xhci: Fix spurious wakeups after S5 on Haswell
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
44 /*
45  * xhci_handshake - spin reading hc until handshake completes or fails
46  * @ptr: address of hc register to be read
47  * @mask: bits to look at in result of read
48  * @done: value of those bits when handshake succeeds
49  * @usec: timeout in microseconds
50  *
51  * Returns negative errno, or zero on success
52  *
53  * Success happens when the "mask" bits have the specified value (hardware
54  * handshake done).  There are two failure modes:  "usec" have passed (major
55  * hardware flakeout), or the register reads as all-ones (hardware removed).
56  */
57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58                       u32 mask, u32 done, int usec)
59 {
60         u32     result;
61
62         do {
63                 result = xhci_readl(xhci, ptr);
64                 if (result == ~(u32)0)          /* card removed */
65                         return -ENODEV;
66                 result &= mask;
67                 if (result == done)
68                         return 0;
69                 udelay(1);
70                 usec--;
71         } while (usec > 0);
72         return -ETIMEDOUT;
73 }
74
75 /*
76  * Disable interrupts and begin the xHCI halting process.
77  */
78 void xhci_quiesce(struct xhci_hcd *xhci)
79 {
80         u32 halted;
81         u32 cmd;
82         u32 mask;
83
84         mask = ~(XHCI_IRQS);
85         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86         if (!halted)
87                 mask &= ~CMD_RUN;
88
89         cmd = xhci_readl(xhci, &xhci->op_regs->command);
90         cmd &= mask;
91         xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 }
93
94 /*
95  * Force HC into halt state.
96  *
97  * Disable any IRQs and clear the run/stop bit.
98  * HC will complete any current and actively pipelined transactions, and
99  * should halt within 16 ms of the run/stop bit being cleared.
100  * Read HC Halted bit in the status register to see when the HC is finished.
101  */
102 int xhci_halt(struct xhci_hcd *xhci)
103 {
104         int ret;
105         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
106         xhci_quiesce(xhci);
107
108         ret = xhci_handshake(xhci, &xhci->op_regs->status,
109                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110         if (!ret) {
111                 xhci->xhc_state |= XHCI_STATE_HALTED;
112                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113         } else
114                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115                                 XHCI_MAX_HALT_USEC);
116         return ret;
117 }
118
119 /*
120  * Set the run bit and wait for the host to be running.
121  */
122 static int xhci_start(struct xhci_hcd *xhci)
123 {
124         u32 temp;
125         int ret;
126
127         temp = xhci_readl(xhci, &xhci->op_regs->command);
128         temp |= (CMD_RUN);
129         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
130                         temp);
131         xhci_writel(xhci, temp, &xhci->op_regs->command);
132
133         /*
134          * Wait for the HCHalted Status bit to be 0 to indicate the host is
135          * running.
136          */
137         ret = xhci_handshake(xhci, &xhci->op_regs->status,
138                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
139         if (ret == -ETIMEDOUT)
140                 xhci_err(xhci, "Host took too long to start, "
141                                 "waited %u microseconds.\n",
142                                 XHCI_MAX_HALT_USEC);
143         if (!ret)
144                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
145         return ret;
146 }
147
148 /*
149  * Reset a halted HC.
150  *
151  * This resets pipelines, timers, counters, state machines, etc.
152  * Transactions will be terminated immediately, and operational registers
153  * will be set to their defaults.
154  */
155 int xhci_reset(struct xhci_hcd *xhci)
156 {
157         u32 command;
158         u32 state;
159         int ret, i;
160
161         state = xhci_readl(xhci, &xhci->op_regs->status);
162         if ((state & STS_HALT) == 0) {
163                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164                 return 0;
165         }
166
167         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
168         command = xhci_readl(xhci, &xhci->op_regs->command);
169         command |= CMD_RESET;
170         xhci_writel(xhci, command, &xhci->op_regs->command);
171
172         ret = xhci_handshake(xhci, &xhci->op_regs->command,
173                         CMD_RESET, 0, 10 * 1000 * 1000);
174         if (ret)
175                 return ret;
176
177         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
178                          "Wait for controller to be ready for doorbell rings");
179         /*
180          * xHCI cannot write to any doorbells or operational registers other
181          * than status until the "Controller Not Ready" flag is cleared.
182          */
183         ret = xhci_handshake(xhci, &xhci->op_regs->status,
184                         STS_CNR, 0, 10 * 1000 * 1000);
185
186         for (i = 0; i < 2; ++i) {
187                 xhci->bus_state[i].port_c_suspend = 0;
188                 xhci->bus_state[i].suspended_ports = 0;
189                 xhci->bus_state[i].resuming_ports = 0;
190         }
191
192         return ret;
193 }
194
195 #ifdef CONFIG_PCI
196 static int xhci_free_msi(struct xhci_hcd *xhci)
197 {
198         int i;
199
200         if (!xhci->msix_entries)
201                 return -EINVAL;
202
203         for (i = 0; i < xhci->msix_count; i++)
204                 if (xhci->msix_entries[i].vector)
205                         free_irq(xhci->msix_entries[i].vector,
206                                         xhci_to_hcd(xhci));
207         return 0;
208 }
209
210 /*
211  * Set up MSI
212  */
213 static int xhci_setup_msi(struct xhci_hcd *xhci)
214 {
215         int ret;
216         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
217
218         ret = pci_enable_msi(pdev);
219         if (ret) {
220                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
221                                 "failed to allocate MSI entry");
222                 return ret;
223         }
224
225         ret = request_irq(pdev->irq, xhci_msi_irq,
226                                 0, "xhci_hcd", xhci_to_hcd(xhci));
227         if (ret) {
228                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
229                                 "disable MSI interrupt");
230                 pci_disable_msi(pdev);
231         }
232
233         return ret;
234 }
235
236 /*
237  * Free IRQs
238  * free all IRQs request
239  */
240 static void xhci_free_irq(struct xhci_hcd *xhci)
241 {
242         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243         int ret;
244
245         /* return if using legacy interrupt */
246         if (xhci_to_hcd(xhci)->irq > 0)
247                 return;
248
249         ret = xhci_free_msi(xhci);
250         if (!ret)
251                 return;
252         if (pdev->irq > 0)
253                 free_irq(pdev->irq, xhci_to_hcd(xhci));
254
255         return;
256 }
257
258 /*
259  * Set up MSI-X
260  */
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
262 {
263         int i, ret = 0;
264         struct usb_hcd *hcd = xhci_to_hcd(xhci);
265         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
266
267         /*
268          * calculate number of msi-x vectors supported.
269          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270          *   with max number of interrupters based on the xhci HCSPARAMS1.
271          * - num_online_cpus: maximum msi-x vectors per CPUs core.
272          *   Add additional 1 vector to ensure always available interrupt.
273          */
274         xhci->msix_count = min(num_online_cpus() + 1,
275                                 HCS_MAX_INTRS(xhci->hcs_params1));
276
277         xhci->msix_entries =
278                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
279                                 GFP_KERNEL);
280         if (!xhci->msix_entries) {
281                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
282                 return -ENOMEM;
283         }
284
285         for (i = 0; i < xhci->msix_count; i++) {
286                 xhci->msix_entries[i].entry = i;
287                 xhci->msix_entries[i].vector = 0;
288         }
289
290         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
291         if (ret) {
292                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
293                                 "Failed to enable MSI-X");
294                 goto free_entries;
295         }
296
297         for (i = 0; i < xhci->msix_count; i++) {
298                 ret = request_irq(xhci->msix_entries[i].vector,
299                                 xhci_msi_irq,
300                                 0, "xhci_hcd", xhci_to_hcd(xhci));
301                 if (ret)
302                         goto disable_msix;
303         }
304
305         hcd->msix_enabled = 1;
306         return ret;
307
308 disable_msix:
309         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
310         xhci_free_irq(xhci);
311         pci_disable_msix(pdev);
312 free_entries:
313         kfree(xhci->msix_entries);
314         xhci->msix_entries = NULL;
315         return ret;
316 }
317
318 /* Free any IRQs and disable MSI-X */
319 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
320 {
321         struct usb_hcd *hcd = xhci_to_hcd(xhci);
322         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
323
324         xhci_free_irq(xhci);
325
326         if (xhci->msix_entries) {
327                 pci_disable_msix(pdev);
328                 kfree(xhci->msix_entries);
329                 xhci->msix_entries = NULL;
330         } else {
331                 pci_disable_msi(pdev);
332         }
333
334         hcd->msix_enabled = 0;
335         return;
336 }
337
338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
339 {
340         int i;
341
342         if (xhci->msix_entries) {
343                 for (i = 0; i < xhci->msix_count; i++)
344                         synchronize_irq(xhci->msix_entries[i].vector);
345         }
346 }
347
348 static int xhci_try_enable_msi(struct usb_hcd *hcd)
349 {
350         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
351         struct pci_dev  *pdev;
352         int ret;
353
354         /* The xhci platform device has set up IRQs through usb_add_hcd. */
355         if (xhci->quirks & XHCI_PLAT)
356                 return 0;
357
358         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
359         /*
360          * Some Fresco Logic host controllers advertise MSI, but fail to
361          * generate interrupts.  Don't even try to enable MSI.
362          */
363         if (xhci->quirks & XHCI_BROKEN_MSI)
364                 goto legacy_irq;
365
366         /* unregister the legacy interrupt */
367         if (hcd->irq)
368                 free_irq(hcd->irq, hcd);
369         hcd->irq = 0;
370
371         ret = xhci_setup_msix(xhci);
372         if (ret)
373                 /* fall back to msi*/
374                 ret = xhci_setup_msi(xhci);
375
376         if (!ret)
377                 /* hcd->irq is 0, we have MSI */
378                 return 0;
379
380         if (!pdev->irq) {
381                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
382                 return -EINVAL;
383         }
384
385  legacy_irq:
386         /* fall back to legacy interrupt*/
387         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
388                         hcd->irq_descr, hcd);
389         if (ret) {
390                 xhci_err(xhci, "request interrupt %d failed\n",
391                                 pdev->irq);
392                 return ret;
393         }
394         hcd->irq = pdev->irq;
395         return 0;
396 }
397
398 #else
399
400 static int xhci_try_enable_msi(struct usb_hcd *hcd)
401 {
402         return 0;
403 }
404
405 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
406 {
407 }
408
409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
410 {
411 }
412
413 #endif
414
415 static void compliance_mode_recovery(unsigned long arg)
416 {
417         struct xhci_hcd *xhci;
418         struct usb_hcd *hcd;
419         u32 temp;
420         int i;
421
422         xhci = (struct xhci_hcd *)arg;
423
424         for (i = 0; i < xhci->num_usb3_ports; i++) {
425                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
426                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
427                         /*
428                          * Compliance Mode Detected. Letting USB Core
429                          * handle the Warm Reset
430                          */
431                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
432                                         "Compliance mode detected->port %d",
433                                         i + 1);
434                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
435                                         "Attempting compliance mode recovery");
436                         hcd = xhci->shared_hcd;
437
438                         if (hcd->state == HC_STATE_SUSPENDED)
439                                 usb_hcd_resume_root_hub(hcd);
440
441                         usb_hcd_poll_rh_status(hcd);
442                 }
443         }
444
445         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
446                 mod_timer(&xhci->comp_mode_recovery_timer,
447                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
448 }
449
450 /*
451  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
452  * that causes ports behind that hardware to enter compliance mode sometimes.
453  * The quirk creates a timer that polls every 2 seconds the link state of
454  * each host controller's port and recovers it by issuing a Warm reset
455  * if Compliance mode is detected, otherwise the port will become "dead" (no
456  * device connections or disconnections will be detected anymore). Becasue no
457  * status event is generated when entering compliance mode (per xhci spec),
458  * this quirk is needed on systems that have the failing hardware installed.
459  */
460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
461 {
462         xhci->port_status_u0 = 0;
463         init_timer(&xhci->comp_mode_recovery_timer);
464
465         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
466         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
467         xhci->comp_mode_recovery_timer.expires = jiffies +
468                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
469
470         set_timer_slack(&xhci->comp_mode_recovery_timer,
471                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472         add_timer(&xhci->comp_mode_recovery_timer);
473         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
474                         "Compliance mode recovery timer initialized");
475 }
476
477 /*
478  * This function identifies the systems that have installed the SN65LVPE502CP
479  * USB3.0 re-driver and that need the Compliance Mode Quirk.
480  * Systems:
481  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
482  */
483 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
484 {
485         const char *dmi_product_name, *dmi_sys_vendor;
486
487         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
488         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
489         if (!dmi_product_name || !dmi_sys_vendor)
490                 return false;
491
492         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
493                 return false;
494
495         if (strstr(dmi_product_name, "Z420") ||
496                         strstr(dmi_product_name, "Z620") ||
497                         strstr(dmi_product_name, "Z820") ||
498                         strstr(dmi_product_name, "Z1 Workstation"))
499                 return true;
500
501         return false;
502 }
503
504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
505 {
506         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
507 }
508
509
510 /*
511  * Initialize memory for HCD and xHC (one-time init).
512  *
513  * Program the PAGESIZE register, initialize the device context array, create
514  * device contexts (?), set up a command ring segment (or two?), create event
515  * ring (one for now).
516  */
517 int xhci_init(struct usb_hcd *hcd)
518 {
519         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
520         int retval = 0;
521
522         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
523         spin_lock_init(&xhci->lock);
524         if (xhci->hci_version == 0x95 && link_quirk) {
525                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
526                                 "QUIRK: Not clearing Link TRB chain bits.");
527                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
528         } else {
529                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
530                                 "xHCI doesn't need link TRB QUIRK");
531         }
532         retval = xhci_mem_init(xhci, GFP_KERNEL);
533         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
534
535         /* Initializing Compliance Mode Recovery Data If Needed */
536         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
537                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
538                 compliance_mode_recovery_timer_init(xhci);
539         }
540
541         return retval;
542 }
543
544 /*-------------------------------------------------------------------------*/
545
546
547 static int xhci_run_finished(struct xhci_hcd *xhci)
548 {
549         if (xhci_start(xhci)) {
550                 xhci_halt(xhci);
551                 return -ENODEV;
552         }
553         xhci->shared_hcd->state = HC_STATE_RUNNING;
554         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
555
556         if (xhci->quirks & XHCI_NEC_HOST)
557                 xhci_ring_cmd_db(xhci);
558
559         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
560                         "Finished xhci_run for USB3 roothub");
561         return 0;
562 }
563
564 /*
565  * Start the HC after it was halted.
566  *
567  * This function is called by the USB core when the HC driver is added.
568  * Its opposite is xhci_stop().
569  *
570  * xhci_init() must be called once before this function can be called.
571  * Reset the HC, enable device slot contexts, program DCBAAP, and
572  * set command ring pointer and event ring pointer.
573  *
574  * Setup MSI-X vectors and enable interrupts.
575  */
576 int xhci_run(struct usb_hcd *hcd)
577 {
578         u32 temp;
579         u64 temp_64;
580         int ret;
581         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582
583         /* Start the xHCI host controller running only after the USB 2.0 roothub
584          * is setup.
585          */
586
587         hcd->uses_new_polling = 1;
588         if (!usb_hcd_is_primary_hcd(hcd))
589                 return xhci_run_finished(xhci);
590
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
592
593         ret = xhci_try_enable_msi(hcd);
594         if (ret)
595                 return ret;
596
597         xhci_dbg(xhci, "Command ring memory map follows:\n");
598         xhci_debug_ring(xhci, xhci->cmd_ring);
599         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
600         xhci_dbg_cmd_ptrs(xhci);
601
602         xhci_dbg(xhci, "ERST memory map follows:\n");
603         xhci_dbg_erst(xhci, &xhci->erst);
604         xhci_dbg(xhci, "Event ring:\n");
605         xhci_debug_ring(xhci, xhci->event_ring);
606         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
607         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
608         temp_64 &= ~ERST_PTR_MASK;
609         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
611
612         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613                         "// Set the interrupt modulation register");
614         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
615         temp &= ~ER_IRQ_INTERVAL_MASK;
616         temp |= (u32) 160;
617         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
618
619         /* Set the HCD state before we enable the irqs */
620         temp = xhci_readl(xhci, &xhci->op_regs->command);
621         temp |= (CMD_EIE);
622         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623                         "// Enable interrupts, cmd = 0x%x.", temp);
624         xhci_writel(xhci, temp, &xhci->op_regs->command);
625
626         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
629                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
630         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
631                         &xhci->ir_set->irq_pending);
632         xhci_print_ir_set(xhci, 0);
633
634         if (xhci->quirks & XHCI_NEC_HOST)
635                 xhci_queue_vendor_command(xhci, 0, 0, 0,
636                                 TRB_TYPE(TRB_NEC_GET_FW));
637
638         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639                         "Finished xhci_run for USB2 roothub");
640         return 0;
641 }
642
643 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
644 {
645         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
646
647         spin_lock_irq(&xhci->lock);
648         xhci_halt(xhci);
649
650         /* The shared_hcd is going to be deallocated shortly (the USB core only
651          * calls this function when allocation fails in usb_add_hcd(), or
652          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
653          */
654         xhci->shared_hcd = NULL;
655         spin_unlock_irq(&xhci->lock);
656 }
657
658 /*
659  * Stop xHCI driver.
660  *
661  * This function is called by the USB core when the HC driver is removed.
662  * Its opposite is xhci_run().
663  *
664  * Disable device contexts, disable IRQs, and quiesce the HC.
665  * Reset the HC, finish any completed transactions, and cleanup memory.
666  */
667 void xhci_stop(struct usb_hcd *hcd)
668 {
669         u32 temp;
670         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
671
672         if (!usb_hcd_is_primary_hcd(hcd)) {
673                 xhci_only_stop_hcd(xhci->shared_hcd);
674                 return;
675         }
676
677         spin_lock_irq(&xhci->lock);
678         /* Make sure the xHC is halted for a USB3 roothub
679          * (xhci_stop() could be called as part of failed init).
680          */
681         xhci_halt(xhci);
682         xhci_reset(xhci);
683         spin_unlock_irq(&xhci->lock);
684
685         xhci_cleanup_msix(xhci);
686
687         /* Deleting Compliance Mode Recovery Timer */
688         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
689                         (!(xhci_all_ports_seen_u0(xhci)))) {
690                 del_timer_sync(&xhci->comp_mode_recovery_timer);
691                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
692                                 "%s: compliance mode recovery timer deleted",
693                                 __func__);
694         }
695
696         if (xhci->quirks & XHCI_AMD_PLL_FIX)
697                 usb_amd_dev_put();
698
699         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
700                         "// Disabling event ring interrupts");
701         temp = xhci_readl(xhci, &xhci->op_regs->status);
702         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
703         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
704         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
705                         &xhci->ir_set->irq_pending);
706         xhci_print_ir_set(xhci, 0);
707
708         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
709         xhci_mem_cleanup(xhci);
710         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
711                         "xhci_stop completed - status = %x",
712                         xhci_readl(xhci, &xhci->op_regs->status));
713 }
714
715 /*
716  * Shutdown HC (not bus-specific)
717  *
718  * This is called when the machine is rebooting or halting.  We assume that the
719  * machine will be powered off, and the HC's internal state will be reset.
720  * Don't bother to free memory.
721  *
722  * This will only ever be called with the main usb_hcd (the USB3 roothub).
723  */
724 void xhci_shutdown(struct usb_hcd *hcd)
725 {
726         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
727
728         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
729                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
730
731         spin_lock_irq(&xhci->lock);
732         xhci_halt(xhci);
733         /* Workaround for spurious wakeups at shutdown with HSW */
734         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
735                 xhci_reset(xhci);
736         spin_unlock_irq(&xhci->lock);
737
738         xhci_cleanup_msix(xhci);
739
740         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
741                         "xhci_shutdown completed - status = %x",
742                         xhci_readl(xhci, &xhci->op_regs->status));
743
744         /* Yet another workaround for spurious wakeups at shutdown with HSW */
745         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
746                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
747 }
748
749 #ifdef CONFIG_PM
750 static void xhci_save_registers(struct xhci_hcd *xhci)
751 {
752         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
753         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
754         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
755         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
756         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
757         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
758         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
759         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
760         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
761 }
762
763 static void xhci_restore_registers(struct xhci_hcd *xhci)
764 {
765         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
766         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
767         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
768         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
769         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
770         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
771         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
772         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
773         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
774 }
775
776 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
777 {
778         u64     val_64;
779
780         /* step 2: initialize command ring buffer */
781         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
782         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
783                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
784                                       xhci->cmd_ring->dequeue) &
785                  (u64) ~CMD_RING_RSVD_BITS) |
786                 xhci->cmd_ring->cycle_state;
787         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
788                         "// Setting command ring address to 0x%llx",
789                         (long unsigned long) val_64);
790         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
791 }
792
793 /*
794  * The whole command ring must be cleared to zero when we suspend the host.
795  *
796  * The host doesn't save the command ring pointer in the suspend well, so we
797  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
798  * aligned, because of the reserved bits in the command ring dequeue pointer
799  * register.  Therefore, we can't just set the dequeue pointer back in the
800  * middle of the ring (TRBs are 16-byte aligned).
801  */
802 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
803 {
804         struct xhci_ring *ring;
805         struct xhci_segment *seg;
806
807         ring = xhci->cmd_ring;
808         seg = ring->deq_seg;
809         do {
810                 memset(seg->trbs, 0,
811                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
812                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
813                         cpu_to_le32(~TRB_CYCLE);
814                 seg = seg->next;
815         } while (seg != ring->deq_seg);
816
817         /* Reset the software enqueue and dequeue pointers */
818         ring->deq_seg = ring->first_seg;
819         ring->dequeue = ring->first_seg->trbs;
820         ring->enq_seg = ring->deq_seg;
821         ring->enqueue = ring->dequeue;
822
823         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
824         /*
825          * Ring is now zeroed, so the HW should look for change of ownership
826          * when the cycle bit is set to 1.
827          */
828         ring->cycle_state = 1;
829
830         /*
831          * Reset the hardware dequeue pointer.
832          * Yes, this will need to be re-written after resume, but we're paranoid
833          * and want to make sure the hardware doesn't access bogus memory
834          * because, say, the BIOS or an SMI started the host without changing
835          * the command ring pointers.
836          */
837         xhci_set_cmd_ring_deq(xhci);
838 }
839
840 /*
841  * Stop HC (not bus-specific)
842  *
843  * This is called when the machine transition into S3/S4 mode.
844  *
845  */
846 int xhci_suspend(struct xhci_hcd *xhci)
847 {
848         int                     rc = 0;
849         unsigned int            delay = XHCI_MAX_HALT_USEC;
850         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
851         u32                     command;
852
853         if (hcd->state != HC_STATE_SUSPENDED ||
854                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
855                 return -EINVAL;
856
857         /* Don't poll the roothubs on bus suspend. */
858         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
859         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
860         del_timer_sync(&hcd->rh_timer);
861
862         spin_lock_irq(&xhci->lock);
863         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
864         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
865         /* step 1: stop endpoint */
866         /* skipped assuming that port suspend has done */
867
868         /* step 2: clear Run/Stop bit */
869         command = xhci_readl(xhci, &xhci->op_regs->command);
870         command &= ~CMD_RUN;
871         xhci_writel(xhci, command, &xhci->op_regs->command);
872
873         /* Some chips from Fresco Logic need an extraordinary delay */
874         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
875
876         if (xhci_handshake(xhci, &xhci->op_regs->status,
877                       STS_HALT, STS_HALT, delay)) {
878                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
879                 spin_unlock_irq(&xhci->lock);
880                 return -ETIMEDOUT;
881         }
882         xhci_clear_command_ring(xhci);
883
884         /* step 3: save registers */
885         xhci_save_registers(xhci);
886
887         /* step 4: set CSS flag */
888         command = xhci_readl(xhci, &xhci->op_regs->command);
889         command |= CMD_CSS;
890         xhci_writel(xhci, command, &xhci->op_regs->command);
891         if (xhci_handshake(xhci, &xhci->op_regs->status,
892                                 STS_SAVE, 0, 10 * 1000)) {
893                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
894                 spin_unlock_irq(&xhci->lock);
895                 return -ETIMEDOUT;
896         }
897         spin_unlock_irq(&xhci->lock);
898
899         /*
900          * Deleting Compliance Mode Recovery Timer because the xHCI Host
901          * is about to be suspended.
902          */
903         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
904                         (!(xhci_all_ports_seen_u0(xhci)))) {
905                 del_timer_sync(&xhci->comp_mode_recovery_timer);
906                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
907                                 "%s: compliance mode recovery timer deleted",
908                                 __func__);
909         }
910
911         /* step 5: remove core well power */
912         /* synchronize irq when using MSI-X */
913         xhci_msix_sync_irqs(xhci);
914
915         return rc;
916 }
917
918 /*
919  * start xHC (not bus-specific)
920  *
921  * This is called when the machine transition from S3/S4 mode.
922  *
923  */
924 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
925 {
926         u32                     command, temp = 0;
927         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
928         struct usb_hcd          *secondary_hcd;
929         int                     retval = 0;
930         bool                    comp_timer_running = false;
931
932         /* Wait a bit if either of the roothubs need to settle from the
933          * transition into bus suspend.
934          */
935         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
936                         time_before(jiffies,
937                                 xhci->bus_state[1].next_statechange))
938                 msleep(100);
939
940         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
941         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
942
943         spin_lock_irq(&xhci->lock);
944         if (xhci->quirks & XHCI_RESET_ON_RESUME)
945                 hibernated = true;
946
947         if (!hibernated) {
948                 /* step 1: restore register */
949                 xhci_restore_registers(xhci);
950                 /* step 2: initialize command ring buffer */
951                 xhci_set_cmd_ring_deq(xhci);
952                 /* step 3: restore state and start state*/
953                 /* step 3: set CRS flag */
954                 command = xhci_readl(xhci, &xhci->op_regs->command);
955                 command |= CMD_CRS;
956                 xhci_writel(xhci, command, &xhci->op_regs->command);
957                 if (xhci_handshake(xhci, &xhci->op_regs->status,
958                               STS_RESTORE, 0, 10 * 1000)) {
959                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
960                         spin_unlock_irq(&xhci->lock);
961                         return -ETIMEDOUT;
962                 }
963                 temp = xhci_readl(xhci, &xhci->op_regs->status);
964         }
965
966         /* If restore operation fails, re-initialize the HC during resume */
967         if ((temp & STS_SRE) || hibernated) {
968
969                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
970                                 !(xhci_all_ports_seen_u0(xhci))) {
971                         del_timer_sync(&xhci->comp_mode_recovery_timer);
972                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
973                                 "Compliance Mode Recovery Timer deleted!");
974                 }
975
976                 /* Let the USB core know _both_ roothubs lost power. */
977                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
978                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
979
980                 xhci_dbg(xhci, "Stop HCD\n");
981                 xhci_halt(xhci);
982                 xhci_reset(xhci);
983                 spin_unlock_irq(&xhci->lock);
984                 xhci_cleanup_msix(xhci);
985
986                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
987                 temp = xhci_readl(xhci, &xhci->op_regs->status);
988                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
989                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
990                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
991                                 &xhci->ir_set->irq_pending);
992                 xhci_print_ir_set(xhci, 0);
993
994                 xhci_dbg(xhci, "cleaning up memory\n");
995                 xhci_mem_cleanup(xhci);
996                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
997                             xhci_readl(xhci, &xhci->op_regs->status));
998
999                 /* USB core calls the PCI reinit and start functions twice:
1000                  * first with the primary HCD, and then with the secondary HCD.
1001                  * If we don't do the same, the host will never be started.
1002                  */
1003                 if (!usb_hcd_is_primary_hcd(hcd))
1004                         secondary_hcd = hcd;
1005                 else
1006                         secondary_hcd = xhci->shared_hcd;
1007
1008                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1009                 retval = xhci_init(hcd->primary_hcd);
1010                 if (retval)
1011                         return retval;
1012                 comp_timer_running = true;
1013
1014                 xhci_dbg(xhci, "Start the primary HCD\n");
1015                 retval = xhci_run(hcd->primary_hcd);
1016                 if (!retval) {
1017                         xhci_dbg(xhci, "Start the secondary HCD\n");
1018                         retval = xhci_run(secondary_hcd);
1019                 }
1020                 hcd->state = HC_STATE_SUSPENDED;
1021                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1022                 goto done;
1023         }
1024
1025         /* step 4: set Run/Stop bit */
1026         command = xhci_readl(xhci, &xhci->op_regs->command);
1027         command |= CMD_RUN;
1028         xhci_writel(xhci, command, &xhci->op_regs->command);
1029         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1030                   0, 250 * 1000);
1031
1032         /* step 5: walk topology and initialize portsc,
1033          * portpmsc and portli
1034          */
1035         /* this is done in bus_resume */
1036
1037         /* step 6: restart each of the previously
1038          * Running endpoints by ringing their doorbells
1039          */
1040
1041         spin_unlock_irq(&xhci->lock);
1042
1043  done:
1044         if (retval == 0) {
1045                 usb_hcd_resume_root_hub(hcd);
1046                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1047         }
1048
1049         /*
1050          * If system is subject to the Quirk, Compliance Mode Timer needs to
1051          * be re-initialized Always after a system resume. Ports are subject
1052          * to suffer the Compliance Mode issue again. It doesn't matter if
1053          * ports have entered previously to U0 before system's suspension.
1054          */
1055         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1056                 compliance_mode_recovery_timer_init(xhci);
1057
1058         /* Re-enable port polling. */
1059         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1060         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1061         usb_hcd_poll_rh_status(hcd);
1062
1063         return retval;
1064 }
1065 #endif  /* CONFIG_PM */
1066
1067 /*-------------------------------------------------------------------------*/
1068
1069 /**
1070  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1071  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1072  * value to right shift 1 for the bitmask.
1073  *
1074  * Index  = (epnum * 2) + direction - 1,
1075  * where direction = 0 for OUT, 1 for IN.
1076  * For control endpoints, the IN index is used (OUT index is unused), so
1077  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1078  */
1079 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1080 {
1081         unsigned int index;
1082         if (usb_endpoint_xfer_control(desc))
1083                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1084         else
1085                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1086                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1087         return index;
1088 }
1089
1090 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1091  * address from the XHCI endpoint index.
1092  */
1093 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1094 {
1095         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1096         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1097         return direction | number;
1098 }
1099
1100 /* Find the flag for this endpoint (for use in the control context).  Use the
1101  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1102  * bit 1, etc.
1103  */
1104 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1105 {
1106         return 1 << (xhci_get_endpoint_index(desc) + 1);
1107 }
1108
1109 /* Find the flag for this endpoint (for use in the control context).  Use the
1110  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1111  * bit 1, etc.
1112  */
1113 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1114 {
1115         return 1 << (ep_index + 1);
1116 }
1117
1118 /* Compute the last valid endpoint context index.  Basically, this is the
1119  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1120  * we find the most significant bit set in the added contexts flags.
1121  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1122  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1123  */
1124 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1125 {
1126         return fls(added_ctxs) - 1;
1127 }
1128
1129 /* Returns 1 if the arguments are OK;
1130  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1131  */
1132 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1133                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1134                 const char *func) {
1135         struct xhci_hcd *xhci;
1136         struct xhci_virt_device *virt_dev;
1137
1138         if (!hcd || (check_ep && !ep) || !udev) {
1139                 pr_debug("xHCI %s called with invalid args\n", func);
1140                 return -EINVAL;
1141         }
1142         if (!udev->parent) {
1143                 pr_debug("xHCI %s called for root hub\n", func);
1144                 return 0;
1145         }
1146
1147         xhci = hcd_to_xhci(hcd);
1148         if (check_virt_dev) {
1149                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1150                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1151                                         func);
1152                         return -EINVAL;
1153                 }
1154
1155                 virt_dev = xhci->devs[udev->slot_id];
1156                 if (virt_dev->udev != udev) {
1157                         xhci_dbg(xhci, "xHCI %s called with udev and "
1158                                           "virt_dev does not match\n", func);
1159                         return -EINVAL;
1160                 }
1161         }
1162
1163         if (xhci->xhc_state & XHCI_STATE_HALTED)
1164                 return -ENODEV;
1165
1166         return 1;
1167 }
1168
1169 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1170                 struct usb_device *udev, struct xhci_command *command,
1171                 bool ctx_change, bool must_succeed);
1172
1173 /*
1174  * Full speed devices may have a max packet size greater than 8 bytes, but the
1175  * USB core doesn't know that until it reads the first 8 bytes of the
1176  * descriptor.  If the usb_device's max packet size changes after that point,
1177  * we need to issue an evaluate context command and wait on it.
1178  */
1179 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1180                 unsigned int ep_index, struct urb *urb)
1181 {
1182         struct xhci_container_ctx *in_ctx;
1183         struct xhci_container_ctx *out_ctx;
1184         struct xhci_input_control_ctx *ctrl_ctx;
1185         struct xhci_ep_ctx *ep_ctx;
1186         int max_packet_size;
1187         int hw_max_packet_size;
1188         int ret = 0;
1189
1190         out_ctx = xhci->devs[slot_id]->out_ctx;
1191         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1192         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1193         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1194         if (hw_max_packet_size != max_packet_size) {
1195                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1196                                 "Max Packet Size for ep 0 changed.");
1197                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1198                                 "Max packet size in usb_device = %d",
1199                                 max_packet_size);
1200                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1201                                 "Max packet size in xHCI HW = %d",
1202                                 hw_max_packet_size);
1203                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1204                                 "Issuing evaluate context command.");
1205
1206                 /* Set up the input context flags for the command */
1207                 /* FIXME: This won't work if a non-default control endpoint
1208                  * changes max packet sizes.
1209                  */
1210                 in_ctx = xhci->devs[slot_id]->in_ctx;
1211                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1212                 if (!ctrl_ctx) {
1213                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1214                                         __func__);
1215                         return -ENOMEM;
1216                 }
1217                 /* Set up the modified control endpoint 0 */
1218                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1219                                 xhci->devs[slot_id]->out_ctx, ep_index);
1220
1221                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1222                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1223                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1224
1225                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1226                 ctrl_ctx->drop_flags = 0;
1227
1228                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1229                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1230                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1231                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1232
1233                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1234                                 true, false);
1235
1236                 /* Clean up the input context for later use by bandwidth
1237                  * functions.
1238                  */
1239                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1240         }
1241         return ret;
1242 }
1243
1244 /*
1245  * non-error returns are a promise to giveback() the urb later
1246  * we drop ownership so next owner (or urb unlink) can get it
1247  */
1248 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1249 {
1250         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1251         struct xhci_td *buffer;
1252         unsigned long flags;
1253         int ret = 0;
1254         unsigned int slot_id, ep_index;
1255         struct urb_priv *urb_priv;
1256         int size, i;
1257
1258         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1259                                         true, true, __func__) <= 0)
1260                 return -EINVAL;
1261
1262         slot_id = urb->dev->slot_id;
1263         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1264
1265         if (!HCD_HW_ACCESSIBLE(hcd)) {
1266                 if (!in_interrupt())
1267                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1268                 ret = -ESHUTDOWN;
1269                 goto exit;
1270         }
1271
1272         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1273                 size = urb->number_of_packets;
1274         else
1275                 size = 1;
1276
1277         urb_priv = kzalloc(sizeof(struct urb_priv) +
1278                                   size * sizeof(struct xhci_td *), mem_flags);
1279         if (!urb_priv)
1280                 return -ENOMEM;
1281
1282         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1283         if (!buffer) {
1284                 kfree(urb_priv);
1285                 return -ENOMEM;
1286         }
1287
1288         for (i = 0; i < size; i++) {
1289                 urb_priv->td[i] = buffer;
1290                 buffer++;
1291         }
1292
1293         urb_priv->length = size;
1294         urb_priv->td_cnt = 0;
1295         urb->hcpriv = urb_priv;
1296
1297         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1298                 /* Check to see if the max packet size for the default control
1299                  * endpoint changed during FS device enumeration
1300                  */
1301                 if (urb->dev->speed == USB_SPEED_FULL) {
1302                         ret = xhci_check_maxpacket(xhci, slot_id,
1303                                         ep_index, urb);
1304                         if (ret < 0) {
1305                                 xhci_urb_free_priv(xhci, urb_priv);
1306                                 urb->hcpriv = NULL;
1307                                 return ret;
1308                         }
1309                 }
1310
1311                 /* We have a spinlock and interrupts disabled, so we must pass
1312                  * atomic context to this function, which may allocate memory.
1313                  */
1314                 spin_lock_irqsave(&xhci->lock, flags);
1315                 if (xhci->xhc_state & XHCI_STATE_DYING)
1316                         goto dying;
1317                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1318                                 slot_id, ep_index);
1319                 if (ret)
1320                         goto free_priv;
1321                 spin_unlock_irqrestore(&xhci->lock, flags);
1322         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1323                 spin_lock_irqsave(&xhci->lock, flags);
1324                 if (xhci->xhc_state & XHCI_STATE_DYING)
1325                         goto dying;
1326                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1327                                 EP_GETTING_STREAMS) {
1328                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1329                                         "is transitioning to using streams.\n");
1330                         ret = -EINVAL;
1331                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1332                                 EP_GETTING_NO_STREAMS) {
1333                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1334                                         "is transitioning to "
1335                                         "not having streams.\n");
1336                         ret = -EINVAL;
1337                 } else {
1338                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1339                                         slot_id, ep_index);
1340                 }
1341                 if (ret)
1342                         goto free_priv;
1343                 spin_unlock_irqrestore(&xhci->lock, flags);
1344         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1345                 spin_lock_irqsave(&xhci->lock, flags);
1346                 if (xhci->xhc_state & XHCI_STATE_DYING)
1347                         goto dying;
1348                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1349                                 slot_id, ep_index);
1350                 if (ret)
1351                         goto free_priv;
1352                 spin_unlock_irqrestore(&xhci->lock, flags);
1353         } else {
1354                 spin_lock_irqsave(&xhci->lock, flags);
1355                 if (xhci->xhc_state & XHCI_STATE_DYING)
1356                         goto dying;
1357                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1358                                 slot_id, ep_index);
1359                 if (ret)
1360                         goto free_priv;
1361                 spin_unlock_irqrestore(&xhci->lock, flags);
1362         }
1363 exit:
1364         return ret;
1365 dying:
1366         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1367                         "non-responsive xHCI host.\n",
1368                         urb->ep->desc.bEndpointAddress, urb);
1369         ret = -ESHUTDOWN;
1370 free_priv:
1371         xhci_urb_free_priv(xhci, urb_priv);
1372         urb->hcpriv = NULL;
1373         spin_unlock_irqrestore(&xhci->lock, flags);
1374         return ret;
1375 }
1376
1377 /* Get the right ring for the given URB.
1378  * If the endpoint supports streams, boundary check the URB's stream ID.
1379  * If the endpoint doesn't support streams, return the singular endpoint ring.
1380  */
1381 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1382                 struct urb *urb)
1383 {
1384         unsigned int slot_id;
1385         unsigned int ep_index;
1386         unsigned int stream_id;
1387         struct xhci_virt_ep *ep;
1388
1389         slot_id = urb->dev->slot_id;
1390         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1391         stream_id = urb->stream_id;
1392         ep = &xhci->devs[slot_id]->eps[ep_index];
1393         /* Common case: no streams */
1394         if (!(ep->ep_state & EP_HAS_STREAMS))
1395                 return ep->ring;
1396
1397         if (stream_id == 0) {
1398                 xhci_warn(xhci,
1399                                 "WARN: Slot ID %u, ep index %u has streams, "
1400                                 "but URB has no stream ID.\n",
1401                                 slot_id, ep_index);
1402                 return NULL;
1403         }
1404
1405         if (stream_id < ep->stream_info->num_streams)
1406                 return ep->stream_info->stream_rings[stream_id];
1407
1408         xhci_warn(xhci,
1409                         "WARN: Slot ID %u, ep index %u has "
1410                         "stream IDs 1 to %u allocated, "
1411                         "but stream ID %u is requested.\n",
1412                         slot_id, ep_index,
1413                         ep->stream_info->num_streams - 1,
1414                         stream_id);
1415         return NULL;
1416 }
1417
1418 /*
1419  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1420  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1421  * should pick up where it left off in the TD, unless a Set Transfer Ring
1422  * Dequeue Pointer is issued.
1423  *
1424  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1425  * the ring.  Since the ring is a contiguous structure, they can't be physically
1426  * removed.  Instead, there are two options:
1427  *
1428  *  1) If the HC is in the middle of processing the URB to be canceled, we
1429  *     simply move the ring's dequeue pointer past those TRBs using the Set
1430  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1431  *     when drivers timeout on the last submitted URB and attempt to cancel.
1432  *
1433  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1434  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1435  *     HC will need to invalidate the any TRBs it has cached after the stop
1436  *     endpoint command, as noted in the xHCI 0.95 errata.
1437  *
1438  *  3) The TD may have completed by the time the Stop Endpoint Command
1439  *     completes, so software needs to handle that case too.
1440  *
1441  * This function should protect against the TD enqueueing code ringing the
1442  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1443  * It also needs to account for multiple cancellations on happening at the same
1444  * time for the same endpoint.
1445  *
1446  * Note that this function can be called in any context, or so says
1447  * usb_hcd_unlink_urb()
1448  */
1449 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1450 {
1451         unsigned long flags;
1452         int ret, i;
1453         u32 temp;
1454         struct xhci_hcd *xhci;
1455         struct urb_priv *urb_priv;
1456         struct xhci_td *td;
1457         unsigned int ep_index;
1458         struct xhci_ring *ep_ring;
1459         struct xhci_virt_ep *ep;
1460
1461         xhci = hcd_to_xhci(hcd);
1462         spin_lock_irqsave(&xhci->lock, flags);
1463         /* Make sure the URB hasn't completed or been unlinked already */
1464         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1465         if (ret || !urb->hcpriv)
1466                 goto done;
1467         temp = xhci_readl(xhci, &xhci->op_regs->status);
1468         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1469                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1470                                 "HW died, freeing TD.");
1471                 urb_priv = urb->hcpriv;
1472                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1473                         td = urb_priv->td[i];
1474                         if (!list_empty(&td->td_list))
1475                                 list_del_init(&td->td_list);
1476                         if (!list_empty(&td->cancelled_td_list))
1477                                 list_del_init(&td->cancelled_td_list);
1478                 }
1479
1480                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1481                 spin_unlock_irqrestore(&xhci->lock, flags);
1482                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1483                 xhci_urb_free_priv(xhci, urb_priv);
1484                 return ret;
1485         }
1486         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1487                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1488                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1489                                 "Ep 0x%x: URB %p to be canceled on "
1490                                 "non-responsive xHCI host.",
1491                                 urb->ep->desc.bEndpointAddress, urb);
1492                 /* Let the stop endpoint command watchdog timer (which set this
1493                  * state) finish cleaning up the endpoint TD lists.  We must
1494                  * have caught it in the middle of dropping a lock and giving
1495                  * back an URB.
1496                  */
1497                 goto done;
1498         }
1499
1500         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1501         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1502         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1503         if (!ep_ring) {
1504                 ret = -EINVAL;
1505                 goto done;
1506         }
1507
1508         urb_priv = urb->hcpriv;
1509         i = urb_priv->td_cnt;
1510         if (i < urb_priv->length)
1511                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1512                                 "Cancel URB %p, dev %s, ep 0x%x, "
1513                                 "starting at offset 0x%llx",
1514                                 urb, urb->dev->devpath,
1515                                 urb->ep->desc.bEndpointAddress,
1516                                 (unsigned long long) xhci_trb_virt_to_dma(
1517                                         urb_priv->td[i]->start_seg,
1518                                         urb_priv->td[i]->first_trb));
1519
1520         for (; i < urb_priv->length; i++) {
1521                 td = urb_priv->td[i];
1522                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1523         }
1524
1525         /* Queue a stop endpoint command, but only if this is
1526          * the first cancellation to be handled.
1527          */
1528         if (!(ep->ep_state & EP_HALT_PENDING)) {
1529                 ep->ep_state |= EP_HALT_PENDING;
1530                 ep->stop_cmds_pending++;
1531                 ep->stop_cmd_timer.expires = jiffies +
1532                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1533                 add_timer(&ep->stop_cmd_timer);
1534                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1535                 xhci_ring_cmd_db(xhci);
1536         }
1537 done:
1538         spin_unlock_irqrestore(&xhci->lock, flags);
1539         return ret;
1540 }
1541
1542 /* Drop an endpoint from a new bandwidth configuration for this device.
1543  * Only one call to this function is allowed per endpoint before
1544  * check_bandwidth() or reset_bandwidth() must be called.
1545  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1546  * add the endpoint to the schedule with possibly new parameters denoted by a
1547  * different endpoint descriptor in usb_host_endpoint.
1548  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1549  * not allowed.
1550  *
1551  * The USB core will not allow URBs to be queued to an endpoint that is being
1552  * disabled, so there's no need for mutual exclusion to protect
1553  * the xhci->devs[slot_id] structure.
1554  */
1555 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1556                 struct usb_host_endpoint *ep)
1557 {
1558         struct xhci_hcd *xhci;
1559         struct xhci_container_ctx *in_ctx, *out_ctx;
1560         struct xhci_input_control_ctx *ctrl_ctx;
1561         struct xhci_slot_ctx *slot_ctx;
1562         unsigned int last_ctx;
1563         unsigned int ep_index;
1564         struct xhci_ep_ctx *ep_ctx;
1565         u32 drop_flag;
1566         u32 new_add_flags, new_drop_flags, new_slot_info;
1567         int ret;
1568
1569         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1570         if (ret <= 0)
1571                 return ret;
1572         xhci = hcd_to_xhci(hcd);
1573         if (xhci->xhc_state & XHCI_STATE_DYING)
1574                 return -ENODEV;
1575
1576         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1577         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1578         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1579                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1580                                 __func__, drop_flag);
1581                 return 0;
1582         }
1583
1584         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1585         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1586         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1587         if (!ctrl_ctx) {
1588                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1589                                 __func__);
1590                 return 0;
1591         }
1592
1593         ep_index = xhci_get_endpoint_index(&ep->desc);
1594         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1595         /* If the HC already knows the endpoint is disabled,
1596          * or the HCD has noted it is disabled, ignore this request
1597          */
1598         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1599              cpu_to_le32(EP_STATE_DISABLED)) ||
1600             le32_to_cpu(ctrl_ctx->drop_flags) &
1601             xhci_get_endpoint_flag(&ep->desc)) {
1602                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1603                                 __func__, ep);
1604                 return 0;
1605         }
1606
1607         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1608         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1609
1610         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1611         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1612
1613         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1614         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1615         /* Update the last valid endpoint context, if we deleted the last one */
1616         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1617             LAST_CTX(last_ctx)) {
1618                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1619                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1620         }
1621         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1622
1623         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1624
1625         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1626                         (unsigned int) ep->desc.bEndpointAddress,
1627                         udev->slot_id,
1628                         (unsigned int) new_drop_flags,
1629                         (unsigned int) new_add_flags,
1630                         (unsigned int) new_slot_info);
1631         return 0;
1632 }
1633
1634 /* Add an endpoint to a new possible bandwidth configuration for this device.
1635  * Only one call to this function is allowed per endpoint before
1636  * check_bandwidth() or reset_bandwidth() must be called.
1637  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1638  * add the endpoint to the schedule with possibly new parameters denoted by a
1639  * different endpoint descriptor in usb_host_endpoint.
1640  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1641  * not allowed.
1642  *
1643  * The USB core will not allow URBs to be queued to an endpoint until the
1644  * configuration or alt setting is installed in the device, so there's no need
1645  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1646  */
1647 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1648                 struct usb_host_endpoint *ep)
1649 {
1650         struct xhci_hcd *xhci;
1651         struct xhci_container_ctx *in_ctx, *out_ctx;
1652         unsigned int ep_index;
1653         struct xhci_slot_ctx *slot_ctx;
1654         struct xhci_input_control_ctx *ctrl_ctx;
1655         u32 added_ctxs;
1656         unsigned int last_ctx;
1657         u32 new_add_flags, new_drop_flags, new_slot_info;
1658         struct xhci_virt_device *virt_dev;
1659         int ret = 0;
1660
1661         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1662         if (ret <= 0) {
1663                 /* So we won't queue a reset ep command for a root hub */
1664                 ep->hcpriv = NULL;
1665                 return ret;
1666         }
1667         xhci = hcd_to_xhci(hcd);
1668         if (xhci->xhc_state & XHCI_STATE_DYING)
1669                 return -ENODEV;
1670
1671         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1672         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1673         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1674                 /* FIXME when we have to issue an evaluate endpoint command to
1675                  * deal with ep0 max packet size changing once we get the
1676                  * descriptors
1677                  */
1678                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1679                                 __func__, added_ctxs);
1680                 return 0;
1681         }
1682
1683         virt_dev = xhci->devs[udev->slot_id];
1684         in_ctx = virt_dev->in_ctx;
1685         out_ctx = virt_dev->out_ctx;
1686         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1687         if (!ctrl_ctx) {
1688                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1689                                 __func__);
1690                 return 0;
1691         }
1692
1693         ep_index = xhci_get_endpoint_index(&ep->desc);
1694         /* If this endpoint is already in use, and the upper layers are trying
1695          * to add it again without dropping it, reject the addition.
1696          */
1697         if (virt_dev->eps[ep_index].ring &&
1698                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1699                                 xhci_get_endpoint_flag(&ep->desc))) {
1700                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1701                                 "without dropping it.\n",
1702                                 (unsigned int) ep->desc.bEndpointAddress);
1703                 return -EINVAL;
1704         }
1705
1706         /* If the HCD has already noted the endpoint is enabled,
1707          * ignore this request.
1708          */
1709         if (le32_to_cpu(ctrl_ctx->add_flags) &
1710             xhci_get_endpoint_flag(&ep->desc)) {
1711                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1712                                 __func__, ep);
1713                 return 0;
1714         }
1715
1716         /*
1717          * Configuration and alternate setting changes must be done in
1718          * process context, not interrupt context (or so documenation
1719          * for usb_set_interface() and usb_set_configuration() claim).
1720          */
1721         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1722                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1723                                 __func__, ep->desc.bEndpointAddress);
1724                 return -ENOMEM;
1725         }
1726
1727         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1728         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1729
1730         /* If xhci_endpoint_disable() was called for this endpoint, but the
1731          * xHC hasn't been notified yet through the check_bandwidth() call,
1732          * this re-adds a new state for the endpoint from the new endpoint
1733          * descriptors.  We must drop and re-add this endpoint, so we leave the
1734          * drop flags alone.
1735          */
1736         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1737
1738         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1739         /* Update the last valid endpoint context, if we just added one past */
1740         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1741             LAST_CTX(last_ctx)) {
1742                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1743                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1744         }
1745         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1746
1747         /* Store the usb_device pointer for later use */
1748         ep->hcpriv = udev;
1749
1750         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1751                         (unsigned int) ep->desc.bEndpointAddress,
1752                         udev->slot_id,
1753                         (unsigned int) new_drop_flags,
1754                         (unsigned int) new_add_flags,
1755                         (unsigned int) new_slot_info);
1756         return 0;
1757 }
1758
1759 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1760 {
1761         struct xhci_input_control_ctx *ctrl_ctx;
1762         struct xhci_ep_ctx *ep_ctx;
1763         struct xhci_slot_ctx *slot_ctx;
1764         int i;
1765
1766         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1767         if (!ctrl_ctx) {
1768                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1769                                 __func__);
1770                 return;
1771         }
1772
1773         /* When a device's add flag and drop flag are zero, any subsequent
1774          * configure endpoint command will leave that endpoint's state
1775          * untouched.  Make sure we don't leave any old state in the input
1776          * endpoint contexts.
1777          */
1778         ctrl_ctx->drop_flags = 0;
1779         ctrl_ctx->add_flags = 0;
1780         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1781         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1782         /* Endpoint 0 is always valid */
1783         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1784         for (i = 1; i < 31; ++i) {
1785                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1786                 ep_ctx->ep_info = 0;
1787                 ep_ctx->ep_info2 = 0;
1788                 ep_ctx->deq = 0;
1789                 ep_ctx->tx_info = 0;
1790         }
1791 }
1792
1793 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1794                 struct usb_device *udev, u32 *cmd_status)
1795 {
1796         int ret;
1797
1798         switch (*cmd_status) {
1799         case COMP_ENOMEM:
1800                 dev_warn(&udev->dev, "Not enough host controller resources "
1801                                 "for new device state.\n");
1802                 ret = -ENOMEM;
1803                 /* FIXME: can we allocate more resources for the HC? */
1804                 break;
1805         case COMP_BW_ERR:
1806         case COMP_2ND_BW_ERR:
1807                 dev_warn(&udev->dev, "Not enough bandwidth "
1808                                 "for new device state.\n");
1809                 ret = -ENOSPC;
1810                 /* FIXME: can we go back to the old state? */
1811                 break;
1812         case COMP_TRB_ERR:
1813                 /* the HCD set up something wrong */
1814                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1815                                 "add flag = 1, "
1816                                 "and endpoint is not disabled.\n");
1817                 ret = -EINVAL;
1818                 break;
1819         case COMP_DEV_ERR:
1820                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1821                                 "configure command.\n");
1822                 ret = -ENODEV;
1823                 break;
1824         case COMP_SUCCESS:
1825                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1826                                 "Successful Endpoint Configure command");
1827                 ret = 0;
1828                 break;
1829         default:
1830                 xhci_err(xhci, "ERROR: unexpected command completion "
1831                                 "code 0x%x.\n", *cmd_status);
1832                 ret = -EINVAL;
1833                 break;
1834         }
1835         return ret;
1836 }
1837
1838 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1839                 struct usb_device *udev, u32 *cmd_status)
1840 {
1841         int ret;
1842         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1843
1844         switch (*cmd_status) {
1845         case COMP_EINVAL:
1846                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1847                                 "context command.\n");
1848                 ret = -EINVAL;
1849                 break;
1850         case COMP_EBADSLT:
1851                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1852                                 "evaluate context command.\n");
1853                 ret = -EINVAL;
1854                 break;
1855         case COMP_CTX_STATE:
1856                 dev_warn(&udev->dev, "WARN: invalid context state for "
1857                                 "evaluate context command.\n");
1858                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1859                 ret = -EINVAL;
1860                 break;
1861         case COMP_DEV_ERR:
1862                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1863                                 "context command.\n");
1864                 ret = -ENODEV;
1865                 break;
1866         case COMP_MEL_ERR:
1867                 /* Max Exit Latency too large error */
1868                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1869                 ret = -EINVAL;
1870                 break;
1871         case COMP_SUCCESS:
1872                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1873                                 "Successful evaluate context command");
1874                 ret = 0;
1875                 break;
1876         default:
1877                 xhci_err(xhci, "ERROR: unexpected command completion "
1878                                 "code 0x%x.\n", *cmd_status);
1879                 ret = -EINVAL;
1880                 break;
1881         }
1882         return ret;
1883 }
1884
1885 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1886                 struct xhci_input_control_ctx *ctrl_ctx)
1887 {
1888         u32 valid_add_flags;
1889         u32 valid_drop_flags;
1890
1891         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1892          * (bit 1).  The default control endpoint is added during the Address
1893          * Device command and is never removed until the slot is disabled.
1894          */
1895         valid_add_flags = ctrl_ctx->add_flags >> 2;
1896         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1897
1898         /* Use hweight32 to count the number of ones in the add flags, or
1899          * number of endpoints added.  Don't count endpoints that are changed
1900          * (both added and dropped).
1901          */
1902         return hweight32(valid_add_flags) -
1903                 hweight32(valid_add_flags & valid_drop_flags);
1904 }
1905
1906 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1907                 struct xhci_input_control_ctx *ctrl_ctx)
1908 {
1909         u32 valid_add_flags;
1910         u32 valid_drop_flags;
1911
1912         valid_add_flags = ctrl_ctx->add_flags >> 2;
1913         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1914
1915         return hweight32(valid_drop_flags) -
1916                 hweight32(valid_add_flags & valid_drop_flags);
1917 }
1918
1919 /*
1920  * We need to reserve the new number of endpoints before the configure endpoint
1921  * command completes.  We can't subtract the dropped endpoints from the number
1922  * of active endpoints until the command completes because we can oversubscribe
1923  * the host in this case:
1924  *
1925  *  - the first configure endpoint command drops more endpoints than it adds
1926  *  - a second configure endpoint command that adds more endpoints is queued
1927  *  - the first configure endpoint command fails, so the config is unchanged
1928  *  - the second command may succeed, even though there isn't enough resources
1929  *
1930  * Must be called with xhci->lock held.
1931  */
1932 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1933                 struct xhci_input_control_ctx *ctrl_ctx)
1934 {
1935         u32 added_eps;
1936
1937         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1938         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1939                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1940                                 "Not enough ep ctxs: "
1941                                 "%u active, need to add %u, limit is %u.",
1942                                 xhci->num_active_eps, added_eps,
1943                                 xhci->limit_active_eps);
1944                 return -ENOMEM;
1945         }
1946         xhci->num_active_eps += added_eps;
1947         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948                         "Adding %u ep ctxs, %u now active.", added_eps,
1949                         xhci->num_active_eps);
1950         return 0;
1951 }
1952
1953 /*
1954  * The configure endpoint was failed by the xHC for some other reason, so we
1955  * need to revert the resources that failed configuration would have used.
1956  *
1957  * Must be called with xhci->lock held.
1958  */
1959 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1960                 struct xhci_input_control_ctx *ctrl_ctx)
1961 {
1962         u32 num_failed_eps;
1963
1964         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1965         xhci->num_active_eps -= num_failed_eps;
1966         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1967                         "Removing %u failed ep ctxs, %u now active.",
1968                         num_failed_eps,
1969                         xhci->num_active_eps);
1970 }
1971
1972 /*
1973  * Now that the command has completed, clean up the active endpoint count by
1974  * subtracting out the endpoints that were dropped (but not changed).
1975  *
1976  * Must be called with xhci->lock held.
1977  */
1978 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1979                 struct xhci_input_control_ctx *ctrl_ctx)
1980 {
1981         u32 num_dropped_eps;
1982
1983         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1984         xhci->num_active_eps -= num_dropped_eps;
1985         if (num_dropped_eps)
1986                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1987                                 "Removing %u dropped ep ctxs, %u now active.",
1988                                 num_dropped_eps,
1989                                 xhci->num_active_eps);
1990 }
1991
1992 static unsigned int xhci_get_block_size(struct usb_device *udev)
1993 {
1994         switch (udev->speed) {
1995         case USB_SPEED_LOW:
1996         case USB_SPEED_FULL:
1997                 return FS_BLOCK;
1998         case USB_SPEED_HIGH:
1999                 return HS_BLOCK;
2000         case USB_SPEED_SUPER:
2001                 return SS_BLOCK;
2002         case USB_SPEED_UNKNOWN:
2003         case USB_SPEED_WIRELESS:
2004         default:
2005                 /* Should never happen */
2006                 return 1;
2007         }
2008 }
2009
2010 static unsigned int
2011 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2012 {
2013         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2014                 return LS_OVERHEAD;
2015         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2016                 return FS_OVERHEAD;
2017         return HS_OVERHEAD;
2018 }
2019
2020 /* If we are changing a LS/FS device under a HS hub,
2021  * make sure (if we are activating a new TT) that the HS bus has enough
2022  * bandwidth for this new TT.
2023  */
2024 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2025                 struct xhci_virt_device *virt_dev,
2026                 int old_active_eps)
2027 {
2028         struct xhci_interval_bw_table *bw_table;
2029         struct xhci_tt_bw_info *tt_info;
2030
2031         /* Find the bandwidth table for the root port this TT is attached to. */
2032         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2033         tt_info = virt_dev->tt_info;
2034         /* If this TT already had active endpoints, the bandwidth for this TT
2035          * has already been added.  Removing all periodic endpoints (and thus
2036          * making the TT enactive) will only decrease the bandwidth used.
2037          */
2038         if (old_active_eps)
2039                 return 0;
2040         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2041                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2042                         return -ENOMEM;
2043                 return 0;
2044         }
2045         /* Not sure why we would have no new active endpoints...
2046          *
2047          * Maybe because of an Evaluate Context change for a hub update or a
2048          * control endpoint 0 max packet size change?
2049          * FIXME: skip the bandwidth calculation in that case.
2050          */
2051         return 0;
2052 }
2053
2054 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2055                 struct xhci_virt_device *virt_dev)
2056 {
2057         unsigned int bw_reserved;
2058
2059         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2060         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2061                 return -ENOMEM;
2062
2063         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2064         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2065                 return -ENOMEM;
2066
2067         return 0;
2068 }
2069
2070 /*
2071  * This algorithm is a very conservative estimate of the worst-case scheduling
2072  * scenario for any one interval.  The hardware dynamically schedules the
2073  * packets, so we can't tell which microframe could be the limiting factor in
2074  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2075  *
2076  * Obviously, we can't solve an NP complete problem to find the minimum worst
2077  * case scenario.  Instead, we come up with an estimate that is no less than
2078  * the worst case bandwidth used for any one microframe, but may be an
2079  * over-estimate.
2080  *
2081  * We walk the requirements for each endpoint by interval, starting with the
2082  * smallest interval, and place packets in the schedule where there is only one
2083  * possible way to schedule packets for that interval.  In order to simplify
2084  * this algorithm, we record the largest max packet size for each interval, and
2085  * assume all packets will be that size.
2086  *
2087  * For interval 0, we obviously must schedule all packets for each interval.
2088  * The bandwidth for interval 0 is just the amount of data to be transmitted
2089  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2090  * the number of packets).
2091  *
2092  * For interval 1, we have two possible microframes to schedule those packets
2093  * in.  For this algorithm, if we can schedule the same number of packets for
2094  * each possible scheduling opportunity (each microframe), we will do so.  The
2095  * remaining number of packets will be saved to be transmitted in the gaps in
2096  * the next interval's scheduling sequence.
2097  *
2098  * As we move those remaining packets to be scheduled with interval 2 packets,
2099  * we have to double the number of remaining packets to transmit.  This is
2100  * because the intervals are actually powers of 2, and we would be transmitting
2101  * the previous interval's packets twice in this interval.  We also have to be
2102  * sure that when we look at the largest max packet size for this interval, we
2103  * also look at the largest max packet size for the remaining packets and take
2104  * the greater of the two.
2105  *
2106  * The algorithm continues to evenly distribute packets in each scheduling
2107  * opportunity, and push the remaining packets out, until we get to the last
2108  * interval.  Then those packets and their associated overhead are just added
2109  * to the bandwidth used.
2110  */
2111 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2112                 struct xhci_virt_device *virt_dev,
2113                 int old_active_eps)
2114 {
2115         unsigned int bw_reserved;
2116         unsigned int max_bandwidth;
2117         unsigned int bw_used;
2118         unsigned int block_size;
2119         struct xhci_interval_bw_table *bw_table;
2120         unsigned int packet_size = 0;
2121         unsigned int overhead = 0;
2122         unsigned int packets_transmitted = 0;
2123         unsigned int packets_remaining = 0;
2124         unsigned int i;
2125
2126         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2127                 return xhci_check_ss_bw(xhci, virt_dev);
2128
2129         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2130                 max_bandwidth = HS_BW_LIMIT;
2131                 /* Convert percent of bus BW reserved to blocks reserved */
2132                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2133         } else {
2134                 max_bandwidth = FS_BW_LIMIT;
2135                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2136         }
2137
2138         bw_table = virt_dev->bw_table;
2139         /* We need to translate the max packet size and max ESIT payloads into
2140          * the units the hardware uses.
2141          */
2142         block_size = xhci_get_block_size(virt_dev->udev);
2143
2144         /* If we are manipulating a LS/FS device under a HS hub, double check
2145          * that the HS bus has enough bandwidth if we are activing a new TT.
2146          */
2147         if (virt_dev->tt_info) {
2148                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2149                                 "Recalculating BW for rootport %u",
2150                                 virt_dev->real_port);
2151                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2152                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2153                                         "newly activated TT.\n");
2154                         return -ENOMEM;
2155                 }
2156                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157                                 "Recalculating BW for TT slot %u port %u",
2158                                 virt_dev->tt_info->slot_id,
2159                                 virt_dev->tt_info->ttport);
2160         } else {
2161                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2162                                 "Recalculating BW for rootport %u",
2163                                 virt_dev->real_port);
2164         }
2165
2166         /* Add in how much bandwidth will be used for interval zero, or the
2167          * rounded max ESIT payload + number of packets * largest overhead.
2168          */
2169         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2170                 bw_table->interval_bw[0].num_packets *
2171                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2172
2173         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2174                 unsigned int bw_added;
2175                 unsigned int largest_mps;
2176                 unsigned int interval_overhead;
2177
2178                 /*
2179                  * How many packets could we transmit in this interval?
2180                  * If packets didn't fit in the previous interval, we will need
2181                  * to transmit that many packets twice within this interval.
2182                  */
2183                 packets_remaining = 2 * packets_remaining +
2184                         bw_table->interval_bw[i].num_packets;
2185
2186                 /* Find the largest max packet size of this or the previous
2187                  * interval.
2188                  */
2189                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2190                         largest_mps = 0;
2191                 else {
2192                         struct xhci_virt_ep *virt_ep;
2193                         struct list_head *ep_entry;
2194
2195                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2196                         virt_ep = list_entry(ep_entry,
2197                                         struct xhci_virt_ep, bw_endpoint_list);
2198                         /* Convert to blocks, rounding up */
2199                         largest_mps = DIV_ROUND_UP(
2200                                         virt_ep->bw_info.max_packet_size,
2201                                         block_size);
2202                 }
2203                 if (largest_mps > packet_size)
2204                         packet_size = largest_mps;
2205
2206                 /* Use the larger overhead of this or the previous interval. */
2207                 interval_overhead = xhci_get_largest_overhead(
2208                                 &bw_table->interval_bw[i]);
2209                 if (interval_overhead > overhead)
2210                         overhead = interval_overhead;
2211
2212                 /* How many packets can we evenly distribute across
2213                  * (1 << (i + 1)) possible scheduling opportunities?
2214                  */
2215                 packets_transmitted = packets_remaining >> (i + 1);
2216
2217                 /* Add in the bandwidth used for those scheduled packets */
2218                 bw_added = packets_transmitted * (overhead + packet_size);
2219
2220                 /* How many packets do we have remaining to transmit? */
2221                 packets_remaining = packets_remaining % (1 << (i + 1));
2222
2223                 /* What largest max packet size should those packets have? */
2224                 /* If we've transmitted all packets, don't carry over the
2225                  * largest packet size.
2226                  */
2227                 if (packets_remaining == 0) {
2228                         packet_size = 0;
2229                         overhead = 0;
2230                 } else if (packets_transmitted > 0) {
2231                         /* Otherwise if we do have remaining packets, and we've
2232                          * scheduled some packets in this interval, take the
2233                          * largest max packet size from endpoints with this
2234                          * interval.
2235                          */
2236                         packet_size = largest_mps;
2237                         overhead = interval_overhead;
2238                 }
2239                 /* Otherwise carry over packet_size and overhead from the last
2240                  * time we had a remainder.
2241                  */
2242                 bw_used += bw_added;
2243                 if (bw_used > max_bandwidth) {
2244                         xhci_warn(xhci, "Not enough bandwidth. "
2245                                         "Proposed: %u, Max: %u\n",
2246                                 bw_used, max_bandwidth);
2247                         return -ENOMEM;
2248                 }
2249         }
2250         /*
2251          * Ok, we know we have some packets left over after even-handedly
2252          * scheduling interval 15.  We don't know which microframes they will
2253          * fit into, so we over-schedule and say they will be scheduled every
2254          * microframe.
2255          */
2256         if (packets_remaining > 0)
2257                 bw_used += overhead + packet_size;
2258
2259         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2260                 unsigned int port_index = virt_dev->real_port - 1;
2261
2262                 /* OK, we're manipulating a HS device attached to a
2263                  * root port bandwidth domain.  Include the number of active TTs
2264                  * in the bandwidth used.
2265                  */
2266                 bw_used += TT_HS_OVERHEAD *
2267                         xhci->rh_bw[port_index].num_active_tts;
2268         }
2269
2270         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2271                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2272                 "Available: %u " "percent",
2273                 bw_used, max_bandwidth, bw_reserved,
2274                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2275                 max_bandwidth);
2276
2277         bw_used += bw_reserved;
2278         if (bw_used > max_bandwidth) {
2279                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2280                                 bw_used, max_bandwidth);
2281                 return -ENOMEM;
2282         }
2283
2284         bw_table->bw_used = bw_used;
2285         return 0;
2286 }
2287
2288 static bool xhci_is_async_ep(unsigned int ep_type)
2289 {
2290         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2291                                         ep_type != ISOC_IN_EP &&
2292                                         ep_type != INT_IN_EP);
2293 }
2294
2295 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2296 {
2297         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2298 }
2299
2300 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2301 {
2302         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2303
2304         if (ep_bw->ep_interval == 0)
2305                 return SS_OVERHEAD_BURST +
2306                         (ep_bw->mult * ep_bw->num_packets *
2307                                         (SS_OVERHEAD + mps));
2308         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2309                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2310                                 1 << ep_bw->ep_interval);
2311
2312 }
2313
2314 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2315                 struct xhci_bw_info *ep_bw,
2316                 struct xhci_interval_bw_table *bw_table,
2317                 struct usb_device *udev,
2318                 struct xhci_virt_ep *virt_ep,
2319                 struct xhci_tt_bw_info *tt_info)
2320 {
2321         struct xhci_interval_bw *interval_bw;
2322         int normalized_interval;
2323
2324         if (xhci_is_async_ep(ep_bw->type))
2325                 return;
2326
2327         if (udev->speed == USB_SPEED_SUPER) {
2328                 if (xhci_is_sync_in_ep(ep_bw->type))
2329                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2330                                 xhci_get_ss_bw_consumed(ep_bw);
2331                 else
2332                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2333                                 xhci_get_ss_bw_consumed(ep_bw);
2334                 return;
2335         }
2336
2337         /* SuperSpeed endpoints never get added to intervals in the table, so
2338          * this check is only valid for HS/FS/LS devices.
2339          */
2340         if (list_empty(&virt_ep->bw_endpoint_list))
2341                 return;
2342         /* For LS/FS devices, we need to translate the interval expressed in
2343          * microframes to frames.
2344          */
2345         if (udev->speed == USB_SPEED_HIGH)
2346                 normalized_interval = ep_bw->ep_interval;
2347         else
2348                 normalized_interval = ep_bw->ep_interval - 3;
2349
2350         if (normalized_interval == 0)
2351                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2352         interval_bw = &bw_table->interval_bw[normalized_interval];
2353         interval_bw->num_packets -= ep_bw->num_packets;
2354         switch (udev->speed) {
2355         case USB_SPEED_LOW:
2356                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2357                 break;
2358         case USB_SPEED_FULL:
2359                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2360                 break;
2361         case USB_SPEED_HIGH:
2362                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2363                 break;
2364         case USB_SPEED_SUPER:
2365         case USB_SPEED_UNKNOWN:
2366         case USB_SPEED_WIRELESS:
2367                 /* Should never happen because only LS/FS/HS endpoints will get
2368                  * added to the endpoint list.
2369                  */
2370                 return;
2371         }
2372         if (tt_info)
2373                 tt_info->active_eps -= 1;
2374         list_del_init(&virt_ep->bw_endpoint_list);
2375 }
2376
2377 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2378                 struct xhci_bw_info *ep_bw,
2379                 struct xhci_interval_bw_table *bw_table,
2380                 struct usb_device *udev,
2381                 struct xhci_virt_ep *virt_ep,
2382                 struct xhci_tt_bw_info *tt_info)
2383 {
2384         struct xhci_interval_bw *interval_bw;
2385         struct xhci_virt_ep *smaller_ep;
2386         int normalized_interval;
2387
2388         if (xhci_is_async_ep(ep_bw->type))
2389                 return;
2390
2391         if (udev->speed == USB_SPEED_SUPER) {
2392                 if (xhci_is_sync_in_ep(ep_bw->type))
2393                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2394                                 xhci_get_ss_bw_consumed(ep_bw);
2395                 else
2396                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2397                                 xhci_get_ss_bw_consumed(ep_bw);
2398                 return;
2399         }
2400
2401         /* For LS/FS devices, we need to translate the interval expressed in
2402          * microframes to frames.
2403          */
2404         if (udev->speed == USB_SPEED_HIGH)
2405                 normalized_interval = ep_bw->ep_interval;
2406         else
2407                 normalized_interval = ep_bw->ep_interval - 3;
2408
2409         if (normalized_interval == 0)
2410                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2411         interval_bw = &bw_table->interval_bw[normalized_interval];
2412         interval_bw->num_packets += ep_bw->num_packets;
2413         switch (udev->speed) {
2414         case USB_SPEED_LOW:
2415                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2416                 break;
2417         case USB_SPEED_FULL:
2418                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2419                 break;
2420         case USB_SPEED_HIGH:
2421                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2422                 break;
2423         case USB_SPEED_SUPER:
2424         case USB_SPEED_UNKNOWN:
2425         case USB_SPEED_WIRELESS:
2426                 /* Should never happen because only LS/FS/HS endpoints will get
2427                  * added to the endpoint list.
2428                  */
2429                 return;
2430         }
2431
2432         if (tt_info)
2433                 tt_info->active_eps += 1;
2434         /* Insert the endpoint into the list, largest max packet size first. */
2435         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2436                         bw_endpoint_list) {
2437                 if (ep_bw->max_packet_size >=
2438                                 smaller_ep->bw_info.max_packet_size) {
2439                         /* Add the new ep before the smaller endpoint */
2440                         list_add_tail(&virt_ep->bw_endpoint_list,
2441                                         &smaller_ep->bw_endpoint_list);
2442                         return;
2443                 }
2444         }
2445         /* Add the new endpoint at the end of the list. */
2446         list_add_tail(&virt_ep->bw_endpoint_list,
2447                         &interval_bw->endpoints);
2448 }
2449
2450 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2451                 struct xhci_virt_device *virt_dev,
2452                 int old_active_eps)
2453 {
2454         struct xhci_root_port_bw_info *rh_bw_info;
2455         if (!virt_dev->tt_info)
2456                 return;
2457
2458         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2459         if (old_active_eps == 0 &&
2460                                 virt_dev->tt_info->active_eps != 0) {
2461                 rh_bw_info->num_active_tts += 1;
2462                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2463         } else if (old_active_eps != 0 &&
2464                                 virt_dev->tt_info->active_eps == 0) {
2465                 rh_bw_info->num_active_tts -= 1;
2466                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2467         }
2468 }
2469
2470 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2471                 struct xhci_virt_device *virt_dev,
2472                 struct xhci_container_ctx *in_ctx)
2473 {
2474         struct xhci_bw_info ep_bw_info[31];
2475         int i;
2476         struct xhci_input_control_ctx *ctrl_ctx;
2477         int old_active_eps = 0;
2478
2479         if (virt_dev->tt_info)
2480                 old_active_eps = virt_dev->tt_info->active_eps;
2481
2482         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2483         if (!ctrl_ctx) {
2484                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2485                                 __func__);
2486                 return -ENOMEM;
2487         }
2488
2489         for (i = 0; i < 31; i++) {
2490                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2491                         continue;
2492
2493                 /* Make a copy of the BW info in case we need to revert this */
2494                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2495                                 sizeof(ep_bw_info[i]));
2496                 /* Drop the endpoint from the interval table if the endpoint is
2497                  * being dropped or changed.
2498                  */
2499                 if (EP_IS_DROPPED(ctrl_ctx, i))
2500                         xhci_drop_ep_from_interval_table(xhci,
2501                                         &virt_dev->eps[i].bw_info,
2502                                         virt_dev->bw_table,
2503                                         virt_dev->udev,
2504                                         &virt_dev->eps[i],
2505                                         virt_dev->tt_info);
2506         }
2507         /* Overwrite the information stored in the endpoints' bw_info */
2508         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2509         for (i = 0; i < 31; i++) {
2510                 /* Add any changed or added endpoints to the interval table */
2511                 if (EP_IS_ADDED(ctrl_ctx, i))
2512                         xhci_add_ep_to_interval_table(xhci,
2513                                         &virt_dev->eps[i].bw_info,
2514                                         virt_dev->bw_table,
2515                                         virt_dev->udev,
2516                                         &virt_dev->eps[i],
2517                                         virt_dev->tt_info);
2518         }
2519
2520         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2521                 /* Ok, this fits in the bandwidth we have.
2522                  * Update the number of active TTs.
2523                  */
2524                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2525                 return 0;
2526         }
2527
2528         /* We don't have enough bandwidth for this, revert the stored info. */
2529         for (i = 0; i < 31; i++) {
2530                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2531                         continue;
2532
2533                 /* Drop the new copies of any added or changed endpoints from
2534                  * the interval table.
2535                  */
2536                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2537                         xhci_drop_ep_from_interval_table(xhci,
2538                                         &virt_dev->eps[i].bw_info,
2539                                         virt_dev->bw_table,
2540                                         virt_dev->udev,
2541                                         &virt_dev->eps[i],
2542                                         virt_dev->tt_info);
2543                 }
2544                 /* Revert the endpoint back to its old information */
2545                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2546                                 sizeof(ep_bw_info[i]));
2547                 /* Add any changed or dropped endpoints back into the table */
2548                 if (EP_IS_DROPPED(ctrl_ctx, i))
2549                         xhci_add_ep_to_interval_table(xhci,
2550                                         &virt_dev->eps[i].bw_info,
2551                                         virt_dev->bw_table,
2552                                         virt_dev->udev,
2553                                         &virt_dev->eps[i],
2554                                         virt_dev->tt_info);
2555         }
2556         return -ENOMEM;
2557 }
2558
2559
2560 /* Issue a configure endpoint command or evaluate context command
2561  * and wait for it to finish.
2562  */
2563 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2564                 struct usb_device *udev,
2565                 struct xhci_command *command,
2566                 bool ctx_change, bool must_succeed)
2567 {
2568         int ret;
2569         int timeleft;
2570         unsigned long flags;
2571         struct xhci_container_ctx *in_ctx;
2572         struct xhci_input_control_ctx *ctrl_ctx;
2573         struct completion *cmd_completion;
2574         u32 *cmd_status;
2575         struct xhci_virt_device *virt_dev;
2576         union xhci_trb *cmd_trb;
2577
2578         spin_lock_irqsave(&xhci->lock, flags);
2579         virt_dev = xhci->devs[udev->slot_id];
2580
2581         if (command)
2582                 in_ctx = command->in_ctx;
2583         else
2584                 in_ctx = virt_dev->in_ctx;
2585         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2586         if (!ctrl_ctx) {
2587                 spin_unlock_irqrestore(&xhci->lock, flags);
2588                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2589                                 __func__);
2590                 return -ENOMEM;
2591         }
2592
2593         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2594                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2595                 spin_unlock_irqrestore(&xhci->lock, flags);
2596                 xhci_warn(xhci, "Not enough host resources, "
2597                                 "active endpoint contexts = %u\n",
2598                                 xhci->num_active_eps);
2599                 return -ENOMEM;
2600         }
2601         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2602                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2603                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2604                         xhci_free_host_resources(xhci, ctrl_ctx);
2605                 spin_unlock_irqrestore(&xhci->lock, flags);
2606                 xhci_warn(xhci, "Not enough bandwidth\n");
2607                 return -ENOMEM;
2608         }
2609
2610         if (command) {
2611                 cmd_completion = command->completion;
2612                 cmd_status = &command->status;
2613                 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2614                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2615         } else {
2616                 cmd_completion = &virt_dev->cmd_completion;
2617                 cmd_status = &virt_dev->cmd_status;
2618         }
2619         init_completion(cmd_completion);
2620
2621         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2622         if (!ctx_change)
2623                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2624                                 udev->slot_id, must_succeed);
2625         else
2626                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2627                                 udev->slot_id, must_succeed);
2628         if (ret < 0) {
2629                 if (command)
2630                         list_del(&command->cmd_list);
2631                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2632                         xhci_free_host_resources(xhci, ctrl_ctx);
2633                 spin_unlock_irqrestore(&xhci->lock, flags);
2634                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2635                                 "FIXME allocate a new ring segment");
2636                 return -ENOMEM;
2637         }
2638         xhci_ring_cmd_db(xhci);
2639         spin_unlock_irqrestore(&xhci->lock, flags);
2640
2641         /* Wait for the configure endpoint command to complete */
2642         timeleft = wait_for_completion_interruptible_timeout(
2643                         cmd_completion,
2644                         XHCI_CMD_DEFAULT_TIMEOUT);
2645         if (timeleft <= 0) {
2646                 xhci_warn(xhci, "%s while waiting for %s command\n",
2647                                 timeleft == 0 ? "Timeout" : "Signal",
2648                                 ctx_change == 0 ?
2649                                         "configure endpoint" :
2650                                         "evaluate context");
2651                 /* cancel the configure endpoint command */
2652                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2653                 if (ret < 0)
2654                         return ret;
2655                 return -ETIME;
2656         }
2657
2658         if (!ctx_change)
2659                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2660         else
2661                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2662
2663         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2664                 spin_lock_irqsave(&xhci->lock, flags);
2665                 /* If the command failed, remove the reserved resources.
2666                  * Otherwise, clean up the estimate to include dropped eps.
2667                  */
2668                 if (ret)
2669                         xhci_free_host_resources(xhci, ctrl_ctx);
2670                 else
2671                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2672                 spin_unlock_irqrestore(&xhci->lock, flags);
2673         }
2674         return ret;
2675 }
2676
2677 /* Called after one or more calls to xhci_add_endpoint() or
2678  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2679  * to call xhci_reset_bandwidth().
2680  *
2681  * Since we are in the middle of changing either configuration or
2682  * installing a new alt setting, the USB core won't allow URBs to be
2683  * enqueued for any endpoint on the old config or interface.  Nothing
2684  * else should be touching the xhci->devs[slot_id] structure, so we
2685  * don't need to take the xhci->lock for manipulating that.
2686  */
2687 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2688 {
2689         int i;
2690         int ret = 0;
2691         struct xhci_hcd *xhci;
2692         struct xhci_virt_device *virt_dev;
2693         struct xhci_input_control_ctx *ctrl_ctx;
2694         struct xhci_slot_ctx *slot_ctx;
2695
2696         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2697         if (ret <= 0)
2698                 return ret;
2699         xhci = hcd_to_xhci(hcd);
2700         if (xhci->xhc_state & XHCI_STATE_DYING)
2701                 return -ENODEV;
2702
2703         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2704         virt_dev = xhci->devs[udev->slot_id];
2705
2706         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2707         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2708         if (!ctrl_ctx) {
2709                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2710                                 __func__);
2711                 return -ENOMEM;
2712         }
2713         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2714         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2715         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2716
2717         /* Don't issue the command if there's no endpoints to update. */
2718         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2719                         ctrl_ctx->drop_flags == 0)
2720                 return 0;
2721
2722         xhci_dbg(xhci, "New Input Control Context:\n");
2723         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2724         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2725                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2726
2727         ret = xhci_configure_endpoint(xhci, udev, NULL,
2728                         false, false);
2729         if (ret) {
2730                 /* Callee should call reset_bandwidth() */
2731                 return ret;
2732         }
2733
2734         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2735         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2736                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2737
2738         /* Free any rings that were dropped, but not changed. */
2739         for (i = 1; i < 31; ++i) {
2740                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2741                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2742                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2743         }
2744         xhci_zero_in_ctx(xhci, virt_dev);
2745         /*
2746          * Install any rings for completely new endpoints or changed endpoints,
2747          * and free or cache any old rings from changed endpoints.
2748          */
2749         for (i = 1; i < 31; ++i) {
2750                 if (!virt_dev->eps[i].new_ring)
2751                         continue;
2752                 /* Only cache or free the old ring if it exists.
2753                  * It may not if this is the first add of an endpoint.
2754                  */
2755                 if (virt_dev->eps[i].ring) {
2756                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2757                 }
2758                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2759                 virt_dev->eps[i].new_ring = NULL;
2760         }
2761
2762         return ret;
2763 }
2764
2765 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2766 {
2767         struct xhci_hcd *xhci;
2768         struct xhci_virt_device *virt_dev;
2769         int i, ret;
2770
2771         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2772         if (ret <= 0)
2773                 return;
2774         xhci = hcd_to_xhci(hcd);
2775
2776         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2777         virt_dev = xhci->devs[udev->slot_id];
2778         /* Free any rings allocated for added endpoints */
2779         for (i = 0; i < 31; ++i) {
2780                 if (virt_dev->eps[i].new_ring) {
2781                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2782                         virt_dev->eps[i].new_ring = NULL;
2783                 }
2784         }
2785         xhci_zero_in_ctx(xhci, virt_dev);
2786 }
2787
2788 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2789                 struct xhci_container_ctx *in_ctx,
2790                 struct xhci_container_ctx *out_ctx,
2791                 struct xhci_input_control_ctx *ctrl_ctx,
2792                 u32 add_flags, u32 drop_flags)
2793 {
2794         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2795         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2796         xhci_slot_copy(xhci, in_ctx, out_ctx);
2797         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2798
2799         xhci_dbg(xhci, "Input Context:\n");
2800         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2801 }
2802
2803 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2804                 unsigned int slot_id, unsigned int ep_index,
2805                 struct xhci_dequeue_state *deq_state)
2806 {
2807         struct xhci_input_control_ctx *ctrl_ctx;
2808         struct xhci_container_ctx *in_ctx;
2809         struct xhci_ep_ctx *ep_ctx;
2810         u32 added_ctxs;
2811         dma_addr_t addr;
2812
2813         in_ctx = xhci->devs[slot_id]->in_ctx;
2814         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2815         if (!ctrl_ctx) {
2816                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2817                                 __func__);
2818                 return;
2819         }
2820
2821         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2822                         xhci->devs[slot_id]->out_ctx, ep_index);
2823         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2824         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2825                         deq_state->new_deq_ptr);
2826         if (addr == 0) {
2827                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2828                                 "reset ep command\n");
2829                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2830                                 deq_state->new_deq_seg,
2831                                 deq_state->new_deq_ptr);
2832                 return;
2833         }
2834         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2835
2836         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2837         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2838                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2839                         added_ctxs, added_ctxs);
2840 }
2841
2842 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2843                 struct usb_device *udev, unsigned int ep_index)
2844 {
2845         struct xhci_dequeue_state deq_state;
2846         struct xhci_virt_ep *ep;
2847
2848         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2849                         "Cleaning up stalled endpoint ring");
2850         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2851         /* We need to move the HW's dequeue pointer past this TD,
2852          * or it will attempt to resend it on the next doorbell ring.
2853          */
2854         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2855                         ep_index, ep->stopped_stream, ep->stopped_td,
2856                         &deq_state);
2857
2858         /* HW with the reset endpoint quirk will use the saved dequeue state to
2859          * issue a configure endpoint command later.
2860          */
2861         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2862                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2863                                 "Queueing new dequeue state");
2864                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2865                                 ep_index, ep->stopped_stream, &deq_state);
2866         } else {
2867                 /* Better hope no one uses the input context between now and the
2868                  * reset endpoint completion!
2869                  * XXX: No idea how this hardware will react when stream rings
2870                  * are enabled.
2871                  */
2872                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2873                                 "Setting up input context for "
2874                                 "configure endpoint command");
2875                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2876                                 ep_index, &deq_state);
2877         }
2878 }
2879
2880 /* Deal with stalled endpoints.  The core should have sent the control message
2881  * to clear the halt condition.  However, we need to make the xHCI hardware
2882  * reset its sequence number, since a device will expect a sequence number of
2883  * zero after the halt condition is cleared.
2884  * Context: in_interrupt
2885  */
2886 void xhci_endpoint_reset(struct usb_hcd *hcd,
2887                 struct usb_host_endpoint *ep)
2888 {
2889         struct xhci_hcd *xhci;
2890         struct usb_device *udev;
2891         unsigned int ep_index;
2892         unsigned long flags;
2893         int ret;
2894         struct xhci_virt_ep *virt_ep;
2895
2896         xhci = hcd_to_xhci(hcd);
2897         udev = (struct usb_device *) ep->hcpriv;
2898         /* Called with a root hub endpoint (or an endpoint that wasn't added
2899          * with xhci_add_endpoint()
2900          */
2901         if (!ep->hcpriv)
2902                 return;
2903         ep_index = xhci_get_endpoint_index(&ep->desc);
2904         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2905         if (!virt_ep->stopped_td) {
2906                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2907                         "Endpoint 0x%x not halted, refusing to reset.",
2908                         ep->desc.bEndpointAddress);
2909                 return;
2910         }
2911         if (usb_endpoint_xfer_control(&ep->desc)) {
2912                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2913                                 "Control endpoint stall already handled.");
2914                 return;
2915         }
2916
2917         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2918                         "Queueing reset endpoint command");
2919         spin_lock_irqsave(&xhci->lock, flags);
2920         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2921         /*
2922          * Can't change the ring dequeue pointer until it's transitioned to the
2923          * stopped state, which is only upon a successful reset endpoint
2924          * command.  Better hope that last command worked!
2925          */
2926         if (!ret) {
2927                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2928                 kfree(virt_ep->stopped_td);
2929                 xhci_ring_cmd_db(xhci);
2930         }
2931         virt_ep->stopped_td = NULL;
2932         virt_ep->stopped_trb = NULL;
2933         virt_ep->stopped_stream = 0;
2934         spin_unlock_irqrestore(&xhci->lock, flags);
2935
2936         if (ret)
2937                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2938 }
2939
2940 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2941                 struct usb_device *udev, struct usb_host_endpoint *ep,
2942                 unsigned int slot_id)
2943 {
2944         int ret;
2945         unsigned int ep_index;
2946         unsigned int ep_state;
2947
2948         if (!ep)
2949                 return -EINVAL;
2950         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2951         if (ret <= 0)
2952                 return -EINVAL;
2953         if (ep->ss_ep_comp.bmAttributes == 0) {
2954                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2955                                 " descriptor for ep 0x%x does not support streams\n",
2956                                 ep->desc.bEndpointAddress);
2957                 return -EINVAL;
2958         }
2959
2960         ep_index = xhci_get_endpoint_index(&ep->desc);
2961         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2962         if (ep_state & EP_HAS_STREAMS ||
2963                         ep_state & EP_GETTING_STREAMS) {
2964                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2965                                 "already has streams set up.\n",
2966                                 ep->desc.bEndpointAddress);
2967                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2968                                 "dynamic stream context array reallocation.\n");
2969                 return -EINVAL;
2970         }
2971         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2972                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2973                                 "endpoint 0x%x; URBs are pending.\n",
2974                                 ep->desc.bEndpointAddress);
2975                 return -EINVAL;
2976         }
2977         return 0;
2978 }
2979
2980 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2981                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2982 {
2983         unsigned int max_streams;
2984
2985         /* The stream context array size must be a power of two */
2986         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2987         /*
2988          * Find out how many primary stream array entries the host controller
2989          * supports.  Later we may use secondary stream arrays (similar to 2nd
2990          * level page entries), but that's an optional feature for xHCI host
2991          * controllers. xHCs must support at least 4 stream IDs.
2992          */
2993         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2994         if (*num_stream_ctxs > max_streams) {
2995                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2996                                 max_streams);
2997                 *num_stream_ctxs = max_streams;
2998                 *num_streams = max_streams;
2999         }
3000 }
3001
3002 /* Returns an error code if one of the endpoint already has streams.
3003  * This does not change any data structures, it only checks and gathers
3004  * information.
3005  */
3006 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3007                 struct usb_device *udev,
3008                 struct usb_host_endpoint **eps, unsigned int num_eps,
3009                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3010 {
3011         unsigned int max_streams;
3012         unsigned int endpoint_flag;
3013         int i;
3014         int ret;
3015
3016         for (i = 0; i < num_eps; i++) {
3017                 ret = xhci_check_streams_endpoint(xhci, udev,
3018                                 eps[i], udev->slot_id);
3019                 if (ret < 0)
3020                         return ret;
3021
3022                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3023                 if (max_streams < (*num_streams - 1)) {
3024                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3025                                         eps[i]->desc.bEndpointAddress,
3026                                         max_streams);
3027                         *num_streams = max_streams+1;
3028                 }
3029
3030                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3031                 if (*changed_ep_bitmask & endpoint_flag)
3032                         return -EINVAL;
3033                 *changed_ep_bitmask |= endpoint_flag;
3034         }
3035         return 0;
3036 }
3037
3038 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3039                 struct usb_device *udev,
3040                 struct usb_host_endpoint **eps, unsigned int num_eps)
3041 {
3042         u32 changed_ep_bitmask = 0;
3043         unsigned int slot_id;
3044         unsigned int ep_index;
3045         unsigned int ep_state;
3046         int i;
3047
3048         slot_id = udev->slot_id;
3049         if (!xhci->devs[slot_id])
3050                 return 0;
3051
3052         for (i = 0; i < num_eps; i++) {
3053                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3054                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3055                 /* Are streams already being freed for the endpoint? */
3056                 if (ep_state & EP_GETTING_NO_STREAMS) {
3057                         xhci_warn(xhci, "WARN Can't disable streams for "
3058                                         "endpoint 0x%x, "
3059                                         "streams are being disabled already\n",
3060                                         eps[i]->desc.bEndpointAddress);
3061                         return 0;
3062                 }
3063                 /* Are there actually any streams to free? */
3064                 if (!(ep_state & EP_HAS_STREAMS) &&
3065                                 !(ep_state & EP_GETTING_STREAMS)) {
3066                         xhci_warn(xhci, "WARN Can't disable streams for "
3067                                         "endpoint 0x%x, "
3068                                         "streams are already disabled!\n",
3069                                         eps[i]->desc.bEndpointAddress);
3070                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3071                                         "with non-streams endpoint\n");
3072                         return 0;
3073                 }
3074                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3075         }
3076         return changed_ep_bitmask;
3077 }
3078
3079 /*
3080  * The USB device drivers use this function (though the HCD interface in USB
3081  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3082  * coordinate mass storage command queueing across multiple endpoints (basically
3083  * a stream ID == a task ID).
3084  *
3085  * Setting up streams involves allocating the same size stream context array
3086  * for each endpoint and issuing a configure endpoint command for all endpoints.
3087  *
3088  * Don't allow the call to succeed if one endpoint only supports one stream
3089  * (which means it doesn't support streams at all).
3090  *
3091  * Drivers may get less stream IDs than they asked for, if the host controller
3092  * hardware or endpoints claim they can't support the number of requested
3093  * stream IDs.
3094  */
3095 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3096                 struct usb_host_endpoint **eps, unsigned int num_eps,
3097                 unsigned int num_streams, gfp_t mem_flags)
3098 {
3099         int i, ret;
3100         struct xhci_hcd *xhci;
3101         struct xhci_virt_device *vdev;
3102         struct xhci_command *config_cmd;
3103         struct xhci_input_control_ctx *ctrl_ctx;
3104         unsigned int ep_index;
3105         unsigned int num_stream_ctxs;
3106         unsigned long flags;
3107         u32 changed_ep_bitmask = 0;
3108
3109         if (!eps)
3110                 return -EINVAL;
3111
3112         /* Add one to the number of streams requested to account for
3113          * stream 0 that is reserved for xHCI usage.
3114          */
3115         num_streams += 1;
3116         xhci = hcd_to_xhci(hcd);
3117         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3118                         num_streams);
3119
3120         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3121         if (!config_cmd) {
3122                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3123                 return -ENOMEM;
3124         }
3125         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3126         if (!ctrl_ctx) {
3127                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3128                                 __func__);
3129                 xhci_free_command(xhci, config_cmd);
3130                 return -ENOMEM;
3131         }
3132
3133         /* Check to make sure all endpoints are not already configured for
3134          * streams.  While we're at it, find the maximum number of streams that
3135          * all the endpoints will support and check for duplicate endpoints.
3136          */
3137         spin_lock_irqsave(&xhci->lock, flags);
3138         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3139                         num_eps, &num_streams, &changed_ep_bitmask);
3140         if (ret < 0) {
3141                 xhci_free_command(xhci, config_cmd);
3142                 spin_unlock_irqrestore(&xhci->lock, flags);
3143                 return ret;
3144         }
3145         if (num_streams <= 1) {
3146                 xhci_warn(xhci, "WARN: endpoints can't handle "
3147                                 "more than one stream.\n");
3148                 xhci_free_command(xhci, config_cmd);
3149                 spin_unlock_irqrestore(&xhci->lock, flags);
3150                 return -EINVAL;
3151         }
3152         vdev = xhci->devs[udev->slot_id];
3153         /* Mark each endpoint as being in transition, so
3154          * xhci_urb_enqueue() will reject all URBs.
3155          */
3156         for (i = 0; i < num_eps; i++) {
3157                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3158                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3159         }
3160         spin_unlock_irqrestore(&xhci->lock, flags);
3161
3162         /* Setup internal data structures and allocate HW data structures for
3163          * streams (but don't install the HW structures in the input context
3164          * until we're sure all memory allocation succeeded).
3165          */
3166         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3167         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3168                         num_stream_ctxs, num_streams);
3169
3170         for (i = 0; i < num_eps; i++) {
3171                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3172                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3173                                 num_stream_ctxs,
3174                                 num_streams, mem_flags);
3175                 if (!vdev->eps[ep_index].stream_info)
3176                         goto cleanup;
3177                 /* Set maxPstreams in endpoint context and update deq ptr to
3178                  * point to stream context array. FIXME
3179                  */
3180         }
3181
3182         /* Set up the input context for a configure endpoint command. */
3183         for (i = 0; i < num_eps; i++) {
3184                 struct xhci_ep_ctx *ep_ctx;
3185
3186                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3187                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3188
3189                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3190                                 vdev->out_ctx, ep_index);
3191                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3192                                 vdev->eps[ep_index].stream_info);
3193         }
3194         /* Tell the HW to drop its old copy of the endpoint context info
3195          * and add the updated copy from the input context.
3196          */
3197         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3198                         vdev->out_ctx, ctrl_ctx,
3199                         changed_ep_bitmask, changed_ep_bitmask);
3200
3201         /* Issue and wait for the configure endpoint command */
3202         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3203                         false, false);
3204
3205         /* xHC rejected the configure endpoint command for some reason, so we
3206          * leave the old ring intact and free our internal streams data
3207          * structure.
3208          */
3209         if (ret < 0)
3210                 goto cleanup;
3211
3212         spin_lock_irqsave(&xhci->lock, flags);
3213         for (i = 0; i < num_eps; i++) {
3214                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3215                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3216                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3217                          udev->slot_id, ep_index);
3218                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3219         }
3220         xhci_free_command(xhci, config_cmd);
3221         spin_unlock_irqrestore(&xhci->lock, flags);
3222
3223         /* Subtract 1 for stream 0, which drivers can't use */
3224         return num_streams - 1;
3225
3226 cleanup:
3227         /* If it didn't work, free the streams! */
3228         for (i = 0; i < num_eps; i++) {
3229                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3230                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3231                 vdev->eps[ep_index].stream_info = NULL;
3232                 /* FIXME Unset maxPstreams in endpoint context and
3233                  * update deq ptr to point to normal string ring.
3234                  */
3235                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3236                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3237                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3238         }
3239         xhci_free_command(xhci, config_cmd);
3240         return -ENOMEM;
3241 }
3242
3243 /* Transition the endpoint from using streams to being a "normal" endpoint
3244  * without streams.
3245  *
3246  * Modify the endpoint context state, submit a configure endpoint command,
3247  * and free all endpoint rings for streams if that completes successfully.
3248  */
3249 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3250                 struct usb_host_endpoint **eps, unsigned int num_eps,
3251                 gfp_t mem_flags)
3252 {
3253         int i, ret;
3254         struct xhci_hcd *xhci;
3255         struct xhci_virt_device *vdev;
3256         struct xhci_command *command;
3257         struct xhci_input_control_ctx *ctrl_ctx;
3258         unsigned int ep_index;
3259         unsigned long flags;
3260         u32 changed_ep_bitmask;
3261
3262         xhci = hcd_to_xhci(hcd);
3263         vdev = xhci->devs[udev->slot_id];
3264
3265         /* Set up a configure endpoint command to remove the streams rings */
3266         spin_lock_irqsave(&xhci->lock, flags);
3267         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3268                         udev, eps, num_eps);
3269         if (changed_ep_bitmask == 0) {
3270                 spin_unlock_irqrestore(&xhci->lock, flags);
3271                 return -EINVAL;
3272         }
3273
3274         /* Use the xhci_command structure from the first endpoint.  We may have
3275          * allocated too many, but the driver may call xhci_free_streams() for
3276          * each endpoint it grouped into one call to xhci_alloc_streams().
3277          */
3278         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3279         command = vdev->eps[ep_index].stream_info->free_streams_command;
3280         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3281         if (!ctrl_ctx) {
3282                 spin_unlock_irqrestore(&xhci->lock, flags);
3283                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3284                                 __func__);
3285                 return -EINVAL;
3286         }
3287
3288         for (i = 0; i < num_eps; i++) {
3289                 struct xhci_ep_ctx *ep_ctx;
3290
3291                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3292                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3293                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3294                         EP_GETTING_NO_STREAMS;
3295
3296                 xhci_endpoint_copy(xhci, command->in_ctx,
3297                                 vdev->out_ctx, ep_index);
3298                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3299                                 &vdev->eps[ep_index]);
3300         }
3301         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3302                         vdev->out_ctx, ctrl_ctx,
3303                         changed_ep_bitmask, changed_ep_bitmask);
3304         spin_unlock_irqrestore(&xhci->lock, flags);
3305
3306         /* Issue and wait for the configure endpoint command,
3307          * which must succeed.
3308          */
3309         ret = xhci_configure_endpoint(xhci, udev, command,
3310                         false, true);
3311
3312         /* xHC rejected the configure endpoint command for some reason, so we
3313          * leave the streams rings intact.
3314          */
3315         if (ret < 0)
3316                 return ret;
3317
3318         spin_lock_irqsave(&xhci->lock, flags);
3319         for (i = 0; i < num_eps; i++) {
3320                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3321                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3322                 vdev->eps[ep_index].stream_info = NULL;
3323                 /* FIXME Unset maxPstreams in endpoint context and
3324                  * update deq ptr to point to normal string ring.
3325                  */
3326                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3327                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3328         }
3329         spin_unlock_irqrestore(&xhci->lock, flags);
3330
3331         return 0;
3332 }
3333
3334 /*
3335  * Deletes endpoint resources for endpoints that were active before a Reset
3336  * Device command, or a Disable Slot command.  The Reset Device command leaves
3337  * the control endpoint intact, whereas the Disable Slot command deletes it.
3338  *
3339  * Must be called with xhci->lock held.
3340  */
3341 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3342         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3343 {
3344         int i;
3345         unsigned int num_dropped_eps = 0;
3346         unsigned int drop_flags = 0;
3347
3348         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3349                 if (virt_dev->eps[i].ring) {
3350                         drop_flags |= 1 << i;
3351                         num_dropped_eps++;
3352                 }
3353         }
3354         xhci->num_active_eps -= num_dropped_eps;
3355         if (num_dropped_eps)
3356                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3357                                 "Dropped %u ep ctxs, flags = 0x%x, "
3358                                 "%u now active.",
3359                                 num_dropped_eps, drop_flags,
3360                                 xhci->num_active_eps);
3361 }
3362
3363 /*
3364  * This submits a Reset Device Command, which will set the device state to 0,
3365  * set the device address to 0, and disable all the endpoints except the default
3366  * control endpoint.  The USB core should come back and call
3367  * xhci_address_device(), and then re-set up the configuration.  If this is
3368  * called because of a usb_reset_and_verify_device(), then the old alternate
3369  * settings will be re-installed through the normal bandwidth allocation
3370  * functions.
3371  *
3372  * Wait for the Reset Device command to finish.  Remove all structures
3373  * associated with the endpoints that were disabled.  Clear the input device
3374  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3375  *
3376  * If the virt_dev to be reset does not exist or does not match the udev,
3377  * it means the device is lost, possibly due to the xHC restore error and
3378  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3379  * re-allocate the device.
3380  */
3381 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3382 {
3383         int ret, i;
3384         unsigned long flags;
3385         struct xhci_hcd *xhci;
3386         unsigned int slot_id;
3387         struct xhci_virt_device *virt_dev;
3388         struct xhci_command *reset_device_cmd;
3389         int timeleft;
3390         int last_freed_endpoint;
3391         struct xhci_slot_ctx *slot_ctx;
3392         int old_active_eps = 0;
3393
3394         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3395         if (ret <= 0)
3396                 return ret;
3397         xhci = hcd_to_xhci(hcd);
3398         slot_id = udev->slot_id;
3399         virt_dev = xhci->devs[slot_id];
3400         if (!virt_dev) {
3401                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3402                                 "not exist. Re-allocate the device\n", slot_id);
3403                 ret = xhci_alloc_dev(hcd, udev);
3404                 if (ret == 1)
3405                         return 0;
3406                 else
3407                         return -EINVAL;
3408         }
3409
3410         if (virt_dev->udev != udev) {
3411                 /* If the virt_dev and the udev does not match, this virt_dev
3412                  * may belong to another udev.
3413                  * Re-allocate the device.
3414                  */
3415                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3416                                 "not match the udev. Re-allocate the device\n",
3417                                 slot_id);
3418                 ret = xhci_alloc_dev(hcd, udev);
3419                 if (ret == 1)
3420                         return 0;
3421                 else
3422                         return -EINVAL;
3423         }
3424
3425         /* If device is not setup, there is no point in resetting it */
3426         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3427         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3428                                                 SLOT_STATE_DISABLED)
3429                 return 0;
3430
3431         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3432         /* Allocate the command structure that holds the struct completion.
3433          * Assume we're in process context, since the normal device reset
3434          * process has to wait for the device anyway.  Storage devices are
3435          * reset as part of error handling, so use GFP_NOIO instead of
3436          * GFP_KERNEL.
3437          */
3438         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3439         if (!reset_device_cmd) {
3440                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3441                 return -ENOMEM;
3442         }
3443
3444         /* Attempt to submit the Reset Device command to the command ring */
3445         spin_lock_irqsave(&xhci->lock, flags);
3446         reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3447
3448         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3449         ret = xhci_queue_reset_device(xhci, slot_id);
3450         if (ret) {
3451                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3452                 list_del(&reset_device_cmd->cmd_list);
3453                 spin_unlock_irqrestore(&xhci->lock, flags);
3454                 goto command_cleanup;
3455         }
3456         xhci_ring_cmd_db(xhci);
3457         spin_unlock_irqrestore(&xhci->lock, flags);
3458
3459         /* Wait for the Reset Device command to finish */
3460         timeleft = wait_for_completion_interruptible_timeout(
3461                         reset_device_cmd->completion,
3462                         USB_CTRL_SET_TIMEOUT);
3463         if (timeleft <= 0) {
3464                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3465                                 timeleft == 0 ? "Timeout" : "Signal");
3466                 spin_lock_irqsave(&xhci->lock, flags);
3467                 /* The timeout might have raced with the event ring handler, so
3468                  * only delete from the list if the item isn't poisoned.
3469                  */
3470                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3471                         list_del(&reset_device_cmd->cmd_list);
3472                 spin_unlock_irqrestore(&xhci->lock, flags);
3473                 ret = -ETIME;
3474                 goto command_cleanup;
3475         }
3476
3477         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3478          * unless we tried to reset a slot ID that wasn't enabled,
3479          * or the device wasn't in the addressed or configured state.
3480          */
3481         ret = reset_device_cmd->status;
3482         switch (ret) {
3483         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3484         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3485                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3486                                 slot_id,
3487                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3488                 xhci_dbg(xhci, "Not freeing device rings.\n");
3489                 /* Don't treat this as an error.  May change my mind later. */
3490                 ret = 0;
3491                 goto command_cleanup;
3492         case COMP_SUCCESS:
3493                 xhci_dbg(xhci, "Successful reset device command.\n");
3494                 break;
3495         default:
3496                 if (xhci_is_vendor_info_code(xhci, ret))
3497                         break;
3498                 xhci_warn(xhci, "Unknown completion code %u for "
3499                                 "reset device command.\n", ret);
3500                 ret = -EINVAL;
3501                 goto command_cleanup;
3502         }
3503
3504         /* Free up host controller endpoint resources */
3505         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3506                 spin_lock_irqsave(&xhci->lock, flags);
3507                 /* Don't delete the default control endpoint resources */
3508                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3509                 spin_unlock_irqrestore(&xhci->lock, flags);
3510         }
3511
3512         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3513         last_freed_endpoint = 1;
3514         for (i = 1; i < 31; ++i) {
3515                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3516
3517                 if (ep->ep_state & EP_HAS_STREAMS) {
3518                         xhci_free_stream_info(xhci, ep->stream_info);
3519                         ep->stream_info = NULL;
3520                         ep->ep_state &= ~EP_HAS_STREAMS;
3521                 }
3522
3523                 if (ep->ring) {
3524                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3525                         last_freed_endpoint = i;
3526                 }
3527                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3528                         xhci_drop_ep_from_interval_table(xhci,
3529                                         &virt_dev->eps[i].bw_info,
3530                                         virt_dev->bw_table,
3531                                         udev,
3532                                         &virt_dev->eps[i],
3533                                         virt_dev->tt_info);
3534                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3535         }
3536         /* If necessary, update the number of active TTs on this root port */
3537         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3538
3539         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3540         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3541         ret = 0;
3542
3543 command_cleanup:
3544         xhci_free_command(xhci, reset_device_cmd);
3545         return ret;
3546 }
3547
3548 /*
3549  * At this point, the struct usb_device is about to go away, the device has
3550  * disconnected, and all traffic has been stopped and the endpoints have been
3551  * disabled.  Free any HC data structures associated with that device.
3552  */
3553 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3554 {
3555         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3556         struct xhci_virt_device *virt_dev;
3557         unsigned long flags;
3558         u32 state;
3559         int i, ret;
3560
3561 #ifndef CONFIG_USB_DEFAULT_PERSIST
3562         /*
3563          * We called pm_runtime_get_noresume when the device was attached.
3564          * Decrement the counter here to allow controller to runtime suspend
3565          * if no devices remain.
3566          */
3567         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3568                 pm_runtime_put_noidle(hcd->self.controller);
3569 #endif
3570
3571         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3572         /* If the host is halted due to driver unload, we still need to free the
3573          * device.
3574          */
3575         if (ret <= 0 && ret != -ENODEV)
3576                 return;
3577
3578         virt_dev = xhci->devs[udev->slot_id];
3579
3580         /* Stop any wayward timer functions (which may grab the lock) */
3581         for (i = 0; i < 31; ++i) {
3582                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3583                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3584         }
3585
3586         if (udev->usb2_hw_lpm_enabled) {
3587                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3588                 udev->usb2_hw_lpm_enabled = 0;
3589         }
3590
3591         spin_lock_irqsave(&xhci->lock, flags);
3592         /* Don't disable the slot if the host controller is dead. */
3593         state = xhci_readl(xhci, &xhci->op_regs->status);
3594         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3595                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3596                 xhci_free_virt_device(xhci, udev->slot_id);
3597                 spin_unlock_irqrestore(&xhci->lock, flags);
3598                 return;
3599         }
3600
3601         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3602                 spin_unlock_irqrestore(&xhci->lock, flags);
3603                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3604                 return;
3605         }
3606         xhci_ring_cmd_db(xhci);
3607         spin_unlock_irqrestore(&xhci->lock, flags);
3608         /*
3609          * Event command completion handler will free any data structures
3610          * associated with the slot.  XXX Can free sleep?
3611          */
3612 }
3613
3614 /*
3615  * Checks if we have enough host controller resources for the default control
3616  * endpoint.
3617  *
3618  * Must be called with xhci->lock held.
3619  */
3620 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3621 {
3622         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3623                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3624                                 "Not enough ep ctxs: "
3625                                 "%u active, need to add 1, limit is %u.",
3626                                 xhci->num_active_eps, xhci->limit_active_eps);
3627                 return -ENOMEM;
3628         }
3629         xhci->num_active_eps += 1;
3630         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3631                         "Adding 1 ep ctx, %u now active.",
3632                         xhci->num_active_eps);
3633         return 0;
3634 }
3635
3636
3637 /*
3638  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3639  * timed out, or allocating memory failed.  Returns 1 on success.
3640  */
3641 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3642 {
3643         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3644         unsigned long flags;
3645         int timeleft;
3646         int ret;
3647         union xhci_trb *cmd_trb;
3648
3649         spin_lock_irqsave(&xhci->lock, flags);
3650         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3651         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3652         if (ret) {
3653                 spin_unlock_irqrestore(&xhci->lock, flags);
3654                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3655                 return 0;
3656         }
3657         xhci_ring_cmd_db(xhci);
3658         spin_unlock_irqrestore(&xhci->lock, flags);
3659
3660         /* XXX: how much time for xHC slot assignment? */
3661         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3662                         XHCI_CMD_DEFAULT_TIMEOUT);
3663         if (timeleft <= 0) {
3664                 xhci_warn(xhci, "%s while waiting for a slot\n",
3665                                 timeleft == 0 ? "Timeout" : "Signal");
3666                 /* cancel the enable slot request */
3667                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3668         }
3669
3670         if (!xhci->slot_id) {
3671                 xhci_err(xhci, "Error while assigning device slot ID\n");
3672                 return 0;
3673         }
3674
3675         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3676                 spin_lock_irqsave(&xhci->lock, flags);
3677                 ret = xhci_reserve_host_control_ep_resources(xhci);
3678                 if (ret) {
3679                         spin_unlock_irqrestore(&xhci->lock, flags);
3680                         xhci_warn(xhci, "Not enough host resources, "
3681                                         "active endpoint contexts = %u\n",
3682                                         xhci->num_active_eps);
3683                         goto disable_slot;
3684                 }
3685                 spin_unlock_irqrestore(&xhci->lock, flags);
3686         }
3687         /* Use GFP_NOIO, since this function can be called from
3688          * xhci_discover_or_reset_device(), which may be called as part of
3689          * mass storage driver error handling.
3690          */
3691         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3692                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3693                 goto disable_slot;
3694         }
3695         udev->slot_id = xhci->slot_id;
3696
3697 #ifndef CONFIG_USB_DEFAULT_PERSIST
3698         /*
3699          * If resetting upon resume, we can't put the controller into runtime
3700          * suspend if there is a device attached.
3701          */
3702         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3703                 pm_runtime_get_noresume(hcd->self.controller);
3704 #endif
3705
3706         /* Is this a LS or FS device under a HS hub? */
3707         /* Hub or peripherial? */
3708         return 1;
3709
3710 disable_slot:
3711         /* Disable slot, if we can do it without mem alloc */
3712         spin_lock_irqsave(&xhci->lock, flags);
3713         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3714                 xhci_ring_cmd_db(xhci);
3715         spin_unlock_irqrestore(&xhci->lock, flags);
3716         return 0;
3717 }
3718
3719 /*
3720  * Issue an Address Device command (which will issue a SetAddress request to
3721  * the device).
3722  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3723  * we should only issue and wait on one address command at the same time.
3724  *
3725  * We add one to the device address issued by the hardware because the USB core
3726  * uses address 1 for the root hubs (even though they're not really devices).
3727  */
3728 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3729 {
3730         unsigned long flags;
3731         int timeleft;
3732         struct xhci_virt_device *virt_dev;
3733         int ret = 0;
3734         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3735         struct xhci_slot_ctx *slot_ctx;
3736         struct xhci_input_control_ctx *ctrl_ctx;
3737         u64 temp_64;
3738         union xhci_trb *cmd_trb;
3739
3740         if (!udev->slot_id) {
3741                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3742                                 "Bad Slot ID %d", udev->slot_id);
3743                 return -EINVAL;
3744         }
3745
3746         virt_dev = xhci->devs[udev->slot_id];
3747
3748         if (WARN_ON(!virt_dev)) {
3749                 /*
3750                  * In plug/unplug torture test with an NEC controller,
3751                  * a zero-dereference was observed once due to virt_dev = 0.
3752                  * Print useful debug rather than crash if it is observed again!
3753                  */
3754                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3755                         udev->slot_id);
3756                 return -EINVAL;
3757         }
3758
3759         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3760         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3761         if (!ctrl_ctx) {
3762                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3763                                 __func__);
3764                 return -EINVAL;
3765         }
3766         /*
3767          * If this is the first Set Address since device plug-in or
3768          * virt_device realloaction after a resume with an xHCI power loss,
3769          * then set up the slot context.
3770          */
3771         if (!slot_ctx->dev_info)
3772                 xhci_setup_addressable_virt_dev(xhci, udev);
3773         /* Otherwise, update the control endpoint ring enqueue pointer. */
3774         else
3775                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3776         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3777         ctrl_ctx->drop_flags = 0;
3778
3779         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3780         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3781         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3782                                 slot_ctx->dev_info >> 27);
3783
3784         spin_lock_irqsave(&xhci->lock, flags);
3785         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3786         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3787                                         udev->slot_id);
3788         if (ret) {
3789                 spin_unlock_irqrestore(&xhci->lock, flags);
3790                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3791                                 "FIXME: allocate a command ring segment");
3792                 return ret;
3793         }
3794         xhci_ring_cmd_db(xhci);
3795         spin_unlock_irqrestore(&xhci->lock, flags);
3796
3797         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3798         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3799                         XHCI_CMD_DEFAULT_TIMEOUT);
3800         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3801          * the SetAddress() "recovery interval" required by USB and aborting the
3802          * command on a timeout.
3803          */
3804         if (timeleft <= 0) {
3805                 xhci_warn(xhci, "%s while waiting for address device command\n",
3806                                 timeleft == 0 ? "Timeout" : "Signal");
3807                 /* cancel the address device command */
3808                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3809                 if (ret < 0)
3810                         return ret;
3811                 return -ETIME;
3812         }
3813
3814         switch (virt_dev->cmd_status) {
3815         case COMP_CTX_STATE:
3816         case COMP_EBADSLT:
3817                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3818                                 udev->slot_id);
3819                 ret = -EINVAL;
3820                 break;
3821         case COMP_TX_ERR:
3822                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3823                 ret = -EPROTO;
3824                 break;
3825         case COMP_DEV_ERR:
3826                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3827                                 "device command.\n");
3828                 ret = -ENODEV;
3829                 break;
3830         case COMP_SUCCESS:
3831                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3832                                 "Successful Address Device command");
3833                 break;
3834         default:
3835                 xhci_err(xhci, "ERROR: unexpected command completion "
3836                                 "code 0x%x.\n", virt_dev->cmd_status);
3837                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3838                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3839                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3840                 ret = -EINVAL;
3841                 break;
3842         }
3843         if (ret) {
3844                 return ret;
3845         }
3846         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3847         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3848                         "Op regs DCBAA ptr = %#016llx", temp_64);
3849         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3850                 "Slot ID %d dcbaa entry @%p = %#016llx",
3851                 udev->slot_id,
3852                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3853                 (unsigned long long)
3854                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3855         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3856                         "Output Context DMA address = %#08llx",
3857                         (unsigned long long)virt_dev->out_ctx->dma);
3858         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3859         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3860         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3861                                 slot_ctx->dev_info >> 27);
3862         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3863         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3864         /*
3865          * USB core uses address 1 for the roothubs, so we add one to the
3866          * address given back to us by the HC.
3867          */
3868         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3869         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3870                                 slot_ctx->dev_info >> 27);
3871         /* Use kernel assigned address for devices; store xHC assigned
3872          * address locally. */
3873         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3874                 + 1;
3875         /* Zero the input context control for later use */
3876         ctrl_ctx->add_flags = 0;
3877         ctrl_ctx->drop_flags = 0;
3878
3879         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3880                         "Internal device address = %d", virt_dev->address);
3881
3882         return 0;
3883 }
3884
3885 /*
3886  * Transfer the port index into real index in the HW port status
3887  * registers. Caculate offset between the port's PORTSC register
3888  * and port status base. Divide the number of per port register
3889  * to get the real index. The raw port number bases 1.
3890  */
3891 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3892 {
3893         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3894         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3895         __le32 __iomem *addr;
3896         int raw_port;
3897
3898         if (hcd->speed != HCD_USB3)
3899                 addr = xhci->usb2_ports[port1 - 1];
3900         else
3901                 addr = xhci->usb3_ports[port1 - 1];
3902
3903         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3904         return raw_port;
3905 }
3906
3907 /*
3908  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3909  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3910  */
3911 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3912                         struct usb_device *udev, u16 max_exit_latency)
3913 {
3914         struct xhci_virt_device *virt_dev;
3915         struct xhci_command *command;
3916         struct xhci_input_control_ctx *ctrl_ctx;
3917         struct xhci_slot_ctx *slot_ctx;
3918         unsigned long flags;
3919         int ret;
3920
3921         spin_lock_irqsave(&xhci->lock, flags);
3922         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3923                 spin_unlock_irqrestore(&xhci->lock, flags);
3924                 return 0;
3925         }
3926
3927         /* Attempt to issue an Evaluate Context command to change the MEL. */
3928         virt_dev = xhci->devs[udev->slot_id];
3929         command = xhci->lpm_command;
3930         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3931         if (!ctrl_ctx) {
3932                 spin_unlock_irqrestore(&xhci->lock, flags);
3933                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3934                                 __func__);
3935                 return -ENOMEM;
3936         }
3937
3938         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3939         spin_unlock_irqrestore(&xhci->lock, flags);
3940
3941         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3942         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3943         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3944         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3945
3946         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3947                         "Set up evaluate context for LPM MEL change.");
3948         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3949         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3950
3951         /* Issue and wait for the evaluate context command. */
3952         ret = xhci_configure_endpoint(xhci, udev, command,
3953                         true, true);
3954         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3955         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3956
3957         if (!ret) {
3958                 spin_lock_irqsave(&xhci->lock, flags);
3959                 virt_dev->current_mel = max_exit_latency;
3960                 spin_unlock_irqrestore(&xhci->lock, flags);
3961         }
3962         return ret;
3963 }
3964
3965 #ifdef CONFIG_PM_RUNTIME
3966
3967 /* BESL to HIRD Encoding array for USB2 LPM */
3968 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3969         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3970
3971 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3972 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3973                                         struct usb_device *udev)
3974 {
3975         int u2del, besl, besl_host;
3976         int besl_device = 0;
3977         u32 field;
3978
3979         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3980         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3981
3982         if (field & USB_BESL_SUPPORT) {
3983                 for (besl_host = 0; besl_host < 16; besl_host++) {
3984                         if (xhci_besl_encoding[besl_host] >= u2del)
3985                                 break;
3986                 }
3987                 /* Use baseline BESL value as default */
3988                 if (field & USB_BESL_BASELINE_VALID)
3989                         besl_device = USB_GET_BESL_BASELINE(field);
3990                 else if (field & USB_BESL_DEEP_VALID)
3991                         besl_device = USB_GET_BESL_DEEP(field);
3992         } else {
3993                 if (u2del <= 50)
3994                         besl_host = 0;
3995                 else
3996                         besl_host = (u2del - 51) / 75 + 1;
3997         }
3998
3999         besl = besl_host + besl_device;
4000         if (besl > 15)
4001                 besl = 15;
4002
4003         return besl;
4004 }
4005
4006 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4007 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4008 {
4009         u32 field;
4010         int l1;
4011         int besld = 0;
4012         int hirdm = 0;
4013
4014         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4015
4016         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4017         l1 = udev->l1_params.timeout / 256;
4018
4019         /* device has preferred BESLD */
4020         if (field & USB_BESL_DEEP_VALID) {
4021                 besld = USB_GET_BESL_DEEP(field);
4022                 hirdm = 1;
4023         }
4024
4025         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4026 }
4027
4028 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4029                                         struct usb_device *udev)
4030 {
4031         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4032         struct dev_info *dev_info;
4033         __le32 __iomem  **port_array;
4034         __le32 __iomem  *addr, *pm_addr;
4035         u32             temp, dev_id;
4036         unsigned int    port_num;
4037         unsigned long   flags;
4038         int             hird;
4039         int             ret;
4040
4041         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4042                         !udev->lpm_capable)
4043                 return -EINVAL;
4044
4045         /* we only support lpm for non-hub device connected to root hub yet */
4046         if (!udev->parent || udev->parent->parent ||
4047                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4048                 return -EINVAL;
4049
4050         spin_lock_irqsave(&xhci->lock, flags);
4051
4052         /* Look for devices in lpm_failed_devs list */
4053         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4054                         le16_to_cpu(udev->descriptor.idProduct);
4055         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4056                 if (dev_info->dev_id == dev_id) {
4057                         ret = -EINVAL;
4058                         goto finish;
4059                 }
4060         }
4061
4062         port_array = xhci->usb2_ports;
4063         port_num = udev->portnum - 1;
4064
4065         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4066                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4067                 ret = -EINVAL;
4068                 goto finish;
4069         }
4070
4071         /*
4072          * Test USB 2.0 software LPM.
4073          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4074          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4075          * in the June 2011 errata release.
4076          */
4077         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4078         /*
4079          * Set L1 Device Slot and HIRD/BESL.
4080          * Check device's USB 2.0 extension descriptor to determine whether
4081          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4082          */
4083         pm_addr = port_array[port_num] + PORTPMSC;
4084         hird = xhci_calculate_hird_besl(xhci, udev);
4085         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4086         xhci_writel(xhci, temp, pm_addr);
4087
4088         /* Set port link state to U2(L1) */
4089         addr = port_array[port_num];
4090         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4091
4092         /* wait for ACK */
4093         spin_unlock_irqrestore(&xhci->lock, flags);
4094         msleep(10);
4095         spin_lock_irqsave(&xhci->lock, flags);
4096
4097         /* Check L1 Status */
4098         ret = xhci_handshake(xhci, pm_addr,
4099                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4100         if (ret != -ETIMEDOUT) {
4101                 /* enter L1 successfully */
4102                 temp = xhci_readl(xhci, addr);
4103                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4104                                 port_num, temp);
4105                 ret = 0;
4106         } else {
4107                 temp = xhci_readl(xhci, pm_addr);
4108                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4109                                 port_num, temp & PORT_L1S_MASK);
4110                 ret = -EINVAL;
4111         }
4112
4113         /* Resume the port */
4114         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4115
4116         spin_unlock_irqrestore(&xhci->lock, flags);
4117         msleep(10);
4118         spin_lock_irqsave(&xhci->lock, flags);
4119
4120         /* Clear PLC */
4121         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4122
4123         /* Check PORTSC to make sure the device is in the right state */
4124         if (!ret) {
4125                 temp = xhci_readl(xhci, addr);
4126                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4127                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4128                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
4129                         xhci_dbg(xhci, "port L1 resume fail\n");
4130                         ret = -EINVAL;
4131                 }
4132         }
4133
4134         if (ret) {
4135                 /* Insert dev to lpm_failed_devs list */
4136                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4137                                 "re-enumerate\n");
4138                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4139                 if (!dev_info) {
4140                         ret = -ENOMEM;
4141                         goto finish;
4142                 }
4143                 dev_info->dev_id = dev_id;
4144                 INIT_LIST_HEAD(&dev_info->list);
4145                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4146         } else {
4147                 xhci_ring_device(xhci, udev->slot_id);
4148         }
4149
4150 finish:
4151         spin_unlock_irqrestore(&xhci->lock, flags);
4152         return ret;
4153 }
4154
4155 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4156                         struct usb_device *udev, int enable)
4157 {
4158         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4159         __le32 __iomem  **port_array;
4160         __le32 __iomem  *pm_addr, *hlpm_addr;
4161         u32             pm_val, hlpm_val, field;
4162         unsigned int    port_num;
4163         unsigned long   flags;
4164         int             hird, exit_latency;
4165         int             ret;
4166
4167         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4168                         !udev->lpm_capable)
4169                 return -EPERM;
4170
4171         if (!udev->parent || udev->parent->parent ||
4172                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4173                 return -EPERM;
4174
4175         if (udev->usb2_hw_lpm_capable != 1)
4176                 return -EPERM;
4177
4178         spin_lock_irqsave(&xhci->lock, flags);
4179
4180         port_array = xhci->usb2_ports;
4181         port_num = udev->portnum - 1;
4182         pm_addr = port_array[port_num] + PORTPMSC;
4183         pm_val = xhci_readl(xhci, pm_addr);
4184         hlpm_addr = port_array[port_num] + PORTHLPMC;
4185         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4186
4187         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4188                         enable ? "enable" : "disable", port_num);
4189
4190         if (enable) {
4191                 /* Host supports BESL timeout instead of HIRD */
4192                 if (udev->usb2_hw_lpm_besl_capable) {
4193                         /* if device doesn't have a preferred BESL value use a
4194                          * default one which works with mixed HIRD and BESL
4195                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4196                          */
4197                         if ((field & USB_BESL_SUPPORT) &&
4198                             (field & USB_BESL_BASELINE_VALID))
4199                                 hird = USB_GET_BESL_BASELINE(field);
4200                         else
4201                                 hird = udev->l1_params.besl;
4202
4203                         exit_latency = xhci_besl_encoding[hird];
4204                         spin_unlock_irqrestore(&xhci->lock, flags);
4205
4206                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4207                          * input context for link powermanagement evaluate
4208                          * context commands. It is protected by hcd->bandwidth
4209                          * mutex and is shared by all devices. We need to set
4210                          * the max ext latency in USB 2 BESL LPM as well, so
4211                          * use the same mutex and xhci_change_max_exit_latency()
4212                          */
4213                         mutex_lock(hcd->bandwidth_mutex);
4214                         ret = xhci_change_max_exit_latency(xhci, udev,
4215                                                            exit_latency);
4216                         mutex_unlock(hcd->bandwidth_mutex);
4217
4218                         if (ret < 0)
4219                                 return ret;
4220                         spin_lock_irqsave(&xhci->lock, flags);
4221
4222                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4223                         xhci_writel(xhci, hlpm_val, hlpm_addr);
4224                         /* flush write */
4225                         xhci_readl(xhci, hlpm_addr);
4226                 } else {
4227                         hird = xhci_calculate_hird_besl(xhci, udev);
4228                 }
4229
4230                 pm_val &= ~PORT_HIRD_MASK;
4231                 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4232                 xhci_writel(xhci, pm_val, pm_addr);
4233                 pm_val = xhci_readl(xhci, pm_addr);
4234                 pm_val |= PORT_HLE;
4235                 xhci_writel(xhci, pm_val, pm_addr);
4236                 /* flush write */
4237                 xhci_readl(xhci, pm_addr);
4238         } else {
4239                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4240                 xhci_writel(xhci, pm_val, pm_addr);
4241                 /* flush write */
4242                 xhci_readl(xhci, pm_addr);
4243                 if (udev->usb2_hw_lpm_besl_capable) {
4244                         spin_unlock_irqrestore(&xhci->lock, flags);
4245                         mutex_lock(hcd->bandwidth_mutex);
4246                         xhci_change_max_exit_latency(xhci, udev, 0);
4247                         mutex_unlock(hcd->bandwidth_mutex);
4248                         return 0;
4249                 }
4250         }
4251
4252         spin_unlock_irqrestore(&xhci->lock, flags);
4253         return 0;
4254 }
4255
4256 /* check if a usb2 port supports a given extened capability protocol
4257  * only USB2 ports extended protocol capability values are cached.
4258  * Return 1 if capability is supported
4259  */
4260 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4261                                            unsigned capability)
4262 {
4263         u32 port_offset, port_count;
4264         int i;
4265
4266         for (i = 0; i < xhci->num_ext_caps; i++) {
4267                 if (xhci->ext_caps[i] & capability) {
4268                         /* port offsets starts at 1 */
4269                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4270                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4271                         if (port >= port_offset &&
4272                             port < port_offset + port_count)
4273                                 return 1;
4274                 }
4275         }
4276         return 0;
4277 }
4278
4279 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4280 {
4281         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4282         int             ret;
4283         int             portnum = udev->portnum - 1;
4284
4285         ret = xhci_usb2_software_lpm_test(hcd, udev);
4286         if (!ret) {
4287                 xhci_dbg(xhci, "software LPM test succeed\n");
4288                 if (xhci->hw_lpm_support == 1 &&
4289                     xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4290                         udev->usb2_hw_lpm_capable = 1;
4291                         udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4292                         udev->l1_params.besl = XHCI_DEFAULT_BESL;
4293                         if (xhci_check_usb2_port_capability(xhci, portnum,
4294                                                             XHCI_BLC))
4295                                 udev->usb2_hw_lpm_besl_capable = 1;
4296                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4297                         if (!ret)
4298                                 udev->usb2_hw_lpm_enabled = 1;
4299                 }
4300         }
4301
4302         return 0;
4303 }
4304
4305 #else
4306
4307 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4308                                 struct usb_device *udev, int enable)
4309 {
4310         return 0;
4311 }
4312
4313 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4314 {
4315         return 0;
4316 }
4317
4318 #endif /* CONFIG_PM_RUNTIME */
4319
4320 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4321
4322 #ifdef CONFIG_PM
4323 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4324 static unsigned long long xhci_service_interval_to_ns(
4325                 struct usb_endpoint_descriptor *desc)
4326 {
4327         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4328 }
4329
4330 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4331                 enum usb3_link_state state)
4332 {
4333         unsigned long long sel;
4334         unsigned long long pel;
4335         unsigned int max_sel_pel;
4336         char *state_name;
4337
4338         switch (state) {
4339         case USB3_LPM_U1:
4340                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4341                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4342                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4343                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4344                 state_name = "U1";
4345                 break;
4346         case USB3_LPM_U2:
4347                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4348                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4349                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4350                 state_name = "U2";
4351                 break;
4352         default:
4353                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4354                                 __func__);
4355                 return USB3_LPM_DISABLED;
4356         }
4357
4358         if (sel <= max_sel_pel && pel <= max_sel_pel)
4359                 return USB3_LPM_DEVICE_INITIATED;
4360
4361         if (sel > max_sel_pel)
4362                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4363                                 "due to long SEL %llu ms\n",
4364                                 state_name, sel);
4365         else
4366                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4367                                 "due to long PEL %llu ms\n",
4368                                 state_name, pel);
4369         return USB3_LPM_DISABLED;
4370 }
4371
4372 /* Returns the hub-encoded U1 timeout value.
4373  * The U1 timeout should be the maximum of the following values:
4374  *  - For control endpoints, U1 system exit latency (SEL) * 3
4375  *  - For bulk endpoints, U1 SEL * 5
4376  *  - For interrupt endpoints:
4377  *    - Notification EPs, U1 SEL * 3
4378  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4379  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4380  */
4381 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4382                 struct usb_endpoint_descriptor *desc)
4383 {
4384         unsigned long long timeout_ns;
4385         int ep_type;
4386         int intr_type;
4387
4388         ep_type = usb_endpoint_type(desc);
4389         switch (ep_type) {
4390         case USB_ENDPOINT_XFER_CONTROL:
4391                 timeout_ns = udev->u1_params.sel * 3;
4392                 break;
4393         case USB_ENDPOINT_XFER_BULK:
4394                 timeout_ns = udev->u1_params.sel * 5;
4395                 break;
4396         case USB_ENDPOINT_XFER_INT:
4397                 intr_type = usb_endpoint_interrupt_type(desc);
4398                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4399                         timeout_ns = udev->u1_params.sel * 3;
4400                         break;
4401                 }
4402                 /* Otherwise the calculation is the same as isoc eps */
4403         case USB_ENDPOINT_XFER_ISOC:
4404                 timeout_ns = xhci_service_interval_to_ns(desc);
4405                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4406                 if (timeout_ns < udev->u1_params.sel * 2)
4407                         timeout_ns = udev->u1_params.sel * 2;
4408                 break;
4409         default:
4410                 return 0;
4411         }
4412
4413         /* The U1 timeout is encoded in 1us intervals. */
4414         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4415         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4416         if (timeout_ns == USB3_LPM_DISABLED)
4417                 timeout_ns++;
4418
4419         /* If the necessary timeout value is bigger than what we can set in the
4420          * USB 3.0 hub, we have to disable hub-initiated U1.
4421          */
4422         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4423                 return timeout_ns;
4424         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4425                         "due to long timeout %llu ms\n", timeout_ns);
4426         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4427 }
4428
4429 /* Returns the hub-encoded U2 timeout value.
4430  * The U2 timeout should be the maximum of:
4431  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4432  *  - largest bInterval of any active periodic endpoint (to avoid going
4433  *    into lower power link states between intervals).
4434  *  - the U2 Exit Latency of the device
4435  */
4436 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4437                 struct usb_endpoint_descriptor *desc)
4438 {
4439         unsigned long long timeout_ns;
4440         unsigned long long u2_del_ns;
4441
4442         timeout_ns = 10 * 1000 * 1000;
4443
4444         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4445                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4446                 timeout_ns = xhci_service_interval_to_ns(desc);
4447
4448         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4449         if (u2_del_ns > timeout_ns)
4450                 timeout_ns = u2_del_ns;
4451
4452         /* The U2 timeout is encoded in 256us intervals */
4453         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4454         /* If the necessary timeout value is bigger than what we can set in the
4455          * USB 3.0 hub, we have to disable hub-initiated U2.
4456          */
4457         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4458                 return timeout_ns;
4459         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4460                         "due to long timeout %llu ms\n", timeout_ns);
4461         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4462 }
4463
4464 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4465                 struct usb_device *udev,
4466                 struct usb_endpoint_descriptor *desc,
4467                 enum usb3_link_state state,
4468                 u16 *timeout)
4469 {
4470         if (state == USB3_LPM_U1) {
4471                 if (xhci->quirks & XHCI_INTEL_HOST)
4472                         return xhci_calculate_intel_u1_timeout(udev, desc);
4473         } else {
4474                 if (xhci->quirks & XHCI_INTEL_HOST)
4475                         return xhci_calculate_intel_u2_timeout(udev, desc);
4476         }
4477
4478         return USB3_LPM_DISABLED;
4479 }
4480
4481 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4482                 struct usb_device *udev,
4483                 struct usb_endpoint_descriptor *desc,
4484                 enum usb3_link_state state,
4485                 u16 *timeout)
4486 {
4487         u16 alt_timeout;
4488
4489         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4490                 desc, state, timeout);
4491
4492         /* If we found we can't enable hub-initiated LPM, or
4493          * the U1 or U2 exit latency was too high to allow
4494          * device-initiated LPM as well, just stop searching.
4495          */
4496         if (alt_timeout == USB3_LPM_DISABLED ||
4497                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4498                 *timeout = alt_timeout;
4499                 return -E2BIG;
4500         }
4501         if (alt_timeout > *timeout)
4502                 *timeout = alt_timeout;
4503         return 0;
4504 }
4505
4506 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4507                 struct usb_device *udev,
4508                 struct usb_host_interface *alt,
4509                 enum usb3_link_state state,
4510                 u16 *timeout)
4511 {
4512         int j;
4513
4514         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4515                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4516                                         &alt->endpoint[j].desc, state, timeout))
4517                         return -E2BIG;
4518                 continue;
4519         }
4520         return 0;
4521 }
4522
4523 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4524                 enum usb3_link_state state)
4525 {
4526         struct usb_device *parent;
4527         unsigned int num_hubs;
4528
4529         if (state == USB3_LPM_U2)
4530                 return 0;
4531
4532         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4533         for (parent = udev->parent, num_hubs = 0; parent->parent;
4534                         parent = parent->parent)
4535                 num_hubs++;
4536
4537         if (num_hubs < 2)
4538                 return 0;
4539
4540         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4541                         " below second-tier hub.\n");
4542         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4543                         "to decrease power consumption.\n");
4544         return -E2BIG;
4545 }
4546
4547 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4548                 struct usb_device *udev,
4549                 enum usb3_link_state state)
4550 {
4551         if (xhci->quirks & XHCI_INTEL_HOST)
4552                 return xhci_check_intel_tier_policy(udev, state);
4553         return -EINVAL;
4554 }
4555
4556 /* Returns the U1 or U2 timeout that should be enabled.
4557  * If the tier check or timeout setting functions return with a non-zero exit
4558  * code, that means the timeout value has been finalized and we shouldn't look
4559  * at any more endpoints.
4560  */
4561 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4562                         struct usb_device *udev, enum usb3_link_state state)
4563 {
4564         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4565         struct usb_host_config *config;
4566         char *state_name;
4567         int i;
4568         u16 timeout = USB3_LPM_DISABLED;
4569
4570         if (state == USB3_LPM_U1)
4571                 state_name = "U1";
4572         else if (state == USB3_LPM_U2)
4573                 state_name = "U2";
4574         else {
4575                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4576                                 state);
4577                 return timeout;
4578         }
4579
4580         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4581                 return timeout;
4582
4583         /* Gather some information about the currently installed configuration
4584          * and alternate interface settings.
4585          */
4586         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4587                         state, &timeout))
4588                 return timeout;
4589
4590         config = udev->actconfig;
4591         if (!config)
4592                 return timeout;
4593
4594         for (i = 0; i < USB_MAXINTERFACES; i++) {
4595                 struct usb_driver *driver;
4596                 struct usb_interface *intf = config->interface[i];
4597
4598                 if (!intf)
4599                         continue;
4600
4601                 /* Check if any currently bound drivers want hub-initiated LPM
4602                  * disabled.
4603                  */
4604                 if (intf->dev.driver) {
4605                         driver = to_usb_driver(intf->dev.driver);
4606                         if (driver && driver->disable_hub_initiated_lpm) {
4607                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4608                                                 "at request of driver %s\n",
4609                                                 state_name, driver->name);
4610                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4611                         }
4612                 }
4613
4614                 /* Not sure how this could happen... */
4615                 if (!intf->cur_altsetting)
4616                         continue;
4617
4618                 if (xhci_update_timeout_for_interface(xhci, udev,
4619                                         intf->cur_altsetting,
4620                                         state, &timeout))
4621                         return timeout;
4622         }
4623         return timeout;
4624 }
4625
4626 static int calculate_max_exit_latency(struct usb_device *udev,
4627                 enum usb3_link_state state_changed,
4628                 u16 hub_encoded_timeout)
4629 {
4630         unsigned long long u1_mel_us = 0;
4631         unsigned long long u2_mel_us = 0;
4632         unsigned long long mel_us = 0;
4633         bool disabling_u1;
4634         bool disabling_u2;
4635         bool enabling_u1;
4636         bool enabling_u2;
4637
4638         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4639                         hub_encoded_timeout == USB3_LPM_DISABLED);
4640         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4641                         hub_encoded_timeout == USB3_LPM_DISABLED);
4642
4643         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4644                         hub_encoded_timeout != USB3_LPM_DISABLED);
4645         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4646                         hub_encoded_timeout != USB3_LPM_DISABLED);
4647
4648         /* If U1 was already enabled and we're not disabling it,
4649          * or we're going to enable U1, account for the U1 max exit latency.
4650          */
4651         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4652                         enabling_u1)
4653                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4654         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4655                         enabling_u2)
4656                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4657
4658         if (u1_mel_us > u2_mel_us)
4659                 mel_us = u1_mel_us;
4660         else
4661                 mel_us = u2_mel_us;
4662         /* xHCI host controller max exit latency field is only 16 bits wide. */
4663         if (mel_us > MAX_EXIT) {
4664                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4665                                 "is too big.\n", mel_us);
4666                 return -E2BIG;
4667         }
4668         return mel_us;
4669 }
4670
4671 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4672 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4673                         struct usb_device *udev, enum usb3_link_state state)
4674 {
4675         struct xhci_hcd *xhci;
4676         u16 hub_encoded_timeout;
4677         int mel;
4678         int ret;
4679
4680         xhci = hcd_to_xhci(hcd);
4681         /* The LPM timeout values are pretty host-controller specific, so don't
4682          * enable hub-initiated timeouts unless the vendor has provided
4683          * information about their timeout algorithm.
4684          */
4685         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4686                         !xhci->devs[udev->slot_id])
4687                 return USB3_LPM_DISABLED;
4688
4689         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4690         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4691         if (mel < 0) {
4692                 /* Max Exit Latency is too big, disable LPM. */
4693                 hub_encoded_timeout = USB3_LPM_DISABLED;
4694                 mel = 0;
4695         }
4696
4697         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4698         if (ret)
4699                 return ret;
4700         return hub_encoded_timeout;
4701 }
4702
4703 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4704                         struct usb_device *udev, enum usb3_link_state state)
4705 {
4706         struct xhci_hcd *xhci;
4707         u16 mel;
4708         int ret;
4709
4710         xhci = hcd_to_xhci(hcd);
4711         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4712                         !xhci->devs[udev->slot_id])
4713                 return 0;
4714
4715         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4716         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4717         if (ret)
4718                 return ret;
4719         return 0;
4720 }
4721 #else /* CONFIG_PM */
4722
4723 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4724                         struct usb_device *udev, enum usb3_link_state state)
4725 {
4726         return USB3_LPM_DISABLED;
4727 }
4728
4729 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4730                         struct usb_device *udev, enum usb3_link_state state)
4731 {
4732         return 0;
4733 }
4734 #endif  /* CONFIG_PM */
4735
4736 /*-------------------------------------------------------------------------*/
4737
4738 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4739  * internal data structures for the device.
4740  */
4741 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4742                         struct usb_tt *tt, gfp_t mem_flags)
4743 {
4744         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4745         struct xhci_virt_device *vdev;
4746         struct xhci_command *config_cmd;
4747         struct xhci_input_control_ctx *ctrl_ctx;
4748         struct xhci_slot_ctx *slot_ctx;
4749         unsigned long flags;
4750         unsigned think_time;
4751         int ret;
4752
4753         /* Ignore root hubs */
4754         if (!hdev->parent)
4755                 return 0;
4756
4757         vdev = xhci->devs[hdev->slot_id];
4758         if (!vdev) {
4759                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4760                 return -EINVAL;
4761         }
4762         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4763         if (!config_cmd) {
4764                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4765                 return -ENOMEM;
4766         }
4767         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4768         if (!ctrl_ctx) {
4769                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4770                                 __func__);
4771                 xhci_free_command(xhci, config_cmd);
4772                 return -ENOMEM;
4773         }
4774
4775         spin_lock_irqsave(&xhci->lock, flags);
4776         if (hdev->speed == USB_SPEED_HIGH &&
4777                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4778                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4779                 xhci_free_command(xhci, config_cmd);
4780                 spin_unlock_irqrestore(&xhci->lock, flags);
4781                 return -ENOMEM;
4782         }
4783
4784         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4785         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4786         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4787         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4788         if (tt->multi)
4789                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4790         if (xhci->hci_version > 0x95) {
4791                 xhci_dbg(xhci, "xHCI version %x needs hub "
4792                                 "TT think time and number of ports\n",
4793                                 (unsigned int) xhci->hci_version);
4794                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4795                 /* Set TT think time - convert from ns to FS bit times.
4796                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4797                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4798                  *
4799                  * xHCI 1.0: this field shall be 0 if the device is not a
4800                  * High-spped hub.
4801                  */
4802                 think_time = tt->think_time;
4803                 if (think_time != 0)
4804                         think_time = (think_time / 666) - 1;
4805                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4806                         slot_ctx->tt_info |=
4807                                 cpu_to_le32(TT_THINK_TIME(think_time));
4808         } else {
4809                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4810                                 "TT think time or number of ports\n",
4811                                 (unsigned int) xhci->hci_version);
4812         }
4813         slot_ctx->dev_state = 0;
4814         spin_unlock_irqrestore(&xhci->lock, flags);
4815
4816         xhci_dbg(xhci, "Set up %s for hub device.\n",
4817                         (xhci->hci_version > 0x95) ?
4818                         "configure endpoint" : "evaluate context");
4819         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4820         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4821
4822         /* Issue and wait for the configure endpoint or
4823          * evaluate context command.
4824          */
4825         if (xhci->hci_version > 0x95)
4826                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4827                                 false, false);
4828         else
4829                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4830                                 true, false);
4831
4832         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4833         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4834
4835         xhci_free_command(xhci, config_cmd);
4836         return ret;
4837 }
4838
4839 int xhci_get_frame(struct usb_hcd *hcd)
4840 {
4841         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4842         /* EHCI mods by the periodic size.  Why? */
4843         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4844 }
4845
4846 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4847 {
4848         struct xhci_hcd         *xhci;
4849         struct device           *dev = hcd->self.controller;
4850         int                     retval;
4851
4852         /* Accept arbitrarily long scatter-gather lists */
4853         hcd->self.sg_tablesize = ~0;
4854
4855         /* support to build packet from discontinuous buffers */
4856         hcd->self.no_sg_constraint = 1;
4857
4858         /* XHCI controllers don't stop the ep queue on short packets :| */
4859         hcd->self.no_stop_on_short = 1;
4860
4861         if (usb_hcd_is_primary_hcd(hcd)) {
4862                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4863                 if (!xhci)
4864                         return -ENOMEM;
4865                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4866                 xhci->main_hcd = hcd;
4867                 /* Mark the first roothub as being USB 2.0.
4868                  * The xHCI driver will register the USB 3.0 roothub.
4869                  */
4870                 hcd->speed = HCD_USB2;
4871                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4872                 /*
4873                  * USB 2.0 roothub under xHCI has an integrated TT,
4874                  * (rate matching hub) as opposed to having an OHCI/UHCI
4875                  * companion controller.
4876                  */
4877                 hcd->has_tt = 1;
4878         } else {
4879                 /* xHCI private pointer was set in xhci_pci_probe for the second
4880                  * registered roothub.
4881                  */
4882                 return 0;
4883         }
4884
4885         xhci->cap_regs = hcd->regs;
4886         xhci->op_regs = hcd->regs +
4887                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4888         xhci->run_regs = hcd->regs +
4889                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4890         /* Cache read-only capability registers */
4891         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4892         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4893         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4894         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4895         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4896         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4897         xhci_print_registers(xhci);
4898
4899         get_quirks(dev, xhci);
4900
4901         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4902          * success event after a short transfer. This quirk will ignore such
4903          * spurious event.
4904          */
4905         if (xhci->hci_version > 0x96)
4906                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4907
4908         /* Make sure the HC is halted. */
4909         retval = xhci_halt(xhci);
4910         if (retval)
4911                 goto error;
4912
4913         xhci_dbg(xhci, "Resetting HCD\n");
4914         /* Reset the internal HC memory state and registers. */
4915         retval = xhci_reset(xhci);
4916         if (retval)
4917                 goto error;
4918         xhci_dbg(xhci, "Reset complete\n");
4919
4920         /* Set dma_mask and coherent_dma_mask to 64-bits,
4921          * if xHC supports 64-bit addressing */
4922         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4923                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4924                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4925                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4926         }
4927
4928         xhci_dbg(xhci, "Calling HCD init\n");
4929         /* Initialize HCD and host controller data structures. */
4930         retval = xhci_init(hcd);
4931         if (retval)
4932                 goto error;
4933         xhci_dbg(xhci, "Called HCD init\n");
4934         return 0;
4935 error:
4936         kfree(xhci);
4937         return retval;
4938 }
4939
4940 MODULE_DESCRIPTION(DRIVER_DESC);
4941 MODULE_AUTHOR(DRIVER_AUTHOR);
4942 MODULE_LICENSE("GPL");
4943
4944 static int __init xhci_hcd_init(void)
4945 {
4946         int retval;
4947
4948         retval = xhci_register_pci();
4949         if (retval < 0) {
4950                 pr_debug("Problem registering PCI driver.\n");
4951                 return retval;
4952         }
4953         retval = xhci_register_plat();
4954         if (retval < 0) {
4955                 pr_debug("Problem registering platform driver.\n");
4956                 goto unreg_pci;
4957         }
4958         /*
4959          * Check the compiler generated sizes of structures that must be laid
4960          * out in specific ways for hardware access.
4961          */
4962         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4963         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4964         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4965         /* xhci_device_control has eight fields, and also
4966          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4967          */
4968         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4969         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4970         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4971         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4972         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4973         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4974         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4975         return 0;
4976 unreg_pci:
4977         xhci_unregister_pci();
4978         return retval;
4979 }
4980 module_init(xhci_hcd_init);
4981
4982 static void __exit xhci_hcd_cleanup(void)
4983 {
4984         xhci_unregister_pci();
4985         xhci_unregister_plat();
4986 }
4987 module_exit(xhci_hcd_cleanup);