  * As we move those remaining packets to be scheduled with interval 2 packets,
2087  * we have to double the number of remaining packets to transmit.  This is
2088  * because the intervals are actually powers of 2, and we would be transmitting
2089  * the previous interval's packets twice in this interval.  We also have to be
2090  * sure that when we look at the largest max packet size for this interval, we
2091  * also look at the largest max packet size for the remaining packets and take
2092  * the greater of the two.
2093  *
2094  * The algorithm continues to evenly distribute packets in each scheduling
2095  * opportunity, and push the remaining packets out, until we get to the last
2096  * interval.  Then those packets and their associated overhead are just added
2097  * to the bandwidth used.
2098  */
2099 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2100                 struct xhci_virt_device *virt_dev,
2101                 int old_active_eps)
2102 {
2103         unsigned int bw_reserved;
2104         unsigned int max_bandwidth;
2105         unsigned int bw_used;
2106         unsigned int block_size;
2107         struct xhci_interval_bw_table *bw_table;
2108         unsigned int packet_size = 0;
2109         unsigned int overhead = 0;
2110         unsigned int packets_transmitted = 0;
2111         unsigned int packets_remaining = 0;
2112         unsigned int i;
2113
2114         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2115                 return xhci_check_ss_bw(xhci, virt_dev);
2116
2117         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2118                 max_bandwidth = HS_BW_LIMIT;
2119                 /* Convert percent of bus BW reserved to blocks reserved */
2120                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2121         } else {
2122                 max_bandwidth = FS_BW_LIMIT;
2123                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2124         }
2125
2126         bw_table = virt_dev->bw_table;
2127         /* We need to translate the max packet size and max ESIT payloads into
2128          * the units the hardware uses.
2129          */
2130         block_size = xhci_get_block_size(virt_dev->udev);
2131
2132         /* If we are manipulating a LS/FS device under a HS hub, double check
2133          * that the HS bus has enough bandwidth if we are activing a new TT.
2134          */
2135         if (virt_dev->tt_info) {
2136                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2137                                 virt_dev->real_port);
2138                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2139                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2140                                         "newly activated TT.\n");
2141                         return -ENOMEM;
2142                 }
2143                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2144                                 virt_dev->tt_info->slot_id,
2145                                 virt_dev->tt_info->ttport);
2146         } else {
2147                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2148                                 virt_dev->real_port);
2149         }
2150
2151         /* Add in how much bandwidth will be used for interval zero, or the
2152          * rounded max ESIT payload + number of packets * largest overhead.
2153          */
2154         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2155                 bw_table->interval_bw[0].num_packets *
2156                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2157
2158         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2159                 unsigned int bw_added;
2160                 unsigned int largest_mps;
2161                 unsigned int interval_overhead;
2162
2163                 /*
2164                  * How many packets could we transmit in this interval?
2165                  * If packets didn't fit in the previous interval, we will need
2166                  * to transmit that many packets twice within this interval.
2167                  */
2168                 packets_remaining = 2 * packets_remaining +
2169                         bw_table->interval_bw[i].num_packets;
2170
2171                 /* Find the largest max packet size of this or the previous
2172                  * interval.
2173                  */
2174                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2175                         largest_mps = 0;
2176                 else {
2177                         struct xhci_virt_ep *virt_ep;
2178                         struct list_head *ep_entry;
2179
2180                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2181                         virt_ep = list_entry(ep_entry,
2182                                         struct xhci_virt_ep, bw_endpoint_list);
2183                         /* Convert to blocks, rounding up */
2184                         largest_mps = DIV_ROUND_UP(
2185                                         virt_ep->bw_info.max_packet_size,
2186                                         block_size);
2187                 }
2188                 if (largest_mps > packet_size)
2189                         packet_size = largest_mps;
2190
2191                 /* Use the larger overhead of this or the previous interval. */
2192                 interval_overhead = xhci_get_largest_overhead(
2193                                 &bw_table->interval_bw[i]);
2194                 if (interval_overhead > overhead)
2195                         overhead = interval_overhead;
2196
2197                 /* How many packets can we evenly distribute across
2198                  * (1 << (i + 1)) possible scheduling opportunities?
2199                  */
2200                 packets_transmitted = packets_remaining >> (i + 1);
2201
2202                 /* Add in the bandwidth used for those scheduled packets */
2203                 bw_added = packets_transmitted * (overhead + packet_size);
2204
2205                 /* How many packets do we have remaining to transmit? */
2206                 packets_remaining = packets_remaining % (1 << (i + 1));
2207
2208                 /* What largest max packet size should those packets have? */
2209                 /* If we've transmitted all packets, don't carry over the
2210                  * largest packet size.
2211                  */
2212                 if (packets_remaining == 0) {
2213                         packet_size = 0;
2214                         overhead = 0;
2215                 } else if (packets_transmitted > 0) {
2216                         /* Otherwise if we do have remaining packets, and we've
2217                          * scheduled some packets in this interval, take the
2218                          * largest max packet size from endpoints with this
2219                          * interval.
2220                          */
2221                         packet_size = largest_mps;
2222                         overhead = interval_overhead;
2223                 }
2224                 /* Otherwise carry over packet_size and overhead from the last
2225                  * time we had a remainder.
2226                  */
2227                 bw_used += bw_added;
2228                 if (bw_used > max_bandwidth) {
2229                         xhci_warn(xhci, "Not enough bandwidth. "
2230                                         "Proposed: %u, Max: %u\n",
2231                                 bw_used, max_bandwidth);
2232                         return -ENOMEM;
2233                 }
2234         }
2235         /*
2236          * Ok, we know we have some packets left over after even-handedly
2237          * scheduling interval 15.  We don't know which microframes they will
2238          * fit into, so we over-schedule and say they will be scheduled every
2239          * microframe.
2240          */
2241         if (packets_remaining > 0)
2242                 bw_used += overhead + packet_size;
2243
2244         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2245                 unsigned int port_index = virt_dev->real_port - 1;
2246
2247                 /* OK, we're manipulating a HS device attached to a
2248                  * root port bandwidth domain.  Include the number of active TTs
2249                  * in the bandwidth used.
2250                  */
2251                 bw_used += TT_HS_OVERHEAD *
2252                         xhci->rh_bw[port_index].num_active_tts;
2253         }
2254
2255         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2256                 "Available: %u " "percent\n",
2257                 bw_used, max_bandwidth, bw_reserved,
2258                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2259                 max_bandwidth);
2260
2261         bw_used += bw_reserved;
2262         if (bw_used > max_bandwidth) {
2263                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2264                                 bw_used, max_bandwidth);
2265                 return -ENOMEM;
2266         }
2267
2268         bw_table->bw_used = bw_used;
2269         return 0;
2270 }
2271
2272 static bool xhci_is_async_ep(unsigned int ep_type)
2273 {
2274         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2275                                         ep_type != ISOC_IN_EP &&
2276                                         ep_type != INT_IN_EP);
2277 }
2278
2279 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2280 {
2281         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2282 }
2283
2284 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2285 {
2286         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2287
2288         if (ep_bw->ep_interval == 0)
2289                 return SS_OVERHEAD_BURST +
2290                         (ep_bw->mult * ep_bw->num_packets *
2291                                         (SS_OVERHEAD + mps));
2292         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2293                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2294                                 1 << ep_bw->ep_interval);
2295
2296 }
2297
2298 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2299                 struct xhci_bw_info *ep_bw,
2300                 struct xhci_interval_bw_table *bw_table,
2301                 struct usb_device *udev,
2302                 struct xhci_virt_ep *virt_ep,
2303                 struct xhci_tt_bw_info *tt_info)
2304 {
2305         struct xhci_interval_bw *interval_bw;
2306         int normalized_interval;
2307
2308         if (xhci_is_async_ep(ep_bw->type))
2309                 return;
2310
2311         if (udev->speed == USB_SPEED_SUPER) {
2312                 if (xhci_is_sync_in_ep(ep_bw->type))
2313                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2314                                 xhci_get_ss_bw_consumed(ep_bw);
2315                 else
2316                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2317                                 xhci_get_ss_bw_consumed(ep_bw);
2318                 return;
2319         }
2320
2321         /* SuperSpeed endpoints never get added to intervals in the table, so
2322          * this check is only valid for HS/FS/LS devices.
2323          */
2324         if (list_empty(&virt_ep->bw_endpoint_list))
2325                 return;
2326         /* For LS/FS devices, we need to translate the interval expressed in
2327          * microframes to frames.
2328          */
2329         if (udev->speed == USB_SPEED_HIGH)
2330                 normalized_interval = ep_bw->ep_interval;
2331         else
2332                 normalized_interval = ep_bw->ep_interval - 3;
2333
2334         if (normalized_interval == 0)
2335                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2336         interval_bw = &bw_table->interval_bw[normalized_interval];
2337         interval_bw->num_packets -= ep_bw->num_packets;
2338         switch (udev->speed) {
2339         case USB_SPEED_LOW:
2340                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2341                 break;
2342         case USB_SPEED_FULL:
2343                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2344                 break;
2345         case USB_SPEED_HIGH:
2346                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2347                 break;
2348         case USB_SPEED_SUPER:
2349         case USB_SPEED_UNKNOWN:
2350         case USB_SPEED_WIRELESS:
2351                 /* Should never happen because only LS/FS/HS endpoints will get
2352                  * added to the endpoint list.
2353                  */
2354                 return;
2355         }
2356         if (tt_info)
2357                 tt_info->active_eps -= 1;
2358         list_del_init(&virt_ep->bw_endpoint_list);
2359 }
2360
2361 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2362                 struct xhci_bw_info *ep_bw,
2363                 struct xhci_interval_bw_table *bw_table,
2364                 struct usb_device *udev,
2365                 struct xhci_virt_ep *virt_ep,
2366                 struct xhci_tt_bw_info *tt_info)
2367 {
2368         struct xhci_interval_bw *interval_bw;
2369         struct xhci_virt_ep *smaller_ep;
2370         int normalized_interval;
2371
2372         if (xhci_is_async_ep(ep_bw->type))
2373                 return;
2374
2375         if (udev->speed == USB_SPEED_SUPER) {
2376                 if (xhci_is_sync_in_ep(ep_bw->type))
2377                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2378                                 xhci_get_ss_bw_consumed(ep_bw);
2379                 else
2380                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2381                                 xhci_get_ss_bw_consumed(ep_bw);
2382                 return;
2383         }
2384
2385         /* For LS/FS devices, we need to translate the interval expressed in
2386          * microframes to frames.
2387          */
2388         if (udev->speed == USB_SPEED_HIGH)
2389                 normalized_interval = ep_bw->ep_interval;
2390         else
2391                 normalized_interval = ep_bw->ep_interval - 3;
2392
2393         if (normalized_interval == 0)
2394                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2395         interval_bw = &bw_table->interval_bw[normalized_interval];
2396         interval_bw->num_packets += ep_bw->num_packets;
2397         switch (udev->speed) {
2398         case USB_SPEED_LOW:
2399                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2400                 break;
2401         case USB_SPEED_FULL:
2402                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2403                 break;
2404         case USB_SPEED_HIGH:
2405                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2406                 break;
2407         case USB_SPEED_SUPER:
2408         case USB_SPEED_UNKNOWN:
2409         case USB_SPEED_WIRELESS:
2410                 /* Should never happen because only LS/FS/HS endpoints will get
2411                  * added to the endpoint list.
2412                  */
2413                 return;
2414         }
2415
2416         if (tt_info)
2417                 tt_info->active_eps += 1;
2418         /* Insert the endpoint into the list, largest max packet size first. */
2419         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2420                         bw_endpoint_list) {
2421                 if (ep_bw->max_packet_size >=
2422                                 smaller_ep->bw_info.max_packet_size) {
2423                         /* Add the new ep before the smaller endpoint */
2424                         list_add_tail(&virt_ep->bw_endpoint_list,
2425                                         &smaller_ep->bw_endpoint_list);
2426                         return;
2427                 }
2428         }
2429         /* Add the new endpoint at the end of the list. */
2430         list_add_tail(&virt_ep->bw_endpoint_list,
2431                         &interval_bw->endpoints);
2432 }
2433
2434 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2435                 struct xhci_virt_device *virt_dev,
2436                 int old_active_eps)
2437 {
2438         struct xhci_root_port_bw_info *rh_bw_info;
2439         if (!virt_dev->tt_info)
2440                 return;
2441
2442         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2443         if (old_active_eps == 0 &&
2444                                 virt_dev->tt_info->active_eps != 0) {
2445                 rh_bw_info->num_active_tts += 1;
2446                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2447         } else if (old_active_eps != 0 &&
2448                                 virt_dev->tt_info->active_eps == 0) {
2449                 rh_bw_info->num_active_tts -= 1;
2450                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2451         }
2452 }
2453
2454 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2455                 struct xhci_virt_device *virt_dev,
2456                 struct xhci_container_ctx *in_ctx)
2457 {
2458         struct xhci_bw_info ep_bw_info[31];
2459         int i;
2460         struct xhci_input_control_ctx *ctrl_ctx;
2461         int old_active_eps = 0;
2462
2463         if (virt_dev->tt_info)
2464                 old_active_eps = virt_dev->tt_info->active_eps;
2465
2466         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2467
2468         for (i = 0; i < 31; i++) {
2469                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2470                         continue;
2471
2472                 /* Make a copy of the BW info in case we need to revert this */
2473                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2474                                 sizeof(ep_bw_info[i]));
2475                 /* Drop the endpoint from the interval table if the endpoint is
2476                  * being dropped or changed.
2477                  */
2478                 if (EP_IS_DROPPED(ctrl_ctx, i))
2479                         xhci_drop_ep_from_interval_table(xhci,
2480                                         &virt_dev->eps[i].bw_info,
2481                                         virt_dev->bw_table,
2482                                         virt_dev->udev,
2483                                         &virt_dev->eps[i],
2484                                         virt_dev->tt_info);
2485         }
2486         /* Overwrite the information stored in the endpoints' bw_info */
2487         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2488         for (i = 0; i < 31; i++) {
2489                 /* Add any changed or added endpoints to the interval table */
2490                 if (EP_IS_ADDED(ctrl_ctx, i))
2491                         xhci_add_ep_to_interval_table(xhci,
2492                                         &virt_dev->eps[i].bw_info,
2493                                         virt_dev->bw_table,
2494                                         virt_dev->udev,
2495                                         &virt_dev->eps[i],
2496                                         virt_dev->tt_info);
2497         }
2498
2499         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2500                 /* Ok, this fits in the bandwidth we have.
2501                  * Update the number of active TTs.
2502                  */
2503                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2504                 return 0;
2505         }
2506
2507         /* We don't have enough bandwidth for this, revert the stored info. */
2508         for (i = 0; i < 31; i++) {
2509                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2510                         continue;
2511
2512                 /* Drop the new copies of any added or changed endpoints from
2513                  * the interval table.
2514                  */
2515                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2516                         xhci_drop_ep_from_interval_table(xhci,
2517                                         &virt_dev->eps[i].bw_info,
2518                                         virt_dev->bw_table,
2519                                         virt_dev->udev,
2520                                         &virt_dev->eps[i],
2521                                         virt_dev->tt_info);
2522                 }
2523                 /* Revert the endpoint back to its old information */
2524                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2525                                 sizeof(ep_bw_info[i]));
2526                 /* Add any changed or dropped endpoints back into the table */
2527                 if (EP_IS_DROPPED(ctrl_ctx, i))
2528                         xhci_add_ep_to_interval_table(xhci,
2529                                         &virt_dev->eps[i].bw_info,
2530                                         virt_dev->bw_table,
2531                                         virt_dev->udev,
2532                                         &virt_dev->eps[i],
2533                                         virt_dev->tt_info);
2534         }
2535         return -ENOMEM;
2536 }
2537
2538
2539 /* Issue a configure endpoint command or evaluate context command
2540  * and wait for it to finish.
2541  */
2542 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2543                 struct usb_device *udev,
2544                 struct xhci_command *command,
2545                 bool ctx_change, bool must_succeed)
2546 {
2547         int ret;
2548         int timeleft;
2549         unsigned long flags;
2550         struct xhci_container_ctx *in_ctx;
2551         struct completion *cmd_completion;
2552         u32 *cmd_status;
2553         struct xhci_virt_device *virt_dev;
2554         union xhci_trb *cmd_trb;
2555
2556         spin_lock_irqsave(&xhci->lock, flags);
2557         virt_dev = xhci->devs[udev->slot_id];
2558
2559         if (command)
2560                 in_ctx = command->in_ctx;
2561         else
2562                 in_ctx = virt_dev->in_ctx;
2563
2564         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2565                         xhci_reserve_host_resources(xhci, in_ctx)) {
2566                 spin_unlock_irqrestore(&xhci->lock, flags);
2567                 xhci_warn(xhci, "Not enough host resources, "
2568                                 "active endpoint contexts = %u\n",
2569                                 xhci->num_active_eps);
2570                 return -ENOMEM;
2571         }
2572         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2573                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2574                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2575                         xhci_free_host_resources(xhci, in_ctx);
2576                 spin_unlock_irqrestore(&xhci->lock, flags);
2577                 xhci_warn(xhci, "Not enough bandwidth\n");
2578                 return -ENOMEM;
2579         }
2580
2581         if (command) {
2582                 cmd_completion = command->completion;
2583                 cmd_status = &command->status;
2584                 command->command_trb = xhci->cmd_ring->enqueue;
2585
2586                 /* Enqueue pointer can be left pointing to the link TRB,
2587                  * we must handle that
2588                  */
2589                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2590                         command->command_trb =
2591                                 xhci->cmd_ring->enq_seg->next->trbs;
2592
2593                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2594         } else {
2595                 cmd_completion = &virt_dev->cmd_completion;
2596                 cmd_status = &virt_dev->cmd_status;
2597         }
2598         init_completion(cmd_completion);
2599
2600         cmd_trb = xhci->cmd_ring->dequeue;
2601         if (!ctx_change)
2602                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2603                                 udev->slot_id, must_succeed);
2604         else
2605                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2606                                 udev->slot_id);
2607         if (ret < 0) {
2608                 if (command)
2609                         list_del(&command->cmd_list);
2610                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2611                         xhci_free_host_resources(xhci, in_ctx);
2612                 spin_unlock_irqrestore(&xhci->lock, flags);
2613                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2614                 return -ENOMEM;
2615         }
2616         xhci_ring_cmd_db(xhci);
2617         spin_unlock_irqrestore(&xhci->lock, flags);
2618
2619         /* Wait for the configure endpoint command to complete */
2620         timeleft = wait_for_completion_interruptible_timeout(
2621                         cmd_completion,
2622                         XHCI_CMD_DEFAULT_TIMEOUT);
2623         if (timeleft <= 0) {
2624                 xhci_warn(xhci, "%s while waiting for %s command\n",
2625                                 timeleft == 0 ? "Timeout" : "Signal",
2626                                 ctx_change == 0 ?
2627                                         "configure endpoint" :
2628                                         "evaluate context");
2629                 /* cancel the configure endpoint command */
2630                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2631                 if (ret < 0)
2632                         return ret;
2633                 return -ETIME;
2634         }
2635
2636         if (!ctx_change)
2637                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2638         else
2639                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2640
2641         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2642                 spin_lock_irqsave(&xhci->lock, flags);
2643                 /* If the command failed, remove the reserved resources.
2644                  * Otherwise, clean up the estimate to include dropped eps.
2645                  */
2646                 if (ret)
2647                         xhci_free_host_resources(xhci, in_ctx);
2648                 else
2649                         xhci_finish_resource_reservation(xhci, in_ctx);
2650                 spin_unlock_irqrestore(&xhci->lock, flags);
2651         }
2652         return ret;
2653 }
2654
2655 /* Called after one or more calls to xhci_add_endpoint() or
2656  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2657  * to call xhci_reset_bandwidth().
2658  *
2659  * Since we are in the middle of changing either configuration or
2660  * installing a new alt setting, the USB core won't allow URBs to be
2661  * enqueued for any endpoint on the old config or interface.  Nothing
2662  * else should be touching the xhci->devs[slot_id] structure, so we
2663  * don't need to take the xhci->lock for manipulating that.
2664  */
2665 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2666 {
2667         int i;
2668         int ret = 0;
2669         struct xhci_hcd *xhci;
2670         struct xhci_virt_device *virt_dev;
2671         struct xhci_input_control_ctx *ctrl_ctx;
2672         struct xhci_slot_ctx *slot_ctx;
2673
2674         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2675         if (ret <= 0)
2676                 return ret;
2677         xhci = hcd_to_xhci(hcd);
2678         if (xhci->xhc_state & XHCI_STATE_DYING)
2679                 return -ENODEV;
2680
2681         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2682         virt_dev = xhci->devs[udev->slot_id];
2683
2684         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2685         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2686         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2687         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2688         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2689
2690         /* Don't issue the command if there's no endpoints to update. */
2691         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2692                         ctrl_ctx->drop_flags == 0)
2693                 return 0;
2694
2695         xhci_dbg(xhci, "New Input Control Context:\n");
2696         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2697         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2698                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2699
2700         ret = xhci_configure_endpoint(xhci, udev, NULL,
2701                         false, false);
2702         if (ret) {
2703                 /* Callee should call reset_bandwidth() */
2704                 return ret;
2705         }
2706
2707         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2708         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2709                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2710
2711         /* Free any rings that were dropped, but not changed. */
2712         for (i = 1; i < 31; ++i) {
2713                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2714                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2715                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2716         }
2717         xhci_zero_in_ctx(xhci, virt_dev);
2718         /*
2719          * Install any rings for completely new endpoints or changed endpoints,
2720          * and free or cache any old rings from changed endpoints.
2721          */
2722         for (i = 1; i < 31; ++i) {
2723                 if (!virt_dev->eps[i].new_ring)
2724                         continue;
2725                 /* Only cache or free the old ring if it exists.
2726                  * It may not if this is the first add of an endpoint.
2727                  */
2728                 if (virt_dev->eps[i].ring) {
2729                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2730                 }
2731                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2732                 virt_dev->eps[i].new_ring = NULL;
2733         }
2734
2735         return ret;
2736 }
2737
2738 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2739 {
2740         struct xhci_hcd *xhci;
2741         struct xhci_virt_device *virt_dev;
2742         int i, ret;
2743
2744         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2745         if (ret <= 0)
2746                 return;
2747         xhci = hcd_to_xhci(hcd);
2748
2749         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2750         virt_dev = xhci->devs[udev->slot_id];
2751         /* Free any rings allocated for added endpoints */
2752         for (i = 0; i < 31; ++i) {
2753                 if (virt_dev->eps[i].new_ring) {
2754                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2755                         virt_dev->eps[i].new_ring = NULL;
2756                 }
2757         }
2758         xhci_zero_in_ctx(xhci, virt_dev);
2759 }
2760
2761 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2762                 struct xhci_container_ctx *in_ctx,
2763                 struct xhci_container_ctx *out_ctx,
2764                 u32 add_flags, u32 drop_flags)
2765 {
2766         struct xhci_input_control_ctx *ctrl_ctx;
2767         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2768         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2769         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2770         xhci_slot_copy(xhci, in_ctx, out_ctx);
2771         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2772
2773         xhci_dbg(xhci, "Input Context:\n");
2774         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2775 }
2776
2777 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2778                 unsigned int slot_id, unsigned int ep_index,
2779                 struct xhci_dequeue_state *deq_state)
2780 {
2781         struct xhci_container_ctx *in_ctx;
2782         struct xhci_ep_ctx *ep_ctx;
2783         u32 added_ctxs;
2784         dma_addr_t addr;
2785
2786         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2787                         xhci->devs[slot_id]->out_ctx, ep_index);
2788         in_ctx = xhci->devs[slot_id]->in_ctx;
2789         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2790         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2791                         deq_state->new_deq_ptr);
2792         if (addr == 0) {
2793                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2794                                 "reset ep command\n");
2795                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2796                                 deq_state->new_deq_seg,
2797                                 deq_state->new_deq_ptr);
2798                 return;
2799         }
2800         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2801
2802         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2803         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2804                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2805 }
2806
2807 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2808                 struct usb_device *udev, unsigned int ep_index)
2809 {
2810         struct xhci_dequeue_state deq_state;
2811         struct xhci_virt_ep *ep;
2812
2813         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2814         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2815         /* We need to move the HW's dequeue pointer past this TD,
2816          * or it will attempt to resend it on the next doorbell ring.
2817          */
2818         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2819                         ep_index, ep->stopped_stream, ep->stopped_td,
2820                         &deq_state);
2821
2822         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2823                 return;
2824
2825         /* HW with the reset endpoint quirk will use the saved dequeue state to
2826          * issue a configure endpoint command later.
2827          */
2828         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2829                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2830                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2831                                 ep_index, ep->stopped_stream, &deq_state);
2832         } else {
2833                 /* Better hope no one uses the input context between now and the
2834                  * reset endpoint completion!
2835                  * XXX: No idea how this hardware will react when stream rings
2836                  * are enabled.
2837                  */
2838                 xhci_dbg(xhci, "Setting up input context for "
2839                                 "configure endpoint command\n");
2840                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2841                                 ep_index, &deq_state);
2842         }
2843 }
2844
2845 /* Called when clearing halted device. The core should have sent the control
2846  * message to clear the device halt condition. The host side of the halt should
2847  * already be cleared with a reset endpoint command issued when the STALL tx
2848  * event was received.
2849  *
2850  * Context: in_interrupt
2851  */
2852
2853 void xhci_endpoint_reset(struct usb_hcd *hcd,
2854                 struct usb_host_endpoint *ep)
2855 {
2856         struct xhci_hcd *xhci;
2857
2858         xhci = hcd_to_xhci(hcd);
2859
2860         /*
2861          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2862          * The Reset Endpoint Command may only be issued to endpoints in the
2863          * Halted state. If software wishes reset the Data Toggle or Sequence
2864          * Number of an endpoint that isn't in the Halted state, then software
2865          * may issue a Configure Endpoint Command with the Drop and Add bits set
2866          * for the target endpoint. that is in the Stopped state.
2867          */
2868
2869         /* For now just print debug to follow the situation */
2870         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2871                  ep->desc.bEndpointAddress);
2872 }
2873
2874 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2875                 struct usb_device *udev, struct usb_host_endpoint *ep,
2876                 unsigned int slot_id)
2877 {
2878         int ret;
2879         unsigned int ep_index;
2880         unsigned int ep_state;
2881
2882         if (!ep)
2883                 return -EINVAL;
2884         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2885         if (ret <= 0)
2886                 return -EINVAL;
2887         if (ep->ss_ep_comp.bmAttributes == 0) {
2888                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2889                                 " descriptor for ep 0x%x does not support streams\n",
2890                                 ep->desc.bEndpointAddress);
2891                 return -EINVAL;
2892         }
2893
2894         ep_index = xhci_get_endpoint_index(&ep->desc);
2895         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2896         if (ep_state & EP_HAS_STREAMS ||
2897                         ep_state & EP_GETTING_STREAMS) {
2898                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2899                                 "already has streams set up.\n",
2900                                 ep->desc.bEndpointAddress);
2901                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2902                                 "dynamic stream context array reallocation.\n");
2903                 return -EINVAL;
2904         }
2905         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2906                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2907                                 "endpoint 0x%x; URBs are pending.\n",
2908                                 ep->desc.bEndpointAddress);
2909                 return -EINVAL;
2910         }
2911         return 0;
2912 }
2913
2914 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2915                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2916 {
2917         unsigned int max_streams;
2918
2919         /* The stream context array size must be a power of two */
2920         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2921         /*
2922          * Find out how many primary stream array entries the host controller
2923          * supports.  Later we may use secondary stream arrays (similar to 2nd
2924          * level page entries), but that's an optional feature for xHCI host
2925          * controllers. xHCs must support at least 4 stream IDs.
2926          */
2927         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2928         if (*num_stream_ctxs > max_streams) {
2929                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2930                                 max_streams);
2931                 *num_stream_ctxs = max_streams;
2932                 *num_streams = max_streams;
2933         }
2934 }
2935
2936 /* Returns an error code if one of the endpoint already has streams.
2937  * This does not change any data structures, it only checks and gathers
2938  * information.
2939  */
2940 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2941                 struct usb_device *udev,
2942                 struct usb_host_endpoint **eps, unsigned int num_eps,
2943                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2944 {
2945         unsigned int max_streams;
2946         unsigned int endpoint_flag;
2947         int i;
2948         int ret;
2949
2950         for (i = 0; i < num_eps; i++) {
2951                 ret = xhci_check_streams_endpoint(xhci, udev,
2952                                 eps[i], udev->slot_id);
2953                 if (ret < 0)
2954                         return ret;
2955
2956                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2957                 if (max_streams < (*num_streams - 1)) {
2958                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2959                                         eps[i]->desc.bEndpointAddress,
2960                                         max_streams);
2961                         *num_streams = max_streams+1;
2962                 }
2963
2964                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2965                 if (*changed_ep_bitmask & endpoint_flag)
2966                         return -EINVAL;
2967                 *changed_ep_bitmask |= endpoint_flag;
2968         }
2969         return 0;
2970 }
2971
2972 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2973                 struct usb_device *udev,
2974                 struct usb_host_endpoint **eps, unsigned int num_eps)
2975 {
2976         u32 changed_ep_bitmask = 0;
2977         unsigned int slot_id;
2978         unsigned int ep_index;
2979         unsigned int ep_state;
2980         int i;
2981
2982         slot_id = udev->slot_id;
2983         if (!xhci->devs[slot_id])
2984                 return 0;
2985
2986         for (i = 0; i < num_eps; i++) {
2987                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2988                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2989                 /* Are streams already being freed for the endpoint? */
2990                 if (ep_state & EP_GETTING_NO_STREAMS) {
2991                         xhci_warn(xhci, "WARN Can't disable streams for "
2992                                         "endpoint 0x%x\n, "
2993                                         "streams are being disabled already.",
2994                                         eps[i]->desc.bEndpointAddress);
2995                         return 0;
2996                 }
2997                 /* Are there actually any streams to free? */
2998                 if (!(ep_state & EP_HAS_STREAMS) &&
2999                                 !(ep_state & EP_GETTING_STREAMS)) {
3000                         xhci_warn(xhci, "WARN Can't disable streams for "
3001                                         "endpoint 0x%x\n, "
3002                                         "streams are already disabled!",
3003                                         eps[i]->desc.bEndpointAddress);
3004                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3005                                         "with non-streams endpoint\n");
3006                         return 0;
3007                 }
3008                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3009         }
3010         return changed_ep_bitmask;
3011 }
3012
3013 /*
3014  * The USB device drivers use this function (though the HCD interface in USB
3015  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3016  * coordinate mass storage command queueing across multiple endpoints (basically
3017  * a stream ID == a task ID).
3018  *
3019  * Setting up streams involves allocating the same size stream context array
3020  * for each endpoint and issuing a configure endpoint command for all endpoints.
3021  *
3022  * Don't allow the call to succeed if one endpoint only supports one stream
3023  * (which means it doesn't support streams at all).
3024  *
3025  * Drivers may get less stream IDs than they asked for, if the host controller
3026  * hardware or endpoints claim they can't support the number of requested
3027  * stream IDs.
3028  */
3029 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3030                 struct usb_host_endpoint **eps, unsigned int num_eps,
3031                 unsigned int num_streams, gfp_t mem_flags)
3032 {
3033         int i, ret;
3034         struct xhci_hcd *xhci;
3035         struct xhci_virt_device *vdev;
3036         struct xhci_command *config_cmd;
3037         unsigned int ep_index;
3038         unsigned int num_stream_ctxs;
3039         unsigned long flags;
3040         u32 changed_ep_bitmask = 0;
3041
3042         if (!eps)
3043                 return -EINVAL;
3044
3045         /* Add one to the number of streams requested to account for
3046          * stream 0 that is reserved for xHCI usage.
3047          */
3048         num_streams += 1;
3049         xhci = hcd_to_xhci(hcd);
3050         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3051                         num_streams);
3052
3053         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3054         if (!config_cmd) {
3055                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3056                 return -ENOMEM;
3057         }
3058
3059         /* Check to make sure all endpoints are not already configured for
3060          * streams.  While we're at it, find the maximum number of streams that
3061          * all the endpoints will support and check for duplicate endpoints.
3062          */
3063         spin_lock_irqsave(&xhci->lock, flags);
3064         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3065                         num_eps, &num_streams, &changed_ep_bitmask);
3066         if (ret < 0) {
3067                 xhci_free_command(xhci, config_cmd);
3068                 spin_unlock_irqrestore(&xhci->lock, flags);
3069                 return ret;
3070         }
3071         if (num_streams <= 1) {
3072                 xhci_warn(xhci, "WARN: endpoints can't handle "
3073                                 "more than one stream.\n");
3074                 xhci_free_command(xhci, config_cmd);
3075                 spin_unlock_irqrestore(&xhci->lock, flags);
3076                 return -EINVAL;
3077         }
3078         vdev = xhci->devs[udev->slot_id];
3079         /* Mark each endpoint as being in transition, so
3080          * xhci_urb_enqueue() will reject all URBs.
3081          */
3082         for (i = 0; i < num_eps; i++) {
3083                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3084                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3085         }
3086         spin_unlock_irqrestore(&xhci->lock, flags);
3087
3088         /* Setup internal data structures and allocate HW data structures for
3089          * streams (but don't install the HW structures in the input context
3090          * until we're sure all memory allocation succeeded).
3091          */
3092         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3093         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3094                         num_stream_ctxs, num_streams);
3095
3096         for (i = 0; i < num_eps; i++) {
3097                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3098                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3099                                 num_stream_ctxs,
3100                                 num_streams, mem_flags);
3101                 if (!vdev->eps[ep_index].stream_info)
3102                         goto cleanup;
3103                 /* Set maxPstreams in endpoint context and update deq ptr to
3104                  * point to stream context array. FIXME
3105                  */
3106         }
3107
3108         /* Set up the input context for a configure endpoint command. */
3109         for (i = 0; i < num_eps; i++) {
3110                 struct xhci_ep_ctx *ep_ctx;
3111
3112                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3113                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3114
3115                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3116                                 vdev->out_ctx, ep_index);
3117                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3118                                 vdev->eps[ep_index].stream_info);
3119         }
3120         /* Tell the HW to drop its old copy of the endpoint context info
3121          * and add the updated copy from the input context.
3122          */
3123         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3124                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3125
3126         /* Issue and wait for the configure endpoint command */
3127         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3128                         false, false);
3129
3130         /* xHC rejected the configure endpoint command for some reason, so we
3131          * leave the old ring intact and free our internal streams data
3132          * structure.
3133          */
3134         if (ret < 0)
3135                 goto cleanup;
3136
3137         spin_lock_irqsave(&xhci->lock, flags);
3138         for (i = 0; i < num_eps; i++) {
3139                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3140                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3141                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3142                          udev->slot_id, ep_index);
3143                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3144         }
3145         xhci_free_command(xhci, config_cmd);
3146         spin_unlock_irqrestore(&xhci->lock, flags);
3147
3148         /* Subtract 1 for stream 0, which drivers can't use */
3149         return num_streams - 1;
3150
3151 cleanup:
3152         /* If it didn't work, free the streams! */
3153         for (i = 0; i < num_eps; i++) {
3154                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3155                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3156                 vdev->eps[ep_index].stream_info = NULL;
3157                 /* FIXME Unset maxPstreams in endpoint context and
3158                  * update deq ptr to point to normal string ring.
3159                  */
3160                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3161                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3162                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3163         }
3164         xhci_free_command(xhci, config_cmd);
3165         return -ENOMEM;
3166 }
3167
3168 /* Transition the endpoint from using streams to being a "normal" endpoint
3169  * without streams.
3170  *
3171  * Modify the endpoint context state, submit a configure endpoint command,
3172  * and free all endpoint rings for streams if that completes successfully.
3173  */
3174 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3175                 struct usb_host_endpoint **eps, unsigned int num_eps,
3176                 gfp_t mem_flags)
3177 {
3178         int i, ret;
3179         struct xhci_hcd *xhci;
3180         struct xhci_virt_device *vdev;
3181         struct xhci_command *command;
3182         unsigned int ep_index;
3183         unsigned long flags;
3184         u32 changed_ep_bitmask;
3185
3186         xhci = hcd_to_xhci(hcd);
3187         vdev = xhci->devs[udev->slot_id];
3188
3189         /* Set up a configure endpoint command to remove the streams rings */
3190         spin_lock_irqsave(&xhci->lock, flags);
3191         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3192                         udev, eps, num_eps);
3193         if (changed_ep_bitmask == 0) {
3194                 spin_unlock_irqrestore(&xhci->lock, flags);
3195                 return -EINVAL;
3196         }
3197
3198         /* Use the xhci_command structure from the first endpoint.  We may have
3199          * allocated too many, but the driver may call xhci_free_streams() for
3200          * each endpoint it grouped into one call to xhci_alloc_streams().
3201          */
3202         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3203         command = vdev->eps[ep_index].stream_info->free_streams_command;
3204         for (i = 0; i < num_eps; i++) {
3205                 struct xhci_ep_ctx *ep_ctx;
3206
3207                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3208                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3209                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3210                         EP_GETTING_NO_STREAMS;
3211
3212                 xhci_endpoint_copy(xhci, command->in_ctx,
3213                                 vdev->out_ctx, ep_index);
3214                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3215                                 &vdev->eps[ep_index]);
3216         }
3217         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3218                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3219         spin_unlock_irqrestore(&xhci->lock, flags);
3220
3221         /* Issue and wait for the configure endpoint command,
3222          * which must succeed.
3223          */
3224         ret = xhci_configure_endpoint(xhci, udev, command,
3225                         false, true);
3226
3227         /* xHC rejected the configure endpoint command for some reason, so we
3228          * leave the streams rings intact.
3229          */
3230         if (ret < 0)
3231                 return ret;
3232
3233         spin_lock_irqsave(&xhci->lock, flags);
3234         for (i = 0; i < num_eps; i++) {
3235                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3236                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3237                 vdev->eps[ep_index].stream_info = NULL;
3238                 /* FIXME Unset maxPstreams in endpoint context and
3239                  * update deq ptr to point to normal string ring.
3240                  */
3241                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3242                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3243         }
3244         spin_unlock_irqrestore(&xhci->lock, flags);
3245
3246         return 0;
3247 }
3248
3249 /*
3250  * Deletes endpoint resources for endpoints that were active before a Reset
3251  * Device command, or a Disable Slot command.  The Reset Device command leaves
3252  * the control endpoint intact, whereas the Disable Slot command deletes it.
3253  *
3254  * Must be called with xhci->lock held.
3255  */
3256 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3257         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3258 {
3259         int i;
3260         unsigned int num_dropped_eps = 0;
3261         unsigned int drop_flags = 0;
3262
3263         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3264                 if (virt_dev->eps[i].ring) {
3265                         drop_flags |= 1 << i;
3266                         num_dropped_eps++;
3267                 }
3268         }
3269         xhci->num_active_eps -= num_dropped_eps;
3270         if (num_dropped_eps)
3271                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3272                                 "%u now active.\n",
3273                                 num_dropped_eps, drop_flags,
3274                                 xhci->num_active_eps);
3275 }
3276
3277 /*
3278  * This submits a Reset Device Command, which will set the device state to 0,
3279  * set the device address to 0, and disable all the endpoints except the default
3280  * control endpoint.  The USB core should come back and call
3281  * xhci_address_device(), and then re-set up the configuration.  If this is
3282  * called because of a usb_reset_and_verify_device(), then the old alternate
3283  * settings will be re-installed through the normal bandwidth allocation
3284  * functions.
3285  *
3286  * Wait for the Reset Device command to finish.  Remove all structures
3287  * associated with the endpoints that were disabled.  Clear the input device
3288  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3289  *
3290  * If the virt_dev to be reset does not exist or does not match the udev,
3291  * it means the device is lost, possibly due to the xHC restore error and
3292  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3293  * re-allocate the device.
3294  */
3295 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3296 {
3297         int ret, i;
3298         unsigned long flags;
3299         struct xhci_hcd *xhci;
3300         unsigned int slot_id;
3301         struct xhci_virt_device *virt_dev;
3302         struct xhci_command *reset_device_cmd;
3303         int timeleft;
3304         int last_freed_endpoint;
3305         struct xhci_slot_ctx *slot_ctx;
3306         int old_active_eps = 0;
3307
3308         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3309         if (ret <= 0)
3310                 return ret;
3311         xhci = hcd_to_xhci(hcd);
3312         slot_id = udev->slot_id;
3313         virt_dev = xhci->devs[slot_id];
3314         if (!virt_dev) {
3315                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3316                                 "not exist. Re-allocate the device\n", slot_id);
3317                 ret = xhci_alloc_dev(hcd, udev);
3318                 if (ret == 1)
3319                         return 0;
3320                 else
3321                         return -EINVAL;
3322         }
3323
3324         if (virt_dev->udev != udev) {
3325                 /* If the virt_dev and the udev does not match, this virt_dev
3326                  * may belong to another udev.
3327                  * Re-allocate the device.
3328                  */
3329                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3330                                 "not match the udev. Re-allocate the device\n",
3331                                 slot_id);
3332                 ret = xhci_alloc_dev(hcd, udev);
3333                 if (ret == 1)
3334                         return 0;
3335                 else
3336                         return -EINVAL;
3337         }
3338
3339         /* If device is not setup, there is no point in resetting it */
3340         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3341         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3342                                                 SLOT_STATE_DISABLED)
3343                 return 0;
3344
3345         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3346         /* Allocate the command structure that holds the struct completion.
3347          * Assume we're in process context, since the normal device reset
3348          * process has to wait for the device anyway.  Storage devices are
3349          * reset as part of error handling, so use GFP_NOIO instead of
3350          * GFP_KERNEL.
3351          */
3352         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3353         if (!reset_device_cmd) {
3354                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3355                 return -ENOMEM;
3356         }
3357
3358         /* Attempt to submit the Reset Device command to the command ring */
3359         spin_lock_irqsave(&xhci->lock, flags);
3360         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3361
3362         /* Enqueue pointer can be left pointing to the link TRB,
3363          * we must handle that
3364          */
3365         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3366                 reset_device_cmd->command_trb =
3367                         xhci->cmd_ring->enq_seg->next->trbs;
3368
3369         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3370         ret = xhci_queue_reset_device(xhci, slot_id);
3371         if (ret) {
3372                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3373                 list_del(&reset_device_cmd->cmd_list);
3374                 spin_unlock_irqrestore(&xhci->lock, flags);
3375                 goto command_cleanup;
3376         }
3377         xhci_ring_cmd_db(xhci);
3378         spin_unlock_irqrestore(&xhci->lock, flags);
3379
3380         /* Wait for the Reset Device command to finish */
3381         timeleft = wait_for_completion_interruptible_timeout(
3382                         reset_device_cmd->completion,
3383                         USB_CTRL_SET_TIMEOUT);
3384         if (timeleft <= 0) {
3385                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3386                                 timeleft == 0 ? "Timeout" : "Signal");
3387                 spin_lock_irqsave(&xhci->lock, flags);
3388                 /* The timeout might have raced with the event ring handler, so
3389                  * only delete from the list if the item isn't poisoned.
3390                  */
3391                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3392                         list_del(&reset_device_cmd->cmd_list);
3393                 spin_unlock_irqrestore(&xhci->lock, flags);
3394                 ret = -ETIME;
3395                 goto command_cleanup;
3396         }
3397
3398         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3399          * unless we tried to reset a slot ID that wasn't enabled,
3400          * or the device wasn't in the addressed or configured state.
3401          */
3402         ret = reset_device_cmd->status;
3403         switch (ret) {
3404         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3405         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3406                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3407                                 slot_id,
3408                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3409                 xhci_info(xhci, "Not freeing device rings.\n");
3410                 /* Don't treat this as an error.  May change my mind later. */
3411                 ret = 0;
3412                 goto command_cleanup;
3413         case COMP_SUCCESS:
3414                 xhci_dbg(xhci, "Successful reset device command.\n");
3415                 break;
3416         default:
3417                 if (xhci_is_vendor_info_code(xhci, ret))
3418                         break;
3419                 xhci_warn(xhci, "Unknown completion code %u for "
3420                                 "reset device command.\n", ret);
3421                 ret = -EINVAL;
3422                 goto command_cleanup;
3423         }
3424
3425         /* Free up host controller endpoint resources */
3426         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3427                 spin_lock_irqsave(&xhci->lock, flags);
3428                 /* Don't delete the default control endpoint resources */
3429                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3430                 spin_unlock_irqrestore(&xhci->lock, flags);
3431         }
3432
3433         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3434         last_freed_endpoint = 1;
3435         for (i = 1; i < 31; ++i) {
3436                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3437
3438                 if (ep->ep_state & EP_HAS_STREAMS) {
3439                         xhci_free_stream_info(xhci, ep->stream_info);
3440                         ep->stream_info = NULL;
3441                         ep->ep_state &= ~EP_HAS_STREAMS;
3442                 }
3443
3444                 if (ep->ring) {
3445                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3446                         last_freed_endpoint = i;
3447                 }
3448                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3449                         xhci_drop_ep_from_interval_table(xhci,
3450                                         &virt_dev->eps[i].bw_info,
3451                                         virt_dev->bw_table,
3452                                         udev,
3453                                         &virt_dev->eps[i],
3454                                         virt_dev->tt_info);
3455                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3456         }
3457         /* If necessary, update the number of active TTs on this root port */
3458         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3459
3460         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3461         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3462         ret = 0;
3463
3464 command_cleanup:
3465         xhci_free_command(xhci, reset_device_cmd);
3466         return ret;
3467 }
3468
3469 /*
3470  * At this point, the struct usb_device is about to go away, the device has
3471  * disconnected, and all traffic has been stopped and the endpoints have been
3472  * disabled.  Free any HC data structures associated with that device.
3473  */
3474 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3475 {
3476         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3477         struct xhci_virt_device *virt_dev;
3478         struct device *dev = hcd->self.controller;
3479         unsigned long flags;
3480         u32 state;
3481         int i, ret;
3482
3483 #ifndef CONFIG_USB_DEFAULT_PERSIST
3484         /*
3485          * We called pm_runtime_get_noresume when the device was attached.
3486          * Decrement the counter here to allow controller to runtime suspend
3487          * if no devices remain.
3488          */
3489         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3490                 pm_runtime_put_noidle(dev);
3491 #endif
3492
3493         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3494         /* If the host is halted due to driver unload, we still need to free the
3495          * device.
3496          */
3497         if (ret <= 0 && ret != -ENODEV)
3498                 return;
3499
3500         virt_dev = xhci->devs[udev->slot_id];
3501
3502         /* Stop any wayward timer functions (which may grab the lock) */
3503         for (i = 0; i < 31; ++i) {
3504                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3505                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3506         }
3507
3508         if (udev->usb2_hw_lpm_enabled) {
3509                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3510                 udev->usb2_hw_lpm_enabled = 0;
3511         }
3512
3513         spin_lock_irqsave(&xhci->lock, flags);
3514         /* Don't disable the slot if the host controller is dead. */
3515         state = xhci_readl(xhci, &xhci->op_regs->status);
3516         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3517                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3518                 xhci_free_virt_device(xhci, udev->slot_id);
3519                 spin_unlock_irqrestore(&xhci->lock, flags);
3520                 return;
3521         }
3522
3523         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3524                 spin_unlock_irqrestore(&xhci->lock, flags);
3525                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3526                 return;
3527         }
3528         xhci_ring_cmd_db(xhci);
3529         spin_unlock_irqrestore(&xhci->lock, flags);
3530         /*
3531          * Event command completion handler will free any data structures
3532          * associated with the slot.  XXX Can free sleep?
3533          */
3534 }
3535
3536 /*
3537  * Checks if we have enough host controller resources for the default control
3538  * endpoint.
3539  *
3540  * Must be called with xhci->lock held.
3541  */
3542 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3543 {
3544         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3545                 xhci_dbg(xhci, "Not enough ep ctxs: "
3546                                 "%u active, need to add 1, limit is %u.\n",
3547                                 xhci->num_active_eps, xhci->limit_active_eps);
3548                 return -ENOMEM;
3549         }
3550         xhci->num_active_eps += 1;
3551         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3552                         xhci->num_active_eps);
3553         return 0;
3554 }
3555
3556
3557 /*
3558  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3559  * timed out, or allocating memory failed.  Returns 1 on success.
3560  */
3561 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3562 {
3563         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3564         struct device *dev = hcd->self.controller;
3565         unsigned long flags;
3566         int timeleft;
3567         int ret;
3568         union xhci_trb *cmd_trb;
3569
3570         spin_lock_irqsave(&xhci->lock, flags);
3571         cmd_trb = xhci->cmd_ring->dequeue;
3572         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3573         if (ret) {
3574                 spin_unlock_irqrestore(&xhci->lock, flags);
3575                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3576                 return 0;
3577         }
3578         xhci_ring_cmd_db(xhci);
3579         spin_unlock_irqrestore(&xhci->lock, flags);
3580
3581         /* XXX: how much time for xHC slot assignment? */
3582         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3583                         XHCI_CMD_DEFAULT_TIMEOUT);
3584         if (timeleft <= 0) {
3585                 xhci_warn(xhci, "%s while waiting for a slot\n",
3586                                 timeleft == 0 ? "Timeout" : "Signal");
3587                 /* cancel the enable slot request */
3588                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3589         }
3590
3591         if (!xhci->slot_id) {
3592                 xhci_err(xhci, "Error while assigning device slot ID\n");
3593                 return 0;
3594         }
3595
3596         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3597                 spin_lock_irqsave(&xhci->lock, flags);
3598                 ret = xhci_reserve_host_control_ep_resources(xhci);
3599                 if (ret) {
3600                         spin_unlock_irqrestore(&xhci->lock, flags);
3601                         xhci_warn(xhci, "Not enough host resources, "
3602                                         "active endpoint contexts = %u\n",
3603                                         xhci->num_active_eps);
3604                         goto disable_slot;
3605                 }
3606                 spin_unlock_irqrestore(&xhci->lock, flags);
3607         }
3608         /* Use GFP_NOIO, since this function can be called from
3609          * xhci_discover_or_reset_device(), which may be called as part of
3610          * mass storage driver error handling.
3611          */
3612         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3613                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3614                 goto disable_slot;
3615         }
3616         udev->slot_id = xhci->slot_id;
3617
3618 #ifndef CONFIG_USB_DEFAULT_PERSIST
3619         /*
3620          * If resetting upon resume, we can't put the controller into runtime
3621          * suspend if there is a device attached.
3622          */
3623         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3624                 pm_runtime_get_noresume(dev);
3625 #endif
3626
3627         /* Is this a LS or FS device under a HS hub? */
3628         /* Hub or peripherial? */
3629         return 1;
3630
3631 disable_slot:
3632         /* Disable slot, if we can do it without mem alloc */
3633         spin_lock_irqsave(&xhci->lock, flags);
3634         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3635                 xhci_ring_cmd_db(xhci);
3636         spin_unlock_irqrestore(&xhci->lock, flags);
3637         return 0;
3638 }
3639
3640 /*
3641  * Issue an Address Device command (which will issue a SetAddress request to
3642  * the device).
3643  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3644  * we should only issue and wait on one address command at the same time.
3645  *
3646  * We add one to the device address issued by the hardware because the USB core
3647  * uses address 1 for the root hubs (even though they're not really devices).
3648  */
3649 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3650 {
3651         unsigned long flags;
3652         int timeleft;
3653         struct xhci_virt_device *virt_dev;
3654         int ret = 0;
3655         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3656         struct xhci_slot_ctx *slot_ctx;
3657         struct xhci_input_control_ctx *ctrl_ctx;
3658         u64 temp_64;
3659         union xhci_trb *cmd_trb;
3660
3661         if (!udev->slot_id) {
3662                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3663                 return -EINVAL;
3664         }
3665
3666         virt_dev = xhci->devs[udev->slot_id];
3667
3668         if (WARN_ON(!virt_dev)) {
3669                 /*
3670                  * In plug/unplug torture test with an NEC controller,
3671                  * a zero-dereference was observed once due to virt_dev = 0.
3672                  * Print useful debug rather than crash if it is observed again!
3673                  */
3674                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3675                         udev->slot_id);
3676                 return -EINVAL;
3677         }
3678
3679         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3680         /*
3681          * If this is the first Set Address since device plug-in or
3682          * virt_device realloaction after a resume with an xHCI power loss,
3683          * then set up the slot context.
3684          */
3685         if (!slot_ctx->dev_info)
3686                 xhci_setup_addressable_virt_dev(xhci, udev);
3687         /* Otherwise, update the control endpoint ring enqueue pointer. */
3688         else
3689                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3690         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3691         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3692         ctrl_ctx->drop_flags = 0;
3693
3694         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3695         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3696
3697         spin_lock_irqsave(&xhci->lock, flags);
3698         cmd_trb = xhci->cmd_ring->dequeue;
3699         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3700                                         udev->slot_id);
3701         if (ret) {
3702                 spin_unlock_irqrestore(&xhci->lock, flags);
3703                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3704                 return ret;
3705         }
3706         xhci_ring_cmd_db(xhci);
3707         spin_unlock_irqrestore(&xhci->lock, flags);
3708
3709         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3710         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3711                         XHCI_CMD_DEFAULT_TIMEOUT);
3712         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3713          * the SetAddress() "recovery interval" required by USB and aborting the
3714          * command on a timeout.
3715          */
3716         if (timeleft <= 0) {
3717                 xhci_warn(xhci, "%s while waiting for address device command\n",
3718                                 timeleft == 0 ? "Timeout" : "Signal");
3719                 /* cancel the address device command */
3720                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3721                 if (ret < 0)
3722                         return ret;
3723                 return -ETIME;
3724         }
3725
3726         switch (virt_dev->cmd_status) {
3727         case COMP_CTX_STATE:
3728         case COMP_EBADSLT:
3729                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3730                                 udev->slot_id);
3731                 ret = -EINVAL;
3732                 break;
3733         case COMP_TX_ERR:
3734                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3735                 ret = -EPROTO;
3736                 break;
3737         case COMP_DEV_ERR:
3738                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3739                                 "device command.\n");
3740                 ret = -ENODEV;
3741                 break;
3742         case COMP_SUCCESS:
3743                 xhci_dbg(xhci, "Successful Address Device command\n");
3744                 break;
3745         default:
3746                 xhci_err(xhci, "ERROR: unexpected command completion "
3747                                 "code 0x%x.\n", virt_dev->cmd_status);
3748                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3749                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3750                 ret = -EINVAL;
3751                 break;
3752         }
3753         if (ret) {
3754                 return ret;
3755         }
3756         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3757         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3758         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3759                  udev->slot_id,
3760                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3761                  (unsigned long long)
3762                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3763         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3764                         (unsigned long long)virt_dev->out_ctx->dma);
3765         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3766         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3767         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3768         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3769         /*
3770          * USB core uses address 1 for the roothubs, so we add one to the
3771          * address given back to us by the HC.
3772          */
3773         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3774         /* Use kernel assigned address for devices; store xHC assigned
3775          * address locally. */
3776         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3777                 + 1;
3778         /* Zero the input context control for later use */
3779         ctrl_ctx->add_flags = 0;
3780         ctrl_ctx->drop_flags = 0;
3781
3782         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3783
3784         return 0;
3785 }
3786
3787 #ifdef CONFIG_USB_SUSPEND
3788
3789 /* BESL to HIRD Encoding array for USB2 LPM */
3790 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3791         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3792
3793 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3794 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3795 {
3796         int hird;
3797
3798         if (use_besl) {
3799                 for (hird = 0; hird < 16; hird++) {
3800                         if (xhci_besl_encoding[hird] >= u2del)
3801                                 break;
3802                 }
3803         } else {
3804                 if (u2del <= 50)
3805                         hird = 0;
3806                 else
3807                         hird = (u2del - 51) / 75 + 1;
3808
3809                 if (hird > 15)
3810                         hird = 15;
3811         }
3812
3813         return hird;
3814 }
3815
3816 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3817                                         struct usb_device *udev)
3818 {
3819         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3820         struct dev_info *dev_info;
3821         __le32 __iomem  **port_array;
3822         __le32 __iomem  *addr, *pm_addr;
3823         u32             temp, dev_id;
3824         unsigned int    port_num;
3825         unsigned long   flags;
3826         int             u2del, hird;
3827         int             ret;
3828
3829         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3830                         !udev->lpm_capable)
3831                 return -EINVAL;
3832
3833         /* we only support lpm for non-hub device connected to root hub yet */
3834         if (!udev->parent || udev->parent->parent ||
3835                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3836                 return -EINVAL;
3837
3838         spin_lock_irqsave(&xhci->lock, flags);
3839
3840         /* Look for devices in lpm_failed_devs list */
3841         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3842                         le16_to_cpu(udev->descriptor.idProduct);
3843         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3844                 if (dev_info->dev_id == dev_id) {
3845                         ret = -EINVAL;
3846                         goto finish;
3847                 }
3848         }
3849
3850         port_array = xhci->usb2_ports;
3851         port_num = udev->portnum - 1;
3852
3853         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3854                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3855                 ret = -EINVAL;
3856                 goto finish;
3857         }
3858
3859         /*
3860          * Test USB 2.0 software LPM.
3861          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3862          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3863          * in the June 2011 errata release.
3864          */
3865         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3866         /*
3867          * Set L1 Device Slot and HIRD/BESL.
3868          * Check device's USB 2.0 extension descriptor to determine whether
3869          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3870          */
3871         pm_addr = port_array[port_num] + 1;
3872         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3873         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3874                 hird = xhci_calculate_hird_besl(u2del, 1);
3875         else
3876                 hird = xhci_calculate_hird_besl(u2del, 0);
3877
3878         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3879         xhci_writel(xhci, temp, pm_addr);
3880
3881         /* Set port link state to U2(L1) */
3882         addr = port_array[port_num];
3883         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3884
3885         /* wait for ACK */
3886         spin_unlock_irqrestore(&xhci->lock, flags);
3887         msleep(10);
3888         spin_lock_irqsave(&xhci->lock, flags);
3889
3890         /* Check L1 Status */
3891         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3892         if (ret != -ETIMEDOUT) {
3893                 /* enter L1 successfully */
3894                 temp = xhci_readl(xhci, addr);
3895                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3896                                 port_num, temp);
3897                 ret = 0;
3898         } else {
3899                 temp = xhci_readl(xhci, pm_addr);
3900                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3901                                 port_num, temp & PORT_L1S_MASK);
3902                 ret = -EINVAL;
3903         }
3904
3905         /* Resume the port */
3906         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3907
3908         spin_unlock_irqrestore(&xhci->lock, flags);
3909         msleep(10);
3910         spin_lock_irqsave(&xhci->lock, flags);
3911
3912         /* Clear PLC */
3913         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3914
3915         /* Check PORTSC to make sure the device is in the right state */
3916         if (!ret) {
3917                 temp = xhci_readl(xhci, addr);
3918                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3919                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3920                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3921                         xhci_dbg(xhci, "port L1 resume fail\n");
3922                         ret = -EINVAL;
3923                 }
3924         }
3925
3926         if (ret) {
3927                 /* Insert dev to lpm_failed_devs list */
3928                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3929                                 "re-enumerate\n");
3930                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3931                 if (!dev_info) {
3932                         ret = -ENOMEM;
3933                         goto finish;
3934                 }
3935                 dev_info->dev_id = dev_id;
3936                 INIT_LIST_HEAD(&dev_info->list);
3937                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3938         } else {
3939                 xhci_ring_device(xhci, udev->slot_id);
3940         }
3941
3942 finish:
3943         spin_unlock_irqrestore(&xhci->lock, flags);
3944         return ret;
3945 }
3946
3947 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3948                         struct usb_device *udev, int enable)
3949 {
3950         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3951         __le32 __iomem  **port_array;
3952         __le32 __iomem  *pm_addr;
3953         u32             temp;
3954         unsigned int    port_num;
3955         unsigned long   flags;
3956         int             u2del, hird;
3957
3958         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3959                         !udev->lpm_capable)
3960                 return -EPERM;
3961
3962         if (!udev->parent || udev->parent->parent ||
3963                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3964                 return -EPERM;
3965
3966         if (udev->usb2_hw_lpm_capable != 1)
3967                 return -EPERM;
3968
3969         spin_lock_irqsave(&xhci->lock, flags);
3970
3971         port_array = xhci->usb2_ports;
3972         port_num = udev->portnum - 1;
3973         pm_addr = port_array[port_num] + 1;
3974         temp = xhci_readl(xhci, pm_addr);
3975
3976         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3977                         enable ? "enable" : "disable", port_num);
3978
3979         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3980         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3981                 hird = xhci_calculate_hird_besl(u2del, 1);
3982         else
3983                 hird = xhci_calculate_hird_besl(u2del, 0);
3984
3985         if (enable) {
3986                 temp &= ~PORT_HIRD_MASK;
3987                 temp |= PORT_HIRD(hird) | PORT_RWE;
3988                 xhci_writel(xhci, temp, pm_addr);
3989                 temp = xhci_readl(xhci, pm_addr);
3990                 temp |= PORT_HLE;
3991                 xhci_writel(xhci, temp, pm_addr);
3992         } else {
3993                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3994                 xhci_writel(xhci, temp, pm_addr);
3995         }
3996
3997         spin_unlock_irqrestore(&xhci->lock, flags);
3998         return 0;
3999 }
4000
4001 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4002 {
4003         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4004         int             ret;
4005
4006         ret = xhci_usb2_software_lpm_test(hcd, udev);
4007         if (!ret) {
4008                 xhci_dbg(xhci, "software LPM test succeed\n");
4009                 if (xhci->hw_lpm_support == 1) {
4010                         udev->usb2_hw_lpm_capable = 1;
4011                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4012                         if (!ret)
4013                                 udev->usb2_hw_lpm_enabled = 1;
4014                 }
4015         }
4016
4017         return 0;
4018 }
4019
4020 #else
4021
4022 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4023                                 struct usb_device *udev, int enable)
4024 {
4025         return 0;
4026 }
4027
4028 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4029 {
4030         return 0;
4031 }
4032
4033 #endif /* CONFIG_USB_SUSPEND */
4034
4035 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4036  * internal data structures for the device.
4037  */
4038 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4039                         struct usb_tt *tt, gfp_t mem_flags)
4040 {
4041         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4042         struct xhci_virt_device *vdev;
4043         struct xhci_command *config_cmd;
4044         struct xhci_input_control_ctx *ctrl_ctx;
4045         struct xhci_slot_ctx *slot_ctx;
4046         unsigned long flags;
4047         unsigned think_time;
4048         int ret;
4049
4050         /* Ignore root hubs */
4051         if (!hdev->parent)
4052                 return 0;
4053
4054         vdev = xhci->devs[hdev->slot_id];
4055         if (!vdev) {
4056                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4057                 return -EINVAL;
4058         }
4059         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4060         if (!config_cmd) {
4061                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4062                 return -ENOMEM;
4063         }
4064
4065         spin_lock_irqsave(&xhci->lock, flags);
4066         if (hdev->speed == USB_SPEED_HIGH &&
4067                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4068                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4069                 xhci_free_command(xhci, config_cmd);
4070                 spin_unlock_irqrestore(&xhci->lock, flags);
4071                 return -ENOMEM;
4072         }
4073
4074         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4075         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4076         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4077         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4078         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4079         if (tt->multi)
4080                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4081         if (xhci->hci_version > 0x95) {
4082                 xhci_dbg(xhci, "xHCI version %x needs hub "
4083                                 "TT think time and number of ports\n",
4084                                 (unsigned int) xhci->hci_version);
4085                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4086                 /* Set TT think time - convert from ns to FS bit times.
4087                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4088                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4089                  *
4090                  * xHCI 1.0: this field shall be 0 if the device is not a
4091                  * High-spped hub.
4092                  */
4093                 think_time = tt->think_time;
4094                 if (think_time != 0)
4095                         think_time = (think_time / 666) - 1;
4096                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4097                         slot_ctx->tt_info |=
4098                                 cpu_to_le32(TT_THINK_TIME(think_time));
4099         } else {
4100                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4101                                 "TT think time or number of ports\n",
4102                                 (unsigned int) xhci->hci_version);
4103         }
4104         slot_ctx->dev_state = 0;
4105         spin_unlock_irqrestore(&xhci->lock, flags);
4106
4107         xhci_dbg(xhci, "Set up %s for hub device.\n",
4108                         (xhci->hci_version > 0x95) ?
4109                         "configure endpoint" : "evaluate context");
4110         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4111         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4112
4113         /* Issue and wait for the configure endpoint or
4114          * evaluate context command.
4115          */
4116         if (xhci->hci_version > 0x95)
4117                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4118                                 false, false);
4119         else
4120                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4121                                 true, false);
4122
4123         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4124         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4125
4126         xhci_free_command(xhci, config_cmd);
4127         return ret;
4128 }
4129
4130 int xhci_get_frame(struct usb_hcd *hcd)
4131 {
4132         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4133         /* EHCI mods by the periodic size.  Why? */
4134         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4135 }
4136
4137 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4138 {
4139         struct xhci_hcd         *xhci;
4140         struct device           *dev = hcd->self.controller;
4141         int                     retval;
4142         u32                     temp;
4143
4144         hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
4145
4146         if (usb_hcd_is_primary_hcd(hcd)) {
4147                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4148                 if (!xhci)
4149                         return -ENOMEM;
4150                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4151                 xhci->main_hcd = hcd;
4152                 /* Mark the first roothub as being USB 2.0.
4153                  * The xHCI driver will register the USB 3.0 roothub.
4154                  */
4155                 hcd->speed = HCD_USB2;
4156                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4157                 /*
4158                  * USB 2.0 roothub under xHCI has an integrated TT,
4159                  * (rate matching hub) as opposed to having an OHCI/UHCI
4160                  * companion controller.
4161                  */
4162                 hcd->has_tt = 1;
4163         } else {
4164                 /* xHCI private pointer was set in xhci_pci_probe for the second
4165                  * registered roothub.
4166                  */
4167                 xhci = hcd_to_xhci(hcd);
4168                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4169                 if (HCC_64BIT_ADDR(temp)) {
4170                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4171                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4172                 } else {
4173                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4174                 }
4175                 return 0;
4176         }
4177
4178         xhci->cap_regs = hcd->regs;
4179         xhci->op_regs = hcd->regs +
4180                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4181         xhci->run_regs = hcd->regs +
4182                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4183         /* Cache read-only capability registers */
4184         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4185         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4186         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4187         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4188         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4189         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4190         xhci_print_registers(xhci);
4191
4192         get_quirks(dev, xhci);
4193
4194         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4195          * success event after a short transfer. This quirk will ignore such
4196          * spurious event.
4197          */
4198         if (xhci->hci_version > 0x96)
4199                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4200
4201         /* Make sure the HC is halted. */
4202         retval = xhci_halt(xhci);
4203         if (retval)
4204                 goto error;
4205
4206         xhci_dbg(xhci, "Resetting HCD\n");
4207         /* Reset the internal HC memory state and registers. */
4208         retval = xhci_reset(xhci);
4209         if (retval)
4210                 goto error;
4211         xhci_dbg(xhci, "Reset complete\n");
4212
4213         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4214         if (HCC_64BIT_ADDR(temp)) {
4215                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4216                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4217         } else {
4218                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4219         }
4220
4221         xhci_dbg(xhci, "Calling HCD init\n");
4222         /* Initialize HCD and host controller data structures. */
4223         retval = xhci_init(hcd);
4224         if (retval)
4225                 goto error;
4226         xhci_dbg(xhci, "Called HCD init\n");
4227         return 0;
4228 error:
4229         kfree(xhci);
4230         return retval;
4231 }
4232
4233 MODULE_DESCRIPTION(DRIVER_DESC);
4234 MODULE_AUTHOR(DRIVER_AUTHOR);
4235 MODULE_LICENSE("GPL");
4236
4237 static int __init xhci_hcd_init(void)
4238 {
4239         int retval;
4240
4241         retval = xhci_register_pci();
4242         if (retval < 0) {
4243                 printk(KERN_DEBUG "Problem registering PCI driver.");
4244                 return retval;
4245         }
4246         /*
4247          * Check the compiler generated sizes of structures that must be laid
4248          * out in specific ways for hardware access.
4249          */
4250         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4251         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4252         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4253         /* xhci_device_control has eight fields, and also
4254          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4255          */
4256         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4257         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4258         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4259         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4260         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4261         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4262         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4263         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4264         return 0;
4265 }
4266 module_init(xhci_hcd_init);
4267
4268 static void __exit xhci_hcd_cleanup(void)
4269 {
4270         xhci_unregister_pci();
4271 }
4272 module_exit(xhci_hcd_cleanup);