Merge branch 'fix/asoc' into for-linus
[pandora-kernel.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39         struct xhci_segment *seg;
40         dma_addr_t      dma;
41
42         seg = kzalloc(sizeof *seg, flags);
43         if (!seg)
44                 return NULL;
45         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48         if (!seg->trbs) {
49                 kfree(seg);
50                 return NULL;
51         }
52         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53                         seg->trbs, (unsigned long long)dma);
54
55         memset(seg->trbs, 0, SEGMENT_SIZE);
56         seg->dma = dma;
57         seg->next = NULL;
58
59         return seg;
60 }
61
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64         if (!seg)
65                 return;
66         if (seg->trbs) {
67                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68                                 seg->trbs, (unsigned long long)seg->dma);
69                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70                 seg->trbs = NULL;
71         }
72         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73         kfree(seg);
74 }
75
76 /*
77  * Make the prev segment point to the next segment.
78  *
79  * Change the last TRB in the prev segment to be a Link TRB which points to the
80  * DMA address of the next segment.  The caller needs to set any Link TRB
81  * related flags, such as End TRB, Toggle Cycle, and no snoop.
82  */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84                 struct xhci_segment *next, bool link_trbs)
85 {
86         u32 val;
87
88         if (!prev || !next)
89                 return;
90         prev->next = next;
91         if (link_trbs) {
92                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93
94                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95                 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96                 val &= ~TRB_TYPE_BITMASK;
97                 val |= TRB_TYPE(TRB_LINK);
98                 /* Always set the chain bit with 0.95 hardware */
99                 if (xhci_link_trb_quirk(xhci))
100                         val |= TRB_CHAIN;
101                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102         }
103         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104                         (unsigned long long)prev->dma,
105                         (unsigned long long)next->dma);
106 }
107
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 {
111         struct xhci_segment *seg;
112         struct xhci_segment *first_seg;
113
114         if (!ring || !ring->first_seg)
115                 return;
116         first_seg = ring->first_seg;
117         seg = first_seg->next;
118         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119         while (seg != first_seg) {
120                 struct xhci_segment *next = seg->next;
121                 xhci_segment_free(xhci, seg);
122                 seg = next;
123         }
124         xhci_segment_free(xhci, first_seg);
125         ring->first_seg = NULL;
126         kfree(ring);
127 }
128
129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
130 {
131         /* The ring is empty, so the enqueue pointer == dequeue pointer */
132         ring->enqueue = ring->first_seg->trbs;
133         ring->enq_seg = ring->first_seg;
134         ring->dequeue = ring->enqueue;
135         ring->deq_seg = ring->first_seg;
136         /* The ring is initialized to 0. The producer must write 1 to the cycle
137          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
138          * compare CCS to the cycle bit to check ownership, so CCS = 1.
139          */
140         ring->cycle_state = 1;
141         /* Not necessary for new rings, but needed for re-initialized rings */
142         ring->enq_updates = 0;
143         ring->deq_updates = 0;
144 }
145
146 /**
147  * Create a new ring with zero or more segments.
148  *
149  * Link each segment together into a ring.
150  * Set the end flag and the cycle toggle bit on the last segment.
151  * See section 4.9.1 and figures 15 and 16.
152  */
153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154                 unsigned int num_segs, bool link_trbs, gfp_t flags)
155 {
156         struct xhci_ring        *ring;
157         struct xhci_segment     *prev;
158
159         ring = kzalloc(sizeof *(ring), flags);
160         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161         if (!ring)
162                 return NULL;
163
164         INIT_LIST_HEAD(&ring->td_list);
165         if (num_segs == 0)
166                 return ring;
167
168         ring->first_seg = xhci_segment_alloc(xhci, flags);
169         if (!ring->first_seg)
170                 goto fail;
171         num_segs--;
172
173         prev = ring->first_seg;
174         while (num_segs > 0) {
175                 struct xhci_segment     *next;
176
177                 next = xhci_segment_alloc(xhci, flags);
178                 if (!next)
179                         goto fail;
180                 xhci_link_segments(xhci, prev, next, link_trbs);
181
182                 prev = next;
183                 num_segs--;
184         }
185         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187         if (link_trbs) {
188                 /* See section 4.9.2.1 and 6.4.4.1 */
189                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190                 xhci_dbg(xhci, "Wrote link toggle flag to"
191                                 " segment %p (virtual), 0x%llx (DMA)\n",
192                                 prev, (unsigned long long)prev->dma);
193         }
194         xhci_initialize_ring_info(ring);
195         return ring;
196
197 fail:
198         xhci_ring_free(xhci, ring);
199         return NULL;
200 }
201
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203                 struct xhci_virt_device *virt_dev,
204                 unsigned int ep_index)
205 {
206         int rings_cached;
207
208         rings_cached = virt_dev->num_rings_cached;
209         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210                 virt_dev->num_rings_cached++;
211                 rings_cached = virt_dev->num_rings_cached;
212                 virt_dev->ring_cache[rings_cached] =
213                         virt_dev->eps[ep_index].ring;
214                 xhci_dbg(xhci, "Cached old ring, "
215                                 "%d ring%s cached\n",
216                                 rings_cached,
217                                 (rings_cached > 1) ? "s" : "");
218         } else {
219                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220                 xhci_dbg(xhci, "Ring cache full (%d rings), "
221                                 "freeing ring\n",
222                                 virt_dev->num_rings_cached);
223         }
224         virt_dev->eps[ep_index].ring = NULL;
225 }
226
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228  * pointers to the beginning of the ring.
229  */
230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231                 struct xhci_ring *ring)
232 {
233         struct xhci_segment     *seg = ring->first_seg;
234         do {
235                 memset(seg->trbs, 0,
236                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237                 /* All endpoint rings have link TRBs */
238                 xhci_link_segments(xhci, seg, seg->next, 1);
239                 seg = seg->next;
240         } while (seg != ring->first_seg);
241         xhci_initialize_ring_info(ring);
242         /* td list should be empty since all URBs have been cancelled,
243          * but just in case...
244          */
245         INIT_LIST_HEAD(&ring->td_list);
246 }
247
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
250 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251                                                     int type, gfp_t flags)
252 {
253         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254         if (!ctx)
255                 return NULL;
256
257         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258         ctx->type = type;
259         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260         if (type == XHCI_CTX_TYPE_INPUT)
261                 ctx->size += CTX_SIZE(xhci->hcc_params);
262
263         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264         memset(ctx->bytes, 0, ctx->size);
265         return ctx;
266 }
267
268 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269                              struct xhci_container_ctx *ctx)
270 {
271         if (!ctx)
272                 return;
273         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274         kfree(ctx);
275 }
276
277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278                                               struct xhci_container_ctx *ctx)
279 {
280         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281         return (struct xhci_input_control_ctx *)ctx->bytes;
282 }
283
284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285                                         struct xhci_container_ctx *ctx)
286 {
287         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288                 return (struct xhci_slot_ctx *)ctx->bytes;
289
290         return (struct xhci_slot_ctx *)
291                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
292 }
293
294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295                                     struct xhci_container_ctx *ctx,
296                                     unsigned int ep_index)
297 {
298         /* increment ep index by offset of start of ep ctx array */
299         ep_index++;
300         if (ctx->type == XHCI_CTX_TYPE_INPUT)
301                 ep_index++;
302
303         return (struct xhci_ep_ctx *)
304                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305 }
306
307
308 /***************** Streams structures manipulation *************************/
309
310 void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311                 unsigned int num_stream_ctxs,
312                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
313 {
314         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
315
316         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317                 pci_free_consistent(pdev,
318                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319                                 stream_ctx, dma);
320         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321                 return dma_pool_free(xhci->small_streams_pool,
322                                 stream_ctx, dma);
323         else
324                 return dma_pool_free(xhci->medium_streams_pool,
325                                 stream_ctx, dma);
326 }
327
328 /*
329  * The stream context array for each endpoint with bulk streams enabled can
330  * vary in size, based on:
331  *  - how many streams the endpoint supports,
332  *  - the maximum primary stream array size the host controller supports,
333  *  - and how many streams the device driver asks for.
334  *
335  * The stream context array must be a power of 2, and can be as small as
336  * 64 bytes or as large as 1MB.
337  */
338 struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339                 unsigned int num_stream_ctxs, dma_addr_t *dma,
340                 gfp_t mem_flags)
341 {
342         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343
344         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345                 return pci_alloc_consistent(pdev,
346                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347                                 dma);
348         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349                 return dma_pool_alloc(xhci->small_streams_pool,
350                                 mem_flags, dma);
351         else
352                 return dma_pool_alloc(xhci->medium_streams_pool,
353                                 mem_flags, dma);
354 }
355
356 struct xhci_ring *xhci_dma_to_transfer_ring(
357                 struct xhci_virt_ep *ep,
358                 u64 address)
359 {
360         if (ep->ep_state & EP_HAS_STREAMS)
361                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
362                                 address >> SEGMENT_SHIFT);
363         return ep->ring;
364 }
365
366 /* Only use this when you know stream_info is valid */
367 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
368 static struct xhci_ring *dma_to_stream_ring(
369                 struct xhci_stream_info *stream_info,
370                 u64 address)
371 {
372         return radix_tree_lookup(&stream_info->trb_address_map,
373                         address >> SEGMENT_SHIFT);
374 }
375 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
376
377 struct xhci_ring *xhci_stream_id_to_ring(
378                 struct xhci_virt_device *dev,
379                 unsigned int ep_index,
380                 unsigned int stream_id)
381 {
382         struct xhci_virt_ep *ep = &dev->eps[ep_index];
383
384         if (stream_id == 0)
385                 return ep->ring;
386         if (!ep->stream_info)
387                 return NULL;
388
389         if (stream_id > ep->stream_info->num_streams)
390                 return NULL;
391         return ep->stream_info->stream_rings[stream_id];
392 }
393
394 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
395 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
396                 unsigned int num_streams,
397                 struct xhci_stream_info *stream_info)
398 {
399         u32 cur_stream;
400         struct xhci_ring *cur_ring;
401         u64 addr;
402
403         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
404                 struct xhci_ring *mapped_ring;
405                 int trb_size = sizeof(union xhci_trb);
406
407                 cur_ring = stream_info->stream_rings[cur_stream];
408                 for (addr = cur_ring->first_seg->dma;
409                                 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
410                                 addr += trb_size) {
411                         mapped_ring = dma_to_stream_ring(stream_info, addr);
412                         if (cur_ring != mapped_ring) {
413                                 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
414                                                 "didn't map to stream ID %u; "
415                                                 "mapped to ring %p\n",
416                                                 (unsigned long long) addr,
417                                                 cur_stream,
418                                                 mapped_ring);
419                                 return -EINVAL;
420                         }
421                 }
422                 /* One TRB after the end of the ring segment shouldn't return a
423                  * pointer to the current ring (although it may be a part of a
424                  * different ring).
425                  */
426                 mapped_ring = dma_to_stream_ring(stream_info, addr);
427                 if (mapped_ring != cur_ring) {
428                         /* One TRB before should also fail */
429                         addr = cur_ring->first_seg->dma - trb_size;
430                         mapped_ring = dma_to_stream_ring(stream_info, addr);
431                 }
432                 if (mapped_ring == cur_ring) {
433                         xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
434                                         "mapped to valid stream ID %u; "
435                                         "mapped ring = %p\n",
436                                         (unsigned long long) addr,
437                                         cur_stream,
438                                         mapped_ring);
439                         return -EINVAL;
440                 }
441         }
442         return 0;
443 }
444 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
445
446 /*
447  * Change an endpoint's internal structure so it supports stream IDs.  The
448  * number of requested streams includes stream 0, which cannot be used by device
449  * drivers.
450  *
451  * The number of stream contexts in the stream context array may be bigger than
452  * the number of streams the driver wants to use.  This is because the number of
453  * stream context array entries must be a power of two.
454  *
455  * We need a radix tree for mapping physical addresses of TRBs to which stream
456  * ID they belong to.  We need to do this because the host controller won't tell
457  * us which stream ring the TRB came from.  We could store the stream ID in an
458  * event data TRB, but that doesn't help us for the cancellation case, since the
459  * endpoint may stop before it reaches that event data TRB.
460  *
461  * The radix tree maps the upper portion of the TRB DMA address to a ring
462  * segment that has the same upper portion of DMA addresses.  For example, say I
463  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
464  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
465  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
466  * pass the radix tree a key to get the right stream ID:
467  *
468  *      0x10c90fff >> 10 = 0x43243
469  *      0x10c912c0 >> 10 = 0x43244
470  *      0x10c91400 >> 10 = 0x43245
471  *
472  * Obviously, only those TRBs with DMA addresses that are within the segment
473  * will make the radix tree return the stream ID for that ring.
474  *
475  * Caveats for the radix tree:
476  *
477  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
478  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
479  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
480  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
481  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
482  * extended systems (where the DMA address can be bigger than 32-bits),
483  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
484  */
485 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
486                 unsigned int num_stream_ctxs,
487                 unsigned int num_streams, gfp_t mem_flags)
488 {
489         struct xhci_stream_info *stream_info;
490         u32 cur_stream;
491         struct xhci_ring *cur_ring;
492         unsigned long key;
493         u64 addr;
494         int ret;
495
496         xhci_dbg(xhci, "Allocating %u streams and %u "
497                         "stream context array entries.\n",
498                         num_streams, num_stream_ctxs);
499         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
500                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
501                 return NULL;
502         }
503         xhci->cmd_ring_reserved_trbs++;
504
505         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
506         if (!stream_info)
507                 goto cleanup_trbs;
508
509         stream_info->num_streams = num_streams;
510         stream_info->num_stream_ctxs = num_stream_ctxs;
511
512         /* Initialize the array of virtual pointers to stream rings. */
513         stream_info->stream_rings = kzalloc(
514                         sizeof(struct xhci_ring *)*num_streams,
515                         mem_flags);
516         if (!stream_info->stream_rings)
517                 goto cleanup_info;
518
519         /* Initialize the array of DMA addresses for stream rings for the HW. */
520         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
521                         num_stream_ctxs, &stream_info->ctx_array_dma,
522                         mem_flags);
523         if (!stream_info->stream_ctx_array)
524                 goto cleanup_ctx;
525         memset(stream_info->stream_ctx_array, 0,
526                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
527
528         /* Allocate everything needed to free the stream rings later */
529         stream_info->free_streams_command =
530                 xhci_alloc_command(xhci, true, true, mem_flags);
531         if (!stream_info->free_streams_command)
532                 goto cleanup_ctx;
533
534         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
535
536         /* Allocate rings for all the streams that the driver will use,
537          * and add their segment DMA addresses to the radix tree.
538          * Stream 0 is reserved.
539          */
540         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
541                 stream_info->stream_rings[cur_stream] =
542                         xhci_ring_alloc(xhci, 1, true, mem_flags);
543                 cur_ring = stream_info->stream_rings[cur_stream];
544                 if (!cur_ring)
545                         goto cleanup_rings;
546                 cur_ring->stream_id = cur_stream;
547                 /* Set deq ptr, cycle bit, and stream context type */
548                 addr = cur_ring->first_seg->dma |
549                         SCT_FOR_CTX(SCT_PRI_TR) |
550                         cur_ring->cycle_state;
551                 stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
552                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
553                                 cur_stream, (unsigned long long) addr);
554
555                 key = (unsigned long)
556                         (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
557                 ret = radix_tree_insert(&stream_info->trb_address_map,
558                                 key, cur_ring);
559                 if (ret) {
560                         xhci_ring_free(xhci, cur_ring);
561                         stream_info->stream_rings[cur_stream] = NULL;
562                         goto cleanup_rings;
563                 }
564         }
565         /* Leave the other unused stream ring pointers in the stream context
566          * array initialized to zero.  This will cause the xHC to give us an
567          * error if the device asks for a stream ID we don't have setup (if it
568          * was any other way, the host controller would assume the ring is
569          * "empty" and wait forever for data to be queued to that stream ID).
570          */
571 #if XHCI_DEBUG
572         /* Do a little test on the radix tree to make sure it returns the
573          * correct values.
574          */
575         if (xhci_test_radix_tree(xhci, num_streams, stream_info))
576                 goto cleanup_rings;
577 #endif
578
579         return stream_info;
580
581 cleanup_rings:
582         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
583                 cur_ring = stream_info->stream_rings[cur_stream];
584                 if (cur_ring) {
585                         addr = cur_ring->first_seg->dma;
586                         radix_tree_delete(&stream_info->trb_address_map,
587                                         addr >> SEGMENT_SHIFT);
588                         xhci_ring_free(xhci, cur_ring);
589                         stream_info->stream_rings[cur_stream] = NULL;
590                 }
591         }
592         xhci_free_command(xhci, stream_info->free_streams_command);
593 cleanup_ctx:
594         kfree(stream_info->stream_rings);
595 cleanup_info:
596         kfree(stream_info);
597 cleanup_trbs:
598         xhci->cmd_ring_reserved_trbs--;
599         return NULL;
600 }
601 /*
602  * Sets the MaxPStreams field and the Linear Stream Array field.
603  * Sets the dequeue pointer to the stream context array.
604  */
605 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
606                 struct xhci_ep_ctx *ep_ctx,
607                 struct xhci_stream_info *stream_info)
608 {
609         u32 max_primary_streams;
610         /* MaxPStreams is the number of stream context array entries, not the
611          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
612          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
613          */
614         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
615         xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
616                         1 << (max_primary_streams + 1));
617         ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
618         ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
619         ep_ctx->ep_info |= EP_HAS_LSA;
620         ep_ctx->deq  = stream_info->ctx_array_dma;
621 }
622
623 /*
624  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
625  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
626  * not at the beginning of the ring).
627  */
628 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
629                 struct xhci_ep_ctx *ep_ctx,
630                 struct xhci_virt_ep *ep)
631 {
632         dma_addr_t addr;
633         ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
634         ep_ctx->ep_info &= ~EP_HAS_LSA;
635         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
636         ep_ctx->deq  = addr | ep->ring->cycle_state;
637 }
638
639 /* Frees all stream contexts associated with the endpoint,
640  *
641  * Caller should fix the endpoint context streams fields.
642  */
643 void xhci_free_stream_info(struct xhci_hcd *xhci,
644                 struct xhci_stream_info *stream_info)
645 {
646         int cur_stream;
647         struct xhci_ring *cur_ring;
648         dma_addr_t addr;
649
650         if (!stream_info)
651                 return;
652
653         for (cur_stream = 1; cur_stream < stream_info->num_streams;
654                         cur_stream++) {
655                 cur_ring = stream_info->stream_rings[cur_stream];
656                 if (cur_ring) {
657                         addr = cur_ring->first_seg->dma;
658                         radix_tree_delete(&stream_info->trb_address_map,
659                                         addr >> SEGMENT_SHIFT);
660                         xhci_ring_free(xhci, cur_ring);
661                         stream_info->stream_rings[cur_stream] = NULL;
662                 }
663         }
664         xhci_free_command(xhci, stream_info->free_streams_command);
665         xhci->cmd_ring_reserved_trbs--;
666         if (stream_info->stream_ctx_array)
667                 xhci_free_stream_ctx(xhci,
668                                 stream_info->num_stream_ctxs,
669                                 stream_info->stream_ctx_array,
670                                 stream_info->ctx_array_dma);
671
672         if (stream_info)
673                 kfree(stream_info->stream_rings);
674         kfree(stream_info);
675 }
676
677
678 /***************** Device context manipulation *************************/
679
680 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
681                 struct xhci_virt_ep *ep)
682 {
683         init_timer(&ep->stop_cmd_timer);
684         ep->stop_cmd_timer.data = (unsigned long) ep;
685         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
686         ep->xhci = xhci;
687 }
688
689 /* All the xhci_tds in the ring's TD list should be freed at this point */
690 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
691 {
692         struct xhci_virt_device *dev;
693         int i;
694
695         /* Slot ID 0 is reserved */
696         if (slot_id == 0 || !xhci->devs[slot_id])
697                 return;
698
699         dev = xhci->devs[slot_id];
700         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
701         if (!dev)
702                 return;
703
704         for (i = 0; i < 31; ++i) {
705                 if (dev->eps[i].ring)
706                         xhci_ring_free(xhci, dev->eps[i].ring);
707                 if (dev->eps[i].stream_info)
708                         xhci_free_stream_info(xhci,
709                                         dev->eps[i].stream_info);
710         }
711
712         if (dev->ring_cache) {
713                 for (i = 0; i < dev->num_rings_cached; i++)
714                         xhci_ring_free(xhci, dev->ring_cache[i]);
715                 kfree(dev->ring_cache);
716         }
717
718         if (dev->in_ctx)
719                 xhci_free_container_ctx(xhci, dev->in_ctx);
720         if (dev->out_ctx)
721                 xhci_free_container_ctx(xhci, dev->out_ctx);
722
723         kfree(xhci->devs[slot_id]);
724         xhci->devs[slot_id] = NULL;
725 }
726
727 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
728                 struct usb_device *udev, gfp_t flags)
729 {
730         struct xhci_virt_device *dev;
731         int i;
732
733         /* Slot ID 0 is reserved */
734         if (slot_id == 0 || xhci->devs[slot_id]) {
735                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
736                 return 0;
737         }
738
739         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
740         if (!xhci->devs[slot_id])
741                 return 0;
742         dev = xhci->devs[slot_id];
743
744         /* Allocate the (output) device context that will be used in the HC. */
745         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
746         if (!dev->out_ctx)
747                 goto fail;
748
749         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
750                         (unsigned long long)dev->out_ctx->dma);
751
752         /* Allocate the (input) device context for address device command */
753         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
754         if (!dev->in_ctx)
755                 goto fail;
756
757         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
758                         (unsigned long long)dev->in_ctx->dma);
759
760         /* Initialize the cancellation list and watchdog timers for each ep */
761         for (i = 0; i < 31; i++) {
762                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
763                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
764         }
765
766         /* Allocate endpoint 0 ring */
767         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
768         if (!dev->eps[0].ring)
769                 goto fail;
770
771         /* Allocate pointers to the ring cache */
772         dev->ring_cache = kzalloc(
773                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
774                         flags);
775         if (!dev->ring_cache)
776                 goto fail;
777         dev->num_rings_cached = 0;
778
779         init_completion(&dev->cmd_completion);
780         INIT_LIST_HEAD(&dev->cmd_list);
781         dev->udev = udev;
782
783         /* Point to output device context in dcbaa. */
784         xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
785         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
786                         slot_id,
787                         &xhci->dcbaa->dev_context_ptrs[slot_id],
788                         (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
789
790         return 1;
791 fail:
792         xhci_free_virt_device(xhci, slot_id);
793         return 0;
794 }
795
796 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
797                 struct usb_device *udev)
798 {
799         struct xhci_virt_device *virt_dev;
800         struct xhci_ep_ctx      *ep0_ctx;
801         struct xhci_ring        *ep_ring;
802
803         virt_dev = xhci->devs[udev->slot_id];
804         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
805         ep_ring = virt_dev->eps[0].ring;
806         /*
807          * FIXME we don't keep track of the dequeue pointer very well after a
808          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
809          * host to our enqueue pointer.  This should only be called after a
810          * configured device has reset, so all control transfers should have
811          * been completed or cancelled before the reset.
812          */
813         ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
814         ep0_ctx->deq |= ep_ring->cycle_state;
815 }
816
817 /* Setup an xHCI virtual device for a Set Address command */
818 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
819 {
820         struct xhci_virt_device *dev;
821         struct xhci_ep_ctx      *ep0_ctx;
822         struct usb_device       *top_dev;
823         struct xhci_slot_ctx    *slot_ctx;
824         struct xhci_input_control_ctx *ctrl_ctx;
825
826         dev = xhci->devs[udev->slot_id];
827         /* Slot ID 0 is reserved */
828         if (udev->slot_id == 0 || !dev) {
829                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
830                                 udev->slot_id);
831                 return -EINVAL;
832         }
833         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
834         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
835         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
836
837         /* 2) New slot context and endpoint 0 context are valid*/
838         ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
839
840         /* 3) Only the control endpoint is valid - one endpoint context */
841         slot_ctx->dev_info |= LAST_CTX(1);
842
843         slot_ctx->dev_info |= (u32) udev->route;
844         switch (udev->speed) {
845         case USB_SPEED_SUPER:
846                 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
847                 break;
848         case USB_SPEED_HIGH:
849                 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
850                 break;
851         case USB_SPEED_FULL:
852                 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
853                 break;
854         case USB_SPEED_LOW:
855                 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
856                 break;
857         case USB_SPEED_WIRELESS:
858                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
859                 return -EINVAL;
860                 break;
861         default:
862                 /* Speed was set earlier, this shouldn't happen. */
863                 BUG();
864         }
865         /* Find the root hub port this device is under */
866         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
867                         top_dev = top_dev->parent)
868                 /* Found device below root hub */;
869         slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
870         dev->port = top_dev->portnum;
871         xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
872
873         /* Is this a LS/FS device under a HS hub? */
874         if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
875                         udev->tt) {
876                 slot_ctx->tt_info = udev->tt->hub->slot_id;
877                 slot_ctx->tt_info |= udev->ttport << 8;
878                 if (udev->tt->multi)
879                         slot_ctx->dev_info |= DEV_MTT;
880         }
881         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
882         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
883
884         /* Step 4 - ring already allocated */
885         /* Step 5 */
886         ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
887         /*
888          * XXX: Not sure about wireless USB devices.
889          */
890         switch (udev->speed) {
891         case USB_SPEED_SUPER:
892                 ep0_ctx->ep_info2 |= MAX_PACKET(512);
893                 break;
894         case USB_SPEED_HIGH:
895         /* USB core guesses at a 64-byte max packet first for FS devices */
896         case USB_SPEED_FULL:
897                 ep0_ctx->ep_info2 |= MAX_PACKET(64);
898                 break;
899         case USB_SPEED_LOW:
900                 ep0_ctx->ep_info2 |= MAX_PACKET(8);
901                 break;
902         case USB_SPEED_WIRELESS:
903                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
904                 return -EINVAL;
905                 break;
906         default:
907                 /* New speed? */
908                 BUG();
909         }
910         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
911         ep0_ctx->ep_info2 |= MAX_BURST(0);
912         ep0_ctx->ep_info2 |= ERROR_COUNT(3);
913
914         ep0_ctx->deq =
915                 dev->eps[0].ring->first_seg->dma;
916         ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
917
918         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
919
920         return 0;
921 }
922
923 /* Return the polling or NAK interval.
924  *
925  * The polling interval is expressed in "microframes".  If xHCI's Interval field
926  * is set to N, it will service the endpoint every 2^(Interval)*125us.
927  *
928  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
929  * is set to 0.
930  */
931 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
932                 struct usb_host_endpoint *ep)
933 {
934         unsigned int interval = 0;
935
936         switch (udev->speed) {
937         case USB_SPEED_HIGH:
938                 /* Max NAK rate */
939                 if (usb_endpoint_xfer_control(&ep->desc) ||
940                                 usb_endpoint_xfer_bulk(&ep->desc))
941                         interval = ep->desc.bInterval;
942                 /* Fall through - SS and HS isoc/int have same decoding */
943         case USB_SPEED_SUPER:
944                 if (usb_endpoint_xfer_int(&ep->desc) ||
945                                 usb_endpoint_xfer_isoc(&ep->desc)) {
946                         if (ep->desc.bInterval == 0)
947                                 interval = 0;
948                         else
949                                 interval = ep->desc.bInterval - 1;
950                         if (interval > 15)
951                                 interval = 15;
952                         if (interval != ep->desc.bInterval + 1)
953                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
954                                                 ep->desc.bEndpointAddress, 1 << interval);
955                 }
956                 break;
957         /* Convert bInterval (in 1-255 frames) to microframes and round down to
958          * nearest power of 2.
959          */
960         case USB_SPEED_FULL:
961         case USB_SPEED_LOW:
962                 if (usb_endpoint_xfer_int(&ep->desc) ||
963                                 usb_endpoint_xfer_isoc(&ep->desc)) {
964                         interval = fls(8*ep->desc.bInterval) - 1;
965                         if (interval > 10)
966                                 interval = 10;
967                         if (interval < 3)
968                                 interval = 3;
969                         if ((1 << interval) != 8*ep->desc.bInterval)
970                                 dev_warn(&udev->dev,
971                                                 "ep %#x - rounding interval"
972                                                 " to %d microframes, "
973                                                 "ep desc says %d microframes\n",
974                                                 ep->desc.bEndpointAddress,
975                                                 1 << interval,
976                                                 8*ep->desc.bInterval);
977                 }
978                 break;
979         default:
980                 BUG();
981         }
982         return EP_INTERVAL(interval);
983 }
984
985 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
986  * High speed endpoint descriptors can define "the number of additional
987  * transaction opportunities per microframe", but that goes in the Max Burst
988  * endpoint context field.
989  */
990 static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
991                 struct usb_host_endpoint *ep)
992 {
993         if (udev->speed != USB_SPEED_SUPER ||
994                         !usb_endpoint_xfer_isoc(&ep->desc))
995                 return 0;
996         return ep->ss_ep_comp.bmAttributes;
997 }
998
999 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1000                 struct usb_host_endpoint *ep)
1001 {
1002         int in;
1003         u32 type;
1004
1005         in = usb_endpoint_dir_in(&ep->desc);
1006         if (usb_endpoint_xfer_control(&ep->desc)) {
1007                 type = EP_TYPE(CTRL_EP);
1008         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1009                 if (in)
1010                         type = EP_TYPE(BULK_IN_EP);
1011                 else
1012                         type = EP_TYPE(BULK_OUT_EP);
1013         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1014                 if (in)
1015                         type = EP_TYPE(ISOC_IN_EP);
1016                 else
1017                         type = EP_TYPE(ISOC_OUT_EP);
1018         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1019                 if (in)
1020                         type = EP_TYPE(INT_IN_EP);
1021                 else
1022                         type = EP_TYPE(INT_OUT_EP);
1023         } else {
1024                 BUG();
1025         }
1026         return type;
1027 }
1028
1029 /* Return the maximum endpoint service interval time (ESIT) payload.
1030  * Basically, this is the maxpacket size, multiplied by the burst size
1031  * and mult size.
1032  */
1033 static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1034                 struct usb_device *udev,
1035                 struct usb_host_endpoint *ep)
1036 {
1037         int max_burst;
1038         int max_packet;
1039
1040         /* Only applies for interrupt or isochronous endpoints */
1041         if (usb_endpoint_xfer_control(&ep->desc) ||
1042                         usb_endpoint_xfer_bulk(&ep->desc))
1043                 return 0;
1044
1045         if (udev->speed == USB_SPEED_SUPER)
1046                 return ep->ss_ep_comp.wBytesPerInterval;
1047
1048         max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1049         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1050         /* A 0 in max burst means 1 transfer per ESIT */
1051         return max_packet * (max_burst + 1);
1052 }
1053
1054 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1055  * Drivers will have to call usb_alloc_streams() to do that.
1056  */
1057 int xhci_endpoint_init(struct xhci_hcd *xhci,
1058                 struct xhci_virt_device *virt_dev,
1059                 struct usb_device *udev,
1060                 struct usb_host_endpoint *ep,
1061                 gfp_t mem_flags)
1062 {
1063         unsigned int ep_index;
1064         struct xhci_ep_ctx *ep_ctx;
1065         struct xhci_ring *ep_ring;
1066         unsigned int max_packet;
1067         unsigned int max_burst;
1068         u32 max_esit_payload;
1069
1070         ep_index = xhci_get_endpoint_index(&ep->desc);
1071         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1072
1073         /* Set up the endpoint ring */
1074         /*
1075          * Isochronous endpoint ring needs bigger size because one isoc URB
1076          * carries multiple packets and it will insert multiple tds to the
1077          * ring.
1078          * This should be replaced with dynamic ring resizing in the future.
1079          */
1080         if (usb_endpoint_xfer_isoc(&ep->desc))
1081                 virt_dev->eps[ep_index].new_ring =
1082                         xhci_ring_alloc(xhci, 8, true, mem_flags);
1083         else
1084                 virt_dev->eps[ep_index].new_ring =
1085                         xhci_ring_alloc(xhci, 1, true, mem_flags);
1086         if (!virt_dev->eps[ep_index].new_ring) {
1087                 /* Attempt to use the ring cache */
1088                 if (virt_dev->num_rings_cached == 0)
1089                         return -ENOMEM;
1090                 virt_dev->eps[ep_index].new_ring =
1091                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1092                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1093                 virt_dev->num_rings_cached--;
1094                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1095         }
1096         virt_dev->eps[ep_index].skip = false;
1097         ep_ring = virt_dev->eps[ep_index].new_ring;
1098         ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1099
1100         ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1101         ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1102
1103         /* FIXME dig Mult and streams info out of ep companion desc */
1104
1105         /* Allow 3 retries for everything but isoc;
1106          * error count = 0 means infinite retries.
1107          */
1108         if (!usb_endpoint_xfer_isoc(&ep->desc))
1109                 ep_ctx->ep_info2 = ERROR_COUNT(3);
1110         else
1111                 ep_ctx->ep_info2 = ERROR_COUNT(1);
1112
1113         ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1114
1115         /* Set the max packet size and max burst */
1116         switch (udev->speed) {
1117         case USB_SPEED_SUPER:
1118                 max_packet = ep->desc.wMaxPacketSize;
1119                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1120                 /* dig out max burst from ep companion desc */
1121                 max_packet = ep->ss_ep_comp.bMaxBurst;
1122                 if (!max_packet)
1123                         xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1124                 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1125                 break;
1126         case USB_SPEED_HIGH:
1127                 /* bits 11:12 specify the number of additional transaction
1128                  * opportunities per microframe (USB 2.0, section 9.6.6)
1129                  */
1130                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1131                                 usb_endpoint_xfer_int(&ep->desc)) {
1132                         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1133                         ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1134                 }
1135                 /* Fall through */
1136         case USB_SPEED_FULL:
1137         case USB_SPEED_LOW:
1138                 max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1139                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1140                 break;
1141         default:
1142                 BUG();
1143         }
1144         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1145         ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1146
1147         /*
1148          * XXX no idea how to calculate the average TRB buffer length for bulk
1149          * endpoints, as the driver gives us no clue how big each scatter gather
1150          * list entry (or buffer) is going to be.
1151          *
1152          * For isochronous and interrupt endpoints, we set it to the max
1153          * available, until we have new API in the USB core to allow drivers to
1154          * declare how much bandwidth they actually need.
1155          *
1156          * Normally, it would be calculated by taking the total of the buffer
1157          * lengths in the TD and then dividing by the number of TRBs in a TD,
1158          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1159          * use Event Data TRBs, and we don't chain in a link TRB on short
1160          * transfers, we're basically dividing by 1.
1161          */
1162         ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1163
1164         /* FIXME Debug endpoint context */
1165         return 0;
1166 }
1167
1168 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1169                 struct xhci_virt_device *virt_dev,
1170                 struct usb_host_endpoint *ep)
1171 {
1172         unsigned int ep_index;
1173         struct xhci_ep_ctx *ep_ctx;
1174
1175         ep_index = xhci_get_endpoint_index(&ep->desc);
1176         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1177
1178         ep_ctx->ep_info = 0;
1179         ep_ctx->ep_info2 = 0;
1180         ep_ctx->deq = 0;
1181         ep_ctx->tx_info = 0;
1182         /* Don't free the endpoint ring until the set interface or configuration
1183          * request succeeds.
1184          */
1185 }
1186
1187 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1188  * Useful when you want to change one particular aspect of the endpoint and then
1189  * issue a configure endpoint command.
1190  */
1191 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1192                 struct xhci_container_ctx *in_ctx,
1193                 struct xhci_container_ctx *out_ctx,
1194                 unsigned int ep_index)
1195 {
1196         struct xhci_ep_ctx *out_ep_ctx;
1197         struct xhci_ep_ctx *in_ep_ctx;
1198
1199         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1201
1202         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1203         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1204         in_ep_ctx->deq = out_ep_ctx->deq;
1205         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1206 }
1207
1208 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1209  * Useful when you want to change one particular aspect of the endpoint and then
1210  * issue a configure endpoint command.  Only the context entries field matters,
1211  * but we'll copy the whole thing anyway.
1212  */
1213 void xhci_slot_copy(struct xhci_hcd *xhci,
1214                 struct xhci_container_ctx *in_ctx,
1215                 struct xhci_container_ctx *out_ctx)
1216 {
1217         struct xhci_slot_ctx *in_slot_ctx;
1218         struct xhci_slot_ctx *out_slot_ctx;
1219
1220         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1221         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1222
1223         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1224         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1225         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1226         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1227 }
1228
1229 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1230 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1231 {
1232         int i;
1233         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1234         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1235
1236         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1237
1238         if (!num_sp)
1239                 return 0;
1240
1241         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1242         if (!xhci->scratchpad)
1243                 goto fail_sp;
1244
1245         xhci->scratchpad->sp_array =
1246                 pci_alloc_consistent(to_pci_dev(dev),
1247                                      num_sp * sizeof(u64),
1248                                      &xhci->scratchpad->sp_dma);
1249         if (!xhci->scratchpad->sp_array)
1250                 goto fail_sp2;
1251
1252         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1253         if (!xhci->scratchpad->sp_buffers)
1254                 goto fail_sp3;
1255
1256         xhci->scratchpad->sp_dma_buffers =
1257                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1258
1259         if (!xhci->scratchpad->sp_dma_buffers)
1260                 goto fail_sp4;
1261
1262         xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1263         for (i = 0; i < num_sp; i++) {
1264                 dma_addr_t dma;
1265                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1266                                                  xhci->page_size, &dma);
1267                 if (!buf)
1268                         goto fail_sp5;
1269
1270                 xhci->scratchpad->sp_array[i] = dma;
1271                 xhci->scratchpad->sp_buffers[i] = buf;
1272                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1273         }
1274
1275         return 0;
1276
1277  fail_sp5:
1278         for (i = i - 1; i >= 0; i--) {
1279                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1280                                     xhci->scratchpad->sp_buffers[i],
1281                                     xhci->scratchpad->sp_dma_buffers[i]);
1282         }
1283         kfree(xhci->scratchpad->sp_dma_buffers);
1284
1285  fail_sp4:
1286         kfree(xhci->scratchpad->sp_buffers);
1287
1288  fail_sp3:
1289         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1290                             xhci->scratchpad->sp_array,
1291                             xhci->scratchpad->sp_dma);
1292
1293  fail_sp2:
1294         kfree(xhci->scratchpad);
1295         xhci->scratchpad = NULL;
1296
1297  fail_sp:
1298         return -ENOMEM;
1299 }
1300
1301 static void scratchpad_free(struct xhci_hcd *xhci)
1302 {
1303         int num_sp;
1304         int i;
1305         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1306
1307         if (!xhci->scratchpad)
1308                 return;
1309
1310         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1311
1312         for (i = 0; i < num_sp; i++) {
1313                 pci_free_consistent(pdev, xhci->page_size,
1314                                     xhci->scratchpad->sp_buffers[i],
1315                                     xhci->scratchpad->sp_dma_buffers[i]);
1316         }
1317         kfree(xhci->scratchpad->sp_dma_buffers);
1318         kfree(xhci->scratchpad->sp_buffers);
1319         pci_free_consistent(pdev, num_sp * sizeof(u64),
1320                             xhci->scratchpad->sp_array,
1321                             xhci->scratchpad->sp_dma);
1322         kfree(xhci->scratchpad);
1323         xhci->scratchpad = NULL;
1324 }
1325
1326 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1327                 bool allocate_in_ctx, bool allocate_completion,
1328                 gfp_t mem_flags)
1329 {
1330         struct xhci_command *command;
1331
1332         command = kzalloc(sizeof(*command), mem_flags);
1333         if (!command)
1334                 return NULL;
1335
1336         if (allocate_in_ctx) {
1337                 command->in_ctx =
1338                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1339                                         mem_flags);
1340                 if (!command->in_ctx) {
1341                         kfree(command);
1342                         return NULL;
1343                 }
1344         }
1345
1346         if (allocate_completion) {
1347                 command->completion =
1348                         kzalloc(sizeof(struct completion), mem_flags);
1349                 if (!command->completion) {
1350                         xhci_free_container_ctx(xhci, command->in_ctx);
1351                         kfree(command);
1352                         return NULL;
1353                 }
1354                 init_completion(command->completion);
1355         }
1356
1357         command->status = 0;
1358         INIT_LIST_HEAD(&command->cmd_list);
1359         return command;
1360 }
1361
1362 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1363 {
1364         int last;
1365
1366         if (!urb_priv)
1367                 return;
1368
1369         last = urb_priv->length - 1;
1370         if (last >= 0) {
1371                 int     i;
1372                 for (i = 0; i <= last; i++)
1373                         kfree(urb_priv->td[i]);
1374         }
1375         kfree(urb_priv);
1376 }
1377
1378 void xhci_free_command(struct xhci_hcd *xhci,
1379                 struct xhci_command *command)
1380 {
1381         xhci_free_container_ctx(xhci,
1382                         command->in_ctx);
1383         kfree(command->completion);
1384         kfree(command);
1385 }
1386
1387 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1388 {
1389         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1390         int size;
1391         int i;
1392
1393         /* Free the Event Ring Segment Table and the actual Event Ring */
1394         if (xhci->ir_set) {
1395                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1396                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1397                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1398         }
1399         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1400         if (xhci->erst.entries)
1401                 pci_free_consistent(pdev, size,
1402                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1403         xhci->erst.entries = NULL;
1404         xhci_dbg(xhci, "Freed ERST\n");
1405         if (xhci->event_ring)
1406                 xhci_ring_free(xhci, xhci->event_ring);
1407         xhci->event_ring = NULL;
1408         xhci_dbg(xhci, "Freed event ring\n");
1409
1410         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1411         if (xhci->cmd_ring)
1412                 xhci_ring_free(xhci, xhci->cmd_ring);
1413         xhci->cmd_ring = NULL;
1414         xhci_dbg(xhci, "Freed command ring\n");
1415
1416         for (i = 1; i < MAX_HC_SLOTS; ++i)
1417                 xhci_free_virt_device(xhci, i);
1418
1419         if (xhci->segment_pool)
1420                 dma_pool_destroy(xhci->segment_pool);
1421         xhci->segment_pool = NULL;
1422         xhci_dbg(xhci, "Freed segment pool\n");
1423
1424         if (xhci->device_pool)
1425                 dma_pool_destroy(xhci->device_pool);
1426         xhci->device_pool = NULL;
1427         xhci_dbg(xhci, "Freed device context pool\n");
1428
1429         if (xhci->small_streams_pool)
1430                 dma_pool_destroy(xhci->small_streams_pool);
1431         xhci->small_streams_pool = NULL;
1432         xhci_dbg(xhci, "Freed small stream array pool\n");
1433
1434         if (xhci->medium_streams_pool)
1435                 dma_pool_destroy(xhci->medium_streams_pool);
1436         xhci->medium_streams_pool = NULL;
1437         xhci_dbg(xhci, "Freed medium stream array pool\n");
1438
1439         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1440         if (xhci->dcbaa)
1441                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1442                                 xhci->dcbaa, xhci->dcbaa->dma);
1443         xhci->dcbaa = NULL;
1444
1445         scratchpad_free(xhci);
1446
1447         xhci->num_usb2_ports = 0;
1448         xhci->num_usb3_ports = 0;
1449         kfree(xhci->usb2_ports);
1450         kfree(xhci->usb3_ports);
1451         kfree(xhci->port_array);
1452
1453         xhci->page_size = 0;
1454         xhci->page_shift = 0;
1455         xhci->bus_suspended = 0;
1456 }
1457
1458 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1459                 struct xhci_segment *input_seg,
1460                 union xhci_trb *start_trb,
1461                 union xhci_trb *end_trb,
1462                 dma_addr_t input_dma,
1463                 struct xhci_segment *result_seg,
1464                 char *test_name, int test_number)
1465 {
1466         unsigned long long start_dma;
1467         unsigned long long end_dma;
1468         struct xhci_segment *seg;
1469
1470         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1471         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1472
1473         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1474         if (seg != result_seg) {
1475                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1476                                 test_name, test_number);
1477                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1478                                 "input DMA 0x%llx\n",
1479                                 input_seg,
1480                                 (unsigned long long) input_dma);
1481                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1482                                 "ending TRB %p (0x%llx DMA)\n",
1483                                 start_trb, start_dma,
1484                                 end_trb, end_dma);
1485                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1486                                 result_seg, seg);
1487                 return -1;
1488         }
1489         return 0;
1490 }
1491
1492 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1493 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1494 {
1495         struct {
1496                 dma_addr_t              input_dma;
1497                 struct xhci_segment     *result_seg;
1498         } simple_test_vector [] = {
1499                 /* A zeroed DMA field should fail */
1500                 { 0, NULL },
1501                 /* One TRB before the ring start should fail */
1502                 { xhci->event_ring->first_seg->dma - 16, NULL },
1503                 /* One byte before the ring start should fail */
1504                 { xhci->event_ring->first_seg->dma - 1, NULL },
1505                 /* Starting TRB should succeed */
1506                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1507                 /* Ending TRB should succeed */
1508                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1509                         xhci->event_ring->first_seg },
1510                 /* One byte after the ring end should fail */
1511                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1512                 /* One TRB after the ring end should fail */
1513                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1514                 /* An address of all ones should fail */
1515                 { (dma_addr_t) (~0), NULL },
1516         };
1517         struct {
1518                 struct xhci_segment     *input_seg;
1519                 union xhci_trb          *start_trb;
1520                 union xhci_trb          *end_trb;
1521                 dma_addr_t              input_dma;
1522                 struct xhci_segment     *result_seg;
1523         } complex_test_vector [] = {
1524                 /* Test feeding a valid DMA address from a different ring */
1525                 {       .input_seg = xhci->event_ring->first_seg,
1526                         .start_trb = xhci->event_ring->first_seg->trbs,
1527                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1528                         .input_dma = xhci->cmd_ring->first_seg->dma,
1529                         .result_seg = NULL,
1530                 },
1531                 /* Test feeding a valid end TRB from a different ring */
1532                 {       .input_seg = xhci->event_ring->first_seg,
1533                         .start_trb = xhci->event_ring->first_seg->trbs,
1534                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1535                         .input_dma = xhci->cmd_ring->first_seg->dma,
1536                         .result_seg = NULL,
1537                 },
1538                 /* Test feeding a valid start and end TRB from a different ring */
1539                 {       .input_seg = xhci->event_ring->first_seg,
1540                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1541                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1542                         .input_dma = xhci->cmd_ring->first_seg->dma,
1543                         .result_seg = NULL,
1544                 },
1545                 /* TRB in this ring, but after this TD */
1546                 {       .input_seg = xhci->event_ring->first_seg,
1547                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1548                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1549                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1550                         .result_seg = NULL,
1551                 },
1552                 /* TRB in this ring, but before this TD */
1553                 {       .input_seg = xhci->event_ring->first_seg,
1554                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1555                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1556                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1557                         .result_seg = NULL,
1558                 },
1559                 /* TRB in this ring, but after this wrapped TD */
1560                 {       .input_seg = xhci->event_ring->first_seg,
1561                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1562                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1563                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1564                         .result_seg = NULL,
1565                 },
1566                 /* TRB in this ring, but before this wrapped TD */
1567                 {       .input_seg = xhci->event_ring->first_seg,
1568                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1569                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1570                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1571                         .result_seg = NULL,
1572                 },
1573                 /* TRB not in this ring, and we have a wrapped TD */
1574                 {       .input_seg = xhci->event_ring->first_seg,
1575                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1576                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1577                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1578                         .result_seg = NULL,
1579                 },
1580         };
1581
1582         unsigned int num_tests;
1583         int i, ret;
1584
1585         num_tests = ARRAY_SIZE(simple_test_vector);
1586         for (i = 0; i < num_tests; i++) {
1587                 ret = xhci_test_trb_in_td(xhci,
1588                                 xhci->event_ring->first_seg,
1589                                 xhci->event_ring->first_seg->trbs,
1590                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1591                                 simple_test_vector[i].input_dma,
1592                                 simple_test_vector[i].result_seg,
1593                                 "Simple", i);
1594                 if (ret < 0)
1595                         return ret;
1596         }
1597
1598         num_tests = ARRAY_SIZE(complex_test_vector);
1599         for (i = 0; i < num_tests; i++) {
1600                 ret = xhci_test_trb_in_td(xhci,
1601                                 complex_test_vector[i].input_seg,
1602                                 complex_test_vector[i].start_trb,
1603                                 complex_test_vector[i].end_trb,
1604                                 complex_test_vector[i].input_dma,
1605                                 complex_test_vector[i].result_seg,
1606                                 "Complex", i);
1607                 if (ret < 0)
1608                         return ret;
1609         }
1610         xhci_dbg(xhci, "TRB math tests passed.\n");
1611         return 0;
1612 }
1613
1614 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1615 {
1616         u64 temp;
1617         dma_addr_t deq;
1618
1619         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1620                         xhci->event_ring->dequeue);
1621         if (deq == 0 && !in_interrupt())
1622                 xhci_warn(xhci, "WARN something wrong with SW event ring "
1623                                 "dequeue ptr.\n");
1624         /* Update HC event ring dequeue pointer */
1625         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1626         temp &= ERST_PTR_MASK;
1627         /* Don't clear the EHB bit (which is RW1C) because
1628          * there might be more events to service.
1629          */
1630         temp &= ~ERST_EHB;
1631         xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1632                         "preserving EHB bit\n");
1633         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1634                         &xhci->ir_set->erst_dequeue);
1635 }
1636
1637 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1638                 u32 __iomem *addr, u8 major_revision)
1639 {
1640         u32 temp, port_offset, port_count;
1641         int i;
1642
1643         if (major_revision > 0x03) {
1644                 xhci_warn(xhci, "Ignoring unknown port speed, "
1645                                 "Ext Cap %p, revision = 0x%x\n",
1646                                 addr, major_revision);
1647                 /* Ignoring port protocol we can't understand. FIXME */
1648                 return;
1649         }
1650
1651         /* Port offset and count in the third dword, see section 7.2 */
1652         temp = xhci_readl(xhci, addr + 2);
1653         port_offset = XHCI_EXT_PORT_OFF(temp);
1654         port_count = XHCI_EXT_PORT_COUNT(temp);
1655         xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1656                         "count = %u, revision = 0x%x\n",
1657                         addr, port_offset, port_count, major_revision);
1658         /* Port count includes the current port offset */
1659         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1660                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
1661                 return;
1662         port_offset--;
1663         for (i = port_offset; i < (port_offset + port_count); i++) {
1664                 /* Duplicate entry.  Ignore the port if the revisions differ. */
1665                 if (xhci->port_array[i] != 0) {
1666                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1667                                         " port %u\n", addr, i);
1668                         xhci_warn(xhci, "Port was marked as USB %u, "
1669                                         "duplicated as USB %u\n",
1670                                         xhci->port_array[i], major_revision);
1671                         /* Only adjust the roothub port counts if we haven't
1672                          * found a similar duplicate.
1673                          */
1674                         if (xhci->port_array[i] != major_revision &&
1675                                 xhci->port_array[i] != (u8) -1) {
1676                                 if (xhci->port_array[i] == 0x03)
1677                                         xhci->num_usb3_ports--;
1678                                 else
1679                                         xhci->num_usb2_ports--;
1680                                 xhci->port_array[i] = (u8) -1;
1681                         }
1682                         /* FIXME: Should we disable the port? */
1683                         continue;
1684                 }
1685                 xhci->port_array[i] = major_revision;
1686                 if (major_revision == 0x03)
1687                         xhci->num_usb3_ports++;
1688                 else
1689                         xhci->num_usb2_ports++;
1690         }
1691         /* FIXME: Should we disable ports not in the Extended Capabilities? */
1692 }
1693
1694 /*
1695  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1696  * specify what speeds each port is supposed to be.  We can't count on the port
1697  * speed bits in the PORTSC register being correct until a device is connected,
1698  * but we need to set up the two fake roothubs with the correct number of USB
1699  * 3.0 and USB 2.0 ports at host controller initialization time.
1700  */
1701 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1702 {
1703         u32 __iomem *addr;
1704         u32 offset;
1705         unsigned int num_ports;
1706         int i, port_index;
1707
1708         addr = &xhci->cap_regs->hcc_params;
1709         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1710         if (offset == 0) {
1711                 xhci_err(xhci, "No Extended Capability registers, "
1712                                 "unable to set up roothub.\n");
1713                 return -ENODEV;
1714         }
1715
1716         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1717         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1718         if (!xhci->port_array)
1719                 return -ENOMEM;
1720
1721         /*
1722          * For whatever reason, the first capability offset is from the
1723          * capability register base, not from the HCCPARAMS register.
1724          * See section 5.3.6 for offset calculation.
1725          */
1726         addr = &xhci->cap_regs->hc_capbase + offset;
1727         while (1) {
1728                 u32 cap_id;
1729
1730                 cap_id = xhci_readl(xhci, addr);
1731                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1732                         xhci_add_in_port(xhci, num_ports, addr,
1733                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1734                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1735                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1736                                 == num_ports)
1737                         break;
1738                 /*
1739                  * Once you're into the Extended Capabilities, the offset is
1740                  * always relative to the register holding the offset.
1741                  */
1742                 addr += offset;
1743         }
1744
1745         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1746                 xhci_warn(xhci, "No ports on the roothubs?\n");
1747                 return -ENODEV;
1748         }
1749         xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1750                         xhci->num_usb2_ports, xhci->num_usb3_ports);
1751         /*
1752          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1753          * Not sure how the USB core will handle a hub with no ports...
1754          */
1755         if (xhci->num_usb2_ports) {
1756                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1757                                 xhci->num_usb2_ports, flags);
1758                 if (!xhci->usb2_ports)
1759                         return -ENOMEM;
1760
1761                 port_index = 0;
1762                 for (i = 0; i < num_ports; i++) {
1763                         if (xhci->port_array[i] == 0x03 ||
1764                                         xhci->port_array[i] == 0 ||
1765                                         xhci->port_array[i] == -1)
1766                                 continue;
1767
1768                         xhci->usb2_ports[port_index] =
1769                                 &xhci->op_regs->port_status_base +
1770                                 NUM_PORT_REGS*i;
1771                         xhci_dbg(xhci, "USB 2.0 port at index %u, "
1772                                         "addr = %p\n", i,
1773                                         xhci->usb2_ports[port_index]);
1774                         port_index++;
1775                 }
1776         }
1777         if (xhci->num_usb3_ports) {
1778                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1779                                 xhci->num_usb3_ports, flags);
1780                 if (!xhci->usb3_ports)
1781                         return -ENOMEM;
1782
1783                 port_index = 0;
1784                 for (i = 0; i < num_ports; i++)
1785                         if (xhci->port_array[i] == 0x03) {
1786                                 xhci->usb3_ports[port_index] =
1787                                         &xhci->op_regs->port_status_base +
1788                                         NUM_PORT_REGS*i;
1789                                 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1790                                                 "addr = %p\n", i,
1791                                                 xhci->usb3_ports[port_index]);
1792                                 port_index++;
1793                         }
1794         }
1795         return 0;
1796 }
1797
1798 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1799 {
1800         dma_addr_t      dma;
1801         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1802         unsigned int    val, val2;
1803         u64             val_64;
1804         struct xhci_segment     *seg;
1805         u32 page_size;
1806         int i;
1807
1808         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1809         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1810         for (i = 0; i < 16; i++) {
1811                 if ((0x1 & page_size) != 0)
1812                         break;
1813                 page_size = page_size >> 1;
1814         }
1815         if (i < 16)
1816                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1817         else
1818                 xhci_warn(xhci, "WARN: no supported page size\n");
1819         /* Use 4K pages, since that's common and the minimum the HC supports */
1820         xhci->page_shift = 12;
1821         xhci->page_size = 1 << xhci->page_shift;
1822         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1823
1824         /*
1825          * Program the Number of Device Slots Enabled field in the CONFIG
1826          * register with the max value of slots the HC can handle.
1827          */
1828         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1829         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1830                         (unsigned int) val);
1831         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1832         val |= (val2 & ~HCS_SLOTS_MASK);
1833         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1834                         (unsigned int) val);
1835         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1836
1837         /*
1838          * Section 5.4.8 - doorbell array must be
1839          * "physically contiguous and 64-byte (cache line) aligned".
1840          */
1841         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1842                         sizeof(*xhci->dcbaa), &dma);
1843         if (!xhci->dcbaa)
1844                 goto fail;
1845         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1846         xhci->dcbaa->dma = dma;
1847         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1848                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1849         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1850
1851         /*
1852          * Initialize the ring segment pool.  The ring must be a contiguous
1853          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1854          * however, the command ring segment needs 64-byte aligned segments,
1855          * so we pick the greater alignment need.
1856          */
1857         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1858                         SEGMENT_SIZE, 64, xhci->page_size);
1859
1860         /* See Table 46 and Note on Figure 55 */
1861         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1862                         2112, 64, xhci->page_size);
1863         if (!xhci->segment_pool || !xhci->device_pool)
1864                 goto fail;
1865
1866         /* Linear stream context arrays don't have any boundary restrictions,
1867          * and only need to be 16-byte aligned.
1868          */
1869         xhci->small_streams_pool =
1870                 dma_pool_create("xHCI 256 byte stream ctx arrays",
1871                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1872         xhci->medium_streams_pool =
1873                 dma_pool_create("xHCI 1KB stream ctx arrays",
1874                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1875         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1876          * will be allocated with pci_alloc_consistent()
1877          */
1878
1879         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1880                 goto fail;
1881
1882         /* Set up the command ring to have one segments for now. */
1883         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1884         if (!xhci->cmd_ring)
1885                 goto fail;
1886         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1887         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1888                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
1889
1890         /* Set the address in the Command Ring Control register */
1891         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1892         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1893                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1894                 xhci->cmd_ring->cycle_state;
1895         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1896         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1897         xhci_dbg_cmd_ptrs(xhci);
1898
1899         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1900         val &= DBOFF_MASK;
1901         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1902                         " from cap regs base addr\n", val);
1903         xhci->dba = (void *) xhci->cap_regs + val;
1904         xhci_dbg_regs(xhci);
1905         xhci_print_run_regs(xhci);
1906         /* Set ir_set to interrupt register set 0 */
1907         xhci->ir_set = (void *) xhci->run_regs->ir_set;
1908
1909         /*
1910          * Event ring setup: Allocate a normal ring, but also setup
1911          * the event ring segment table (ERST).  Section 4.9.3.
1912          */
1913         xhci_dbg(xhci, "// Allocating event ring\n");
1914         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1915         if (!xhci->event_ring)
1916                 goto fail;
1917         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1918                 goto fail;
1919
1920         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1921                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1922         if (!xhci->erst.entries)
1923                 goto fail;
1924         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1925                         (unsigned long long)dma);
1926
1927         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1928         xhci->erst.num_entries = ERST_NUM_SEGS;
1929         xhci->erst.erst_dma_addr = dma;
1930         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1931                         xhci->erst.num_entries,
1932                         xhci->erst.entries,
1933                         (unsigned long long)xhci->erst.erst_dma_addr);
1934
1935         /* set ring base address and size for each segment table entry */
1936         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1937                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1938                 entry->seg_addr = seg->dma;
1939                 entry->seg_size = TRBS_PER_SEGMENT;
1940                 entry->rsvd = 0;
1941                 seg = seg->next;
1942         }
1943
1944         /* set ERST count with the number of entries in the segment table */
1945         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1946         val &= ERST_SIZE_MASK;
1947         val |= ERST_NUM_SEGS;
1948         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1949                         val);
1950         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1951
1952         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1953         /* set the segment table base address */
1954         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1955                         (unsigned long long)xhci->erst.erst_dma_addr);
1956         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1957         val_64 &= ERST_PTR_MASK;
1958         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1959         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1960
1961         /* Set the event ring dequeue address */
1962         xhci_set_hc_event_deq(xhci);
1963         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1964         xhci_print_ir_set(xhci, xhci->ir_set, 0);
1965
1966         /*
1967          * XXX: Might need to set the Interrupter Moderation Register to
1968          * something other than the default (~1ms minimum between interrupts).
1969          * See section 5.5.1.2.
1970          */
1971         init_completion(&xhci->addr_dev);
1972         for (i = 0; i < MAX_HC_SLOTS; ++i)
1973                 xhci->devs[i] = NULL;
1974         for (i = 0; i < MAX_HC_PORTS; ++i)
1975                 xhci->resume_done[i] = 0;
1976
1977         if (scratchpad_alloc(xhci, flags))
1978                 goto fail;
1979         if (xhci_setup_port_arrays(xhci, flags))
1980                 goto fail;
1981
1982         return 0;
1983
1984 fail:
1985         xhci_warn(xhci, "Couldn't initialize memory\n");
1986         xhci_mem_cleanup(xhci);
1987         return -ENOMEM;
1988 }