USB: fix resource leak in xhci power loss path
[pandora-kernel.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38                                         unsigned int cycle_state, gfp_t flags)
39 {
40         struct xhci_segment *seg;
41         dma_addr_t      dma;
42         int             i;
43
44         seg = kzalloc(sizeof *seg, flags);
45         if (!seg)
46                 return NULL;
47
48         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49         if (!seg->trbs) {
50                 kfree(seg);
51                 return NULL;
52         }
53
54         memset(seg->trbs, 0, SEGMENT_SIZE);
55         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56         if (cycle_state == 0) {
57                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58                         seg->trbs[i].link.control |= TRB_CYCLE;
59         }
60         seg->dma = dma;
61         seg->next = NULL;
62
63         return seg;
64 }
65
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68         if (seg->trbs) {
69                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70                 seg->trbs = NULL;
71         }
72         kfree(seg);
73 }
74
75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76                                 struct xhci_segment *first)
77 {
78         struct xhci_segment *seg;
79
80         seg = first->next;
81         while (seg != first) {
82                 struct xhci_segment *next = seg->next;
83                 xhci_segment_free(xhci, seg);
84                 seg = next;
85         }
86         xhci_segment_free(xhci, first);
87 }
88
89 /*
90  * Make the prev segment point to the next segment.
91  *
92  * Change the last TRB in the prev segment to be a Link TRB which points to the
93  * DMA address of the next segment.  The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97                 struct xhci_segment *next, enum xhci_ring_type type)
98 {
99         u32 val;
100
101         if (!prev || !next)
102                 return;
103         prev->next = next;
104         if (type != TYPE_EVENT) {
105                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106                         cpu_to_le64(next->dma);
107
108                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110                 val &= ~TRB_TYPE_BITMASK;
111                 val |= TRB_TYPE(TRB_LINK);
112                 /* Always set the chain bit with 0.95 hardware */
113                 /* Set chain bit for isoc rings on AMD 0.96 host */
114                 if (xhci_link_trb_quirk(xhci) ||
115                                 (type == TYPE_ISOC &&
116                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
117                         val |= TRB_CHAIN;
118                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119         }
120 }
121
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127                 struct xhci_segment *first, struct xhci_segment *last,
128                 unsigned int num_segs)
129 {
130         struct xhci_segment *next;
131
132         if (!ring || !first || !last)
133                 return;
134
135         next = ring->enq_seg->next;
136         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137         xhci_link_segments(xhci, last, next, ring->type);
138         ring->num_segs += num_segs;
139         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140
141         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143                         &= ~cpu_to_le32(LINK_TOGGLE);
144                 last->trbs[TRBS_PER_SEGMENT-1].link.control
145                         |= cpu_to_le32(LINK_TOGGLE);
146                 ring->last_seg = last;
147         }
148 }
149
150 /* XXX: Do we need the hcd structure in all these functions? */
151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153         if (!ring)
154                 return;
155
156         if (ring->first_seg)
157                 xhci_free_segments_for_ring(xhci, ring->first_seg);
158
159         kfree(ring);
160 }
161
162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163                                         unsigned int cycle_state)
164 {
165         /* The ring is empty, so the enqueue pointer == dequeue pointer */
166         ring->enqueue = ring->first_seg->trbs;
167         ring->enq_seg = ring->first_seg;
168         ring->dequeue = ring->enqueue;
169         ring->deq_seg = ring->first_seg;
170         /* The ring is initialized to 0. The producer must write 1 to the cycle
171          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
172          * compare CCS to the cycle bit to check ownership, so CCS = 1.
173          *
174          * New rings are initialized with cycle state equal to 1; if we are
175          * handling ring expansion, set the cycle state equal to the old ring.
176          */
177         ring->cycle_state = cycle_state;
178         /* Not necessary for new rings, but needed for re-initialized rings */
179         ring->enq_updates = 0;
180         ring->deq_updates = 0;
181
182         /*
183          * Each segment has a link TRB, and leave an extra TRB for SW
184          * accounting purpose
185          */
186         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188
189 /* Allocate segments and link them for a ring */
190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191                 struct xhci_segment **first, struct xhci_segment **last,
192                 unsigned int num_segs, unsigned int cycle_state,
193                 enum xhci_ring_type type, gfp_t flags)
194 {
195         struct xhci_segment *prev;
196
197         prev = xhci_segment_alloc(xhci, cycle_state, flags);
198         if (!prev)
199                 return -ENOMEM;
200         num_segs--;
201
202         *first = prev;
203         while (num_segs > 0) {
204                 struct xhci_segment     *next;
205
206                 next = xhci_segment_alloc(xhci, cycle_state, flags);
207                 if (!next) {
208                         xhci_free_segments_for_ring(xhci, *first);
209                         return -ENOMEM;
210                 }
211                 xhci_link_segments(xhci, prev, next, type);
212
213                 prev = next;
214                 num_segs--;
215         }
216         xhci_link_segments(xhci, prev, *first, type);
217         *last = prev;
218
219         return 0;
220 }
221
222 /**
223  * Create a new ring with zero or more segments.
224  *
225  * Link each segment together into a ring.
226  * Set the end flag and the cycle toggle bit on the last segment.
227  * See section 4.9.1 and figures 15 and 16.
228  */
229 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
230                 unsigned int num_segs, unsigned int cycle_state,
231                 enum xhci_ring_type type, gfp_t flags)
232 {
233         struct xhci_ring        *ring;
234         int ret;
235
236         ring = kzalloc(sizeof *(ring), flags);
237         if (!ring)
238                 return NULL;
239
240         ring->num_segs = num_segs;
241         INIT_LIST_HEAD(&ring->td_list);
242         ring->type = type;
243         if (num_segs == 0)
244                 return ring;
245
246         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
247                         &ring->last_seg, num_segs, cycle_state, type, flags);
248         if (ret)
249                 goto fail;
250
251         /* Only event ring does not use link TRB */
252         if (type != TYPE_EVENT) {
253                 /* See section 4.9.2.1 and 6.4.4.1 */
254                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
255                         cpu_to_le32(LINK_TOGGLE);
256         }
257         xhci_initialize_ring_info(ring, cycle_state);
258         return ring;
259
260 fail:
261         xhci_ring_free(xhci, ring);
262         return NULL;
263 }
264
265 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
266                 struct xhci_virt_device *virt_dev,
267                 unsigned int ep_index)
268 {
269         int rings_cached;
270
271         rings_cached = virt_dev->num_rings_cached;
272         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
273                 virt_dev->ring_cache[rings_cached] =
274                         virt_dev->eps[ep_index].ring;
275                 virt_dev->num_rings_cached++;
276                 xhci_dbg(xhci, "Cached old ring, "
277                                 "%d ring%s cached\n",
278                                 virt_dev->num_rings_cached,
279                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
280         } else {
281                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
282                 xhci_dbg(xhci, "Ring cache full (%d rings), "
283                                 "freeing ring\n",
284                                 virt_dev->num_rings_cached);
285         }
286         virt_dev->eps[ep_index].ring = NULL;
287 }
288
289 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
290  * pointers to the beginning of the ring.
291  */
292 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
293                         struct xhci_ring *ring, unsigned int cycle_state,
294                         enum xhci_ring_type type)
295 {
296         struct xhci_segment     *seg = ring->first_seg;
297         int i;
298
299         do {
300                 memset(seg->trbs, 0,
301                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
302                 if (cycle_state == 0) {
303                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
304                                 seg->trbs[i].link.control |= TRB_CYCLE;
305                 }
306                 /* All endpoint rings have link TRBs */
307                 xhci_link_segments(xhci, seg, seg->next, type);
308                 seg = seg->next;
309         } while (seg != ring->first_seg);
310         ring->type = type;
311         xhci_initialize_ring_info(ring, cycle_state);
312         /* td list should be empty since all URBs have been cancelled,
313          * but just in case...
314          */
315         INIT_LIST_HEAD(&ring->td_list);
316 }
317
318 /*
319  * Expand an existing ring.
320  * Look for a cached ring or allocate a new ring which has same segment numbers
321  * and link the two rings.
322  */
323 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
324                                 unsigned int num_trbs, gfp_t flags)
325 {
326         struct xhci_segment     *first;
327         struct xhci_segment     *last;
328         unsigned int            num_segs;
329         unsigned int            num_segs_needed;
330         int                     ret;
331
332         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
333                                 (TRBS_PER_SEGMENT - 1);
334
335         /* Allocate number of segments we needed, or double the ring size */
336         num_segs = ring->num_segs > num_segs_needed ?
337                         ring->num_segs : num_segs_needed;
338
339         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
340                         num_segs, ring->cycle_state, ring->type, flags);
341         if (ret)
342                 return -ENOMEM;
343
344         xhci_link_rings(xhci, ring, first, last, num_segs);
345         xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
346                         ring->num_segs);
347
348         return 0;
349 }
350
351 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
352
353 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
354                                                     int type, gfp_t flags)
355 {
356         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
357         if (!ctx)
358                 return NULL;
359
360         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
361         ctx->type = type;
362         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
363         if (type == XHCI_CTX_TYPE_INPUT)
364                 ctx->size += CTX_SIZE(xhci->hcc_params);
365
366         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
367         memset(ctx->bytes, 0, ctx->size);
368         return ctx;
369 }
370
371 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
372                              struct xhci_container_ctx *ctx)
373 {
374         if (!ctx)
375                 return;
376         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
377         kfree(ctx);
378 }
379
380 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
381                                               struct xhci_container_ctx *ctx)
382 {
383         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
384         return (struct xhci_input_control_ctx *)ctx->bytes;
385 }
386
387 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
388                                         struct xhci_container_ctx *ctx)
389 {
390         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
391                 return (struct xhci_slot_ctx *)ctx->bytes;
392
393         return (struct xhci_slot_ctx *)
394                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
395 }
396
397 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
398                                     struct xhci_container_ctx *ctx,
399                                     unsigned int ep_index)
400 {
401         /* increment ep index by offset of start of ep ctx array */
402         ep_index++;
403         if (ctx->type == XHCI_CTX_TYPE_INPUT)
404                 ep_index++;
405
406         return (struct xhci_ep_ctx *)
407                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
408 }
409
410
411 /***************** Streams structures manipulation *************************/
412
413 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
414                 unsigned int num_stream_ctxs,
415                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
416 {
417         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418
419         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
420                 dma_free_coherent(&pdev->dev,
421                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
422                                 stream_ctx, dma);
423         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
424                 return dma_pool_free(xhci->small_streams_pool,
425                                 stream_ctx, dma);
426         else
427                 return dma_pool_free(xhci->medium_streams_pool,
428                                 stream_ctx, dma);
429 }
430
431 /*
432  * The stream context array for each endpoint with bulk streams enabled can
433  * vary in size, based on:
434  *  - how many streams the endpoint supports,
435  *  - the maximum primary stream array size the host controller supports,
436  *  - and how many streams the device driver asks for.
437  *
438  * The stream context array must be a power of 2, and can be as small as
439  * 64 bytes or as large as 1MB.
440  */
441 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
442                 unsigned int num_stream_ctxs, dma_addr_t *dma,
443                 gfp_t mem_flags)
444 {
445         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
446
447         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
448                 return dma_alloc_coherent(&pdev->dev,
449                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
450                                 dma, mem_flags);
451         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
452                 return dma_pool_alloc(xhci->small_streams_pool,
453                                 mem_flags, dma);
454         else
455                 return dma_pool_alloc(xhci->medium_streams_pool,
456                                 mem_flags, dma);
457 }
458
459 struct xhci_ring *xhci_dma_to_transfer_ring(
460                 struct xhci_virt_ep *ep,
461                 u64 address)
462 {
463         if (ep->ep_state & EP_HAS_STREAMS)
464                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
465                                 address >> SEGMENT_SHIFT);
466         return ep->ring;
467 }
468
469 /* Only use this when you know stream_info is valid */
470 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
471 static struct xhci_ring *dma_to_stream_ring(
472                 struct xhci_stream_info *stream_info,
473                 u64 address)
474 {
475         return radix_tree_lookup(&stream_info->trb_address_map,
476                         address >> SEGMENT_SHIFT);
477 }
478 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
479
480 struct xhci_ring *xhci_stream_id_to_ring(
481                 struct xhci_virt_device *dev,
482                 unsigned int ep_index,
483                 unsigned int stream_id)
484 {
485         struct xhci_virt_ep *ep = &dev->eps[ep_index];
486
487         if (stream_id == 0)
488                 return ep->ring;
489         if (!ep->stream_info)
490                 return NULL;
491
492         if (stream_id > ep->stream_info->num_streams)
493                 return NULL;
494         return ep->stream_info->stream_rings[stream_id];
495 }
496
497 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
498 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
499                 unsigned int num_streams,
500                 struct xhci_stream_info *stream_info)
501 {
502         u32 cur_stream;
503         struct xhci_ring *cur_ring;
504         u64 addr;
505
506         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
507                 struct xhci_ring *mapped_ring;
508                 int trb_size = sizeof(union xhci_trb);
509
510                 cur_ring = stream_info->stream_rings[cur_stream];
511                 for (addr = cur_ring->first_seg->dma;
512                                 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
513                                 addr += trb_size) {
514                         mapped_ring = dma_to_stream_ring(stream_info, addr);
515                         if (cur_ring != mapped_ring) {
516                                 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
517                                                 "didn't map to stream ID %u; "
518                                                 "mapped to ring %p\n",
519                                                 (unsigned long long) addr,
520                                                 cur_stream,
521                                                 mapped_ring);
522                                 return -EINVAL;
523                         }
524                 }
525                 /* One TRB after the end of the ring segment shouldn't return a
526                  * pointer to the current ring (although it may be a part of a
527                  * different ring).
528                  */
529                 mapped_ring = dma_to_stream_ring(stream_info, addr);
530                 if (mapped_ring != cur_ring) {
531                         /* One TRB before should also fail */
532                         addr = cur_ring->first_seg->dma - trb_size;
533                         mapped_ring = dma_to_stream_ring(stream_info, addr);
534                 }
535                 if (mapped_ring == cur_ring) {
536                         xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
537                                         "mapped to valid stream ID %u; "
538                                         "mapped ring = %p\n",
539                                         (unsigned long long) addr,
540                                         cur_stream,
541                                         mapped_ring);
542                         return -EINVAL;
543                 }
544         }
545         return 0;
546 }
547 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
548
549 /*
550  * Change an endpoint's internal structure so it supports stream IDs.  The
551  * number of requested streams includes stream 0, which cannot be used by device
552  * drivers.
553  *
554  * The number of stream contexts in the stream context array may be bigger than
555  * the number of streams the driver wants to use.  This is because the number of
556  * stream context array entries must be a power of two.
557  *
558  * We need a radix tree for mapping physical addresses of TRBs to which stream
559  * ID they belong to.  We need to do this because the host controller won't tell
560  * us which stream ring the TRB came from.  We could store the stream ID in an
561  * event data TRB, but that doesn't help us for the cancellation case, since the
562  * endpoint may stop before it reaches that event data TRB.
563  *
564  * The radix tree maps the upper portion of the TRB DMA address to a ring
565  * segment that has the same upper portion of DMA addresses.  For example, say I
566  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
567  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
568  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
569  * pass the radix tree a key to get the right stream ID:
570  *
571  *      0x10c90fff >> 10 = 0x43243
572  *      0x10c912c0 >> 10 = 0x43244
573  *      0x10c91400 >> 10 = 0x43245
574  *
575  * Obviously, only those TRBs with DMA addresses that are within the segment
576  * will make the radix tree return the stream ID for that ring.
577  *
578  * Caveats for the radix tree:
579  *
580  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
581  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
582  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
583  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
584  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
585  * extended systems (where the DMA address can be bigger than 32-bits),
586  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
587  */
588 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
589                 unsigned int num_stream_ctxs,
590                 unsigned int num_streams, gfp_t mem_flags)
591 {
592         struct xhci_stream_info *stream_info;
593         u32 cur_stream;
594         struct xhci_ring *cur_ring;
595         unsigned long key;
596         u64 addr;
597         int ret;
598
599         xhci_dbg(xhci, "Allocating %u streams and %u "
600                         "stream context array entries.\n",
601                         num_streams, num_stream_ctxs);
602         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
603                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
604                 return NULL;
605         }
606         xhci->cmd_ring_reserved_trbs++;
607
608         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
609         if (!stream_info)
610                 goto cleanup_trbs;
611
612         stream_info->num_streams = num_streams;
613         stream_info->num_stream_ctxs = num_stream_ctxs;
614
615         /* Initialize the array of virtual pointers to stream rings. */
616         stream_info->stream_rings = kzalloc(
617                         sizeof(struct xhci_ring *)*num_streams,
618                         mem_flags);
619         if (!stream_info->stream_rings)
620                 goto cleanup_info;
621
622         /* Initialize the array of DMA addresses for stream rings for the HW. */
623         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
624                         num_stream_ctxs, &stream_info->ctx_array_dma,
625                         mem_flags);
626         if (!stream_info->stream_ctx_array)
627                 goto cleanup_ctx;
628         memset(stream_info->stream_ctx_array, 0,
629                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
630
631         /* Allocate everything needed to free the stream rings later */
632         stream_info->free_streams_command =
633                 xhci_alloc_command(xhci, true, true, mem_flags);
634         if (!stream_info->free_streams_command)
635                 goto cleanup_ctx;
636
637         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
638
639         /* Allocate rings for all the streams that the driver will use,
640          * and add their segment DMA addresses to the radix tree.
641          * Stream 0 is reserved.
642          */
643         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
644                 stream_info->stream_rings[cur_stream] =
645                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
646                 cur_ring = stream_info->stream_rings[cur_stream];
647                 if (!cur_ring)
648                         goto cleanup_rings;
649                 cur_ring->stream_id = cur_stream;
650                 /* Set deq ptr, cycle bit, and stream context type */
651                 addr = cur_ring->first_seg->dma |
652                         SCT_FOR_CTX(SCT_PRI_TR) |
653                         cur_ring->cycle_state;
654                 stream_info->stream_ctx_array[cur_stream].stream_ring =
655                         cpu_to_le64(addr);
656                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
657                                 cur_stream, (unsigned long long) addr);
658
659                 key = (unsigned long)
660                         (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
661                 ret = radix_tree_insert(&stream_info->trb_address_map,
662                                 key, cur_ring);
663                 if (ret) {
664                         xhci_ring_free(xhci, cur_ring);
665                         stream_info->stream_rings[cur_stream] = NULL;
666                         goto cleanup_rings;
667                 }
668         }
669         /* Leave the other unused stream ring pointers in the stream context
670          * array initialized to zero.  This will cause the xHC to give us an
671          * error if the device asks for a stream ID we don't have setup (if it
672          * was any other way, the host controller would assume the ring is
673          * "empty" and wait forever for data to be queued to that stream ID).
674          */
675 #if XHCI_DEBUG
676         /* Do a little test on the radix tree to make sure it returns the
677          * correct values.
678          */
679         if (xhci_test_radix_tree(xhci, num_streams, stream_info))
680                 goto cleanup_rings;
681 #endif
682
683         return stream_info;
684
685 cleanup_rings:
686         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
687                 cur_ring = stream_info->stream_rings[cur_stream];
688                 if (cur_ring) {
689                         addr = cur_ring->first_seg->dma;
690                         radix_tree_delete(&stream_info->trb_address_map,
691                                         addr >> SEGMENT_SHIFT);
692                         xhci_ring_free(xhci, cur_ring);
693                         stream_info->stream_rings[cur_stream] = NULL;
694                 }
695         }
696         xhci_free_command(xhci, stream_info->free_streams_command);
697 cleanup_ctx:
698         kfree(stream_info->stream_rings);
699 cleanup_info:
700         kfree(stream_info);
701 cleanup_trbs:
702         xhci->cmd_ring_reserved_trbs--;
703         return NULL;
704 }
705 /*
706  * Sets the MaxPStreams field and the Linear Stream Array field.
707  * Sets the dequeue pointer to the stream context array.
708  */
709 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
710                 struct xhci_ep_ctx *ep_ctx,
711                 struct xhci_stream_info *stream_info)
712 {
713         u32 max_primary_streams;
714         /* MaxPStreams is the number of stream context array entries, not the
715          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
716          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
717          */
718         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
719         xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
720                         1 << (max_primary_streams + 1));
721         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
722         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
723                                        | EP_HAS_LSA);
724         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
725 }
726
727 /*
728  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
729  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
730  * not at the beginning of the ring).
731  */
732 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
733                 struct xhci_ep_ctx *ep_ctx,
734                 struct xhci_virt_ep *ep)
735 {
736         dma_addr_t addr;
737         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
738         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
739         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
740 }
741
742 /* Frees all stream contexts associated with the endpoint,
743  *
744  * Caller should fix the endpoint context streams fields.
745  */
746 void xhci_free_stream_info(struct xhci_hcd *xhci,
747                 struct xhci_stream_info *stream_info)
748 {
749         int cur_stream;
750         struct xhci_ring *cur_ring;
751         dma_addr_t addr;
752
753         if (!stream_info)
754                 return;
755
756         for (cur_stream = 1; cur_stream < stream_info->num_streams;
757                         cur_stream++) {
758                 cur_ring = stream_info->stream_rings[cur_stream];
759                 if (cur_ring) {
760                         addr = cur_ring->first_seg->dma;
761                         radix_tree_delete(&stream_info->trb_address_map,
762                                         addr >> SEGMENT_SHIFT);
763                         xhci_ring_free(xhci, cur_ring);
764                         stream_info->stream_rings[cur_stream] = NULL;
765                 }
766         }
767         xhci_free_command(xhci, stream_info->free_streams_command);
768         xhci->cmd_ring_reserved_trbs--;
769         if (stream_info->stream_ctx_array)
770                 xhci_free_stream_ctx(xhci,
771                                 stream_info->num_stream_ctxs,
772                                 stream_info->stream_ctx_array,
773                                 stream_info->ctx_array_dma);
774
775         if (stream_info)
776                 kfree(stream_info->stream_rings);
777         kfree(stream_info);
778 }
779
780
781 /***************** Device context manipulation *************************/
782
783 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
784                 struct xhci_virt_ep *ep)
785 {
786         init_timer(&ep->stop_cmd_timer);
787         ep->stop_cmd_timer.data = (unsigned long) ep;
788         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
789         ep->xhci = xhci;
790 }
791
792 static void xhci_free_tt_info(struct xhci_hcd *xhci,
793                 struct xhci_virt_device *virt_dev,
794                 int slot_id)
795 {
796         struct list_head *tt;
797         struct list_head *tt_list_head;
798         struct list_head *tt_next;
799         struct xhci_tt_bw_info *tt_info;
800
801         /* If the device never made it past the Set Address stage,
802          * it may not have the real_port set correctly.
803          */
804         if (virt_dev->real_port == 0 ||
805                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
806                 xhci_dbg(xhci, "Bad real port.\n");
807                 return;
808         }
809
810         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
811         if (list_empty(tt_list_head))
812                 return;
813
814         list_for_each(tt, tt_list_head) {
815                 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
816                 if (tt_info->slot_id == slot_id)
817                         break;
818         }
819         /* Cautionary measure in case the hub was disconnected before we
820          * stored the TT information.
821          */
822         if (tt_info->slot_id != slot_id)
823                 return;
824
825         tt_next = tt->next;
826         tt_info = list_entry(tt, struct xhci_tt_bw_info,
827                         tt_list);
828         /* Multi-TT hubs will have more than one entry */
829         do {
830                 list_del(tt);
831                 kfree(tt_info);
832                 tt = tt_next;
833                 if (list_empty(tt_list_head))
834                         break;
835                 tt_next = tt->next;
836                 tt_info = list_entry(tt, struct xhci_tt_bw_info,
837                                 tt_list);
838         } while (tt_info->slot_id == slot_id);
839 }
840
841 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
842                 struct xhci_virt_device *virt_dev,
843                 struct usb_device *hdev,
844                 struct usb_tt *tt, gfp_t mem_flags)
845 {
846         struct xhci_tt_bw_info          *tt_info;
847         unsigned int                    num_ports;
848         int                             i, j;
849
850         if (!tt->multi)
851                 num_ports = 1;
852         else
853                 num_ports = hdev->maxchild;
854
855         for (i = 0; i < num_ports; i++, tt_info++) {
856                 struct xhci_interval_bw_table *bw_table;
857
858                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
859                 if (!tt_info)
860                         goto free_tts;
861                 INIT_LIST_HEAD(&tt_info->tt_list);
862                 list_add(&tt_info->tt_list,
863                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
864                 tt_info->slot_id = virt_dev->udev->slot_id;
865                 if (tt->multi)
866                         tt_info->ttport = i+1;
867                 bw_table = &tt_info->bw_table;
868                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
869                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
870         }
871         return 0;
872
873 free_tts:
874         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
875         return -ENOMEM;
876 }
877
878
879 /* All the xhci_tds in the ring's TD list should be freed at this point.
880  * Should be called with xhci->lock held if there is any chance the TT lists
881  * will be manipulated by the configure endpoint, allocate device, or update
882  * hub functions while this function is removing the TT entries from the list.
883  */
884 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
885 {
886         struct xhci_virt_device *dev;
887         int i;
888         int old_active_eps = 0;
889
890         /* Slot ID 0 is reserved */
891         if (slot_id == 0 || !xhci->devs[slot_id])
892                 return;
893
894         dev = xhci->devs[slot_id];
895         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
896         if (!dev)
897                 return;
898
899         if (dev->tt_info)
900                 old_active_eps = dev->tt_info->active_eps;
901
902         for (i = 0; i < 31; ++i) {
903                 if (dev->eps[i].ring)
904                         xhci_ring_free(xhci, dev->eps[i].ring);
905                 if (dev->eps[i].stream_info)
906                         xhci_free_stream_info(xhci,
907                                         dev->eps[i].stream_info);
908                 /* Endpoints on the TT/root port lists should have been removed
909                  * when usb_disable_device() was called for the device.
910                  * We can't drop them anyway, because the udev might have gone
911                  * away by this point, and we can't tell what speed it was.
912                  */
913                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
914                         xhci_warn(xhci, "Slot %u endpoint %u "
915                                         "not removed from BW list!\n",
916                                         slot_id, i);
917         }
918         /* If this is a hub, free the TT(s) from the TT list */
919         xhci_free_tt_info(xhci, dev, slot_id);
920         /* If necessary, update the number of active TTs on this root port */
921         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
922
923         if (dev->ring_cache) {
924                 for (i = 0; i < dev->num_rings_cached; i++)
925                         xhci_ring_free(xhci, dev->ring_cache[i]);
926                 kfree(dev->ring_cache);
927         }
928
929         if (dev->in_ctx)
930                 xhci_free_container_ctx(xhci, dev->in_ctx);
931         if (dev->out_ctx)
932                 xhci_free_container_ctx(xhci, dev->out_ctx);
933
934         kfree(xhci->devs[slot_id]);
935         xhci->devs[slot_id] = NULL;
936 }
937
938 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
939                 struct usb_device *udev, gfp_t flags)
940 {
941         struct xhci_virt_device *dev;
942         int i;
943
944         /* Slot ID 0 is reserved */
945         if (slot_id == 0 || xhci->devs[slot_id]) {
946                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
947                 return 0;
948         }
949
950         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
951         if (!xhci->devs[slot_id])
952                 return 0;
953         dev = xhci->devs[slot_id];
954
955         /* Allocate the (output) device context that will be used in the HC. */
956         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
957         if (!dev->out_ctx)
958                 goto fail;
959
960         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
961                         (unsigned long long)dev->out_ctx->dma);
962
963         /* Allocate the (input) device context for address device command */
964         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
965         if (!dev->in_ctx)
966                 goto fail;
967
968         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
969                         (unsigned long long)dev->in_ctx->dma);
970
971         /* Initialize the cancellation list and watchdog timers for each ep */
972         for (i = 0; i < 31; i++) {
973                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
974                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
975                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
976         }
977
978         /* Allocate endpoint 0 ring */
979         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
980         if (!dev->eps[0].ring)
981                 goto fail;
982
983         /* Allocate pointers to the ring cache */
984         dev->ring_cache = kzalloc(
985                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
986                         flags);
987         if (!dev->ring_cache)
988                 goto fail;
989         dev->num_rings_cached = 0;
990
991         init_completion(&dev->cmd_completion);
992         INIT_LIST_HEAD(&dev->cmd_list);
993         dev->udev = udev;
994
995         /* Point to output device context in dcbaa. */
996         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
997         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
998                  slot_id,
999                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1000                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1001
1002         return 1;
1003 fail:
1004         xhci_free_virt_device(xhci, slot_id);
1005         return 0;
1006 }
1007
1008 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1009                 struct usb_device *udev)
1010 {
1011         struct xhci_virt_device *virt_dev;
1012         struct xhci_ep_ctx      *ep0_ctx;
1013         struct xhci_ring        *ep_ring;
1014
1015         virt_dev = xhci->devs[udev->slot_id];
1016         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1017         ep_ring = virt_dev->eps[0].ring;
1018         /*
1019          * FIXME we don't keep track of the dequeue pointer very well after a
1020          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1021          * host to our enqueue pointer.  This should only be called after a
1022          * configured device has reset, so all control transfers should have
1023          * been completed or cancelled before the reset.
1024          */
1025         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1026                                                         ep_ring->enqueue)
1027                                    | ep_ring->cycle_state);
1028 }
1029
1030 /*
1031  * The xHCI roothub may have ports of differing speeds in any order in the port
1032  * status registers.  xhci->port_array provides an array of the port speed for
1033  * each offset into the port status registers.
1034  *
1035  * The xHCI hardware wants to know the roothub port number that the USB device
1036  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1037  * know is the index of that port under either the USB 2.0 or the USB 3.0
1038  * roothub, but that doesn't give us the real index into the HW port status
1039  * registers.  Scan through the xHCI roothub port array, looking for the Nth
1040  * entry of the correct port speed.  Return the port number of that entry.
1041  */
1042 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1043                 struct usb_device *udev)
1044 {
1045         struct usb_device *top_dev;
1046         unsigned int num_similar_speed_ports;
1047         unsigned int faked_port_num;
1048         int i;
1049
1050         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1051                         top_dev = top_dev->parent)
1052                 /* Found device below root hub */;
1053         faked_port_num = top_dev->portnum;
1054         for (i = 0, num_similar_speed_ports = 0;
1055                         i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1056                 u8 port_speed = xhci->port_array[i];
1057
1058                 /*
1059                  * Skip ports that don't have known speeds, or have duplicate
1060                  * Extended Capabilities port speed entries.
1061                  */
1062                 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1063                         continue;
1064
1065                 /*
1066                  * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1067                  * 1.1 ports are under the USB 2.0 hub.  If the port speed
1068                  * matches the device speed, it's a similar speed port.
1069                  */
1070                 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1071                         num_similar_speed_ports++;
1072                 if (num_similar_speed_ports == faked_port_num)
1073                         /* Roothub ports are numbered from 1 to N */
1074                         return i+1;
1075         }
1076         return 0;
1077 }
1078
1079 /* Setup an xHCI virtual device for a Set Address command */
1080 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1081 {
1082         struct xhci_virt_device *dev;
1083         struct xhci_ep_ctx      *ep0_ctx;
1084         struct xhci_slot_ctx    *slot_ctx;
1085         u32                     port_num;
1086         struct usb_device *top_dev;
1087
1088         dev = xhci->devs[udev->slot_id];
1089         /* Slot ID 0 is reserved */
1090         if (udev->slot_id == 0 || !dev) {
1091                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092                                 udev->slot_id);
1093                 return -EINVAL;
1094         }
1095         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097
1098         /* 3) Only the control endpoint is valid - one endpoint context */
1099         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100         switch (udev->speed) {
1101         case USB_SPEED_SUPER:
1102                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1103                 break;
1104         case USB_SPEED_HIGH:
1105                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1106                 break;
1107         case USB_SPEED_FULL:
1108                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1109                 break;
1110         case USB_SPEED_LOW:
1111                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1112                 break;
1113         case USB_SPEED_WIRELESS:
1114                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1115                 return -EINVAL;
1116                 break;
1117         default:
1118                 /* Speed was set earlier, this shouldn't happen. */
1119                 BUG();
1120         }
1121         /* Find the root hub port this device is under */
1122         port_num = xhci_find_real_port_number(xhci, udev);
1123         if (!port_num)
1124                 return -EINVAL;
1125         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1126         /* Set the port number in the virtual_device to the faked port number */
1127         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1128                         top_dev = top_dev->parent)
1129                 /* Found device below root hub */;
1130         dev->fake_port = top_dev->portnum;
1131         dev->real_port = port_num;
1132         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1133         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1134
1135         /* Find the right bandwidth table that this device will be a part of.
1136          * If this is a full speed device attached directly to a root port (or a
1137          * decendent of one), it counts as a primary bandwidth domain, not a
1138          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1139          * will never be created for the HS root hub.
1140          */
1141         if (!udev->tt || !udev->tt->hub->parent) {
1142                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1143         } else {
1144                 struct xhci_root_port_bw_info *rh_bw;
1145                 struct xhci_tt_bw_info *tt_bw;
1146
1147                 rh_bw = &xhci->rh_bw[port_num - 1];
1148                 /* Find the right TT. */
1149                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1150                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1151                                 continue;
1152
1153                         if (!dev->udev->tt->multi ||
1154                                         (udev->tt->multi &&
1155                                          tt_bw->ttport == dev->udev->ttport)) {
1156                                 dev->bw_table = &tt_bw->bw_table;
1157                                 dev->tt_info = tt_bw;
1158                                 break;
1159                         }
1160                 }
1161                 if (!dev->tt_info)
1162                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1163         }
1164
1165         /* Is this a LS/FS device under an external HS hub? */
1166         if (udev->tt && udev->tt->hub->parent) {
1167                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1168                                                 (udev->ttport << 8));
1169                 if (udev->tt->multi)
1170                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1171         }
1172         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1173         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1174
1175         /* Step 4 - ring already allocated */
1176         /* Step 5 */
1177         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1178         /*
1179          * XXX: Not sure about wireless USB devices.
1180          */
1181         switch (udev->speed) {
1182         case USB_SPEED_SUPER:
1183                 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1184                 break;
1185         case USB_SPEED_HIGH:
1186         /* USB core guesses at a 64-byte max packet first for FS devices */
1187         case USB_SPEED_FULL:
1188                 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1189                 break;
1190         case USB_SPEED_LOW:
1191                 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1192                 break;
1193         case USB_SPEED_WIRELESS:
1194                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1195                 return -EINVAL;
1196                 break;
1197         default:
1198                 /* New speed? */
1199                 BUG();
1200         }
1201         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1202         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1203
1204         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1205                                    dev->eps[0].ring->cycle_state);
1206
1207         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1208
1209         return 0;
1210 }
1211
1212 /*
1213  * Convert interval expressed as 2^(bInterval - 1) == interval into
1214  * straight exponent value 2^n == interval.
1215  *
1216  */
1217 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1218                 struct usb_host_endpoint *ep)
1219 {
1220         unsigned int interval;
1221
1222         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1223         if (interval != ep->desc.bInterval - 1)
1224                 dev_warn(&udev->dev,
1225                          "ep %#x - rounding interval to %d %sframes\n",
1226                          ep->desc.bEndpointAddress,
1227                          1 << interval,
1228                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1229
1230         if (udev->speed == USB_SPEED_FULL) {
1231                 /*
1232                  * Full speed isoc endpoints specify interval in frames,
1233                  * not microframes. We are using microframes everywhere,
1234                  * so adjust accordingly.
1235                  */
1236                 interval += 3;  /* 1 frame = 2^3 uframes */
1237         }
1238
1239         return interval;
1240 }
1241
1242 /*
1243  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1244  * microframes, rounded down to nearest power of 2.
1245  */
1246 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1247                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1248                 unsigned int min_exponent, unsigned int max_exponent)
1249 {
1250         unsigned int interval;
1251
1252         interval = fls(desc_interval) - 1;
1253         interval = clamp_val(interval, min_exponent, max_exponent);
1254         if ((1 << interval) != desc_interval)
1255                 dev_warn(&udev->dev,
1256                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1257                          ep->desc.bEndpointAddress,
1258                          1 << interval,
1259                          desc_interval);
1260
1261         return interval;
1262 }
1263
1264 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1265                 struct usb_host_endpoint *ep)
1266 {
1267         return xhci_microframes_to_exponent(udev, ep,
1268                         ep->desc.bInterval, 0, 15);
1269 }
1270
1271
1272 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1273                 struct usb_host_endpoint *ep)
1274 {
1275         return xhci_microframes_to_exponent(udev, ep,
1276                         ep->desc.bInterval * 8, 3, 10);
1277 }
1278
1279 /* Return the polling or NAK interval.
1280  *
1281  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1282  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1283  *
1284  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1285  * is set to 0.
1286  */
1287 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1288                 struct usb_host_endpoint *ep)
1289 {
1290         unsigned int interval = 0;
1291
1292         switch (udev->speed) {
1293         case USB_SPEED_HIGH:
1294                 /* Max NAK rate */
1295                 if (usb_endpoint_xfer_control(&ep->desc) ||
1296                     usb_endpoint_xfer_bulk(&ep->desc)) {
1297                         interval = xhci_parse_microframe_interval(udev, ep);
1298                         break;
1299                 }
1300                 /* Fall through - SS and HS isoc/int have same decoding */
1301
1302         case USB_SPEED_SUPER:
1303                 if (usb_endpoint_xfer_int(&ep->desc) ||
1304                     usb_endpoint_xfer_isoc(&ep->desc)) {
1305                         interval = xhci_parse_exponent_interval(udev, ep);
1306                 }
1307                 break;
1308
1309         case USB_SPEED_FULL:
1310                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1311                         interval = xhci_parse_exponent_interval(udev, ep);
1312                         break;
1313                 }
1314                 /*
1315                  * Fall through for interrupt endpoint interval decoding
1316                  * since it uses the same rules as low speed interrupt
1317                  * endpoints.
1318                  */
1319
1320         case USB_SPEED_LOW:
1321                 if (usb_endpoint_xfer_int(&ep->desc) ||
1322                     usb_endpoint_xfer_isoc(&ep->desc)) {
1323
1324                         interval = xhci_parse_frame_interval(udev, ep);
1325                 }
1326                 break;
1327
1328         default:
1329                 BUG();
1330         }
1331         return EP_INTERVAL(interval);
1332 }
1333
1334 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1335  * High speed endpoint descriptors can define "the number of additional
1336  * transaction opportunities per microframe", but that goes in the Max Burst
1337  * endpoint context field.
1338  */
1339 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1340                 struct usb_host_endpoint *ep)
1341 {
1342         if (udev->speed != USB_SPEED_SUPER ||
1343                         !usb_endpoint_xfer_isoc(&ep->desc))
1344                 return 0;
1345         return ep->ss_ep_comp.bmAttributes;
1346 }
1347
1348 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1349                 struct usb_host_endpoint *ep)
1350 {
1351         int in;
1352         u32 type;
1353
1354         in = usb_endpoint_dir_in(&ep->desc);
1355         if (usb_endpoint_xfer_control(&ep->desc)) {
1356                 type = EP_TYPE(CTRL_EP);
1357         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1358                 if (in)
1359                         type = EP_TYPE(BULK_IN_EP);
1360                 else
1361                         type = EP_TYPE(BULK_OUT_EP);
1362         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1363                 if (in)
1364                         type = EP_TYPE(ISOC_IN_EP);
1365                 else
1366                         type = EP_TYPE(ISOC_OUT_EP);
1367         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1368                 if (in)
1369                         type = EP_TYPE(INT_IN_EP);
1370                 else
1371                         type = EP_TYPE(INT_OUT_EP);
1372         } else {
1373                 BUG();
1374         }
1375         return type;
1376 }
1377
1378 /* Return the maximum endpoint service interval time (ESIT) payload.
1379  * Basically, this is the maxpacket size, multiplied by the burst size
1380  * and mult size.
1381  */
1382 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1383                 struct usb_device *udev,
1384                 struct usb_host_endpoint *ep)
1385 {
1386         int max_burst;
1387         int max_packet;
1388
1389         /* Only applies for interrupt or isochronous endpoints */
1390         if (usb_endpoint_xfer_control(&ep->desc) ||
1391                         usb_endpoint_xfer_bulk(&ep->desc))
1392                 return 0;
1393
1394         if (udev->speed == USB_SPEED_SUPER)
1395                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1396
1397         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1398         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1399         /* A 0 in max burst means 1 transfer per ESIT */
1400         return max_packet * (max_burst + 1);
1401 }
1402
1403 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1404  * Drivers will have to call usb_alloc_streams() to do that.
1405  */
1406 int xhci_endpoint_init(struct xhci_hcd *xhci,
1407                 struct xhci_virt_device *virt_dev,
1408                 struct usb_device *udev,
1409                 struct usb_host_endpoint *ep,
1410                 gfp_t mem_flags)
1411 {
1412         unsigned int ep_index;
1413         struct xhci_ep_ctx *ep_ctx;
1414         struct xhci_ring *ep_ring;
1415         unsigned int max_packet;
1416         unsigned int max_burst;
1417         enum xhci_ring_type type;
1418         u32 max_esit_payload;
1419
1420         ep_index = xhci_get_endpoint_index(&ep->desc);
1421         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1422
1423         type = usb_endpoint_type(&ep->desc);
1424         /* Set up the endpoint ring */
1425         virt_dev->eps[ep_index].new_ring =
1426                 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1427         if (!virt_dev->eps[ep_index].new_ring) {
1428                 /* Attempt to use the ring cache */
1429                 if (virt_dev->num_rings_cached == 0)
1430                         return -ENOMEM;
1431                 virt_dev->eps[ep_index].new_ring =
1432                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1433                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1434                 virt_dev->num_rings_cached--;
1435                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1436                                         1, type);
1437         }
1438         virt_dev->eps[ep_index].skip = false;
1439         ep_ring = virt_dev->eps[ep_index].new_ring;
1440         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1441
1442         ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1443                                       | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1444
1445         /* FIXME dig Mult and streams info out of ep companion desc */
1446
1447         /* Allow 3 retries for everything but isoc;
1448          * CErr shall be set to 0 for Isoch endpoints.
1449          */
1450         if (!usb_endpoint_xfer_isoc(&ep->desc))
1451                 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1452         else
1453                 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1454
1455         ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1456
1457         /* Set the max packet size and max burst */
1458         switch (udev->speed) {
1459         case USB_SPEED_SUPER:
1460                 max_packet = usb_endpoint_maxp(&ep->desc);
1461                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1462                 /* dig out max burst from ep companion desc */
1463                 max_packet = ep->ss_ep_comp.bMaxBurst;
1464                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1465                 break;
1466         case USB_SPEED_HIGH:
1467                 /* bits 11:12 specify the number of additional transaction
1468                  * opportunities per microframe (USB 2.0, section 9.6.6)
1469                  */
1470                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1471                                 usb_endpoint_xfer_int(&ep->desc)) {
1472                         max_burst = (usb_endpoint_maxp(&ep->desc)
1473                                      & 0x1800) >> 11;
1474                         ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1475                 }
1476                 /* Fall through */
1477         case USB_SPEED_FULL:
1478         case USB_SPEED_LOW:
1479                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1480                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1481                 break;
1482         default:
1483                 BUG();
1484         }
1485         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1486         ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1487
1488         /*
1489          * XXX no idea how to calculate the average TRB buffer length for bulk
1490          * endpoints, as the driver gives us no clue how big each scatter gather
1491          * list entry (or buffer) is going to be.
1492          *
1493          * For isochronous and interrupt endpoints, we set it to the max
1494          * available, until we have new API in the USB core to allow drivers to
1495          * declare how much bandwidth they actually need.
1496          *
1497          * Normally, it would be calculated by taking the total of the buffer
1498          * lengths in the TD and then dividing by the number of TRBs in a TD,
1499          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1500          * use Event Data TRBs, and we don't chain in a link TRB on short
1501          * transfers, we're basically dividing by 1.
1502          *
1503          * xHCI 1.0 specification indicates that the Average TRB Length should
1504          * be set to 8 for control endpoints.
1505          */
1506         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1507                 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1508         else
1509                 ep_ctx->tx_info |=
1510                          cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1511
1512         /* FIXME Debug endpoint context */
1513         return 0;
1514 }
1515
1516 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1517                 struct xhci_virt_device *virt_dev,
1518                 struct usb_host_endpoint *ep)
1519 {
1520         unsigned int ep_index;
1521         struct xhci_ep_ctx *ep_ctx;
1522
1523         ep_index = xhci_get_endpoint_index(&ep->desc);
1524         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1525
1526         ep_ctx->ep_info = 0;
1527         ep_ctx->ep_info2 = 0;
1528         ep_ctx->deq = 0;
1529         ep_ctx->tx_info = 0;
1530         /* Don't free the endpoint ring until the set interface or configuration
1531          * request succeeds.
1532          */
1533 }
1534
1535 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1536 {
1537         bw_info->ep_interval = 0;
1538         bw_info->mult = 0;
1539         bw_info->num_packets = 0;
1540         bw_info->max_packet_size = 0;
1541         bw_info->type = 0;
1542         bw_info->max_esit_payload = 0;
1543 }
1544
1545 void xhci_update_bw_info(struct xhci_hcd *xhci,
1546                 struct xhci_container_ctx *in_ctx,
1547                 struct xhci_input_control_ctx *ctrl_ctx,
1548                 struct xhci_virt_device *virt_dev)
1549 {
1550         struct xhci_bw_info *bw_info;
1551         struct xhci_ep_ctx *ep_ctx;
1552         unsigned int ep_type;
1553         int i;
1554
1555         for (i = 1; i < 31; ++i) {
1556                 bw_info = &virt_dev->eps[i].bw_info;
1557
1558                 /* We can't tell what endpoint type is being dropped, but
1559                  * unconditionally clearing the bandwidth info for non-periodic
1560                  * endpoints should be harmless because the info will never be
1561                  * set in the first place.
1562                  */
1563                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1564                         /* Dropped endpoint */
1565                         xhci_clear_endpoint_bw_info(bw_info);
1566                         continue;
1567                 }
1568
1569                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1570                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1571                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1572
1573                         /* Ignore non-periodic endpoints */
1574                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1575                                         ep_type != ISOC_IN_EP &&
1576                                         ep_type != INT_IN_EP)
1577                                 continue;
1578
1579                         /* Added or changed endpoint */
1580                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1581                                         le32_to_cpu(ep_ctx->ep_info));
1582                         /* Number of packets and mult are zero-based in the
1583                          * input context, but we want one-based for the
1584                          * interval table.
1585                          */
1586                         bw_info->mult = CTX_TO_EP_MULT(
1587                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1588                         bw_info->num_packets = CTX_TO_MAX_BURST(
1589                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1590                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1591                                         le32_to_cpu(ep_ctx->ep_info2));
1592                         bw_info->type = ep_type;
1593                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1594                                         le32_to_cpu(ep_ctx->tx_info));
1595                 }
1596         }
1597 }
1598
1599 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1600  * Useful when you want to change one particular aspect of the endpoint and then
1601  * issue a configure endpoint command.
1602  */
1603 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1604                 struct xhci_container_ctx *in_ctx,
1605                 struct xhci_container_ctx *out_ctx,
1606                 unsigned int ep_index)
1607 {
1608         struct xhci_ep_ctx *out_ep_ctx;
1609         struct xhci_ep_ctx *in_ep_ctx;
1610
1611         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1612         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1613
1614         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1615         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1616         in_ep_ctx->deq = out_ep_ctx->deq;
1617         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1618 }
1619
1620 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1621  * Useful when you want to change one particular aspect of the endpoint and then
1622  * issue a configure endpoint command.  Only the context entries field matters,
1623  * but we'll copy the whole thing anyway.
1624  */
1625 void xhci_slot_copy(struct xhci_hcd *xhci,
1626                 struct xhci_container_ctx *in_ctx,
1627                 struct xhci_container_ctx *out_ctx)
1628 {
1629         struct xhci_slot_ctx *in_slot_ctx;
1630         struct xhci_slot_ctx *out_slot_ctx;
1631
1632         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1633         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1634
1635         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1636         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1637         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1638         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1639 }
1640
1641 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1642 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1643 {
1644         int i;
1645         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1646         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1647
1648         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1649
1650         if (!num_sp)
1651                 return 0;
1652
1653         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1654         if (!xhci->scratchpad)
1655                 goto fail_sp;
1656
1657         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1658                                      num_sp * sizeof(u64),
1659                                      &xhci->scratchpad->sp_dma, flags);
1660         if (!xhci->scratchpad->sp_array)
1661                 goto fail_sp2;
1662
1663         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1664         if (!xhci->scratchpad->sp_buffers)
1665                 goto fail_sp3;
1666
1667         xhci->scratchpad->sp_dma_buffers =
1668                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1669
1670         if (!xhci->scratchpad->sp_dma_buffers)
1671                 goto fail_sp4;
1672
1673         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1674         for (i = 0; i < num_sp; i++) {
1675                 dma_addr_t dma;
1676                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1677                                 flags);
1678                 if (!buf)
1679                         goto fail_sp5;
1680
1681                 xhci->scratchpad->sp_array[i] = dma;
1682                 xhci->scratchpad->sp_buffers[i] = buf;
1683                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1684         }
1685
1686         return 0;
1687
1688  fail_sp5:
1689         for (i = i - 1; i >= 0; i--) {
1690                 dma_free_coherent(dev, xhci->page_size,
1691                                     xhci->scratchpad->sp_buffers[i],
1692                                     xhci->scratchpad->sp_dma_buffers[i]);
1693         }
1694         kfree(xhci->scratchpad->sp_dma_buffers);
1695
1696  fail_sp4:
1697         kfree(xhci->scratchpad->sp_buffers);
1698
1699  fail_sp3:
1700         dma_free_coherent(dev, num_sp * sizeof(u64),
1701                             xhci->scratchpad->sp_array,
1702                             xhci->scratchpad->sp_dma);
1703
1704  fail_sp2:
1705         kfree(xhci->scratchpad);
1706         xhci->scratchpad = NULL;
1707
1708  fail_sp:
1709         return -ENOMEM;
1710 }
1711
1712 static void scratchpad_free(struct xhci_hcd *xhci)
1713 {
1714         int num_sp;
1715         int i;
1716         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1717
1718         if (!xhci->scratchpad)
1719                 return;
1720
1721         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1722
1723         for (i = 0; i < num_sp; i++) {
1724                 dma_free_coherent(&pdev->dev, xhci->page_size,
1725                                     xhci->scratchpad->sp_buffers[i],
1726                                     xhci->scratchpad->sp_dma_buffers[i]);
1727         }
1728         kfree(xhci->scratchpad->sp_dma_buffers);
1729         kfree(xhci->scratchpad->sp_buffers);
1730         dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1731                             xhci->scratchpad->sp_array,
1732                             xhci->scratchpad->sp_dma);
1733         kfree(xhci->scratchpad);
1734         xhci->scratchpad = NULL;
1735 }
1736
1737 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1738                 bool allocate_in_ctx, bool allocate_completion,
1739                 gfp_t mem_flags)
1740 {
1741         struct xhci_command *command;
1742
1743         command = kzalloc(sizeof(*command), mem_flags);
1744         if (!command)
1745                 return NULL;
1746
1747         if (allocate_in_ctx) {
1748                 command->in_ctx =
1749                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1750                                         mem_flags);
1751                 if (!command->in_ctx) {
1752                         kfree(command);
1753                         return NULL;
1754                 }
1755         }
1756
1757         if (allocate_completion) {
1758                 command->completion =
1759                         kzalloc(sizeof(struct completion), mem_flags);
1760                 if (!command->completion) {
1761                         xhci_free_container_ctx(xhci, command->in_ctx);
1762                         kfree(command);
1763                         return NULL;
1764                 }
1765                 init_completion(command->completion);
1766         }
1767
1768         command->status = 0;
1769         INIT_LIST_HEAD(&command->cmd_list);
1770         return command;
1771 }
1772
1773 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1774 {
1775         if (urb_priv) {
1776                 kfree(urb_priv->td[0]);
1777                 kfree(urb_priv);
1778         }
1779 }
1780
1781 void xhci_free_command(struct xhci_hcd *xhci,
1782                 struct xhci_command *command)
1783 {
1784         xhci_free_container_ctx(xhci,
1785                         command->in_ctx);
1786         kfree(command->completion);
1787         kfree(command);
1788 }
1789
1790 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1791 {
1792         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1793         struct dev_info *dev_info, *next;
1794         struct list_head *tt_list_head;
1795         struct list_head *tt;
1796         struct list_head *endpoints;
1797         struct list_head *ep, *q;
1798         struct xhci_tt_bw_info *tt_info;
1799         struct xhci_interval_bw_table *bwt;
1800         struct xhci_virt_ep *virt_ep;
1801
1802         unsigned long   flags;
1803         int size;
1804         int i;
1805
1806         /* Free the Event Ring Segment Table and the actual Event Ring */
1807         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1808         if (xhci->erst.entries)
1809                 dma_free_coherent(&pdev->dev, size,
1810                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1811         xhci->erst.entries = NULL;
1812         xhci_dbg(xhci, "Freed ERST\n");
1813         if (xhci->event_ring)
1814                 xhci_ring_free(xhci, xhci->event_ring);
1815         xhci->event_ring = NULL;
1816         xhci_dbg(xhci, "Freed event ring\n");
1817
1818         if (xhci->cmd_ring)
1819                 xhci_ring_free(xhci, xhci->cmd_ring);
1820         xhci->cmd_ring = NULL;
1821         xhci_dbg(xhci, "Freed command ring\n");
1822
1823         for (i = 1; i < MAX_HC_SLOTS; ++i)
1824                 xhci_free_virt_device(xhci, i);
1825
1826         if (xhci->segment_pool)
1827                 dma_pool_destroy(xhci->segment_pool);
1828         xhci->segment_pool = NULL;
1829         xhci_dbg(xhci, "Freed segment pool\n");
1830
1831         if (xhci->device_pool)
1832                 dma_pool_destroy(xhci->device_pool);
1833         xhci->device_pool = NULL;
1834         xhci_dbg(xhci, "Freed device context pool\n");
1835
1836         if (xhci->small_streams_pool)
1837                 dma_pool_destroy(xhci->small_streams_pool);
1838         xhci->small_streams_pool = NULL;
1839         xhci_dbg(xhci, "Freed small stream array pool\n");
1840
1841         if (xhci->medium_streams_pool)
1842                 dma_pool_destroy(xhci->medium_streams_pool);
1843         xhci->medium_streams_pool = NULL;
1844         xhci_dbg(xhci, "Freed medium stream array pool\n");
1845
1846         if (xhci->dcbaa)
1847                 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1848                                 xhci->dcbaa, xhci->dcbaa->dma);
1849         xhci->dcbaa = NULL;
1850
1851         scratchpad_free(xhci);
1852
1853         spin_lock_irqsave(&xhci->lock, flags);
1854         list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1855                 list_del(&dev_info->list);
1856                 kfree(dev_info);
1857         }
1858         spin_unlock_irqrestore(&xhci->lock, flags);
1859
1860         bwt = &xhci->rh_bw->bw_table;
1861         for (i = 0; i < XHCI_MAX_INTERVAL; i++) {
1862                 endpoints = &bwt->interval_bw[i].endpoints;
1863                 list_for_each_safe(ep, q, endpoints) {
1864                         virt_ep = list_entry(ep, struct xhci_virt_ep, bw_endpoint_list);
1865                         list_del(&virt_ep->bw_endpoint_list);
1866                         kfree(virt_ep);
1867                 }
1868         }
1869
1870         tt_list_head = &xhci->rh_bw->tts;
1871         list_for_each_safe(tt, q, tt_list_head) {
1872                 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
1873                 list_del(tt);
1874                 kfree(tt_info);
1875         }
1876
1877         xhci->num_usb2_ports = 0;
1878         xhci->num_usb3_ports = 0;
1879         xhci->num_active_eps = 0;
1880         kfree(xhci->usb2_ports);
1881         kfree(xhci->usb3_ports);
1882         kfree(xhci->port_array);
1883         kfree(xhci->rh_bw);
1884
1885         xhci->page_size = 0;
1886         xhci->page_shift = 0;
1887         xhci->bus_state[0].bus_suspended = 0;
1888         xhci->bus_state[1].bus_suspended = 0;
1889 }
1890
1891 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1892                 struct xhci_segment *input_seg,
1893                 union xhci_trb *start_trb,
1894                 union xhci_trb *end_trb,
1895                 dma_addr_t input_dma,
1896                 struct xhci_segment *result_seg,
1897                 char *test_name, int test_number)
1898 {
1899         unsigned long long start_dma;
1900         unsigned long long end_dma;
1901         struct xhci_segment *seg;
1902
1903         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1904         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1905
1906         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1907         if (seg != result_seg) {
1908                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1909                                 test_name, test_number);
1910                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1911                                 "input DMA 0x%llx\n",
1912                                 input_seg,
1913                                 (unsigned long long) input_dma);
1914                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1915                                 "ending TRB %p (0x%llx DMA)\n",
1916                                 start_trb, start_dma,
1917                                 end_trb, end_dma);
1918                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1919                                 result_seg, seg);
1920                 return -1;
1921         }
1922         return 0;
1923 }
1924
1925 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1926 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1927 {
1928         struct {
1929                 dma_addr_t              input_dma;
1930                 struct xhci_segment     *result_seg;
1931         } simple_test_vector [] = {
1932                 /* A zeroed DMA field should fail */
1933                 { 0, NULL },
1934                 /* One TRB before the ring start should fail */
1935                 { xhci->event_ring->first_seg->dma - 16, NULL },
1936                 /* One byte before the ring start should fail */
1937                 { xhci->event_ring->first_seg->dma - 1, NULL },
1938                 /* Starting TRB should succeed */
1939                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1940                 /* Ending TRB should succeed */
1941                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1942                         xhci->event_ring->first_seg },
1943                 /* One byte after the ring end should fail */
1944                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1945                 /* One TRB after the ring end should fail */
1946                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1947                 /* An address of all ones should fail */
1948                 { (dma_addr_t) (~0), NULL },
1949         };
1950         struct {
1951                 struct xhci_segment     *input_seg;
1952                 union xhci_trb          *start_trb;
1953                 union xhci_trb          *end_trb;
1954                 dma_addr_t              input_dma;
1955                 struct xhci_segment     *result_seg;
1956         } complex_test_vector [] = {
1957                 /* Test feeding a valid DMA address from a different ring */
1958                 {       .input_seg = xhci->event_ring->first_seg,
1959                         .start_trb = xhci->event_ring->first_seg->trbs,
1960                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1961                         .input_dma = xhci->cmd_ring->first_seg->dma,
1962                         .result_seg = NULL,
1963                 },
1964                 /* Test feeding a valid end TRB from a different ring */
1965                 {       .input_seg = xhci->event_ring->first_seg,
1966                         .start_trb = xhci->event_ring->first_seg->trbs,
1967                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1968                         .input_dma = xhci->cmd_ring->first_seg->dma,
1969                         .result_seg = NULL,
1970                 },
1971                 /* Test feeding a valid start and end TRB from a different ring */
1972                 {       .input_seg = xhci->event_ring->first_seg,
1973                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1974                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1975                         .input_dma = xhci->cmd_ring->first_seg->dma,
1976                         .result_seg = NULL,
1977                 },
1978                 /* TRB in this ring, but after this TD */
1979                 {       .input_seg = xhci->event_ring->first_seg,
1980                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1981                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1982                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1983                         .result_seg = NULL,
1984                 },
1985                 /* TRB in this ring, but before this TD */
1986                 {       .input_seg = xhci->event_ring->first_seg,
1987                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1988                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1989                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1990                         .result_seg = NULL,
1991                 },
1992                 /* TRB in this ring, but after this wrapped TD */
1993                 {       .input_seg = xhci->event_ring->first_seg,
1994                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1995                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1996                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1997                         .result_seg = NULL,
1998                 },
1999                 /* TRB in this ring, but before this wrapped TD */
2000                 {       .input_seg = xhci->event_ring->first_seg,
2001                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2002                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2003                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2004                         .result_seg = NULL,
2005                 },
2006                 /* TRB not in this ring, and we have a wrapped TD */
2007                 {       .input_seg = xhci->event_ring->first_seg,
2008                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2009                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2010                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2011                         .result_seg = NULL,
2012                 },
2013         };
2014
2015         unsigned int num_tests;
2016         int i, ret;
2017
2018         num_tests = ARRAY_SIZE(simple_test_vector);
2019         for (i = 0; i < num_tests; i++) {
2020                 ret = xhci_test_trb_in_td(xhci,
2021                                 xhci->event_ring->first_seg,
2022                                 xhci->event_ring->first_seg->trbs,
2023                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2024                                 simple_test_vector[i].input_dma,
2025                                 simple_test_vector[i].result_seg,
2026                                 "Simple", i);
2027                 if (ret < 0)
2028                         return ret;
2029         }
2030
2031         num_tests = ARRAY_SIZE(complex_test_vector);
2032         for (i = 0; i < num_tests; i++) {
2033                 ret = xhci_test_trb_in_td(xhci,
2034                                 complex_test_vector[i].input_seg,
2035                                 complex_test_vector[i].start_trb,
2036                                 complex_test_vector[i].end_trb,
2037                                 complex_test_vector[i].input_dma,
2038                                 complex_test_vector[i].result_seg,
2039                                 "Complex", i);
2040                 if (ret < 0)
2041                         return ret;
2042         }
2043         xhci_dbg(xhci, "TRB math tests passed.\n");
2044         return 0;
2045 }
2046
2047 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2048 {
2049         u64 temp;
2050         dma_addr_t deq;
2051
2052         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2053                         xhci->event_ring->dequeue);
2054         if (deq == 0 && !in_interrupt())
2055                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2056                                 "dequeue ptr.\n");
2057         /* Update HC event ring dequeue pointer */
2058         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2059         temp &= ERST_PTR_MASK;
2060         /* Don't clear the EHB bit (which is RW1C) because
2061          * there might be more events to service.
2062          */
2063         temp &= ~ERST_EHB;
2064         xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2065                         "preserving EHB bit\n");
2066         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2067                         &xhci->ir_set->erst_dequeue);
2068 }
2069
2070 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2071                 __le32 __iomem *addr, u8 major_revision)
2072 {
2073         u32 temp, port_offset, port_count;
2074         int i;
2075
2076         if (major_revision > 0x03) {
2077                 xhci_warn(xhci, "Ignoring unknown port speed, "
2078                                 "Ext Cap %p, revision = 0x%x\n",
2079                                 addr, major_revision);
2080                 /* Ignoring port protocol we can't understand. FIXME */
2081                 return;
2082         }
2083
2084         /* Port offset and count in the third dword, see section 7.2 */
2085         temp = xhci_readl(xhci, addr + 2);
2086         port_offset = XHCI_EXT_PORT_OFF(temp);
2087         port_count = XHCI_EXT_PORT_COUNT(temp);
2088         xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2089                         "count = %u, revision = 0x%x\n",
2090                         addr, port_offset, port_count, major_revision);
2091         /* Port count includes the current port offset */
2092         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2093                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2094                 return;
2095
2096         /* Check the host's USB2 LPM capability */
2097         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2098                         (temp & XHCI_L1C)) {
2099                 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2100                 xhci->sw_lpm_support = 1;
2101         }
2102
2103         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2104                 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2105                 xhci->sw_lpm_support = 1;
2106                 if (temp & XHCI_HLC) {
2107                         xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2108                         xhci->hw_lpm_support = 1;
2109                 }
2110         }
2111
2112         port_offset--;
2113         for (i = port_offset; i < (port_offset + port_count); i++) {
2114                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2115                 if (xhci->port_array[i] != 0) {
2116                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2117                                         " port %u\n", addr, i);
2118                         xhci_warn(xhci, "Port was marked as USB %u, "
2119                                         "duplicated as USB %u\n",
2120                                         xhci->port_array[i], major_revision);
2121                         /* Only adjust the roothub port counts if we haven't
2122                          * found a similar duplicate.
2123                          */
2124                         if (xhci->port_array[i] != major_revision &&
2125                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2126                                 if (xhci->port_array[i] == 0x03)
2127                                         xhci->num_usb3_ports--;
2128                                 else
2129                                         xhci->num_usb2_ports--;
2130                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2131                         }
2132                         /* FIXME: Should we disable the port? */
2133                         continue;
2134                 }
2135                 xhci->port_array[i] = major_revision;
2136                 if (major_revision == 0x03)
2137                         xhci->num_usb3_ports++;
2138                 else
2139                         xhci->num_usb2_ports++;
2140         }
2141         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2142 }
2143
2144 /*
2145  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2146  * specify what speeds each port is supposed to be.  We can't count on the port
2147  * speed bits in the PORTSC register being correct until a device is connected,
2148  * but we need to set up the two fake roothubs with the correct number of USB
2149  * 3.0 and USB 2.0 ports at host controller initialization time.
2150  */
2151 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2152 {
2153         __le32 __iomem *addr;
2154         u32 offset;
2155         unsigned int num_ports;
2156         int i, j, port_index;
2157
2158         addr = &xhci->cap_regs->hcc_params;
2159         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2160         if (offset == 0) {
2161                 xhci_err(xhci, "No Extended Capability registers, "
2162                                 "unable to set up roothub.\n");
2163                 return -ENODEV;
2164         }
2165
2166         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2167         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2168         if (!xhci->port_array)
2169                 return -ENOMEM;
2170
2171         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2172         if (!xhci->rh_bw)
2173                 return -ENOMEM;
2174         for (i = 0; i < num_ports; i++) {
2175                 struct xhci_interval_bw_table *bw_table;
2176
2177                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2178                 bw_table = &xhci->rh_bw[i].bw_table;
2179                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2180                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2181         }
2182
2183         /*
2184          * For whatever reason, the first capability offset is from the
2185          * capability register base, not from the HCCPARAMS register.
2186          * See section 5.3.6 for offset calculation.
2187          */
2188         addr = &xhci->cap_regs->hc_capbase + offset;
2189         while (1) {
2190                 u32 cap_id;
2191
2192                 cap_id = xhci_readl(xhci, addr);
2193                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2194                         xhci_add_in_port(xhci, num_ports, addr,
2195                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2196                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2197                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2198                                 == num_ports)
2199                         break;
2200                 /*
2201                  * Once you're into the Extended Capabilities, the offset is
2202                  * always relative to the register holding the offset.
2203                  */
2204                 addr += offset;
2205         }
2206
2207         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2208                 xhci_warn(xhci, "No ports on the roothubs?\n");
2209                 return -ENODEV;
2210         }
2211         xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2212                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2213
2214         /* Place limits on the number of roothub ports so that the hub
2215          * descriptors aren't longer than the USB core will allocate.
2216          */
2217         if (xhci->num_usb3_ports > 15) {
2218                 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2219                 xhci->num_usb3_ports = 15;
2220         }
2221         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2222                 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2223                                 USB_MAXCHILDREN);
2224                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2225         }
2226
2227         /*
2228          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2229          * Not sure how the USB core will handle a hub with no ports...
2230          */
2231         if (xhci->num_usb2_ports) {
2232                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2233                                 xhci->num_usb2_ports, flags);
2234                 if (!xhci->usb2_ports)
2235                         return -ENOMEM;
2236
2237                 port_index = 0;
2238                 for (i = 0; i < num_ports; i++) {
2239                         if (xhci->port_array[i] == 0x03 ||
2240                                         xhci->port_array[i] == 0 ||
2241                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2242                                 continue;
2243
2244                         xhci->usb2_ports[port_index] =
2245                                 &xhci->op_regs->port_status_base +
2246                                 NUM_PORT_REGS*i;
2247                         xhci_dbg(xhci, "USB 2.0 port at index %u, "
2248                                         "addr = %p\n", i,
2249                                         xhci->usb2_ports[port_index]);
2250                         port_index++;
2251                         if (port_index == xhci->num_usb2_ports)
2252                                 break;
2253                 }
2254         }
2255         if (xhci->num_usb3_ports) {
2256                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2257                                 xhci->num_usb3_ports, flags);
2258                 if (!xhci->usb3_ports)
2259                         return -ENOMEM;
2260
2261                 port_index = 0;
2262                 for (i = 0; i < num_ports; i++)
2263                         if (xhci->port_array[i] == 0x03) {
2264                                 xhci->usb3_ports[port_index] =
2265                                         &xhci->op_regs->port_status_base +
2266                                         NUM_PORT_REGS*i;
2267                                 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2268                                                 "addr = %p\n", i,
2269                                                 xhci->usb3_ports[port_index]);
2270                                 port_index++;
2271                                 if (port_index == xhci->num_usb3_ports)
2272                                         break;
2273                         }
2274         }
2275         return 0;
2276 }
2277
2278 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2279 {
2280         dma_addr_t      dma;
2281         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2282         unsigned int    val, val2;
2283         u64             val_64;
2284         struct xhci_segment     *seg;
2285         u32 page_size, temp;
2286         int i;
2287
2288         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2289         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2290         for (i = 0; i < 16; i++) {
2291                 if ((0x1 & page_size) != 0)
2292                         break;
2293                 page_size = page_size >> 1;
2294         }
2295         if (i < 16)
2296                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2297         else
2298                 xhci_warn(xhci, "WARN: no supported page size\n");
2299         /* Use 4K pages, since that's common and the minimum the HC supports */
2300         xhci->page_shift = 12;
2301         xhci->page_size = 1 << xhci->page_shift;
2302         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2303
2304         /*
2305          * Program the Number of Device Slots Enabled field in the CONFIG
2306          * register with the max value of slots the HC can handle.
2307          */
2308         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2309         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2310                         (unsigned int) val);
2311         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2312         val |= (val2 & ~HCS_SLOTS_MASK);
2313         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2314                         (unsigned int) val);
2315         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2316
2317         /*
2318          * Section 5.4.8 - doorbell array must be
2319          * "physically contiguous and 64-byte (cache line) aligned".
2320          */
2321         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2322                         GFP_KERNEL);
2323         if (!xhci->dcbaa)
2324                 goto fail;
2325         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2326         xhci->dcbaa->dma = dma;
2327         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2328                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2329         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2330
2331         /*
2332          * Initialize the ring segment pool.  The ring must be a contiguous
2333          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2334          * however, the command ring segment needs 64-byte aligned segments,
2335          * so we pick the greater alignment need.
2336          */
2337         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2338                         SEGMENT_SIZE, 64, xhci->page_size);
2339
2340         /* See Table 46 and Note on Figure 55 */
2341         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2342                         2112, 64, xhci->page_size);
2343         if (!xhci->segment_pool || !xhci->device_pool)
2344                 goto fail;
2345
2346         /* Linear stream context arrays don't have any boundary restrictions,
2347          * and only need to be 16-byte aligned.
2348          */
2349         xhci->small_streams_pool =
2350                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2351                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2352         xhci->medium_streams_pool =
2353                 dma_pool_create("xHCI 1KB stream ctx arrays",
2354                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2355         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2356          * will be allocated with dma_alloc_coherent()
2357          */
2358
2359         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2360                 goto fail;
2361
2362         /* Set up the command ring to have one segments for now. */
2363         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2364         if (!xhci->cmd_ring)
2365                 goto fail;
2366         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2367         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2368                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2369
2370         /* Set the address in the Command Ring Control register */
2371         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2372         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2373                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2374                 xhci->cmd_ring->cycle_state;
2375         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2376         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2377         xhci_dbg_cmd_ptrs(xhci);
2378
2379         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2380         val &= DBOFF_MASK;
2381         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2382                         " from cap regs base addr\n", val);
2383         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2384         xhci_dbg_regs(xhci);
2385         xhci_print_run_regs(xhci);
2386         /* Set ir_set to interrupt register set 0 */
2387         xhci->ir_set = &xhci->run_regs->ir_set[0];
2388
2389         /*
2390          * Event ring setup: Allocate a normal ring, but also setup
2391          * the event ring segment table (ERST).  Section 4.9.3.
2392          */
2393         xhci_dbg(xhci, "// Allocating event ring\n");
2394         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2395                                                 flags);
2396         if (!xhci->event_ring)
2397                 goto fail;
2398         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2399                 goto fail;
2400
2401         xhci->erst.entries = dma_alloc_coherent(dev,
2402                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2403                         GFP_KERNEL);
2404         if (!xhci->erst.entries)
2405                 goto fail;
2406         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2407                         (unsigned long long)dma);
2408
2409         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2410         xhci->erst.num_entries = ERST_NUM_SEGS;
2411         xhci->erst.erst_dma_addr = dma;
2412         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2413                         xhci->erst.num_entries,
2414                         xhci->erst.entries,
2415                         (unsigned long long)xhci->erst.erst_dma_addr);
2416
2417         /* set ring base address and size for each segment table entry */
2418         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2419                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2420                 entry->seg_addr = cpu_to_le64(seg->dma);
2421                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2422                 entry->rsvd = 0;
2423                 seg = seg->next;
2424         }
2425
2426         /* set ERST count with the number of entries in the segment table */
2427         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2428         val &= ERST_SIZE_MASK;
2429         val |= ERST_NUM_SEGS;
2430         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2431                         val);
2432         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2433
2434         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2435         /* set the segment table base address */
2436         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2437                         (unsigned long long)xhci->erst.erst_dma_addr);
2438         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2439         val_64 &= ERST_PTR_MASK;
2440         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2441         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2442
2443         /* Set the event ring dequeue address */
2444         xhci_set_hc_event_deq(xhci);
2445         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2446         xhci_print_ir_set(xhci, 0);
2447
2448         /*
2449          * XXX: Might need to set the Interrupter Moderation Register to
2450          * something other than the default (~1ms minimum between interrupts).
2451          * See section 5.5.1.2.
2452          */
2453         init_completion(&xhci->addr_dev);
2454         for (i = 0; i < MAX_HC_SLOTS; ++i)
2455                 xhci->devs[i] = NULL;
2456         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2457                 xhci->bus_state[0].resume_done[i] = 0;
2458                 xhci->bus_state[1].resume_done[i] = 0;
2459         }
2460
2461         if (scratchpad_alloc(xhci, flags))
2462                 goto fail;
2463         if (xhci_setup_port_arrays(xhci, flags))
2464                 goto fail;
2465
2466         INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2467
2468         /* Enable USB 3.0 device notifications for function remote wake, which
2469          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2470          * U3 (device suspend).
2471          */
2472         temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2473         temp &= ~DEV_NOTE_MASK;
2474         temp |= DEV_NOTE_FWAKE;
2475         xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2476
2477         return 0;
2478
2479 fail:
2480         xhci_warn(xhci, "Couldn't initialize memory\n");
2481         xhci_halt(xhci);
2482         xhci_reset(xhci);
2483         xhci_mem_cleanup(xhci);
2484         return -ENOMEM;
2485 }