Merge branch 'for-2.6.34-incoming' into for-2.6.35-incoming
[pandora-kernel.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39         struct xhci_segment *seg;
40         dma_addr_t      dma;
41
42         seg = kzalloc(sizeof *seg, flags);
43         if (!seg)
44                 return 0;
45         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48         if (!seg->trbs) {
49                 kfree(seg);
50                 return 0;
51         }
52         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53                         seg->trbs, (unsigned long long)dma);
54
55         memset(seg->trbs, 0, SEGMENT_SIZE);
56         seg->dma = dma;
57         seg->next = NULL;
58
59         return seg;
60 }
61
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64         if (!seg)
65                 return;
66         if (seg->trbs) {
67                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68                                 seg->trbs, (unsigned long long)seg->dma);
69                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70                 seg->trbs = NULL;
71         }
72         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73         kfree(seg);
74 }
75
76 /*
77  * Make the prev segment point to the next segment.
78  *
79  * Change the last TRB in the prev segment to be a Link TRB which points to the
80  * DMA address of the next segment.  The caller needs to set any Link TRB
81  * related flags, such as End TRB, Toggle Cycle, and no snoop.
82  */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84                 struct xhci_segment *next, bool link_trbs)
85 {
86         u32 val;
87
88         if (!prev || !next)
89                 return;
90         prev->next = next;
91         if (link_trbs) {
92                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93
94                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95                 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96                 val &= ~TRB_TYPE_BITMASK;
97                 val |= TRB_TYPE(TRB_LINK);
98                 /* Always set the chain bit with 0.95 hardware */
99                 if (xhci_link_trb_quirk(xhci))
100                         val |= TRB_CHAIN;
101                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102         }
103         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104                         (unsigned long long)prev->dma,
105                         (unsigned long long)next->dma);
106 }
107
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 {
111         struct xhci_segment *seg;
112         struct xhci_segment *first_seg;
113
114         if (!ring || !ring->first_seg)
115                 return;
116         first_seg = ring->first_seg;
117         seg = first_seg->next;
118         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119         while (seg != first_seg) {
120                 struct xhci_segment *next = seg->next;
121                 xhci_segment_free(xhci, seg);
122                 seg = next;
123         }
124         xhci_segment_free(xhci, first_seg);
125         ring->first_seg = NULL;
126         kfree(ring);
127 }
128
129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
130 {
131         /* The ring is empty, so the enqueue pointer == dequeue pointer */
132         ring->enqueue = ring->first_seg->trbs;
133         ring->enq_seg = ring->first_seg;
134         ring->dequeue = ring->enqueue;
135         ring->deq_seg = ring->first_seg;
136         /* The ring is initialized to 0. The producer must write 1 to the cycle
137          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
138          * compare CCS to the cycle bit to check ownership, so CCS = 1.
139          */
140         ring->cycle_state = 1;
141         /* Not necessary for new rings, but needed for re-initialized rings */
142         ring->enq_updates = 0;
143         ring->deq_updates = 0;
144 }
145
146 /**
147  * Create a new ring with zero or more segments.
148  *
149  * Link each segment together into a ring.
150  * Set the end flag and the cycle toggle bit on the last segment.
151  * See section 4.9.1 and figures 15 and 16.
152  */
153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154                 unsigned int num_segs, bool link_trbs, gfp_t flags)
155 {
156         struct xhci_ring        *ring;
157         struct xhci_segment     *prev;
158
159         ring = kzalloc(sizeof *(ring), flags);
160         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161         if (!ring)
162                 return 0;
163
164         INIT_LIST_HEAD(&ring->td_list);
165         if (num_segs == 0)
166                 return ring;
167
168         ring->first_seg = xhci_segment_alloc(xhci, flags);
169         if (!ring->first_seg)
170                 goto fail;
171         num_segs--;
172
173         prev = ring->first_seg;
174         while (num_segs > 0) {
175                 struct xhci_segment     *next;
176
177                 next = xhci_segment_alloc(xhci, flags);
178                 if (!next)
179                         goto fail;
180                 xhci_link_segments(xhci, prev, next, link_trbs);
181
182                 prev = next;
183                 num_segs--;
184         }
185         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187         if (link_trbs) {
188                 /* See section 4.9.2.1 and 6.4.4.1 */
189                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190                 xhci_dbg(xhci, "Wrote link toggle flag to"
191                                 " segment %p (virtual), 0x%llx (DMA)\n",
192                                 prev, (unsigned long long)prev->dma);
193         }
194         xhci_initialize_ring_info(ring);
195         return ring;
196
197 fail:
198         xhci_ring_free(xhci, ring);
199         return 0;
200 }
201
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203                 struct xhci_virt_device *virt_dev,
204                 unsigned int ep_index)
205 {
206         int rings_cached;
207
208         rings_cached = virt_dev->num_rings_cached;
209         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210                 virt_dev->num_rings_cached++;
211                 rings_cached = virt_dev->num_rings_cached;
212                 virt_dev->ring_cache[rings_cached] =
213                         virt_dev->eps[ep_index].ring;
214                 xhci_dbg(xhci, "Cached old ring, "
215                                 "%d ring%s cached\n",
216                                 rings_cached,
217                                 (rings_cached > 1) ? "s" : "");
218         } else {
219                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220                 xhci_dbg(xhci, "Ring cache full (%d rings), "
221                                 "freeing ring\n",
222                                 virt_dev->num_rings_cached);
223         }
224         virt_dev->eps[ep_index].ring = NULL;
225 }
226
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228  * pointers to the beginning of the ring.
229  */
230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231                 struct xhci_ring *ring)
232 {
233         struct xhci_segment     *seg = ring->first_seg;
234         do {
235                 memset(seg->trbs, 0,
236                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237                 /* All endpoint rings have link TRBs */
238                 xhci_link_segments(xhci, seg, seg->next, 1);
239                 seg = seg->next;
240         } while (seg != ring->first_seg);
241         xhci_initialize_ring_info(ring);
242         /* td list should be empty since all URBs have been cancelled,
243          * but just in case...
244          */
245         INIT_LIST_HEAD(&ring->td_list);
246 }
247
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
250 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251                                                     int type, gfp_t flags)
252 {
253         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254         if (!ctx)
255                 return NULL;
256
257         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258         ctx->type = type;
259         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260         if (type == XHCI_CTX_TYPE_INPUT)
261                 ctx->size += CTX_SIZE(xhci->hcc_params);
262
263         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264         memset(ctx->bytes, 0, ctx->size);
265         return ctx;
266 }
267
268 void xhci_free_container_ctx(struct xhci_hcd *xhci,
269                              struct xhci_container_ctx *ctx)
270 {
271         if (!ctx)
272                 return;
273         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274         kfree(ctx);
275 }
276
277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278                                               struct xhci_container_ctx *ctx)
279 {
280         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281         return (struct xhci_input_control_ctx *)ctx->bytes;
282 }
283
284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285                                         struct xhci_container_ctx *ctx)
286 {
287         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288                 return (struct xhci_slot_ctx *)ctx->bytes;
289
290         return (struct xhci_slot_ctx *)
291                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
292 }
293
294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295                                     struct xhci_container_ctx *ctx,
296                                     unsigned int ep_index)
297 {
298         /* increment ep index by offset of start of ep ctx array */
299         ep_index++;
300         if (ctx->type == XHCI_CTX_TYPE_INPUT)
301                 ep_index++;
302
303         return (struct xhci_ep_ctx *)
304                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305 }
306
307 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
308                 struct xhci_virt_ep *ep)
309 {
310         init_timer(&ep->stop_cmd_timer);
311         ep->stop_cmd_timer.data = (unsigned long) ep;
312         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
313         ep->xhci = xhci;
314 }
315
316 /* All the xhci_tds in the ring's TD list should be freed at this point */
317 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
318 {
319         struct xhci_virt_device *dev;
320         int i;
321
322         /* Slot ID 0 is reserved */
323         if (slot_id == 0 || !xhci->devs[slot_id])
324                 return;
325
326         dev = xhci->devs[slot_id];
327         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
328         if (!dev)
329                 return;
330
331         for (i = 0; i < 31; ++i)
332                 if (dev->eps[i].ring)
333                         xhci_ring_free(xhci, dev->eps[i].ring);
334
335         if (dev->ring_cache) {
336                 for (i = 0; i < dev->num_rings_cached; i++)
337                         xhci_ring_free(xhci, dev->ring_cache[i]);
338                 kfree(dev->ring_cache);
339         }
340
341         if (dev->in_ctx)
342                 xhci_free_container_ctx(xhci, dev->in_ctx);
343         if (dev->out_ctx)
344                 xhci_free_container_ctx(xhci, dev->out_ctx);
345
346         kfree(xhci->devs[slot_id]);
347         xhci->devs[slot_id] = 0;
348 }
349
350 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
351                 struct usb_device *udev, gfp_t flags)
352 {
353         struct xhci_virt_device *dev;
354         int i;
355
356         /* Slot ID 0 is reserved */
357         if (slot_id == 0 || xhci->devs[slot_id]) {
358                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
359                 return 0;
360         }
361
362         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
363         if (!xhci->devs[slot_id])
364                 return 0;
365         dev = xhci->devs[slot_id];
366
367         /* Allocate the (output) device context that will be used in the HC. */
368         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
369         if (!dev->out_ctx)
370                 goto fail;
371
372         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
373                         (unsigned long long)dev->out_ctx->dma);
374
375         /* Allocate the (input) device context for address device command */
376         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
377         if (!dev->in_ctx)
378                 goto fail;
379
380         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
381                         (unsigned long long)dev->in_ctx->dma);
382
383         /* Initialize the cancellation list and watchdog timers for each ep */
384         for (i = 0; i < 31; i++) {
385                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
386                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
387         }
388
389         /* Allocate endpoint 0 ring */
390         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
391         if (!dev->eps[0].ring)
392                 goto fail;
393
394         /* Allocate pointers to the ring cache */
395         dev->ring_cache = kzalloc(
396                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
397                         flags);
398         if (!dev->ring_cache)
399                 goto fail;
400         dev->num_rings_cached = 0;
401
402         init_completion(&dev->cmd_completion);
403         INIT_LIST_HEAD(&dev->cmd_list);
404
405         /* Point to output device context in dcbaa. */
406         xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
407         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
408                         slot_id,
409                         &xhci->dcbaa->dev_context_ptrs[slot_id],
410                         (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
411
412         return 1;
413 fail:
414         xhci_free_virt_device(xhci, slot_id);
415         return 0;
416 }
417
418 /* Setup an xHCI virtual device for a Set Address command */
419 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
420 {
421         struct xhci_virt_device *dev;
422         struct xhci_ep_ctx      *ep0_ctx;
423         struct usb_device       *top_dev;
424         struct xhci_slot_ctx    *slot_ctx;
425         struct xhci_input_control_ctx *ctrl_ctx;
426
427         dev = xhci->devs[udev->slot_id];
428         /* Slot ID 0 is reserved */
429         if (udev->slot_id == 0 || !dev) {
430                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
431                                 udev->slot_id);
432                 return -EINVAL;
433         }
434         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
435         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
436         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
437
438         /* 2) New slot context and endpoint 0 context are valid*/
439         ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
440
441         /* 3) Only the control endpoint is valid - one endpoint context */
442         slot_ctx->dev_info |= LAST_CTX(1);
443
444         slot_ctx->dev_info |= (u32) udev->route;
445         switch (udev->speed) {
446         case USB_SPEED_SUPER:
447                 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
448                 break;
449         case USB_SPEED_HIGH:
450                 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
451                 break;
452         case USB_SPEED_FULL:
453                 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
454                 break;
455         case USB_SPEED_LOW:
456                 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
457                 break;
458         case USB_SPEED_WIRELESS:
459                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
460                 return -EINVAL;
461                 break;
462         default:
463                 /* Speed was set earlier, this shouldn't happen. */
464                 BUG();
465         }
466         /* Find the root hub port this device is under */
467         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
468                         top_dev = top_dev->parent)
469                 /* Found device below root hub */;
470         slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
471         xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
472
473         /* Is this a LS/FS device under a HS hub? */
474         if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
475                         udev->tt) {
476                 slot_ctx->tt_info = udev->tt->hub->slot_id;
477                 slot_ctx->tt_info |= udev->ttport << 8;
478                 if (udev->tt->multi)
479                         slot_ctx->dev_info |= DEV_MTT;
480         }
481         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
482         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
483
484         /* Step 4 - ring already allocated */
485         /* Step 5 */
486         ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
487         /*
488          * XXX: Not sure about wireless USB devices.
489          */
490         switch (udev->speed) {
491         case USB_SPEED_SUPER:
492                 ep0_ctx->ep_info2 |= MAX_PACKET(512);
493                 break;
494         case USB_SPEED_HIGH:
495         /* USB core guesses at a 64-byte max packet first for FS devices */
496         case USB_SPEED_FULL:
497                 ep0_ctx->ep_info2 |= MAX_PACKET(64);
498                 break;
499         case USB_SPEED_LOW:
500                 ep0_ctx->ep_info2 |= MAX_PACKET(8);
501                 break;
502         case USB_SPEED_WIRELESS:
503                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
504                 return -EINVAL;
505                 break;
506         default:
507                 /* New speed? */
508                 BUG();
509         }
510         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
511         ep0_ctx->ep_info2 |= MAX_BURST(0);
512         ep0_ctx->ep_info2 |= ERROR_COUNT(3);
513
514         ep0_ctx->deq =
515                 dev->eps[0].ring->first_seg->dma;
516         ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
517
518         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
519
520         return 0;
521 }
522
523 /* Return the polling or NAK interval.
524  *
525  * The polling interval is expressed in "microframes".  If xHCI's Interval field
526  * is set to N, it will service the endpoint every 2^(Interval)*125us.
527  *
528  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
529  * is set to 0.
530  */
531 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
532                 struct usb_host_endpoint *ep)
533 {
534         unsigned int interval = 0;
535
536         switch (udev->speed) {
537         case USB_SPEED_HIGH:
538                 /* Max NAK rate */
539                 if (usb_endpoint_xfer_control(&ep->desc) ||
540                                 usb_endpoint_xfer_bulk(&ep->desc))
541                         interval = ep->desc.bInterval;
542                 /* Fall through - SS and HS isoc/int have same decoding */
543         case USB_SPEED_SUPER:
544                 if (usb_endpoint_xfer_int(&ep->desc) ||
545                                 usb_endpoint_xfer_isoc(&ep->desc)) {
546                         if (ep->desc.bInterval == 0)
547                                 interval = 0;
548                         else
549                                 interval = ep->desc.bInterval - 1;
550                         if (interval > 15)
551                                 interval = 15;
552                         if (interval != ep->desc.bInterval + 1)
553                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
554                                                 ep->desc.bEndpointAddress, 1 << interval);
555                 }
556                 break;
557         /* Convert bInterval (in 1-255 frames) to microframes and round down to
558          * nearest power of 2.
559          */
560         case USB_SPEED_FULL:
561         case USB_SPEED_LOW:
562                 if (usb_endpoint_xfer_int(&ep->desc) ||
563                                 usb_endpoint_xfer_isoc(&ep->desc)) {
564                         interval = fls(8*ep->desc.bInterval) - 1;
565                         if (interval > 10)
566                                 interval = 10;
567                         if (interval < 3)
568                                 interval = 3;
569                         if ((1 << interval) != 8*ep->desc.bInterval)
570                                 dev_warn(&udev->dev,
571                                                 "ep %#x - rounding interval"
572                                                 " to %d microframes, "
573                                                 "ep desc says %d microframes\n",
574                                                 ep->desc.bEndpointAddress,
575                                                 1 << interval,
576                                                 8*ep->desc.bInterval);
577                 }
578                 break;
579         default:
580                 BUG();
581         }
582         return EP_INTERVAL(interval);
583 }
584
585 /* The "Mult" field in the endpoint context is only set for SuperSpeed devices.
586  * High speed endpoint descriptors can define "the number of additional
587  * transaction opportunities per microframe", but that goes in the Max Burst
588  * endpoint context field.
589  */
590 static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
591                 struct usb_host_endpoint *ep)
592 {
593         if (udev->speed != USB_SPEED_SUPER || !ep->ss_ep_comp)
594                 return 0;
595         return ep->ss_ep_comp->desc.bmAttributes;
596 }
597
598 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
599                 struct usb_host_endpoint *ep)
600 {
601         int in;
602         u32 type;
603
604         in = usb_endpoint_dir_in(&ep->desc);
605         if (usb_endpoint_xfer_control(&ep->desc)) {
606                 type = EP_TYPE(CTRL_EP);
607         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
608                 if (in)
609                         type = EP_TYPE(BULK_IN_EP);
610                 else
611                         type = EP_TYPE(BULK_OUT_EP);
612         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
613                 if (in)
614                         type = EP_TYPE(ISOC_IN_EP);
615                 else
616                         type = EP_TYPE(ISOC_OUT_EP);
617         } else if (usb_endpoint_xfer_int(&ep->desc)) {
618                 if (in)
619                         type = EP_TYPE(INT_IN_EP);
620                 else
621                         type = EP_TYPE(INT_OUT_EP);
622         } else {
623                 BUG();
624         }
625         return type;
626 }
627
628 /* Return the maximum endpoint service interval time (ESIT) payload.
629  * Basically, this is the maxpacket size, multiplied by the burst size
630  * and mult size.
631  */
632 static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
633                 struct usb_device *udev,
634                 struct usb_host_endpoint *ep)
635 {
636         int max_burst;
637         int max_packet;
638
639         /* Only applies for interrupt or isochronous endpoints */
640         if (usb_endpoint_xfer_control(&ep->desc) ||
641                         usb_endpoint_xfer_bulk(&ep->desc))
642                 return 0;
643
644         if (udev->speed == USB_SPEED_SUPER) {
645                 if (ep->ss_ep_comp)
646                         return ep->ss_ep_comp->desc.wBytesPerInterval;
647                 xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
648                 /* Assume no bursts, no multiple opportunities to send. */
649                 return ep->desc.wMaxPacketSize;
650         }
651
652         max_packet = ep->desc.wMaxPacketSize & 0x3ff;
653         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
654         /* A 0 in max burst means 1 transfer per ESIT */
655         return max_packet * (max_burst + 1);
656 }
657
658 int xhci_endpoint_init(struct xhci_hcd *xhci,
659                 struct xhci_virt_device *virt_dev,
660                 struct usb_device *udev,
661                 struct usb_host_endpoint *ep,
662                 gfp_t mem_flags)
663 {
664         unsigned int ep_index;
665         struct xhci_ep_ctx *ep_ctx;
666         struct xhci_ring *ep_ring;
667         unsigned int max_packet;
668         unsigned int max_burst;
669         u32 max_esit_payload;
670
671         ep_index = xhci_get_endpoint_index(&ep->desc);
672         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
673
674         /* Set up the endpoint ring */
675         virt_dev->eps[ep_index].new_ring =
676                 xhci_ring_alloc(xhci, 1, true, mem_flags);
677         if (!virt_dev->eps[ep_index].new_ring) {
678                 /* Attempt to use the ring cache */
679                 if (virt_dev->num_rings_cached == 0)
680                         return -ENOMEM;
681                 virt_dev->eps[ep_index].new_ring =
682                         virt_dev->ring_cache[virt_dev->num_rings_cached];
683                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
684                 virt_dev->num_rings_cached--;
685                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
686         }
687         ep_ring = virt_dev->eps[ep_index].new_ring;
688         ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
689
690         ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
691         ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
692
693         /* FIXME dig Mult and streams info out of ep companion desc */
694
695         /* Allow 3 retries for everything but isoc;
696          * error count = 0 means infinite retries.
697          */
698         if (!usb_endpoint_xfer_isoc(&ep->desc))
699                 ep_ctx->ep_info2 = ERROR_COUNT(3);
700         else
701                 ep_ctx->ep_info2 = ERROR_COUNT(1);
702
703         ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
704
705         /* Set the max packet size and max burst */
706         switch (udev->speed) {
707         case USB_SPEED_SUPER:
708                 max_packet = ep->desc.wMaxPacketSize;
709                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
710                 /* dig out max burst from ep companion desc */
711                 if (!ep->ss_ep_comp) {
712                         xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
713                         max_packet = 0;
714                 } else {
715                         max_packet = ep->ss_ep_comp->desc.bMaxBurst;
716                 }
717                 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
718                 break;
719         case USB_SPEED_HIGH:
720                 /* bits 11:12 specify the number of additional transaction
721                  * opportunities per microframe (USB 2.0, section 9.6.6)
722                  */
723                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
724                                 usb_endpoint_xfer_int(&ep->desc)) {
725                         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
726                         ep_ctx->ep_info2 |= MAX_BURST(max_burst);
727                 }
728                 /* Fall through */
729         case USB_SPEED_FULL:
730         case USB_SPEED_LOW:
731                 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
732                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
733                 break;
734         default:
735                 BUG();
736         }
737         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
738         ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
739
740         /*
741          * XXX no idea how to calculate the average TRB buffer length for bulk
742          * endpoints, as the driver gives us no clue how big each scatter gather
743          * list entry (or buffer) is going to be.
744          *
745          * For isochronous and interrupt endpoints, we set it to the max
746          * available, until we have new API in the USB core to allow drivers to
747          * declare how much bandwidth they actually need.
748          *
749          * Normally, it would be calculated by taking the total of the buffer
750          * lengths in the TD and then dividing by the number of TRBs in a TD,
751          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
752          * use Event Data TRBs, and we don't chain in a link TRB on short
753          * transfers, we're basically dividing by 1.
754          */
755         ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
756
757         /* FIXME Debug endpoint context */
758         return 0;
759 }
760
761 void xhci_endpoint_zero(struct xhci_hcd *xhci,
762                 struct xhci_virt_device *virt_dev,
763                 struct usb_host_endpoint *ep)
764 {
765         unsigned int ep_index;
766         struct xhci_ep_ctx *ep_ctx;
767
768         ep_index = xhci_get_endpoint_index(&ep->desc);
769         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
770
771         ep_ctx->ep_info = 0;
772         ep_ctx->ep_info2 = 0;
773         ep_ctx->deq = 0;
774         ep_ctx->tx_info = 0;
775         /* Don't free the endpoint ring until the set interface or configuration
776          * request succeeds.
777          */
778 }
779
780 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
781  * Useful when you want to change one particular aspect of the endpoint and then
782  * issue a configure endpoint command.
783  */
784 void xhci_endpoint_copy(struct xhci_hcd *xhci,
785                 struct xhci_container_ctx *in_ctx,
786                 struct xhci_container_ctx *out_ctx,
787                 unsigned int ep_index)
788 {
789         struct xhci_ep_ctx *out_ep_ctx;
790         struct xhci_ep_ctx *in_ep_ctx;
791
792         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
793         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
794
795         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
796         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
797         in_ep_ctx->deq = out_ep_ctx->deq;
798         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
799 }
800
801 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
802  * Useful when you want to change one particular aspect of the endpoint and then
803  * issue a configure endpoint command.  Only the context entries field matters,
804  * but we'll copy the whole thing anyway.
805  */
806 void xhci_slot_copy(struct xhci_hcd *xhci,
807                 struct xhci_container_ctx *in_ctx,
808                 struct xhci_container_ctx *out_ctx)
809 {
810         struct xhci_slot_ctx *in_slot_ctx;
811         struct xhci_slot_ctx *out_slot_ctx;
812
813         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
814         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
815
816         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
817         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
818         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
819         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
820 }
821
822 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
823 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
824 {
825         int i;
826         struct device *dev = xhci_to_hcd(xhci)->self.controller;
827         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
828
829         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
830
831         if (!num_sp)
832                 return 0;
833
834         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
835         if (!xhci->scratchpad)
836                 goto fail_sp;
837
838         xhci->scratchpad->sp_array =
839                 pci_alloc_consistent(to_pci_dev(dev),
840                                      num_sp * sizeof(u64),
841                                      &xhci->scratchpad->sp_dma);
842         if (!xhci->scratchpad->sp_array)
843                 goto fail_sp2;
844
845         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
846         if (!xhci->scratchpad->sp_buffers)
847                 goto fail_sp3;
848
849         xhci->scratchpad->sp_dma_buffers =
850                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
851
852         if (!xhci->scratchpad->sp_dma_buffers)
853                 goto fail_sp4;
854
855         xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
856         for (i = 0; i < num_sp; i++) {
857                 dma_addr_t dma;
858                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
859                                                  xhci->page_size, &dma);
860                 if (!buf)
861                         goto fail_sp5;
862
863                 xhci->scratchpad->sp_array[i] = dma;
864                 xhci->scratchpad->sp_buffers[i] = buf;
865                 xhci->scratchpad->sp_dma_buffers[i] = dma;
866         }
867
868         return 0;
869
870  fail_sp5:
871         for (i = i - 1; i >= 0; i--) {
872                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
873                                     xhci->scratchpad->sp_buffers[i],
874                                     xhci->scratchpad->sp_dma_buffers[i]);
875         }
876         kfree(xhci->scratchpad->sp_dma_buffers);
877
878  fail_sp4:
879         kfree(xhci->scratchpad->sp_buffers);
880
881  fail_sp3:
882         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
883                             xhci->scratchpad->sp_array,
884                             xhci->scratchpad->sp_dma);
885
886  fail_sp2:
887         kfree(xhci->scratchpad);
888         xhci->scratchpad = NULL;
889
890  fail_sp:
891         return -ENOMEM;
892 }
893
894 static void scratchpad_free(struct xhci_hcd *xhci)
895 {
896         int num_sp;
897         int i;
898         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
899
900         if (!xhci->scratchpad)
901                 return;
902
903         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
904
905         for (i = 0; i < num_sp; i++) {
906                 pci_free_consistent(pdev, xhci->page_size,
907                                     xhci->scratchpad->sp_buffers[i],
908                                     xhci->scratchpad->sp_dma_buffers[i]);
909         }
910         kfree(xhci->scratchpad->sp_dma_buffers);
911         kfree(xhci->scratchpad->sp_buffers);
912         pci_free_consistent(pdev, num_sp * sizeof(u64),
913                             xhci->scratchpad->sp_array,
914                             xhci->scratchpad->sp_dma);
915         kfree(xhci->scratchpad);
916         xhci->scratchpad = NULL;
917 }
918
919 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
920                 bool allocate_in_ctx, bool allocate_completion,
921                 gfp_t mem_flags)
922 {
923         struct xhci_command *command;
924
925         command = kzalloc(sizeof(*command), mem_flags);
926         if (!command)
927                 return NULL;
928
929         if (allocate_in_ctx) {
930                 command->in_ctx =
931                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
932                                         mem_flags);
933                 if (!command->in_ctx) {
934                         kfree(command);
935                         return NULL;
936                 }
937         }
938
939         if (allocate_completion) {
940                 command->completion =
941                         kzalloc(sizeof(struct completion), mem_flags);
942                 if (!command->completion) {
943                         xhci_free_container_ctx(xhci, command->in_ctx);
944                         kfree(command);
945                         return NULL;
946                 }
947                 init_completion(command->completion);
948         }
949
950         command->status = 0;
951         INIT_LIST_HEAD(&command->cmd_list);
952         return command;
953 }
954
955 void xhci_free_command(struct xhci_hcd *xhci,
956                 struct xhci_command *command)
957 {
958         xhci_free_container_ctx(xhci,
959                         command->in_ctx);
960         kfree(command->completion);
961         kfree(command);
962 }
963
964 void xhci_mem_cleanup(struct xhci_hcd *xhci)
965 {
966         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
967         int size;
968         int i;
969
970         /* Free the Event Ring Segment Table and the actual Event Ring */
971         if (xhci->ir_set) {
972                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
973                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
974                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
975         }
976         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
977         if (xhci->erst.entries)
978                 pci_free_consistent(pdev, size,
979                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
980         xhci->erst.entries = NULL;
981         xhci_dbg(xhci, "Freed ERST\n");
982         if (xhci->event_ring)
983                 xhci_ring_free(xhci, xhci->event_ring);
984         xhci->event_ring = NULL;
985         xhci_dbg(xhci, "Freed event ring\n");
986
987         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
988         if (xhci->cmd_ring)
989                 xhci_ring_free(xhci, xhci->cmd_ring);
990         xhci->cmd_ring = NULL;
991         xhci_dbg(xhci, "Freed command ring\n");
992
993         for (i = 1; i < MAX_HC_SLOTS; ++i)
994                 xhci_free_virt_device(xhci, i);
995
996         if (xhci->segment_pool)
997                 dma_pool_destroy(xhci->segment_pool);
998         xhci->segment_pool = NULL;
999         xhci_dbg(xhci, "Freed segment pool\n");
1000
1001         if (xhci->device_pool)
1002                 dma_pool_destroy(xhci->device_pool);
1003         xhci->device_pool = NULL;
1004         xhci_dbg(xhci, "Freed device context pool\n");
1005
1006         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1007         if (xhci->dcbaa)
1008                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1009                                 xhci->dcbaa, xhci->dcbaa->dma);
1010         xhci->dcbaa = NULL;
1011
1012         scratchpad_free(xhci);
1013         xhci->page_size = 0;
1014         xhci->page_shift = 0;
1015 }
1016
1017 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1018                 struct xhci_segment *input_seg,
1019                 union xhci_trb *start_trb,
1020                 union xhci_trb *end_trb,
1021                 dma_addr_t input_dma,
1022                 struct xhci_segment *result_seg,
1023                 char *test_name, int test_number)
1024 {
1025         unsigned long long start_dma;
1026         unsigned long long end_dma;
1027         struct xhci_segment *seg;
1028
1029         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1030         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1031
1032         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1033         if (seg != result_seg) {
1034                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1035                                 test_name, test_number);
1036                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1037                                 "input DMA 0x%llx\n",
1038                                 input_seg,
1039                                 (unsigned long long) input_dma);
1040                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1041                                 "ending TRB %p (0x%llx DMA)\n",
1042                                 start_trb, start_dma,
1043                                 end_trb, end_dma);
1044                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1045                                 result_seg, seg);
1046                 return -1;
1047         }
1048         return 0;
1049 }
1050
1051 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1052 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1053 {
1054         struct {
1055                 dma_addr_t              input_dma;
1056                 struct xhci_segment     *result_seg;
1057         } simple_test_vector [] = {
1058                 /* A zeroed DMA field should fail */
1059                 { 0, NULL },
1060                 /* One TRB before the ring start should fail */
1061                 { xhci->event_ring->first_seg->dma - 16, NULL },
1062                 /* One byte before the ring start should fail */
1063                 { xhci->event_ring->first_seg->dma - 1, NULL },
1064                 /* Starting TRB should succeed */
1065                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1066                 /* Ending TRB should succeed */
1067                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1068                         xhci->event_ring->first_seg },
1069                 /* One byte after the ring end should fail */
1070                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1071                 /* One TRB after the ring end should fail */
1072                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1073                 /* An address of all ones should fail */
1074                 { (dma_addr_t) (~0), NULL },
1075         };
1076         struct {
1077                 struct xhci_segment     *input_seg;
1078                 union xhci_trb          *start_trb;
1079                 union xhci_trb          *end_trb;
1080                 dma_addr_t              input_dma;
1081                 struct xhci_segment     *result_seg;
1082         } complex_test_vector [] = {
1083                 /* Test feeding a valid DMA address from a different ring */
1084                 {       .input_seg = xhci->event_ring->first_seg,
1085                         .start_trb = xhci->event_ring->first_seg->trbs,
1086                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1087                         .input_dma = xhci->cmd_ring->first_seg->dma,
1088                         .result_seg = NULL,
1089                 },
1090                 /* Test feeding a valid end TRB from a different ring */
1091                 {       .input_seg = xhci->event_ring->first_seg,
1092                         .start_trb = xhci->event_ring->first_seg->trbs,
1093                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1094                         .input_dma = xhci->cmd_ring->first_seg->dma,
1095                         .result_seg = NULL,
1096                 },
1097                 /* Test feeding a valid start and end TRB from a different ring */
1098                 {       .input_seg = xhci->event_ring->first_seg,
1099                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1100                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1101                         .input_dma = xhci->cmd_ring->first_seg->dma,
1102                         .result_seg = NULL,
1103                 },
1104                 /* TRB in this ring, but after this TD */
1105                 {       .input_seg = xhci->event_ring->first_seg,
1106                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1107                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1108                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1109                         .result_seg = NULL,
1110                 },
1111                 /* TRB in this ring, but before this TD */
1112                 {       .input_seg = xhci->event_ring->first_seg,
1113                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1114                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1115                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1116                         .result_seg = NULL,
1117                 },
1118                 /* TRB in this ring, but after this wrapped TD */
1119                 {       .input_seg = xhci->event_ring->first_seg,
1120                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1121                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1122                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1123                         .result_seg = NULL,
1124                 },
1125                 /* TRB in this ring, but before this wrapped TD */
1126                 {       .input_seg = xhci->event_ring->first_seg,
1127                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1128                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1129                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1130                         .result_seg = NULL,
1131                 },
1132                 /* TRB not in this ring, and we have a wrapped TD */
1133                 {       .input_seg = xhci->event_ring->first_seg,
1134                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1135                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1136                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1137                         .result_seg = NULL,
1138                 },
1139         };
1140
1141         unsigned int num_tests;
1142         int i, ret;
1143
1144         num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
1145         for (i = 0; i < num_tests; i++) {
1146                 ret = xhci_test_trb_in_td(xhci,
1147                                 xhci->event_ring->first_seg,
1148                                 xhci->event_ring->first_seg->trbs,
1149                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1150                                 simple_test_vector[i].input_dma,
1151                                 simple_test_vector[i].result_seg,
1152                                 "Simple", i);
1153                 if (ret < 0)
1154                         return ret;
1155         }
1156
1157         num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1158         for (i = 0; i < num_tests; i++) {
1159                 ret = xhci_test_trb_in_td(xhci,
1160                                 complex_test_vector[i].input_seg,
1161                                 complex_test_vector[i].start_trb,
1162                                 complex_test_vector[i].end_trb,
1163                                 complex_test_vector[i].input_dma,
1164                                 complex_test_vector[i].result_seg,
1165                                 "Complex", i);
1166                 if (ret < 0)
1167                         return ret;
1168         }
1169         xhci_dbg(xhci, "TRB math tests passed.\n");
1170         return 0;
1171 }
1172
1173
1174 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1175 {
1176         dma_addr_t      dma;
1177         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1178         unsigned int    val, val2;
1179         u64             val_64;
1180         struct xhci_segment     *seg;
1181         u32 page_size;
1182         int i;
1183
1184         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1185         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1186         for (i = 0; i < 16; i++) {
1187                 if ((0x1 & page_size) != 0)
1188                         break;
1189                 page_size = page_size >> 1;
1190         }
1191         if (i < 16)
1192                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1193         else
1194                 xhci_warn(xhci, "WARN: no supported page size\n");
1195         /* Use 4K pages, since that's common and the minimum the HC supports */
1196         xhci->page_shift = 12;
1197         xhci->page_size = 1 << xhci->page_shift;
1198         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1199
1200         /*
1201          * Program the Number of Device Slots Enabled field in the CONFIG
1202          * register with the max value of slots the HC can handle.
1203          */
1204         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1205         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1206                         (unsigned int) val);
1207         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1208         val |= (val2 & ~HCS_SLOTS_MASK);
1209         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1210                         (unsigned int) val);
1211         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1212
1213         /*
1214          * Section 5.4.8 - doorbell array must be
1215          * "physically contiguous and 64-byte (cache line) aligned".
1216          */
1217         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1218                         sizeof(*xhci->dcbaa), &dma);
1219         if (!xhci->dcbaa)
1220                 goto fail;
1221         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1222         xhci->dcbaa->dma = dma;
1223         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1224                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1225         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1226
1227         /*
1228          * Initialize the ring segment pool.  The ring must be a contiguous
1229          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1230          * however, the command ring segment needs 64-byte aligned segments,
1231          * so we pick the greater alignment need.
1232          */
1233         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1234                         SEGMENT_SIZE, 64, xhci->page_size);
1235
1236         /* See Table 46 and Note on Figure 55 */
1237         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1238                         2112, 64, xhci->page_size);
1239         if (!xhci->segment_pool || !xhci->device_pool)
1240                 goto fail;
1241
1242         /* Set up the command ring to have one segments for now. */
1243         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1244         if (!xhci->cmd_ring)
1245                 goto fail;
1246         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1247         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1248                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
1249
1250         /* Set the address in the Command Ring Control register */
1251         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1252         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1253                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1254                 xhci->cmd_ring->cycle_state;
1255         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1256         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1257         xhci_dbg_cmd_ptrs(xhci);
1258
1259         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1260         val &= DBOFF_MASK;
1261         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1262                         " from cap regs base addr\n", val);
1263         xhci->dba = (void *) xhci->cap_regs + val;
1264         xhci_dbg_regs(xhci);
1265         xhci_print_run_regs(xhci);
1266         /* Set ir_set to interrupt register set 0 */
1267         xhci->ir_set = (void *) xhci->run_regs->ir_set;
1268
1269         /*
1270          * Event ring setup: Allocate a normal ring, but also setup
1271          * the event ring segment table (ERST).  Section 4.9.3.
1272          */
1273         xhci_dbg(xhci, "// Allocating event ring\n");
1274         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1275         if (!xhci->event_ring)
1276                 goto fail;
1277         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1278                 goto fail;
1279
1280         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1281                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1282         if (!xhci->erst.entries)
1283                 goto fail;
1284         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1285                         (unsigned long long)dma);
1286
1287         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1288         xhci->erst.num_entries = ERST_NUM_SEGS;
1289         xhci->erst.erst_dma_addr = dma;
1290         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1291                         xhci->erst.num_entries,
1292                         xhci->erst.entries,
1293                         (unsigned long long)xhci->erst.erst_dma_addr);
1294
1295         /* set ring base address and size for each segment table entry */
1296         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1297                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1298                 entry->seg_addr = seg->dma;
1299                 entry->seg_size = TRBS_PER_SEGMENT;
1300                 entry->rsvd = 0;
1301                 seg = seg->next;
1302         }
1303
1304         /* set ERST count with the number of entries in the segment table */
1305         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1306         val &= ERST_SIZE_MASK;
1307         val |= ERST_NUM_SEGS;
1308         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1309                         val);
1310         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1311
1312         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1313         /* set the segment table base address */
1314         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1315                         (unsigned long long)xhci->erst.erst_dma_addr);
1316         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1317         val_64 &= ERST_PTR_MASK;
1318         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1319         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1320
1321         /* Set the event ring dequeue address */
1322         xhci_set_hc_event_deq(xhci);
1323         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1324         xhci_print_ir_set(xhci, xhci->ir_set, 0);
1325
1326         /*
1327          * XXX: Might need to set the Interrupter Moderation Register to
1328          * something other than the default (~1ms minimum between interrupts).
1329          * See section 5.5.1.2.
1330          */
1331         init_completion(&xhci->addr_dev);
1332         for (i = 0; i < MAX_HC_SLOTS; ++i)
1333                 xhci->devs[i] = 0;
1334
1335         if (scratchpad_alloc(xhci, flags))
1336                 goto fail;
1337
1338         return 0;
1339
1340 fail:
1341         xhci_warn(xhci, "Couldn't initialize memory\n");
1342         xhci_mem_cleanup(xhci);
1343         return -ENOMEM;
1344 }