Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / usb / gadget / mv_udc_core.c
1 /*
2  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3  * Author: Chao Xie <chao.xie@marvell.com>
4  *         Neil Zhang <zhangwm@marvell.com>
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/timer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/moduleparam.h>
27 #include <linux/device.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/pm.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/clk.h>
36 #include <linux/platform_data/mv_usb.h>
37 #include <asm/system.h>
38 #include <asm/unaligned.h>
39
40 #include "mv_udc.h"
41
42 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
43 #define DRIVER_VERSION          "8 Nov 2010"
44
45 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
46                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
47
48 /* timeout value -- usec */
49 #define RESET_TIMEOUT           10000
50 #define FLUSH_TIMEOUT           10000
51 #define EPSTATUS_TIMEOUT        10000
52 #define PRIME_TIMEOUT           10000
53 #define READSAFE_TIMEOUT        1000
54 #define DTD_TIMEOUT             1000
55
56 #define LOOPS_USEC_SHIFT        4
57 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
58 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
59
60 static DECLARE_COMPLETION(release_done);
61
62 static const char driver_name[] = "mv_udc";
63 static const char driver_desc[] = DRIVER_DESC;
64
65 /* controller device global variable */
66 static struct mv_udc    *the_controller;
67 int mv_usb_otgsc;
68
69 static void nuke(struct mv_ep *ep, int status);
70 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
71
72 /* for endpoint 0 operations */
73 static const struct usb_endpoint_descriptor mv_ep0_desc = {
74         .bLength =              USB_DT_ENDPOINT_SIZE,
75         .bDescriptorType =      USB_DT_ENDPOINT,
76         .bEndpointAddress =     0,
77         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
78         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
79 };
80
81 static void ep0_reset(struct mv_udc *udc)
82 {
83         struct mv_ep *ep;
84         u32 epctrlx;
85         int i = 0;
86
87         /* ep0 in and out */
88         for (i = 0; i < 2; i++) {
89                 ep = &udc->eps[i];
90                 ep->udc = udc;
91
92                 /* ep0 dQH */
93                 ep->dqh = &udc->ep_dqh[i];
94
95                 /* configure ep0 endpoint capabilities in dQH */
96                 ep->dqh->max_packet_length =
97                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
98                         | EP_QUEUE_HEAD_IOS;
99
100                 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
101
102                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
103                 if (i) {        /* TX */
104                         epctrlx |= EPCTRL_TX_ENABLE
105                                 | (USB_ENDPOINT_XFER_CONTROL
106                                         << EPCTRL_TX_EP_TYPE_SHIFT);
107
108                 } else {        /* RX */
109                         epctrlx |= EPCTRL_RX_ENABLE
110                                 | (USB_ENDPOINT_XFER_CONTROL
111                                         << EPCTRL_RX_EP_TYPE_SHIFT);
112                 }
113
114                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
115         }
116 }
117
118 /* protocol ep0 stall, will automatically be cleared on new transaction */
119 static void ep0_stall(struct mv_udc *udc)
120 {
121         u32     epctrlx;
122
123         /* set TX and RX to stall */
124         epctrlx = readl(&udc->op_regs->epctrlx[0]);
125         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
126         writel(epctrlx, &udc->op_regs->epctrlx[0]);
127
128         /* update ep0 state */
129         udc->ep0_state = WAIT_FOR_SETUP;
130         udc->ep0_dir = EP_DIR_OUT;
131 }
132
133 static int process_ep_req(struct mv_udc *udc, int index,
134         struct mv_req *curr_req)
135 {
136         struct mv_dtd   *curr_dtd;
137         struct mv_dqh   *curr_dqh;
138         int td_complete, actual, remaining_length;
139         int i, direction;
140         int retval = 0;
141         u32 errors;
142         u32 bit_pos;
143
144         curr_dqh = &udc->ep_dqh[index];
145         direction = index % 2;
146
147         curr_dtd = curr_req->head;
148         td_complete = 0;
149         actual = curr_req->req.length;
150
151         for (i = 0; i < curr_req->dtd_count; i++) {
152                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
153                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
154                                 udc->eps[index].name);
155                         return 1;
156                 }
157
158                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
159                 if (!errors) {
160                         remaining_length =
161                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
162                                         >> DTD_LENGTH_BIT_POS;
163                         actual -= remaining_length;
164
165                         if (remaining_length) {
166                                 if (direction) {
167                                         dev_dbg(&udc->dev->dev,
168                                                 "TX dTD remains data\n");
169                                         retval = -EPROTO;
170                                         break;
171                                 } else
172                                         break;
173                         }
174                 } else {
175                         dev_info(&udc->dev->dev,
176                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
177                                 index >> 1, direction ? "SEND" : "RECV",
178                                 errors);
179                         if (errors & DTD_STATUS_HALTED) {
180                                 /* Clear the errors and Halt condition */
181                                 curr_dqh->size_ioc_int_sts &= ~errors;
182                                 retval = -EPIPE;
183                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
184                                 retval = -EPROTO;
185                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
186                                 retval = -EILSEQ;
187                         }
188                 }
189                 if (i != curr_req->dtd_count - 1)
190                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
191         }
192         if (retval)
193                 return retval;
194
195         if (direction == EP_DIR_OUT)
196                 bit_pos = 1 << curr_req->ep->ep_num;
197         else
198                 bit_pos = 1 << (16 + curr_req->ep->ep_num);
199
200         while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
201                 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
202                         while (readl(&udc->op_regs->epstatus) & bit_pos)
203                                 udelay(1);
204                         break;
205                 }
206                 udelay(1);
207         }
208
209         curr_req->req.actual = actual;
210
211         return 0;
212 }
213
214 /*
215  * done() - retire a request; caller blocked irqs
216  * @status : request status to be set, only works when
217  * request is still in progress.
218  */
219 static void done(struct mv_ep *ep, struct mv_req *req, int status)
220 {
221         struct mv_udc *udc = NULL;
222         unsigned char stopped = ep->stopped;
223         struct mv_dtd *curr_td, *next_td;
224         int j;
225
226         udc = (struct mv_udc *)ep->udc;
227         /* Removed the req from fsl_ep->queue */
228         list_del_init(&req->queue);
229
230         /* req.status should be set as -EINPROGRESS in ep_queue() */
231         if (req->req.status == -EINPROGRESS)
232                 req->req.status = status;
233         else
234                 status = req->req.status;
235
236         /* Free dtd for the request */
237         next_td = req->head;
238         for (j = 0; j < req->dtd_count; j++) {
239                 curr_td = next_td;
240                 if (j != req->dtd_count - 1)
241                         next_td = curr_td->next_dtd_virt;
242                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
243         }
244
245         if (req->mapped) {
246                 dma_unmap_single(ep->udc->gadget.dev.parent,
247                         req->req.dma, req->req.length,
248                         ((ep_dir(ep) == EP_DIR_IN) ?
249                                 DMA_TO_DEVICE : DMA_FROM_DEVICE));
250                 req->req.dma = DMA_ADDR_INVALID;
251                 req->mapped = 0;
252         } else
253                 dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
254                         req->req.dma, req->req.length,
255                         ((ep_dir(ep) == EP_DIR_IN) ?
256                                 DMA_TO_DEVICE : DMA_FROM_DEVICE));
257
258         if (status && (status != -ESHUTDOWN))
259                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
260                         ep->ep.name, &req->req, status,
261                         req->req.actual, req->req.length);
262
263         ep->stopped = 1;
264
265         spin_unlock(&ep->udc->lock);
266         /*
267          * complete() is from gadget layer,
268          * eg fsg->bulk_in_complete()
269          */
270         if (req->req.complete)
271                 req->req.complete(&ep->ep, &req->req);
272
273         spin_lock(&ep->udc->lock);
274         ep->stopped = stopped;
275 }
276
277 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
278 {
279         struct mv_udc *udc;
280         struct mv_dqh *dqh;
281         u32 bit_pos, direction;
282         u32 usbcmd, epstatus;
283         unsigned int loops;
284         int retval = 0;
285
286         udc = ep->udc;
287         direction = ep_dir(ep);
288         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
289         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
290
291         /* check if the pipe is empty */
292         if (!(list_empty(&ep->queue))) {
293                 struct mv_req *lastreq;
294                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
295                 lastreq->tail->dtd_next =
296                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
297
298                 wmb();
299
300                 if (readl(&udc->op_regs->epprime) & bit_pos)
301                         goto done;
302
303                 loops = LOOPS(READSAFE_TIMEOUT);
304                 while (1) {
305                         /* start with setting the semaphores */
306                         usbcmd = readl(&udc->op_regs->usbcmd);
307                         usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
308                         writel(usbcmd, &udc->op_regs->usbcmd);
309
310                         /* read the endpoint status */
311                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
312
313                         /*
314                          * Reread the ATDTW semaphore bit to check if it is
315                          * cleared. When hardware see a hazard, it will clear
316                          * the bit or else we remain set to 1 and we can
317                          * proceed with priming of endpoint if not already
318                          * primed.
319                          */
320                         if (readl(&udc->op_regs->usbcmd)
321                                 & USBCMD_ATDTW_TRIPWIRE_SET)
322                                 break;
323
324                         loops--;
325                         if (loops == 0) {
326                                 dev_err(&udc->dev->dev,
327                                         "Timeout for ATDTW_TRIPWIRE...\n");
328                                 retval = -ETIME;
329                                 goto done;
330                         }
331                         udelay(LOOPS_USEC);
332                 }
333
334                 /* Clear the semaphore */
335                 usbcmd = readl(&udc->op_regs->usbcmd);
336                 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
337                 writel(usbcmd, &udc->op_regs->usbcmd);
338
339                 if (epstatus)
340                         goto done;
341         }
342
343         /* Write dQH next pointer and terminate bit to 0 */
344         dqh->next_dtd_ptr = req->head->td_dma
345                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
346
347         /* clear active and halt bit, in case set from a previous error */
348         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
349
350         /* Ensure that updates to the QH will occure before priming. */
351         wmb();
352
353         /* Prime the Endpoint */
354         writel(bit_pos, &udc->op_regs->epprime);
355
356 done:
357         return retval;
358 }
359
360
361 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
362                 dma_addr_t *dma, int *is_last)
363 {
364         u32 temp;
365         struct mv_dtd *dtd;
366         struct mv_udc *udc;
367
368         /* how big will this transfer be? */
369         *length = min(req->req.length - req->req.actual,
370                         (unsigned)EP_MAX_LENGTH_TRANSFER);
371
372         udc = req->ep->udc;
373
374         /*
375          * Be careful that no _GFP_HIGHMEM is set,
376          * or we can not use dma_to_virt
377          */
378         dtd = dma_pool_alloc(udc->dtd_pool, GFP_KERNEL, dma);
379         if (dtd == NULL)
380                 return dtd;
381
382         dtd->td_dma = *dma;
383         /* initialize buffer page pointers */
384         temp = (u32)(req->req.dma + req->req.actual);
385         dtd->buff_ptr0 = cpu_to_le32(temp);
386         temp &= ~0xFFF;
387         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
388         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
389         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
390         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
391
392         req->req.actual += *length;
393
394         /* zlp is needed if req->req.zero is set */
395         if (req->req.zero) {
396                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
397                         *is_last = 1;
398                 else
399                         *is_last = 0;
400         } else if (req->req.length == req->req.actual)
401                 *is_last = 1;
402         else
403                 *is_last = 0;
404
405         /* Fill in the transfer size; set active bit */
406         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
407
408         /* Enable interrupt for the last dtd of a request */
409         if (*is_last && !req->req.no_interrupt)
410                 temp |= DTD_IOC;
411
412         dtd->size_ioc_sts = temp;
413
414         mb();
415
416         return dtd;
417 }
418
419 /* generate dTD linked list for a request */
420 static int req_to_dtd(struct mv_req *req)
421 {
422         unsigned count;
423         int is_last, is_first = 1;
424         struct mv_dtd *dtd, *last_dtd = NULL;
425         struct mv_udc *udc;
426         dma_addr_t dma;
427
428         udc = req->ep->udc;
429
430         do {
431                 dtd = build_dtd(req, &count, &dma, &is_last);
432                 if (dtd == NULL)
433                         return -ENOMEM;
434
435                 if (is_first) {
436                         is_first = 0;
437                         req->head = dtd;
438                 } else {
439                         last_dtd->dtd_next = dma;
440                         last_dtd->next_dtd_virt = dtd;
441                 }
442                 last_dtd = dtd;
443                 req->dtd_count++;
444         } while (!is_last);
445
446         /* set terminate bit to 1 for the last dTD */
447         dtd->dtd_next = DTD_NEXT_TERMINATE;
448
449         req->tail = dtd;
450
451         return 0;
452 }
453
454 static int mv_ep_enable(struct usb_ep *_ep,
455                 const struct usb_endpoint_descriptor *desc)
456 {
457         struct mv_udc *udc;
458         struct mv_ep *ep;
459         struct mv_dqh *dqh;
460         u16 max = 0;
461         u32 bit_pos, epctrlx, direction;
462         unsigned char zlt = 0, ios = 0, mult = 0;
463         unsigned long flags;
464
465         ep = container_of(_ep, struct mv_ep, ep);
466         udc = ep->udc;
467
468         if (!_ep || !desc || ep->desc
469                         || desc->bDescriptorType != USB_DT_ENDPOINT)
470                 return -EINVAL;
471
472         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
473                 return -ESHUTDOWN;
474
475         direction = ep_dir(ep);
476         max = usb_endpoint_maxp(desc);
477
478         /*
479          * disable HW zero length termination select
480          * driver handles zero length packet through req->req.zero
481          */
482         zlt = 1;
483
484         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
485
486         /* Check if the Endpoint is Primed */
487         if ((readl(&udc->op_regs->epprime) & bit_pos)
488                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
489                 dev_info(&udc->dev->dev,
490                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
491                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
492                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
493                         (unsigned)readl(&udc->op_regs->epprime),
494                         (unsigned)readl(&udc->op_regs->epstatus),
495                         (unsigned)bit_pos);
496                 goto en_done;
497         }
498         /* Set the max packet length, interrupt on Setup and Mult fields */
499         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
500         case USB_ENDPOINT_XFER_BULK:
501                 zlt = 1;
502                 mult = 0;
503                 break;
504         case USB_ENDPOINT_XFER_CONTROL:
505                 ios = 1;
506         case USB_ENDPOINT_XFER_INT:
507                 mult = 0;
508                 break;
509         case USB_ENDPOINT_XFER_ISOC:
510                 /* Calculate transactions needed for high bandwidth iso */
511                 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
512                 max = max & 0x7ff;      /* bit 0~10 */
513                 /* 3 transactions at most */
514                 if (mult > 3)
515                         goto en_done;
516                 break;
517         default:
518                 goto en_done;
519         }
520
521         spin_lock_irqsave(&udc->lock, flags);
522         /* Get the endpoint queue head address */
523         dqh = ep->dqh;
524         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
525                 | (mult << EP_QUEUE_HEAD_MULT_POS)
526                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
527                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
528         dqh->next_dtd_ptr = 1;
529         dqh->size_ioc_int_sts = 0;
530
531         ep->ep.maxpacket = max;
532         ep->desc = desc;
533         ep->stopped = 0;
534
535         /* Enable the endpoint for Rx or Tx and set the endpoint type */
536         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
537         if (direction == EP_DIR_IN) {
538                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
539                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
540                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
541                                 << EPCTRL_TX_EP_TYPE_SHIFT);
542         } else {
543                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
544                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
545                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
546                                 << EPCTRL_RX_EP_TYPE_SHIFT);
547         }
548         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
549
550         /*
551          * Implement Guideline (GL# USB-7) The unused endpoint type must
552          * be programmed to bulk.
553          */
554         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
555         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
556                 epctrlx |= (USB_ENDPOINT_XFER_BULK
557                                 << EPCTRL_RX_EP_TYPE_SHIFT);
558                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
559         }
560
561         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
562         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
563                 epctrlx |= (USB_ENDPOINT_XFER_BULK
564                                 << EPCTRL_TX_EP_TYPE_SHIFT);
565                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
566         }
567
568         spin_unlock_irqrestore(&udc->lock, flags);
569
570         return 0;
571 en_done:
572         return -EINVAL;
573 }
574
575 static int  mv_ep_disable(struct usb_ep *_ep)
576 {
577         struct mv_udc *udc;
578         struct mv_ep *ep;
579         struct mv_dqh *dqh;
580         u32 bit_pos, epctrlx, direction;
581         unsigned long flags;
582
583         ep = container_of(_ep, struct mv_ep, ep);
584         if ((_ep == NULL) || !ep->desc)
585                 return -EINVAL;
586
587         udc = ep->udc;
588
589         /* Get the endpoint queue head address */
590         dqh = ep->dqh;
591
592         spin_lock_irqsave(&udc->lock, flags);
593
594         direction = ep_dir(ep);
595         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
596
597         /* Reset the max packet length and the interrupt on Setup */
598         dqh->max_packet_length = 0;
599
600         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
601         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
602         epctrlx &= ~((direction == EP_DIR_IN)
603                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
604                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
605         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
606
607         /* nuke all pending requests (does flush) */
608         nuke(ep, -ESHUTDOWN);
609
610         ep->desc = NULL;
611         ep->stopped = 1;
612
613         spin_unlock_irqrestore(&udc->lock, flags);
614
615         return 0;
616 }
617
618 static struct usb_request *
619 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
620 {
621         struct mv_req *req = NULL;
622
623         req = kzalloc(sizeof *req, gfp_flags);
624         if (!req)
625                 return NULL;
626
627         req->req.dma = DMA_ADDR_INVALID;
628         INIT_LIST_HEAD(&req->queue);
629
630         return &req->req;
631 }
632
633 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
634 {
635         struct mv_req *req = NULL;
636
637         req = container_of(_req, struct mv_req, req);
638
639         if (_req)
640                 kfree(req);
641 }
642
643 static void mv_ep_fifo_flush(struct usb_ep *_ep)
644 {
645         struct mv_udc *udc;
646         u32 bit_pos, direction;
647         struct mv_ep *ep;
648         unsigned int loops;
649
650         if (!_ep)
651                 return;
652
653         ep = container_of(_ep, struct mv_ep, ep);
654         if (!ep->desc)
655                 return;
656
657         udc = ep->udc;
658         direction = ep_dir(ep);
659
660         if (ep->ep_num == 0)
661                 bit_pos = (1 << 16) | 1;
662         else if (direction == EP_DIR_OUT)
663                 bit_pos = 1 << ep->ep_num;
664         else
665                 bit_pos = 1 << (16 + ep->ep_num);
666
667         loops = LOOPS(EPSTATUS_TIMEOUT);
668         do {
669                 unsigned int inter_loops;
670
671                 if (loops == 0) {
672                         dev_err(&udc->dev->dev,
673                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
674                                 (unsigned)readl(&udc->op_regs->epstatus),
675                                 (unsigned)bit_pos);
676                         return;
677                 }
678                 /* Write 1 to the Flush register */
679                 writel(bit_pos, &udc->op_regs->epflush);
680
681                 /* Wait until flushing completed */
682                 inter_loops = LOOPS(FLUSH_TIMEOUT);
683                 while (readl(&udc->op_regs->epflush)) {
684                         /*
685                          * ENDPTFLUSH bit should be cleared to indicate this
686                          * operation is complete
687                          */
688                         if (inter_loops == 0) {
689                                 dev_err(&udc->dev->dev,
690                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
691                                         "bit_pos=0x%x\n",
692                                         (unsigned)readl(&udc->op_regs->epflush),
693                                         (unsigned)bit_pos);
694                                 return;
695                         }
696                         inter_loops--;
697                         udelay(LOOPS_USEC);
698                 }
699                 loops--;
700         } while (readl(&udc->op_regs->epstatus) & bit_pos);
701 }
702
703 /* queues (submits) an I/O request to an endpoint */
704 static int
705 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
706 {
707         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
708         struct mv_req *req = container_of(_req, struct mv_req, req);
709         struct mv_udc *udc = ep->udc;
710         unsigned long flags;
711
712         /* catch various bogus parameters */
713         if (!_req || !req->req.complete || !req->req.buf
714                         || !list_empty(&req->queue)) {
715                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
716                 return -EINVAL;
717         }
718         if (unlikely(!_ep || !ep->desc)) {
719                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
720                 return -EINVAL;
721         }
722         if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
723                 if (req->req.length > ep->ep.maxpacket)
724                         return -EMSGSIZE;
725         }
726
727         udc = ep->udc;
728         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
729                 return -ESHUTDOWN;
730
731         req->ep = ep;
732
733         /* map virtual address to hardware */
734         if (req->req.dma == DMA_ADDR_INVALID) {
735                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
736                                         req->req.buf,
737                                         req->req.length, ep_dir(ep)
738                                                 ? DMA_TO_DEVICE
739                                                 : DMA_FROM_DEVICE);
740                 req->mapped = 1;
741         } else {
742                 dma_sync_single_for_device(ep->udc->gadget.dev.parent,
743                                         req->req.dma, req->req.length,
744                                         ep_dir(ep)
745                                                 ? DMA_TO_DEVICE
746                                                 : DMA_FROM_DEVICE);
747                 req->mapped = 0;
748         }
749
750         req->req.status = -EINPROGRESS;
751         req->req.actual = 0;
752         req->dtd_count = 0;
753
754         spin_lock_irqsave(&udc->lock, flags);
755
756         /* build dtds and push them to device queue */
757         if (!req_to_dtd(req)) {
758                 int retval;
759                 retval = queue_dtd(ep, req);
760                 if (retval) {
761                         spin_unlock_irqrestore(&udc->lock, flags);
762                         return retval;
763                 }
764         } else {
765                 spin_unlock_irqrestore(&udc->lock, flags);
766                 return -ENOMEM;
767         }
768
769         /* Update ep0 state */
770         if (ep->ep_num == 0)
771                 udc->ep0_state = DATA_STATE_XMIT;
772
773         /* irq handler advances the queue */
774         if (req != NULL)
775                 list_add_tail(&req->queue, &ep->queue);
776         spin_unlock_irqrestore(&udc->lock, flags);
777
778         return 0;
779 }
780
781 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
782 {
783         struct mv_dqh *dqh = ep->dqh;
784         u32 bit_pos;
785
786         /* Write dQH next pointer and terminate bit to 0 */
787         dqh->next_dtd_ptr = req->head->td_dma
788                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
789
790         /* clear active and halt bit, in case set from a previous error */
791         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
792
793         /* Ensure that updates to the QH will occure before priming. */
794         wmb();
795
796         bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
797
798         /* Prime the Endpoint */
799         writel(bit_pos, &ep->udc->op_regs->epprime);
800 }
801
802 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
803 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
804 {
805         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
806         struct mv_req *req;
807         struct mv_udc *udc = ep->udc;
808         unsigned long flags;
809         int stopped, ret = 0;
810         u32 epctrlx;
811
812         if (!_ep || !_req)
813                 return -EINVAL;
814
815         spin_lock_irqsave(&ep->udc->lock, flags);
816         stopped = ep->stopped;
817
818         /* Stop the ep before we deal with the queue */
819         ep->stopped = 1;
820         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
821         if (ep_dir(ep) == EP_DIR_IN)
822                 epctrlx &= ~EPCTRL_TX_ENABLE;
823         else
824                 epctrlx &= ~EPCTRL_RX_ENABLE;
825         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
826
827         /* make sure it's actually queued on this endpoint */
828         list_for_each_entry(req, &ep->queue, queue) {
829                 if (&req->req == _req)
830                         break;
831         }
832         if (&req->req != _req) {
833                 ret = -EINVAL;
834                 goto out;
835         }
836
837         /* The request is in progress, or completed but not dequeued */
838         if (ep->queue.next == &req->queue) {
839                 _req->status = -ECONNRESET;
840                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
841
842                 /* The request isn't the last request in this ep queue */
843                 if (req->queue.next != &ep->queue) {
844                         struct mv_req *next_req;
845
846                         next_req = list_entry(req->queue.next,
847                                 struct mv_req, queue);
848
849                         /* Point the QH to the first TD of next request */
850                         mv_prime_ep(ep, next_req);
851                 } else {
852                         struct mv_dqh *qh;
853
854                         qh = ep->dqh;
855                         qh->next_dtd_ptr = 1;
856                         qh->size_ioc_int_sts = 0;
857                 }
858
859                 /* The request hasn't been processed, patch up the TD chain */
860         } else {
861                 struct mv_req *prev_req;
862
863                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
864                 writel(readl(&req->tail->dtd_next),
865                                 &prev_req->tail->dtd_next);
866
867         }
868
869         done(ep, req, -ECONNRESET);
870
871         /* Enable EP */
872 out:
873         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
874         if (ep_dir(ep) == EP_DIR_IN)
875                 epctrlx |= EPCTRL_TX_ENABLE;
876         else
877                 epctrlx |= EPCTRL_RX_ENABLE;
878         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
879         ep->stopped = stopped;
880
881         spin_unlock_irqrestore(&ep->udc->lock, flags);
882         return ret;
883 }
884
885 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
886 {
887         u32 epctrlx;
888
889         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
890
891         if (stall) {
892                 if (direction == EP_DIR_IN)
893                         epctrlx |= EPCTRL_TX_EP_STALL;
894                 else
895                         epctrlx |= EPCTRL_RX_EP_STALL;
896         } else {
897                 if (direction == EP_DIR_IN) {
898                         epctrlx &= ~EPCTRL_TX_EP_STALL;
899                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
900                 } else {
901                         epctrlx &= ~EPCTRL_RX_EP_STALL;
902                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
903                 }
904         }
905         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
906 }
907
908 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
909 {
910         u32 epctrlx;
911
912         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
913
914         if (direction == EP_DIR_OUT)
915                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
916         else
917                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
918 }
919
920 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
921 {
922         struct mv_ep *ep;
923         unsigned long flags = 0;
924         int status = 0;
925         struct mv_udc *udc;
926
927         ep = container_of(_ep, struct mv_ep, ep);
928         udc = ep->udc;
929         if (!_ep || !ep->desc) {
930                 status = -EINVAL;
931                 goto out;
932         }
933
934         if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
935                 status = -EOPNOTSUPP;
936                 goto out;
937         }
938
939         /*
940          * Attempt to halt IN ep will fail if any transfer requests
941          * are still queue
942          */
943         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
944                 status = -EAGAIN;
945                 goto out;
946         }
947
948         spin_lock_irqsave(&ep->udc->lock, flags);
949         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
950         if (halt && wedge)
951                 ep->wedge = 1;
952         else if (!halt)
953                 ep->wedge = 0;
954         spin_unlock_irqrestore(&ep->udc->lock, flags);
955
956         if (ep->ep_num == 0) {
957                 udc->ep0_state = WAIT_FOR_SETUP;
958                 udc->ep0_dir = EP_DIR_OUT;
959         }
960 out:
961         return status;
962 }
963
964 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
965 {
966         return mv_ep_set_halt_wedge(_ep, halt, 0);
967 }
968
969 static int mv_ep_set_wedge(struct usb_ep *_ep)
970 {
971         return mv_ep_set_halt_wedge(_ep, 1, 1);
972 }
973
974 static struct usb_ep_ops mv_ep_ops = {
975         .enable         = mv_ep_enable,
976         .disable        = mv_ep_disable,
977
978         .alloc_request  = mv_alloc_request,
979         .free_request   = mv_free_request,
980
981         .queue          = mv_ep_queue,
982         .dequeue        = mv_ep_dequeue,
983
984         .set_wedge      = mv_ep_set_wedge,
985         .set_halt       = mv_ep_set_halt,
986         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
987 };
988
989 static void udc_clock_enable(struct mv_udc *udc)
990 {
991         unsigned int i;
992
993         for (i = 0; i < udc->clknum; i++)
994                 clk_enable(udc->clk[i]);
995 }
996
997 static void udc_clock_disable(struct mv_udc *udc)
998 {
999         unsigned int i;
1000
1001         for (i = 0; i < udc->clknum; i++)
1002                 clk_disable(udc->clk[i]);
1003 }
1004
1005 static void udc_stop(struct mv_udc *udc)
1006 {
1007         u32 tmp;
1008
1009         /* Disable interrupts */
1010         tmp = readl(&udc->op_regs->usbintr);
1011         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
1012                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
1013         writel(tmp, &udc->op_regs->usbintr);
1014
1015         udc->stopped = 1;
1016
1017         /* Reset the Run the bit in the command register to stop VUSB */
1018         tmp = readl(&udc->op_regs->usbcmd);
1019         tmp &= ~USBCMD_RUN_STOP;
1020         writel(tmp, &udc->op_regs->usbcmd);
1021 }
1022
1023 static void udc_start(struct mv_udc *udc)
1024 {
1025         u32 usbintr;
1026
1027         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1028                 | USBINTR_PORT_CHANGE_DETECT_EN
1029                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1030         /* Enable interrupts */
1031         writel(usbintr, &udc->op_regs->usbintr);
1032
1033         udc->stopped = 0;
1034
1035         /* Set the Run bit in the command register */
1036         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1037 }
1038
1039 static int udc_reset(struct mv_udc *udc)
1040 {
1041         unsigned int loops;
1042         u32 tmp, portsc;
1043
1044         /* Stop the controller */
1045         tmp = readl(&udc->op_regs->usbcmd);
1046         tmp &= ~USBCMD_RUN_STOP;
1047         writel(tmp, &udc->op_regs->usbcmd);
1048
1049         /* Reset the controller to get default values */
1050         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1051
1052         /* wait for reset to complete */
1053         loops = LOOPS(RESET_TIMEOUT);
1054         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1055                 if (loops == 0) {
1056                         dev_err(&udc->dev->dev,
1057                                 "Wait for RESET completed TIMEOUT\n");
1058                         return -ETIMEDOUT;
1059                 }
1060                 loops--;
1061                 udelay(LOOPS_USEC);
1062         }
1063
1064         /* set controller to device mode */
1065         tmp = readl(&udc->op_regs->usbmode);
1066         tmp |= USBMODE_CTRL_MODE_DEVICE;
1067
1068         /* turn setup lockout off, require setup tripwire in usbcmd */
1069         tmp |= USBMODE_SETUP_LOCK_OFF | USBMODE_STREAM_DISABLE;
1070
1071         writel(tmp, &udc->op_regs->usbmode);
1072
1073         writel(0x0, &udc->op_regs->epsetupstat);
1074
1075         /* Configure the Endpoint List Address */
1076         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1077                 &udc->op_regs->eplistaddr);
1078
1079         portsc = readl(&udc->op_regs->portsc[0]);
1080         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1081                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1082
1083         if (udc->force_fs)
1084                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1085         else
1086                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1087
1088         writel(portsc, &udc->op_regs->portsc[0]);
1089
1090         tmp = readl(&udc->op_regs->epctrlx[0]);
1091         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1092         writel(tmp, &udc->op_regs->epctrlx[0]);
1093
1094         return 0;
1095 }
1096
1097 static int mv_udc_enable_internal(struct mv_udc *udc)
1098 {
1099         int retval;
1100
1101         if (udc->active)
1102                 return 0;
1103
1104         dev_dbg(&udc->dev->dev, "enable udc\n");
1105         udc_clock_enable(udc);
1106         if (udc->pdata->phy_init) {
1107                 retval = udc->pdata->phy_init(udc->phy_regs);
1108                 if (retval) {
1109                         dev_err(&udc->dev->dev,
1110                                 "init phy error %d\n", retval);
1111                         udc_clock_disable(udc);
1112                         return retval;
1113                 }
1114         }
1115         udc->active = 1;
1116
1117         return 0;
1118 }
1119
1120 static int mv_udc_enable(struct mv_udc *udc)
1121 {
1122         if (udc->clock_gating)
1123                 return mv_udc_enable_internal(udc);
1124
1125         return 0;
1126 }
1127
1128 static void mv_udc_disable_internal(struct mv_udc *udc)
1129 {
1130         if (udc->active) {
1131                 dev_dbg(&udc->dev->dev, "disable udc\n");
1132                 if (udc->pdata->phy_deinit)
1133                         udc->pdata->phy_deinit(udc->phy_regs);
1134                 udc_clock_disable(udc);
1135                 udc->active = 0;
1136         }
1137 }
1138
1139 static void mv_udc_disable(struct mv_udc *udc)
1140 {
1141         if (udc->clock_gating)
1142                 mv_udc_disable_internal(udc);
1143 }
1144
1145 static int mv_udc_get_frame(struct usb_gadget *gadget)
1146 {
1147         struct mv_udc *udc;
1148         u16     retval;
1149
1150         if (!gadget)
1151                 return -ENODEV;
1152
1153         udc = container_of(gadget, struct mv_udc, gadget);
1154
1155         retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1156
1157         return retval;
1158 }
1159
1160 /* Tries to wake up the host connected to this gadget */
1161 static int mv_udc_wakeup(struct usb_gadget *gadget)
1162 {
1163         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1164         u32 portsc;
1165
1166         /* Remote wakeup feature not enabled by host */
1167         if (!udc->remote_wakeup)
1168                 return -ENOTSUPP;
1169
1170         portsc = readl(&udc->op_regs->portsc);
1171         /* not suspended? */
1172         if (!(portsc & PORTSCX_PORT_SUSPEND))
1173                 return 0;
1174         /* trigger force resume */
1175         portsc |= PORTSCX_PORT_FORCE_RESUME;
1176         writel(portsc, &udc->op_regs->portsc[0]);
1177         return 0;
1178 }
1179
1180 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1181 {
1182         struct mv_udc *udc;
1183         unsigned long flags;
1184         int retval = 0;
1185
1186         udc = container_of(gadget, struct mv_udc, gadget);
1187         spin_lock_irqsave(&udc->lock, flags);
1188
1189         udc->vbus_active = (is_active != 0);
1190
1191         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1192                 __func__, udc->softconnect, udc->vbus_active);
1193
1194         if (udc->driver && udc->softconnect && udc->vbus_active) {
1195                 retval = mv_udc_enable(udc);
1196                 if (retval == 0) {
1197                         /* Clock is disabled, need re-init registers */
1198                         udc_reset(udc);
1199                         ep0_reset(udc);
1200                         udc_start(udc);
1201                 }
1202         } else if (udc->driver && udc->softconnect) {
1203                 /* stop all the transfer in queue*/
1204                 stop_activity(udc, udc->driver);
1205                 udc_stop(udc);
1206                 mv_udc_disable(udc);
1207         }
1208
1209         spin_unlock_irqrestore(&udc->lock, flags);
1210         return retval;
1211 }
1212
1213 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1214 {
1215         struct mv_udc *udc;
1216         unsigned long flags;
1217         int retval = 0;
1218
1219         udc = container_of(gadget, struct mv_udc, gadget);
1220         spin_lock_irqsave(&udc->lock, flags);
1221
1222         udc->softconnect = (is_on != 0);
1223
1224         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1225                         __func__, udc->softconnect, udc->vbus_active);
1226
1227         if (udc->driver && udc->softconnect && udc->vbus_active) {
1228                 retval = mv_udc_enable(udc);
1229                 if (retval == 0) {
1230                         /* Clock is disabled, need re-init registers */
1231                         udc_reset(udc);
1232                         ep0_reset(udc);
1233                         udc_start(udc);
1234                 }
1235         } else if (udc->driver && udc->vbus_active) {
1236                 /* stop all the transfer in queue*/
1237                 stop_activity(udc, udc->driver);
1238                 udc_stop(udc);
1239                 mv_udc_disable(udc);
1240         }
1241
1242         spin_unlock_irqrestore(&udc->lock, flags);
1243         return retval;
1244 }
1245
1246 static int mv_udc_start(struct usb_gadget_driver *driver,
1247                 int (*bind)(struct usb_gadget *));
1248 static int mv_udc_stop(struct usb_gadget_driver *driver);
1249 /* device controller usb_gadget_ops structure */
1250 static const struct usb_gadget_ops mv_ops = {
1251
1252         /* returns the current frame number */
1253         .get_frame      = mv_udc_get_frame,
1254
1255         /* tries to wake up the host connected to this gadget */
1256         .wakeup         = mv_udc_wakeup,
1257
1258         /* notify controller that VBUS is powered or not */
1259         .vbus_session   = mv_udc_vbus_session,
1260
1261         /* D+ pullup, software-controlled connect/disconnect to USB host */
1262         .pullup         = mv_udc_pullup,
1263         .start          = mv_udc_start,
1264         .stop           = mv_udc_stop,
1265 };
1266
1267 static int eps_init(struct mv_udc *udc)
1268 {
1269         struct mv_ep    *ep;
1270         char name[14];
1271         int i;
1272
1273         /* initialize ep0 */
1274         ep = &udc->eps[0];
1275         ep->udc = udc;
1276         strncpy(ep->name, "ep0", sizeof(ep->name));
1277         ep->ep.name = ep->name;
1278         ep->ep.ops = &mv_ep_ops;
1279         ep->wedge = 0;
1280         ep->stopped = 0;
1281         ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
1282         ep->ep_num = 0;
1283         ep->desc = &mv_ep0_desc;
1284         INIT_LIST_HEAD(&ep->queue);
1285
1286         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1287
1288         /* initialize other endpoints */
1289         for (i = 2; i < udc->max_eps * 2; i++) {
1290                 ep = &udc->eps[i];
1291                 if (i % 2) {
1292                         snprintf(name, sizeof(name), "ep%din", i / 2);
1293                         ep->direction = EP_DIR_IN;
1294                 } else {
1295                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1296                         ep->direction = EP_DIR_OUT;
1297                 }
1298                 ep->udc = udc;
1299                 strncpy(ep->name, name, sizeof(ep->name));
1300                 ep->ep.name = ep->name;
1301
1302                 ep->ep.ops = &mv_ep_ops;
1303                 ep->stopped = 0;
1304                 ep->ep.maxpacket = (unsigned short) ~0;
1305                 ep->ep_num = i / 2;
1306
1307                 INIT_LIST_HEAD(&ep->queue);
1308                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1309
1310                 ep->dqh = &udc->ep_dqh[i];
1311         }
1312
1313         return 0;
1314 }
1315
1316 /* delete all endpoint requests, called with spinlock held */
1317 static void nuke(struct mv_ep *ep, int status)
1318 {
1319         /* called with spinlock held */
1320         ep->stopped = 1;
1321
1322         /* endpoint fifo flush */
1323         mv_ep_fifo_flush(&ep->ep);
1324
1325         while (!list_empty(&ep->queue)) {
1326                 struct mv_req *req = NULL;
1327                 req = list_entry(ep->queue.next, struct mv_req, queue);
1328                 done(ep, req, status);
1329         }
1330 }
1331
1332 /* stop all USB activities */
1333 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1334 {
1335         struct mv_ep    *ep;
1336
1337         nuke(&udc->eps[0], -ESHUTDOWN);
1338
1339         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1340                 nuke(ep, -ESHUTDOWN);
1341         }
1342
1343         /* report disconnect; the driver is already quiesced */
1344         if (driver) {
1345                 spin_unlock(&udc->lock);
1346                 driver->disconnect(&udc->gadget);
1347                 spin_lock(&udc->lock);
1348         }
1349 }
1350
1351 static int mv_udc_start(struct usb_gadget_driver *driver,
1352                 int (*bind)(struct usb_gadget *))
1353 {
1354         struct mv_udc *udc = the_controller;
1355         int retval = 0;
1356         unsigned long flags;
1357
1358         if (!udc)
1359                 return -ENODEV;
1360
1361         if (udc->driver)
1362                 return -EBUSY;
1363
1364         spin_lock_irqsave(&udc->lock, flags);
1365
1366         /* hook up the driver ... */
1367         driver->driver.bus = NULL;
1368         udc->driver = driver;
1369         udc->gadget.dev.driver = &driver->driver;
1370
1371         udc->usb_state = USB_STATE_ATTACHED;
1372         udc->ep0_state = WAIT_FOR_SETUP;
1373         udc->ep0_dir = EP_DIR_OUT;
1374
1375         spin_unlock_irqrestore(&udc->lock, flags);
1376
1377         retval = bind(&udc->gadget);
1378         if (retval) {
1379                 dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
1380                                 driver->driver.name, retval);
1381                 udc->driver = NULL;
1382                 udc->gadget.dev.driver = NULL;
1383                 return retval;
1384         }
1385
1386         if (udc->transceiver) {
1387                 retval = otg_set_peripheral(udc->transceiver, &udc->gadget);
1388                 if (retval) {
1389                         dev_err(&udc->dev->dev,
1390                                 "unable to register peripheral to otg\n");
1391                         if (driver->unbind) {
1392                                 driver->unbind(&udc->gadget);
1393                                 udc->gadget.dev.driver = NULL;
1394                                 udc->driver = NULL;
1395                         }
1396                         return retval;
1397                 }
1398         }
1399
1400         /* pullup is always on */
1401         mv_udc_pullup(&udc->gadget, 1);
1402
1403         /* When boot with cable attached, there will be no vbus irq occurred */
1404         if (udc->qwork)
1405                 queue_work(udc->qwork, &udc->vbus_work);
1406
1407         return 0;
1408 }
1409
1410 static int mv_udc_stop(struct usb_gadget_driver *driver)
1411 {
1412         struct mv_udc *udc = the_controller;
1413         unsigned long flags;
1414
1415         if (!udc)
1416                 return -ENODEV;
1417
1418         spin_lock_irqsave(&udc->lock, flags);
1419
1420         mv_udc_enable(udc);
1421         udc_stop(udc);
1422
1423         /* stop all usb activities */
1424         udc->gadget.speed = USB_SPEED_UNKNOWN;
1425         stop_activity(udc, driver);
1426         mv_udc_disable(udc);
1427
1428         spin_unlock_irqrestore(&udc->lock, flags);
1429
1430         /* unbind gadget driver */
1431         driver->unbind(&udc->gadget);
1432         udc->gadget.dev.driver = NULL;
1433         udc->driver = NULL;
1434
1435         return 0;
1436 }
1437
1438 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1439 {
1440         u32 portsc;
1441
1442         portsc = readl(&udc->op_regs->portsc[0]);
1443         portsc |= mode << 16;
1444         writel(portsc, &udc->op_regs->portsc[0]);
1445 }
1446
1447 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1448 {
1449         struct mv_udc *udc = the_controller;
1450         struct mv_req *req = container_of(_req, struct mv_req, req);
1451         unsigned long flags;
1452
1453         dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1454
1455         spin_lock_irqsave(&udc->lock, flags);
1456         if (req->test_mode) {
1457                 mv_set_ptc(udc, req->test_mode);
1458                 req->test_mode = 0;
1459         }
1460         spin_unlock_irqrestore(&udc->lock, flags);
1461 }
1462
1463 static int
1464 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1465 {
1466         int retval = 0;
1467         struct mv_req *req;
1468         struct mv_ep *ep;
1469
1470         ep = &udc->eps[0];
1471         udc->ep0_dir = direction;
1472         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1473
1474         req = udc->status_req;
1475
1476         /* fill in the reqest structure */
1477         if (empty == false) {
1478                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1479                 req->req.length = 2;
1480         } else
1481                 req->req.length = 0;
1482
1483         req->ep = ep;
1484         req->req.status = -EINPROGRESS;
1485         req->req.actual = 0;
1486         if (udc->test_mode) {
1487                 req->req.complete = prime_status_complete;
1488                 req->test_mode = udc->test_mode;
1489                 udc->test_mode = 0;
1490         } else
1491                 req->req.complete = NULL;
1492         req->dtd_count = 0;
1493
1494         if (req->req.dma == DMA_ADDR_INVALID) {
1495                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1496                                 req->req.buf, req->req.length,
1497                                 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1498                 req->mapped = 1;
1499         }
1500
1501         /* prime the data phase */
1502         if (!req_to_dtd(req))
1503                 retval = queue_dtd(ep, req);
1504         else{   /* no mem */
1505                 retval = -ENOMEM;
1506                 goto out;
1507         }
1508
1509         if (retval) {
1510                 dev_err(&udc->dev->dev, "response error on GET_STATUS request\n");
1511                 goto out;
1512         }
1513
1514         list_add_tail(&req->queue, &ep->queue);
1515
1516         return 0;
1517 out:
1518         return retval;
1519 }
1520
1521 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1522 {
1523         if (index <= TEST_FORCE_EN) {
1524                 udc->test_mode = index;
1525                 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1526                         ep0_stall(udc);
1527         } else
1528                 dev_err(&udc->dev->dev,
1529                         "This test mode(%d) is not supported\n", index);
1530 }
1531
1532 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1533 {
1534         udc->dev_addr = (u8)setup->wValue;
1535
1536         /* update usb state */
1537         udc->usb_state = USB_STATE_ADDRESS;
1538
1539         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1540                 ep0_stall(udc);
1541 }
1542
1543 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1544         struct usb_ctrlrequest *setup)
1545 {
1546         u16 status = 0;
1547         int retval;
1548
1549         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1550                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1551                 return;
1552
1553         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1554                 status = 1 << USB_DEVICE_SELF_POWERED;
1555                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1556         } else if ((setup->bRequestType & USB_RECIP_MASK)
1557                         == USB_RECIP_INTERFACE) {
1558                 /* get interface status */
1559                 status = 0;
1560         } else if ((setup->bRequestType & USB_RECIP_MASK)
1561                         == USB_RECIP_ENDPOINT) {
1562                 u8 ep_num, direction;
1563
1564                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1565                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1566                                 ? EP_DIR_IN : EP_DIR_OUT;
1567                 status = ep_is_stall(udc, ep_num, direction)
1568                                 << USB_ENDPOINT_HALT;
1569         }
1570
1571         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1572         if (retval)
1573                 ep0_stall(udc);
1574         else
1575                 udc->ep0_state = DATA_STATE_XMIT;
1576 }
1577
1578 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1579 {
1580         u8 ep_num;
1581         u8 direction;
1582         struct mv_ep *ep;
1583
1584         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1585                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1586                 switch (setup->wValue) {
1587                 case USB_DEVICE_REMOTE_WAKEUP:
1588                         udc->remote_wakeup = 0;
1589                         break;
1590                 default:
1591                         goto out;
1592                 }
1593         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1594                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1595                 switch (setup->wValue) {
1596                 case USB_ENDPOINT_HALT:
1597                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1598                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1599                                 ? EP_DIR_IN : EP_DIR_OUT;
1600                         if (setup->wValue != 0 || setup->wLength != 0
1601                                 || ep_num > udc->max_eps)
1602                                 goto out;
1603                         ep = &udc->eps[ep_num * 2 + direction];
1604                         if (ep->wedge == 1)
1605                                 break;
1606                         spin_unlock(&udc->lock);
1607                         ep_set_stall(udc, ep_num, direction, 0);
1608                         spin_lock(&udc->lock);
1609                         break;
1610                 default:
1611                         goto out;
1612                 }
1613         } else
1614                 goto out;
1615
1616         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1617                 ep0_stall(udc);
1618 out:
1619         return;
1620 }
1621
1622 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1623 {
1624         u8 ep_num;
1625         u8 direction;
1626
1627         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1628                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1629                 switch (setup->wValue) {
1630                 case USB_DEVICE_REMOTE_WAKEUP:
1631                         udc->remote_wakeup = 1;
1632                         break;
1633                 case USB_DEVICE_TEST_MODE:
1634                         if (setup->wIndex & 0xFF
1635                                 ||  udc->gadget.speed != USB_SPEED_HIGH)
1636                                 ep0_stall(udc);
1637
1638                         if (udc->usb_state != USB_STATE_CONFIGURED
1639                                 && udc->usb_state != USB_STATE_ADDRESS
1640                                 && udc->usb_state != USB_STATE_DEFAULT)
1641                                 ep0_stall(udc);
1642
1643                         mv_udc_testmode(udc, (setup->wIndex >> 8));
1644                         goto out;
1645                 default:
1646                         goto out;
1647                 }
1648         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1649                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1650                 switch (setup->wValue) {
1651                 case USB_ENDPOINT_HALT:
1652                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1653                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1654                                 ? EP_DIR_IN : EP_DIR_OUT;
1655                         if (setup->wValue != 0 || setup->wLength != 0
1656                                 || ep_num > udc->max_eps)
1657                                 goto out;
1658                         spin_unlock(&udc->lock);
1659                         ep_set_stall(udc, ep_num, direction, 1);
1660                         spin_lock(&udc->lock);
1661                         break;
1662                 default:
1663                         goto out;
1664                 }
1665         } else
1666                 goto out;
1667
1668         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1669                 ep0_stall(udc);
1670 out:
1671         return;
1672 }
1673
1674 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1675         struct usb_ctrlrequest *setup)
1676 {
1677         bool delegate = false;
1678
1679         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1680
1681         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1682                         setup->bRequestType, setup->bRequest,
1683                         setup->wValue, setup->wIndex, setup->wLength);
1684         /* We process some stardard setup requests here */
1685         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1686                 switch (setup->bRequest) {
1687                 case USB_REQ_GET_STATUS:
1688                         ch9getstatus(udc, ep_num, setup);
1689                         break;
1690
1691                 case USB_REQ_SET_ADDRESS:
1692                         ch9setaddress(udc, setup);
1693                         break;
1694
1695                 case USB_REQ_CLEAR_FEATURE:
1696                         ch9clearfeature(udc, setup);
1697                         break;
1698
1699                 case USB_REQ_SET_FEATURE:
1700                         ch9setfeature(udc, setup);
1701                         break;
1702
1703                 default:
1704                         delegate = true;
1705                 }
1706         } else
1707                 delegate = true;
1708
1709         /* delegate USB standard requests to the gadget driver */
1710         if (delegate == true) {
1711                 /* USB requests handled by gadget */
1712                 if (setup->wLength) {
1713                         /* DATA phase from gadget, STATUS phase from udc */
1714                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1715                                         ?  EP_DIR_IN : EP_DIR_OUT;
1716                         spin_unlock(&udc->lock);
1717                         if (udc->driver->setup(&udc->gadget,
1718                                 &udc->local_setup_buff) < 0)
1719                                 ep0_stall(udc);
1720                         spin_lock(&udc->lock);
1721                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1722                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1723                 } else {
1724                         /* no DATA phase, IN STATUS phase from gadget */
1725                         udc->ep0_dir = EP_DIR_IN;
1726                         spin_unlock(&udc->lock);
1727                         if (udc->driver->setup(&udc->gadget,
1728                                 &udc->local_setup_buff) < 0)
1729                                 ep0_stall(udc);
1730                         spin_lock(&udc->lock);
1731                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1732                 }
1733         }
1734 }
1735
1736 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1737 static void ep0_req_complete(struct mv_udc *udc,
1738         struct mv_ep *ep0, struct mv_req *req)
1739 {
1740         u32 new_addr;
1741
1742         if (udc->usb_state == USB_STATE_ADDRESS) {
1743                 /* set the new address */
1744                 new_addr = (u32)udc->dev_addr;
1745                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1746                         &udc->op_regs->deviceaddr);
1747         }
1748
1749         done(ep0, req, 0);
1750
1751         switch (udc->ep0_state) {
1752         case DATA_STATE_XMIT:
1753                 /* receive status phase */
1754                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1755                         ep0_stall(udc);
1756                 break;
1757         case DATA_STATE_RECV:
1758                 /* send status phase */
1759                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1760                         ep0_stall(udc);
1761                 break;
1762         case WAIT_FOR_OUT_STATUS:
1763                 udc->ep0_state = WAIT_FOR_SETUP;
1764                 break;
1765         case WAIT_FOR_SETUP:
1766                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1767                 break;
1768         default:
1769                 ep0_stall(udc);
1770                 break;
1771         }
1772 }
1773
1774 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1775 {
1776         u32 temp;
1777         struct mv_dqh *dqh;
1778
1779         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1780
1781         /* Clear bit in ENDPTSETUPSTAT */
1782         writel((1 << ep_num), &udc->op_regs->epsetupstat);
1783
1784         /* while a hazard exists when setup package arrives */
1785         do {
1786                 /* Set Setup Tripwire */
1787                 temp = readl(&udc->op_regs->usbcmd);
1788                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1789
1790                 /* Copy the setup packet to local buffer */
1791                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1792         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1793
1794         /* Clear Setup Tripwire */
1795         temp = readl(&udc->op_regs->usbcmd);
1796         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1797 }
1798
1799 static void irq_process_tr_complete(struct mv_udc *udc)
1800 {
1801         u32 tmp, bit_pos;
1802         int i, ep_num = 0, direction = 0;
1803         struct mv_ep    *curr_ep;
1804         struct mv_req *curr_req, *temp_req;
1805         int status;
1806
1807         /*
1808          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1809          * because the setup packets are to be read ASAP
1810          */
1811
1812         /* Process all Setup packet received interrupts */
1813         tmp = readl(&udc->op_regs->epsetupstat);
1814
1815         if (tmp) {
1816                 for (i = 0; i < udc->max_eps; i++) {
1817                         if (tmp & (1 << i)) {
1818                                 get_setup_data(udc, i,
1819                                         (u8 *)(&udc->local_setup_buff));
1820                                 handle_setup_packet(udc, i,
1821                                         &udc->local_setup_buff);
1822                         }
1823                 }
1824         }
1825
1826         /* Don't clear the endpoint setup status register here.
1827          * It is cleared as a setup packet is read out of the buffer
1828          */
1829
1830         /* Process non-setup transaction complete interrupts */
1831         tmp = readl(&udc->op_regs->epcomplete);
1832
1833         if (!tmp)
1834                 return;
1835
1836         writel(tmp, &udc->op_regs->epcomplete);
1837
1838         for (i = 0; i < udc->max_eps * 2; i++) {
1839                 ep_num = i >> 1;
1840                 direction = i % 2;
1841
1842                 bit_pos = 1 << (ep_num + 16 * direction);
1843
1844                 if (!(bit_pos & tmp))
1845                         continue;
1846
1847                 if (i == 1)
1848                         curr_ep = &udc->eps[0];
1849                 else
1850                         curr_ep = &udc->eps[i];
1851                 /* process the req queue until an uncomplete request */
1852                 list_for_each_entry_safe(curr_req, temp_req,
1853                         &curr_ep->queue, queue) {
1854                         status = process_ep_req(udc, i, curr_req);
1855                         if (status)
1856                                 break;
1857
1858                         /* write back status to req */
1859                         curr_req->req.status = status;
1860
1861                         /* ep0 request completion */
1862                         if (ep_num == 0) {
1863                                 ep0_req_complete(udc, curr_ep, curr_req);
1864                                 break;
1865                         } else {
1866                                 done(curr_ep, curr_req, status);
1867                         }
1868                 }
1869         }
1870 }
1871
1872 void irq_process_reset(struct mv_udc *udc)
1873 {
1874         u32 tmp;
1875         unsigned int loops;
1876
1877         udc->ep0_dir = EP_DIR_OUT;
1878         udc->ep0_state = WAIT_FOR_SETUP;
1879         udc->remote_wakeup = 0;         /* default to 0 on reset */
1880
1881         /* The address bits are past bit 25-31. Set the address */
1882         tmp = readl(&udc->op_regs->deviceaddr);
1883         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1884         writel(tmp, &udc->op_regs->deviceaddr);
1885
1886         /* Clear all the setup token semaphores */
1887         tmp = readl(&udc->op_regs->epsetupstat);
1888         writel(tmp, &udc->op_regs->epsetupstat);
1889
1890         /* Clear all the endpoint complete status bits */
1891         tmp = readl(&udc->op_regs->epcomplete);
1892         writel(tmp, &udc->op_regs->epcomplete);
1893
1894         /* wait until all endptprime bits cleared */
1895         loops = LOOPS(PRIME_TIMEOUT);
1896         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1897                 if (loops == 0) {
1898                         dev_err(&udc->dev->dev,
1899                                 "Timeout for ENDPTPRIME = 0x%x\n",
1900                                 readl(&udc->op_regs->epprime));
1901                         break;
1902                 }
1903                 loops--;
1904                 udelay(LOOPS_USEC);
1905         }
1906
1907         /* Write 1s to the Flush register */
1908         writel((u32)~0, &udc->op_regs->epflush);
1909
1910         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1911                 dev_info(&udc->dev->dev, "usb bus reset\n");
1912                 udc->usb_state = USB_STATE_DEFAULT;
1913                 /* reset all the queues, stop all USB activities */
1914                 stop_activity(udc, udc->driver);
1915         } else {
1916                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1917                         readl(&udc->op_regs->portsc));
1918
1919                 /*
1920                  * re-initialize
1921                  * controller reset
1922                  */
1923                 udc_reset(udc);
1924
1925                 /* reset all the queues, stop all USB activities */
1926                 stop_activity(udc, udc->driver);
1927
1928                 /* reset ep0 dQH and endptctrl */
1929                 ep0_reset(udc);
1930
1931                 /* enable interrupt and set controller to run state */
1932                 udc_start(udc);
1933
1934                 udc->usb_state = USB_STATE_ATTACHED;
1935         }
1936 }
1937
1938 static void handle_bus_resume(struct mv_udc *udc)
1939 {
1940         udc->usb_state = udc->resume_state;
1941         udc->resume_state = 0;
1942
1943         /* report resume to the driver */
1944         if (udc->driver) {
1945                 if (udc->driver->resume) {
1946                         spin_unlock(&udc->lock);
1947                         udc->driver->resume(&udc->gadget);
1948                         spin_lock(&udc->lock);
1949                 }
1950         }
1951 }
1952
1953 static void irq_process_suspend(struct mv_udc *udc)
1954 {
1955         udc->resume_state = udc->usb_state;
1956         udc->usb_state = USB_STATE_SUSPENDED;
1957
1958         if (udc->driver->suspend) {
1959                 spin_unlock(&udc->lock);
1960                 udc->driver->suspend(&udc->gadget);
1961                 spin_lock(&udc->lock);
1962         }
1963 }
1964
1965 static void irq_process_port_change(struct mv_udc *udc)
1966 {
1967         u32 portsc;
1968
1969         portsc = readl(&udc->op_regs->portsc[0]);
1970         if (!(portsc & PORTSCX_PORT_RESET)) {
1971                 /* Get the speed */
1972                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1973                 switch (speed) {
1974                 case PORTSCX_PORT_SPEED_HIGH:
1975                         udc->gadget.speed = USB_SPEED_HIGH;
1976                         break;
1977                 case PORTSCX_PORT_SPEED_FULL:
1978                         udc->gadget.speed = USB_SPEED_FULL;
1979                         break;
1980                 case PORTSCX_PORT_SPEED_LOW:
1981                         udc->gadget.speed = USB_SPEED_LOW;
1982                         break;
1983                 default:
1984                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1985                         break;
1986                 }
1987         }
1988
1989         if (portsc & PORTSCX_PORT_SUSPEND) {
1990                 udc->resume_state = udc->usb_state;
1991                 udc->usb_state = USB_STATE_SUSPENDED;
1992                 if (udc->driver->suspend) {
1993                         spin_unlock(&udc->lock);
1994                         udc->driver->suspend(&udc->gadget);
1995                         spin_lock(&udc->lock);
1996                 }
1997         }
1998
1999         if (!(portsc & PORTSCX_PORT_SUSPEND)
2000                 && udc->usb_state == USB_STATE_SUSPENDED) {
2001                 handle_bus_resume(udc);
2002         }
2003
2004         if (!udc->resume_state)
2005                 udc->usb_state = USB_STATE_DEFAULT;
2006 }
2007
2008 static void irq_process_error(struct mv_udc *udc)
2009 {
2010         /* Increment the error count */
2011         udc->errors++;
2012 }
2013
2014 static irqreturn_t mv_udc_irq(int irq, void *dev)
2015 {
2016         struct mv_udc *udc = (struct mv_udc *)dev;
2017         u32 status, intr;
2018
2019         /* Disable ISR when stopped bit is set */
2020         if (udc->stopped)
2021                 return IRQ_NONE;
2022
2023         spin_lock(&udc->lock);
2024
2025         status = readl(&udc->op_regs->usbsts);
2026         intr = readl(&udc->op_regs->usbintr);
2027         status &= intr;
2028
2029         if (status == 0) {
2030                 spin_unlock(&udc->lock);
2031                 return IRQ_NONE;
2032         }
2033
2034         /* Clear all the interrupts occurred */
2035         writel(status, &udc->op_regs->usbsts);
2036
2037         if (status & USBSTS_ERR)
2038                 irq_process_error(udc);
2039
2040         if (status & USBSTS_RESET)
2041                 irq_process_reset(udc);
2042
2043         if (status & USBSTS_PORT_CHANGE)
2044                 irq_process_port_change(udc);
2045
2046         if (status & USBSTS_INT)
2047                 irq_process_tr_complete(udc);
2048
2049         if (status & USBSTS_SUSPEND)
2050                 irq_process_suspend(udc);
2051
2052         spin_unlock(&udc->lock);
2053
2054         return IRQ_HANDLED;
2055 }
2056
2057 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2058 {
2059         struct mv_udc *udc = (struct mv_udc *)dev;
2060
2061         /* polling VBUS and init phy may cause too much time*/
2062         if (udc->qwork)
2063                 queue_work(udc->qwork, &udc->vbus_work);
2064
2065         return IRQ_HANDLED;
2066 }
2067
2068 static void mv_udc_vbus_work(struct work_struct *work)
2069 {
2070         struct mv_udc *udc;
2071         unsigned int vbus;
2072
2073         udc = container_of(work, struct mv_udc, vbus_work);
2074         if (!udc->pdata->vbus)
2075                 return;
2076
2077         vbus = udc->pdata->vbus->poll();
2078         dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2079
2080         if (vbus == VBUS_HIGH)
2081                 mv_udc_vbus_session(&udc->gadget, 1);
2082         else if (vbus == VBUS_LOW)
2083                 mv_udc_vbus_session(&udc->gadget, 0);
2084 }
2085
2086 /* release device structure */
2087 static void gadget_release(struct device *_dev)
2088 {
2089         struct mv_udc *udc = the_controller;
2090
2091         complete(udc->done);
2092 }
2093
2094 static int __devexit mv_udc_remove(struct platform_device *dev)
2095 {
2096         struct mv_udc *udc = the_controller;
2097         int clk_i;
2098
2099         usb_del_gadget_udc(&udc->gadget);
2100
2101         if (udc->qwork) {
2102                 flush_workqueue(udc->qwork);
2103                 destroy_workqueue(udc->qwork);
2104         }
2105
2106         /*
2107          * If we have transceiver inited,
2108          * then vbus irq will not be requested in udc driver.
2109          */
2110         if (udc->pdata && udc->pdata->vbus
2111                 && udc->clock_gating && udc->transceiver == NULL)
2112                 free_irq(udc->pdata->vbus->irq, &dev->dev);
2113
2114         /* free memory allocated in probe */
2115         if (udc->dtd_pool)
2116                 dma_pool_destroy(udc->dtd_pool);
2117
2118         if (udc->ep_dqh)
2119                 dma_free_coherent(&dev->dev, udc->ep_dqh_size,
2120                         udc->ep_dqh, udc->ep_dqh_dma);
2121
2122         kfree(udc->eps);
2123
2124         if (udc->irq)
2125                 free_irq(udc->irq, &dev->dev);
2126
2127         mv_udc_disable(udc);
2128
2129         if (udc->cap_regs)
2130                 iounmap(udc->cap_regs);
2131
2132         if (udc->phy_regs)
2133                 iounmap(udc->phy_regs);
2134
2135         if (udc->status_req) {
2136                 kfree(udc->status_req->req.buf);
2137                 kfree(udc->status_req);
2138         }
2139
2140         for (clk_i = 0; clk_i <= udc->clknum; clk_i++)
2141                 clk_put(udc->clk[clk_i]);
2142
2143         device_unregister(&udc->gadget.dev);
2144
2145         /* free dev, wait for the release() finished */
2146         wait_for_completion(udc->done);
2147         kfree(udc);
2148
2149         the_controller = NULL;
2150
2151         return 0;
2152 }
2153
2154 static int __devinit mv_udc_probe(struct platform_device *dev)
2155 {
2156         struct mv_usb_platform_data *pdata = dev->dev.platform_data;
2157         struct mv_udc *udc;
2158         int retval = 0;
2159         int clk_i = 0;
2160         struct resource *r;
2161         size_t size;
2162
2163         if (pdata == NULL) {
2164                 dev_err(&dev->dev, "missing platform_data\n");
2165                 return -ENODEV;
2166         }
2167
2168         size = sizeof(*udc) + sizeof(struct clk *) * pdata->clknum;
2169         udc = kzalloc(size, GFP_KERNEL);
2170         if (udc == NULL) {
2171                 dev_err(&dev->dev, "failed to allocate memory for udc\n");
2172                 return -ENOMEM;
2173         }
2174
2175         the_controller = udc;
2176         udc->done = &release_done;
2177         udc->pdata = dev->dev.platform_data;
2178         spin_lock_init(&udc->lock);
2179
2180         udc->dev = dev;
2181
2182 #ifdef CONFIG_USB_OTG_UTILS
2183         if (pdata->mode == MV_USB_MODE_OTG)
2184                 udc->transceiver = otg_get_transceiver();
2185 #endif
2186
2187         udc->clknum = pdata->clknum;
2188         for (clk_i = 0; clk_i < udc->clknum; clk_i++) {
2189                 udc->clk[clk_i] = clk_get(&dev->dev, pdata->clkname[clk_i]);
2190                 if (IS_ERR(udc->clk[clk_i])) {
2191                         retval = PTR_ERR(udc->clk[clk_i]);
2192                         goto err_put_clk;
2193                 }
2194         }
2195
2196         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2197         if (r == NULL) {
2198                 dev_err(&dev->dev, "no I/O memory resource defined\n");
2199                 retval = -ENODEV;
2200                 goto err_put_clk;
2201         }
2202
2203         udc->cap_regs = (struct mv_cap_regs __iomem *)
2204                 ioremap(r->start, resource_size(r));
2205         if (udc->cap_regs == NULL) {
2206                 dev_err(&dev->dev, "failed to map I/O memory\n");
2207                 retval = -EBUSY;
2208                 goto err_put_clk;
2209         }
2210
2211         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2212         if (r == NULL) {
2213                 dev_err(&dev->dev, "no phy I/O memory resource defined\n");
2214                 retval = -ENODEV;
2215                 goto err_iounmap_capreg;
2216         }
2217
2218         udc->phy_regs = ioremap(r->start, resource_size(r));
2219         if (udc->phy_regs == NULL) {
2220                 dev_err(&dev->dev, "failed to map phy I/O memory\n");
2221                 retval = -EBUSY;
2222                 goto err_iounmap_capreg;
2223         }
2224
2225         /* we will acces controller register, so enable the clk */
2226         retval = mv_udc_enable_internal(udc);
2227         if (retval)
2228                 goto err_iounmap_phyreg;
2229
2230         udc->op_regs =
2231                 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2232                 + (readl(&udc->cap_regs->caplength_hciversion)
2233                         & CAPLENGTH_MASK));
2234         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2235
2236         /*
2237          * some platform will use usb to download image, it may not disconnect
2238          * usb gadget before loading kernel. So first stop udc here.
2239          */
2240         udc_stop(udc);
2241         writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2242
2243         size = udc->max_eps * sizeof(struct mv_dqh) *2;
2244         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2245         udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
2246                                         &udc->ep_dqh_dma, GFP_KERNEL);
2247
2248         if (udc->ep_dqh == NULL) {
2249                 dev_err(&dev->dev, "allocate dQH memory failed\n");
2250                 retval = -ENOMEM;
2251                 goto err_disable_clock;
2252         }
2253         udc->ep_dqh_size = size;
2254
2255         /* create dTD dma_pool resource */
2256         udc->dtd_pool = dma_pool_create("mv_dtd",
2257                         &dev->dev,
2258                         sizeof(struct mv_dtd),
2259                         DTD_ALIGNMENT,
2260                         DMA_BOUNDARY);
2261
2262         if (!udc->dtd_pool) {
2263                 retval = -ENOMEM;
2264                 goto err_free_dma;
2265         }
2266
2267         size = udc->max_eps * sizeof(struct mv_ep) *2;
2268         udc->eps = kzalloc(size, GFP_KERNEL);
2269         if (udc->eps == NULL) {
2270                 dev_err(&dev->dev, "allocate ep memory failed\n");
2271                 retval = -ENOMEM;
2272                 goto err_destroy_dma;
2273         }
2274
2275         /* initialize ep0 status request structure */
2276         udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
2277         if (!udc->status_req) {
2278                 dev_err(&dev->dev, "allocate status_req memory failed\n");
2279                 retval = -ENOMEM;
2280                 goto err_free_eps;
2281         }
2282         INIT_LIST_HEAD(&udc->status_req->queue);
2283
2284         /* allocate a small amount of memory to get valid address */
2285         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2286         udc->status_req->req.dma = DMA_ADDR_INVALID;
2287
2288         udc->resume_state = USB_STATE_NOTATTACHED;
2289         udc->usb_state = USB_STATE_POWERED;
2290         udc->ep0_dir = EP_DIR_OUT;
2291         udc->remote_wakeup = 0;
2292
2293         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2294         if (r == NULL) {
2295                 dev_err(&dev->dev, "no IRQ resource defined\n");
2296                 retval = -ENODEV;
2297                 goto err_free_status_req;
2298         }
2299         udc->irq = r->start;
2300         if (request_irq(udc->irq, mv_udc_irq,
2301                 IRQF_SHARED, driver_name, udc)) {
2302                 dev_err(&dev->dev, "Request irq %d for UDC failed\n",
2303                         udc->irq);
2304                 retval = -ENODEV;
2305                 goto err_free_status_req;
2306         }
2307
2308         /* initialize gadget structure */
2309         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2310         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2311         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2312         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2313         udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2314
2315         /* the "gadget" abstracts/virtualizes the controller */
2316         dev_set_name(&udc->gadget.dev, "gadget");
2317         udc->gadget.dev.parent = &dev->dev;
2318         udc->gadget.dev.dma_mask = dev->dev.dma_mask;
2319         udc->gadget.dev.release = gadget_release;
2320         udc->gadget.name = driver_name;         /* gadget name */
2321
2322         retval = device_register(&udc->gadget.dev);
2323         if (retval)
2324                 goto err_free_irq;
2325
2326         eps_init(udc);
2327
2328         /* VBUS detect: we can disable/enable clock on demand.*/
2329         if (udc->transceiver)
2330                 udc->clock_gating = 1;
2331         else if (pdata->vbus) {
2332                 udc->clock_gating = 1;
2333                 retval = request_threaded_irq(pdata->vbus->irq, NULL,
2334                                 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2335                 if (retval) {
2336                         dev_info(&dev->dev,
2337                                 "Can not request irq for VBUS, "
2338                                 "disable clock gating\n");
2339                         udc->clock_gating = 0;
2340                 }
2341
2342                 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2343                 if (!udc->qwork) {
2344                         dev_err(&dev->dev, "cannot create workqueue\n");
2345                         retval = -ENOMEM;
2346                         goto err_unregister;
2347                 }
2348
2349                 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2350         }
2351
2352         /*
2353          * When clock gating is supported, we can disable clk and phy.
2354          * If not, it means that VBUS detection is not supported, we
2355          * have to enable vbus active all the time to let controller work.
2356          */
2357         if (udc->clock_gating)
2358                 mv_udc_disable_internal(udc);
2359         else
2360                 udc->vbus_active = 1;
2361
2362         retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
2363         if (retval)
2364                 goto err_unregister;
2365
2366         dev_info(&dev->dev, "successful probe UDC device %s clock gating.\n",
2367                 udc->clock_gating ? "with" : "without");
2368
2369         return 0;
2370
2371 err_unregister:
2372         if (udc->pdata && udc->pdata->vbus
2373                 && udc->clock_gating && udc->transceiver == NULL)
2374                 free_irq(pdata->vbus->irq, &dev->dev);
2375         device_unregister(&udc->gadget.dev);
2376 err_free_irq:
2377         free_irq(udc->irq, &dev->dev);
2378 err_free_status_req:
2379         kfree(udc->status_req->req.buf);
2380         kfree(udc->status_req);
2381 err_free_eps:
2382         kfree(udc->eps);
2383 err_destroy_dma:
2384         dma_pool_destroy(udc->dtd_pool);
2385 err_free_dma:
2386         dma_free_coherent(&dev->dev, udc->ep_dqh_size,
2387                         udc->ep_dqh, udc->ep_dqh_dma);
2388 err_disable_clock:
2389         mv_udc_disable_internal(udc);
2390 err_iounmap_phyreg:
2391         iounmap(udc->phy_regs);
2392 err_iounmap_capreg:
2393         iounmap(udc->cap_regs);
2394 err_put_clk:
2395         for (clk_i--; clk_i >= 0; clk_i--)
2396                 clk_put(udc->clk[clk_i]);
2397         the_controller = NULL;
2398         kfree(udc);
2399         return retval;
2400 }
2401
2402 #ifdef CONFIG_PM
2403 static int mv_udc_suspend(struct device *_dev)
2404 {
2405         struct mv_udc *udc = the_controller;
2406
2407         /* if OTG is enabled, the following will be done in OTG driver*/
2408         if (udc->transceiver)
2409                 return 0;
2410
2411         if (udc->pdata->vbus && udc->pdata->vbus->poll)
2412                 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2413                         dev_info(&udc->dev->dev, "USB cable is connected!\n");
2414                         return -EAGAIN;
2415                 }
2416
2417         /*
2418          * only cable is unplugged, udc can suspend.
2419          * So do not care about clock_gating == 1.
2420          */
2421         if (!udc->clock_gating) {
2422                 udc_stop(udc);
2423
2424                 spin_lock_irq(&udc->lock);
2425                 /* stop all usb activities */
2426                 stop_activity(udc, udc->driver);
2427                 spin_unlock_irq(&udc->lock);
2428
2429                 mv_udc_disable_internal(udc);
2430         }
2431
2432         return 0;
2433 }
2434
2435 static int mv_udc_resume(struct device *_dev)
2436 {
2437         struct mv_udc *udc = the_controller;
2438         int retval;
2439
2440         /* if OTG is enabled, the following will be done in OTG driver*/
2441         if (udc->transceiver)
2442                 return 0;
2443
2444         if (!udc->clock_gating) {
2445                 retval = mv_udc_enable_internal(udc);
2446                 if (retval)
2447                         return retval;
2448
2449                 if (udc->driver && udc->softconnect) {
2450                         udc_reset(udc);
2451                         ep0_reset(udc);
2452                         udc_start(udc);
2453                 }
2454         }
2455
2456         return 0;
2457 }
2458
2459 static const struct dev_pm_ops mv_udc_pm_ops = {
2460         .suspend        = mv_udc_suspend,
2461         .resume         = mv_udc_resume,
2462 };
2463 #endif
2464
2465 static void mv_udc_shutdown(struct platform_device *dev)
2466 {
2467         struct mv_udc *udc = the_controller;
2468         u32 mode;
2469
2470         /* reset controller mode to IDLE */
2471         mode = readl(&udc->op_regs->usbmode);
2472         mode &= ~3;
2473         writel(mode, &udc->op_regs->usbmode);
2474 }
2475
2476 static struct platform_driver udc_driver = {
2477         .probe          = mv_udc_probe,
2478         .remove         = __exit_p(mv_udc_remove),
2479         .shutdown       = mv_udc_shutdown,
2480         .driver         = {
2481                 .owner  = THIS_MODULE,
2482                 .name   = "mv-udc",
2483 #ifdef CONFIG_PM
2484                 .pm     = &mv_udc_pm_ops,
2485 #endif
2486         },
2487 };
2488
2489 module_platform_driver(udc_driver);
2490 MODULE_ALIAS("platform:mv-udc");
2491 MODULE_DESCRIPTION(DRIVER_DESC);
2492 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2493 MODULE_VERSION(DRIVER_VERSION);
2494 MODULE_LICENSE("GPL");