2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
36 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
45 * handshake - spin reading hc until handshake completes or fails
46 * @ptr: address of hc register to be read
47 * @mask: bits to look at in result of read
48 * @done: value of those bits when handshake succeeds
49 * @usec: timeout in microseconds
51 * Returns negative errno, or zero on success
53 * Success happens when the "mask" bits have the specified value (hardware
54 * handshake done). There are two failure modes: "usec" have passed (major
55 * hardware flakeout), or the register reads as all-ones (hardware removed).
57 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58 u32 mask, u32 done, int usec)
63 result = xhci_readl(xhci, ptr);
64 if (result == ~(u32)0) /* card removed */
76 * Disable interrupts and begin the xHCI halting process.
78 void xhci_quiesce(struct xhci_hcd *xhci)
85 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
89 cmd = xhci_readl(xhci, &xhci->op_regs->command);
91 xhci_writel(xhci, cmd, &xhci->op_regs->command);
95 * Force HC into halt state.
97 * Disable any IRQs and clear the run/stop bit.
98 * HC will complete any current and actively pipelined transactions, and
99 * should halt within 16 ms of the run/stop bit being cleared.
100 * Read HC Halted bit in the status register to see when the HC is finished.
102 int xhci_halt(struct xhci_hcd *xhci)
105 xhci_dbg(xhci, "// Halt the HC\n");
108 ret = handshake(xhci, &xhci->op_regs->status,
109 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
111 xhci->xhc_state |= XHCI_STATE_HALTED;
112 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
114 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120 * Set the run bit and wait for the host to be running.
122 static int xhci_start(struct xhci_hcd *xhci)
127 temp = xhci_readl(xhci, &xhci->op_regs->command);
129 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
131 xhci_writel(xhci, temp, &xhci->op_regs->command);
134 * Wait for the HCHalted Status bit to be 0 to indicate the host is
137 ret = handshake(xhci, &xhci->op_regs->status,
138 STS_HALT, 0, XHCI_MAX_HALT_USEC);
139 if (ret == -ETIMEDOUT)
140 xhci_err(xhci, "Host took too long to start, "
141 "waited %u microseconds.\n",
144 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
152 * This resets pipelines, timers, counters, state machines, etc.
153 * Transactions will be terminated immediately, and operational registers
154 * will be set to their defaults.
156 int xhci_reset(struct xhci_hcd *xhci)
162 state = xhci_readl(xhci, &xhci->op_regs->status);
163 if ((state & STS_HALT) == 0) {
164 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 xhci_dbg(xhci, "// Reset the HC\n");
169 command = xhci_readl(xhci, &xhci->op_regs->command);
170 command |= CMD_RESET;
171 xhci_writel(xhci, command, &xhci->op_regs->command);
173 /* Existing Intel xHCI controllers require a delay of 1 mS,
174 * after setting the CMD_RESET bit, and before accessing any
175 * HC registers. This allows the HC to complete the
176 * reset operation and be ready for HC register access.
177 * Without this delay, the subsequent HC register access,
178 * may result in a system hang very rarely.
180 if (xhci->quirks & XHCI_INTEL_HOST)
183 ret = handshake(xhci, &xhci->op_regs->command,
184 CMD_RESET, 0, 10 * 1000 * 1000);
188 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
190 * xHCI cannot write to any doorbells or operational registers other
191 * than status until the "Controller Not Ready" flag is cleared.
193 return handshake(xhci, &xhci->op_regs->status,
194 STS_CNR, 0, 10 * 1000 * 1000);
198 static int xhci_free_msi(struct xhci_hcd *xhci)
202 if (!xhci->msix_entries)
205 for (i = 0; i < xhci->msix_count; i++)
206 if (xhci->msix_entries[i].vector)
207 free_irq(xhci->msix_entries[i].vector,
215 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
220 ret = pci_enable_msi(pdev);
222 xhci_dbg(xhci, "failed to allocate MSI entry\n");
226 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
227 0, "xhci_hcd", xhci_to_hcd(xhci));
229 xhci_dbg(xhci, "disable MSI interrupt\n");
230 pci_disable_msi(pdev);
238 * free all IRQs request
240 static void xhci_free_irq(struct xhci_hcd *xhci)
242 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
245 /* return if using legacy interrupt */
246 if (xhci_to_hcd(xhci)->irq >= 0)
249 ret = xhci_free_msi(xhci);
253 free_irq(pdev->irq, xhci_to_hcd(xhci));
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
264 struct usb_hcd *hcd = xhci_to_hcd(xhci);
265 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
268 * calculate number of msi-x vectors supported.
269 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270 * with max number of interrupters based on the xhci HCSPARAMS1.
271 * - num_online_cpus: maximum msi-x vectors per CPUs core.
272 * Add additional 1 vector to ensure always available interrupt.
274 xhci->msix_count = min(num_online_cpus() + 1,
275 HCS_MAX_INTRS(xhci->hcs_params1));
278 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
280 if (!xhci->msix_entries) {
281 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
285 for (i = 0; i < xhci->msix_count; i++) {
286 xhci->msix_entries[i].entry = i;
287 xhci->msix_entries[i].vector = 0;
290 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
292 xhci_dbg(xhci, "Failed to enable MSI-X\n");
296 for (i = 0; i < xhci->msix_count; i++) {
297 ret = request_irq(xhci->msix_entries[i].vector,
298 (irq_handler_t)xhci_msi_irq,
299 0, "xhci_hcd", xhci_to_hcd(xhci));
304 hcd->msix_enabled = 1;
308 xhci_dbg(xhci, "disable MSI-X interrupt\n");
310 pci_disable_msix(pdev);
312 kfree(xhci->msix_entries);
313 xhci->msix_entries = NULL;
317 /* Free any IRQs and disable MSI-X */
318 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
320 struct usb_hcd *hcd = xhci_to_hcd(xhci);
321 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
325 if (xhci->msix_entries) {
326 pci_disable_msix(pdev);
327 kfree(xhci->msix_entries);
328 xhci->msix_entries = NULL;
330 pci_disable_msi(pdev);
333 hcd->msix_enabled = 0;
337 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
341 if (xhci->msix_entries) {
342 for (i = 0; i < xhci->msix_count; i++)
343 synchronize_irq(xhci->msix_entries[i].vector);
347 static int xhci_try_enable_msi(struct usb_hcd *hcd)
349 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
350 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
354 * Some Fresco Logic host controllers advertise MSI, but fail to
355 * generate interrupts. Don't even try to enable MSI.
357 if (xhci->quirks & XHCI_BROKEN_MSI)
360 /* unregister the legacy interrupt */
362 free_irq(hcd->irq, hcd);
365 ret = xhci_setup_msix(xhci);
367 /* fall back to msi*/
368 ret = xhci_setup_msi(xhci);
371 /* hcd->irq is -1, we have MSI */
375 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
380 /* fall back to legacy interrupt*/
381 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
382 hcd->irq_descr, hcd);
384 xhci_err(xhci, "request interrupt %d failed\n",
388 hcd->irq = pdev->irq;
394 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
399 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
403 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
409 static void compliance_mode_recovery(unsigned long arg)
411 struct xhci_hcd *xhci;
416 xhci = (struct xhci_hcd *)arg;
418 for (i = 0; i < xhci->num_usb3_ports; i++) {
419 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
420 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
422 * Compliance Mode Detected. Letting USB Core
423 * handle the Warm Reset
425 xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
427 xhci_dbg(xhci, "Attempting Recovery routine!\n");
428 hcd = xhci->shared_hcd;
430 if (hcd->state == HC_STATE_SUSPENDED)
431 usb_hcd_resume_root_hub(hcd);
433 usb_hcd_poll_rh_status(hcd);
437 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
438 mod_timer(&xhci->comp_mode_recovery_timer,
439 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
443 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
444 * that causes ports behind that hardware to enter compliance mode sometimes.
445 * The quirk creates a timer that polls every 2 seconds the link state of
446 * each host controller's port and recovers it by issuing a Warm reset
447 * if Compliance mode is detected, otherwise the port will become "dead" (no
448 * device connections or disconnections will be detected anymore). Becasue no
449 * status event is generated when entering compliance mode (per xhci spec),
450 * this quirk is needed on systems that have the failing hardware installed.
452 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
454 xhci->port_status_u0 = 0;
455 init_timer(&xhci->comp_mode_recovery_timer);
457 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
458 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
459 xhci->comp_mode_recovery_timer.expires = jiffies +
460 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
462 set_timer_slack(&xhci->comp_mode_recovery_timer,
463 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
464 add_timer(&xhci->comp_mode_recovery_timer);
465 xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
469 * This function identifies the systems that have installed the SN65LVPE502CP
470 * USB3.0 re-driver and that need the Compliance Mode Quirk.
472 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
474 static bool compliance_mode_recovery_timer_quirk_check(void)
476 const char *dmi_product_name, *dmi_sys_vendor;
478 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
479 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
480 if (!dmi_product_name || !dmi_sys_vendor)
483 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
486 if (strstr(dmi_product_name, "Z420") ||
487 strstr(dmi_product_name, "Z620") ||
488 strstr(dmi_product_name, "Z820") ||
489 strstr(dmi_product_name, "Z1 Workstation"))
495 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
497 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
502 * Initialize memory for HCD and xHC (one-time init).
504 * Program the PAGESIZE register, initialize the device context array, create
505 * device contexts (?), set up a command ring segment (or two?), create event
506 * ring (one for now).
508 int xhci_init(struct usb_hcd *hcd)
510 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
513 xhci_dbg(xhci, "xhci_init\n");
514 spin_lock_init(&xhci->lock);
515 if (xhci->hci_version == 0x95 && link_quirk) {
516 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
517 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
519 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
521 retval = xhci_mem_init(xhci, GFP_KERNEL);
522 xhci_dbg(xhci, "Finished xhci_init\n");
524 /* Initializing Compliance Mode Recovery Data If Needed */
525 if (compliance_mode_recovery_timer_quirk_check()) {
526 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
527 compliance_mode_recovery_timer_init(xhci);
533 /*-------------------------------------------------------------------------*/
536 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
537 static void xhci_event_ring_work(unsigned long arg)
542 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
545 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
547 spin_lock_irqsave(&xhci->lock, flags);
548 temp = xhci_readl(xhci, &xhci->op_regs->status);
549 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
550 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
551 (xhci->xhc_state & XHCI_STATE_HALTED)) {
552 xhci_dbg(xhci, "HW died, polling stopped.\n");
553 spin_unlock_irqrestore(&xhci->lock, flags);
557 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
558 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
559 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
560 xhci->error_bitmask = 0;
561 xhci_dbg(xhci, "Event ring:\n");
562 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
563 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
564 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
565 temp_64 &= ~ERST_PTR_MASK;
566 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
567 xhci_dbg(xhci, "Command ring:\n");
568 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
569 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
570 xhci_dbg_cmd_ptrs(xhci);
571 for (i = 0; i < MAX_HC_SLOTS; ++i) {
574 for (j = 0; j < 31; ++j) {
575 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
578 spin_unlock_irqrestore(&xhci->lock, flags);
581 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
583 xhci_dbg(xhci, "Quit polling the event ring.\n");
587 static int xhci_run_finished(struct xhci_hcd *xhci)
589 if (xhci_start(xhci)) {
593 xhci->shared_hcd->state = HC_STATE_RUNNING;
594 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
596 if (xhci->quirks & XHCI_NEC_HOST)
597 xhci_ring_cmd_db(xhci);
599 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
604 * Start the HC after it was halted.
606 * This function is called by the USB core when the HC driver is added.
607 * Its opposite is xhci_stop().
609 * xhci_init() must be called once before this function can be called.
610 * Reset the HC, enable device slot contexts, program DCBAAP, and
611 * set command ring pointer and event ring pointer.
613 * Setup MSI-X vectors and enable interrupts.
615 int xhci_run(struct usb_hcd *hcd)
620 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
622 /* Start the xHCI host controller running only after the USB 2.0 roothub
626 hcd->uses_new_polling = 1;
627 if (!usb_hcd_is_primary_hcd(hcd))
628 return xhci_run_finished(xhci);
630 xhci_dbg(xhci, "xhci_run\n");
632 ret = xhci_try_enable_msi(hcd);
636 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
637 init_timer(&xhci->event_ring_timer);
638 xhci->event_ring_timer.data = (unsigned long) xhci;
639 xhci->event_ring_timer.function = xhci_event_ring_work;
640 /* Poll the event ring */
641 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
643 xhci_dbg(xhci, "Setting event ring polling timer\n");
644 add_timer(&xhci->event_ring_timer);
647 xhci_dbg(xhci, "Command ring memory map follows:\n");
648 xhci_debug_ring(xhci, xhci->cmd_ring);
649 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
650 xhci_dbg_cmd_ptrs(xhci);
652 xhci_dbg(xhci, "ERST memory map follows:\n");
653 xhci_dbg_erst(xhci, &xhci->erst);
654 xhci_dbg(xhci, "Event ring:\n");
655 xhci_debug_ring(xhci, xhci->event_ring);
656 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
657 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658 temp_64 &= ~ERST_PTR_MASK;
659 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
661 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
662 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
663 temp &= ~ER_IRQ_INTERVAL_MASK;
665 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
667 /* Set the HCD state before we enable the irqs */
668 temp = xhci_readl(xhci, &xhci->op_regs->command);
670 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
672 xhci_writel(xhci, temp, &xhci->op_regs->command);
674 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
675 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
676 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
677 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
678 &xhci->ir_set->irq_pending);
679 xhci_print_ir_set(xhci, 0);
681 if (xhci->quirks & XHCI_NEC_HOST)
682 xhci_queue_vendor_command(xhci, 0, 0, 0,
683 TRB_TYPE(TRB_NEC_GET_FW));
685 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
689 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
691 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
693 spin_lock_irq(&xhci->lock);
696 /* The shared_hcd is going to be deallocated shortly (the USB core only
697 * calls this function when allocation fails in usb_add_hcd(), or
698 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
700 xhci->shared_hcd = NULL;
701 spin_unlock_irq(&xhci->lock);
707 * This function is called by the USB core when the HC driver is removed.
708 * Its opposite is xhci_run().
710 * Disable device contexts, disable IRQs, and quiesce the HC.
711 * Reset the HC, finish any completed transactions, and cleanup memory.
713 void xhci_stop(struct usb_hcd *hcd)
716 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
718 if (!usb_hcd_is_primary_hcd(hcd)) {
719 xhci_only_stop_hcd(xhci->shared_hcd);
723 spin_lock_irq(&xhci->lock);
724 /* Make sure the xHC is halted for a USB3 roothub
725 * (xhci_stop() could be called as part of failed init).
729 spin_unlock_irq(&xhci->lock);
731 xhci_cleanup_msix(xhci);
733 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
734 /* Tell the event ring poll function not to reschedule */
736 del_timer_sync(&xhci->event_ring_timer);
739 /* Deleting Compliance Mode Recovery Timer */
740 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741 (!(xhci_all_ports_seen_u0(xhci))))
742 del_timer_sync(&xhci->comp_mode_recovery_timer);
744 if (xhci->quirks & XHCI_AMD_PLL_FIX)
747 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
748 temp = xhci_readl(xhci, &xhci->op_regs->status);
749 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
750 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
751 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
752 &xhci->ir_set->irq_pending);
753 xhci_print_ir_set(xhci, 0);
755 xhci_dbg(xhci, "cleaning up memory\n");
756 xhci_mem_cleanup(xhci);
757 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
758 xhci_readl(xhci, &xhci->op_regs->status));
762 * Shutdown HC (not bus-specific)
764 * This is called when the machine is rebooting or halting. We assume that the
765 * machine will be powered off, and the HC's internal state will be reset.
766 * Don't bother to free memory.
768 * This will only ever be called with the main usb_hcd (the USB3 roothub).
770 void xhci_shutdown(struct usb_hcd *hcd)
772 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
774 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
775 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
777 spin_lock_irq(&xhci->lock);
779 /* Workaround for spurious wakeups at shutdown with HSW */
780 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
782 spin_unlock_irq(&xhci->lock);
784 xhci_cleanup_msix(xhci);
786 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
787 xhci_readl(xhci, &xhci->op_regs->status));
789 /* Yet another workaround for spurious wakeups at shutdown with HSW */
790 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
791 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
795 static void xhci_save_registers(struct xhci_hcd *xhci)
797 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
798 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
799 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
800 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
801 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
802 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
803 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
804 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
805 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
808 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
811 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
812 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
813 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
814 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
815 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
816 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
817 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
818 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
821 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
825 /* step 2: initialize command ring buffer */
826 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
827 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
828 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
829 xhci->cmd_ring->dequeue) &
830 (u64) ~CMD_RING_RSVD_BITS) |
831 xhci->cmd_ring->cycle_state;
832 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
833 (long unsigned long) val_64);
834 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
838 * The whole command ring must be cleared to zero when we suspend the host.
840 * The host doesn't save the command ring pointer in the suspend well, so we
841 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
842 * aligned, because of the reserved bits in the command ring dequeue pointer
843 * register. Therefore, we can't just set the dequeue pointer back in the
844 * middle of the ring (TRBs are 16-byte aligned).
846 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
848 struct xhci_ring *ring;
849 struct xhci_segment *seg;
851 ring = xhci->cmd_ring;
855 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
856 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
857 cpu_to_le32(~TRB_CYCLE);
859 } while (seg != ring->deq_seg);
861 /* Reset the software enqueue and dequeue pointers */
862 ring->deq_seg = ring->first_seg;
863 ring->dequeue = ring->first_seg->trbs;
864 ring->enq_seg = ring->deq_seg;
865 ring->enqueue = ring->dequeue;
868 * Ring is now zeroed, so the HW should look for change of ownership
869 * when the cycle bit is set to 1.
871 ring->cycle_state = 1;
874 * Reset the hardware dequeue pointer.
875 * Yes, this will need to be re-written after resume, but we're paranoid
876 * and want to make sure the hardware doesn't access bogus memory
877 * because, say, the BIOS or an SMI started the host without changing
878 * the command ring pointers.
880 xhci_set_cmd_ring_deq(xhci);
883 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
886 __le32 __iomem **port_array;
890 spin_lock_irqsave(&xhci->lock, flags);
892 /* disble usb3 ports Wake bits*/
893 port_index = xhci->num_usb3_ports;
894 port_array = xhci->usb3_ports;
895 while (port_index--) {
896 t1 = readl(port_array[port_index]);
897 t1 = xhci_port_state_to_neutral(t1);
898 t2 = t1 & ~PORT_WAKE_BITS;
900 writel(t2, port_array[port_index]);
903 /* disble usb2 ports Wake bits*/
904 port_index = xhci->num_usb2_ports;
905 port_array = xhci->usb2_ports;
906 while (port_index--) {
907 t1 = readl(port_array[port_index]);
908 t1 = xhci_port_state_to_neutral(t1);
909 t2 = t1 & ~PORT_WAKE_BITS;
911 writel(t2, port_array[port_index]);
914 spin_unlock_irqrestore(&xhci->lock, flags);
918 * Stop HC (not bus-specific)
920 * This is called when the machine transition into S3/S4 mode.
923 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
926 unsigned int delay = XHCI_MAX_HALT_USEC;
927 struct usb_hcd *hcd = xhci_to_hcd(xhci);
930 /* Clear root port wake on bits if wakeup not allowed. */
932 xhci_disable_port_wake_on_bits(xhci);
934 /* Don't poll the roothubs on bus suspend. */
935 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
936 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
937 del_timer_sync(&hcd->rh_timer);
939 spin_lock_irq(&xhci->lock);
940 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
941 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
942 /* step 1: stop endpoint */
943 /* skipped assuming that port suspend has done */
945 /* step 2: clear Run/Stop bit */
946 command = xhci_readl(xhci, &xhci->op_regs->command);
948 xhci_writel(xhci, command, &xhci->op_regs->command);
950 /* Some chips from Fresco Logic need an extraordinary delay */
951 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
953 if (handshake(xhci, &xhci->op_regs->status,
954 STS_HALT, STS_HALT, delay)) {
955 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
956 spin_unlock_irq(&xhci->lock);
959 xhci_clear_command_ring(xhci);
961 /* step 3: save registers */
962 xhci_save_registers(xhci);
964 /* step 4: set CSS flag */
965 command = xhci_readl(xhci, &xhci->op_regs->command);
967 xhci_writel(xhci, command, &xhci->op_regs->command);
968 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
969 xhci_warn(xhci, "WARN: xHC save state timeout\n");
970 spin_unlock_irq(&xhci->lock);
973 spin_unlock_irq(&xhci->lock);
976 * Deleting Compliance Mode Recovery Timer because the xHCI Host
977 * is about to be suspended.
979 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
980 (!(xhci_all_ports_seen_u0(xhci)))) {
981 del_timer_sync(&xhci->comp_mode_recovery_timer);
982 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
985 /* step 5: remove core well power */
986 /* synchronize irq when using MSI-X */
987 xhci_msix_sync_irqs(xhci);
993 * start xHC (not bus-specific)
995 * This is called when the machine transition from S3/S4 mode.
998 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1000 u32 command, temp = 0, status;
1001 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1002 struct usb_hcd *secondary_hcd;
1004 bool comp_timer_running = false;
1006 /* Wait a bit if either of the roothubs need to settle from the
1007 * transition into bus suspend.
1009 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1010 time_before(jiffies,
1011 xhci->bus_state[1].next_statechange))
1014 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1015 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1017 spin_lock_irq(&xhci->lock);
1018 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1022 /* step 1: restore register */
1023 xhci_restore_registers(xhci);
1024 /* step 2: initialize command ring buffer */
1025 xhci_set_cmd_ring_deq(xhci);
1026 /* step 3: restore state and start state*/
1027 /* step 3: set CRS flag */
1028 command = xhci_readl(xhci, &xhci->op_regs->command);
1030 xhci_writel(xhci, command, &xhci->op_regs->command);
1031 if (handshake(xhci, &xhci->op_regs->status,
1032 STS_RESTORE, 0, 10 * 1000)) {
1033 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1034 spin_unlock_irq(&xhci->lock);
1037 temp = xhci_readl(xhci, &xhci->op_regs->status);
1040 /* If restore operation fails, re-initialize the HC during resume */
1041 if ((temp & STS_SRE) || hibernated) {
1043 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1044 !(xhci_all_ports_seen_u0(xhci))) {
1045 del_timer_sync(&xhci->comp_mode_recovery_timer);
1046 xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1049 /* Let the USB core know _both_ roothubs lost power. */
1050 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1051 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1053 xhci_dbg(xhci, "Stop HCD\n");
1056 spin_unlock_irq(&xhci->lock);
1057 xhci_cleanup_msix(xhci);
1059 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1060 /* Tell the event ring poll function not to reschedule */
1062 del_timer_sync(&xhci->event_ring_timer);
1065 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1066 temp = xhci_readl(xhci, &xhci->op_regs->status);
1067 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1068 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1069 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1070 &xhci->ir_set->irq_pending);
1071 xhci_print_ir_set(xhci, 0);
1073 xhci_dbg(xhci, "cleaning up memory\n");
1074 xhci_mem_cleanup(xhci);
1075 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1076 xhci_readl(xhci, &xhci->op_regs->status));
1078 /* USB core calls the PCI reinit and start functions twice:
1079 * first with the primary HCD, and then with the secondary HCD.
1080 * If we don't do the same, the host will never be started.
1082 if (!usb_hcd_is_primary_hcd(hcd))
1083 secondary_hcd = hcd;
1085 secondary_hcd = xhci->shared_hcd;
1087 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1088 retval = xhci_init(hcd->primary_hcd);
1091 comp_timer_running = true;
1093 xhci_dbg(xhci, "Start the primary HCD\n");
1094 retval = xhci_run(hcd->primary_hcd);
1096 xhci_dbg(xhci, "Start the secondary HCD\n");
1097 retval = xhci_run(secondary_hcd);
1099 hcd->state = HC_STATE_SUSPENDED;
1100 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1104 /* step 4: set Run/Stop bit */
1105 command = xhci_readl(xhci, &xhci->op_regs->command);
1107 xhci_writel(xhci, command, &xhci->op_regs->command);
1108 handshake(xhci, &xhci->op_regs->status, STS_HALT,
1111 /* step 5: walk topology and initialize portsc,
1112 * portpmsc and portli
1114 /* this is done in bus_resume */
1116 /* step 6: restart each of the previously
1117 * Running endpoints by ringing their doorbells
1120 spin_unlock_irq(&xhci->lock);
1124 /* Resume root hubs only when have pending events. */
1125 status = readl(&xhci->op_regs->status);
1126 if (status & STS_EINT) {
1127 usb_hcd_resume_root_hub(hcd);
1128 usb_hcd_resume_root_hub(xhci->shared_hcd);
1133 * If system is subject to the Quirk, Compliance Mode Timer needs to
1134 * be re-initialized Always after a system resume. Ports are subject
1135 * to suffer the Compliance Mode issue again. It doesn't matter if
1136 * ports have entered previously to U0 before system's suspension.
1138 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1139 compliance_mode_recovery_timer_init(xhci);
1141 /* Re-enable port polling. */
1142 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1143 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1144 usb_hcd_poll_rh_status(hcd);
1148 #endif /* CONFIG_PM */
1150 /*-------------------------------------------------------------------------*/
1153 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1154 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1155 * value to right shift 1 for the bitmask.
1157 * Index = (epnum * 2) + direction - 1,
1158 * where direction = 0 for OUT, 1 for IN.
1159 * For control endpoints, the IN index is used (OUT index is unused), so
1160 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1162 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1165 if (usb_endpoint_xfer_control(desc))
1166 index = (unsigned int) (usb_endpoint_num(desc)*2);
1168 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1169 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1173 /* Find the flag for this endpoint (for use in the control context). Use the
1174 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1177 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1179 return 1 << (xhci_get_endpoint_index(desc) + 1);
1182 /* Find the flag for this endpoint (for use in the control context). Use the
1183 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1186 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1188 return 1 << (ep_index + 1);
1191 /* Compute the last valid endpoint context index. Basically, this is the
1192 * endpoint index plus one. For slot contexts with more than valid endpoint,
1193 * we find the most significant bit set in the added contexts flags.
1194 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1195 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1197 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1199 return fls(added_ctxs) - 1;
1202 /* Returns 1 if the arguments are OK;
1203 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1205 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1206 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1208 struct xhci_hcd *xhci;
1209 struct xhci_virt_device *virt_dev;
1211 if (!hcd || (check_ep && !ep) || !udev) {
1212 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1216 if (!udev->parent) {
1217 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1222 xhci = hcd_to_xhci(hcd);
1223 if (check_virt_dev) {
1224 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1230 virt_dev = xhci->devs[udev->slot_id];
1231 if (virt_dev->udev != udev) {
1232 printk(KERN_DEBUG "xHCI %s called with udev and "
1233 "virt_dev does not match\n", func);
1238 if (xhci->xhc_state & XHCI_STATE_HALTED)
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245 struct usb_device *udev, struct xhci_command *command,
1246 bool ctx_change, bool must_succeed);
1249 * Full speed devices may have a max packet size greater than 8 bytes, but the
1250 * USB core doesn't know that until it reads the first 8 bytes of the
1251 * descriptor. If the usb_device's max packet size changes after that point,
1252 * we need to issue an evaluate context command and wait on it.
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255 unsigned int ep_index, struct urb *urb)
1257 struct xhci_container_ctx *in_ctx;
1258 struct xhci_container_ctx *out_ctx;
1259 struct xhci_input_control_ctx *ctrl_ctx;
1260 struct xhci_ep_ctx *ep_ctx;
1261 int max_packet_size;
1262 int hw_max_packet_size;
1265 out_ctx = xhci->devs[slot_id]->out_ctx;
1266 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269 if (hw_max_packet_size != max_packet_size) {
1270 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1271 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1273 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1274 hw_max_packet_size);
1275 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1277 /* Set up the modified control endpoint 0 */
1278 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1279 xhci->devs[slot_id]->out_ctx, ep_index);
1280 in_ctx = xhci->devs[slot_id]->in_ctx;
1281 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1282 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1283 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1285 /* Set up the input context flags for the command */
1286 /* FIXME: This won't work if a non-default control endpoint
1287 * changes max packet sizes.
1289 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1290 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1291 ctrl_ctx->drop_flags = 0;
1293 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1294 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1295 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1296 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1298 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1301 /* Clean up the input context for later use by bandwidth
1304 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1310 * non-error returns are a promise to giveback() the urb later
1311 * we drop ownership so next owner (or urb unlink) can get it
1313 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1315 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1316 struct xhci_td *buffer;
1317 unsigned long flags;
1319 unsigned int slot_id, ep_index;
1320 struct urb_priv *urb_priv;
1323 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1324 true, true, __func__) <= 0)
1327 slot_id = urb->dev->slot_id;
1328 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1330 if (!HCD_HW_ACCESSIBLE(hcd)) {
1331 if (!in_interrupt())
1332 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1337 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1338 size = urb->number_of_packets;
1342 urb_priv = kzalloc(sizeof(struct urb_priv) +
1343 size * sizeof(struct xhci_td *), mem_flags);
1347 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1353 for (i = 0; i < size; i++) {
1354 urb_priv->td[i] = buffer;
1358 urb_priv->length = size;
1359 urb_priv->td_cnt = 0;
1360 urb->hcpriv = urb_priv;
1362 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1363 /* Check to see if the max packet size for the default control
1364 * endpoint changed during FS device enumeration
1366 if (urb->dev->speed == USB_SPEED_FULL) {
1367 ret = xhci_check_maxpacket(xhci, slot_id,
1370 xhci_urb_free_priv(xhci, urb_priv);
1376 /* We have a spinlock and interrupts disabled, so we must pass
1377 * atomic context to this function, which may allocate memory.
1379 spin_lock_irqsave(&xhci->lock, flags);
1380 if (xhci->xhc_state & XHCI_STATE_DYING)
1382 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1386 spin_unlock_irqrestore(&xhci->lock, flags);
1387 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1388 spin_lock_irqsave(&xhci->lock, flags);
1389 if (xhci->xhc_state & XHCI_STATE_DYING)
1391 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1392 EP_GETTING_STREAMS) {
1393 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1394 "is transitioning to using streams.\n");
1396 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1397 EP_GETTING_NO_STREAMS) {
1398 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1399 "is transitioning to "
1400 "not having streams.\n");
1403 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1408 spin_unlock_irqrestore(&xhci->lock, flags);
1409 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1410 spin_lock_irqsave(&xhci->lock, flags);
1411 if (xhci->xhc_state & XHCI_STATE_DYING)
1413 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1417 spin_unlock_irqrestore(&xhci->lock, flags);
1419 spin_lock_irqsave(&xhci->lock, flags);
1420 if (xhci->xhc_state & XHCI_STATE_DYING)
1422 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1426 spin_unlock_irqrestore(&xhci->lock, flags);
1431 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1432 "non-responsive xHCI host.\n",
1433 urb->ep->desc.bEndpointAddress, urb);
1436 xhci_urb_free_priv(xhci, urb_priv);
1438 spin_unlock_irqrestore(&xhci->lock, flags);
1442 /* Get the right ring for the given URB.
1443 * If the endpoint supports streams, boundary check the URB's stream ID.
1444 * If the endpoint doesn't support streams, return the singular endpoint ring.
1446 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1449 unsigned int slot_id;
1450 unsigned int ep_index;
1451 unsigned int stream_id;
1452 struct xhci_virt_ep *ep;
1454 slot_id = urb->dev->slot_id;
1455 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1456 stream_id = urb->stream_id;
1457 ep = &xhci->devs[slot_id]->eps[ep_index];
1458 /* Common case: no streams */
1459 if (!(ep->ep_state & EP_HAS_STREAMS))
1462 if (stream_id == 0) {
1464 "WARN: Slot ID %u, ep index %u has streams, "
1465 "but URB has no stream ID.\n",
1470 if (stream_id < ep->stream_info->num_streams)
1471 return ep->stream_info->stream_rings[stream_id];
1474 "WARN: Slot ID %u, ep index %u has "
1475 "stream IDs 1 to %u allocated, "
1476 "but stream ID %u is requested.\n",
1478 ep->stream_info->num_streams - 1,
1484 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1485 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1486 * should pick up where it left off in the TD, unless a Set Transfer Ring
1487 * Dequeue Pointer is issued.
1489 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1490 * the ring. Since the ring is a contiguous structure, they can't be physically
1491 * removed. Instead, there are two options:
1493 * 1) If the HC is in the middle of processing the URB to be canceled, we
1494 * simply move the ring's dequeue pointer past those TRBs using the Set
1495 * Transfer Ring Dequeue Pointer command. This will be the common case,
1496 * when drivers timeout on the last submitted URB and attempt to cancel.
1498 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1499 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1500 * HC will need to invalidate the any TRBs it has cached after the stop
1501 * endpoint command, as noted in the xHCI 0.95 errata.
1503 * 3) The TD may have completed by the time the Stop Endpoint Command
1504 * completes, so software needs to handle that case too.
1506 * This function should protect against the TD enqueueing code ringing the
1507 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1508 * It also needs to account for multiple cancellations on happening at the same
1509 * time for the same endpoint.
1511 * Note that this function can be called in any context, or so says
1512 * usb_hcd_unlink_urb()
1514 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1516 unsigned long flags;
1519 struct xhci_hcd *xhci;
1520 struct urb_priv *urb_priv;
1522 unsigned int ep_index;
1523 struct xhci_ring *ep_ring;
1524 struct xhci_virt_ep *ep;
1526 xhci = hcd_to_xhci(hcd);
1527 spin_lock_irqsave(&xhci->lock, flags);
1528 /* Make sure the URB hasn't completed or been unlinked already */
1529 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1530 if (ret || !urb->hcpriv)
1532 temp = xhci_readl(xhci, &xhci->op_regs->status);
1533 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1534 xhci_dbg(xhci, "HW died, freeing TD.\n");
1535 urb_priv = urb->hcpriv;
1536 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1537 td = urb_priv->td[i];
1538 if (!list_empty(&td->td_list))
1539 list_del_init(&td->td_list);
1540 if (!list_empty(&td->cancelled_td_list))
1541 list_del_init(&td->cancelled_td_list);
1544 usb_hcd_unlink_urb_from_ep(hcd, urb);
1545 spin_unlock_irqrestore(&xhci->lock, flags);
1546 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1547 xhci_urb_free_priv(xhci, urb_priv);
1550 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1551 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1552 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1553 "non-responsive xHCI host.\n",
1554 urb->ep->desc.bEndpointAddress, urb);
1555 /* Let the stop endpoint command watchdog timer (which set this
1556 * state) finish cleaning up the endpoint TD lists. We must
1557 * have caught it in the middle of dropping a lock and giving
1563 xhci_dbg(xhci, "Cancel URB %p\n", urb);
1564 xhci_dbg(xhci, "Event ring:\n");
1565 xhci_debug_ring(xhci, xhci->event_ring);
1566 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1567 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1568 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1574 xhci_dbg(xhci, "Endpoint ring:\n");
1575 xhci_debug_ring(xhci, ep_ring);
1577 urb_priv = urb->hcpriv;
1579 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1580 td = urb_priv->td[i];
1581 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1584 /* Queue a stop endpoint command, but only if this is
1585 * the first cancellation to be handled.
1587 if (!(ep->ep_state & EP_HALT_PENDING)) {
1588 ep->ep_state |= EP_HALT_PENDING;
1589 ep->stop_cmds_pending++;
1590 ep->stop_cmd_timer.expires = jiffies +
1591 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1592 add_timer(&ep->stop_cmd_timer);
1593 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1594 xhci_ring_cmd_db(xhci);
1597 spin_unlock_irqrestore(&xhci->lock, flags);
1601 /* Drop an endpoint from a new bandwidth configuration for this device.
1602 * Only one call to this function is allowed per endpoint before
1603 * check_bandwidth() or reset_bandwidth() must be called.
1604 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1605 * add the endpoint to the schedule with possibly new parameters denoted by a
1606 * different endpoint descriptor in usb_host_endpoint.
1607 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1610 * The USB core will not allow URBs to be queued to an endpoint that is being
1611 * disabled, so there's no need for mutual exclusion to protect
1612 * the xhci->devs[slot_id] structure.
1614 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1615 struct usb_host_endpoint *ep)
1617 struct xhci_hcd *xhci;
1618 struct xhci_container_ctx *in_ctx, *out_ctx;
1619 struct xhci_input_control_ctx *ctrl_ctx;
1620 struct xhci_slot_ctx *slot_ctx;
1621 unsigned int last_ctx;
1622 unsigned int ep_index;
1623 struct xhci_ep_ctx *ep_ctx;
1625 u32 new_add_flags, new_drop_flags, new_slot_info;
1628 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1631 xhci = hcd_to_xhci(hcd);
1632 if (xhci->xhc_state & XHCI_STATE_DYING)
1635 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1636 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1637 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1638 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1639 __func__, drop_flag);
1643 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1644 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1645 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1646 ep_index = xhci_get_endpoint_index(&ep->desc);
1647 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1648 /* If the HC already knows the endpoint is disabled,
1649 * or the HCD has noted it is disabled, ignore this request
1651 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1652 cpu_to_le32(EP_STATE_DISABLED)) ||
1653 le32_to_cpu(ctrl_ctx->drop_flags) &
1654 xhci_get_endpoint_flag(&ep->desc)) {
1655 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1660 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1661 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1663 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1664 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1666 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1667 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1668 /* Update the last valid endpoint context, if we deleted the last one */
1669 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1670 LAST_CTX(last_ctx)) {
1671 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1672 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1674 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1676 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1678 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1679 (unsigned int) ep->desc.bEndpointAddress,
1681 (unsigned int) new_drop_flags,
1682 (unsigned int) new_add_flags,
1683 (unsigned int) new_slot_info);
1687 /* Add an endpoint to a new possible bandwidth configuration for this device.
1688 * Only one call to this function is allowed per endpoint before
1689 * check_bandwidth() or reset_bandwidth() must be called.
1690 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1691 * add the endpoint to the schedule with possibly new parameters denoted by a
1692 * different endpoint descriptor in usb_host_endpoint.
1693 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1696 * The USB core will not allow URBs to be queued to an endpoint until the
1697 * configuration or alt setting is installed in the device, so there's no need
1698 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1700 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1701 struct usb_host_endpoint *ep)
1703 struct xhci_hcd *xhci;
1704 struct xhci_container_ctx *in_ctx, *out_ctx;
1705 unsigned int ep_index;
1706 struct xhci_ep_ctx *ep_ctx;
1707 struct xhci_slot_ctx *slot_ctx;
1708 struct xhci_input_control_ctx *ctrl_ctx;
1710 unsigned int last_ctx;
1711 u32 new_add_flags, new_drop_flags, new_slot_info;
1712 struct xhci_virt_device *virt_dev;
1715 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1717 /* So we won't queue a reset ep command for a root hub */
1721 xhci = hcd_to_xhci(hcd);
1722 if (xhci->xhc_state & XHCI_STATE_DYING)
1725 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1726 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1727 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1728 /* FIXME when we have to issue an evaluate endpoint command to
1729 * deal with ep0 max packet size changing once we get the
1732 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1733 __func__, added_ctxs);
1737 virt_dev = xhci->devs[udev->slot_id];
1738 in_ctx = virt_dev->in_ctx;
1739 out_ctx = virt_dev->out_ctx;
1740 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1741 ep_index = xhci_get_endpoint_index(&ep->desc);
1742 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1744 /* If this endpoint is already in use, and the upper layers are trying
1745 * to add it again without dropping it, reject the addition.
1747 if (virt_dev->eps[ep_index].ring &&
1748 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1749 xhci_get_endpoint_flag(&ep->desc))) {
1750 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1751 "without dropping it.\n",
1752 (unsigned int) ep->desc.bEndpointAddress);
1756 /* If the HCD has already noted the endpoint is enabled,
1757 * ignore this request.
1759 if (le32_to_cpu(ctrl_ctx->add_flags) &
1760 xhci_get_endpoint_flag(&ep->desc)) {
1761 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1767 * Configuration and alternate setting changes must be done in
1768 * process context, not interrupt context (or so documenation
1769 * for usb_set_interface() and usb_set_configuration() claim).
1771 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1772 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1773 __func__, ep->desc.bEndpointAddress);
1777 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1778 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1780 /* If xhci_endpoint_disable() was called for this endpoint, but the
1781 * xHC hasn't been notified yet through the check_bandwidth() call,
1782 * this re-adds a new state for the endpoint from the new endpoint
1783 * descriptors. We must drop and re-add this endpoint, so we leave the
1786 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1788 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1789 /* Update the last valid endpoint context, if we just added one past */
1790 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1791 LAST_CTX(last_ctx)) {
1792 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1793 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1795 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1797 /* Store the usb_device pointer for later use */
1800 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1801 (unsigned int) ep->desc.bEndpointAddress,
1803 (unsigned int) new_drop_flags,
1804 (unsigned int) new_add_flags,
1805 (unsigned int) new_slot_info);
1809 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1811 struct xhci_input_control_ctx *ctrl_ctx;
1812 struct xhci_ep_ctx *ep_ctx;
1813 struct xhci_slot_ctx *slot_ctx;
1816 /* When a device's add flag and drop flag are zero, any subsequent
1817 * configure endpoint command will leave that endpoint's state
1818 * untouched. Make sure we don't leave any old state in the input
1819 * endpoint contexts.
1821 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1822 ctrl_ctx->drop_flags = 0;
1823 ctrl_ctx->add_flags = 0;
1824 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1825 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1826 /* Endpoint 0 is always valid */
1827 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1828 for (i = 1; i < 31; ++i) {
1829 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1830 ep_ctx->ep_info = 0;
1831 ep_ctx->ep_info2 = 0;
1833 ep_ctx->tx_info = 0;
1837 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1838 struct usb_device *udev, u32 *cmd_status)
1842 switch (*cmd_status) {
1844 dev_warn(&udev->dev, "Not enough host controller resources "
1845 "for new device state.\n");
1847 /* FIXME: can we allocate more resources for the HC? */
1850 case COMP_2ND_BW_ERR:
1851 dev_warn(&udev->dev, "Not enough bandwidth "
1852 "for new device state.\n");
1854 /* FIXME: can we go back to the old state? */
1857 /* the HCD set up something wrong */
1858 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1860 "and endpoint is not disabled.\n");
1864 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1865 "configure command.\n");
1869 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1873 xhci_err(xhci, "ERROR: unexpected command completion "
1874 "code 0x%x.\n", *cmd_status);
1881 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1882 struct usb_device *udev, u32 *cmd_status)
1885 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1887 switch (*cmd_status) {
1889 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1890 "context command.\n");
1894 dev_warn(&udev->dev, "WARN: slot not enabled for"
1895 "evaluate context command.\n");
1896 case COMP_CTX_STATE:
1897 dev_warn(&udev->dev, "WARN: invalid context state for "
1898 "evaluate context command.\n");
1899 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1903 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1904 "context command.\n");
1908 /* Max Exit Latency too large error */
1909 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1913 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1917 xhci_err(xhci, "ERROR: unexpected command completion "
1918 "code 0x%x.\n", *cmd_status);
1925 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1926 struct xhci_container_ctx *in_ctx)
1928 struct xhci_input_control_ctx *ctrl_ctx;
1929 u32 valid_add_flags;
1930 u32 valid_drop_flags;
1932 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1933 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1934 * (bit 1). The default control endpoint is added during the Address
1935 * Device command and is never removed until the slot is disabled.
1937 valid_add_flags = ctrl_ctx->add_flags >> 2;
1938 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1940 /* Use hweight32 to count the number of ones in the add flags, or
1941 * number of endpoints added. Don't count endpoints that are changed
1942 * (both added and dropped).
1944 return hweight32(valid_add_flags) -
1945 hweight32(valid_add_flags & valid_drop_flags);
1948 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1949 struct xhci_container_ctx *in_ctx)
1951 struct xhci_input_control_ctx *ctrl_ctx;
1952 u32 valid_add_flags;
1953 u32 valid_drop_flags;
1955 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1956 valid_add_flags = ctrl_ctx->add_flags >> 2;
1957 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1959 return hweight32(valid_drop_flags) -
1960 hweight32(valid_add_flags & valid_drop_flags);
1964 * We need to reserve the new number of endpoints before the configure endpoint
1965 * command completes. We can't subtract the dropped endpoints from the number
1966 * of active endpoints until the command completes because we can oversubscribe
1967 * the host in this case:
1969 * - the first configure endpoint command drops more endpoints than it adds
1970 * - a second configure endpoint command that adds more endpoints is queued
1971 * - the first configure endpoint command fails, so the config is unchanged
1972 * - the second command may succeed, even though there isn't enough resources
1974 * Must be called with xhci->lock held.
1976 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1977 struct xhci_container_ctx *in_ctx)
1981 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1982 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1983 xhci_dbg(xhci, "Not enough ep ctxs: "
1984 "%u active, need to add %u, limit is %u.\n",
1985 xhci->num_active_eps, added_eps,
1986 xhci->limit_active_eps);
1989 xhci->num_active_eps += added_eps;
1990 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1991 xhci->num_active_eps);
1996 * The configure endpoint was failed by the xHC for some other reason, so we
1997 * need to revert the resources that failed configuration would have used.
1999 * Must be called with xhci->lock held.
2001 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2002 struct xhci_container_ctx *in_ctx)
2006 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
2007 xhci->num_active_eps -= num_failed_eps;
2008 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
2010 xhci->num_active_eps);
2014 * Now that the command has completed, clean up the active endpoint count by
2015 * subtracting out the endpoints that were dropped (but not changed).
2017 * Must be called with xhci->lock held.
2019 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2020 struct xhci_container_ctx *in_ctx)
2022 u32 num_dropped_eps;
2024 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
2025 xhci->num_active_eps -= num_dropped_eps;
2026 if (num_dropped_eps)
2027 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
2029 xhci->num_active_eps);
2032 unsigned int xhci_get_block_size(struct usb_device *udev)
2034 switch (udev->speed) {
2036 case USB_SPEED_FULL:
2038 case USB_SPEED_HIGH:
2040 case USB_SPEED_SUPER:
2042 case USB_SPEED_UNKNOWN:
2043 case USB_SPEED_WIRELESS:
2045 /* Should never happen */
2050 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2052 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2054 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2059 /* If we are changing a LS/FS device under a HS hub,
2060 * make sure (if we are activating a new TT) that the HS bus has enough
2061 * bandwidth for this new TT.
2063 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2064 struct xhci_virt_device *virt_dev,
2067 struct xhci_interval_bw_table *bw_table;
2068 struct xhci_tt_bw_info *tt_info;
2070 /* Find the bandwidth table for the root port this TT is attached to. */
2071 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2072 tt_info = virt_dev->tt_info;
2073 /* If this TT already had active endpoints, the bandwidth for this TT
2074 * has already been added. Removing all periodic endpoints (and thus
2075 * making the TT enactive) will only decrease the bandwidth used.
2079 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2080 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2084 /* Not sure why we would have no new active endpoints...
2086 * Maybe because of an Evaluate Context change for a hub update or a
2087 * control endpoint 0 max packet size change?
2088 * FIXME: skip the bandwidth calculation in that case.
2093 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2094 struct xhci_virt_device *virt_dev)
2096 unsigned int bw_reserved;
2098 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2099 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2102 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2103 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2110 * This algorithm is a very conservative estimate of the worst-case scheduling
2111 * scenario for any one interval. The hardware dynamically schedules the
2112 * packets, so we can't tell which microframe could be the limiting factor in
2113 * the bandwidth scheduling. This only takes into account periodic endpoints.
2115 * Obviously, we can't solve an NP complete problem to find the minimum worst
2116 * case scenario. Instead, we come up with an estimate that is no less than
2117 * the worst case bandwidth used for any one microframe, but may be an
2120 * We walk the requirements for each endpoint by interval, starting with the
2121 * smallest interval, and place packets in the schedule where there is only one
2122 * possible way to schedule packets for that interval. In order to simplify
2123 * this algorithm, we record the largest max packet size for each interval, and
2124 * assume all packets will be that size.
2126 * For interval 0, we obviously must schedule all packets for each interval.
2127 * The bandwidth for interval 0 is just the amount of data to be transmitted
2128 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2129 * the number of packets).
2131 * For interval 1, we have two possible microframes to schedule those packets
2132 * in. For this algorithm, if we can schedule the same number of packets for
2133 * each possible scheduling opportunity (each microframe), we will do so. The
2134 * remaining number of packets will be saved to be transmitted in the gaps in
2135 * the next interval's scheduling sequence.
2137 * As we move those remaining packets to be scheduled with interval 2 packets,
2138 * we have to double the number of remaining packets to transmit. This is
2139 * because the intervals are actually powers of 2, and we would be transmitting
2140 * the previous interval's packets twice in this interval. We also have to be
2141 * sure that when we look at the largest max packet size for this interval, we
2142 * also look at the largest max packet size for the remaining packets and take
2143 * the greater of the two.
2145 * The algorithm continues to evenly distribute packets in each scheduling
2146 * opportunity, and push the remaining packets out, until we get to the last
2147 * interval. Then those packets and their associated overhead are just added
2148 * to the bandwidth used.
2150 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2151 struct xhci_virt_device *virt_dev,
2154 unsigned int bw_reserved;
2155 unsigned int max_bandwidth;
2156 unsigned int bw_used;
2157 unsigned int block_size;
2158 struct xhci_interval_bw_table *bw_table;
2159 unsigned int packet_size = 0;
2160 unsigned int overhead = 0;
2161 unsigned int packets_transmitted = 0;
2162 unsigned int packets_remaining = 0;
2165 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2166 return xhci_check_ss_bw(xhci, virt_dev);
2168 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2169 max_bandwidth = HS_BW_LIMIT;
2170 /* Convert percent of bus BW reserved to blocks reserved */
2171 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2173 max_bandwidth = FS_BW_LIMIT;
2174 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2177 bw_table = virt_dev->bw_table;
2178 /* We need to translate the max packet size and max ESIT payloads into
2179 * the units the hardware uses.
2181 block_size = xhci_get_block_size(virt_dev->udev);
2183 /* If we are manipulating a LS/FS device under a HS hub, double check
2184 * that the HS bus has enough bandwidth if we are activing a new TT.
2186 if (virt_dev->tt_info) {
2187 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2188 virt_dev->real_port);
2189 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2190 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2191 "newly activated TT.\n");
2194 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2195 virt_dev->tt_info->slot_id,
2196 virt_dev->tt_info->ttport);
2198 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2199 virt_dev->real_port);
2202 /* Add in how much bandwidth will be used for interval zero, or the
2203 * rounded max ESIT payload + number of packets * largest overhead.
2205 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2206 bw_table->interval_bw[0].num_packets *
2207 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2209 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2210 unsigned int bw_added;
2211 unsigned int largest_mps;
2212 unsigned int interval_overhead;
2215 * How many packets could we transmit in this interval?
2216 * If packets didn't fit in the previous interval, we will need
2217 * to transmit that many packets twice within this interval.
2219 packets_remaining = 2 * packets_remaining +
2220 bw_table->interval_bw[i].num_packets;
2222 /* Find the largest max packet size of this or the previous
2225 if (list_empty(&bw_table->interval_bw[i].endpoints))
2228 struct xhci_virt_ep *virt_ep;
2229 struct list_head *ep_entry;
2231 ep_entry = bw_table->interval_bw[i].endpoints.next;
2232 virt_ep = list_entry(ep_entry,
2233 struct xhci_virt_ep, bw_endpoint_list);
2234 /* Convert to blocks, rounding up */
2235 largest_mps = DIV_ROUND_UP(
2236 virt_ep->bw_info.max_packet_size,
2239 if (largest_mps > packet_size)
2240 packet_size = largest_mps;
2242 /* Use the larger overhead of this or the previous interval. */
2243 interval_overhead = xhci_get_largest_overhead(
2244 &bw_table->interval_bw[i]);
2245 if (interval_overhead > overhead)
2246 overhead = interval_overhead;
2248 /* How many packets can we evenly distribute across
2249 * (1 << (i + 1)) possible scheduling opportunities?
2251 packets_transmitted = packets_remaining >> (i + 1);
2253 /* Add in the bandwidth used for those scheduled packets */
2254 bw_added = packets_transmitted * (overhead + packet_size);
2256 /* How many packets do we have remaining to transmit? */
2257 packets_remaining = packets_remaining % (1 << (i + 1));
2259 /* What largest max packet size should those packets have? */
2260 /* If we've transmitted all packets, don't carry over the
2261 * largest packet size.
2263 if (packets_remaining == 0) {
2266 } else if (packets_transmitted > 0) {
2267 /* Otherwise if we do have remaining packets, and we've
2268 * scheduled some packets in this interval, take the
2269 * largest max packet size from endpoints with this
2272 packet_size = largest_mps;
2273 overhead = interval_overhead;
2275 /* Otherwise carry over packet_size and overhead from the last
2276 * time we had a remainder.
2278 bw_used += bw_added;
2279 if (bw_used > max_bandwidth) {
2280 xhci_warn(xhci, "Not enough bandwidth. "
2281 "Proposed: %u, Max: %u\n",
2282 bw_used, max_bandwidth);
2287 * Ok, we know we have some packets left over after even-handedly
2288 * scheduling interval 15. We don't know which microframes they will
2289 * fit into, so we over-schedule and say they will be scheduled every
2292 if (packets_remaining > 0)
2293 bw_used += overhead + packet_size;
2295 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2296 unsigned int port_index = virt_dev->real_port - 1;
2298 /* OK, we're manipulating a HS device attached to a
2299 * root port bandwidth domain. Include the number of active TTs
2300 * in the bandwidth used.
2302 bw_used += TT_HS_OVERHEAD *
2303 xhci->rh_bw[port_index].num_active_tts;
2306 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2307 "Available: %u " "percent\n",
2308 bw_used, max_bandwidth, bw_reserved,
2309 (max_bandwidth - bw_used - bw_reserved) * 100 /
2312 bw_used += bw_reserved;
2313 if (bw_used > max_bandwidth) {
2314 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2315 bw_used, max_bandwidth);
2319 bw_table->bw_used = bw_used;
2323 static bool xhci_is_async_ep(unsigned int ep_type)
2325 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2326 ep_type != ISOC_IN_EP &&
2327 ep_type != INT_IN_EP);
2330 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2332 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2335 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2337 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2339 if (ep_bw->ep_interval == 0)
2340 return SS_OVERHEAD_BURST +
2341 (ep_bw->mult * ep_bw->num_packets *
2342 (SS_OVERHEAD + mps));
2343 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2344 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2345 1 << ep_bw->ep_interval);
2349 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2350 struct xhci_bw_info *ep_bw,
2351 struct xhci_interval_bw_table *bw_table,
2352 struct usb_device *udev,
2353 struct xhci_virt_ep *virt_ep,
2354 struct xhci_tt_bw_info *tt_info)
2356 struct xhci_interval_bw *interval_bw;
2357 int normalized_interval;
2359 if (xhci_is_async_ep(ep_bw->type))
2362 if (udev->speed == USB_SPEED_SUPER) {
2363 if (xhci_is_sync_in_ep(ep_bw->type))
2364 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2365 xhci_get_ss_bw_consumed(ep_bw);
2367 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2368 xhci_get_ss_bw_consumed(ep_bw);
2372 /* SuperSpeed endpoints never get added to intervals in the table, so
2373 * this check is only valid for HS/FS/LS devices.
2375 if (list_empty(&virt_ep->bw_endpoint_list))
2377 /* For LS/FS devices, we need to translate the interval expressed in
2378 * microframes to frames.
2380 if (udev->speed == USB_SPEED_HIGH)
2381 normalized_interval = ep_bw->ep_interval;
2383 normalized_interval = ep_bw->ep_interval - 3;
2385 if (normalized_interval == 0)
2386 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2387 interval_bw = &bw_table->interval_bw[normalized_interval];
2388 interval_bw->num_packets -= ep_bw->num_packets;
2389 switch (udev->speed) {
2391 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2393 case USB_SPEED_FULL:
2394 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2396 case USB_SPEED_HIGH:
2397 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2399 case USB_SPEED_SUPER:
2400 case USB_SPEED_UNKNOWN:
2401 case USB_SPEED_WIRELESS:
2402 /* Should never happen because only LS/FS/HS endpoints will get
2403 * added to the endpoint list.
2408 tt_info->active_eps -= 1;
2409 list_del_init(&virt_ep->bw_endpoint_list);
2412 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2413 struct xhci_bw_info *ep_bw,
2414 struct xhci_interval_bw_table *bw_table,
2415 struct usb_device *udev,
2416 struct xhci_virt_ep *virt_ep,
2417 struct xhci_tt_bw_info *tt_info)
2419 struct xhci_interval_bw *interval_bw;
2420 struct xhci_virt_ep *smaller_ep;
2421 int normalized_interval;
2423 if (xhci_is_async_ep(ep_bw->type))
2426 if (udev->speed == USB_SPEED_SUPER) {
2427 if (xhci_is_sync_in_ep(ep_bw->type))
2428 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2429 xhci_get_ss_bw_consumed(ep_bw);
2431 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2432 xhci_get_ss_bw_consumed(ep_bw);
2436 /* For LS/FS devices, we need to translate the interval expressed in
2437 * microframes to frames.
2439 if (udev->speed == USB_SPEED_HIGH)
2440 normalized_interval = ep_bw->ep_interval;
2442 normalized_interval = ep_bw->ep_interval - 3;
2444 if (normalized_interval == 0)
2445 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2446 interval_bw = &bw_table->interval_bw[normalized_interval];
2447 interval_bw->num_packets += ep_bw->num_packets;
2448 switch (udev->speed) {
2450 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2452 case USB_SPEED_FULL:
2453 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2455 case USB_SPEED_HIGH:
2456 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2458 case USB_SPEED_SUPER:
2459 case USB_SPEED_UNKNOWN:
2460 case USB_SPEED_WIRELESS:
2461 /* Should never happen because only LS/FS/HS endpoints will get
2462 * added to the endpoint list.
2468 tt_info->active_eps += 1;
2469 /* Insert the endpoint into the list, largest max packet size first. */
2470 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2472 if (ep_bw->max_packet_size >=
2473 smaller_ep->bw_info.max_packet_size) {
2474 /* Add the new ep before the smaller endpoint */
2475 list_add_tail(&virt_ep->bw_endpoint_list,
2476 &smaller_ep->bw_endpoint_list);
2480 /* Add the new endpoint at the end of the list. */
2481 list_add_tail(&virt_ep->bw_endpoint_list,
2482 &interval_bw->endpoints);
2485 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2486 struct xhci_virt_device *virt_dev,
2489 struct xhci_root_port_bw_info *rh_bw_info;
2490 if (!virt_dev->tt_info)
2493 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2494 if (old_active_eps == 0 &&
2495 virt_dev->tt_info->active_eps != 0) {
2496 rh_bw_info->num_active_tts += 1;
2497 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2498 } else if (old_active_eps != 0 &&
2499 virt_dev->tt_info->active_eps == 0) {
2500 rh_bw_info->num_active_tts -= 1;
2501 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2505 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2506 struct xhci_virt_device *virt_dev,
2507 struct xhci_container_ctx *in_ctx)
2509 struct xhci_bw_info ep_bw_info[31];
2511 struct xhci_input_control_ctx *ctrl_ctx;
2512 int old_active_eps = 0;
2514 if (virt_dev->tt_info)
2515 old_active_eps = virt_dev->tt_info->active_eps;
2517 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2519 for (i = 0; i < 31; i++) {
2520 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2523 /* Make a copy of the BW info in case we need to revert this */
2524 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2525 sizeof(ep_bw_info[i]));
2526 /* Drop the endpoint from the interval table if the endpoint is
2527 * being dropped or changed.
2529 if (EP_IS_DROPPED(ctrl_ctx, i))
2530 xhci_drop_ep_from_interval_table(xhci,
2531 &virt_dev->eps[i].bw_info,
2537 /* Overwrite the information stored in the endpoints' bw_info */
2538 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2539 for (i = 0; i < 31; i++) {
2540 /* Add any changed or added endpoints to the interval table */
2541 if (EP_IS_ADDED(ctrl_ctx, i))
2542 xhci_add_ep_to_interval_table(xhci,
2543 &virt_dev->eps[i].bw_info,
2550 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2551 /* Ok, this fits in the bandwidth we have.
2552 * Update the number of active TTs.
2554 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2558 /* We don't have enough bandwidth for this, revert the stored info. */
2559 for (i = 0; i < 31; i++) {
2560 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2563 /* Drop the new copies of any added or changed endpoints from
2564 * the interval table.
2566 if (EP_IS_ADDED(ctrl_ctx, i)) {
2567 xhci_drop_ep_from_interval_table(xhci,
2568 &virt_dev->eps[i].bw_info,
2574 /* Revert the endpoint back to its old information */
2575 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2576 sizeof(ep_bw_info[i]));
2577 /* Add any changed or dropped endpoints back into the table */
2578 if (EP_IS_DROPPED(ctrl_ctx, i))
2579 xhci_add_ep_to_interval_table(xhci,
2580 &virt_dev->eps[i].bw_info,
2590 /* Issue a configure endpoint command or evaluate context command
2591 * and wait for it to finish.
2593 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2594 struct usb_device *udev,
2595 struct xhci_command *command,
2596 bool ctx_change, bool must_succeed)
2600 unsigned long flags;
2601 struct xhci_container_ctx *in_ctx;
2602 struct completion *cmd_completion;
2604 struct xhci_virt_device *virt_dev;
2605 union xhci_trb *cmd_trb;
2607 spin_lock_irqsave(&xhci->lock, flags);
2608 virt_dev = xhci->devs[udev->slot_id];
2611 in_ctx = command->in_ctx;
2613 in_ctx = virt_dev->in_ctx;
2615 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2616 xhci_reserve_host_resources(xhci, in_ctx)) {
2617 spin_unlock_irqrestore(&xhci->lock, flags);
2618 xhci_warn(xhci, "Not enough host resources, "
2619 "active endpoint contexts = %u\n",
2620 xhci->num_active_eps);
2623 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2624 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2625 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2626 xhci_free_host_resources(xhci, in_ctx);
2627 spin_unlock_irqrestore(&xhci->lock, flags);
2628 xhci_warn(xhci, "Not enough bandwidth\n");
2633 cmd_completion = command->completion;
2634 cmd_status = &command->status;
2635 command->command_trb = xhci->cmd_ring->enqueue;
2637 /* Enqueue pointer can be left pointing to the link TRB,
2638 * we must handle that
2640 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2641 command->command_trb =
2642 xhci->cmd_ring->enq_seg->next->trbs;
2644 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2646 cmd_completion = &virt_dev->cmd_completion;
2647 cmd_status = &virt_dev->cmd_status;
2649 init_completion(cmd_completion);
2651 cmd_trb = xhci->cmd_ring->dequeue;
2653 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2654 udev->slot_id, must_succeed);
2656 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2660 list_del(&command->cmd_list);
2661 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2662 xhci_free_host_resources(xhci, in_ctx);
2663 spin_unlock_irqrestore(&xhci->lock, flags);
2664 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2667 xhci_ring_cmd_db(xhci);
2668 spin_unlock_irqrestore(&xhci->lock, flags);
2670 /* Wait for the configure endpoint command to complete */
2671 timeleft = wait_for_completion_interruptible_timeout(
2673 XHCI_CMD_DEFAULT_TIMEOUT);
2674 if (timeleft <= 0) {
2675 xhci_warn(xhci, "%s while waiting for %s command\n",
2676 timeleft == 0 ? "Timeout" : "Signal",
2678 "configure endpoint" :
2679 "evaluate context");
2680 /* cancel the configure endpoint command */
2681 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2688 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2690 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2692 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2693 spin_lock_irqsave(&xhci->lock, flags);
2694 /* If the command failed, remove the reserved resources.
2695 * Otherwise, clean up the estimate to include dropped eps.
2698 xhci_free_host_resources(xhci, in_ctx);
2700 xhci_finish_resource_reservation(xhci, in_ctx);
2701 spin_unlock_irqrestore(&xhci->lock, flags);
2706 /* Called after one or more calls to xhci_add_endpoint() or
2707 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2708 * to call xhci_reset_bandwidth().
2710 * Since we are in the middle of changing either configuration or
2711 * installing a new alt setting, the USB core won't allow URBs to be
2712 * enqueued for any endpoint on the old config or interface. Nothing
2713 * else should be touching the xhci->devs[slot_id] structure, so we
2714 * don't need to take the xhci->lock for manipulating that.
2716 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2720 struct xhci_hcd *xhci;
2721 struct xhci_virt_device *virt_dev;
2722 struct xhci_input_control_ctx *ctrl_ctx;
2723 struct xhci_slot_ctx *slot_ctx;
2725 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2728 xhci = hcd_to_xhci(hcd);
2729 if (xhci->xhc_state & XHCI_STATE_DYING)
2732 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2733 virt_dev = xhci->devs[udev->slot_id];
2735 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2736 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2737 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2738 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2739 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2741 /* Don't issue the command if there's no endpoints to update. */
2742 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2743 ctrl_ctx->drop_flags == 0)
2746 xhci_dbg(xhci, "New Input Control Context:\n");
2747 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2748 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2749 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2751 ret = xhci_configure_endpoint(xhci, udev, NULL,
2754 /* Callee should call reset_bandwidth() */
2758 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2759 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2760 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2762 /* Free any rings that were dropped, but not changed. */
2763 for (i = 1; i < 31; ++i) {
2764 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2765 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2766 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2768 xhci_zero_in_ctx(xhci, virt_dev);
2770 * Install any rings for completely new endpoints or changed endpoints,
2771 * and free or cache any old rings from changed endpoints.
2773 for (i = 1; i < 31; ++i) {
2774 if (!virt_dev->eps[i].new_ring)
2776 /* Only cache or free the old ring if it exists.
2777 * It may not if this is the first add of an endpoint.
2779 if (virt_dev->eps[i].ring) {
2780 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2782 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2783 virt_dev->eps[i].new_ring = NULL;
2789 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791 struct xhci_hcd *xhci;
2792 struct xhci_virt_device *virt_dev;
2795 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2798 xhci = hcd_to_xhci(hcd);
2800 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2801 virt_dev = xhci->devs[udev->slot_id];
2802 /* Free any rings allocated for added endpoints */
2803 for (i = 0; i < 31; ++i) {
2804 if (virt_dev->eps[i].new_ring) {
2805 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2806 virt_dev->eps[i].new_ring = NULL;
2809 xhci_zero_in_ctx(xhci, virt_dev);
2812 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2813 struct xhci_container_ctx *in_ctx,
2814 struct xhci_container_ctx *out_ctx,
2815 u32 add_flags, u32 drop_flags)
2817 struct xhci_input_control_ctx *ctrl_ctx;
2818 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2819 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821 xhci_slot_copy(xhci, in_ctx, out_ctx);
2822 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2824 xhci_dbg(xhci, "Input Context:\n");
2825 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2828 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829 unsigned int slot_id, unsigned int ep_index,
2830 struct xhci_dequeue_state *deq_state)
2832 struct xhci_container_ctx *in_ctx;
2833 struct xhci_ep_ctx *ep_ctx;
2837 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2838 xhci->devs[slot_id]->out_ctx, ep_index);
2839 in_ctx = xhci->devs[slot_id]->in_ctx;
2840 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2841 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2842 deq_state->new_deq_ptr);
2844 xhci_warn(xhci, "WARN Cannot submit config ep after "
2845 "reset ep command\n");
2846 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2847 deq_state->new_deq_seg,
2848 deq_state->new_deq_ptr);
2851 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2853 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2854 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2855 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2858 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2859 struct usb_device *udev, unsigned int ep_index)
2861 struct xhci_dequeue_state deq_state;
2862 struct xhci_virt_ep *ep;
2864 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2865 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2866 /* We need to move the HW's dequeue pointer past this TD,
2867 * or it will attempt to resend it on the next doorbell ring.
2869 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2870 ep_index, ep->stopped_stream, ep->stopped_td,
2873 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2876 /* HW with the reset endpoint quirk will use the saved dequeue state to
2877 * issue a configure endpoint command later.
2879 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2880 xhci_dbg(xhci, "Queueing new dequeue state\n");
2881 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2882 ep_index, ep->stopped_stream, &deq_state);
2884 /* Better hope no one uses the input context between now and the
2885 * reset endpoint completion!
2886 * XXX: No idea how this hardware will react when stream rings
2889 xhci_dbg(xhci, "Setting up input context for "
2890 "configure endpoint command\n");
2891 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2892 ep_index, &deq_state);
2896 /* Called when clearing halted device. The core should have sent the control
2897 * message to clear the device halt condition. The host side of the halt should
2898 * already be cleared with a reset endpoint command issued when the STALL tx
2899 * event was received.
2901 * Context: in_interrupt
2904 void xhci_endpoint_reset(struct usb_hcd *hcd,
2905 struct usb_host_endpoint *ep)
2907 struct xhci_hcd *xhci;
2909 xhci = hcd_to_xhci(hcd);
2912 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2913 * The Reset Endpoint Command may only be issued to endpoints in the
2914 * Halted state. If software wishes reset the Data Toggle or Sequence
2915 * Number of an endpoint that isn't in the Halted state, then software
2916 * may issue a Configure Endpoint Command with the Drop and Add bits set
2917 * for the target endpoint. that is in the Stopped state.
2920 /* For now just print debug to follow the situation */
2921 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2922 ep->desc.bEndpointAddress);
2925 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2926 struct usb_device *udev, struct usb_host_endpoint *ep,
2927 unsigned int slot_id)
2930 unsigned int ep_index;
2931 unsigned int ep_state;
2935 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2938 if (ep->ss_ep_comp.bmAttributes == 0) {
2939 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2940 " descriptor for ep 0x%x does not support streams\n",
2941 ep->desc.bEndpointAddress);
2945 ep_index = xhci_get_endpoint_index(&ep->desc);
2946 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2947 if (ep_state & EP_HAS_STREAMS ||
2948 ep_state & EP_GETTING_STREAMS) {
2949 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2950 "already has streams set up.\n",
2951 ep->desc.bEndpointAddress);
2952 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2953 "dynamic stream context array reallocation.\n");
2956 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2957 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2958 "endpoint 0x%x; URBs are pending.\n",
2959 ep->desc.bEndpointAddress);
2965 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2966 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2968 unsigned int max_streams;
2970 /* The stream context array size must be a power of two */
2971 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2973 * Find out how many primary stream array entries the host controller
2974 * supports. Later we may use secondary stream arrays (similar to 2nd
2975 * level page entries), but that's an optional feature for xHCI host
2976 * controllers. xHCs must support at least 4 stream IDs.
2978 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2979 if (*num_stream_ctxs > max_streams) {
2980 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2982 *num_stream_ctxs = max_streams;
2983 *num_streams = max_streams;
2987 /* Returns an error code if one of the endpoint already has streams.
2988 * This does not change any data structures, it only checks and gathers
2991 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2992 struct usb_device *udev,
2993 struct usb_host_endpoint **eps, unsigned int num_eps,
2994 unsigned int *num_streams, u32 *changed_ep_bitmask)
2996 unsigned int max_streams;
2997 unsigned int endpoint_flag;
3001 for (i = 0; i < num_eps; i++) {
3002 ret = xhci_check_streams_endpoint(xhci, udev,
3003 eps[i], udev->slot_id);
3007 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3008 if (max_streams < (*num_streams - 1)) {
3009 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3010 eps[i]->desc.bEndpointAddress,
3012 *num_streams = max_streams+1;
3015 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3016 if (*changed_ep_bitmask & endpoint_flag)
3018 *changed_ep_bitmask |= endpoint_flag;
3023 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3024 struct usb_device *udev,
3025 struct usb_host_endpoint **eps, unsigned int num_eps)
3027 u32 changed_ep_bitmask = 0;
3028 unsigned int slot_id;
3029 unsigned int ep_index;
3030 unsigned int ep_state;
3033 slot_id = udev->slot_id;
3034 if (!xhci->devs[slot_id])
3037 for (i = 0; i < num_eps; i++) {
3038 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3039 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3040 /* Are streams already being freed for the endpoint? */
3041 if (ep_state & EP_GETTING_NO_STREAMS) {
3042 xhci_warn(xhci, "WARN Can't disable streams for "
3044 "streams are being disabled already.",
3045 eps[i]->desc.bEndpointAddress);
3048 /* Are there actually any streams to free? */
3049 if (!(ep_state & EP_HAS_STREAMS) &&
3050 !(ep_state & EP_GETTING_STREAMS)) {
3051 xhci_warn(xhci, "WARN Can't disable streams for "
3053 "streams are already disabled!",
3054 eps[i]->desc.bEndpointAddress);
3055 xhci_warn(xhci, "WARN xhci_free_streams() called "
3056 "with non-streams endpoint\n");
3059 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3061 return changed_ep_bitmask;
3065 * The USB device drivers use this function (though the HCD interface in USB
3066 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3067 * coordinate mass storage command queueing across multiple endpoints (basically
3068 * a stream ID == a task ID).
3070 * Setting up streams involves allocating the same size stream context array
3071 * for each endpoint and issuing a configure endpoint command for all endpoints.
3073 * Don't allow the call to succeed if one endpoint only supports one stream
3074 * (which means it doesn't support streams at all).
3076 * Drivers may get less stream IDs than they asked for, if the host controller
3077 * hardware or endpoints claim they can't support the number of requested
3080 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3081 struct usb_host_endpoint **eps, unsigned int num_eps,
3082 unsigned int num_streams, gfp_t mem_flags)
3085 struct xhci_hcd *xhci;
3086 struct xhci_virt_device *vdev;
3087 struct xhci_command *config_cmd;
3088 unsigned int ep_index;