[PARISC] slub: fix panic with DISCONTIGMEM
[pandora-kernel.git] / drivers / usb / gadget / pch_udc.c
1 /*
2  * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; version 2 of the License.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
27
28 /* Address offset of Registers */
29 #define UDC_EP_REG_SHIFT        0x20    /* Offset to next EP */
30
31 #define UDC_EPCTL_ADDR          0x00    /* Endpoint control */
32 #define UDC_EPSTS_ADDR          0x04    /* Endpoint status */
33 #define UDC_BUFIN_FRAMENUM_ADDR 0x08    /* buffer size in / frame number out */
34 #define UDC_BUFOUT_MAXPKT_ADDR  0x0C    /* buffer size out / maxpkt in */
35 #define UDC_SUBPTR_ADDR         0x10    /* setup buffer pointer */
36 #define UDC_DESPTR_ADDR         0x14    /* Data descriptor pointer */
37 #define UDC_CONFIRM_ADDR        0x18    /* Write/Read confirmation */
38
39 #define UDC_DEVCFG_ADDR         0x400   /* Device configuration */
40 #define UDC_DEVCTL_ADDR         0x404   /* Device control */
41 #define UDC_DEVSTS_ADDR         0x408   /* Device status */
42 #define UDC_DEVIRQSTS_ADDR      0x40C   /* Device irq status */
43 #define UDC_DEVIRQMSK_ADDR      0x410   /* Device irq mask */
44 #define UDC_EPIRQSTS_ADDR       0x414   /* Endpoint irq status */
45 #define UDC_EPIRQMSK_ADDR       0x418   /* Endpoint irq mask */
46 #define UDC_DEVLPM_ADDR         0x41C   /* LPM control / status */
47 #define UDC_CSR_BUSY_ADDR       0x4f0   /* UDC_CSR_BUSY Status register */
48 #define UDC_SRST_ADDR           0x4fc   /* SOFT RESET register */
49 #define UDC_CSR_ADDR            0x500   /* USB_DEVICE endpoint register */
50
51 /* Endpoint control register */
52 /* Bit position */
53 #define UDC_EPCTL_MRXFLUSH              (1 << 12)
54 #define UDC_EPCTL_RRDY                  (1 << 9)
55 #define UDC_EPCTL_CNAK                  (1 << 8)
56 #define UDC_EPCTL_SNAK                  (1 << 7)
57 #define UDC_EPCTL_NAK                   (1 << 6)
58 #define UDC_EPCTL_P                     (1 << 3)
59 #define UDC_EPCTL_F                     (1 << 1)
60 #define UDC_EPCTL_S                     (1 << 0)
61 #define UDC_EPCTL_ET_SHIFT              4
62 /* Mask patern */
63 #define UDC_EPCTL_ET_MASK               0x00000030
64 /* Value for ET field */
65 #define UDC_EPCTL_ET_CONTROL            0
66 #define UDC_EPCTL_ET_ISO                1
67 #define UDC_EPCTL_ET_BULK               2
68 #define UDC_EPCTL_ET_INTERRUPT          3
69
70 /* Endpoint status register */
71 /* Bit position */
72 #define UDC_EPSTS_XFERDONE              (1 << 27)
73 #define UDC_EPSTS_RSS                   (1 << 26)
74 #define UDC_EPSTS_RCS                   (1 << 25)
75 #define UDC_EPSTS_TXEMPTY               (1 << 24)
76 #define UDC_EPSTS_TDC                   (1 << 10)
77 #define UDC_EPSTS_HE                    (1 << 9)
78 #define UDC_EPSTS_MRXFIFO_EMP           (1 << 8)
79 #define UDC_EPSTS_BNA                   (1 << 7)
80 #define UDC_EPSTS_IN                    (1 << 6)
81 #define UDC_EPSTS_OUT_SHIFT             4
82 /* Mask patern */
83 #define UDC_EPSTS_OUT_MASK              0x00000030
84 #define UDC_EPSTS_ALL_CLR_MASK          0x1F0006F0
85 /* Value for OUT field */
86 #define UDC_EPSTS_OUT_SETUP             2
87 #define UDC_EPSTS_OUT_DATA              1
88
89 /* Device configuration register */
90 /* Bit position */
91 #define UDC_DEVCFG_CSR_PRG              (1 << 17)
92 #define UDC_DEVCFG_SP                   (1 << 3)
93 /* SPD Valee */
94 #define UDC_DEVCFG_SPD_HS               0x0
95 #define UDC_DEVCFG_SPD_FS               0x1
96 #define UDC_DEVCFG_SPD_LS               0x2
97
98 /* Device control register */
99 /* Bit position */
100 #define UDC_DEVCTL_THLEN_SHIFT          24
101 #define UDC_DEVCTL_BRLEN_SHIFT          16
102 #define UDC_DEVCTL_CSR_DONE             (1 << 13)
103 #define UDC_DEVCTL_SD                   (1 << 10)
104 #define UDC_DEVCTL_MODE                 (1 << 9)
105 #define UDC_DEVCTL_BREN                 (1 << 8)
106 #define UDC_DEVCTL_THE                  (1 << 7)
107 #define UDC_DEVCTL_DU                   (1 << 4)
108 #define UDC_DEVCTL_TDE                  (1 << 3)
109 #define UDC_DEVCTL_RDE                  (1 << 2)
110 #define UDC_DEVCTL_RES                  (1 << 0)
111
112 /* Device status register */
113 /* Bit position */
114 #define UDC_DEVSTS_TS_SHIFT             18
115 #define UDC_DEVSTS_ENUM_SPEED_SHIFT     13
116 #define UDC_DEVSTS_ALT_SHIFT            8
117 #define UDC_DEVSTS_INTF_SHIFT           4
118 #define UDC_DEVSTS_CFG_SHIFT            0
119 /* Mask patern */
120 #define UDC_DEVSTS_TS_MASK              0xfffc0000
121 #define UDC_DEVSTS_ENUM_SPEED_MASK      0x00006000
122 #define UDC_DEVSTS_ALT_MASK             0x00000f00
123 #define UDC_DEVSTS_INTF_MASK            0x000000f0
124 #define UDC_DEVSTS_CFG_MASK             0x0000000f
125 /* value for maximum speed for SPEED field */
126 #define UDC_DEVSTS_ENUM_SPEED_FULL      1
127 #define UDC_DEVSTS_ENUM_SPEED_HIGH      0
128 #define UDC_DEVSTS_ENUM_SPEED_LOW       2
129 #define UDC_DEVSTS_ENUM_SPEED_FULLX     3
130
131 /* Device irq register */
132 /* Bit position */
133 #define UDC_DEVINT_RWKP                 (1 << 7)
134 #define UDC_DEVINT_ENUM                 (1 << 6)
135 #define UDC_DEVINT_SOF                  (1 << 5)
136 #define UDC_DEVINT_US                   (1 << 4)
137 #define UDC_DEVINT_UR                   (1 << 3)
138 #define UDC_DEVINT_ES                   (1 << 2)
139 #define UDC_DEVINT_SI                   (1 << 1)
140 #define UDC_DEVINT_SC                   (1 << 0)
141 /* Mask patern */
142 #define UDC_DEVINT_MSK                  0x7f
143
144 /* Endpoint irq register */
145 /* Bit position */
146 #define UDC_EPINT_IN_SHIFT              0
147 #define UDC_EPINT_OUT_SHIFT             16
148 #define UDC_EPINT_IN_EP0                (1 << 0)
149 #define UDC_EPINT_OUT_EP0               (1 << 16)
150 /* Mask patern */
151 #define UDC_EPINT_MSK_DISABLE_ALL       0xffffffff
152
153 /* UDC_CSR_BUSY Status register */
154 /* Bit position */
155 #define UDC_CSR_BUSY                    (1 << 0)
156
157 /* SOFT RESET register */
158 /* Bit position */
159 #define UDC_PSRST                       (1 << 1)
160 #define UDC_SRST                        (1 << 0)
161
162 /* USB_DEVICE endpoint register */
163 /* Bit position */
164 #define UDC_CSR_NE_NUM_SHIFT            0
165 #define UDC_CSR_NE_DIR_SHIFT            4
166 #define UDC_CSR_NE_TYPE_SHIFT           5
167 #define UDC_CSR_NE_CFG_SHIFT            7
168 #define UDC_CSR_NE_INTF_SHIFT           11
169 #define UDC_CSR_NE_ALT_SHIFT            15
170 #define UDC_CSR_NE_MAX_PKT_SHIFT        19
171 /* Mask patern */
172 #define UDC_CSR_NE_NUM_MASK             0x0000000f
173 #define UDC_CSR_NE_DIR_MASK             0x00000010
174 #define UDC_CSR_NE_TYPE_MASK            0x00000060
175 #define UDC_CSR_NE_CFG_MASK             0x00000780
176 #define UDC_CSR_NE_INTF_MASK            0x00007800
177 #define UDC_CSR_NE_ALT_MASK             0x00078000
178 #define UDC_CSR_NE_MAX_PKT_MASK         0x3ff80000
179
180 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
181 #define PCH_UDC_EPINT(in, num)\
182                 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
183
184 /* Index of endpoint */
185 #define UDC_EP0IN_IDX           0
186 #define UDC_EP0OUT_IDX          1
187 #define UDC_EPIN_IDX(ep)        (ep * 2)
188 #define UDC_EPOUT_IDX(ep)       (ep * 2 + 1)
189 #define PCH_UDC_EP0             0
190 #define PCH_UDC_EP1             1
191 #define PCH_UDC_EP2             2
192 #define PCH_UDC_EP3             3
193
194 /* Number of endpoint */
195 #define PCH_UDC_EP_NUM          32      /* Total number of EPs (16 IN,16 OUT) */
196 #define PCH_UDC_USED_EP_NUM     4       /* EP number of EP's really used */
197 /* Length Value */
198 #define PCH_UDC_BRLEN           0x0F    /* Burst length */
199 #define PCH_UDC_THLEN           0x1F    /* Threshold length */
200 /* Value of EP Buffer Size */
201 #define UDC_EP0IN_BUFF_SIZE     16
202 #define UDC_EPIN_BUFF_SIZE      256
203 #define UDC_EP0OUT_BUFF_SIZE    16
204 #define UDC_EPOUT_BUFF_SIZE     256
205 /* Value of EP maximum packet size */
206 #define UDC_EP0IN_MAX_PKT_SIZE  64
207 #define UDC_EP0OUT_MAX_PKT_SIZE 64
208 #define UDC_BULK_MAX_PKT_SIZE   512
209
210 /* DMA */
211 #define DMA_DIR_RX              1       /* DMA for data receive */
212 #define DMA_DIR_TX              2       /* DMA for data transmit */
213 #define DMA_ADDR_INVALID        (~(dma_addr_t)0)
214 #define UDC_DMA_MAXPACKET       65536   /* maximum packet size for DMA */
215
216 /**
217  * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
218  *                                for data
219  * @status:             Status quadlet
220  * @reserved:           Reserved
221  * @dataptr:            Buffer descriptor
222  * @next:               Next descriptor
223  */
224 struct pch_udc_data_dma_desc {
225         u32 status;
226         u32 reserved;
227         u32 dataptr;
228         u32 next;
229 };
230
231 /**
232  * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
233  *                               for control data
234  * @status:     Status
235  * @reserved:   Reserved
236  * @data12:     First setup word
237  * @data34:     Second setup word
238  */
239 struct pch_udc_stp_dma_desc {
240         u32 status;
241         u32 reserved;
242         struct usb_ctrlrequest request;
243 } __attribute((packed));
244
245 /* DMA status definitions */
246 /* Buffer status */
247 #define PCH_UDC_BUFF_STS        0xC0000000
248 #define PCH_UDC_BS_HST_RDY      0x00000000
249 #define PCH_UDC_BS_DMA_BSY      0x40000000
250 #define PCH_UDC_BS_DMA_DONE     0x80000000
251 #define PCH_UDC_BS_HST_BSY      0xC0000000
252 /*  Rx/Tx Status */
253 #define PCH_UDC_RXTX_STS        0x30000000
254 #define PCH_UDC_RTS_SUCC        0x00000000
255 #define PCH_UDC_RTS_DESERR      0x10000000
256 #define PCH_UDC_RTS_BUFERR      0x30000000
257 /* Last Descriptor Indication */
258 #define PCH_UDC_DMA_LAST        0x08000000
259 /* Number of Rx/Tx Bytes Mask */
260 #define PCH_UDC_RXTX_BYTES      0x0000ffff
261
262 /**
263  * struct pch_udc_cfg_data - Structure to hold current configuration
264  *                           and interface information
265  * @cur_cfg:    current configuration in use
266  * @cur_intf:   current interface in use
267  * @cur_alt:    current alt interface in use
268  */
269 struct pch_udc_cfg_data {
270         u16 cur_cfg;
271         u16 cur_intf;
272         u16 cur_alt;
273 };
274
275 /**
276  * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
277  * @ep:                 embedded ep request
278  * @td_stp_phys:        for setup request
279  * @td_data_phys:       for data request
280  * @td_stp:             for setup request
281  * @td_data:            for data request
282  * @dev:                reference to device struct
283  * @offset_addr:        offset address of ep register
284  * @desc:               for this ep
285  * @queue:              queue for requests
286  * @num:                endpoint number
287  * @in:                 endpoint is IN
288  * @halted:             endpoint halted?
289  * @epsts:              Endpoint status
290  */
291 struct pch_udc_ep {
292         struct usb_ep                   ep;
293         dma_addr_t                      td_stp_phys;
294         dma_addr_t                      td_data_phys;
295         struct pch_udc_stp_dma_desc     *td_stp;
296         struct pch_udc_data_dma_desc    *td_data;
297         struct pch_udc_dev              *dev;
298         unsigned long                   offset_addr;
299         const struct usb_endpoint_descriptor    *desc;
300         struct list_head                queue;
301         unsigned                        num:5,
302                                         in:1,
303                                         halted:1;
304         unsigned long                   epsts;
305 };
306
307 /**
308  * struct pch_udc_dev - Structure holding complete information
309  *                      of the PCH USB device
310  * @gadget:             gadget driver data
311  * @driver:             reference to gadget driver bound
312  * @pdev:               reference to the PCI device
313  * @ep:                 array of endpoints
314  * @lock:               protects all state
315  * @active:             enabled the PCI device
316  * @stall:              stall requested
317  * @prot_stall:         protcol stall requested
318  * @irq_registered:     irq registered with system
319  * @mem_region:         device memory mapped
320  * @registered:         driver regsitered with system
321  * @suspended:          driver in suspended state
322  * @connected:          gadget driver associated
323  * @set_cfg_not_acked:  pending acknowledgement 4 setup
324  * @waiting_zlp_ack:    pending acknowledgement 4 ZLP
325  * @data_requests:      DMA pool for data requests
326  * @stp_requests:       DMA pool for setup requests
327  * @dma_addr:           DMA pool for received
328  * @ep0out_buf:         Buffer for DMA
329  * @setup_data:         Received setup data
330  * @phys_addr:          of device memory
331  * @base_addr:          for mapped device memory
332  * @irq:                IRQ line for the device
333  * @cfg_data:           current cfg, intf, and alt in use
334  */
335 struct pch_udc_dev {
336         struct usb_gadget               gadget;
337         struct usb_gadget_driver        *driver;
338         struct pci_dev                  *pdev;
339         struct pch_udc_ep               ep[PCH_UDC_EP_NUM];
340         spinlock_t                      lock; /* protects all state */
341         unsigned        active:1,
342                         stall:1,
343                         prot_stall:1,
344                         irq_registered:1,
345                         mem_region:1,
346                         registered:1,
347                         suspended:1,
348                         connected:1,
349                         set_cfg_not_acked:1,
350                         waiting_zlp_ack:1;
351         struct pci_pool         *data_requests;
352         struct pci_pool         *stp_requests;
353         dma_addr_t                      dma_addr;
354         void                            *ep0out_buf;
355         struct usb_ctrlrequest          setup_data;
356         unsigned long                   phys_addr;
357         void __iomem                    *base_addr;
358         unsigned                        irq;
359         struct pch_udc_cfg_data cfg_data;
360 };
361
362 #define PCH_UDC_PCI_BAR                 1
363 #define PCI_DEVICE_ID_INTEL_EG20T_UDC   0x8808
364 #define PCI_VENDOR_ID_ROHM              0x10DB
365 #define PCI_DEVICE_ID_ML7213_IOH_UDC    0x801D
366
367 static const char       ep0_string[] = "ep0in";
368 static DEFINE_SPINLOCK(udc_stall_spinlock);     /* stall spin lock */
369 struct pch_udc_dev *pch_udc;            /* pointer to device object */
370 static int speed_fs;
371 module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
372 MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
373
374 /**
375  * struct pch_udc_request - Structure holding a PCH USB device request packet
376  * @req:                embedded ep request
377  * @td_data_phys:       phys. address
378  * @td_data:            first dma desc. of chain
379  * @td_data_last:       last dma desc. of chain
380  * @queue:              associated queue
381  * @dma_going:          DMA in progress for request
382  * @dma_mapped:         DMA memory mapped for request
383  * @dma_done:           DMA completed for request
384  * @chain_len:          chain length
385  * @buf:                Buffer memory for align adjustment
386  * @dma:                DMA memory for align adjustment
387  */
388 struct pch_udc_request {
389         struct usb_request              req;
390         dma_addr_t                      td_data_phys;
391         struct pch_udc_data_dma_desc    *td_data;
392         struct pch_udc_data_dma_desc    *td_data_last;
393         struct list_head                queue;
394         unsigned                        dma_going:1,
395                                         dma_mapped:1,
396                                         dma_done:1;
397         unsigned                        chain_len;
398         void                            *buf;
399         dma_addr_t                      dma;
400 };
401
402 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
403 {
404         return ioread32(dev->base_addr + reg);
405 }
406
407 static inline void pch_udc_writel(struct pch_udc_dev *dev,
408                                     unsigned long val, unsigned long reg)
409 {
410         iowrite32(val, dev->base_addr + reg);
411 }
412
413 static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
414                                      unsigned long reg,
415                                      unsigned long bitmask)
416 {
417         pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
418 }
419
420 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
421                                      unsigned long reg,
422                                      unsigned long bitmask)
423 {
424         pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
425 }
426
427 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
428 {
429         return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
430 }
431
432 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
433                                     unsigned long val, unsigned long reg)
434 {
435         iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
436 }
437
438 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
439                                      unsigned long reg,
440                                      unsigned long bitmask)
441 {
442         pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
443 }
444
445 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
446                                      unsigned long reg,
447                                      unsigned long bitmask)
448 {
449         pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
450 }
451
452 /**
453  * pch_udc_csr_busy() - Wait till idle.
454  * @dev:        Reference to pch_udc_dev structure
455  */
456 static void pch_udc_csr_busy(struct pch_udc_dev *dev)
457 {
458         unsigned int count = 200;
459
460         /* Wait till idle */
461         while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
462                 && --count)
463                 cpu_relax();
464         if (!count)
465                 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
466 }
467
468 /**
469  * pch_udc_write_csr() - Write the command and status registers.
470  * @dev:        Reference to pch_udc_dev structure
471  * @val:        value to be written to CSR register
472  * @addr:       address of CSR register
473  */
474 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
475                                unsigned int ep)
476 {
477         unsigned long reg = PCH_UDC_CSR(ep);
478
479         pch_udc_csr_busy(dev);          /* Wait till idle */
480         pch_udc_writel(dev, val, reg);
481         pch_udc_csr_busy(dev);          /* Wait till idle */
482 }
483
484 /**
485  * pch_udc_read_csr() - Read the command and status registers.
486  * @dev:        Reference to pch_udc_dev structure
487  * @addr:       address of CSR register
488  *
489  * Return codes:        content of CSR register
490  */
491 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
492 {
493         unsigned long reg = PCH_UDC_CSR(ep);
494
495         pch_udc_csr_busy(dev);          /* Wait till idle */
496         pch_udc_readl(dev, reg);        /* Dummy read */
497         pch_udc_csr_busy(dev);          /* Wait till idle */
498         return pch_udc_readl(dev, reg);
499 }
500
501 /**
502  * pch_udc_rmt_wakeup() - Initiate for remote wakeup
503  * @dev:        Reference to pch_udc_dev structure
504  */
505 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
506 {
507         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
508         mdelay(1);
509         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
510 }
511
512 /**
513  * pch_udc_get_frame() - Get the current frame from device status register
514  * @dev:        Reference to pch_udc_dev structure
515  * Retern       current frame
516  */
517 static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
518 {
519         u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
520         return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
521 }
522
523 /**
524  * pch_udc_clear_selfpowered() - Clear the self power control
525  * @dev:        Reference to pch_udc_regs structure
526  */
527 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
528 {
529         pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
530 }
531
532 /**
533  * pch_udc_set_selfpowered() - Set the self power control
534  * @dev:        Reference to pch_udc_regs structure
535  */
536 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
537 {
538         pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
539 }
540
541 /**
542  * pch_udc_set_disconnect() - Set the disconnect status.
543  * @dev:        Reference to pch_udc_regs structure
544  */
545 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
546 {
547         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
548 }
549
550 /**
551  * pch_udc_clear_disconnect() - Clear the disconnect status.
552  * @dev:        Reference to pch_udc_regs structure
553  */
554 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
555 {
556         /* Clear the disconnect */
557         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
558         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
559         mdelay(1);
560         /* Resume USB signalling */
561         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
562 }
563
564 /**
565  * pch_udc_vbus_session() - set or clearr the disconnect status.
566  * @dev:        Reference to pch_udc_regs structure
567  * @is_active:  Parameter specifying the action
568  *                0:   indicating VBUS power is ending
569  *                !0:  indicating VBUS power is starting
570  */
571 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
572                                           int is_active)
573 {
574         if (is_active)
575                 pch_udc_clear_disconnect(dev);
576         else
577                 pch_udc_set_disconnect(dev);
578 }
579
580 /**
581  * pch_udc_ep_set_stall() - Set the stall of endpoint
582  * @ep:         Reference to structure of type pch_udc_ep_regs
583  */
584 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
585 {
586         if (ep->in) {
587                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
588                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
589         } else {
590                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
591         }
592 }
593
594 /**
595  * pch_udc_ep_clear_stall() - Clear the stall of endpoint
596  * @ep:         Reference to structure of type pch_udc_ep_regs
597  */
598 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
599 {
600         /* Clear the stall */
601         pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
602         /* Clear NAK by writing CNAK */
603         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
604 }
605
606 /**
607  * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
608  * @ep:         Reference to structure of type pch_udc_ep_regs
609  * @type:       Type of endpoint
610  */
611 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
612                                         u8 type)
613 {
614         pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
615                                 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
616 }
617
618 /**
619  * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
620  * @ep:         Reference to structure of type pch_udc_ep_regs
621  * @buf_size:   The buffer word size
622  */
623 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
624                                                  u32 buf_size, u32 ep_in)
625 {
626         u32 data;
627         if (ep_in) {
628                 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
629                 data = (data & 0xffff0000) | (buf_size & 0xffff);
630                 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
631         } else {
632                 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
633                 data = (buf_size << 16) | (data & 0xffff);
634                 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
635         }
636 }
637
638 /**
639  * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
640  * @ep:         Reference to structure of type pch_udc_ep_regs
641  * @pkt_size:   The packet byte size
642  */
643 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
644 {
645         u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
646         data = (data & 0xffff0000) | (pkt_size & 0xffff);
647         pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
648 }
649
650 /**
651  * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
652  * @ep:         Reference to structure of type pch_udc_ep_regs
653  * @addr:       Address of the register
654  */
655 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
656 {
657         pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
658 }
659
660 /**
661  * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
662  * @ep:         Reference to structure of type pch_udc_ep_regs
663  * @addr:       Address of the register
664  */
665 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
666 {
667         pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
668 }
669
670 /**
671  * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
672  * @ep:         Reference to structure of type pch_udc_ep_regs
673  */
674 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
675 {
676         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
677 }
678
679 /**
680  * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
681  * @ep:         Reference to structure of type pch_udc_ep_regs
682  */
683 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
684 {
685         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
686 }
687
688 /**
689  * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
690  * @ep:         Reference to structure of type pch_udc_ep_regs
691  */
692 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
693 {
694         pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
695 }
696
697 /**
698  * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
699  *                      register depending on the direction specified
700  * @dev:        Reference to structure of type pch_udc_regs
701  * @dir:        whether Tx or Rx
702  *                DMA_DIR_RX: Receive
703  *                DMA_DIR_TX: Transmit
704  */
705 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
706 {
707         if (dir == DMA_DIR_RX)
708                 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
709         else if (dir == DMA_DIR_TX)
710                 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
711 }
712
713 /**
714  * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
715  *                               register depending on the direction specified
716  * @dev:        Reference to structure of type pch_udc_regs
717  * @dir:        Whether Tx or Rx
718  *                DMA_DIR_RX: Receive
719  *                DMA_DIR_TX: Transmit
720  */
721 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
722 {
723         if (dir == DMA_DIR_RX)
724                 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
725         else if (dir == DMA_DIR_TX)
726                 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
727 }
728
729 /**
730  * pch_udc_set_csr_done() - Set the device control register
731  *                              CSR done field (bit 13)
732  * @dev:        reference to structure of type pch_udc_regs
733  */
734 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
735 {
736         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
737 }
738
739 /**
740  * pch_udc_disable_interrupts() - Disables the specified interrupts
741  * @dev:        Reference to structure of type pch_udc_regs
742  * @mask:       Mask to disable interrupts
743  */
744 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
745                                             u32 mask)
746 {
747         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
748 }
749
750 /**
751  * pch_udc_enable_interrupts() - Enable the specified interrupts
752  * @dev:        Reference to structure of type pch_udc_regs
753  * @mask:       Mask to enable interrupts
754  */
755 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
756                                            u32 mask)
757 {
758         pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
759 }
760
761 /**
762  * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
763  * @dev:        Reference to structure of type pch_udc_regs
764  * @mask:       Mask to disable interrupts
765  */
766 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
767                                                 u32 mask)
768 {
769         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
770 }
771
772 /**
773  * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
774  * @dev:        Reference to structure of type pch_udc_regs
775  * @mask:       Mask to enable interrupts
776  */
777 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
778                                               u32 mask)
779 {
780         pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
781 }
782
783 /**
784  * pch_udc_read_device_interrupts() - Read the device interrupts
785  * @dev:        Reference to structure of type pch_udc_regs
786  * Retern       The device interrupts
787  */
788 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
789 {
790         return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
791 }
792
793 /**
794  * pch_udc_write_device_interrupts() - Write device interrupts
795  * @dev:        Reference to structure of type pch_udc_regs
796  * @val:        The value to be written to interrupt register
797  */
798 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
799                                                      u32 val)
800 {
801         pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
802 }
803
804 /**
805  * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
806  * @dev:        Reference to structure of type pch_udc_regs
807  * Retern       The endpoint interrupt
808  */
809 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
810 {
811         return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
812 }
813
814 /**
815  * pch_udc_write_ep_interrupts() - Clear endpoint interupts
816  * @dev:        Reference to structure of type pch_udc_regs
817  * @val:        The value to be written to interrupt register
818  */
819 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
820                                              u32 val)
821 {
822         pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
823 }
824
825 /**
826  * pch_udc_read_device_status() - Read the device status
827  * @dev:        Reference to structure of type pch_udc_regs
828  * Retern       The device status
829  */
830 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
831 {
832         return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
833 }
834
835 /**
836  * pch_udc_read_ep_control() - Read the endpoint control
837  * @ep:         Reference to structure of type pch_udc_ep_regs
838  * Retern       The endpoint control register value
839  */
840 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
841 {
842         return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
843 }
844
845 /**
846  * pch_udc_clear_ep_control() - Clear the endpoint control register
847  * @ep:         Reference to structure of type pch_udc_ep_regs
848  * Retern       The endpoint control register value
849  */
850 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
851 {
852         return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
853 }
854
855 /**
856  * pch_udc_read_ep_status() - Read the endpoint status
857  * @ep:         Reference to structure of type pch_udc_ep_regs
858  * Retern       The endpoint status
859  */
860 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
861 {
862         return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
863 }
864
865 /**
866  * pch_udc_clear_ep_status() - Clear the endpoint status
867  * @ep:         Reference to structure of type pch_udc_ep_regs
868  * @stat:       Endpoint status
869  */
870 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
871                                          u32 stat)
872 {
873         return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
874 }
875
876 /**
877  * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
878  *                              of the endpoint control register
879  * @ep:         Reference to structure of type pch_udc_ep_regs
880  */
881 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
882 {
883         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
884 }
885
886 /**
887  * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
888  *                              of the endpoint control register
889  * @ep:         reference to structure of type pch_udc_ep_regs
890  */
891 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
892 {
893         unsigned int loopcnt = 0;
894         struct pch_udc_dev *dev = ep->dev;
895
896         if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
897                 return;
898         if (!ep->in) {
899                 loopcnt = 10000;
900                 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
901                         --loopcnt)
902                         udelay(5);
903                 if (!loopcnt)
904                         dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
905                                 __func__);
906         }
907         loopcnt = 10000;
908         while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
909                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
910                 udelay(5);
911         }
912         if (!loopcnt)
913                 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
914                         __func__, ep->num, (ep->in ? "in" : "out"));
915 }
916
917 /**
918  * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
919  * @ep: reference to structure of type pch_udc_ep_regs
920  * @dir:        direction of endpoint
921  *                0:  endpoint is OUT
922  *                !0: endpoint is IN
923  */
924 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
925 {
926         if (dir) {      /* IN ep */
927                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
928                 return;
929         }
930 }
931
932 /**
933  * pch_udc_ep_enable() - This api enables endpoint
934  * @regs:       Reference to structure pch_udc_ep_regs
935  * @desc:       endpoint descriptor
936  */
937 static void pch_udc_ep_enable(struct pch_udc_ep *ep,
938                                struct pch_udc_cfg_data *cfg,
939                                const struct usb_endpoint_descriptor *desc)
940 {
941         u32 val = 0;
942         u32 buff_size = 0;
943
944         pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
945         if (ep->in)
946                 buff_size = UDC_EPIN_BUFF_SIZE;
947         else
948                 buff_size = UDC_EPOUT_BUFF_SIZE;
949         pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
950         pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
951         pch_udc_ep_set_nak(ep);
952         pch_udc_ep_fifo_flush(ep, ep->in);
953         /* Configure the endpoint */
954         val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
955               ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
956                 UDC_CSR_NE_TYPE_SHIFT) |
957               (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
958               (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
959               (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
960               le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
961
962         if (ep->in)
963                 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
964         else
965                 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
966 }
967
968 /**
969  * pch_udc_ep_disable() - This api disables endpoint
970  * @regs:       Reference to structure pch_udc_ep_regs
971  */
972 static void pch_udc_ep_disable(struct pch_udc_ep *ep)
973 {
974         if (ep->in) {
975                 /* flush the fifo */
976                 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
977                 /* set NAK */
978                 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
979                 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
980         } else {
981                 /* set NAK */
982                 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
983         }
984         /* reset desc pointer */
985         pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
986 }
987
988 /**
989  * pch_udc_wait_ep_stall() - Wait EP stall.
990  * @dev:        Reference to pch_udc_dev structure
991  */
992 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
993 {
994         unsigned int count = 10000;
995
996         /* Wait till idle */
997         while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
998                 udelay(5);
999         if (!count)
1000                 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1001 }
1002
1003 /**
1004  * pch_udc_init() - This API initializes usb device controller
1005  * @dev:        Rreference to pch_udc_regs structure
1006  */
1007 static void pch_udc_init(struct pch_udc_dev *dev)
1008 {
1009         if (NULL == dev) {
1010                 pr_err("%s: Invalid address\n", __func__);
1011                 return;
1012         }
1013         /* Soft Reset and Reset PHY */
1014         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1015         pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1016         mdelay(1);
1017         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1018         pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1019         mdelay(1);
1020         /* mask and clear all device interrupts */
1021         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1022         pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1023
1024         /* mask and clear all ep interrupts */
1025         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1026         pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1027
1028         /* enable dynamic CSR programmingi, self powered and device speed */
1029         if (speed_fs)
1030                 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1031                                 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1032         else /* defaul high speed */
1033                 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1034                                 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1035         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1036                         (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1037                         (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1038                         UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1039                         UDC_DEVCTL_THE);
1040 }
1041
1042 /**
1043  * pch_udc_exit() - This API exit usb device controller
1044  * @dev:        Reference to pch_udc_regs structure
1045  */
1046 static void pch_udc_exit(struct pch_udc_dev *dev)
1047 {
1048         /* mask all device interrupts */
1049         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1050         /* mask all ep interrupts */
1051         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1052         /* put device in disconnected state */
1053         pch_udc_set_disconnect(dev);
1054 }
1055
1056 /**
1057  * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1058  * @gadget:     Reference to the gadget driver
1059  *
1060  * Return codes:
1061  *      0:              Success
1062  *      -EINVAL:        If the gadget passed is NULL
1063  */
1064 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1065 {
1066         struct pch_udc_dev      *dev;
1067
1068         if (!gadget)
1069                 return -EINVAL;
1070         dev = container_of(gadget, struct pch_udc_dev, gadget);
1071         return pch_udc_get_frame(dev);
1072 }
1073
1074 /**
1075  * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1076  * @gadget:     Reference to the gadget driver
1077  *
1078  * Return codes:
1079  *      0:              Success
1080  *      -EINVAL:        If the gadget passed is NULL
1081  */
1082 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1083 {
1084         struct pch_udc_dev      *dev;
1085         unsigned long           flags;
1086
1087         if (!gadget)
1088                 return -EINVAL;
1089         dev = container_of(gadget, struct pch_udc_dev, gadget);
1090         spin_lock_irqsave(&dev->lock, flags);
1091         pch_udc_rmt_wakeup(dev);
1092         spin_unlock_irqrestore(&dev->lock, flags);
1093         return 0;
1094 }
1095
1096 /**
1097  * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1098  *                              is self powered or not
1099  * @gadget:     Reference to the gadget driver
1100  * @value:      Specifies self powered or not
1101  *
1102  * Return codes:
1103  *      0:              Success
1104  *      -EINVAL:        If the gadget passed is NULL
1105  */
1106 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1107 {
1108         struct pch_udc_dev      *dev;
1109
1110         if (!gadget)
1111                 return -EINVAL;
1112         dev = container_of(gadget, struct pch_udc_dev, gadget);
1113         if (value)
1114                 pch_udc_set_selfpowered(dev);
1115         else
1116                 pch_udc_clear_selfpowered(dev);
1117         return 0;
1118 }
1119
1120 /**
1121  * pch_udc_pcd_pullup() - This API is invoked to make the device
1122  *                              visible/invisible to the host
1123  * @gadget:     Reference to the gadget driver
1124  * @is_on:      Specifies whether the pull up is made active or inactive
1125  *
1126  * Return codes:
1127  *      0:              Success
1128  *      -EINVAL:        If the gadget passed is NULL
1129  */
1130 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1131 {
1132         struct pch_udc_dev      *dev;
1133
1134         if (!gadget)
1135                 return -EINVAL;
1136         dev = container_of(gadget, struct pch_udc_dev, gadget);
1137         pch_udc_vbus_session(dev, is_on);
1138         return 0;
1139 }
1140
1141 /**
1142  * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1143  *                              transceiver (or GPIO) that
1144  *                              detects a VBUS power session starting/ending
1145  * @gadget:     Reference to the gadget driver
1146  * @is_active:  specifies whether the session is starting or ending
1147  *
1148  * Return codes:
1149  *      0:              Success
1150  *      -EINVAL:        If the gadget passed is NULL
1151  */
1152 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1153 {
1154         struct pch_udc_dev      *dev;
1155
1156         if (!gadget)
1157                 return -EINVAL;
1158         dev = container_of(gadget, struct pch_udc_dev, gadget);
1159         pch_udc_vbus_session(dev, is_active);
1160         return 0;
1161 }
1162
1163 /**
1164  * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1165  *                              SET_CONFIGURATION calls to
1166  *                              specify how much power the device can consume
1167  * @gadget:     Reference to the gadget driver
1168  * @mA:         specifies the current limit in 2mA unit
1169  *
1170  * Return codes:
1171  *      -EINVAL:        If the gadget passed is NULL
1172  *      -EOPNOTSUPP:
1173  */
1174 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1175 {
1176         return -EOPNOTSUPP;
1177 }
1178
1179 static const struct usb_gadget_ops pch_udc_ops = {
1180         .get_frame = pch_udc_pcd_get_frame,
1181         .wakeup = pch_udc_pcd_wakeup,
1182         .set_selfpowered = pch_udc_pcd_selfpowered,
1183         .pullup = pch_udc_pcd_pullup,
1184         .vbus_session = pch_udc_pcd_vbus_session,
1185         .vbus_draw = pch_udc_pcd_vbus_draw,
1186 };
1187
1188 /**
1189  * complete_req() - This API is invoked from the driver when processing
1190  *                      of a request is complete
1191  * @ep:         Reference to the endpoint structure
1192  * @req:        Reference to the request structure
1193  * @status:     Indicates the success/failure of completion
1194  */
1195 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1196                                                                  int status)
1197 {
1198         struct pch_udc_dev      *dev;
1199         unsigned halted = ep->halted;
1200
1201         list_del_init(&req->queue);
1202
1203         /* set new status if pending */
1204         if (req->req.status == -EINPROGRESS)
1205                 req->req.status = status;
1206         else
1207                 status = req->req.status;
1208
1209         dev = ep->dev;
1210         if (req->dma_mapped) {
1211                 if (req->dma == DMA_ADDR_INVALID) {
1212                         if (ep->in)
1213                                 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1214                                                  req->req.length,
1215                                                  DMA_TO_DEVICE);
1216                         else
1217                                 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1218                                                  req->req.length,
1219                                                  DMA_FROM_DEVICE);
1220                         req->req.dma = DMA_ADDR_INVALID;
1221                 } else {
1222                         if (ep->in)
1223                                 dma_unmap_single(&dev->pdev->dev, req->dma,
1224                                                  req->req.length,
1225                                                  DMA_TO_DEVICE);
1226                         else {
1227                                 dma_unmap_single(&dev->pdev->dev, req->dma,
1228                                                  req->req.length,
1229                                                  DMA_FROM_DEVICE);
1230                                 memcpy(req->req.buf, req->buf, req->req.length);
1231                         }
1232                         kfree(req->buf);
1233                         req->dma = DMA_ADDR_INVALID;
1234                 }
1235                 req->dma_mapped = 0;
1236         }
1237         ep->halted = 1;
1238         spin_unlock(&dev->lock);
1239         if (!ep->in)
1240                 pch_udc_ep_clear_rrdy(ep);
1241         req->req.complete(&ep->ep, &req->req);
1242         spin_lock(&dev->lock);
1243         ep->halted = halted;
1244 }
1245
1246 /**
1247  * empty_req_queue() - This API empties the request queue of an endpoint
1248  * @ep:         Reference to the endpoint structure
1249  */
1250 static void empty_req_queue(struct pch_udc_ep *ep)
1251 {
1252         struct pch_udc_request  *req;
1253
1254         ep->halted = 1;
1255         while (!list_empty(&ep->queue)) {
1256                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1257                 complete_req(ep, req, -ESHUTDOWN);      /* Remove from list */
1258         }
1259 }
1260
1261 /**
1262  * pch_udc_free_dma_chain() - This function frees the DMA chain created
1263  *                              for the request
1264  * @dev         Reference to the driver structure
1265  * @req         Reference to the request to be freed
1266  *
1267  * Return codes:
1268  *      0: Success
1269  */
1270 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1271                                    struct pch_udc_request *req)
1272 {
1273         struct pch_udc_data_dma_desc *td = req->td_data;
1274         unsigned i = req->chain_len;
1275
1276         dma_addr_t addr2;
1277         dma_addr_t addr = (dma_addr_t)td->next;
1278         td->next = 0x00;
1279         for (; i > 1; --i) {
1280                 /* do not free first desc., will be done by free for request */
1281                 td = phys_to_virt(addr);
1282                 addr2 = (dma_addr_t)td->next;
1283                 pci_pool_free(dev->data_requests, td, addr);
1284                 td->next = 0x00;
1285                 addr = addr2;
1286         }
1287         req->chain_len = 1;
1288 }
1289
1290 /**
1291  * pch_udc_create_dma_chain() - This function creates or reinitializes
1292  *                              a DMA chain
1293  * @ep:         Reference to the endpoint structure
1294  * @req:        Reference to the request
1295  * @buf_len:    The buffer length
1296  * @gfp_flags:  Flags to be used while mapping the data buffer
1297  *
1298  * Return codes:
1299  *      0:              success,
1300  *      -ENOMEM:        pci_pool_alloc invocation fails
1301  */
1302 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1303                                     struct pch_udc_request *req,
1304                                     unsigned long buf_len,
1305                                     gfp_t gfp_flags)
1306 {
1307         struct pch_udc_data_dma_desc *td = req->td_data, *last;
1308         unsigned long bytes = req->req.length, i = 0;
1309         dma_addr_t dma_addr;
1310         unsigned len = 1;
1311
1312         if (req->chain_len > 1)
1313                 pch_udc_free_dma_chain(ep->dev, req);
1314
1315         if (req->dma == DMA_ADDR_INVALID)
1316                 td->dataptr = req->req.dma;
1317         else
1318                 td->dataptr = req->dma;
1319
1320         td->status = PCH_UDC_BS_HST_BSY;
1321         for (; ; bytes -= buf_len, ++len) {
1322                 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1323                 if (bytes <= buf_len)
1324                         break;
1325                 last = td;
1326                 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1327                                     &dma_addr);
1328                 if (!td)
1329                         goto nomem;
1330                 i += buf_len;
1331                 td->dataptr = req->td_data->dataptr + i;
1332                 last->next = dma_addr;
1333         }
1334
1335         req->td_data_last = td;
1336         td->status |= PCH_UDC_DMA_LAST;
1337         td->next = req->td_data_phys;
1338         req->chain_len = len;
1339         return 0;
1340
1341 nomem:
1342         if (len > 1) {
1343                 req->chain_len = len;
1344                 pch_udc_free_dma_chain(ep->dev, req);
1345         }
1346         req->chain_len = 1;
1347         return -ENOMEM;
1348 }
1349
1350 /**
1351  * prepare_dma() - This function creates and initializes the DMA chain
1352  *                      for the request
1353  * @ep:         Reference to the endpoint structure
1354  * @req:        Reference to the request
1355  * @gfp:        Flag to be used while mapping the data buffer
1356  *
1357  * Return codes:
1358  *      0:              Success
1359  *      Other 0:        linux error number on failure
1360  */
1361 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1362                           gfp_t gfp)
1363 {
1364         int     retval;
1365
1366         /* Allocate and create a DMA chain */
1367         retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1368         if (retval) {
1369                 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1370                 return retval;
1371         }
1372         if (ep->in)
1373                 req->td_data->status = (req->td_data->status &
1374                                 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1375         return 0;
1376 }
1377
1378 /**
1379  * process_zlp() - This function process zero length packets
1380  *                      from the gadget driver
1381  * @ep:         Reference to the endpoint structure
1382  * @req:        Reference to the request
1383  */
1384 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1385 {
1386         struct pch_udc_dev      *dev = ep->dev;
1387
1388         /* IN zlp's are handled by hardware */
1389         complete_req(ep, req, 0);
1390
1391         /* if set_config or set_intf is waiting for ack by zlp
1392          * then set CSR_DONE
1393          */
1394         if (dev->set_cfg_not_acked) {
1395                 pch_udc_set_csr_done(dev);
1396                 dev->set_cfg_not_acked = 0;
1397         }
1398         /* setup command is ACK'ed now by zlp */
1399         if (!dev->stall && dev->waiting_zlp_ack) {
1400                 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1401                 dev->waiting_zlp_ack = 0;
1402         }
1403 }
1404
1405 /**
1406  * pch_udc_start_rxrequest() - This function starts the receive requirement.
1407  * @ep:         Reference to the endpoint structure
1408  * @req:        Reference to the request structure
1409  */
1410 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1411                                          struct pch_udc_request *req)
1412 {
1413         struct pch_udc_data_dma_desc *td_data;
1414
1415         pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1416         td_data = req->td_data;
1417         /* Set the status bits for all descriptors */
1418         while (1) {
1419                 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1420                                     PCH_UDC_BS_HST_RDY;
1421                 if ((td_data->status & PCH_UDC_DMA_LAST) ==  PCH_UDC_DMA_LAST)
1422                         break;
1423                 td_data = phys_to_virt(td_data->next);
1424         }
1425         /* Write the descriptor pointer */
1426         pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1427         req->dma_going = 1;
1428         pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1429         pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1430         pch_udc_ep_clear_nak(ep);
1431         pch_udc_ep_set_rrdy(ep);
1432 }
1433
1434 /**
1435  * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1436  *                              from gadget driver
1437  * @usbep:      Reference to the USB endpoint structure
1438  * @desc:       Reference to the USB endpoint descriptor structure
1439  *
1440  * Return codes:
1441  *      0:              Success
1442  *      -EINVAL:
1443  *      -ESHUTDOWN:
1444  */
1445 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1446                                     const struct usb_endpoint_descriptor *desc)
1447 {
1448         struct pch_udc_ep       *ep;
1449         struct pch_udc_dev      *dev;
1450         unsigned long           iflags;
1451
1452         if (!usbep || (usbep->name == ep0_string) || !desc ||
1453             (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1454                 return -EINVAL;
1455
1456         ep = container_of(usbep, struct pch_udc_ep, ep);
1457         dev = ep->dev;
1458         if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1459                 return -ESHUTDOWN;
1460         spin_lock_irqsave(&dev->lock, iflags);
1461         ep->desc = desc;
1462         ep->halted = 0;
1463         pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1464         ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
1465         pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1466         spin_unlock_irqrestore(&dev->lock, iflags);
1467         return 0;
1468 }
1469
1470 /**
1471  * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1472  *                              from gadget driver
1473  * @usbep       Reference to the USB endpoint structure
1474  *
1475  * Return codes:
1476  *      0:              Success
1477  *      -EINVAL:
1478  */
1479 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1480 {
1481         struct pch_udc_ep       *ep;
1482         struct pch_udc_dev      *dev;
1483         unsigned long   iflags;
1484
1485         if (!usbep)
1486                 return -EINVAL;
1487
1488         ep = container_of(usbep, struct pch_udc_ep, ep);
1489         dev = ep->dev;
1490         if ((usbep->name == ep0_string) || !ep->desc)
1491                 return -EINVAL;
1492
1493         spin_lock_irqsave(&ep->dev->lock, iflags);
1494         empty_req_queue(ep);
1495         ep->halted = 1;
1496         pch_udc_ep_disable(ep);
1497         pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1498         ep->desc = NULL;
1499         INIT_LIST_HEAD(&ep->queue);
1500         spin_unlock_irqrestore(&ep->dev->lock, iflags);
1501         return 0;
1502 }
1503
1504 /**
1505  * pch_udc_alloc_request() - This function allocates request structure.
1506  *                              It is called by gadget driver
1507  * @usbep:      Reference to the USB endpoint structure
1508  * @gfp:        Flag to be used while allocating memory
1509  *
1510  * Return codes:
1511  *      NULL:                   Failure
1512  *      Allocated address:      Success
1513  */
1514 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1515                                                   gfp_t gfp)
1516 {
1517         struct pch_udc_request          *req;
1518         struct pch_udc_ep               *ep;
1519         struct pch_udc_data_dma_desc    *dma_desc;
1520         struct pch_udc_dev              *dev;
1521
1522         if (!usbep)
1523                 return NULL;
1524         ep = container_of(usbep, struct pch_udc_ep, ep);
1525         dev = ep->dev;
1526         req = kzalloc(sizeof *req, gfp);
1527         if (!req)
1528                 return NULL;
1529         req->req.dma = DMA_ADDR_INVALID;
1530         req->dma = DMA_ADDR_INVALID;
1531         INIT_LIST_HEAD(&req->queue);
1532         if (!ep->dev->dma_addr)
1533                 return &req->req;
1534         /* ep0 in requests are allocated from data pool here */
1535         dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1536                                   &req->td_data_phys);
1537         if (NULL == dma_desc) {
1538                 kfree(req);
1539                 return NULL;
1540         }
1541         /* prevent from using desc. - set HOST BUSY */
1542         dma_desc->status |= PCH_UDC_BS_HST_BSY;
1543         dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
1544         req->td_data = dma_desc;
1545         req->td_data_last = dma_desc;
1546         req->chain_len = 1;
1547         return &req->req;
1548 }
1549
1550 /**
1551  * pch_udc_free_request() - This function frees request structure.
1552  *                              It is called by gadget driver
1553  * @usbep:      Reference to the USB endpoint structure
1554  * @usbreq:     Reference to the USB request
1555  */
1556 static void pch_udc_free_request(struct usb_ep *usbep,
1557                                   struct usb_request *usbreq)
1558 {
1559         struct pch_udc_ep       *ep;
1560         struct pch_udc_request  *req;
1561         struct pch_udc_dev      *dev;
1562
1563         if (!usbep || !usbreq)
1564                 return;
1565         ep = container_of(usbep, struct pch_udc_ep, ep);
1566         req = container_of(usbreq, struct pch_udc_request, req);
1567         dev = ep->dev;
1568         if (!list_empty(&req->queue))
1569                 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1570                         __func__, usbep->name, req);
1571         if (req->td_data != NULL) {
1572                 if (req->chain_len > 1)
1573                         pch_udc_free_dma_chain(ep->dev, req);
1574                 pci_pool_free(ep->dev->data_requests, req->td_data,
1575                               req->td_data_phys);
1576         }
1577         kfree(req);
1578 }
1579
1580 /**
1581  * pch_udc_pcd_queue() - This function queues a request packet. It is called
1582  *                      by gadget driver
1583  * @usbep:      Reference to the USB endpoint structure
1584  * @usbreq:     Reference to the USB request
1585  * @gfp:        Flag to be used while mapping the data buffer
1586  *
1587  * Return codes:
1588  *      0:                      Success
1589  *      linux error number:     Failure
1590  */
1591 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1592                                                                  gfp_t gfp)
1593 {
1594         int retval = 0;
1595         struct pch_udc_ep       *ep;
1596         struct pch_udc_dev      *dev;
1597         struct pch_udc_request  *req;
1598         unsigned long   iflags;
1599
1600         if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1601                 return -EINVAL;
1602         ep = container_of(usbep, struct pch_udc_ep, ep);
1603         dev = ep->dev;
1604         if (!ep->desc && ep->num)
1605                 return -EINVAL;
1606         req = container_of(usbreq, struct pch_udc_request, req);
1607         if (!list_empty(&req->queue))
1608                 return -EINVAL;
1609         if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1610                 return -ESHUTDOWN;
1611         spin_lock_irqsave(&ep->dev->lock, iflags);
1612         /* map the buffer for dma */
1613         if (usbreq->length &&
1614             ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1615                 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1616                         if (ep->in)
1617                                 usbreq->dma = dma_map_single(&dev->pdev->dev,
1618                                                              usbreq->buf,
1619                                                              usbreq->length,
1620                                                              DMA_TO_DEVICE);
1621                         else
1622                                 usbreq->dma = dma_map_single(&dev->pdev->dev,
1623                                                              usbreq->buf,
1624                                                              usbreq->length,
1625                                                              DMA_FROM_DEVICE);
1626                 } else {
1627                         req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1628                         if (!req->buf)
1629                                 return -ENOMEM;
1630                         if (ep->in) {
1631                                 memcpy(req->buf, usbreq->buf, usbreq->length);
1632                                 req->dma = dma_map_single(&dev->pdev->dev,
1633                                                           req->buf,
1634                                                           usbreq->length,
1635                                                           DMA_TO_DEVICE);
1636                         } else
1637                                 req->dma = dma_map_single(&dev->pdev->dev,
1638                                                           req->buf,
1639                                                           usbreq->length,
1640                                                           DMA_FROM_DEVICE);
1641                 }
1642                 req->dma_mapped = 1;
1643         }
1644         if (usbreq->length > 0) {
1645                 retval = prepare_dma(ep, req, GFP_ATOMIC);
1646                 if (retval)
1647                         goto probe_end;
1648         }
1649         usbreq->actual = 0;
1650         usbreq->status = -EINPROGRESS;
1651         req->dma_done = 0;
1652         if (list_empty(&ep->queue) && !ep->halted) {
1653                 /* no pending transfer, so start this req */
1654                 if (!usbreq->length) {
1655                         process_zlp(ep, req);
1656                         retval = 0;
1657                         goto probe_end;
1658                 }
1659                 if (!ep->in) {
1660                         pch_udc_start_rxrequest(ep, req);
1661                 } else {
1662                         /*
1663                         * For IN trfr the descriptors will be programmed and
1664                         * P bit will be set when
1665                         * we get an IN token
1666                         */
1667                         pch_udc_wait_ep_stall(ep);
1668                         pch_udc_ep_clear_nak(ep);
1669                         pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1670                 }
1671         }
1672         /* Now add this request to the ep's pending requests */
1673         if (req != NULL)
1674                 list_add_tail(&req->queue, &ep->queue);
1675
1676 probe_end:
1677         spin_unlock_irqrestore(&dev->lock, iflags);
1678         return retval;
1679 }
1680
1681 /**
1682  * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1683  *                              It is called by gadget driver
1684  * @usbep:      Reference to the USB endpoint structure
1685  * @usbreq:     Reference to the USB request
1686  *
1687  * Return codes:
1688  *      0:                      Success
1689  *      linux error number:     Failure
1690  */
1691 static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1692                                 struct usb_request *usbreq)
1693 {
1694         struct pch_udc_ep       *ep;
1695         struct pch_udc_request  *req;
1696         struct pch_udc_dev      *dev;
1697         unsigned long           flags;
1698         int ret = -EINVAL;
1699
1700         ep = container_of(usbep, struct pch_udc_ep, ep);
1701         dev = ep->dev;
1702         if (!usbep || !usbreq || (!ep->desc && ep->num))
1703                 return ret;
1704         req = container_of(usbreq, struct pch_udc_request, req);
1705         spin_lock_irqsave(&ep->dev->lock, flags);
1706         /* make sure it's still queued on this endpoint */
1707         list_for_each_entry(req, &ep->queue, queue) {
1708                 if (&req->req == usbreq) {
1709                         pch_udc_ep_set_nak(ep);
1710                         if (!list_empty(&req->queue))
1711                                 complete_req(ep, req, -ECONNRESET);
1712                         ret = 0;
1713                         break;
1714                 }
1715         }
1716         spin_unlock_irqrestore(&ep->dev->lock, flags);
1717         return ret;
1718 }
1719
1720 /**
1721  * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1722  *                          feature
1723  * @usbep:      Reference to the USB endpoint structure
1724  * @halt:       Specifies whether to set or clear the feature
1725  *
1726  * Return codes:
1727  *      0:                      Success
1728  *      linux error number:     Failure
1729  */
1730 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1731 {
1732         struct pch_udc_ep       *ep;
1733         struct pch_udc_dev      *dev;
1734         unsigned long iflags;
1735         int ret;
1736
1737         if (!usbep)
1738                 return -EINVAL;
1739         ep = container_of(usbep, struct pch_udc_ep, ep);
1740         dev = ep->dev;
1741         if (!ep->desc && !ep->num)
1742                 return -EINVAL;
1743         if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1744                 return -ESHUTDOWN;
1745         spin_lock_irqsave(&udc_stall_spinlock, iflags);
1746         if (list_empty(&ep->queue)) {
1747                 if (halt) {
1748                         if (ep->num == PCH_UDC_EP0)
1749                                 ep->dev->stall = 1;
1750                         pch_udc_ep_set_stall(ep);
1751                         pch_udc_enable_ep_interrupts(ep->dev,
1752                                                      PCH_UDC_EPINT(ep->in,
1753                                                                    ep->num));
1754                 } else {
1755                         pch_udc_ep_clear_stall(ep);
1756                 }
1757                 ret = 0;
1758         } else {
1759                 ret = -EAGAIN;
1760         }
1761         spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1762         return ret;
1763 }
1764
1765 /**
1766  * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
1767  *                              halt feature
1768  * @usbep:      Reference to the USB endpoint structure
1769  * @halt:       Specifies whether to set or clear the feature
1770  *
1771  * Return codes:
1772  *      0:                      Success
1773  *      linux error number:     Failure
1774  */
1775 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
1776 {
1777         struct pch_udc_ep       *ep;
1778         struct pch_udc_dev      *dev;
1779         unsigned long iflags;
1780         int ret;
1781
1782         if (!usbep)
1783                 return -EINVAL;
1784         ep = container_of(usbep, struct pch_udc_ep, ep);
1785         dev = ep->dev;
1786         if (!ep->desc && !ep->num)
1787                 return -EINVAL;
1788         if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1789                 return -ESHUTDOWN;
1790         spin_lock_irqsave(&udc_stall_spinlock, iflags);
1791         if (!list_empty(&ep->queue)) {
1792                 ret = -EAGAIN;
1793         } else {
1794                 if (ep->num == PCH_UDC_EP0)
1795                         ep->dev->stall = 1;
1796                 pch_udc_ep_set_stall(ep);
1797                 pch_udc_enable_ep_interrupts(ep->dev,
1798                                              PCH_UDC_EPINT(ep->in, ep->num));
1799                 ep->dev->prot_stall = 1;
1800                 ret = 0;
1801         }
1802         spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1803         return ret;
1804 }
1805
1806 /**
1807  * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
1808  * @usbep:      Reference to the USB endpoint structure
1809  */
1810 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
1811 {
1812         struct pch_udc_ep  *ep;
1813
1814         if (!usbep)
1815                 return;
1816
1817         ep = container_of(usbep, struct pch_udc_ep, ep);
1818         if (ep->desc || !ep->num)
1819                 pch_udc_ep_fifo_flush(ep, ep->in);
1820 }
1821
1822 static const struct usb_ep_ops pch_udc_ep_ops = {
1823         .enable         = pch_udc_pcd_ep_enable,
1824         .disable        = pch_udc_pcd_ep_disable,
1825         .alloc_request  = pch_udc_alloc_request,
1826         .free_request   = pch_udc_free_request,
1827         .queue          = pch_udc_pcd_queue,
1828         .dequeue        = pch_udc_pcd_dequeue,
1829         .set_halt       = pch_udc_pcd_set_halt,
1830         .set_wedge      = pch_udc_pcd_set_wedge,
1831         .fifo_status    = NULL,
1832         .fifo_flush     = pch_udc_pcd_fifo_flush,
1833 };
1834
1835 /**
1836  * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
1837  * @td_stp:     Reference to the SETP buffer structure
1838  */
1839 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
1840 {
1841         static u32      pky_marker;
1842
1843         if (!td_stp)
1844                 return;
1845         td_stp->reserved = ++pky_marker;
1846         memset(&td_stp->request, 0xFF, sizeof td_stp->request);
1847         td_stp->status = PCH_UDC_BS_HST_RDY;
1848 }
1849
1850 /**
1851  * pch_udc_start_next_txrequest() - This function starts
1852  *                                      the next transmission requirement
1853  * @ep: Reference to the endpoint structure
1854  */
1855 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
1856 {
1857         struct pch_udc_request *req;
1858         struct pch_udc_data_dma_desc *td_data;
1859
1860         if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
1861                 return;
1862
1863         if (list_empty(&ep->queue))
1864                 return;
1865
1866         /* next request */
1867         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1868         if (req->dma_going)
1869                 return;
1870         if (!req->td_data)
1871                 return;
1872         pch_udc_wait_ep_stall(ep);
1873         req->dma_going = 1;
1874         pch_udc_ep_set_ddptr(ep, 0);
1875         td_data = req->td_data;
1876         while (1) {
1877                 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1878                                    PCH_UDC_BS_HST_RDY;
1879                 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1880                         break;
1881                 td_data = phys_to_virt(td_data->next);
1882         }
1883         pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1884         pch_udc_set_dma(ep->dev, DMA_DIR_TX);
1885         pch_udc_ep_set_pd(ep);
1886         pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1887         pch_udc_ep_clear_nak(ep);
1888 }
1889
1890 /**
1891  * pch_udc_complete_transfer() - This function completes a transfer
1892  * @ep:         Reference to the endpoint structure
1893  */
1894 static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
1895 {
1896         struct pch_udc_request *req;
1897         struct pch_udc_dev *dev = ep->dev;
1898
1899         if (list_empty(&ep->queue))
1900                 return;
1901         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1902         if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
1903             PCH_UDC_BS_DMA_DONE)
1904                 return;
1905         if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
1906              PCH_UDC_RTS_SUCC) {
1907                 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
1908                         "epstatus=0x%08x\n",
1909                        (req->td_data_last->status & PCH_UDC_RXTX_STS),
1910                        (int)(ep->epsts));
1911                 return;
1912         }
1913
1914         req->req.actual = req->req.length;
1915         req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1916         req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1917         complete_req(ep, req, 0);
1918         req->dma_going = 0;
1919         if (!list_empty(&ep->queue)) {
1920                 pch_udc_wait_ep_stall(ep);
1921                 pch_udc_ep_clear_nak(ep);
1922                 pch_udc_enable_ep_interrupts(ep->dev,
1923                                              PCH_UDC_EPINT(ep->in, ep->num));
1924         } else {
1925                 pch_udc_disable_ep_interrupts(ep->dev,
1926                                               PCH_UDC_EPINT(ep->in, ep->num));
1927         }
1928 }
1929
1930 /**
1931  * pch_udc_complete_receiver() - This function completes a receiver
1932  * @ep:         Reference to the endpoint structure
1933  */
1934 static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
1935 {
1936         struct pch_udc_request *req;
1937         struct pch_udc_dev *dev = ep->dev;
1938         unsigned int count;
1939         struct pch_udc_data_dma_desc *td;
1940         dma_addr_t addr;
1941
1942         if (list_empty(&ep->queue))
1943                 return;
1944         /* next request */
1945         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1946         pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1947         pch_udc_ep_set_ddptr(ep, 0);
1948         if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
1949             PCH_UDC_BS_DMA_DONE)
1950                 td = req->td_data_last;
1951         else
1952                 td = req->td_data;
1953
1954         while (1) {
1955                 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
1956                         dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
1957                                 "epstatus=0x%08x\n",
1958                                 (req->td_data->status & PCH_UDC_RXTX_STS),
1959                                 (int)(ep->epsts));
1960                         return;
1961                 }
1962                 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
1963                         if (td->status | PCH_UDC_DMA_LAST) {
1964                                 count = td->status & PCH_UDC_RXTX_BYTES;
1965                                 break;
1966                         }
1967                 if (td == req->td_data_last) {
1968                         dev_err(&dev->pdev->dev, "Not complete RX descriptor");
1969                         return;
1970                 }
1971                 addr = (dma_addr_t)td->next;
1972                 td = phys_to_virt(addr);
1973         }
1974         /* on 64k packets the RXBYTES field is zero */
1975         if (!count && (req->req.length == UDC_DMA_MAXPACKET))
1976                 count = UDC_DMA_MAXPACKET;
1977         req->td_data->status |= PCH_UDC_DMA_LAST;
1978         td->status |= PCH_UDC_BS_HST_BSY;
1979
1980         req->dma_going = 0;
1981         req->req.actual = count;
1982         complete_req(ep, req, 0);
1983         /* If there is a new/failed requests try that now */
1984         if (!list_empty(&ep->queue)) {
1985                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1986                 pch_udc_start_rxrequest(ep, req);
1987         }
1988 }
1989
1990 /**
1991  * pch_udc_svc_data_in() - This function process endpoint interrupts
1992  *                              for IN endpoints
1993  * @dev:        Reference to the device structure
1994  * @ep_num:     Endpoint that generated the interrupt
1995  */
1996 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
1997 {
1998         u32     epsts;
1999         struct pch_udc_ep       *ep;
2000
2001         ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2002         epsts = ep->epsts;
2003         ep->epsts = 0;
2004
2005         if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA  | UDC_EPSTS_HE |
2006                        UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2007                        UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2008                 return;
2009         if ((epsts & UDC_EPSTS_BNA))
2010                 return;
2011         if (epsts & UDC_EPSTS_HE)
2012                 return;
2013         if (epsts & UDC_EPSTS_RSS) {
2014                 pch_udc_ep_set_stall(ep);
2015                 pch_udc_enable_ep_interrupts(ep->dev,
2016                                              PCH_UDC_EPINT(ep->in, ep->num));
2017         }
2018         if (epsts & UDC_EPSTS_RCS) {
2019                 if (!dev->prot_stall) {
2020                         pch_udc_ep_clear_stall(ep);
2021                 } else {
2022                         pch_udc_ep_set_stall(ep);
2023                         pch_udc_enable_ep_interrupts(ep->dev,
2024                                                 PCH_UDC_EPINT(ep->in, ep->num));
2025                 }
2026         }
2027         if (epsts & UDC_EPSTS_TDC)
2028                 pch_udc_complete_transfer(ep);
2029         /* On IN interrupt, provide data if we have any */
2030         if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2031             !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2032                 pch_udc_start_next_txrequest(ep);
2033 }
2034
2035 /**
2036  * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2037  * @dev:        Reference to the device structure
2038  * @ep_num:     Endpoint that generated the interrupt
2039  */
2040 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2041 {
2042         u32                     epsts;
2043         struct pch_udc_ep               *ep;
2044         struct pch_udc_request          *req = NULL;
2045
2046         ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2047         epsts = ep->epsts;
2048         ep->epsts = 0;
2049
2050         if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2051                 /* next request */
2052                 req = list_entry(ep->queue.next, struct pch_udc_request,
2053                                  queue);
2054                 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2055                      PCH_UDC_BS_DMA_DONE) {
2056                         if (!req->dma_going)
2057                                 pch_udc_start_rxrequest(ep, req);
2058                         return;
2059                 }
2060         }
2061         if (epsts & UDC_EPSTS_HE)
2062                 return;
2063         if (epsts & UDC_EPSTS_RSS) {
2064                 pch_udc_ep_set_stall(ep);
2065                 pch_udc_enable_ep_interrupts(ep->dev,
2066                                              PCH_UDC_EPINT(ep->in, ep->num));
2067         }
2068         if (epsts & UDC_EPSTS_RCS) {
2069                 if (!dev->prot_stall) {
2070                         pch_udc_ep_clear_stall(ep);
2071                 } else {
2072                         pch_udc_ep_set_stall(ep);
2073                         pch_udc_enable_ep_interrupts(ep->dev,
2074                                                 PCH_UDC_EPINT(ep->in, ep->num));
2075                 }
2076         }
2077         if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2078             UDC_EPSTS_OUT_DATA) {
2079                 if (ep->dev->prot_stall == 1) {
2080                         pch_udc_ep_set_stall(ep);
2081                         pch_udc_enable_ep_interrupts(ep->dev,
2082                                                 PCH_UDC_EPINT(ep->in, ep->num));
2083                 } else {
2084                         pch_udc_complete_receiver(ep);
2085                 }
2086         }
2087         if (list_empty(&ep->queue))
2088                 pch_udc_set_dma(dev, DMA_DIR_RX);
2089 }
2090
2091 /**
2092  * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2093  * @dev:        Reference to the device structure
2094  */
2095 static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2096 {
2097         u32     epsts;
2098         struct pch_udc_ep       *ep;
2099         struct pch_udc_ep       *ep_out;
2100
2101         ep = &dev->ep[UDC_EP0IN_IDX];
2102         ep_out = &dev->ep[UDC_EP0OUT_IDX];
2103         epsts = ep->epsts;
2104         ep->epsts = 0;
2105
2106         if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2107                        UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2108                        UDC_EPSTS_XFERDONE)))
2109                 return;
2110         if ((epsts & UDC_EPSTS_BNA))
2111                 return;
2112         if (epsts & UDC_EPSTS_HE)
2113                 return;
2114         if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2115                 pch_udc_complete_transfer(ep);
2116                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2117                 ep_out->td_data->status = (ep_out->td_data->status &
2118                                         ~PCH_UDC_BUFF_STS) |
2119                                         PCH_UDC_BS_HST_RDY;
2120                 pch_udc_ep_clear_nak(ep_out);
2121                 pch_udc_set_dma(dev, DMA_DIR_RX);
2122                 pch_udc_ep_set_rrdy(ep_out);
2123         }
2124         /* On IN interrupt, provide data if we have any */
2125         if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2126              !(epsts & UDC_EPSTS_TXEMPTY))
2127                 pch_udc_start_next_txrequest(ep);
2128 }
2129
2130 /**
2131  * pch_udc_svc_control_out() - Routine that handle Control
2132  *                                      OUT endpoint interrupts
2133  * @dev:        Reference to the device structure
2134  */
2135 static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2136 {
2137         u32     stat;
2138         int setup_supported;
2139         struct pch_udc_ep       *ep;
2140
2141         ep = &dev->ep[UDC_EP0OUT_IDX];
2142         stat = ep->epsts;
2143         ep->epsts = 0;
2144
2145         /* If setup data */
2146         if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2147             UDC_EPSTS_OUT_SETUP) {
2148                 dev->stall = 0;
2149                 dev->ep[UDC_EP0IN_IDX].halted = 0;
2150                 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2151                 dev->setup_data = ep->td_stp->request;
2152                 pch_udc_init_setup_buff(ep->td_stp);
2153                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2154                 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2155                                       dev->ep[UDC_EP0IN_IDX].in);
2156                 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2157                         dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2158                 else /* OUT */
2159                         dev->gadget.ep0 = &ep->ep;
2160                 spin_unlock(&dev->lock);
2161                 /* If Mass storage Reset */
2162                 if ((dev->setup_data.bRequestType == 0x21) &&
2163                     (dev->setup_data.bRequest == 0xFF))
2164                         dev->prot_stall = 0;
2165                 /* call gadget with setup data received */
2166                 setup_supported = dev->driver->setup(&dev->gadget,
2167                                                      &dev->setup_data);
2168                 spin_lock(&dev->lock);
2169
2170                 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2171                         ep->td_data->status = (ep->td_data->status &
2172                                                 ~PCH_UDC_BUFF_STS) |
2173                                                 PCH_UDC_BS_HST_RDY;
2174                         pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2175                 }
2176                 /* ep0 in returns data on IN phase */
2177                 if (setup_supported >= 0 && setup_supported <
2178                                             UDC_EP0IN_MAX_PKT_SIZE) {
2179                         pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2180                         /* Gadget would have queued a request when
2181                          * we called the setup */
2182                         if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2183                                 pch_udc_set_dma(dev, DMA_DIR_RX);
2184                                 pch_udc_ep_clear_nak(ep);
2185                         }
2186                 } else if (setup_supported < 0) {
2187                         /* if unsupported request, then stall */
2188                         pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2189                         pch_udc_enable_ep_interrupts(ep->dev,
2190                                                 PCH_UDC_EPINT(ep->in, ep->num));
2191                         dev->stall = 0;
2192                         pch_udc_set_dma(dev, DMA_DIR_RX);
2193                 } else {
2194                         dev->waiting_zlp_ack = 1;
2195                 }
2196         } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2197                      UDC_EPSTS_OUT_DATA) && !dev->stall) {
2198                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2199                 pch_udc_ep_set_ddptr(ep, 0);
2200                 if (!list_empty(&ep->queue)) {
2201                         ep->epsts = stat;
2202                         pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2203                 }
2204                 pch_udc_set_dma(dev, DMA_DIR_RX);
2205         }
2206         pch_udc_ep_set_rrdy(ep);
2207 }
2208
2209
2210 /**
2211  * pch_udc_postsvc_epinters() - This function enables end point interrupts
2212  *                              and clears NAK status
2213  * @dev:        Reference to the device structure
2214  * @ep_num:     End point number
2215  */
2216 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2217 {
2218         struct pch_udc_ep       *ep;
2219         struct pch_udc_request *req;
2220
2221         ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2222         if (!list_empty(&ep->queue)) {
2223                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2224                 pch_udc_enable_ep_interrupts(ep->dev,
2225                                              PCH_UDC_EPINT(ep->in, ep->num));
2226                 pch_udc_ep_clear_nak(ep);
2227         }
2228 }
2229
2230 /**
2231  * pch_udc_read_all_epstatus() - This function read all endpoint status
2232  * @dev:        Reference to the device structure
2233  * @ep_intr:    Status of endpoint interrupt
2234  */
2235 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2236 {
2237         int i;
2238         struct pch_udc_ep       *ep;
2239
2240         for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2241                 /* IN */
2242                 if (ep_intr & (0x1 << i)) {
2243                         ep = &dev->ep[UDC_EPIN_IDX(i)];
2244                         ep->epsts = pch_udc_read_ep_status(ep);
2245                         pch_udc_clear_ep_status(ep, ep->epsts);
2246                 }
2247                 /* OUT */
2248                 if (ep_intr & (0x10000 << i)) {
2249                         ep = &dev->ep[UDC_EPOUT_IDX(i)];
2250                         ep->epsts = pch_udc_read_ep_status(ep);
2251                         pch_udc_clear_ep_status(ep, ep->epsts);
2252                 }
2253         }
2254 }
2255
2256 /**
2257  * pch_udc_activate_control_ep() - This function enables the control endpoints
2258  *                                      for traffic after a reset
2259  * @dev:        Reference to the device structure
2260  */
2261 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2262 {
2263         struct pch_udc_ep       *ep;
2264         u32 val;
2265
2266         /* Setup the IN endpoint */
2267         ep = &dev->ep[UDC_EP0IN_IDX];
2268         pch_udc_clear_ep_control(ep);
2269         pch_udc_ep_fifo_flush(ep, ep->in);
2270         pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2271         pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2272         /* Initialize the IN EP Descriptor */
2273         ep->td_data      = NULL;
2274         ep->td_stp       = NULL;
2275         ep->td_data_phys = 0;
2276         ep->td_stp_phys  = 0;
2277
2278         /* Setup the OUT endpoint */
2279         ep = &dev->ep[UDC_EP0OUT_IDX];
2280         pch_udc_clear_ep_control(ep);
2281         pch_udc_ep_fifo_flush(ep, ep->in);
2282         pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2283         pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2284         val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2285         pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2286
2287         /* Initialize the SETUP buffer */
2288         pch_udc_init_setup_buff(ep->td_stp);
2289         /* Write the pointer address of dma descriptor */
2290         pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2291         /* Write the pointer address of Setup descriptor */
2292         pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2293
2294         /* Initialize the dma descriptor */
2295         ep->td_data->status  = PCH_UDC_DMA_LAST;
2296         ep->td_data->dataptr = dev->dma_addr;
2297         ep->td_data->next    = ep->td_data_phys;
2298
2299         pch_udc_ep_clear_nak(ep);
2300 }
2301
2302
2303 /**
2304  * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2305  * @dev:        Reference to driver structure
2306  */
2307 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2308 {
2309         struct pch_udc_ep       *ep;
2310         int i;
2311
2312         pch_udc_clear_dma(dev, DMA_DIR_TX);
2313         pch_udc_clear_dma(dev, DMA_DIR_RX);
2314         /* Mask all endpoint interrupts */
2315         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2316         /* clear all endpoint interrupts */
2317         pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2318
2319         for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2320                 ep = &dev->ep[i];
2321                 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2322                 pch_udc_clear_ep_control(ep);
2323                 pch_udc_ep_set_ddptr(ep, 0);
2324                 pch_udc_write_csr(ep->dev, 0x00, i);
2325         }
2326         dev->stall = 0;
2327         dev->prot_stall = 0;
2328         dev->waiting_zlp_ack = 0;
2329         dev->set_cfg_not_acked = 0;
2330
2331         /* disable ep to empty req queue. Skip the control EP's */
2332         for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2333                 ep = &dev->ep[i];
2334                 pch_udc_ep_set_nak(ep);
2335                 pch_udc_ep_fifo_flush(ep, ep->in);
2336                 /* Complete request queue */
2337                 empty_req_queue(ep);
2338         }
2339         if (dev->driver && dev->driver->disconnect)
2340                 dev->driver->disconnect(&dev->gadget);
2341 }
2342
2343 /**
2344  * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2345  *                              done interrupt
2346  * @dev:        Reference to driver structure
2347  */
2348 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2349 {
2350         u32 dev_stat, dev_speed;
2351         u32 speed = USB_SPEED_FULL;
2352
2353         dev_stat = pch_udc_read_device_status(dev);
2354         dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2355                                                  UDC_DEVSTS_ENUM_SPEED_SHIFT;
2356         switch (dev_speed) {
2357         case UDC_DEVSTS_ENUM_SPEED_HIGH:
2358                 speed = USB_SPEED_HIGH;
2359                 break;
2360         case  UDC_DEVSTS_ENUM_SPEED_FULL:
2361                 speed = USB_SPEED_FULL;
2362                 break;
2363         case  UDC_DEVSTS_ENUM_SPEED_LOW:
2364                 speed = USB_SPEED_LOW;
2365                 break;
2366         default:
2367                 BUG();
2368         }
2369         dev->gadget.speed = speed;
2370         pch_udc_activate_control_ep(dev);
2371         pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2372         pch_udc_set_dma(dev, DMA_DIR_TX);
2373         pch_udc_set_dma(dev, DMA_DIR_RX);
2374         pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2375 }
2376
2377 /**
2378  * pch_udc_svc_intf_interrupt() - This function handles a set interface
2379  *                                interrupt
2380  * @dev:        Reference to driver structure
2381  */
2382 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2383 {
2384         u32 reg, dev_stat = 0;
2385         int i, ret;
2386
2387         dev_stat = pch_udc_read_device_status(dev);
2388         dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2389                                                          UDC_DEVSTS_INTF_SHIFT;
2390         dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2391                                                          UDC_DEVSTS_ALT_SHIFT;
2392         dev->set_cfg_not_acked = 1;
2393         /* Construct the usb request for gadget driver and inform it */
2394         memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2395         dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2396         dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2397         dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2398         dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2399         /* programm the Endpoint Cfg registers */
2400         /* Only one end point cfg register */
2401         reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2402         reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2403               (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2404         reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2405               (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2406         pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2407         for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2408                 /* clear stall bits */
2409                 pch_udc_ep_clear_stall(&(dev->ep[i]));
2410                 dev->ep[i].halted = 0;
2411         }
2412         dev->stall = 0;
2413         spin_unlock(&dev->lock);
2414         ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2415         spin_lock(&dev->lock);
2416 }
2417
2418 /**
2419  * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2420  *                              interrupt
2421  * @dev:        Reference to driver structure
2422  */
2423 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2424 {
2425         int i, ret;
2426         u32 reg, dev_stat = 0;
2427
2428         dev_stat = pch_udc_read_device_status(dev);
2429         dev->set_cfg_not_acked = 1;
2430         dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2431                                 UDC_DEVSTS_CFG_SHIFT;
2432         /* make usb request for gadget driver */
2433         memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2434         dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2435         dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2436         /* program the NE registers */
2437         /* Only one end point cfg register */
2438         reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2439         reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2440               (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2441         pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2442         for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2443                 /* clear stall bits */
2444                 pch_udc_ep_clear_stall(&(dev->ep[i]));
2445                 dev->ep[i].halted = 0;
2446         }
2447         dev->stall = 0;
2448
2449         /* call gadget zero with setup data received */
2450         spin_unlock(&dev->lock);
2451         ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2452         spin_lock(&dev->lock);
2453 }
2454
2455 /**
2456  * pch_udc_dev_isr() - This function services device interrupts
2457  *                      by invoking appropriate routines.
2458  * @dev:        Reference to the device structure
2459  * @dev_intr:   The Device interrupt status.
2460  */
2461 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2462 {
2463         /* USB Reset Interrupt */
2464         if (dev_intr & UDC_DEVINT_UR)
2465                 pch_udc_svc_ur_interrupt(dev);
2466         /* Enumeration Done Interrupt */
2467         if (dev_intr & UDC_DEVINT_ENUM)
2468                 pch_udc_svc_enum_interrupt(dev);
2469         /* Set Interface Interrupt */
2470         if (dev_intr & UDC_DEVINT_SI)
2471                 pch_udc_svc_intf_interrupt(dev);
2472         /* Set Config Interrupt */
2473         if (dev_intr & UDC_DEVINT_SC)
2474                 pch_udc_svc_cfg_interrupt(dev);
2475         /* USB Suspend interrupt */
2476         if (dev_intr & UDC_DEVINT_US)
2477                 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2478         /* Clear the SOF interrupt, if enabled */
2479         if (dev_intr & UDC_DEVINT_SOF)
2480                 dev_dbg(&dev->pdev->dev, "SOF\n");
2481         /* ES interrupt, IDLE > 3ms on the USB */
2482         if (dev_intr & UDC_DEVINT_ES)
2483                 dev_dbg(&dev->pdev->dev, "ES\n");
2484         /* RWKP interrupt */
2485         if (dev_intr & UDC_DEVINT_RWKP)
2486                 dev_dbg(&dev->pdev->dev, "RWKP\n");
2487 }
2488
2489 /**
2490  * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2491  * @irq:        Interrupt request number
2492  * @dev:        Reference to the device structure
2493  */
2494 static irqreturn_t pch_udc_isr(int irq, void *pdev)
2495 {
2496         struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2497         u32 dev_intr, ep_intr;
2498         int i;
2499
2500         dev_intr = pch_udc_read_device_interrupts(dev);
2501         ep_intr = pch_udc_read_ep_interrupts(dev);
2502
2503         if (dev_intr)
2504                 /* Clear device interrupts */
2505                 pch_udc_write_device_interrupts(dev, dev_intr);
2506         if (ep_intr)
2507                 /* Clear ep interrupts */
2508                 pch_udc_write_ep_interrupts(dev, ep_intr);
2509         if (!dev_intr && !ep_intr)
2510                 return IRQ_NONE;
2511         spin_lock(&dev->lock);
2512         if (dev_intr)
2513                 pch_udc_dev_isr(dev, dev_intr);
2514         if (ep_intr) {
2515                 pch_udc_read_all_epstatus(dev, ep_intr);
2516                 /* Process Control In interrupts, if present */
2517                 if (ep_intr & UDC_EPINT_IN_EP0) {
2518                         pch_udc_svc_control_in(dev);
2519                         pch_udc_postsvc_epinters(dev, 0);
2520                 }
2521                 /* Process Control Out interrupts, if present */
2522                 if (ep_intr & UDC_EPINT_OUT_EP0)
2523                         pch_udc_svc_control_out(dev);
2524                 /* Process data in end point interrupts */
2525                 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2526                         if (ep_intr & (1 <<  i)) {
2527                                 pch_udc_svc_data_in(dev, i);
2528                                 pch_udc_postsvc_epinters(dev, i);
2529                         }
2530                 }
2531                 /* Process data out end point interrupts */
2532                 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2533                                                  PCH_UDC_USED_EP_NUM); i++)
2534                         if (ep_intr & (1 <<  i))
2535                                 pch_udc_svc_data_out(dev, i -
2536                                                          UDC_EPINT_OUT_SHIFT);
2537         }
2538         spin_unlock(&dev->lock);
2539         return IRQ_HANDLED;
2540 }
2541
2542 /**
2543  * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2544  * @dev:        Reference to the device structure
2545  */
2546 static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2547 {
2548         /* enable ep0 interrupts */
2549         pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2550                                                 UDC_EPINT_OUT_EP0);
2551         /* enable device interrupts */
2552         pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2553                                        UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2554                                        UDC_DEVINT_SI | UDC_DEVINT_SC);
2555 }
2556
2557 /**
2558  * gadget_release() - Free the gadget driver private data
2559  * @pdev        reference to struct pci_dev
2560  */
2561 static void gadget_release(struct device *pdev)
2562 {
2563         struct pch_udc_dev *dev = dev_get_drvdata(pdev);
2564
2565         kfree(dev);
2566 }
2567
2568 /**
2569  * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2570  * @dev:        Reference to the driver structure
2571  */
2572 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2573 {
2574         const char *const ep_string[] = {
2575                 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2576                 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2577                 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2578                 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2579                 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2580                 "ep15in", "ep15out",
2581         };
2582         int i;
2583
2584         dev->gadget.speed = USB_SPEED_UNKNOWN;
2585         INIT_LIST_HEAD(&dev->gadget.ep_list);
2586
2587         /* Initialize the endpoints structures */
2588         memset(dev->ep, 0, sizeof dev->ep);
2589         for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2590                 struct pch_udc_ep *ep = &dev->ep[i];
2591                 ep->dev = dev;
2592                 ep->halted = 1;
2593                 ep->num = i / 2;
2594                 ep->in = ~i & 1;
2595                 ep->ep.name = ep_string[i];
2596                 ep->ep.ops = &pch_udc_ep_ops;
2597                 if (ep->in)
2598                         ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2599                 else
2600                         ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2601                                           UDC_EP_REG_SHIFT;
2602                 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2603                 ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
2604                 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2605                 INIT_LIST_HEAD(&ep->queue);
2606         }
2607         dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
2608         dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
2609
2610         /* remove ep0 in and out from the list.  They have own pointer */
2611         list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2612         list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2613
2614         dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2615         INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2616 }
2617
2618 /**
2619  * pch_udc_pcd_init() - This API initializes the driver structure
2620  * @dev:        Reference to the driver structure
2621  *
2622  * Return codes:
2623  *      0: Success
2624  */
2625 static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2626 {
2627         pch_udc_init(dev);
2628         pch_udc_pcd_reinit(dev);
2629         return 0;
2630 }
2631
2632 /**
2633  * init_dma_pools() - create dma pools during initialization
2634  * @pdev:       reference to struct pci_dev
2635  */
2636 static int init_dma_pools(struct pch_udc_dev *dev)
2637 {
2638         struct pch_udc_stp_dma_desc     *td_stp;
2639         struct pch_udc_data_dma_desc    *td_data;
2640
2641         /* DMA setup */
2642         dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2643                 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2644         if (!dev->data_requests) {
2645                 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2646                         __func__);
2647                 return -ENOMEM;
2648         }
2649
2650         /* dma desc for setup data */
2651         dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2652                 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2653         if (!dev->stp_requests) {
2654                 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2655                         __func__);
2656                 return -ENOMEM;
2657         }
2658         /* setup */
2659         td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2660                                 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2661         if (!td_stp) {
2662                 dev_err(&dev->pdev->dev,
2663                         "%s: can't allocate setup dma descriptor\n", __func__);
2664                 return -ENOMEM;
2665         }
2666         dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2667
2668         /* data: 0 packets !? */
2669         td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2670                                 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2671         if (!td_data) {
2672                 dev_err(&dev->pdev->dev,
2673                         "%s: can't allocate data dma descriptor\n", __func__);
2674                 return -ENOMEM;
2675         }
2676         dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2677         dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2678         dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2679         dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2680         dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2681
2682         dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
2683         if (!dev->ep0out_buf)
2684                 return -ENOMEM;
2685         dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
2686                                        UDC_EP0OUT_BUFF_SIZE * 4,
2687                                        DMA_FROM_DEVICE);
2688         return 0;
2689 }
2690
2691 int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
2692         int (*bind)(struct usb_gadget *))
2693 {
2694         struct pch_udc_dev      *dev = pch_udc;
2695         int                     retval;
2696
2697         if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
2698             !driver->setup || !driver->unbind || !driver->disconnect) {
2699                 dev_err(&dev->pdev->dev,
2700                         "%s: invalid driver parameter\n", __func__);
2701                 return -EINVAL;
2702         }
2703
2704         if (!dev)
2705                 return -ENODEV;
2706
2707         if (dev->driver) {
2708                 dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
2709                 return -EBUSY;
2710         }
2711         driver->driver.bus = NULL;
2712         dev->driver = driver;
2713         dev->gadget.dev.driver = &driver->driver;
2714
2715         /* Invoke the bind routine of the gadget driver */
2716         retval = bind(&dev->gadget);
2717
2718         if (retval) {
2719                 dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
2720                        __func__, driver->driver.name, retval);
2721                 dev->driver = NULL;
2722                 dev->gadget.dev.driver = NULL;
2723                 return retval;
2724         }
2725         /* get ready for ep0 traffic */
2726         pch_udc_setup_ep0(dev);
2727
2728         /* clear SD */
2729         pch_udc_clear_disconnect(dev);
2730
2731         dev->connected = 1;
2732         return 0;
2733 }
2734 EXPORT_SYMBOL(usb_gadget_probe_driver);
2735
2736 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2737 {
2738         struct pch_udc_dev      *dev = pch_udc;
2739
2740         if (!dev)
2741                 return -ENODEV;
2742
2743         if (!driver || (driver != dev->driver)) {
2744                 dev_err(&dev->pdev->dev,
2745                         "%s: invalid driver parameter\n", __func__);
2746                 return -EINVAL;
2747         }
2748
2749         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2750
2751         /* Assures that there are no pending requests with this driver */
2752         driver->disconnect(&dev->gadget);
2753         driver->unbind(&dev->gadget);
2754         dev->gadget.dev.driver = NULL;
2755         dev->driver = NULL;
2756         dev->connected = 0;
2757
2758         /* set SD */
2759         pch_udc_set_disconnect(dev);
2760         return 0;
2761 }
2762 EXPORT_SYMBOL(usb_gadget_unregister_driver);
2763
2764 static void pch_udc_shutdown(struct pci_dev *pdev)
2765 {
2766         struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2767
2768         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2769         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2770
2771         /* disable the pullup so the host will think we're gone */
2772         pch_udc_set_disconnect(dev);
2773 }
2774
2775 static void pch_udc_remove(struct pci_dev *pdev)
2776 {
2777         struct pch_udc_dev      *dev = pci_get_drvdata(pdev);
2778
2779         /* gadget driver must not be registered */
2780         if (dev->driver)
2781                 dev_err(&pdev->dev,
2782                         "%s: gadget driver still bound!!!\n", __func__);
2783         /* dma pool cleanup */
2784         if (dev->data_requests)
2785                 pci_pool_destroy(dev->data_requests);
2786
2787         if (dev->stp_requests) {
2788                 /* cleanup DMA desc's for ep0in */
2789                 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
2790                         pci_pool_free(dev->stp_requests,
2791                                 dev->ep[UDC_EP0OUT_IDX].td_stp,
2792                                 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2793                 }
2794                 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
2795                         pci_pool_free(dev->stp_requests,
2796                                 dev->ep[UDC_EP0OUT_IDX].td_data,
2797                                 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2798                 }
2799                 pci_pool_destroy(dev->stp_requests);
2800         }
2801
2802         if (dev->dma_addr)
2803                 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
2804                                  UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
2805         kfree(dev->ep0out_buf);
2806
2807         pch_udc_exit(dev);
2808
2809         if (dev->irq_registered)
2810                 free_irq(pdev->irq, dev);
2811         if (dev->base_addr)
2812                 iounmap(dev->base_addr);
2813         if (dev->mem_region)
2814                 release_mem_region(dev->phys_addr,
2815                                    pci_resource_len(pdev, PCH_UDC_PCI_BAR));
2816         if (dev->active)
2817                 pci_disable_device(pdev);
2818         if (dev->registered)
2819                 device_unregister(&dev->gadget.dev);
2820         kfree(dev);
2821         pci_set_drvdata(pdev, NULL);
2822 }
2823
2824 #ifdef CONFIG_PM
2825 static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
2826 {
2827         struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2828
2829         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2830         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2831
2832         pci_disable_device(pdev);
2833         pci_enable_wake(pdev, PCI_D3hot, 0);
2834
2835         if (pci_save_state(pdev)) {
2836                 dev_err(&pdev->dev,
2837                         "%s: could not save PCI config state\n", __func__);
2838                 return -ENOMEM;
2839         }
2840         pci_set_power_state(pdev, pci_choose_state(pdev, state));
2841         return 0;
2842 }
2843
2844 static int pch_udc_resume(struct pci_dev *pdev)
2845 {
2846         int ret;
2847
2848         pci_set_power_state(pdev, PCI_D0);
2849         pci_restore_state(pdev);
2850         ret = pci_enable_device(pdev);
2851         if (ret) {
2852                 dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
2853                 return ret;
2854         }
2855         pci_enable_wake(pdev, PCI_D3hot, 0);
2856         return 0;
2857 }
2858 #else
2859 #define pch_udc_suspend NULL
2860 #define pch_udc_resume  NULL
2861 #endif /* CONFIG_PM */
2862
2863 static int pch_udc_probe(struct pci_dev *pdev,
2864                           const struct pci_device_id *id)
2865 {
2866         unsigned long           resource;
2867         unsigned long           len;
2868         int                     retval;
2869         struct pch_udc_dev      *dev;
2870
2871         /* one udc only */
2872         if (pch_udc) {
2873                 pr_err("%s: already probed\n", __func__);
2874                 return -EBUSY;
2875         }
2876         /* init */
2877         dev = kzalloc(sizeof *dev, GFP_KERNEL);
2878         if (!dev) {
2879                 pr_err("%s: no memory for device structure\n", __func__);
2880                 return -ENOMEM;
2881         }
2882         /* pci setup */
2883         if (pci_enable_device(pdev) < 0) {
2884                 kfree(dev);
2885                 pr_err("%s: pci_enable_device failed\n", __func__);
2886                 return -ENODEV;
2887         }
2888         dev->active = 1;
2889         pci_set_drvdata(pdev, dev);
2890
2891         /* PCI resource allocation */
2892         resource = pci_resource_start(pdev, 1);
2893         len = pci_resource_len(pdev, 1);
2894
2895         if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
2896                 dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
2897                 retval = -EBUSY;
2898                 goto finished;
2899         }
2900         dev->phys_addr = resource;
2901         dev->mem_region = 1;
2902
2903         dev->base_addr = ioremap_nocache(resource, len);
2904         if (!dev->base_addr) {
2905                 pr_err("%s: device memory cannot be mapped\n", __func__);
2906                 retval = -ENOMEM;
2907                 goto finished;
2908         }
2909         if (!pdev->irq) {
2910                 dev_err(&pdev->dev, "%s: irq not set\n", __func__);
2911                 retval = -ENODEV;
2912                 goto finished;
2913         }
2914         pch_udc = dev;
2915         /* initialize the hardware */
2916         if (pch_udc_pcd_init(dev))
2917                 goto finished;
2918         if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
2919                         dev)) {
2920                 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
2921                         pdev->irq);
2922                 retval = -ENODEV;
2923                 goto finished;
2924         }
2925         dev->irq = pdev->irq;
2926         dev->irq_registered = 1;
2927
2928         pci_set_master(pdev);
2929         pci_try_set_mwi(pdev);
2930
2931         /* device struct setup */
2932         spin_lock_init(&dev->lock);
2933         dev->pdev = pdev;
2934         dev->gadget.ops = &pch_udc_ops;
2935
2936         retval = init_dma_pools(dev);
2937         if (retval)
2938                 goto finished;
2939
2940         dev_set_name(&dev->gadget.dev, "gadget");
2941         dev->gadget.dev.parent = &pdev->dev;
2942         dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
2943         dev->gadget.dev.release = gadget_release;
2944         dev->gadget.name = KBUILD_MODNAME;
2945         dev->gadget.is_dualspeed = 1;
2946
2947         retval = device_register(&dev->gadget.dev);
2948         if (retval)
2949                 goto finished;
2950         dev->registered = 1;
2951
2952         /* Put the device in disconnected state till a driver is bound */
2953         pch_udc_set_disconnect(dev);
2954         return 0;
2955
2956 finished:
2957         pch_udc_remove(pdev);
2958         return retval;
2959 }
2960
2961 static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
2962         {
2963                 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
2964                 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2965                 .class_mask = 0xffffffff,
2966         },
2967         {
2968                 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
2969                 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2970                 .class_mask = 0xffffffff,
2971         },
2972         { 0 },
2973 };
2974
2975 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
2976
2977
2978 static struct pci_driver pch_udc_driver = {
2979         .name = KBUILD_MODNAME,
2980         .id_table =     pch_udc_pcidev_id,
2981         .probe =        pch_udc_probe,
2982         .remove =       pch_udc_remove,
2983         .suspend =      pch_udc_suspend,
2984         .resume =       pch_udc_resume,
2985         .shutdown =     pch_udc_shutdown,
2986 };
2987
2988 static int __init pch_udc_pci_init(void)
2989 {
2990         return pci_register_driver(&pch_udc_driver);
2991 }
2992 module_init(pch_udc_pci_init);
2993
2994 static void __exit pch_udc_pci_exit(void)
2995 {
2996         pci_unregister_driver(&pch_udc_driver);
2997 }
2998 module_exit(pch_udc_pci_exit);
2999
3000 MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3001 MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
3002 MODULE_LICENSE("GPL");