Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[pandora-kernel.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26
27 #include "xhci.h"
28
29 /*
30  * Allocates a generic ring segment from the ring pool, sets the dma address,
31  * initializes the segment to zero, and sets the private next pointer to NULL.
32  *
33  * Section 4.11.1.1:
34  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
35  */
36 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
37 {
38         struct xhci_segment *seg;
39         dma_addr_t      dma;
40
41         seg = kzalloc(sizeof *seg, flags);
42         if (!seg)
43                 return 0;
44         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
45
46         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47         if (!seg->trbs) {
48                 kfree(seg);
49                 return 0;
50         }
51         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
52                         seg->trbs, (unsigned long long)dma);
53
54         memset(seg->trbs, 0, SEGMENT_SIZE);
55         seg->dma = dma;
56         seg->next = NULL;
57
58         return seg;
59 }
60
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
62 {
63         if (!seg)
64                 return;
65         if (seg->trbs) {
66                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
67                                 seg->trbs, (unsigned long long)seg->dma);
68                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
69                 seg->trbs = NULL;
70         }
71         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
72         kfree(seg);
73 }
74
75 /*
76  * Make the prev segment point to the next segment.
77  *
78  * Change the last TRB in the prev segment to be a Link TRB which points to the
79  * DMA address of the next segment.  The caller needs to set any Link TRB
80  * related flags, such as End TRB, Toggle Cycle, and no snoop.
81  */
82 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
83                 struct xhci_segment *next, bool link_trbs)
84 {
85         u32 val;
86
87         if (!prev || !next)
88                 return;
89         prev->next = next;
90         if (link_trbs) {
91                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
92
93                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94                 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
95                 val &= ~TRB_TYPE_BITMASK;
96                 val |= TRB_TYPE(TRB_LINK);
97                 /* Always set the chain bit with 0.95 hardware */
98                 if (xhci_link_trb_quirk(xhci))
99                         val |= TRB_CHAIN;
100                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
101         }
102         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
103                         (unsigned long long)prev->dma,
104                         (unsigned long long)next->dma);
105 }
106
107 /* XXX: Do we need the hcd structure in all these functions? */
108 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
109 {
110         struct xhci_segment *seg;
111         struct xhci_segment *first_seg;
112
113         if (!ring || !ring->first_seg)
114                 return;
115         first_seg = ring->first_seg;
116         seg = first_seg->next;
117         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
118         while (seg != first_seg) {
119                 struct xhci_segment *next = seg->next;
120                 xhci_segment_free(xhci, seg);
121                 seg = next;
122         }
123         xhci_segment_free(xhci, first_seg);
124         ring->first_seg = NULL;
125         kfree(ring);
126 }
127
128 static void xhci_initialize_ring_info(struct xhci_ring *ring)
129 {
130         /* The ring is empty, so the enqueue pointer == dequeue pointer */
131         ring->enqueue = ring->first_seg->trbs;
132         ring->enq_seg = ring->first_seg;
133         ring->dequeue = ring->enqueue;
134         ring->deq_seg = ring->first_seg;
135         /* The ring is initialized to 0. The producer must write 1 to the cycle
136          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
137          * compare CCS to the cycle bit to check ownership, so CCS = 1.
138          */
139         ring->cycle_state = 1;
140         /* Not necessary for new rings, but needed for re-initialized rings */
141         ring->enq_updates = 0;
142         ring->deq_updates = 0;
143 }
144
145 /**
146  * Create a new ring with zero or more segments.
147  *
148  * Link each segment together into a ring.
149  * Set the end flag and the cycle toggle bit on the last segment.
150  * See section 4.9.1 and figures 15 and 16.
151  */
152 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
153                 unsigned int num_segs, bool link_trbs, gfp_t flags)
154 {
155         struct xhci_ring        *ring;
156         struct xhci_segment     *prev;
157
158         ring = kzalloc(sizeof *(ring), flags);
159         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
160         if (!ring)
161                 return 0;
162
163         INIT_LIST_HEAD(&ring->td_list);
164         if (num_segs == 0)
165                 return ring;
166
167         ring->first_seg = xhci_segment_alloc(xhci, flags);
168         if (!ring->first_seg)
169                 goto fail;
170         num_segs--;
171
172         prev = ring->first_seg;
173         while (num_segs > 0) {
174                 struct xhci_segment     *next;
175
176                 next = xhci_segment_alloc(xhci, flags);
177                 if (!next)
178                         goto fail;
179                 xhci_link_segments(xhci, prev, next, link_trbs);
180
181                 prev = next;
182                 num_segs--;
183         }
184         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
185
186         if (link_trbs) {
187                 /* See section 4.9.2.1 and 6.4.4.1 */
188                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
189                 xhci_dbg(xhci, "Wrote link toggle flag to"
190                                 " segment %p (virtual), 0x%llx (DMA)\n",
191                                 prev, (unsigned long long)prev->dma);
192         }
193         xhci_initialize_ring_info(ring);
194         return ring;
195
196 fail:
197         xhci_ring_free(xhci, ring);
198         return 0;
199 }
200
201 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
202                 struct xhci_virt_device *virt_dev,
203                 unsigned int ep_index)
204 {
205         int rings_cached;
206
207         rings_cached = virt_dev->num_rings_cached;
208         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
209                 virt_dev->num_rings_cached++;
210                 rings_cached = virt_dev->num_rings_cached;
211                 virt_dev->ring_cache[rings_cached] =
212                         virt_dev->eps[ep_index].ring;
213                 xhci_dbg(xhci, "Cached old ring, "
214                                 "%d ring%s cached\n",
215                                 rings_cached,
216                                 (rings_cached > 1) ? "s" : "");
217         } else {
218                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
219                 xhci_dbg(xhci, "Ring cache full (%d rings), "
220                                 "freeing ring\n",
221                                 virt_dev->num_rings_cached);
222         }
223         virt_dev->eps[ep_index].ring = NULL;
224 }
225
226 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
227  * pointers to the beginning of the ring.
228  */
229 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
230                 struct xhci_ring *ring)
231 {
232         struct xhci_segment     *seg = ring->first_seg;
233         do {
234                 memset(seg->trbs, 0,
235                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
236                 /* All endpoint rings have link TRBs */
237                 xhci_link_segments(xhci, seg, seg->next, 1);
238                 seg = seg->next;
239         } while (seg != ring->first_seg);
240         xhci_initialize_ring_info(ring);
241         /* td list should be empty since all URBs have been cancelled,
242          * but just in case...
243          */
244         INIT_LIST_HEAD(&ring->td_list);
245 }
246
247 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
248
249 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
250                                                     int type, gfp_t flags)
251 {
252         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
253         if (!ctx)
254                 return NULL;
255
256         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
257         ctx->type = type;
258         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
259         if (type == XHCI_CTX_TYPE_INPUT)
260                 ctx->size += CTX_SIZE(xhci->hcc_params);
261
262         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
263         memset(ctx->bytes, 0, ctx->size);
264         return ctx;
265 }
266
267 void xhci_free_container_ctx(struct xhci_hcd *xhci,
268                              struct xhci_container_ctx *ctx)
269 {
270         if (!ctx)
271                 return;
272         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
273         kfree(ctx);
274 }
275
276 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
277                                               struct xhci_container_ctx *ctx)
278 {
279         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
280         return (struct xhci_input_control_ctx *)ctx->bytes;
281 }
282
283 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
284                                         struct xhci_container_ctx *ctx)
285 {
286         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
287                 return (struct xhci_slot_ctx *)ctx->bytes;
288
289         return (struct xhci_slot_ctx *)
290                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
291 }
292
293 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
294                                     struct xhci_container_ctx *ctx,
295                                     unsigned int ep_index)
296 {
297         /* increment ep index by offset of start of ep ctx array */
298         ep_index++;
299         if (ctx->type == XHCI_CTX_TYPE_INPUT)
300                 ep_index++;
301
302         return (struct xhci_ep_ctx *)
303                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
304 }
305
306 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
307                 struct xhci_virt_ep *ep)
308 {
309         init_timer(&ep->stop_cmd_timer);
310         ep->stop_cmd_timer.data = (unsigned long) ep;
311         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
312         ep->xhci = xhci;
313 }
314
315 /* All the xhci_tds in the ring's TD list should be freed at this point */
316 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
317 {
318         struct xhci_virt_device *dev;
319         int i;
320
321         /* Slot ID 0 is reserved */
322         if (slot_id == 0 || !xhci->devs[slot_id])
323                 return;
324
325         dev = xhci->devs[slot_id];
326         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
327         if (!dev)
328                 return;
329
330         for (i = 0; i < 31; ++i)
331                 if (dev->eps[i].ring)
332                         xhci_ring_free(xhci, dev->eps[i].ring);
333
334         if (dev->ring_cache) {
335                 for (i = 0; i < dev->num_rings_cached; i++)
336                         xhci_ring_free(xhci, dev->ring_cache[i]);
337                 kfree(dev->ring_cache);
338         }
339
340         if (dev->in_ctx)
341                 xhci_free_container_ctx(xhci, dev->in_ctx);
342         if (dev->out_ctx)
343                 xhci_free_container_ctx(xhci, dev->out_ctx);
344
345         kfree(xhci->devs[slot_id]);
346         xhci->devs[slot_id] = 0;
347 }
348
349 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
350                 struct usb_device *udev, gfp_t flags)
351 {
352         struct xhci_virt_device *dev;
353         int i;
354
355         /* Slot ID 0 is reserved */
356         if (slot_id == 0 || xhci->devs[slot_id]) {
357                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
358                 return 0;
359         }
360
361         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
362         if (!xhci->devs[slot_id])
363                 return 0;
364         dev = xhci->devs[slot_id];
365
366         /* Allocate the (output) device context that will be used in the HC. */
367         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
368         if (!dev->out_ctx)
369                 goto fail;
370
371         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
372                         (unsigned long long)dev->out_ctx->dma);
373
374         /* Allocate the (input) device context for address device command */
375         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
376         if (!dev->in_ctx)
377                 goto fail;
378
379         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
380                         (unsigned long long)dev->in_ctx->dma);
381
382         /* Initialize the cancellation list and watchdog timers for each ep */
383         for (i = 0; i < 31; i++) {
384                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
385                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
386         }
387
388         /* Allocate endpoint 0 ring */
389         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
390         if (!dev->eps[0].ring)
391                 goto fail;
392
393         /* Allocate pointers to the ring cache */
394         dev->ring_cache = kzalloc(
395                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
396                         flags);
397         if (!dev->ring_cache)
398                 goto fail;
399         dev->num_rings_cached = 0;
400
401         init_completion(&dev->cmd_completion);
402         INIT_LIST_HEAD(&dev->cmd_list);
403
404         /* Point to output device context in dcbaa. */
405         xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
406         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
407                         slot_id,
408                         &xhci->dcbaa->dev_context_ptrs[slot_id],
409                         (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
410
411         return 1;
412 fail:
413         xhci_free_virt_device(xhci, slot_id);
414         return 0;
415 }
416
417 /* Setup an xHCI virtual device for a Set Address command */
418 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
419 {
420         struct xhci_virt_device *dev;
421         struct xhci_ep_ctx      *ep0_ctx;
422         struct usb_device       *top_dev;
423         struct xhci_slot_ctx    *slot_ctx;
424         struct xhci_input_control_ctx *ctrl_ctx;
425
426         dev = xhci->devs[udev->slot_id];
427         /* Slot ID 0 is reserved */
428         if (udev->slot_id == 0 || !dev) {
429                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
430                                 udev->slot_id);
431                 return -EINVAL;
432         }
433         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
434         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
435         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
436
437         /* 2) New slot context and endpoint 0 context are valid*/
438         ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
439
440         /* 3) Only the control endpoint is valid - one endpoint context */
441         slot_ctx->dev_info |= LAST_CTX(1);
442
443         slot_ctx->dev_info |= (u32) udev->route;
444         switch (udev->speed) {
445         case USB_SPEED_SUPER:
446                 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
447                 break;
448         case USB_SPEED_HIGH:
449                 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
450                 break;
451         case USB_SPEED_FULL:
452                 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
453                 break;
454         case USB_SPEED_LOW:
455                 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
456                 break;
457         case USB_SPEED_WIRELESS:
458                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
459                 return -EINVAL;
460                 break;
461         default:
462                 /* Speed was set earlier, this shouldn't happen. */
463                 BUG();
464         }
465         /* Find the root hub port this device is under */
466         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
467                         top_dev = top_dev->parent)
468                 /* Found device below root hub */;
469         slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
470         xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
471
472         /* Is this a LS/FS device under a HS hub? */
473         if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
474                         udev->tt) {
475                 slot_ctx->tt_info = udev->tt->hub->slot_id;
476                 slot_ctx->tt_info |= udev->ttport << 8;
477                 if (udev->tt->multi)
478                         slot_ctx->dev_info |= DEV_MTT;
479         }
480         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
481         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
482
483         /* Step 4 - ring already allocated */
484         /* Step 5 */
485         ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
486         /*
487          * XXX: Not sure about wireless USB devices.
488          */
489         switch (udev->speed) {
490         case USB_SPEED_SUPER:
491                 ep0_ctx->ep_info2 |= MAX_PACKET(512);
492                 break;
493         case USB_SPEED_HIGH:
494         /* USB core guesses at a 64-byte max packet first for FS devices */
495         case USB_SPEED_FULL:
496                 ep0_ctx->ep_info2 |= MAX_PACKET(64);
497                 break;
498         case USB_SPEED_LOW:
499                 ep0_ctx->ep_info2 |= MAX_PACKET(8);
500                 break;
501         case USB_SPEED_WIRELESS:
502                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
503                 return -EINVAL;
504                 break;
505         default:
506                 /* New speed? */
507                 BUG();
508         }
509         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
510         ep0_ctx->ep_info2 |= MAX_BURST(0);
511         ep0_ctx->ep_info2 |= ERROR_COUNT(3);
512
513         ep0_ctx->deq =
514                 dev->eps[0].ring->first_seg->dma;
515         ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
516
517         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
518
519         return 0;
520 }
521
522 /* Return the polling or NAK interval.
523  *
524  * The polling interval is expressed in "microframes".  If xHCI's Interval field
525  * is set to N, it will service the endpoint every 2^(Interval)*125us.
526  *
527  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
528  * is set to 0.
529  */
530 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
531                 struct usb_host_endpoint *ep)
532 {
533         unsigned int interval = 0;
534
535         switch (udev->speed) {
536         case USB_SPEED_HIGH:
537                 /* Max NAK rate */
538                 if (usb_endpoint_xfer_control(&ep->desc) ||
539                                 usb_endpoint_xfer_bulk(&ep->desc))
540                         interval = ep->desc.bInterval;
541                 /* Fall through - SS and HS isoc/int have same decoding */
542         case USB_SPEED_SUPER:
543                 if (usb_endpoint_xfer_int(&ep->desc) ||
544                                 usb_endpoint_xfer_isoc(&ep->desc)) {
545                         if (ep->desc.bInterval == 0)
546                                 interval = 0;
547                         else
548                                 interval = ep->desc.bInterval - 1;
549                         if (interval > 15)
550                                 interval = 15;
551                         if (interval != ep->desc.bInterval + 1)
552                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
553                                                 ep->desc.bEndpointAddress, 1 << interval);
554                 }
555                 break;
556         /* Convert bInterval (in 1-255 frames) to microframes and round down to
557          * nearest power of 2.
558          */
559         case USB_SPEED_FULL:
560         case USB_SPEED_LOW:
561                 if (usb_endpoint_xfer_int(&ep->desc) ||
562                                 usb_endpoint_xfer_isoc(&ep->desc)) {
563                         interval = fls(8*ep->desc.bInterval) - 1;
564                         if (interval > 10)
565                                 interval = 10;
566                         if (interval < 3)
567                                 interval = 3;
568                         if ((1 << interval) != 8*ep->desc.bInterval)
569                                 dev_warn(&udev->dev,
570                                                 "ep %#x - rounding interval"
571                                                 " to %d microframes, "
572                                                 "ep desc says %d microframes\n",
573                                                 ep->desc.bEndpointAddress,
574                                                 1 << interval,
575                                                 8*ep->desc.bInterval);
576                 }
577                 break;
578         default:
579                 BUG();
580         }
581         return EP_INTERVAL(interval);
582 }
583
584 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
585                 struct usb_host_endpoint *ep)
586 {
587         int in;
588         u32 type;
589
590         in = usb_endpoint_dir_in(&ep->desc);
591         if (usb_endpoint_xfer_control(&ep->desc)) {
592                 type = EP_TYPE(CTRL_EP);
593         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
594                 if (in)
595                         type = EP_TYPE(BULK_IN_EP);
596                 else
597                         type = EP_TYPE(BULK_OUT_EP);
598         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
599                 if (in)
600                         type = EP_TYPE(ISOC_IN_EP);
601                 else
602                         type = EP_TYPE(ISOC_OUT_EP);
603         } else if (usb_endpoint_xfer_int(&ep->desc)) {
604                 if (in)
605                         type = EP_TYPE(INT_IN_EP);
606                 else
607                         type = EP_TYPE(INT_OUT_EP);
608         } else {
609                 BUG();
610         }
611         return type;
612 }
613
614 int xhci_endpoint_init(struct xhci_hcd *xhci,
615                 struct xhci_virt_device *virt_dev,
616                 struct usb_device *udev,
617                 struct usb_host_endpoint *ep,
618                 gfp_t mem_flags)
619 {
620         unsigned int ep_index;
621         struct xhci_ep_ctx *ep_ctx;
622         struct xhci_ring *ep_ring;
623         unsigned int max_packet;
624         unsigned int max_burst;
625
626         ep_index = xhci_get_endpoint_index(&ep->desc);
627         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
628
629         /* Set up the endpoint ring */
630         virt_dev->eps[ep_index].new_ring =
631                 xhci_ring_alloc(xhci, 1, true, mem_flags);
632         if (!virt_dev->eps[ep_index].new_ring) {
633                 /* Attempt to use the ring cache */
634                 if (virt_dev->num_rings_cached == 0)
635                         return -ENOMEM;
636                 virt_dev->eps[ep_index].new_ring =
637                         virt_dev->ring_cache[virt_dev->num_rings_cached];
638                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
639                 virt_dev->num_rings_cached--;
640                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
641         }
642         ep_ring = virt_dev->eps[ep_index].new_ring;
643         ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
644
645         ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
646
647         /* FIXME dig Mult and streams info out of ep companion desc */
648
649         /* Allow 3 retries for everything but isoc;
650          * error count = 0 means infinite retries.
651          */
652         if (!usb_endpoint_xfer_isoc(&ep->desc))
653                 ep_ctx->ep_info2 = ERROR_COUNT(3);
654         else
655                 ep_ctx->ep_info2 = ERROR_COUNT(1);
656
657         ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
658
659         /* Set the max packet size and max burst */
660         switch (udev->speed) {
661         case USB_SPEED_SUPER:
662                 max_packet = ep->desc.wMaxPacketSize;
663                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
664                 /* dig out max burst from ep companion desc */
665                 if (!ep->ss_ep_comp) {
666                         xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
667                         max_packet = 0;
668                 } else {
669                         max_packet = ep->ss_ep_comp->desc.bMaxBurst;
670                 }
671                 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
672                 break;
673         case USB_SPEED_HIGH:
674                 /* bits 11:12 specify the number of additional transaction
675                  * opportunities per microframe (USB 2.0, section 9.6.6)
676                  */
677                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
678                                 usb_endpoint_xfer_int(&ep->desc)) {
679                         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
680                         ep_ctx->ep_info2 |= MAX_BURST(max_burst);
681                 }
682                 /* Fall through */
683         case USB_SPEED_FULL:
684         case USB_SPEED_LOW:
685                 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
686                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
687                 break;
688         default:
689                 BUG();
690         }
691         /* FIXME Debug endpoint context */
692         return 0;
693 }
694
695 void xhci_endpoint_zero(struct xhci_hcd *xhci,
696                 struct xhci_virt_device *virt_dev,
697                 struct usb_host_endpoint *ep)
698 {
699         unsigned int ep_index;
700         struct xhci_ep_ctx *ep_ctx;
701
702         ep_index = xhci_get_endpoint_index(&ep->desc);
703         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
704
705         ep_ctx->ep_info = 0;
706         ep_ctx->ep_info2 = 0;
707         ep_ctx->deq = 0;
708         ep_ctx->tx_info = 0;
709         /* Don't free the endpoint ring until the set interface or configuration
710          * request succeeds.
711          */
712 }
713
714 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
715  * Useful when you want to change one particular aspect of the endpoint and then
716  * issue a configure endpoint command.
717  */
718 void xhci_endpoint_copy(struct xhci_hcd *xhci,
719                 struct xhci_container_ctx *in_ctx,
720                 struct xhci_container_ctx *out_ctx,
721                 unsigned int ep_index)
722 {
723         struct xhci_ep_ctx *out_ep_ctx;
724         struct xhci_ep_ctx *in_ep_ctx;
725
726         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
727         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
728
729         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
730         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
731         in_ep_ctx->deq = out_ep_ctx->deq;
732         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
733 }
734
735 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
736  * Useful when you want to change one particular aspect of the endpoint and then
737  * issue a configure endpoint command.  Only the context entries field matters,
738  * but we'll copy the whole thing anyway.
739  */
740 void xhci_slot_copy(struct xhci_hcd *xhci,
741                 struct xhci_container_ctx *in_ctx,
742                 struct xhci_container_ctx *out_ctx)
743 {
744         struct xhci_slot_ctx *in_slot_ctx;
745         struct xhci_slot_ctx *out_slot_ctx;
746
747         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
748         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
749
750         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
751         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
752         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
753         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
754 }
755
756 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
757 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
758 {
759         int i;
760         struct device *dev = xhci_to_hcd(xhci)->self.controller;
761         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
762
763         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
764
765         if (!num_sp)
766                 return 0;
767
768         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
769         if (!xhci->scratchpad)
770                 goto fail_sp;
771
772         xhci->scratchpad->sp_array =
773                 pci_alloc_consistent(to_pci_dev(dev),
774                                      num_sp * sizeof(u64),
775                                      &xhci->scratchpad->sp_dma);
776         if (!xhci->scratchpad->sp_array)
777                 goto fail_sp2;
778
779         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
780         if (!xhci->scratchpad->sp_buffers)
781                 goto fail_sp3;
782
783         xhci->scratchpad->sp_dma_buffers =
784                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
785
786         if (!xhci->scratchpad->sp_dma_buffers)
787                 goto fail_sp4;
788
789         xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
790         for (i = 0; i < num_sp; i++) {
791                 dma_addr_t dma;
792                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
793                                                  xhci->page_size, &dma);
794                 if (!buf)
795                         goto fail_sp5;
796
797                 xhci->scratchpad->sp_array[i] = dma;
798                 xhci->scratchpad->sp_buffers[i] = buf;
799                 xhci->scratchpad->sp_dma_buffers[i] = dma;
800         }
801
802         return 0;
803
804  fail_sp5:
805         for (i = i - 1; i >= 0; i--) {
806                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
807                                     xhci->scratchpad->sp_buffers[i],
808                                     xhci->scratchpad->sp_dma_buffers[i]);
809         }
810         kfree(xhci->scratchpad->sp_dma_buffers);
811
812  fail_sp4:
813         kfree(xhci->scratchpad->sp_buffers);
814
815  fail_sp3:
816         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
817                             xhci->scratchpad->sp_array,
818                             xhci->scratchpad->sp_dma);
819
820  fail_sp2:
821         kfree(xhci->scratchpad);
822         xhci->scratchpad = NULL;
823
824  fail_sp:
825         return -ENOMEM;
826 }
827
828 static void scratchpad_free(struct xhci_hcd *xhci)
829 {
830         int num_sp;
831         int i;
832         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
833
834         if (!xhci->scratchpad)
835                 return;
836
837         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
838
839         for (i = 0; i < num_sp; i++) {
840                 pci_free_consistent(pdev, xhci->page_size,
841                                     xhci->scratchpad->sp_buffers[i],
842                                     xhci->scratchpad->sp_dma_buffers[i]);
843         }
844         kfree(xhci->scratchpad->sp_dma_buffers);
845         kfree(xhci->scratchpad->sp_buffers);
846         pci_free_consistent(pdev, num_sp * sizeof(u64),
847                             xhci->scratchpad->sp_array,
848                             xhci->scratchpad->sp_dma);
849         kfree(xhci->scratchpad);
850         xhci->scratchpad = NULL;
851 }
852
853 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
854                 bool allocate_in_ctx, bool allocate_completion,
855                 gfp_t mem_flags)
856 {
857         struct xhci_command *command;
858
859         command = kzalloc(sizeof(*command), mem_flags);
860         if (!command)
861                 return NULL;
862
863         if (allocate_in_ctx) {
864                 command->in_ctx =
865                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
866                                         mem_flags);
867                 if (!command->in_ctx) {
868                         kfree(command);
869                         return NULL;
870                 }
871         }
872
873         if (allocate_completion) {
874                 command->completion =
875                         kzalloc(sizeof(struct completion), mem_flags);
876                 if (!command->completion) {
877                         xhci_free_container_ctx(xhci, command->in_ctx);
878                         kfree(command);
879                         return NULL;
880                 }
881                 init_completion(command->completion);
882         }
883
884         command->status = 0;
885         INIT_LIST_HEAD(&command->cmd_list);
886         return command;
887 }
888
889 void xhci_free_command(struct xhci_hcd *xhci,
890                 struct xhci_command *command)
891 {
892         xhci_free_container_ctx(xhci,
893                         command->in_ctx);
894         kfree(command->completion);
895         kfree(command);
896 }
897
898 void xhci_mem_cleanup(struct xhci_hcd *xhci)
899 {
900         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
901         int size;
902         int i;
903
904         /* Free the Event Ring Segment Table and the actual Event Ring */
905         if (xhci->ir_set) {
906                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
907                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
908                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
909         }
910         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
911         if (xhci->erst.entries)
912                 pci_free_consistent(pdev, size,
913                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
914         xhci->erst.entries = NULL;
915         xhci_dbg(xhci, "Freed ERST\n");
916         if (xhci->event_ring)
917                 xhci_ring_free(xhci, xhci->event_ring);
918         xhci->event_ring = NULL;
919         xhci_dbg(xhci, "Freed event ring\n");
920
921         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
922         if (xhci->cmd_ring)
923                 xhci_ring_free(xhci, xhci->cmd_ring);
924         xhci->cmd_ring = NULL;
925         xhci_dbg(xhci, "Freed command ring\n");
926
927         for (i = 1; i < MAX_HC_SLOTS; ++i)
928                 xhci_free_virt_device(xhci, i);
929
930         if (xhci->segment_pool)
931                 dma_pool_destroy(xhci->segment_pool);
932         xhci->segment_pool = NULL;
933         xhci_dbg(xhci, "Freed segment pool\n");
934
935         if (xhci->device_pool)
936                 dma_pool_destroy(xhci->device_pool);
937         xhci->device_pool = NULL;
938         xhci_dbg(xhci, "Freed device context pool\n");
939
940         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
941         if (xhci->dcbaa)
942                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
943                                 xhci->dcbaa, xhci->dcbaa->dma);
944         xhci->dcbaa = NULL;
945
946         scratchpad_free(xhci);
947         xhci->page_size = 0;
948         xhci->page_shift = 0;
949 }
950
951 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
952                 struct xhci_segment *input_seg,
953                 union xhci_trb *start_trb,
954                 union xhci_trb *end_trb,
955                 dma_addr_t input_dma,
956                 struct xhci_segment *result_seg,
957                 char *test_name, int test_number)
958 {
959         unsigned long long start_dma;
960         unsigned long long end_dma;
961         struct xhci_segment *seg;
962
963         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
964         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
965
966         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
967         if (seg != result_seg) {
968                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
969                                 test_name, test_number);
970                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
971                                 "input DMA 0x%llx\n",
972                                 input_seg,
973                                 (unsigned long long) input_dma);
974                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
975                                 "ending TRB %p (0x%llx DMA)\n",
976                                 start_trb, start_dma,
977                                 end_trb, end_dma);
978                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
979                                 result_seg, seg);
980                 return -1;
981         }
982         return 0;
983 }
984
985 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
986 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
987 {
988         struct {
989                 dma_addr_t              input_dma;
990                 struct xhci_segment     *result_seg;
991         } simple_test_vector [] = {
992                 /* A zeroed DMA field should fail */
993                 { 0, NULL },
994                 /* One TRB before the ring start should fail */
995                 { xhci->event_ring->first_seg->dma - 16, NULL },
996                 /* One byte before the ring start should fail */
997                 { xhci->event_ring->first_seg->dma - 1, NULL },
998                 /* Starting TRB should succeed */
999                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1000                 /* Ending TRB should succeed */
1001                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1002                         xhci->event_ring->first_seg },
1003                 /* One byte after the ring end should fail */
1004                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1005                 /* One TRB after the ring end should fail */
1006                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1007                 /* An address of all ones should fail */
1008                 { (dma_addr_t) (~0), NULL },
1009         };
1010         struct {
1011                 struct xhci_segment     *input_seg;
1012                 union xhci_trb          *start_trb;
1013                 union xhci_trb          *end_trb;
1014                 dma_addr_t              input_dma;
1015                 struct xhci_segment     *result_seg;
1016         } complex_test_vector [] = {
1017                 /* Test feeding a valid DMA address from a different ring */
1018                 {       .input_seg = xhci->event_ring->first_seg,
1019                         .start_trb = xhci->event_ring->first_seg->trbs,
1020                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1021                         .input_dma = xhci->cmd_ring->first_seg->dma,
1022                         .result_seg = NULL,
1023                 },
1024                 /* Test feeding a valid end TRB from a different ring */
1025                 {       .input_seg = xhci->event_ring->first_seg,
1026                         .start_trb = xhci->event_ring->first_seg->trbs,
1027                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1028                         .input_dma = xhci->cmd_ring->first_seg->dma,
1029                         .result_seg = NULL,
1030                 },
1031                 /* Test feeding a valid start and end TRB from a different ring */
1032                 {       .input_seg = xhci->event_ring->first_seg,
1033                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1034                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1035                         .input_dma = xhci->cmd_ring->first_seg->dma,
1036                         .result_seg = NULL,
1037                 },
1038                 /* TRB in this ring, but after this TD */
1039                 {       .input_seg = xhci->event_ring->first_seg,
1040                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1041                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1042                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1043                         .result_seg = NULL,
1044                 },
1045                 /* TRB in this ring, but before this TD */
1046                 {       .input_seg = xhci->event_ring->first_seg,
1047                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1048                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1049                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1050                         .result_seg = NULL,
1051                 },
1052                 /* TRB in this ring, but after this wrapped TD */
1053                 {       .input_seg = xhci->event_ring->first_seg,
1054                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1055                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1056                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1057                         .result_seg = NULL,
1058                 },
1059                 /* TRB in this ring, but before this wrapped TD */
1060                 {       .input_seg = xhci->event_ring->first_seg,
1061                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1062                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1063                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1064                         .result_seg = NULL,
1065                 },
1066                 /* TRB not in this ring, and we have a wrapped TD */
1067                 {       .input_seg = xhci->event_ring->first_seg,
1068                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1069                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1070                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1071                         .result_seg = NULL,
1072                 },
1073         };
1074
1075         unsigned int num_tests;
1076         int i, ret;
1077
1078         num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
1079         for (i = 0; i < num_tests; i++) {
1080                 ret = xhci_test_trb_in_td(xhci,
1081                                 xhci->event_ring->first_seg,
1082                                 xhci->event_ring->first_seg->trbs,
1083                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1084                                 simple_test_vector[i].input_dma,
1085                                 simple_test_vector[i].result_seg,
1086                                 "Simple", i);
1087                 if (ret < 0)
1088                         return ret;
1089         }
1090
1091         num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1092         for (i = 0; i < num_tests; i++) {
1093                 ret = xhci_test_trb_in_td(xhci,
1094                                 complex_test_vector[i].input_seg,
1095                                 complex_test_vector[i].start_trb,
1096                                 complex_test_vector[i].end_trb,
1097                                 complex_test_vector[i].input_dma,
1098                                 complex_test_vector[i].result_seg,
1099                                 "Complex", i);
1100                 if (ret < 0)
1101                         return ret;
1102         }
1103         xhci_dbg(xhci, "TRB math tests passed.\n");
1104         return 0;
1105 }
1106
1107
1108 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1109 {
1110         dma_addr_t      dma;
1111         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1112         unsigned int    val, val2;
1113         u64             val_64;
1114         struct xhci_segment     *seg;
1115         u32 page_size;
1116         int i;
1117
1118         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1119         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1120         for (i = 0; i < 16; i++) {
1121                 if ((0x1 & page_size) != 0)
1122                         break;
1123                 page_size = page_size >> 1;
1124         }
1125         if (i < 16)
1126                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1127         else
1128                 xhci_warn(xhci, "WARN: no supported page size\n");
1129         /* Use 4K pages, since that's common and the minimum the HC supports */
1130         xhci->page_shift = 12;
1131         xhci->page_size = 1 << xhci->page_shift;
1132         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1133
1134         /*
1135          * Program the Number of Device Slots Enabled field in the CONFIG
1136          * register with the max value of slots the HC can handle.
1137          */
1138         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1139         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1140                         (unsigned int) val);
1141         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1142         val |= (val2 & ~HCS_SLOTS_MASK);
1143         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1144                         (unsigned int) val);
1145         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1146
1147         /*
1148          * Section 5.4.8 - doorbell array must be
1149          * "physically contiguous and 64-byte (cache line) aligned".
1150          */
1151         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1152                         sizeof(*xhci->dcbaa), &dma);
1153         if (!xhci->dcbaa)
1154                 goto fail;
1155         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1156         xhci->dcbaa->dma = dma;
1157         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1158                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1159         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1160
1161         /*
1162          * Initialize the ring segment pool.  The ring must be a contiguous
1163          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1164          * however, the command ring segment needs 64-byte aligned segments,
1165          * so we pick the greater alignment need.
1166          */
1167         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1168                         SEGMENT_SIZE, 64, xhci->page_size);
1169
1170         /* See Table 46 and Note on Figure 55 */
1171         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1172                         2112, 64, xhci->page_size);
1173         if (!xhci->segment_pool || !xhci->device_pool)
1174                 goto fail;
1175
1176         /* Set up the command ring to have one segments for now. */
1177         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1178         if (!xhci->cmd_ring)
1179                 goto fail;
1180         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1181         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1182                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
1183
1184         /* Set the address in the Command Ring Control register */
1185         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1186         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1187                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1188                 xhci->cmd_ring->cycle_state;
1189         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1190         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1191         xhci_dbg_cmd_ptrs(xhci);
1192
1193         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1194         val &= DBOFF_MASK;
1195         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1196                         " from cap regs base addr\n", val);
1197         xhci->dba = (void *) xhci->cap_regs + val;
1198         xhci_dbg_regs(xhci);
1199         xhci_print_run_regs(xhci);
1200         /* Set ir_set to interrupt register set 0 */
1201         xhci->ir_set = (void *) xhci->run_regs->ir_set;
1202
1203         /*
1204          * Event ring setup: Allocate a normal ring, but also setup
1205          * the event ring segment table (ERST).  Section 4.9.3.
1206          */
1207         xhci_dbg(xhci, "// Allocating event ring\n");
1208         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1209         if (!xhci->event_ring)
1210                 goto fail;
1211         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1212                 goto fail;
1213
1214         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1215                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1216         if (!xhci->erst.entries)
1217                 goto fail;
1218         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1219                         (unsigned long long)dma);
1220
1221         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1222         xhci->erst.num_entries = ERST_NUM_SEGS;
1223         xhci->erst.erst_dma_addr = dma;
1224         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1225                         xhci->erst.num_entries,
1226                         xhci->erst.entries,
1227                         (unsigned long long)xhci->erst.erst_dma_addr);
1228
1229         /* set ring base address and size for each segment table entry */
1230         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1231                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1232                 entry->seg_addr = seg->dma;
1233                 entry->seg_size = TRBS_PER_SEGMENT;
1234                 entry->rsvd = 0;
1235                 seg = seg->next;
1236         }
1237
1238         /* set ERST count with the number of entries in the segment table */
1239         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1240         val &= ERST_SIZE_MASK;
1241         val |= ERST_NUM_SEGS;
1242         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1243                         val);
1244         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1245
1246         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1247         /* set the segment table base address */
1248         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1249                         (unsigned long long)xhci->erst.erst_dma_addr);
1250         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1251         val_64 &= ERST_PTR_MASK;
1252         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1253         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1254
1255         /* Set the event ring dequeue address */
1256         xhci_set_hc_event_deq(xhci);
1257         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1258         xhci_print_ir_set(xhci, xhci->ir_set, 0);
1259
1260         /*
1261          * XXX: Might need to set the Interrupter Moderation Register to
1262          * something other than the default (~1ms minimum between interrupts).
1263          * See section 5.5.1.2.
1264          */
1265         init_completion(&xhci->addr_dev);
1266         for (i = 0; i < MAX_HC_SLOTS; ++i)
1267                 xhci->devs[i] = 0;
1268
1269         if (scratchpad_alloc(xhci, flags))
1270                 goto fail;
1271
1272         return 0;
1273
1274 fail:
1275         xhci_warn(xhci, "Couldn't initialize memory\n");
1276         xhci_mem_cleanup(xhci);
1277         return -ENOMEM;
1278 }