Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / drivers / usb / gadget / mv_udc_core.c
1 /*
2  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3  * Author: Chao Xie <chao.xie@marvell.com>
4  *         Neil Zhang <zhangwm@marvell.com>
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/timer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/moduleparam.h>
27 #include <linux/device.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/pm.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/clk.h>
36 #include <linux/platform_data/mv_usb.h>
37 #include <asm/system.h>
38 #include <asm/unaligned.h>
39
40 #include "mv_udc.h"
41
42 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
43 #define DRIVER_VERSION          "8 Nov 2010"
44
45 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
46                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
47
48 /* timeout value -- usec */
49 #define RESET_TIMEOUT           10000
50 #define FLUSH_TIMEOUT           10000
51 #define EPSTATUS_TIMEOUT        10000
52 #define PRIME_TIMEOUT           10000
53 #define READSAFE_TIMEOUT        1000
54 #define DTD_TIMEOUT             1000
55
56 #define LOOPS_USEC_SHIFT        4
57 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
58 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
59
60 static DECLARE_COMPLETION(release_done);
61
62 static const char driver_name[] = "mv_udc";
63 static const char driver_desc[] = DRIVER_DESC;
64
65 /* controller device global variable */
66 static struct mv_udc    *the_controller;
67 int mv_usb_otgsc;
68
69 static void nuke(struct mv_ep *ep, int status);
70 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
71
72 /* for endpoint 0 operations */
73 static const struct usb_endpoint_descriptor mv_ep0_desc = {
74         .bLength =              USB_DT_ENDPOINT_SIZE,
75         .bDescriptorType =      USB_DT_ENDPOINT,
76         .bEndpointAddress =     0,
77         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
78         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
79 };
80
81 static void ep0_reset(struct mv_udc *udc)
82 {
83         struct mv_ep *ep;
84         u32 epctrlx;
85         int i = 0;
86
87         /* ep0 in and out */
88         for (i = 0; i < 2; i++) {
89                 ep = &udc->eps[i];
90                 ep->udc = udc;
91
92                 /* ep0 dQH */
93                 ep->dqh = &udc->ep_dqh[i];
94
95                 /* configure ep0 endpoint capabilities in dQH */
96                 ep->dqh->max_packet_length =
97                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
98                         | EP_QUEUE_HEAD_IOS;
99
100                 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
101
102                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
103                 if (i) {        /* TX */
104                         epctrlx |= EPCTRL_TX_ENABLE
105                                 | (USB_ENDPOINT_XFER_CONTROL
106                                         << EPCTRL_TX_EP_TYPE_SHIFT);
107
108                 } else {        /* RX */
109                         epctrlx |= EPCTRL_RX_ENABLE
110                                 | (USB_ENDPOINT_XFER_CONTROL
111                                         << EPCTRL_RX_EP_TYPE_SHIFT);
112                 }
113
114                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
115         }
116 }
117
118 /* protocol ep0 stall, will automatically be cleared on new transaction */
119 static void ep0_stall(struct mv_udc *udc)
120 {
121         u32     epctrlx;
122
123         /* set TX and RX to stall */
124         epctrlx = readl(&udc->op_regs->epctrlx[0]);
125         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
126         writel(epctrlx, &udc->op_regs->epctrlx[0]);
127
128         /* update ep0 state */
129         udc->ep0_state = WAIT_FOR_SETUP;
130         udc->ep0_dir = EP_DIR_OUT;
131 }
132
133 static int process_ep_req(struct mv_udc *udc, int index,
134         struct mv_req *curr_req)
135 {
136         struct mv_dtd   *curr_dtd;
137         struct mv_dqh   *curr_dqh;
138         int td_complete, actual, remaining_length;
139         int i, direction;
140         int retval = 0;
141         u32 errors;
142         u32 bit_pos;
143
144         curr_dqh = &udc->ep_dqh[index];
145         direction = index % 2;
146
147         curr_dtd = curr_req->head;
148         td_complete = 0;
149         actual = curr_req->req.length;
150
151         for (i = 0; i < curr_req->dtd_count; i++) {
152                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
153                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
154                                 udc->eps[index].name);
155                         return 1;
156                 }
157
158                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
159                 if (!errors) {
160                         remaining_length =
161                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
162                                         >> DTD_LENGTH_BIT_POS;
163                         actual -= remaining_length;
164
165                         if (remaining_length) {
166                                 if (direction) {
167                                         dev_dbg(&udc->dev->dev,
168                                                 "TX dTD remains data\n");
169                                         retval = -EPROTO;
170                                         break;
171                                 } else
172                                         break;
173                         }
174                 } else {
175                         dev_info(&udc->dev->dev,
176                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
177                                 index >> 1, direction ? "SEND" : "RECV",
178                                 errors);
179                         if (errors & DTD_STATUS_HALTED) {
180                                 /* Clear the errors and Halt condition */
181                                 curr_dqh->size_ioc_int_sts &= ~errors;
182                                 retval = -EPIPE;
183                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
184                                 retval = -EPROTO;
185                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
186                                 retval = -EILSEQ;
187                         }
188                 }
189                 if (i != curr_req->dtd_count - 1)
190                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
191         }
192         if (retval)
193                 return retval;
194
195         if (direction == EP_DIR_OUT)
196                 bit_pos = 1 << curr_req->ep->ep_num;
197         else
198                 bit_pos = 1 << (16 + curr_req->ep->ep_num);
199
200         while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
201                 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
202                         while (readl(&udc->op_regs->epstatus) & bit_pos)
203                                 udelay(1);
204                         break;
205                 }
206                 udelay(1);
207         }
208
209         curr_req->req.actual = actual;
210
211         return 0;
212 }
213
214 /*
215  * done() - retire a request; caller blocked irqs
216  * @status : request status to be set, only works when
217  * request is still in progress.
218  */
219 static void done(struct mv_ep *ep, struct mv_req *req, int status)
220 {
221         struct mv_udc *udc = NULL;
222         unsigned char stopped = ep->stopped;
223         struct mv_dtd *curr_td, *next_td;
224         int j;
225
226         udc = (struct mv_udc *)ep->udc;
227         /* Removed the req from fsl_ep->queue */
228         list_del_init(&req->queue);
229
230         /* req.status should be set as -EINPROGRESS in ep_queue() */
231         if (req->req.status == -EINPROGRESS)
232                 req->req.status = status;
233         else
234                 status = req->req.status;
235
236         /* Free dtd for the request */
237         next_td = req->head;
238         for (j = 0; j < req->dtd_count; j++) {
239                 curr_td = next_td;
240                 if (j != req->dtd_count - 1)
241                         next_td = curr_td->next_dtd_virt;
242                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
243         }
244
245         if (req->mapped) {
246                 dma_unmap_single(ep->udc->gadget.dev.parent,
247                         req->req.dma, req->req.length,
248                         ((ep_dir(ep) == EP_DIR_IN) ?
249                                 DMA_TO_DEVICE : DMA_FROM_DEVICE));
250                 req->req.dma = DMA_ADDR_INVALID;
251                 req->mapped = 0;
252         } else
253                 dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
254                         req->req.dma, req->req.length,
255                         ((ep_dir(ep) == EP_DIR_IN) ?
256                                 DMA_TO_DEVICE : DMA_FROM_DEVICE));
257
258         if (status && (status != -ESHUTDOWN))
259                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
260                         ep->ep.name, &req->req, status,
261                         req->req.actual, req->req.length);
262
263         ep->stopped = 1;
264
265         spin_unlock(&ep->udc->lock);
266         /*
267          * complete() is from gadget layer,
268          * eg fsg->bulk_in_complete()
269          */
270         if (req->req.complete)
271                 req->req.complete(&ep->ep, &req->req);
272
273         spin_lock(&ep->udc->lock);
274         ep->stopped = stopped;
275 }
276
277 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
278 {
279         u32 tmp, epstatus, bit_pos, direction;
280         struct mv_udc *udc;
281         struct mv_dqh *dqh;
282         unsigned int loops;
283         int readsafe, retval = 0;
284
285         udc = ep->udc;
286         direction = ep_dir(ep);
287         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
288         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
289
290         /* check if the pipe is empty */
291         if (!(list_empty(&ep->queue))) {
292                 struct mv_req *lastreq;
293                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
294                 lastreq->tail->dtd_next =
295                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
296                 if (readl(&udc->op_regs->epprime) & bit_pos) {
297                         loops = LOOPS(PRIME_TIMEOUT);
298                         while (readl(&udc->op_regs->epprime) & bit_pos) {
299                                 if (loops == 0) {
300                                         retval = -ETIME;
301                                         goto done;
302                                 }
303                                 udelay(LOOPS_USEC);
304                                 loops--;
305                         }
306                         if (readl(&udc->op_regs->epstatus) & bit_pos)
307                                 goto done;
308                 }
309                 readsafe = 0;
310                 loops = LOOPS(READSAFE_TIMEOUT);
311                 while (readsafe == 0) {
312                         if (loops == 0) {
313                                 retval = -ETIME;
314                                 goto done;
315                         }
316                         /* start with setting the semaphores */
317                         tmp = readl(&udc->op_regs->usbcmd);
318                         tmp |= USBCMD_ATDTW_TRIPWIRE_SET;
319                         writel(tmp, &udc->op_regs->usbcmd);
320
321                         /* read the endpoint status */
322                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
323
324                         /*
325                          * Reread the ATDTW semaphore bit to check if it is
326                          * cleared. When hardware see a hazard, it will clear
327                          * the bit or else we remain set to 1 and we can
328                          * proceed with priming of endpoint if not already
329                          * primed.
330                          */
331                         if (readl(&udc->op_regs->usbcmd)
332                                 & USBCMD_ATDTW_TRIPWIRE_SET) {
333                                 readsafe = 1;
334                         }
335                         loops--;
336                         udelay(LOOPS_USEC);
337                 }
338
339                 /* Clear the semaphore */
340                 tmp = readl(&udc->op_regs->usbcmd);
341                 tmp &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
342                 writel(tmp, &udc->op_regs->usbcmd);
343
344                 /* If endpoint is not active, we activate it now. */
345                 if (!epstatus) {
346                         if (direction == EP_DIR_IN) {
347                                 struct mv_dtd *curr_dtd = dma_to_virt(
348                                         &udc->dev->dev, dqh->curr_dtd_ptr);
349
350                                 loops = LOOPS(DTD_TIMEOUT);
351                                 while (curr_dtd->size_ioc_sts
352                                         & DTD_STATUS_ACTIVE) {
353                                         if (loops == 0) {
354                                                 retval = -ETIME;
355                                                 goto done;
356                                         }
357                                         loops--;
358                                         udelay(LOOPS_USEC);
359                                 }
360                         }
361                         /* No other transfers on the queue */
362
363                         /* Write dQH next pointer and terminate bit to 0 */
364                         dqh->next_dtd_ptr = req->head->td_dma
365                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
366                         dqh->size_ioc_int_sts = 0;
367
368                         /*
369                          * Ensure that updates to the QH will
370                          * occur before priming.
371                          */
372                         wmb();
373
374                         /* Prime the Endpoint */
375                         writel(bit_pos, &udc->op_regs->epprime);
376                 }
377         } else {
378                 /* Write dQH next pointer and terminate bit to 0 */
379                 dqh->next_dtd_ptr = req->head->td_dma
380                         & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
381                 dqh->size_ioc_int_sts = 0;
382
383                 /* Ensure that updates to the QH will occur before priming. */
384                 wmb();
385
386                 /* Prime the Endpoint */
387                 writel(bit_pos, &udc->op_regs->epprime);
388
389                 if (direction == EP_DIR_IN) {
390                         /* FIXME add status check after prime the IN ep */
391                         int prime_again;
392                         u32 curr_dtd_ptr = dqh->curr_dtd_ptr;
393
394                         loops = LOOPS(DTD_TIMEOUT);
395                         prime_again = 0;
396                         while ((curr_dtd_ptr != req->head->td_dma)) {
397                                 curr_dtd_ptr = dqh->curr_dtd_ptr;
398                                 if (loops == 0) {
399                                         dev_err(&udc->dev->dev,
400                                                 "failed to prime %s\n",
401                                                 ep->name);
402                                         retval = -ETIME;
403                                         goto done;
404                                 }
405                                 loops--;
406                                 udelay(LOOPS_USEC);
407
408                                 if (loops == (LOOPS(DTD_TIMEOUT) >> 2)) {
409                                         if (prime_again)
410                                                 goto done;
411                                         dev_info(&udc->dev->dev,
412                                                 "prime again\n");
413                                         writel(bit_pos,
414                                                 &udc->op_regs->epprime);
415                                         prime_again = 1;
416                                 }
417                         }
418                 }
419         }
420 done:
421         return retval;
422 }
423
424 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
425                 dma_addr_t *dma, int *is_last)
426 {
427         u32 temp;
428         struct mv_dtd *dtd;
429         struct mv_udc *udc;
430
431         /* how big will this transfer be? */
432         *length = min(req->req.length - req->req.actual,
433                         (unsigned)EP_MAX_LENGTH_TRANSFER);
434
435         udc = req->ep->udc;
436
437         /*
438          * Be careful that no _GFP_HIGHMEM is set,
439          * or we can not use dma_to_virt
440          */
441         dtd = dma_pool_alloc(udc->dtd_pool, GFP_KERNEL, dma);
442         if (dtd == NULL)
443                 return dtd;
444
445         dtd->td_dma = *dma;
446         /* initialize buffer page pointers */
447         temp = (u32)(req->req.dma + req->req.actual);
448         dtd->buff_ptr0 = cpu_to_le32(temp);
449         temp &= ~0xFFF;
450         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
451         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
452         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
453         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
454
455         req->req.actual += *length;
456
457         /* zlp is needed if req->req.zero is set */
458         if (req->req.zero) {
459                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
460                         *is_last = 1;
461                 else
462                         *is_last = 0;
463         } else if (req->req.length == req->req.actual)
464                 *is_last = 1;
465         else
466                 *is_last = 0;
467
468         /* Fill in the transfer size; set active bit */
469         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
470
471         /* Enable interrupt for the last dtd of a request */
472         if (*is_last && !req->req.no_interrupt)
473                 temp |= DTD_IOC;
474
475         dtd->size_ioc_sts = temp;
476
477         mb();
478
479         return dtd;
480 }
481
482 /* generate dTD linked list for a request */
483 static int req_to_dtd(struct mv_req *req)
484 {
485         unsigned count;
486         int is_last, is_first = 1;
487         struct mv_dtd *dtd, *last_dtd = NULL;
488         struct mv_udc *udc;
489         dma_addr_t dma;
490
491         udc = req->ep->udc;
492
493         do {
494                 dtd = build_dtd(req, &count, &dma, &is_last);
495                 if (dtd == NULL)
496                         return -ENOMEM;
497
498                 if (is_first) {
499                         is_first = 0;
500                         req->head = dtd;
501                 } else {
502                         last_dtd->dtd_next = dma;
503                         last_dtd->next_dtd_virt = dtd;
504                 }
505                 last_dtd = dtd;
506                 req->dtd_count++;
507         } while (!is_last);
508
509         /* set terminate bit to 1 for the last dTD */
510         dtd->dtd_next = DTD_NEXT_TERMINATE;
511
512         req->tail = dtd;
513
514         return 0;
515 }
516
517 static int mv_ep_enable(struct usb_ep *_ep,
518                 const struct usb_endpoint_descriptor *desc)
519 {
520         struct mv_udc *udc;
521         struct mv_ep *ep;
522         struct mv_dqh *dqh;
523         u16 max = 0;
524         u32 bit_pos, epctrlx, direction;
525         unsigned char zlt = 0, ios = 0, mult = 0;
526         unsigned long flags;
527
528         ep = container_of(_ep, struct mv_ep, ep);
529         udc = ep->udc;
530
531         if (!_ep || !desc || ep->desc
532                         || desc->bDescriptorType != USB_DT_ENDPOINT)
533                 return -EINVAL;
534
535         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
536                 return -ESHUTDOWN;
537
538         direction = ep_dir(ep);
539         max = usb_endpoint_maxp(desc);
540
541         /*
542          * disable HW zero length termination select
543          * driver handles zero length packet through req->req.zero
544          */
545         zlt = 1;
546
547         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
548
549         /* Check if the Endpoint is Primed */
550         if ((readl(&udc->op_regs->epprime) & bit_pos)
551                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
552                 dev_info(&udc->dev->dev,
553                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
554                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
555                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
556                         (unsigned)readl(&udc->op_regs->epprime),
557                         (unsigned)readl(&udc->op_regs->epstatus),
558                         (unsigned)bit_pos);
559                 goto en_done;
560         }
561         /* Set the max packet length, interrupt on Setup and Mult fields */
562         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
563         case USB_ENDPOINT_XFER_BULK:
564                 zlt = 1;
565                 mult = 0;
566                 break;
567         case USB_ENDPOINT_XFER_CONTROL:
568                 ios = 1;
569         case USB_ENDPOINT_XFER_INT:
570                 mult = 0;
571                 break;
572         case USB_ENDPOINT_XFER_ISOC:
573                 /* Calculate transactions needed for high bandwidth iso */
574                 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
575                 max = max & 0x7ff;      /* bit 0~10 */
576                 /* 3 transactions at most */
577                 if (mult > 3)
578                         goto en_done;
579                 break;
580         default:
581                 goto en_done;
582         }
583
584         spin_lock_irqsave(&udc->lock, flags);
585         /* Get the endpoint queue head address */
586         dqh = ep->dqh;
587         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
588                 | (mult << EP_QUEUE_HEAD_MULT_POS)
589                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
590                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
591         dqh->next_dtd_ptr = 1;
592         dqh->size_ioc_int_sts = 0;
593
594         ep->ep.maxpacket = max;
595         ep->desc = desc;
596         ep->stopped = 0;
597
598         /* Enable the endpoint for Rx or Tx and set the endpoint type */
599         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
600         if (direction == EP_DIR_IN) {
601                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
602                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
603                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
604                                 << EPCTRL_TX_EP_TYPE_SHIFT);
605         } else {
606                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
607                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
608                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
609                                 << EPCTRL_RX_EP_TYPE_SHIFT);
610         }
611         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
612
613         /*
614          * Implement Guideline (GL# USB-7) The unused endpoint type must
615          * be programmed to bulk.
616          */
617         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
618         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
619                 epctrlx |= (USB_ENDPOINT_XFER_BULK
620                                 << EPCTRL_RX_EP_TYPE_SHIFT);
621                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
622         }
623
624         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
625         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
626                 epctrlx |= (USB_ENDPOINT_XFER_BULK
627                                 << EPCTRL_TX_EP_TYPE_SHIFT);
628                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
629         }
630
631         spin_unlock_irqrestore(&udc->lock, flags);
632
633         return 0;
634 en_done:
635         return -EINVAL;
636 }
637
638 static int  mv_ep_disable(struct usb_ep *_ep)
639 {
640         struct mv_udc *udc;
641         struct mv_ep *ep;
642         struct mv_dqh *dqh;
643         u32 bit_pos, epctrlx, direction;
644         unsigned long flags;
645
646         ep = container_of(_ep, struct mv_ep, ep);
647         if ((_ep == NULL) || !ep->desc)
648                 return -EINVAL;
649
650         udc = ep->udc;
651
652         /* Get the endpoint queue head address */
653         dqh = ep->dqh;
654
655         spin_lock_irqsave(&udc->lock, flags);
656
657         direction = ep_dir(ep);
658         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
659
660         /* Reset the max packet length and the interrupt on Setup */
661         dqh->max_packet_length = 0;
662
663         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
664         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
665         epctrlx &= ~((direction == EP_DIR_IN)
666                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
667                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
668         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
669
670         /* nuke all pending requests (does flush) */
671         nuke(ep, -ESHUTDOWN);
672
673         ep->desc = NULL;
674         ep->stopped = 1;
675
676         spin_unlock_irqrestore(&udc->lock, flags);
677
678         return 0;
679 }
680
681 static struct usb_request *
682 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
683 {
684         struct mv_req *req = NULL;
685
686         req = kzalloc(sizeof *req, gfp_flags);
687         if (!req)
688                 return NULL;
689
690         req->req.dma = DMA_ADDR_INVALID;
691         INIT_LIST_HEAD(&req->queue);
692
693         return &req->req;
694 }
695
696 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
697 {
698         struct mv_req *req = NULL;
699
700         req = container_of(_req, struct mv_req, req);
701
702         if (_req)
703                 kfree(req);
704 }
705
706 static void mv_ep_fifo_flush(struct usb_ep *_ep)
707 {
708         struct mv_udc *udc;
709         u32 bit_pos, direction;
710         struct mv_ep *ep;
711         unsigned int loops;
712
713         if (!_ep)
714                 return;
715
716         ep = container_of(_ep, struct mv_ep, ep);
717         if (!ep->desc)
718                 return;
719
720         udc = ep->udc;
721         direction = ep_dir(ep);
722
723         if (ep->ep_num == 0)
724                 bit_pos = (1 << 16) | 1;
725         else if (direction == EP_DIR_OUT)
726                 bit_pos = 1 << ep->ep_num;
727         else
728                 bit_pos = 1 << (16 + ep->ep_num);
729
730         loops = LOOPS(EPSTATUS_TIMEOUT);
731         do {
732                 unsigned int inter_loops;
733
734                 if (loops == 0) {
735                         dev_err(&udc->dev->dev,
736                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
737                                 (unsigned)readl(&udc->op_regs->epstatus),
738                                 (unsigned)bit_pos);
739                         return;
740                 }
741                 /* Write 1 to the Flush register */
742                 writel(bit_pos, &udc->op_regs->epflush);
743
744                 /* Wait until flushing completed */
745                 inter_loops = LOOPS(FLUSH_TIMEOUT);
746                 while (readl(&udc->op_regs->epflush)) {
747                         /*
748                          * ENDPTFLUSH bit should be cleared to indicate this
749                          * operation is complete
750                          */
751                         if (inter_loops == 0) {
752                                 dev_err(&udc->dev->dev,
753                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
754                                         "bit_pos=0x%x\n",
755                                         (unsigned)readl(&udc->op_regs->epflush),
756                                         (unsigned)bit_pos);
757                                 return;
758                         }
759                         inter_loops--;
760                         udelay(LOOPS_USEC);
761                 }
762                 loops--;
763         } while (readl(&udc->op_regs->epstatus) & bit_pos);
764 }
765
766 /* queues (submits) an I/O request to an endpoint */
767 static int
768 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
769 {
770         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
771         struct mv_req *req = container_of(_req, struct mv_req, req);
772         struct mv_udc *udc = ep->udc;
773         unsigned long flags;
774
775         /* catch various bogus parameters */
776         if (!_req || !req->req.complete || !req->req.buf
777                         || !list_empty(&req->queue)) {
778                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
779                 return -EINVAL;
780         }
781         if (unlikely(!_ep || !ep->desc)) {
782                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
783                 return -EINVAL;
784         }
785         if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
786                 if (req->req.length > ep->ep.maxpacket)
787                         return -EMSGSIZE;
788         }
789
790         udc = ep->udc;
791         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
792                 return -ESHUTDOWN;
793
794         req->ep = ep;
795
796         /* map virtual address to hardware */
797         if (req->req.dma == DMA_ADDR_INVALID) {
798                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
799                                         req->req.buf,
800                                         req->req.length, ep_dir(ep)
801                                                 ? DMA_TO_DEVICE
802                                                 : DMA_FROM_DEVICE);
803                 req->mapped = 1;
804         } else {
805                 dma_sync_single_for_device(ep->udc->gadget.dev.parent,
806                                         req->req.dma, req->req.length,
807                                         ep_dir(ep)
808                                                 ? DMA_TO_DEVICE
809                                                 : DMA_FROM_DEVICE);
810                 req->mapped = 0;
811         }
812
813         req->req.status = -EINPROGRESS;
814         req->req.actual = 0;
815         req->dtd_count = 0;
816
817         spin_lock_irqsave(&udc->lock, flags);
818
819         /* build dtds and push them to device queue */
820         if (!req_to_dtd(req)) {
821                 int retval;
822                 retval = queue_dtd(ep, req);
823                 if (retval) {
824                         spin_unlock_irqrestore(&udc->lock, flags);
825                         return retval;
826                 }
827         } else {
828                 spin_unlock_irqrestore(&udc->lock, flags);
829                 return -ENOMEM;
830         }
831
832         /* Update ep0 state */
833         if (ep->ep_num == 0)
834                 udc->ep0_state = DATA_STATE_XMIT;
835
836         /* irq handler advances the queue */
837         if (req != NULL)
838                 list_add_tail(&req->queue, &ep->queue);
839         spin_unlock_irqrestore(&udc->lock, flags);
840
841         return 0;
842 }
843
844 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
845 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
846 {
847         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
848         struct mv_req *req;
849         struct mv_udc *udc = ep->udc;
850         unsigned long flags;
851         int stopped, ret = 0;
852         u32 epctrlx;
853
854         if (!_ep || !_req)
855                 return -EINVAL;
856
857         spin_lock_irqsave(&ep->udc->lock, flags);
858         stopped = ep->stopped;
859
860         /* Stop the ep before we deal with the queue */
861         ep->stopped = 1;
862         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
863         if (ep_dir(ep) == EP_DIR_IN)
864                 epctrlx &= ~EPCTRL_TX_ENABLE;
865         else
866                 epctrlx &= ~EPCTRL_RX_ENABLE;
867         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
868
869         /* make sure it's actually queued on this endpoint */
870         list_for_each_entry(req, &ep->queue, queue) {
871                 if (&req->req == _req)
872                         break;
873         }
874         if (&req->req != _req) {
875                 ret = -EINVAL;
876                 goto out;
877         }
878
879         /* The request is in progress, or completed but not dequeued */
880         if (ep->queue.next == &req->queue) {
881                 _req->status = -ECONNRESET;
882                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
883
884                 /* The request isn't the last request in this ep queue */
885                 if (req->queue.next != &ep->queue) {
886                         struct mv_dqh *qh;
887                         struct mv_req *next_req;
888
889                         qh = ep->dqh;
890                         next_req = list_entry(req->queue.next, struct mv_req,
891                                         queue);
892
893                         /* Point the QH to the first TD of next request */
894                         writel((u32) next_req->head, &qh->curr_dtd_ptr);
895                 } else {
896                         struct mv_dqh *qh;
897
898                         qh = ep->dqh;
899                         qh->next_dtd_ptr = 1;
900                         qh->size_ioc_int_sts = 0;
901                 }
902
903                 /* The request hasn't been processed, patch up the TD chain */
904         } else {
905                 struct mv_req *prev_req;
906
907                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
908                 writel(readl(&req->tail->dtd_next),
909                                 &prev_req->tail->dtd_next);
910
911         }
912
913         done(ep, req, -ECONNRESET);
914
915         /* Enable EP */
916 out:
917         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
918         if (ep_dir(ep) == EP_DIR_IN)
919                 epctrlx |= EPCTRL_TX_ENABLE;
920         else
921                 epctrlx |= EPCTRL_RX_ENABLE;
922         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
923         ep->stopped = stopped;
924
925         spin_unlock_irqrestore(&ep->udc->lock, flags);
926         return ret;
927 }
928
929 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
930 {
931         u32 epctrlx;
932
933         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
934
935         if (stall) {
936                 if (direction == EP_DIR_IN)
937                         epctrlx |= EPCTRL_TX_EP_STALL;
938                 else
939                         epctrlx |= EPCTRL_RX_EP_STALL;
940         } else {
941                 if (direction == EP_DIR_IN) {
942                         epctrlx &= ~EPCTRL_TX_EP_STALL;
943                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
944                 } else {
945                         epctrlx &= ~EPCTRL_RX_EP_STALL;
946                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
947                 }
948         }
949         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
950 }
951
952 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
953 {
954         u32 epctrlx;
955
956         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
957
958         if (direction == EP_DIR_OUT)
959                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
960         else
961                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
962 }
963
964 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
965 {
966         struct mv_ep *ep;
967         unsigned long flags = 0;
968         int status = 0;
969         struct mv_udc *udc;
970
971         ep = container_of(_ep, struct mv_ep, ep);
972         udc = ep->udc;
973         if (!_ep || !ep->desc) {
974                 status = -EINVAL;
975                 goto out;
976         }
977
978         if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
979                 status = -EOPNOTSUPP;
980                 goto out;
981         }
982
983         /*
984          * Attempt to halt IN ep will fail if any transfer requests
985          * are still queue
986          */
987         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
988                 status = -EAGAIN;
989                 goto out;
990         }
991
992         spin_lock_irqsave(&ep->udc->lock, flags);
993         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
994         if (halt && wedge)
995                 ep->wedge = 1;
996         else if (!halt)
997                 ep->wedge = 0;
998         spin_unlock_irqrestore(&ep->udc->lock, flags);
999
1000         if (ep->ep_num == 0) {
1001                 udc->ep0_state = WAIT_FOR_SETUP;
1002                 udc->ep0_dir = EP_DIR_OUT;
1003         }
1004 out:
1005         return status;
1006 }
1007
1008 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
1009 {
1010         return mv_ep_set_halt_wedge(_ep, halt, 0);
1011 }
1012
1013 static int mv_ep_set_wedge(struct usb_ep *_ep)
1014 {
1015         return mv_ep_set_halt_wedge(_ep, 1, 1);
1016 }
1017
1018 static struct usb_ep_ops mv_ep_ops = {
1019         .enable         = mv_ep_enable,
1020         .disable        = mv_ep_disable,
1021
1022         .alloc_request  = mv_alloc_request,
1023         .free_request   = mv_free_request,
1024
1025         .queue          = mv_ep_queue,
1026         .dequeue        = mv_ep_dequeue,
1027
1028         .set_wedge      = mv_ep_set_wedge,
1029         .set_halt       = mv_ep_set_halt,
1030         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
1031 };
1032
1033 static void udc_clock_enable(struct mv_udc *udc)
1034 {
1035         unsigned int i;
1036
1037         for (i = 0; i < udc->clknum; i++)
1038                 clk_enable(udc->clk[i]);
1039 }
1040
1041 static void udc_clock_disable(struct mv_udc *udc)
1042 {
1043         unsigned int i;
1044
1045         for (i = 0; i < udc->clknum; i++)
1046                 clk_disable(udc->clk[i]);
1047 }
1048
1049 static void udc_stop(struct mv_udc *udc)
1050 {
1051         u32 tmp;
1052
1053         /* Disable interrupts */
1054         tmp = readl(&udc->op_regs->usbintr);
1055         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
1056                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
1057         writel(tmp, &udc->op_regs->usbintr);
1058
1059         /* Reset the Run the bit in the command register to stop VUSB */
1060         tmp = readl(&udc->op_regs->usbcmd);
1061         tmp &= ~USBCMD_RUN_STOP;
1062         writel(tmp, &udc->op_regs->usbcmd);
1063 }
1064
1065 static void udc_start(struct mv_udc *udc)
1066 {
1067         u32 usbintr;
1068
1069         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1070                 | USBINTR_PORT_CHANGE_DETECT_EN
1071                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1072         /* Enable interrupts */
1073         writel(usbintr, &udc->op_regs->usbintr);
1074
1075         /* Set the Run bit in the command register */
1076         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1077 }
1078
1079 static int udc_reset(struct mv_udc *udc)
1080 {
1081         unsigned int loops;
1082         u32 tmp, portsc;
1083
1084         /* Stop the controller */
1085         tmp = readl(&udc->op_regs->usbcmd);
1086         tmp &= ~USBCMD_RUN_STOP;
1087         writel(tmp, &udc->op_regs->usbcmd);
1088
1089         /* Reset the controller to get default values */
1090         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1091
1092         /* wait for reset to complete */
1093         loops = LOOPS(RESET_TIMEOUT);
1094         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1095                 if (loops == 0) {
1096                         dev_err(&udc->dev->dev,
1097                                 "Wait for RESET completed TIMEOUT\n");
1098                         return -ETIMEDOUT;
1099                 }
1100                 loops--;
1101                 udelay(LOOPS_USEC);
1102         }
1103
1104         /* set controller to device mode */
1105         tmp = readl(&udc->op_regs->usbmode);
1106         tmp |= USBMODE_CTRL_MODE_DEVICE;
1107
1108         /* turn setup lockout off, require setup tripwire in usbcmd */
1109         tmp |= USBMODE_SETUP_LOCK_OFF | USBMODE_STREAM_DISABLE;
1110
1111         writel(tmp, &udc->op_regs->usbmode);
1112
1113         writel(0x0, &udc->op_regs->epsetupstat);
1114
1115         /* Configure the Endpoint List Address */
1116         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1117                 &udc->op_regs->eplistaddr);
1118
1119         portsc = readl(&udc->op_regs->portsc[0]);
1120         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1121                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1122
1123         if (udc->force_fs)
1124                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1125         else
1126                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1127
1128         writel(portsc, &udc->op_regs->portsc[0]);
1129
1130         tmp = readl(&udc->op_regs->epctrlx[0]);
1131         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1132         writel(tmp, &udc->op_regs->epctrlx[0]);
1133
1134         return 0;
1135 }
1136
1137 static int mv_udc_enable(struct mv_udc *udc)
1138 {
1139         int retval;
1140
1141         if (udc->clock_gating == 0 || udc->active)
1142                 return 0;
1143
1144         dev_dbg(&udc->dev->dev, "enable udc\n");
1145         udc_clock_enable(udc);
1146         if (udc->pdata->phy_init) {
1147                 retval = udc->pdata->phy_init(udc->phy_regs);
1148                 if (retval) {
1149                         dev_err(&udc->dev->dev,
1150                                 "init phy error %d\n", retval);
1151                         udc_clock_disable(udc);
1152                         return retval;
1153                 }
1154         }
1155         udc->active = 1;
1156
1157         return 0;
1158 }
1159
1160 static void mv_udc_disable(struct mv_udc *udc)
1161 {
1162         if (udc->clock_gating && udc->active) {
1163                 dev_dbg(&udc->dev->dev, "disable udc\n");
1164                 if (udc->pdata->phy_deinit)
1165                         udc->pdata->phy_deinit(udc->phy_regs);
1166                 udc_clock_disable(udc);
1167                 udc->active = 0;
1168         }
1169 }
1170
1171 static int mv_udc_get_frame(struct usb_gadget *gadget)
1172 {
1173         struct mv_udc *udc;
1174         u16     retval;
1175
1176         if (!gadget)
1177                 return -ENODEV;
1178
1179         udc = container_of(gadget, struct mv_udc, gadget);
1180
1181         retval = readl(udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1182
1183         return retval;
1184 }
1185
1186 /* Tries to wake up the host connected to this gadget */
1187 static int mv_udc_wakeup(struct usb_gadget *gadget)
1188 {
1189         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1190         u32 portsc;
1191
1192         /* Remote wakeup feature not enabled by host */
1193         if (!udc->remote_wakeup)
1194                 return -ENOTSUPP;
1195
1196         portsc = readl(&udc->op_regs->portsc);
1197         /* not suspended? */
1198         if (!(portsc & PORTSCX_PORT_SUSPEND))
1199                 return 0;
1200         /* trigger force resume */
1201         portsc |= PORTSCX_PORT_FORCE_RESUME;
1202         writel(portsc, &udc->op_regs->portsc[0]);
1203         return 0;
1204 }
1205
1206 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1207 {
1208         struct mv_udc *udc;
1209         unsigned long flags;
1210         int retval = 0;
1211
1212         udc = container_of(gadget, struct mv_udc, gadget);
1213         spin_lock_irqsave(&udc->lock, flags);
1214
1215         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1216                 __func__, udc->softconnect, udc->vbus_active);
1217
1218         udc->vbus_active = (is_active != 0);
1219         if (udc->driver && udc->softconnect && udc->vbus_active) {
1220                 retval = mv_udc_enable(udc);
1221                 if (retval == 0) {
1222                         /* Clock is disabled, need re-init registers */
1223                         udc_reset(udc);
1224                         ep0_reset(udc);
1225                         udc_start(udc);
1226                 }
1227         } else if (udc->driver && udc->softconnect) {
1228                 /* stop all the transfer in queue*/
1229                 stop_activity(udc, udc->driver);
1230                 udc_stop(udc);
1231                 mv_udc_disable(udc);
1232         }
1233
1234         spin_unlock_irqrestore(&udc->lock, flags);
1235         return retval;
1236 }
1237
1238 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1239 {
1240         struct mv_udc *udc;
1241         unsigned long flags;
1242         int retval = 0;
1243
1244         udc = container_of(gadget, struct mv_udc, gadget);
1245         spin_lock_irqsave(&udc->lock, flags);
1246
1247         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1248                         __func__, udc->softconnect, udc->vbus_active);
1249
1250         udc->softconnect = (is_on != 0);
1251         if (udc->driver && udc->softconnect && udc->vbus_active) {
1252                 retval = mv_udc_enable(udc);
1253                 if (retval == 0) {
1254                         /* Clock is disabled, need re-init registers */
1255                         udc_reset(udc);
1256                         ep0_reset(udc);
1257                         udc_start(udc);
1258                 }
1259         } else if (udc->driver && udc->vbus_active) {
1260                 /* stop all the transfer in queue*/
1261                 stop_activity(udc, udc->driver);
1262                 udc_stop(udc);
1263                 mv_udc_disable(udc);
1264         }
1265
1266         spin_unlock_irqrestore(&udc->lock, flags);
1267         return retval;
1268 }
1269
1270 static int mv_udc_start(struct usb_gadget_driver *driver,
1271                 int (*bind)(struct usb_gadget *));
1272 static int mv_udc_stop(struct usb_gadget_driver *driver);
1273 /* device controller usb_gadget_ops structure */
1274 static const struct usb_gadget_ops mv_ops = {
1275
1276         /* returns the current frame number */
1277         .get_frame      = mv_udc_get_frame,
1278
1279         /* tries to wake up the host connected to this gadget */
1280         .wakeup         = mv_udc_wakeup,
1281
1282         /* notify controller that VBUS is powered or not */
1283         .vbus_session   = mv_udc_vbus_session,
1284
1285         /* D+ pullup, software-controlled connect/disconnect to USB host */
1286         .pullup         = mv_udc_pullup,
1287         .start          = mv_udc_start,
1288         .stop           = mv_udc_stop,
1289 };
1290
1291 static int eps_init(struct mv_udc *udc)
1292 {
1293         struct mv_ep    *ep;
1294         char name[14];
1295         int i;
1296
1297         /* initialize ep0 */
1298         ep = &udc->eps[0];
1299         ep->udc = udc;
1300         strncpy(ep->name, "ep0", sizeof(ep->name));
1301         ep->ep.name = ep->name;
1302         ep->ep.ops = &mv_ep_ops;
1303         ep->wedge = 0;
1304         ep->stopped = 0;
1305         ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
1306         ep->ep_num = 0;
1307         ep->desc = &mv_ep0_desc;
1308         INIT_LIST_HEAD(&ep->queue);
1309
1310         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1311
1312         /* initialize other endpoints */
1313         for (i = 2; i < udc->max_eps * 2; i++) {
1314                 ep = &udc->eps[i];
1315                 if (i % 2) {
1316                         snprintf(name, sizeof(name), "ep%din", i / 2);
1317                         ep->direction = EP_DIR_IN;
1318                 } else {
1319                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1320                         ep->direction = EP_DIR_OUT;
1321                 }
1322                 ep->udc = udc;
1323                 strncpy(ep->name, name, sizeof(ep->name));
1324                 ep->ep.name = ep->name;
1325
1326                 ep->ep.ops = &mv_ep_ops;
1327                 ep->stopped = 0;
1328                 ep->ep.maxpacket = (unsigned short) ~0;
1329                 ep->ep_num = i / 2;
1330
1331                 INIT_LIST_HEAD(&ep->queue);
1332                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1333
1334                 ep->dqh = &udc->ep_dqh[i];
1335         }
1336
1337         return 0;
1338 }
1339
1340 /* delete all endpoint requests, called with spinlock held */
1341 static void nuke(struct mv_ep *ep, int status)
1342 {
1343         /* called with spinlock held */
1344         ep->stopped = 1;
1345
1346         /* endpoint fifo flush */
1347         mv_ep_fifo_flush(&ep->ep);
1348
1349         while (!list_empty(&ep->queue)) {
1350                 struct mv_req *req = NULL;
1351                 req = list_entry(ep->queue.next, struct mv_req, queue);
1352                 done(ep, req, status);
1353         }
1354 }
1355
1356 /* stop all USB activities */
1357 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1358 {
1359         struct mv_ep    *ep;
1360
1361         nuke(&udc->eps[0], -ESHUTDOWN);
1362
1363         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1364                 nuke(ep, -ESHUTDOWN);
1365         }
1366
1367         /* report disconnect; the driver is already quiesced */
1368         if (driver) {
1369                 spin_unlock(&udc->lock);
1370                 driver->disconnect(&udc->gadget);
1371                 spin_lock(&udc->lock);
1372         }
1373 }
1374
1375 static int mv_udc_start(struct usb_gadget_driver *driver,
1376                 int (*bind)(struct usb_gadget *))
1377 {
1378         struct mv_udc *udc = the_controller;
1379         int retval = 0;
1380         unsigned long flags;
1381
1382         if (!udc)
1383                 return -ENODEV;
1384
1385         if (udc->driver)
1386                 return -EBUSY;
1387
1388         spin_lock_irqsave(&udc->lock, flags);
1389
1390         /* hook up the driver ... */
1391         driver->driver.bus = NULL;
1392         udc->driver = driver;
1393         udc->gadget.dev.driver = &driver->driver;
1394
1395         udc->usb_state = USB_STATE_ATTACHED;
1396         udc->ep0_state = WAIT_FOR_SETUP;
1397         udc->ep0_dir = EP_DIR_OUT;
1398
1399         spin_unlock_irqrestore(&udc->lock, flags);
1400
1401         retval = bind(&udc->gadget);
1402         if (retval) {
1403                 dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
1404                                 driver->driver.name, retval);
1405                 udc->driver = NULL;
1406                 udc->gadget.dev.driver = NULL;
1407                 return retval;
1408         }
1409
1410         /* pullup is always on */
1411         mv_udc_pullup(&udc->gadget, 1);
1412
1413         /* When boot with cable attached, there will be no vbus irq occurred */
1414         if (udc->qwork)
1415                 queue_work(udc->qwork, &udc->vbus_work);
1416
1417         return 0;
1418 }
1419
1420 static int mv_udc_stop(struct usb_gadget_driver *driver)
1421 {
1422         struct mv_udc *udc = the_controller;
1423         unsigned long flags;
1424
1425         if (!udc)
1426                 return -ENODEV;
1427
1428         spin_lock_irqsave(&udc->lock, flags);
1429
1430         mv_udc_enable(udc);
1431         udc_stop(udc);
1432
1433         /* stop all usb activities */
1434         udc->gadget.speed = USB_SPEED_UNKNOWN;
1435         stop_activity(udc, driver);
1436         mv_udc_disable(udc);
1437
1438         spin_unlock_irqrestore(&udc->lock, flags);
1439
1440         /* unbind gadget driver */
1441         driver->unbind(&udc->gadget);
1442         udc->gadget.dev.driver = NULL;
1443         udc->driver = NULL;
1444
1445         return 0;
1446 }
1447
1448 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1449 {
1450         u32 portsc;
1451
1452         portsc = readl(&udc->op_regs->portsc[0]);
1453         portsc |= mode << 16;
1454         writel(portsc, &udc->op_regs->portsc[0]);
1455 }
1456
1457 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1458 {
1459         struct mv_udc *udc = the_controller;
1460         struct mv_req *req = container_of(_req, struct mv_req, req);
1461         unsigned long flags;
1462
1463         dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1464
1465         spin_lock_irqsave(&udc->lock, flags);
1466         if (req->test_mode) {
1467                 mv_set_ptc(udc, req->test_mode);
1468                 req->test_mode = 0;
1469         }
1470         spin_unlock_irqrestore(&udc->lock, flags);
1471 }
1472
1473 static int
1474 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1475 {
1476         int retval = 0;
1477         struct mv_req *req;
1478         struct mv_ep *ep;
1479
1480         ep = &udc->eps[0];
1481         udc->ep0_dir = direction;
1482         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1483
1484         req = udc->status_req;
1485
1486         /* fill in the reqest structure */
1487         if (empty == false) {
1488                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1489                 req->req.length = 2;
1490         } else
1491                 req->req.length = 0;
1492
1493         req->ep = ep;
1494         req->req.status = -EINPROGRESS;
1495         req->req.actual = 0;
1496         if (udc->test_mode) {
1497                 req->req.complete = prime_status_complete;
1498                 req->test_mode = udc->test_mode;
1499                 udc->test_mode = 0;
1500         } else
1501                 req->req.complete = NULL;
1502         req->dtd_count = 0;
1503
1504         if (req->req.dma == DMA_ADDR_INVALID) {
1505                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1506                                 req->req.buf, req->req.length,
1507                                 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1508                 req->mapped = 1;
1509         }
1510
1511         /* prime the data phase */
1512         if (!req_to_dtd(req))
1513                 retval = queue_dtd(ep, req);
1514         else{   /* no mem */
1515                 retval = -ENOMEM;
1516                 goto out;
1517         }
1518
1519         if (retval) {
1520                 dev_err(&udc->dev->dev, "response error on GET_STATUS request\n");
1521                 goto out;
1522         }
1523
1524         list_add_tail(&req->queue, &ep->queue);
1525
1526         return 0;
1527 out:
1528         return retval;
1529 }
1530
1531 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1532 {
1533         if (index <= TEST_FORCE_EN) {
1534                 udc->test_mode = index;
1535                 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1536                         ep0_stall(udc);
1537         } else
1538                 dev_err(&udc->dev->dev,
1539                         "This test mode(%d) is not supported\n", index);
1540 }
1541
1542 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1543 {
1544         udc->dev_addr = (u8)setup->wValue;
1545
1546         /* update usb state */
1547         udc->usb_state = USB_STATE_ADDRESS;
1548
1549         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1550                 ep0_stall(udc);
1551 }
1552
1553 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1554         struct usb_ctrlrequest *setup)
1555 {
1556         u16 status = 0;
1557         int retval;
1558
1559         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1560                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1561                 return;
1562
1563         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1564                 status = 1 << USB_DEVICE_SELF_POWERED;
1565                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1566         } else if ((setup->bRequestType & USB_RECIP_MASK)
1567                         == USB_RECIP_INTERFACE) {
1568                 /* get interface status */
1569                 status = 0;
1570         } else if ((setup->bRequestType & USB_RECIP_MASK)
1571                         == USB_RECIP_ENDPOINT) {
1572                 u8 ep_num, direction;
1573
1574                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1575                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1576                                 ? EP_DIR_IN : EP_DIR_OUT;
1577                 status = ep_is_stall(udc, ep_num, direction)
1578                                 << USB_ENDPOINT_HALT;
1579         }
1580
1581         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1582         if (retval)
1583                 ep0_stall(udc);
1584         else
1585                 udc->ep0_state = DATA_STATE_XMIT;
1586 }
1587
1588 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1589 {
1590         u8 ep_num;
1591         u8 direction;
1592         struct mv_ep *ep;
1593
1594         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1595                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1596                 switch (setup->wValue) {
1597                 case USB_DEVICE_REMOTE_WAKEUP:
1598                         udc->remote_wakeup = 0;
1599                         break;
1600                 default:
1601                         goto out;
1602                 }
1603         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1604                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1605                 switch (setup->wValue) {
1606                 case USB_ENDPOINT_HALT:
1607                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1608                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1609                                 ? EP_DIR_IN : EP_DIR_OUT;
1610                         if (setup->wValue != 0 || setup->wLength != 0
1611                                 || ep_num > udc->max_eps)
1612                                 goto out;
1613                         ep = &udc->eps[ep_num * 2 + direction];
1614                         if (ep->wedge == 1)
1615                                 break;
1616                         spin_unlock(&udc->lock);
1617                         ep_set_stall(udc, ep_num, direction, 0);
1618                         spin_lock(&udc->lock);
1619                         break;
1620                 default:
1621                         goto out;
1622                 }
1623         } else
1624                 goto out;
1625
1626         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1627                 ep0_stall(udc);
1628 out:
1629         return;
1630 }
1631
1632 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1633 {
1634         u8 ep_num;
1635         u8 direction;
1636
1637         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1638                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1639                 switch (setup->wValue) {
1640                 case USB_DEVICE_REMOTE_WAKEUP:
1641                         udc->remote_wakeup = 1;
1642                         break;
1643                 case USB_DEVICE_TEST_MODE:
1644                         if (setup->wIndex & 0xFF
1645                                 ||  udc->gadget.speed != USB_SPEED_HIGH)
1646                                 ep0_stall(udc);
1647
1648                         if (udc->usb_state != USB_STATE_CONFIGURED
1649                                 && udc->usb_state != USB_STATE_ADDRESS
1650                                 && udc->usb_state != USB_STATE_DEFAULT)
1651                                 ep0_stall(udc);
1652
1653                         mv_udc_testmode(udc, (setup->wIndex >> 8));
1654                         goto out;
1655                 default:
1656                         goto out;
1657                 }
1658         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1659                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1660                 switch (setup->wValue) {
1661                 case USB_ENDPOINT_HALT:
1662                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1663                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1664                                 ? EP_DIR_IN : EP_DIR_OUT;
1665                         if (setup->wValue != 0 || setup->wLength != 0
1666                                 || ep_num > udc->max_eps)
1667                                 goto out;
1668                         spin_unlock(&udc->lock);
1669                         ep_set_stall(udc, ep_num, direction, 1);
1670                         spin_lock(&udc->lock);
1671                         break;
1672                 default:
1673                         goto out;
1674                 }
1675         } else
1676                 goto out;
1677
1678         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1679                 ep0_stall(udc);
1680 out:
1681         return;
1682 }
1683
1684 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1685         struct usb_ctrlrequest *setup)
1686 {
1687         bool delegate = false;
1688
1689         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1690
1691         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1692                         setup->bRequestType, setup->bRequest,
1693                         setup->wValue, setup->wIndex, setup->wLength);
1694         /* We process some stardard setup requests here */
1695         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1696                 switch (setup->bRequest) {
1697                 case USB_REQ_GET_STATUS:
1698                         ch9getstatus(udc, ep_num, setup);
1699                         break;
1700
1701                 case USB_REQ_SET_ADDRESS:
1702                         ch9setaddress(udc, setup);
1703                         break;
1704
1705                 case USB_REQ_CLEAR_FEATURE:
1706                         ch9clearfeature(udc, setup);
1707                         break;
1708
1709                 case USB_REQ_SET_FEATURE:
1710                         ch9setfeature(udc, setup);
1711                         break;
1712
1713                 default:
1714                         delegate = true;
1715                 }
1716         } else
1717                 delegate = true;
1718
1719         /* delegate USB standard requests to the gadget driver */
1720         if (delegate == true) {
1721                 /* USB requests handled by gadget */
1722                 if (setup->wLength) {
1723                         /* DATA phase from gadget, STATUS phase from udc */
1724                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1725                                         ?  EP_DIR_IN : EP_DIR_OUT;
1726                         spin_unlock(&udc->lock);
1727                         if (udc->driver->setup(&udc->gadget,
1728                                 &udc->local_setup_buff) < 0)
1729                                 ep0_stall(udc);
1730                         spin_lock(&udc->lock);
1731                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1732                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1733                 } else {
1734                         /* no DATA phase, IN STATUS phase from gadget */
1735                         udc->ep0_dir = EP_DIR_IN;
1736                         spin_unlock(&udc->lock);
1737                         if (udc->driver->setup(&udc->gadget,
1738                                 &udc->local_setup_buff) < 0)
1739                                 ep0_stall(udc);
1740                         spin_lock(&udc->lock);
1741                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1742                 }
1743         }
1744 }
1745
1746 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1747 static void ep0_req_complete(struct mv_udc *udc,
1748         struct mv_ep *ep0, struct mv_req *req)
1749 {
1750         u32 new_addr;
1751
1752         if (udc->usb_state == USB_STATE_ADDRESS) {
1753                 /* set the new address */
1754                 new_addr = (u32)udc->dev_addr;
1755                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1756                         &udc->op_regs->deviceaddr);
1757         }
1758
1759         done(ep0, req, 0);
1760
1761         switch (udc->ep0_state) {
1762         case DATA_STATE_XMIT:
1763                 /* receive status phase */
1764                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1765                         ep0_stall(udc);
1766                 break;
1767         case DATA_STATE_RECV:
1768                 /* send status phase */
1769                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1770                         ep0_stall(udc);
1771                 break;
1772         case WAIT_FOR_OUT_STATUS:
1773                 udc->ep0_state = WAIT_FOR_SETUP;
1774                 break;
1775         case WAIT_FOR_SETUP:
1776                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1777                 break;
1778         default:
1779                 ep0_stall(udc);
1780                 break;
1781         }
1782 }
1783
1784 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1785 {
1786         u32 temp;
1787         struct mv_dqh *dqh;
1788
1789         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1790
1791         /* Clear bit in ENDPTSETUPSTAT */
1792         writel((1 << ep_num), &udc->op_regs->epsetupstat);
1793
1794         /* while a hazard exists when setup package arrives */
1795         do {
1796                 /* Set Setup Tripwire */
1797                 temp = readl(&udc->op_regs->usbcmd);
1798                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1799
1800                 /* Copy the setup packet to local buffer */
1801                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1802         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1803
1804         /* Clear Setup Tripwire */
1805         temp = readl(&udc->op_regs->usbcmd);
1806         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1807 }
1808
1809 static void irq_process_tr_complete(struct mv_udc *udc)
1810 {
1811         u32 tmp, bit_pos;
1812         int i, ep_num = 0, direction = 0;
1813         struct mv_ep    *curr_ep;
1814         struct mv_req *curr_req, *temp_req;
1815         int status;
1816
1817         /*
1818          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1819          * because the setup packets are to be read ASAP
1820          */
1821
1822         /* Process all Setup packet received interrupts */
1823         tmp = readl(&udc->op_regs->epsetupstat);
1824
1825         if (tmp) {
1826                 for (i = 0; i < udc->max_eps; i++) {
1827                         if (tmp & (1 << i)) {
1828                                 get_setup_data(udc, i,
1829                                         (u8 *)(&udc->local_setup_buff));
1830                                 handle_setup_packet(udc, i,
1831                                         &udc->local_setup_buff);
1832                         }
1833                 }
1834         }
1835
1836         /* Don't clear the endpoint setup status register here.
1837          * It is cleared as a setup packet is read out of the buffer
1838          */
1839
1840         /* Process non-setup transaction complete interrupts */
1841         tmp = readl(&udc->op_regs->epcomplete);
1842
1843         if (!tmp)
1844                 return;
1845
1846         writel(tmp, &udc->op_regs->epcomplete);
1847
1848         for (i = 0; i < udc->max_eps * 2; i++) {
1849                 ep_num = i >> 1;
1850                 direction = i % 2;
1851
1852                 bit_pos = 1 << (ep_num + 16 * direction);
1853
1854                 if (!(bit_pos & tmp))
1855                         continue;
1856
1857                 if (i == 1)
1858                         curr_ep = &udc->eps[0];
1859                 else
1860                         curr_ep = &udc->eps[i];
1861                 /* process the req queue until an uncomplete request */
1862                 list_for_each_entry_safe(curr_req, temp_req,
1863                         &curr_ep->queue, queue) {
1864                         status = process_ep_req(udc, i, curr_req);
1865                         if (status)
1866                                 break;
1867
1868                         /* write back status to req */
1869                         curr_req->req.status = status;
1870
1871                         /* ep0 request completion */
1872                         if (ep_num == 0) {
1873                                 ep0_req_complete(udc, curr_ep, curr_req);
1874                                 break;
1875                         } else {
1876                                 done(curr_ep, curr_req, status);
1877                         }
1878                 }
1879         }
1880 }
1881
1882 void irq_process_reset(struct mv_udc *udc)
1883 {
1884         u32 tmp;
1885         unsigned int loops;
1886
1887         udc->ep0_dir = EP_DIR_OUT;
1888         udc->ep0_state = WAIT_FOR_SETUP;
1889         udc->remote_wakeup = 0;         /* default to 0 on reset */
1890
1891         /* The address bits are past bit 25-31. Set the address */
1892         tmp = readl(&udc->op_regs->deviceaddr);
1893         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1894         writel(tmp, &udc->op_regs->deviceaddr);
1895
1896         /* Clear all the setup token semaphores */
1897         tmp = readl(&udc->op_regs->epsetupstat);
1898         writel(tmp, &udc->op_regs->epsetupstat);
1899
1900         /* Clear all the endpoint complete status bits */
1901         tmp = readl(&udc->op_regs->epcomplete);
1902         writel(tmp, &udc->op_regs->epcomplete);
1903
1904         /* wait until all endptprime bits cleared */
1905         loops = LOOPS(PRIME_TIMEOUT);
1906         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1907                 if (loops == 0) {
1908                         dev_err(&udc->dev->dev,
1909                                 "Timeout for ENDPTPRIME = 0x%x\n",
1910                                 readl(&udc->op_regs->epprime));
1911                         break;
1912                 }
1913                 loops--;
1914                 udelay(LOOPS_USEC);
1915         }
1916
1917         /* Write 1s to the Flush register */
1918         writel((u32)~0, &udc->op_regs->epflush);
1919
1920         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1921                 dev_info(&udc->dev->dev, "usb bus reset\n");
1922                 udc->usb_state = USB_STATE_DEFAULT;
1923                 /* reset all the queues, stop all USB activities */
1924                 stop_activity(udc, udc->driver);
1925         } else {
1926                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1927                         readl(&udc->op_regs->portsc));
1928
1929                 /*
1930                  * re-initialize
1931                  * controller reset
1932                  */
1933                 udc_reset(udc);
1934
1935                 /* reset all the queues, stop all USB activities */
1936                 stop_activity(udc, udc->driver);
1937
1938                 /* reset ep0 dQH and endptctrl */
1939                 ep0_reset(udc);
1940
1941                 /* enable interrupt and set controller to run state */
1942                 udc_start(udc);
1943
1944                 udc->usb_state = USB_STATE_ATTACHED;
1945         }
1946 }
1947
1948 static void handle_bus_resume(struct mv_udc *udc)
1949 {
1950         udc->usb_state = udc->resume_state;
1951         udc->resume_state = 0;
1952
1953         /* report resume to the driver */
1954         if (udc->driver) {
1955                 if (udc->driver->resume) {
1956                         spin_unlock(&udc->lock);
1957                         udc->driver->resume(&udc->gadget);
1958                         spin_lock(&udc->lock);
1959                 }
1960         }
1961 }
1962
1963 static void irq_process_suspend(struct mv_udc *udc)
1964 {
1965         udc->resume_state = udc->usb_state;
1966         udc->usb_state = USB_STATE_SUSPENDED;
1967
1968         if (udc->driver->suspend) {
1969                 spin_unlock(&udc->lock);
1970                 udc->driver->suspend(&udc->gadget);
1971                 spin_lock(&udc->lock);
1972         }
1973 }
1974
1975 static void irq_process_port_change(struct mv_udc *udc)
1976 {
1977         u32 portsc;
1978
1979         portsc = readl(&udc->op_regs->portsc[0]);
1980         if (!(portsc & PORTSCX_PORT_RESET)) {
1981                 /* Get the speed */
1982                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1983                 switch (speed) {
1984                 case PORTSCX_PORT_SPEED_HIGH:
1985                         udc->gadget.speed = USB_SPEED_HIGH;
1986                         break;
1987                 case PORTSCX_PORT_SPEED_FULL:
1988                         udc->gadget.speed = USB_SPEED_FULL;
1989                         break;
1990                 case PORTSCX_PORT_SPEED_LOW:
1991                         udc->gadget.speed = USB_SPEED_LOW;
1992                         break;
1993                 default:
1994                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1995                         break;
1996                 }
1997         }
1998
1999         if (portsc & PORTSCX_PORT_SUSPEND) {
2000                 udc->resume_state = udc->usb_state;
2001                 udc->usb_state = USB_STATE_SUSPENDED;
2002                 if (udc->driver->suspend) {
2003                         spin_unlock(&udc->lock);
2004                         udc->driver->suspend(&udc->gadget);
2005                         spin_lock(&udc->lock);
2006                 }
2007         }
2008
2009         if (!(portsc & PORTSCX_PORT_SUSPEND)
2010                 && udc->usb_state == USB_STATE_SUSPENDED) {
2011                 handle_bus_resume(udc);
2012         }
2013
2014         if (!udc->resume_state)
2015                 udc->usb_state = USB_STATE_DEFAULT;
2016 }
2017
2018 static void irq_process_error(struct mv_udc *udc)
2019 {
2020         /* Increment the error count */
2021         udc->errors++;
2022 }
2023
2024 static irqreturn_t mv_udc_irq(int irq, void *dev)
2025 {
2026         struct mv_udc *udc = (struct mv_udc *)dev;
2027         u32 status, intr;
2028
2029         spin_lock(&udc->lock);
2030
2031         status = readl(&udc->op_regs->usbsts);
2032         intr = readl(&udc->op_regs->usbintr);
2033         status &= intr;
2034
2035         if (status == 0) {
2036                 spin_unlock(&udc->lock);
2037                 return IRQ_NONE;
2038         }
2039
2040         /* Clear all the interrupts occurred */
2041         writel(status, &udc->op_regs->usbsts);
2042
2043         if (status & USBSTS_ERR)
2044                 irq_process_error(udc);
2045
2046         if (status & USBSTS_RESET)
2047                 irq_process_reset(udc);
2048
2049         if (status & USBSTS_PORT_CHANGE)
2050                 irq_process_port_change(udc);
2051
2052         if (status & USBSTS_INT)
2053                 irq_process_tr_complete(udc);
2054
2055         if (status & USBSTS_SUSPEND)
2056                 irq_process_suspend(udc);
2057
2058         spin_unlock(&udc->lock);
2059
2060         return IRQ_HANDLED;
2061 }
2062
2063 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2064 {
2065         struct mv_udc *udc = (struct mv_udc *)dev;
2066
2067         /* polling VBUS and init phy may cause too much time*/
2068         if (udc->qwork)
2069                 queue_work(udc->qwork, &udc->vbus_work);
2070
2071         return IRQ_HANDLED;
2072 }
2073
2074 static void mv_udc_vbus_work(struct work_struct *work)
2075 {
2076         struct mv_udc *udc;
2077         unsigned int vbus;
2078
2079         udc = container_of(work, struct mv_udc, vbus_work);
2080         if (!udc->pdata->vbus)
2081                 return;
2082
2083         vbus = udc->pdata->vbus->poll();
2084         dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2085
2086         if (vbus == VBUS_HIGH)
2087                 mv_udc_vbus_session(&udc->gadget, 1);
2088         else if (vbus == VBUS_LOW)
2089                 mv_udc_vbus_session(&udc->gadget, 0);
2090 }
2091
2092 /* release device structure */
2093 static void gadget_release(struct device *_dev)
2094 {
2095         struct mv_udc *udc = the_controller;
2096
2097         complete(udc->done);
2098 }
2099
2100 static int __devexit mv_udc_remove(struct platform_device *dev)
2101 {
2102         struct mv_udc *udc = the_controller;
2103         int clk_i;
2104
2105         usb_del_gadget_udc(&udc->gadget);
2106
2107         if (udc->qwork) {
2108                 flush_workqueue(udc->qwork);
2109                 destroy_workqueue(udc->qwork);
2110         }
2111
2112         if (udc->pdata && udc->pdata->vbus && udc->clock_gating)
2113                 free_irq(udc->pdata->vbus->irq, &dev->dev);
2114
2115         /* free memory allocated in probe */
2116         if (udc->dtd_pool)
2117                 dma_pool_destroy(udc->dtd_pool);
2118
2119         if (udc->ep_dqh)
2120                 dma_free_coherent(&dev->dev, udc->ep_dqh_size,
2121                         udc->ep_dqh, udc->ep_dqh_dma);
2122
2123         kfree(udc->eps);
2124
2125         if (udc->irq)
2126                 free_irq(udc->irq, &dev->dev);
2127
2128         mv_udc_disable(udc);
2129
2130         if (udc->cap_regs)
2131                 iounmap(udc->cap_regs);
2132         udc->cap_regs = NULL;
2133
2134         if (udc->phy_regs)
2135                 iounmap((void *)udc->phy_regs);
2136         udc->phy_regs = 0;
2137
2138         if (udc->status_req) {
2139                 kfree(udc->status_req->req.buf);
2140                 kfree(udc->status_req);
2141         }
2142
2143         for (clk_i = 0; clk_i <= udc->clknum; clk_i++)
2144                 clk_put(udc->clk[clk_i]);
2145
2146         device_unregister(&udc->gadget.dev);
2147
2148         /* free dev, wait for the release() finished */
2149         wait_for_completion(udc->done);
2150         kfree(udc);
2151
2152         the_controller = NULL;
2153
2154         return 0;
2155 }
2156
2157 static int __devinit mv_udc_probe(struct platform_device *dev)
2158 {
2159         struct mv_usb_platform_data *pdata = dev->dev.platform_data;
2160         struct mv_udc *udc;
2161         int retval = 0;
2162         int clk_i = 0;
2163         struct resource *r;
2164         size_t size;
2165
2166         if (pdata == NULL) {
2167                 dev_err(&dev->dev, "missing platform_data\n");
2168                 return -ENODEV;
2169         }
2170
2171         size = sizeof(*udc) + sizeof(struct clk *) * pdata->clknum;
2172         udc = kzalloc(size, GFP_KERNEL);
2173         if (udc == NULL) {
2174                 dev_err(&dev->dev, "failed to allocate memory for udc\n");
2175                 return -ENOMEM;
2176         }
2177
2178         the_controller = udc;
2179         udc->done = &release_done;
2180         udc->pdata = dev->dev.platform_data;
2181         spin_lock_init(&udc->lock);
2182
2183         udc->dev = dev;
2184
2185         udc->clknum = pdata->clknum;
2186         for (clk_i = 0; clk_i < udc->clknum; clk_i++) {
2187                 udc->clk[clk_i] = clk_get(&dev->dev, pdata->clkname[clk_i]);
2188                 if (IS_ERR(udc->clk[clk_i])) {
2189                         retval = PTR_ERR(udc->clk[clk_i]);
2190                         goto err_put_clk;
2191                 }
2192         }
2193
2194         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2195         if (r == NULL) {
2196                 dev_err(&dev->dev, "no I/O memory resource defined\n");
2197                 retval = -ENODEV;
2198                 goto err_put_clk;
2199         }
2200
2201         udc->cap_regs = (struct mv_cap_regs __iomem *)
2202                 ioremap(r->start, resource_size(r));
2203         if (udc->cap_regs == NULL) {
2204                 dev_err(&dev->dev, "failed to map I/O memory\n");
2205                 retval = -EBUSY;
2206                 goto err_put_clk;
2207         }
2208
2209         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2210         if (r == NULL) {
2211                 dev_err(&dev->dev, "no phy I/O memory resource defined\n");
2212                 retval = -ENODEV;
2213                 goto err_iounmap_capreg;
2214         }
2215
2216         udc->phy_regs = (unsigned int)ioremap(r->start, resource_size(r));
2217         if (udc->phy_regs == 0) {
2218                 dev_err(&dev->dev, "failed to map phy I/O memory\n");
2219                 retval = -EBUSY;
2220                 goto err_iounmap_capreg;
2221         }
2222
2223         /* we will acces controller register, so enable the clk */
2224         udc_clock_enable(udc);
2225         if (pdata->phy_init) {
2226                 retval = pdata->phy_init(udc->phy_regs);
2227                 if (retval) {
2228                         dev_err(&dev->dev, "phy init error %d\n", retval);
2229                         goto err_iounmap_phyreg;
2230                 }
2231         }
2232
2233         udc->op_regs = (struct mv_op_regs __iomem *)((u32)udc->cap_regs
2234                 + (readl(&udc->cap_regs->caplength_hciversion)
2235                         & CAPLENGTH_MASK));
2236         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2237
2238         /*
2239          * some platform will use usb to download image, it may not disconnect
2240          * usb gadget before loading kernel. So first stop udc here.
2241          */
2242         udc_stop(udc);
2243         writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2244
2245         size = udc->max_eps * sizeof(struct mv_dqh) *2;
2246         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2247         udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
2248                                         &udc->ep_dqh_dma, GFP_KERNEL);
2249
2250         if (udc->ep_dqh == NULL) {
2251                 dev_err(&dev->dev, "allocate dQH memory failed\n");
2252                 retval = -ENOMEM;
2253                 goto err_disable_clock;
2254         }
2255         udc->ep_dqh_size = size;
2256
2257         /* create dTD dma_pool resource */
2258         udc->dtd_pool = dma_pool_create("mv_dtd",
2259                         &dev->dev,
2260                         sizeof(struct mv_dtd),
2261                         DTD_ALIGNMENT,
2262                         DMA_BOUNDARY);
2263
2264         if (!udc->dtd_pool) {
2265                 retval = -ENOMEM;
2266                 goto err_free_dma;
2267         }
2268
2269         size = udc->max_eps * sizeof(struct mv_ep) *2;
2270         udc->eps = kzalloc(size, GFP_KERNEL);
2271         if (udc->eps == NULL) {
2272                 dev_err(&dev->dev, "allocate ep memory failed\n");
2273                 retval = -ENOMEM;
2274                 goto err_destroy_dma;
2275         }
2276
2277         /* initialize ep0 status request structure */
2278         udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
2279         if (!udc->status_req) {
2280                 dev_err(&dev->dev, "allocate status_req memory failed\n");
2281                 retval = -ENOMEM;
2282                 goto err_free_eps;
2283         }
2284         INIT_LIST_HEAD(&udc->status_req->queue);
2285
2286         /* allocate a small amount of memory to get valid address */
2287         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2288         udc->status_req->req.dma = DMA_ADDR_INVALID;
2289
2290         udc->resume_state = USB_STATE_NOTATTACHED;
2291         udc->usb_state = USB_STATE_POWERED;
2292         udc->ep0_dir = EP_DIR_OUT;
2293         udc->remote_wakeup = 0;
2294
2295         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2296         if (r == NULL) {
2297                 dev_err(&dev->dev, "no IRQ resource defined\n");
2298                 retval = -ENODEV;
2299                 goto err_free_status_req;
2300         }
2301         udc->irq = r->start;
2302         if (request_irq(udc->irq, mv_udc_irq,
2303                 IRQF_SHARED, driver_name, udc)) {
2304                 dev_err(&dev->dev, "Request irq %d for UDC failed\n",
2305                         udc->irq);
2306                 retval = -ENODEV;
2307                 goto err_free_status_req;
2308         }
2309
2310         /* initialize gadget structure */
2311         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2312         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2313         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2314         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2315         udc->gadget.is_dualspeed = 1;           /* support dual speed */
2316
2317         /* the "gadget" abstracts/virtualizes the controller */
2318         dev_set_name(&udc->gadget.dev, "gadget");
2319         udc->gadget.dev.parent = &dev->dev;
2320         udc->gadget.dev.dma_mask = dev->dev.dma_mask;
2321         udc->gadget.dev.release = gadget_release;
2322         udc->gadget.name = driver_name;         /* gadget name */
2323
2324         retval = device_register(&udc->gadget.dev);
2325         if (retval)
2326                 goto err_free_irq;
2327
2328         eps_init(udc);
2329
2330         /* VBUS detect: we can disable/enable clock on demand.*/
2331         if (pdata->vbus) {
2332                 udc->clock_gating = 1;
2333                 retval = request_threaded_irq(pdata->vbus->irq, NULL,
2334                                 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2335                 if (retval) {
2336                         dev_info(&dev->dev,
2337                                 "Can not request irq for VBUS, "
2338                                 "disable clock gating\n");
2339                         udc->clock_gating = 0;
2340                 }
2341
2342                 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2343                 if (!udc->qwork) {
2344                         dev_err(&dev->dev, "cannot create workqueue\n");
2345                         retval = -ENOMEM;
2346                         goto err_unregister;
2347                 }
2348
2349                 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2350         }
2351
2352         /*
2353          * When clock gating is supported, we can disable clk and phy.
2354          * If not, it means that VBUS detection is not supported, we
2355          * have to enable vbus active all the time to let controller work.
2356          */
2357         if (udc->clock_gating) {
2358                 if (udc->pdata->phy_deinit)
2359                         udc->pdata->phy_deinit(udc->phy_regs);
2360                 udc_clock_disable(udc);
2361         } else
2362                 udc->vbus_active = 1;
2363
2364         retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
2365         if (retval)
2366                 goto err_unregister;
2367
2368         dev_info(&dev->dev, "successful probe UDC device %s clock gating.\n",
2369                 udc->clock_gating ? "with" : "without");
2370
2371         return 0;
2372
2373 err_unregister:
2374         if (udc->pdata && udc->pdata->vbus && udc->clock_gating)
2375                 free_irq(pdata->vbus->irq, &dev->dev);
2376         device_unregister(&udc->gadget.dev);
2377 err_free_irq:
2378         free_irq(udc->irq, &dev->dev);
2379 err_free_status_req:
2380         kfree(udc->status_req->req.buf);
2381         kfree(udc->status_req);
2382 err_free_eps:
2383         kfree(udc->eps);
2384 err_destroy_dma:
2385         dma_pool_destroy(udc->dtd_pool);
2386 err_free_dma:
2387         dma_free_coherent(&dev->dev, udc->ep_dqh_size,
2388                         udc->ep_dqh, udc->ep_dqh_dma);
2389 err_disable_clock:
2390         if (udc->pdata->phy_deinit)
2391                 udc->pdata->phy_deinit(udc->phy_regs);
2392         udc_clock_disable(udc);
2393 err_iounmap_phyreg:
2394         iounmap((void *)udc->phy_regs);
2395 err_iounmap_capreg:
2396         iounmap(udc->cap_regs);
2397 err_put_clk:
2398         for (clk_i--; clk_i >= 0; clk_i--)
2399                 clk_put(udc->clk[clk_i]);
2400         the_controller = NULL;
2401         kfree(udc);
2402         return retval;
2403 }
2404
2405 #ifdef CONFIG_PM
2406 static int mv_udc_suspend(struct device *_dev)
2407 {
2408         struct mv_udc *udc = the_controller;
2409
2410         udc_stop(udc);
2411
2412         return 0;
2413 }
2414
2415 static int mv_udc_resume(struct device *_dev)
2416 {
2417         struct mv_udc *udc = the_controller;
2418         int retval;
2419
2420         if (udc->pdata->phy_init) {
2421                 retval = udc->pdata->phy_init(udc->phy_regs);
2422                 if (retval) {
2423                         dev_err(&udc->dev->dev,
2424                                 "init phy error %d when resume back\n",
2425                                 retval);
2426                         return retval;
2427                 }
2428         }
2429
2430         udc_reset(udc);
2431         ep0_reset(udc);
2432         udc_start(udc);
2433
2434         return 0;
2435 }
2436
2437 static const struct dev_pm_ops mv_udc_pm_ops = {
2438         .suspend        = mv_udc_suspend,
2439         .resume         = mv_udc_resume,
2440 };
2441 #endif
2442
2443 static void mv_udc_shutdown(struct platform_device *dev)
2444 {
2445         struct mv_udc *udc = the_controller;
2446         u32 mode;
2447
2448         /* reset controller mode to IDLE */
2449         mode = readl(&udc->op_regs->usbmode);
2450         mode &= ~3;
2451         writel(mode, &udc->op_regs->usbmode);
2452 }
2453
2454 static struct platform_driver udc_driver = {
2455         .probe          = mv_udc_probe,
2456         .remove         = __exit_p(mv_udc_remove),
2457         .shutdown       = mv_udc_shutdown,
2458         .driver         = {
2459                 .owner  = THIS_MODULE,
2460                 .name   = "pxa-u2o",
2461 #ifdef CONFIG_PM
2462                 .pm     = &mv_udc_pm_ops,
2463 #endif
2464         },
2465 };
2466 MODULE_ALIAS("platform:pxa-u2o");
2467
2468 MODULE_DESCRIPTION(DRIVER_DESC);
2469 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2470 MODULE_VERSION(DRIVER_VERSION);
2471 MODULE_LICENSE("GPL");
2472
2473
2474 static int __init init(void)
2475 {
2476         return platform_driver_register(&udc_driver);
2477 }
2478 module_init(init);
2479
2480
2481 static void __exit cleanup(void)
2482 {
2483         platform_driver_unregister(&udc_driver);
2484 }
2485 module_exit(cleanup);
2486