Merge git://git.kernel.org/pub/scm/linux/kernel/git/pkl/squashfs-linus
[pandora-kernel.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39         struct xhci_segment *seg;
40         dma_addr_t      dma;
41
42         seg = kzalloc(sizeof *seg, flags);
43         if (!seg)
44                 return NULL;
45         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48         if (!seg->trbs) {
49                 kfree(seg);
50                 return NULL;
51         }
52         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53                         seg->trbs, (unsigned long long)dma);
54
55         memset(seg->trbs, 0, SEGMENT_SIZE);
56         seg->dma = dma;
57         seg->next = NULL;
58
59         return seg;
60 }
61
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64         if (!seg)
65                 return;
66         if (seg->trbs) {
67                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68                                 seg->trbs, (unsigned long long)seg->dma);
69                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70                 seg->trbs = NULL;
71         }
72         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73         kfree(seg);
74 }
75
76 /*
77  * Make the prev segment point to the next segment.
78  *
79  * Change the last TRB in the prev segment to be a Link TRB which points to the
80  * DMA address of the next segment.  The caller needs to set any Link TRB
81  * related flags, such as End TRB, Toggle Cycle, and no snoop.
82  */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84                 struct xhci_segment *next, bool link_trbs)
85 {
86         u32 val;
87
88         if (!prev || !next)
89                 return;
90         prev->next = next;
91         if (link_trbs) {
92                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93
94                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95                 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96                 val &= ~TRB_TYPE_BITMASK;
97                 val |= TRB_TYPE(TRB_LINK);
98                 /* Always set the chain bit with 0.95 hardware */
99                 if (xhci_link_trb_quirk(xhci))
100                         val |= TRB_CHAIN;
101                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102         }
103         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104                         (unsigned long long)prev->dma,
105                         (unsigned long long)next->dma);
106 }
107
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 {
111         struct xhci_segment *seg;
112         struct xhci_segment *first_seg;
113
114         if (!ring || !ring->first_seg)
115                 return;
116         first_seg = ring->first_seg;
117         seg = first_seg->next;
118         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119         while (seg != first_seg) {
120                 struct xhci_segment *next = seg->next;
121                 xhci_segment_free(xhci, seg);
122                 seg = next;
123         }
124         xhci_segment_free(xhci, first_seg);
125         ring->first_seg = NULL;
126         kfree(ring);
127 }
128
129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
130 {
131         /* The ring is empty, so the enqueue pointer == dequeue pointer */
132         ring->enqueue = ring->first_seg->trbs;
133         ring->enq_seg = ring->first_seg;
134         ring->dequeue = ring->enqueue;
135         ring->deq_seg = ring->first_seg;
136         /* The ring is initialized to 0. The producer must write 1 to the cycle
137          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
138          * compare CCS to the cycle bit to check ownership, so CCS = 1.
139          */
140         ring->cycle_state = 1;
141         /* Not necessary for new rings, but needed for re-initialized rings */
142         ring->enq_updates = 0;
143         ring->deq_updates = 0;
144 }
145
146 /**
147  * Create a new ring with zero or more segments.
148  *
149  * Link each segment together into a ring.
150  * Set the end flag and the cycle toggle bit on the last segment.
151  * See section 4.9.1 and figures 15 and 16.
152  */
153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154                 unsigned int num_segs, bool link_trbs, gfp_t flags)
155 {
156         struct xhci_ring        *ring;
157         struct xhci_segment     *prev;
158
159         ring = kzalloc(sizeof *(ring), flags);
160         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161         if (!ring)
162                 return NULL;
163
164         INIT_LIST_HEAD(&ring->td_list);
165         if (num_segs == 0)
166                 return ring;
167
168         ring->first_seg = xhci_segment_alloc(xhci, flags);
169         if (!ring->first_seg)
170                 goto fail;
171         num_segs--;
172
173         prev = ring->first_seg;
174         while (num_segs > 0) {
175                 struct xhci_segment     *next;
176
177                 next = xhci_segment_alloc(xhci, flags);
178                 if (!next)
179                         goto fail;
180                 xhci_link_segments(xhci, prev, next, link_trbs);
181
182                 prev = next;
183                 num_segs--;
184         }
185         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187         if (link_trbs) {
188                 /* See section 4.9.2.1 and 6.4.4.1 */
189                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190                 xhci_dbg(xhci, "Wrote link toggle flag to"
191                                 " segment %p (virtual), 0x%llx (DMA)\n",
192                                 prev, (unsigned long long)prev->dma);
193         }
194         xhci_initialize_ring_info(ring);
195         return ring;
196
197 fail:
198         xhci_ring_free(xhci, ring);
199         return NULL;
200 }
201
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203                 struct xhci_virt_device *virt_dev,
204                 unsigned int ep_index)
205 {
206         int rings_cached;
207
208         rings_cached = virt_dev->num_rings_cached;
209         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210                 virt_dev->num_rings_cached++;
211                 rings_cached = virt_dev->num_rings_cached;
212                 virt_dev->ring_cache[rings_cached] =
213                         virt_dev->eps[ep_index].ring;
214                 xhci_dbg(xhci, "Cached old ring, "
215                                 "%d ring%s cached\n",
216                                 rings_cached,
217                                 (rings_cached > 1) ? "s" : "");
218         } else {
219                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220                 xhci_dbg(xhci, "Ring cache full (%d rings), "
221                                 "freeing ring\n",
222                                 virt_dev->num_rings_cached);
223         }
224         virt_dev->eps[ep_index].ring = NULL;
225 }
226
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228  * pointers to the beginning of the ring.
229  */
230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231                 struct xhci_ring *ring)
232 {
233         struct xhci_segment     *seg = ring->first_seg;
234         do {
235                 memset(seg->trbs, 0,
236                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237                 /* All endpoint rings have link TRBs */
238                 xhci_link_segments(xhci, seg, seg->next, 1);
239                 seg = seg->next;
240         } while (seg != ring->first_seg);
241         xhci_initialize_ring_info(ring);
242         /* td list should be empty since all URBs have been cancelled,
243          * but just in case...
244          */
245         INIT_LIST_HEAD(&ring->td_list);
246 }
247
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
250 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251                                                     int type, gfp_t flags)
252 {
253         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254         if (!ctx)
255                 return NULL;
256
257         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258         ctx->type = type;
259         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260         if (type == XHCI_CTX_TYPE_INPUT)
261                 ctx->size += CTX_SIZE(xhci->hcc_params);
262
263         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264         memset(ctx->bytes, 0, ctx->size);
265         return ctx;
266 }
267
268 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269                              struct xhci_container_ctx *ctx)
270 {
271         if (!ctx)
272                 return;
273         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274         kfree(ctx);
275 }
276
277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278                                               struct xhci_container_ctx *ctx)
279 {
280         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281         return (struct xhci_input_control_ctx *)ctx->bytes;
282 }
283
284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285                                         struct xhci_container_ctx *ctx)
286 {
287         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288                 return (struct xhci_slot_ctx *)ctx->bytes;
289
290         return (struct xhci_slot_ctx *)
291                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
292 }
293
294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295                                     struct xhci_container_ctx *ctx,
296                                     unsigned int ep_index)
297 {
298         /* increment ep index by offset of start of ep ctx array */
299         ep_index++;
300         if (ctx->type == XHCI_CTX_TYPE_INPUT)
301                 ep_index++;
302
303         return (struct xhci_ep_ctx *)
304                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305 }
306
307
308 /***************** Streams structures manipulation *************************/
309
310 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311                 unsigned int num_stream_ctxs,
312                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
313 {
314         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
315
316         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317                 pci_free_consistent(pdev,
318                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319                                 stream_ctx, dma);
320         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321                 return dma_pool_free(xhci->small_streams_pool,
322                                 stream_ctx, dma);
323         else
324                 return dma_pool_free(xhci->medium_streams_pool,
325                                 stream_ctx, dma);
326 }
327
328 /*
329  * The stream context array for each endpoint with bulk streams enabled can
330  * vary in size, based on:
331  *  - how many streams the endpoint supports,
332  *  - the maximum primary stream array size the host controller supports,
333  *  - and how many streams the device driver asks for.
334  *
335  * The stream context array must be a power of 2, and can be as small as
336  * 64 bytes or as large as 1MB.
337  */
338 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339                 unsigned int num_stream_ctxs, dma_addr_t *dma,
340                 gfp_t mem_flags)
341 {
342         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343
344         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345                 return pci_alloc_consistent(pdev,
346                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347                                 dma);
348         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349                 return dma_pool_alloc(xhci->small_streams_pool,
350                                 mem_flags, dma);
351         else
352                 return dma_pool_alloc(xhci->medium_streams_pool,
353                                 mem_flags, dma);
354 }
355
356 struct xhci_ring *xhci_dma_to_transfer_ring(
357                 struct xhci_virt_ep *ep,
358                 u64 address)
359 {
360         if (ep->ep_state & EP_HAS_STREAMS)
361                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
362                                 address >> SEGMENT_SHIFT);
363         return ep->ring;
364 }
365
366 /* Only use this when you know stream_info is valid */
367 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
368 static struct xhci_ring *dma_to_stream_ring(
369                 struct xhci_stream_info *stream_info,
370                 u64 address)
371 {
372         return radix_tree_lookup(&stream_info->trb_address_map,
373                         address >> SEGMENT_SHIFT);
374 }
375 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
376
377 struct xhci_ring *xhci_stream_id_to_ring(
378                 struct xhci_virt_device *dev,
379                 unsigned int ep_index,
380                 unsigned int stream_id)
381 {
382         struct xhci_virt_ep *ep = &dev->eps[ep_index];
383
384         if (stream_id == 0)
385                 return ep->ring;
386         if (!ep->stream_info)
387                 return NULL;
388
389         if (stream_id > ep->stream_info->num_streams)
390                 return NULL;
391         return ep->stream_info->stream_rings[stream_id];
392 }
393
394 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
395 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
396                 unsigned int num_streams,
397                 struct xhci_stream_info *stream_info)
398 {
399         u32 cur_stream;
400         struct xhci_ring *cur_ring;
401         u64 addr;
402
403         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
404                 struct xhci_ring *mapped_ring;
405                 int trb_size = sizeof(union xhci_trb);
406
407                 cur_ring = stream_info->stream_rings[cur_stream];
408                 for (addr = cur_ring->first_seg->dma;
409                                 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
410                                 addr += trb_size) {
411                         mapped_ring = dma_to_stream_ring(stream_info, addr);
412                         if (cur_ring != mapped_ring) {
413                                 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
414                                                 "didn't map to stream ID %u; "
415                                                 "mapped to ring %p\n",
416                                                 (unsigned long long) addr,
417                                                 cur_stream,
418                                                 mapped_ring);
419                                 return -EINVAL;
420                         }
421                 }
422                 /* One TRB after the end of the ring segment shouldn't return a
423                  * pointer to the current ring (although it may be a part of a
424                  * different ring).
425                  */
426                 mapped_ring = dma_to_stream_ring(stream_info, addr);
427                 if (mapped_ring != cur_ring) {
428                         /* One TRB before should also fail */
429                         addr = cur_ring->first_seg->dma - trb_size;
430                         mapped_ring = dma_to_stream_ring(stream_info, addr);
431                 }
432                 if (mapped_ring == cur_ring) {
433                         xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
434                                         "mapped to valid stream ID %u; "
435                                         "mapped ring = %p\n",
436                                         (unsigned long long) addr,
437                                         cur_stream,
438                                         mapped_ring);
439                         return -EINVAL;
440                 }
441         }
442         return 0;
443 }
444 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
445
446 /*
447  * Change an endpoint's internal structure so it supports stream IDs.  The
448  * number of requested streams includes stream 0, which cannot be used by device
449  * drivers.
450  *
451  * The number of stream contexts in the stream context array may be bigger than
452  * the number of streams the driver wants to use.  This is because the number of
453  * stream context array entries must be a power of two.
454  *
455  * We need a radix tree for mapping physical addresses of TRBs to which stream
456  * ID they belong to.  We need to do this because the host controller won't tell
457  * us which stream ring the TRB came from.  We could store the stream ID in an
458  * event data TRB, but that doesn't help us for the cancellation case, since the
459  * endpoint may stop before it reaches that event data TRB.
460  *
461  * The radix tree maps the upper portion of the TRB DMA address to a ring
462  * segment that has the same upper portion of DMA addresses.  For example, say I
463  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
464  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
465  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
466  * pass the radix tree a key to get the right stream ID:
467  *
468  *      0x10c90fff >> 10 = 0x43243
469  *      0x10c912c0 >> 10 = 0x43244
470  *      0x10c91400 >> 10 = 0x43245
471  *
472  * Obviously, only those TRBs with DMA addresses that are within the segment
473  * will make the radix tree return the stream ID for that ring.
474  *
475  * Caveats for the radix tree:
476  *
477  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
478  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
479  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
480  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
481  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
482  * extended systems (where the DMA address can be bigger than 32-bits),
483  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
484  */
485 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
486                 unsigned int num_stream_ctxs,
487                 unsigned int num_streams, gfp_t mem_flags)
488 {
489         struct xhci_stream_info *stream_info;
490         u32 cur_stream;
491         struct xhci_ring *cur_ring;
492         unsigned long key;
493         u64 addr;
494         int ret;
495
496         xhci_dbg(xhci, "Allocating %u streams and %u "
497                         "stream context array entries.\n",
498                         num_streams, num_stream_ctxs);
499         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
500                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
501                 return NULL;
502         }
503         xhci->cmd_ring_reserved_trbs++;
504
505         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
506         if (!stream_info)
507                 goto cleanup_trbs;
508
509         stream_info->num_streams = num_streams;
510         stream_info->num_stream_ctxs = num_stream_ctxs;
511
512         /* Initialize the array of virtual pointers to stream rings. */
513         stream_info->stream_rings = kzalloc(
514                         sizeof(struct xhci_ring *)*num_streams,
515                         mem_flags);
516         if (!stream_info->stream_rings)
517                 goto cleanup_info;
518
519         /* Initialize the array of DMA addresses for stream rings for the HW. */
520         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
521                         num_stream_ctxs, &stream_info->ctx_array_dma,
522                         mem_flags);
523         if (!stream_info->stream_ctx_array)
524                 goto cleanup_ctx;
525         memset(stream_info->stream_ctx_array, 0,
526                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
527
528         /* Allocate everything needed to free the stream rings later */
529         stream_info->free_streams_command =
530                 xhci_alloc_command(xhci, true, true, mem_flags);
531         if (!stream_info->free_streams_command)
532                 goto cleanup_ctx;
533
534         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
535
536         /* Allocate rings for all the streams that the driver will use,
537          * and add their segment DMA addresses to the radix tree.
538          * Stream 0 is reserved.
539          */
540         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
541                 stream_info->stream_rings[cur_stream] =
542                         xhci_ring_alloc(xhci, 1, true, mem_flags);
543                 cur_ring = stream_info->stream_rings[cur_stream];
544                 if (!cur_ring)
545                         goto cleanup_rings;
546                 cur_ring->stream_id = cur_stream;
547                 /* Set deq ptr, cycle bit, and stream context type */
548                 addr = cur_ring->first_seg->dma |
549                         SCT_FOR_CTX(SCT_PRI_TR) |
550                         cur_ring->cycle_state;
551                 stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
552                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
553                                 cur_stream, (unsigned long long) addr);
554
555                 key = (unsigned long)
556                         (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
557                 ret = radix_tree_insert(&stream_info->trb_address_map,
558                                 key, cur_ring);
559                 if (ret) {
560                         xhci_ring_free(xhci, cur_ring);
561                         stream_info->stream_rings[cur_stream] = NULL;
562                         goto cleanup_rings;
563                 }
564         }
565         /* Leave the other unused stream ring pointers in the stream context
566          * array initialized to zero.  This will cause the xHC to give us an
567          * error if the device asks for a stream ID we don't have setup (if it
568          * was any other way, the host controller would assume the ring is
569          * "empty" and wait forever for data to be queued to that stream ID).
570          */
571 #if XHCI_DEBUG
572         /* Do a little test on the radix tree to make sure it returns the
573          * correct values.
574          */
575         if (xhci_test_radix_tree(xhci, num_streams, stream_info))
576                 goto cleanup_rings;
577 #endif
578
579         return stream_info;
580
581 cleanup_rings:
582         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
583                 cur_ring = stream_info->stream_rings[cur_stream];
584                 if (cur_ring) {
585                         addr = cur_ring->first_seg->dma;
586                         radix_tree_delete(&stream_info->trb_address_map,
587                                         addr >> SEGMENT_SHIFT);
588                         xhci_ring_free(xhci, cur_ring);
589                         stream_info->stream_rings[cur_stream] = NULL;
590                 }
591         }
592         xhci_free_command(xhci, stream_info->free_streams_command);
593 cleanup_ctx:
594         kfree(stream_info->stream_rings);
595 cleanup_info:
596         kfree(stream_info);
597 cleanup_trbs:
598         xhci->cmd_ring_reserved_trbs--;
599         return NULL;
600 }
601 /*
602  * Sets the MaxPStreams field and the Linear Stream Array field.
603  * Sets the dequeue pointer to the stream context array.
604  */
605 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
606                 struct xhci_ep_ctx *ep_ctx,
607                 struct xhci_stream_info *stream_info)
608 {
609         u32 max_primary_streams;
610         /* MaxPStreams is the number of stream context array entries, not the
611          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
612          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
613          */
614         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
615         xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
616                         1 << (max_primary_streams + 1));
617         ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
618         ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
619         ep_ctx->ep_info |= EP_HAS_LSA;
620         ep_ctx->deq  = stream_info->ctx_array_dma;
621 }
622
623 /*
624  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
625  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
626  * not at the beginning of the ring).
627  */
628 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
629                 struct xhci_ep_ctx *ep_ctx,
630                 struct xhci_virt_ep *ep)
631 {
632         dma_addr_t addr;
633         ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
634         ep_ctx->ep_info &= ~EP_HAS_LSA;
635         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
636         ep_ctx->deq  = addr | ep->ring->cycle_state;
637 }
638
639 /* Frees all stream contexts associated with the endpoint,
640  *
641  * Caller should fix the endpoint context streams fields.
642  */
643 void xhci_free_stream_info(struct xhci_hcd *xhci,
644                 struct xhci_stream_info *stream_info)
645 {
646         int cur_stream;
647         struct xhci_ring *cur_ring;
648         dma_addr_t addr;
649
650         if (!stream_info)
651                 return;
652
653         for (cur_stream = 1; cur_stream < stream_info->num_streams;
654                         cur_stream++) {
655                 cur_ring = stream_info->stream_rings[cur_stream];
656                 if (cur_ring) {
657                         addr = cur_ring->first_seg->dma;
658                         radix_tree_delete(&stream_info->trb_address_map,
659                                         addr >> SEGMENT_SHIFT);
660                         xhci_ring_free(xhci, cur_ring);
661                         stream_info->stream_rings[cur_stream] = NULL;
662                 }
663         }
664         xhci_free_command(xhci, stream_info->free_streams_command);
665         xhci->cmd_ring_reserved_trbs--;
666         if (stream_info->stream_ctx_array)
667                 xhci_free_stream_ctx(xhci,
668                                 stream_info->num_stream_ctxs,
669                                 stream_info->stream_ctx_array,
670                                 stream_info->ctx_array_dma);
671
672         if (stream_info)
673                 kfree(stream_info->stream_rings);
674         kfree(stream_info);
675 }
676
677
678 /***************** Device context manipulation *************************/
679
680 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
681                 struct xhci_virt_ep *ep)
682 {
683         init_timer(&ep->stop_cmd_timer);
684         ep->stop_cmd_timer.data = (unsigned long) ep;
685         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
686         ep->xhci = xhci;
687 }
688
689 /* All the xhci_tds in the ring's TD list should be freed at this point */
690 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
691 {
692         struct xhci_virt_device *dev;
693         int i;
694
695         /* Slot ID 0 is reserved */
696         if (slot_id == 0 || !xhci->devs[slot_id])
697                 return;
698
699         dev = xhci->devs[slot_id];
700         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
701         if (!dev)
702                 return;
703
704         for (i = 0; i < 31; ++i) {
705                 if (dev->eps[i].ring)
706                         xhci_ring_free(xhci, dev->eps[i].ring);
707                 if (dev->eps[i].stream_info)
708                         xhci_free_stream_info(xhci,
709                                         dev->eps[i].stream_info);
710         }
711
712         if (dev->ring_cache) {
713                 for (i = 0; i < dev->num_rings_cached; i++)
714                         xhci_ring_free(xhci, dev->ring_cache[i]);
715                 kfree(dev->ring_cache);
716         }
717
718         if (dev->in_ctx)
719                 xhci_free_container_ctx(xhci, dev->in_ctx);
720         if (dev->out_ctx)
721                 xhci_free_container_ctx(xhci, dev->out_ctx);
722
723         kfree(xhci->devs[slot_id]);
724         xhci->devs[slot_id] = NULL;
725 }
726
727 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
728                 struct usb_device *udev, gfp_t flags)
729 {
730         struct xhci_virt_device *dev;
731         int i;
732
733         /* Slot ID 0 is reserved */
734         if (slot_id == 0 || xhci->devs[slot_id]) {
735                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
736                 return 0;
737         }
738
739         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
740         if (!xhci->devs[slot_id])
741                 return 0;
742         dev = xhci->devs[slot_id];
743
744         /* Allocate the (output) device context that will be used in the HC. */
745         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
746         if (!dev->out_ctx)
747                 goto fail;
748
749         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
750                         (unsigned long long)dev->out_ctx->dma);
751
752         /* Allocate the (input) device context for address device command */
753         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
754         if (!dev->in_ctx)
755                 goto fail;
756
757         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
758                         (unsigned long long)dev->in_ctx->dma);
759
760         /* Initialize the cancellation list and watchdog timers for each ep */
761         for (i = 0; i < 31; i++) {
762                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
763                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
764         }
765
766         /* Allocate endpoint 0 ring */
767         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
768         if (!dev->eps[0].ring)
769                 goto fail;
770
771         /* Allocate pointers to the ring cache */
772         dev->ring_cache = kzalloc(
773                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
774                         flags);
775         if (!dev->ring_cache)
776                 goto fail;
777         dev->num_rings_cached = 0;
778
779         init_completion(&dev->cmd_completion);
780         INIT_LIST_HEAD(&dev->cmd_list);
781         dev->udev = udev;
782
783         /* Point to output device context in dcbaa. */
784         xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
785         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
786                         slot_id,
787                         &xhci->dcbaa->dev_context_ptrs[slot_id],
788                         (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
789
790         return 1;
791 fail:
792         xhci_free_virt_device(xhci, slot_id);
793         return 0;
794 }
795
796 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
797                 struct usb_device *udev)
798 {
799         struct xhci_virt_device *virt_dev;
800         struct xhci_ep_ctx      *ep0_ctx;
801         struct xhci_ring        *ep_ring;
802
803         virt_dev = xhci->devs[udev->slot_id];
804         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
805         ep_ring = virt_dev->eps[0].ring;
806         /*
807          * FIXME we don't keep track of the dequeue pointer very well after a
808          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
809          * host to our enqueue pointer.  This should only be called after a
810          * configured device has reset, so all control transfers should have
811          * been completed or cancelled before the reset.
812          */
813         ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
814         ep0_ctx->deq |= ep_ring->cycle_state;
815 }
816
817 /*
818  * The xHCI roothub may have ports of differing speeds in any order in the port
819  * status registers.  xhci->port_array provides an array of the port speed for
820  * each offset into the port status registers.
821  *
822  * The xHCI hardware wants to know the roothub port number that the USB device
823  * is attached to (or the roothub port its ancestor hub is attached to).  All we
824  * know is the index of that port under either the USB 2.0 or the USB 3.0
825  * roothub, but that doesn't give us the real index into the HW port status
826  * registers.  Scan through the xHCI roothub port array, looking for the Nth
827  * entry of the correct port speed.  Return the port number of that entry.
828  */
829 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
830                 struct usb_device *udev)
831 {
832         struct usb_device *top_dev;
833         unsigned int num_similar_speed_ports;
834         unsigned int faked_port_num;
835         int i;
836
837         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
838                         top_dev = top_dev->parent)
839                 /* Found device below root hub */;
840         faked_port_num = top_dev->portnum;
841         for (i = 0, num_similar_speed_ports = 0;
842                         i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
843                 u8 port_speed = xhci->port_array[i];
844
845                 /*
846                  * Skip ports that don't have known speeds, or have duplicate
847                  * Extended Capabilities port speed entries.
848                  */
849                 if (port_speed == 0 || port_speed == -1)
850                         continue;
851
852                 /*
853                  * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
854                  * 1.1 ports are under the USB 2.0 hub.  If the port speed
855                  * matches the device speed, it's a similar speed port.
856                  */
857                 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
858                         num_similar_speed_ports++;
859                 if (num_similar_speed_ports == faked_port_num)
860                         /* Roothub ports are numbered from 1 to N */
861                         return i+1;
862         }
863         return 0;
864 }
865
866 /* Setup an xHCI virtual device for a Set Address command */
867 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
868 {
869         struct xhci_virt_device *dev;
870         struct xhci_ep_ctx      *ep0_ctx;
871         struct xhci_slot_ctx    *slot_ctx;
872         struct xhci_input_control_ctx *ctrl_ctx;
873         u32                     port_num;
874         struct usb_device *top_dev;
875
876         dev = xhci->devs[udev->slot_id];
877         /* Slot ID 0 is reserved */
878         if (udev->slot_id == 0 || !dev) {
879                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
880                                 udev->slot_id);
881                 return -EINVAL;
882         }
883         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
884         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
885         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
886
887         /* 2) New slot context and endpoint 0 context are valid*/
888         ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
889
890         /* 3) Only the control endpoint is valid - one endpoint context */
891         slot_ctx->dev_info |= LAST_CTX(1);
892
893         slot_ctx->dev_info |= (u32) udev->route;
894         switch (udev->speed) {
895         case USB_SPEED_SUPER:
896                 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
897                 break;
898         case USB_SPEED_HIGH:
899                 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
900                 break;
901         case USB_SPEED_FULL:
902                 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
903                 break;
904         case USB_SPEED_LOW:
905                 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
906                 break;
907         case USB_SPEED_WIRELESS:
908                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
909                 return -EINVAL;
910                 break;
911         default:
912                 /* Speed was set earlier, this shouldn't happen. */
913                 BUG();
914         }
915         /* Find the root hub port this device is under */
916         port_num = xhci_find_real_port_number(xhci, udev);
917         if (!port_num)
918                 return -EINVAL;
919         slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(port_num);
920         /* Set the port number in the virtual_device to the faked port number */
921         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
922                         top_dev = top_dev->parent)
923                 /* Found device below root hub */;
924         dev->port = top_dev->portnum;
925         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
926         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
927
928         /* Is this a LS/FS device under an external HS hub? */
929         if (udev->tt && udev->tt->hub->parent) {
930                 slot_ctx->tt_info = udev->tt->hub->slot_id;
931                 slot_ctx->tt_info |= udev->ttport << 8;
932                 if (udev->tt->multi)
933                         slot_ctx->dev_info |= DEV_MTT;
934         }
935         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
936         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
937
938         /* Step 4 - ring already allocated */
939         /* Step 5 */
940         ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
941         /*
942          * XXX: Not sure about wireless USB devices.
943          */
944         switch (udev->speed) {
945         case USB_SPEED_SUPER:
946                 ep0_ctx->ep_info2 |= MAX_PACKET(512);
947                 break;
948         case USB_SPEED_HIGH:
949         /* USB core guesses at a 64-byte max packet first for FS devices */
950         case USB_SPEED_FULL:
951                 ep0_ctx->ep_info2 |= MAX_PACKET(64);
952                 break;
953         case USB_SPEED_LOW:
954                 ep0_ctx->ep_info2 |= MAX_PACKET(8);
955                 break;
956         case USB_SPEED_WIRELESS:
957                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
958                 return -EINVAL;
959                 break;
960         default:
961                 /* New speed? */
962                 BUG();
963         }
964         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
965         ep0_ctx->ep_info2 |= MAX_BURST(0);
966         ep0_ctx->ep_info2 |= ERROR_COUNT(3);
967
968         ep0_ctx->deq =
969                 dev->eps[0].ring->first_seg->dma;
970         ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
971
972         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
973
974         return 0;
975 }
976
977 /* Return the polling or NAK interval.
978  *
979  * The polling interval is expressed in "microframes".  If xHCI's Interval field
980  * is set to N, it will service the endpoint every 2^(Interval)*125us.
981  *
982  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
983  * is set to 0.
984  */
985 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
986                 struct usb_host_endpoint *ep)
987 {
988         unsigned int interval = 0;
989
990         switch (udev->speed) {
991         case USB_SPEED_HIGH:
992                 /* Max NAK rate */
993                 if (usb_endpoint_xfer_control(&ep->desc) ||
994                                 usb_endpoint_xfer_bulk(&ep->desc))
995                         interval = ep->desc.bInterval;
996                 /* Fall through - SS and HS isoc/int have same decoding */
997         case USB_SPEED_SUPER:
998                 if (usb_endpoint_xfer_int(&ep->desc) ||
999                                 usb_endpoint_xfer_isoc(&ep->desc)) {
1000                         if (ep->desc.bInterval == 0)
1001                                 interval = 0;
1002                         else
1003                                 interval = ep->desc.bInterval - 1;
1004                         if (interval > 15)
1005                                 interval = 15;
1006                         if (interval != ep->desc.bInterval + 1)
1007                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
1008                                                 ep->desc.bEndpointAddress, 1 << interval);
1009                 }
1010                 break;
1011         /* Convert bInterval (in 1-255 frames) to microframes and round down to
1012          * nearest power of 2.
1013          */
1014         case USB_SPEED_FULL:
1015         case USB_SPEED_LOW:
1016                 if (usb_endpoint_xfer_int(&ep->desc) ||
1017                                 usb_endpoint_xfer_isoc(&ep->desc)) {
1018                         interval = fls(8*ep->desc.bInterval) - 1;
1019                         if (interval > 10)
1020                                 interval = 10;
1021                         if (interval < 3)
1022                                 interval = 3;
1023                         if ((1 << interval) != 8*ep->desc.bInterval)
1024                                 dev_warn(&udev->dev,
1025                                                 "ep %#x - rounding interval"
1026                                                 " to %d microframes, "
1027                                                 "ep desc says %d microframes\n",
1028                                                 ep->desc.bEndpointAddress,
1029                                                 1 << interval,
1030                                                 8*ep->desc.bInterval);
1031                 }
1032                 break;
1033         default:
1034                 BUG();
1035         }
1036         return EP_INTERVAL(interval);
1037 }
1038
1039 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1040  * High speed endpoint descriptors can define "the number of additional
1041  * transaction opportunities per microframe", but that goes in the Max Burst
1042  * endpoint context field.
1043  */
1044 static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
1045                 struct usb_host_endpoint *ep)
1046 {
1047         if (udev->speed != USB_SPEED_SUPER ||
1048                         !usb_endpoint_xfer_isoc(&ep->desc))
1049                 return 0;
1050         return ep->ss_ep_comp.bmAttributes;
1051 }
1052
1053 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1054                 struct usb_host_endpoint *ep)
1055 {
1056         int in;
1057         u32 type;
1058
1059         in = usb_endpoint_dir_in(&ep->desc);
1060         if (usb_endpoint_xfer_control(&ep->desc)) {
1061                 type = EP_TYPE(CTRL_EP);
1062         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1063                 if (in)
1064                         type = EP_TYPE(BULK_IN_EP);
1065                 else
1066                         type = EP_TYPE(BULK_OUT_EP);
1067         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1068                 if (in)
1069                         type = EP_TYPE(ISOC_IN_EP);
1070                 else
1071                         type = EP_TYPE(ISOC_OUT_EP);
1072         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1073                 if (in)
1074                         type = EP_TYPE(INT_IN_EP);
1075                 else
1076                         type = EP_TYPE(INT_OUT_EP);
1077         } else {
1078                 BUG();
1079         }
1080         return type;
1081 }
1082
1083 /* Return the maximum endpoint service interval time (ESIT) payload.
1084  * Basically, this is the maxpacket size, multiplied by the burst size
1085  * and mult size.
1086  */
1087 static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1088                 struct usb_device *udev,
1089                 struct usb_host_endpoint *ep)
1090 {
1091         int max_burst;
1092         int max_packet;
1093
1094         /* Only applies for interrupt or isochronous endpoints */
1095         if (usb_endpoint_xfer_control(&ep->desc) ||
1096                         usb_endpoint_xfer_bulk(&ep->desc))
1097                 return 0;
1098
1099         if (udev->speed == USB_SPEED_SUPER)
1100                 return ep->ss_ep_comp.wBytesPerInterval;
1101
1102         max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1103         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1104         /* A 0 in max burst means 1 transfer per ESIT */
1105         return max_packet * (max_burst + 1);
1106 }
1107
1108 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1109  * Drivers will have to call usb_alloc_streams() to do that.
1110  */
1111 int xhci_endpoint_init(struct xhci_hcd *xhci,
1112                 struct xhci_virt_device *virt_dev,
1113                 struct usb_device *udev,
1114                 struct usb_host_endpoint *ep,
1115                 gfp_t mem_flags)
1116 {
1117         unsigned int ep_index;
1118         struct xhci_ep_ctx *ep_ctx;
1119         struct xhci_ring *ep_ring;
1120         unsigned int max_packet;
1121         unsigned int max_burst;
1122         u32 max_esit_payload;
1123
1124         ep_index = xhci_get_endpoint_index(&ep->desc);
1125         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1126
1127         /* Set up the endpoint ring */
1128         /*
1129          * Isochronous endpoint ring needs bigger size because one isoc URB
1130          * carries multiple packets and it will insert multiple tds to the
1131          * ring.
1132          * This should be replaced with dynamic ring resizing in the future.
1133          */
1134         if (usb_endpoint_xfer_isoc(&ep->desc))
1135                 virt_dev->eps[ep_index].new_ring =
1136                         xhci_ring_alloc(xhci, 8, true, mem_flags);
1137         else
1138                 virt_dev->eps[ep_index].new_ring =
1139                         xhci_ring_alloc(xhci, 1, true, mem_flags);
1140         if (!virt_dev->eps[ep_index].new_ring) {
1141                 /* Attempt to use the ring cache */
1142                 if (virt_dev->num_rings_cached == 0)
1143                         return -ENOMEM;
1144                 virt_dev->eps[ep_index].new_ring =
1145                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1146                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1147                 virt_dev->num_rings_cached--;
1148                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1149         }
1150         virt_dev->eps[ep_index].skip = false;
1151         ep_ring = virt_dev->eps[ep_index].new_ring;
1152         ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1153
1154         ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1155         ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1156
1157         /* FIXME dig Mult and streams info out of ep companion desc */
1158
1159         /* Allow 3 retries for everything but isoc;
1160          * error count = 0 means infinite retries.
1161          */
1162         if (!usb_endpoint_xfer_isoc(&ep->desc))
1163                 ep_ctx->ep_info2 = ERROR_COUNT(3);
1164         else
1165                 ep_ctx->ep_info2 = ERROR_COUNT(1);
1166
1167         ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1168
1169         /* Set the max packet size and max burst */
1170         switch (udev->speed) {
1171         case USB_SPEED_SUPER:
1172                 max_packet = ep->desc.wMaxPacketSize;
1173                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1174                 /* dig out max burst from ep companion desc */
1175                 max_packet = ep->ss_ep_comp.bMaxBurst;
1176                 if (!max_packet)
1177                         xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1178                 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1179                 break;
1180         case USB_SPEED_HIGH:
1181                 /* bits 11:12 specify the number of additional transaction
1182                  * opportunities per microframe (USB 2.0, section 9.6.6)
1183                  */
1184                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1185                                 usb_endpoint_xfer_int(&ep->desc)) {
1186                         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1187                         ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1188                 }
1189                 /* Fall through */
1190         case USB_SPEED_FULL:
1191         case USB_SPEED_LOW:
1192                 max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1193                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1194                 break;
1195         default:
1196                 BUG();
1197         }
1198         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1199         ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1200
1201         /*
1202          * XXX no idea how to calculate the average TRB buffer length for bulk
1203          * endpoints, as the driver gives us no clue how big each scatter gather
1204          * list entry (or buffer) is going to be.
1205          *
1206          * For isochronous and interrupt endpoints, we set it to the max
1207          * available, until we have new API in the USB core to allow drivers to
1208          * declare how much bandwidth they actually need.
1209          *
1210          * Normally, it would be calculated by taking the total of the buffer
1211          * lengths in the TD and then dividing by the number of TRBs in a TD,
1212          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1213          * use Event Data TRBs, and we don't chain in a link TRB on short
1214          * transfers, we're basically dividing by 1.
1215          */
1216         ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1217
1218         /* FIXME Debug endpoint context */
1219         return 0;
1220 }
1221
1222 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1223                 struct xhci_virt_device *virt_dev,
1224                 struct usb_host_endpoint *ep)
1225 {
1226         unsigned int ep_index;
1227         struct xhci_ep_ctx *ep_ctx;
1228
1229         ep_index = xhci_get_endpoint_index(&ep->desc);
1230         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1231
1232         ep_ctx->ep_info = 0;
1233         ep_ctx->ep_info2 = 0;
1234         ep_ctx->deq = 0;
1235         ep_ctx->tx_info = 0;
1236         /* Don't free the endpoint ring until the set interface or configuration
1237          * request succeeds.
1238          */
1239 }
1240
1241 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1242  * Useful when you want to change one particular aspect of the endpoint and then
1243  * issue a configure endpoint command.
1244  */
1245 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1246                 struct xhci_container_ctx *in_ctx,
1247                 struct xhci_container_ctx *out_ctx,
1248                 unsigned int ep_index)
1249 {
1250         struct xhci_ep_ctx *out_ep_ctx;
1251         struct xhci_ep_ctx *in_ep_ctx;
1252
1253         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1254         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1255
1256         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1257         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1258         in_ep_ctx->deq = out_ep_ctx->deq;
1259         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1260 }
1261
1262 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1263  * Useful when you want to change one particular aspect of the endpoint and then
1264  * issue a configure endpoint command.  Only the context entries field matters,
1265  * but we'll copy the whole thing anyway.
1266  */
1267 void xhci_slot_copy(struct xhci_hcd *xhci,
1268                 struct xhci_container_ctx *in_ctx,
1269                 struct xhci_container_ctx *out_ctx)
1270 {
1271         struct xhci_slot_ctx *in_slot_ctx;
1272         struct xhci_slot_ctx *out_slot_ctx;
1273
1274         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1275         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1276
1277         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1278         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1279         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1280         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1281 }
1282
1283 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1284 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1285 {
1286         int i;
1287         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1288         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1289
1290         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1291
1292         if (!num_sp)
1293                 return 0;
1294
1295         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1296         if (!xhci->scratchpad)
1297                 goto fail_sp;
1298
1299         xhci->scratchpad->sp_array =
1300                 pci_alloc_consistent(to_pci_dev(dev),
1301                                      num_sp * sizeof(u64),
1302                                      &xhci->scratchpad->sp_dma);
1303         if (!xhci->scratchpad->sp_array)
1304                 goto fail_sp2;
1305
1306         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1307         if (!xhci->scratchpad->sp_buffers)
1308                 goto fail_sp3;
1309
1310         xhci->scratchpad->sp_dma_buffers =
1311                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1312
1313         if (!xhci->scratchpad->sp_dma_buffers)
1314                 goto fail_sp4;
1315
1316         xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1317         for (i = 0; i < num_sp; i++) {
1318                 dma_addr_t dma;
1319                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1320                                                  xhci->page_size, &dma);
1321                 if (!buf)
1322                         goto fail_sp5;
1323
1324                 xhci->scratchpad->sp_array[i] = dma;
1325                 xhci->scratchpad->sp_buffers[i] = buf;
1326                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1327         }
1328
1329         return 0;
1330
1331  fail_sp5:
1332         for (i = i - 1; i >= 0; i--) {
1333                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1334                                     xhci->scratchpad->sp_buffers[i],
1335                                     xhci->scratchpad->sp_dma_buffers[i]);
1336         }
1337         kfree(xhci->scratchpad->sp_dma_buffers);
1338
1339  fail_sp4:
1340         kfree(xhci->scratchpad->sp_buffers);
1341
1342  fail_sp3:
1343         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1344                             xhci->scratchpad->sp_array,
1345                             xhci->scratchpad->sp_dma);
1346
1347  fail_sp2:
1348         kfree(xhci->scratchpad);
1349         xhci->scratchpad = NULL;
1350
1351  fail_sp:
1352         return -ENOMEM;
1353 }
1354
1355 static void scratchpad_free(struct xhci_hcd *xhci)
1356 {
1357         int num_sp;
1358         int i;
1359         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1360
1361         if (!xhci->scratchpad)
1362                 return;
1363
1364         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1365
1366         for (i = 0; i < num_sp; i++) {
1367                 pci_free_consistent(pdev, xhci->page_size,
1368                                     xhci->scratchpad->sp_buffers[i],
1369                                     xhci->scratchpad->sp_dma_buffers[i]);
1370         }
1371         kfree(xhci->scratchpad->sp_dma_buffers);
1372         kfree(xhci->scratchpad->sp_buffers);
1373         pci_free_consistent(pdev, num_sp * sizeof(u64),
1374                             xhci->scratchpad->sp_array,
1375                             xhci->scratchpad->sp_dma);
1376         kfree(xhci->scratchpad);
1377         xhci->scratchpad = NULL;
1378 }
1379
1380 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1381                 bool allocate_in_ctx, bool allocate_completion,
1382                 gfp_t mem_flags)
1383 {
1384         struct xhci_command *command;
1385
1386         command = kzalloc(sizeof(*command), mem_flags);
1387         if (!command)
1388                 return NULL;
1389
1390         if (allocate_in_ctx) {
1391                 command->in_ctx =
1392                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1393                                         mem_flags);
1394                 if (!command->in_ctx) {
1395                         kfree(command);
1396                         return NULL;
1397                 }
1398         }
1399
1400         if (allocate_completion) {
1401                 command->completion =
1402                         kzalloc(sizeof(struct completion), mem_flags);
1403                 if (!command->completion) {
1404                         xhci_free_container_ctx(xhci, command->in_ctx);
1405                         kfree(command);
1406                         return NULL;
1407                 }
1408                 init_completion(command->completion);
1409         }
1410
1411         command->status = 0;
1412         INIT_LIST_HEAD(&command->cmd_list);
1413         return command;
1414 }
1415
1416 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1417 {
1418         int last;
1419
1420         if (!urb_priv)
1421                 return;
1422
1423         last = urb_priv->length - 1;
1424         if (last >= 0) {
1425                 int     i;
1426                 for (i = 0; i <= last; i++)
1427                         kfree(urb_priv->td[i]);
1428         }
1429         kfree(urb_priv);
1430 }
1431
1432 void xhci_free_command(struct xhci_hcd *xhci,
1433                 struct xhci_command *command)
1434 {
1435         xhci_free_container_ctx(xhci,
1436                         command->in_ctx);
1437         kfree(command->completion);
1438         kfree(command);
1439 }
1440
1441 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1442 {
1443         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1444         int size;
1445         int i;
1446
1447         /* Free the Event Ring Segment Table and the actual Event Ring */
1448         if (xhci->ir_set) {
1449                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1450                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1451                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1452         }
1453         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1454         if (xhci->erst.entries)
1455                 pci_free_consistent(pdev, size,
1456                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1457         xhci->erst.entries = NULL;
1458         xhci_dbg(xhci, "Freed ERST\n");
1459         if (xhci->event_ring)
1460                 xhci_ring_free(xhci, xhci->event_ring);
1461         xhci->event_ring = NULL;
1462         xhci_dbg(xhci, "Freed event ring\n");
1463
1464         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1465         if (xhci->cmd_ring)
1466                 xhci_ring_free(xhci, xhci->cmd_ring);
1467         xhci->cmd_ring = NULL;
1468         xhci_dbg(xhci, "Freed command ring\n");
1469
1470         for (i = 1; i < MAX_HC_SLOTS; ++i)
1471                 xhci_free_virt_device(xhci, i);
1472
1473         if (xhci->segment_pool)
1474                 dma_pool_destroy(xhci->segment_pool);
1475         xhci->segment_pool = NULL;
1476         xhci_dbg(xhci, "Freed segment pool\n");
1477
1478         if (xhci->device_pool)
1479                 dma_pool_destroy(xhci->device_pool);
1480         xhci->device_pool = NULL;
1481         xhci_dbg(xhci, "Freed device context pool\n");
1482
1483         if (xhci->small_streams_pool)
1484                 dma_pool_destroy(xhci->small_streams_pool);
1485         xhci->small_streams_pool = NULL;
1486         xhci_dbg(xhci, "Freed small stream array pool\n");
1487
1488         if (xhci->medium_streams_pool)
1489                 dma_pool_destroy(xhci->medium_streams_pool);
1490         xhci->medium_streams_pool = NULL;
1491         xhci_dbg(xhci, "Freed medium stream array pool\n");
1492
1493         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1494         if (xhci->dcbaa)
1495                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1496                                 xhci->dcbaa, xhci->dcbaa->dma);
1497         xhci->dcbaa = NULL;
1498
1499         scratchpad_free(xhci);
1500
1501         xhci->num_usb2_ports = 0;
1502         xhci->num_usb3_ports = 0;
1503         kfree(xhci->usb2_ports);
1504         kfree(xhci->usb3_ports);
1505         kfree(xhci->port_array);
1506
1507         xhci->page_size = 0;
1508         xhci->page_shift = 0;
1509         xhci->bus_state[0].bus_suspended = 0;
1510         xhci->bus_state[1].bus_suspended = 0;
1511 }
1512
1513 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1514                 struct xhci_segment *input_seg,
1515                 union xhci_trb *start_trb,
1516                 union xhci_trb *end_trb,
1517                 dma_addr_t input_dma,
1518                 struct xhci_segment *result_seg,
1519                 char *test_name, int test_number)
1520 {
1521         unsigned long long start_dma;
1522         unsigned long long end_dma;
1523         struct xhci_segment *seg;
1524
1525         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1526         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1527
1528         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1529         if (seg != result_seg) {
1530                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1531                                 test_name, test_number);
1532                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1533                                 "input DMA 0x%llx\n",
1534                                 input_seg,
1535                                 (unsigned long long) input_dma);
1536                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1537                                 "ending TRB %p (0x%llx DMA)\n",
1538                                 start_trb, start_dma,
1539                                 end_trb, end_dma);
1540                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1541                                 result_seg, seg);
1542                 return -1;
1543         }
1544         return 0;
1545 }
1546
1547 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1548 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1549 {
1550         struct {
1551                 dma_addr_t              input_dma;
1552                 struct xhci_segment     *result_seg;
1553         } simple_test_vector [] = {
1554                 /* A zeroed DMA field should fail */
1555                 { 0, NULL },
1556                 /* One TRB before the ring start should fail */
1557                 { xhci->event_ring->first_seg->dma - 16, NULL },
1558                 /* One byte before the ring start should fail */
1559                 { xhci->event_ring->first_seg->dma - 1, NULL },
1560                 /* Starting TRB should succeed */
1561                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1562                 /* Ending TRB should succeed */
1563                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1564                         xhci->event_ring->first_seg },
1565                 /* One byte after the ring end should fail */
1566                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1567                 /* One TRB after the ring end should fail */
1568                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1569                 /* An address of all ones should fail */
1570                 { (dma_addr_t) (~0), NULL },
1571         };
1572         struct {
1573                 struct xhci_segment     *input_seg;
1574                 union xhci_trb          *start_trb;
1575                 union xhci_trb          *end_trb;
1576                 dma_addr_t              input_dma;
1577                 struct xhci_segment     *result_seg;
1578         } complex_test_vector [] = {
1579                 /* Test feeding a valid DMA address from a different ring */
1580                 {       .input_seg = xhci->event_ring->first_seg,
1581                         .start_trb = xhci->event_ring->first_seg->trbs,
1582                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1583                         .input_dma = xhci->cmd_ring->first_seg->dma,
1584                         .result_seg = NULL,
1585                 },
1586                 /* Test feeding a valid end TRB from a different ring */
1587                 {       .input_seg = xhci->event_ring->first_seg,
1588                         .start_trb = xhci->event_ring->first_seg->trbs,
1589                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1590                         .input_dma = xhci->cmd_ring->first_seg->dma,
1591                         .result_seg = NULL,
1592                 },
1593                 /* Test feeding a valid start and end TRB from a different ring */
1594                 {       .input_seg = xhci->event_ring->first_seg,
1595                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1596                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1597                         .input_dma = xhci->cmd_ring->first_seg->dma,
1598                         .result_seg = NULL,
1599                 },
1600                 /* TRB in this ring, but after this TD */
1601                 {       .input_seg = xhci->event_ring->first_seg,
1602                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1603                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1604                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1605                         .result_seg = NULL,
1606                 },
1607                 /* TRB in this ring, but before this TD */
1608                 {       .input_seg = xhci->event_ring->first_seg,
1609                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1610                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1611                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1612                         .result_seg = NULL,
1613                 },
1614                 /* TRB in this ring, but after this wrapped TD */
1615                 {       .input_seg = xhci->event_ring->first_seg,
1616                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1617                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1618                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1619                         .result_seg = NULL,
1620                 },
1621                 /* TRB in this ring, but before this wrapped TD */
1622                 {       .input_seg = xhci->event_ring->first_seg,
1623                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1624                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1625                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1626                         .result_seg = NULL,
1627                 },
1628                 /* TRB not in this ring, and we have a wrapped TD */
1629                 {       .input_seg = xhci->event_ring->first_seg,
1630                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1631                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1632                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1633                         .result_seg = NULL,
1634                 },
1635         };
1636
1637         unsigned int num_tests;
1638         int i, ret;
1639
1640         num_tests = ARRAY_SIZE(simple_test_vector);
1641         for (i = 0; i < num_tests; i++) {
1642                 ret = xhci_test_trb_in_td(xhci,
1643                                 xhci->event_ring->first_seg,
1644                                 xhci->event_ring->first_seg->trbs,
1645                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1646                                 simple_test_vector[i].input_dma,
1647                                 simple_test_vector[i].result_seg,
1648                                 "Simple", i);
1649                 if (ret < 0)
1650                         return ret;
1651         }
1652
1653         num_tests = ARRAY_SIZE(complex_test_vector);
1654         for (i = 0; i < num_tests; i++) {
1655                 ret = xhci_test_trb_in_td(xhci,
1656                                 complex_test_vector[i].input_seg,
1657                                 complex_test_vector[i].start_trb,
1658                                 complex_test_vector[i].end_trb,
1659                                 complex_test_vector[i].input_dma,
1660                                 complex_test_vector[i].result_seg,
1661                                 "Complex", i);
1662                 if (ret < 0)
1663                         return ret;
1664         }
1665         xhci_dbg(xhci, "TRB math tests passed.\n");
1666         return 0;
1667 }
1668
1669 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1670 {
1671         u64 temp;
1672         dma_addr_t deq;
1673
1674         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1675                         xhci->event_ring->dequeue);
1676         if (deq == 0 && !in_interrupt())
1677                 xhci_warn(xhci, "WARN something wrong with SW event ring "
1678                                 "dequeue ptr.\n");
1679         /* Update HC event ring dequeue pointer */
1680         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1681         temp &= ERST_PTR_MASK;
1682         /* Don't clear the EHB bit (which is RW1C) because
1683          * there might be more events to service.
1684          */
1685         temp &= ~ERST_EHB;
1686         xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1687                         "preserving EHB bit\n");
1688         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1689                         &xhci->ir_set->erst_dequeue);
1690 }
1691
1692 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1693                 u32 __iomem *addr, u8 major_revision)
1694 {
1695         u32 temp, port_offset, port_count;
1696         int i;
1697
1698         if (major_revision > 0x03) {
1699                 xhci_warn(xhci, "Ignoring unknown port speed, "
1700                                 "Ext Cap %p, revision = 0x%x\n",
1701                                 addr, major_revision);
1702                 /* Ignoring port protocol we can't understand. FIXME */
1703                 return;
1704         }
1705
1706         /* Port offset and count in the third dword, see section 7.2 */
1707         temp = xhci_readl(xhci, addr + 2);
1708         port_offset = XHCI_EXT_PORT_OFF(temp);
1709         port_count = XHCI_EXT_PORT_COUNT(temp);
1710         xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1711                         "count = %u, revision = 0x%x\n",
1712                         addr, port_offset, port_count, major_revision);
1713         /* Port count includes the current port offset */
1714         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1715                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
1716                 return;
1717         port_offset--;
1718         for (i = port_offset; i < (port_offset + port_count); i++) {
1719                 /* Duplicate entry.  Ignore the port if the revisions differ. */
1720                 if (xhci->port_array[i] != 0) {
1721                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1722                                         " port %u\n", addr, i);
1723                         xhci_warn(xhci, "Port was marked as USB %u, "
1724                                         "duplicated as USB %u\n",
1725                                         xhci->port_array[i], major_revision);
1726                         /* Only adjust the roothub port counts if we haven't
1727                          * found a similar duplicate.
1728                          */
1729                         if (xhci->port_array[i] != major_revision &&
1730                                 xhci->port_array[i] != (u8) -1) {
1731                                 if (xhci->port_array[i] == 0x03)
1732                                         xhci->num_usb3_ports--;
1733                                 else
1734                                         xhci->num_usb2_ports--;
1735                                 xhci->port_array[i] = (u8) -1;
1736                         }
1737                         /* FIXME: Should we disable the port? */
1738                         continue;
1739                 }
1740                 xhci->port_array[i] = major_revision;
1741                 if (major_revision == 0x03)
1742                         xhci->num_usb3_ports++;
1743                 else
1744                         xhci->num_usb2_ports++;
1745         }
1746         /* FIXME: Should we disable ports not in the Extended Capabilities? */
1747 }
1748
1749 /*
1750  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1751  * specify what speeds each port is supposed to be.  We can't count on the port
1752  * speed bits in the PORTSC register being correct until a device is connected,
1753  * but we need to set up the two fake roothubs with the correct number of USB
1754  * 3.0 and USB 2.0 ports at host controller initialization time.
1755  */
1756 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1757 {
1758         u32 __iomem *addr;
1759         u32 offset;
1760         unsigned int num_ports;
1761         int i, port_index;
1762
1763         addr = &xhci->cap_regs->hcc_params;
1764         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1765         if (offset == 0) {
1766                 xhci_err(xhci, "No Extended Capability registers, "
1767                                 "unable to set up roothub.\n");
1768                 return -ENODEV;
1769         }
1770
1771         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1772         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1773         if (!xhci->port_array)
1774                 return -ENOMEM;
1775
1776         /*
1777          * For whatever reason, the first capability offset is from the
1778          * capability register base, not from the HCCPARAMS register.
1779          * See section 5.3.6 for offset calculation.
1780          */
1781         addr = &xhci->cap_regs->hc_capbase + offset;
1782         while (1) {
1783                 u32 cap_id;
1784
1785                 cap_id = xhci_readl(xhci, addr);
1786                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1787                         xhci_add_in_port(xhci, num_ports, addr,
1788                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1789                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1790                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1791                                 == num_ports)
1792                         break;
1793                 /*
1794                  * Once you're into the Extended Capabilities, the offset is
1795                  * always relative to the register holding the offset.
1796                  */
1797                 addr += offset;
1798         }
1799
1800         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1801                 xhci_warn(xhci, "No ports on the roothubs?\n");
1802                 return -ENODEV;
1803         }
1804         xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1805                         xhci->num_usb2_ports, xhci->num_usb3_ports);
1806
1807         /* Place limits on the number of roothub ports so that the hub
1808          * descriptors aren't longer than the USB core will allocate.
1809          */
1810         if (xhci->num_usb3_ports > 15) {
1811                 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1812                 xhci->num_usb3_ports = 15;
1813         }
1814         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1815                 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1816                                 USB_MAXCHILDREN);
1817                 xhci->num_usb2_ports = USB_MAXCHILDREN;
1818         }
1819
1820         /*
1821          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1822          * Not sure how the USB core will handle a hub with no ports...
1823          */
1824         if (xhci->num_usb2_ports) {
1825                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1826                                 xhci->num_usb2_ports, flags);
1827                 if (!xhci->usb2_ports)
1828                         return -ENOMEM;
1829
1830                 port_index = 0;
1831                 for (i = 0; i < num_ports; i++) {
1832                         if (xhci->port_array[i] == 0x03 ||
1833                                         xhci->port_array[i] == 0 ||
1834                                         xhci->port_array[i] == -1)
1835                                 continue;
1836
1837                         xhci->usb2_ports[port_index] =
1838                                 &xhci->op_regs->port_status_base +
1839                                 NUM_PORT_REGS*i;
1840                         xhci_dbg(xhci, "USB 2.0 port at index %u, "
1841                                         "addr = %p\n", i,
1842                                         xhci->usb2_ports[port_index]);
1843                         port_index++;
1844                         if (port_index == xhci->num_usb2_ports)
1845                                 break;
1846                 }
1847         }
1848         if (xhci->num_usb3_ports) {
1849                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1850                                 xhci->num_usb3_ports, flags);
1851                 if (!xhci->usb3_ports)
1852                         return -ENOMEM;
1853
1854                 port_index = 0;
1855                 for (i = 0; i < num_ports; i++)
1856                         if (xhci->port_array[i] == 0x03) {
1857                                 xhci->usb3_ports[port_index] =
1858                                         &xhci->op_regs->port_status_base +
1859                                         NUM_PORT_REGS*i;
1860                                 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1861                                                 "addr = %p\n", i,
1862                                                 xhci->usb3_ports[port_index]);
1863                                 port_index++;
1864                                 if (port_index == xhci->num_usb3_ports)
1865                                         break;
1866                         }
1867         }
1868         return 0;
1869 }
1870
1871 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1872 {
1873         dma_addr_t      dma;
1874         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1875         unsigned int    val, val2;
1876         u64             val_64;
1877         struct xhci_segment     *seg;
1878         u32 page_size;
1879         int i;
1880
1881         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1882         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1883         for (i = 0; i < 16; i++) {
1884                 if ((0x1 & page_size) != 0)
1885                         break;
1886                 page_size = page_size >> 1;
1887         }
1888         if (i < 16)
1889                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1890         else
1891                 xhci_warn(xhci, "WARN: no supported page size\n");
1892         /* Use 4K pages, since that's common and the minimum the HC supports */
1893         xhci->page_shift = 12;
1894         xhci->page_size = 1 << xhci->page_shift;
1895         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1896
1897         /*
1898          * Program the Number of Device Slots Enabled field in the CONFIG
1899          * register with the max value of slots the HC can handle.
1900          */
1901         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1902         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1903                         (unsigned int) val);
1904         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1905         val |= (val2 & ~HCS_SLOTS_MASK);
1906         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1907                         (unsigned int) val);
1908         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1909
1910         /*
1911          * Section 5.4.8 - doorbell array must be
1912          * "physically contiguous and 64-byte (cache line) aligned".
1913          */
1914         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1915                         sizeof(*xhci->dcbaa), &dma);
1916         if (!xhci->dcbaa)
1917                 goto fail;
1918         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1919         xhci->dcbaa->dma = dma;
1920         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1921                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1922         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1923
1924         /*
1925          * Initialize the ring segment pool.  The ring must be a contiguous
1926          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1927          * however, the command ring segment needs 64-byte aligned segments,
1928          * so we pick the greater alignment need.
1929          */
1930         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1931                         SEGMENT_SIZE, 64, xhci->page_size);
1932
1933         /* See Table 46 and Note on Figure 55 */
1934         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1935                         2112, 64, xhci->page_size);
1936         if (!xhci->segment_pool || !xhci->device_pool)
1937                 goto fail;
1938
1939         /* Linear stream context arrays don't have any boundary restrictions,
1940          * and only need to be 16-byte aligned.
1941          */
1942         xhci->small_streams_pool =
1943                 dma_pool_create("xHCI 256 byte stream ctx arrays",
1944                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1945         xhci->medium_streams_pool =
1946                 dma_pool_create("xHCI 1KB stream ctx arrays",
1947                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1948         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1949          * will be allocated with pci_alloc_consistent()
1950          */
1951
1952         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1953                 goto fail;
1954
1955         /* Set up the command ring to have one segments for now. */
1956         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1957         if (!xhci->cmd_ring)
1958                 goto fail;
1959         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1960         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1961                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
1962
1963         /* Set the address in the Command Ring Control register */
1964         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1965         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1966                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1967                 xhci->cmd_ring->cycle_state;
1968         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1969         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1970         xhci_dbg_cmd_ptrs(xhci);
1971
1972         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1973         val &= DBOFF_MASK;
1974         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1975                         " from cap regs base addr\n", val);
1976         xhci->dba = (void __iomem *) xhci->cap_regs + val;
1977         xhci_dbg_regs(xhci);
1978         xhci_print_run_regs(xhci);
1979         /* Set ir_set to interrupt register set 0 */
1980         xhci->ir_set = &xhci->run_regs->ir_set[0];
1981
1982         /*
1983          * Event ring setup: Allocate a normal ring, but also setup
1984          * the event ring segment table (ERST).  Section 4.9.3.
1985          */
1986         xhci_dbg(xhci, "// Allocating event ring\n");
1987         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1988         if (!xhci->event_ring)
1989                 goto fail;
1990         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1991                 goto fail;
1992
1993         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1994                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1995         if (!xhci->erst.entries)
1996                 goto fail;
1997         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1998                         (unsigned long long)dma);
1999
2000         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2001         xhci->erst.num_entries = ERST_NUM_SEGS;
2002         xhci->erst.erst_dma_addr = dma;
2003         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2004                         xhci->erst.num_entries,
2005                         xhci->erst.entries,
2006                         (unsigned long long)xhci->erst.erst_dma_addr);
2007
2008         /* set ring base address and size for each segment table entry */
2009         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2010                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2011                 entry->seg_addr = seg->dma;
2012                 entry->seg_size = TRBS_PER_SEGMENT;
2013                 entry->rsvd = 0;
2014                 seg = seg->next;
2015         }
2016
2017         /* set ERST count with the number of entries in the segment table */
2018         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2019         val &= ERST_SIZE_MASK;
2020         val |= ERST_NUM_SEGS;
2021         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2022                         val);
2023         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2024
2025         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2026         /* set the segment table base address */
2027         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2028                         (unsigned long long)xhci->erst.erst_dma_addr);
2029         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2030         val_64 &= ERST_PTR_MASK;
2031         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2032         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2033
2034         /* Set the event ring dequeue address */
2035         xhci_set_hc_event_deq(xhci);
2036         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2037         xhci_print_ir_set(xhci, 0);
2038
2039         /*
2040          * XXX: Might need to set the Interrupter Moderation Register to
2041          * something other than the default (~1ms minimum between interrupts).
2042          * See section 5.5.1.2.
2043          */
2044         init_completion(&xhci->addr_dev);
2045         for (i = 0; i < MAX_HC_SLOTS; ++i)
2046                 xhci->devs[i] = NULL;
2047         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2048                 xhci->bus_state[0].resume_done[i] = 0;
2049                 xhci->bus_state[1].resume_done[i] = 0;
2050         }
2051
2052         if (scratchpad_alloc(xhci, flags))
2053                 goto fail;
2054         if (xhci_setup_port_arrays(xhci, flags))
2055                 goto fail;
2056
2057         return 0;
2058
2059 fail:
2060         xhci_warn(xhci, "Couldn't initialize memory\n");
2061         xhci_mem_cleanup(xhci);
2062         return -ENOMEM;
2063 }