Merge branch 'driver-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / usb / gadget / mv_udc_core.c
1 #include <linux/module.h>
2 #include <linux/pci.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/dmapool.h>
5 #include <linux/kernel.h>
6 #include <linux/delay.h>
7 #include <linux/ioport.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/timer.h>
13 #include <linux/list.h>
14 #include <linux/interrupt.h>
15 #include <linux/moduleparam.h>
16 #include <linux/device.h>
17 #include <linux/usb/ch9.h>
18 #include <linux/usb/gadget.h>
19 #include <linux/usb/otg.h>
20 #include <linux/pm.h>
21 #include <linux/io.h>
22 #include <linux/irq.h>
23 #include <linux/platform_device.h>
24 #include <linux/clk.h>
25 #include <asm/system.h>
26 #include <asm/unaligned.h>
27
28 #include "mv_udc.h"
29
30 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
31 #define DRIVER_VERSION          "8 Nov 2010"
32
33 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
34                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
35
36 /* timeout value -- usec */
37 #define RESET_TIMEOUT           10000
38 #define FLUSH_TIMEOUT           10000
39 #define EPSTATUS_TIMEOUT        10000
40 #define PRIME_TIMEOUT           10000
41 #define READSAFE_TIMEOUT        1000
42 #define DTD_TIMEOUT             1000
43
44 #define LOOPS_USEC_SHIFT        4
45 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
46 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
47
48 static const char driver_name[] = "mv_udc";
49 static const char driver_desc[] = DRIVER_DESC;
50
51 /* controller device global variable */
52 static struct mv_udc    *the_controller;
53 int mv_usb_otgsc;
54
55 static void nuke(struct mv_ep *ep, int status);
56
57 /* for endpoint 0 operations */
58 static const struct usb_endpoint_descriptor mv_ep0_desc = {
59         .bLength =              USB_DT_ENDPOINT_SIZE,
60         .bDescriptorType =      USB_DT_ENDPOINT,
61         .bEndpointAddress =     0,
62         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
63         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
64 };
65
66 static void ep0_reset(struct mv_udc *udc)
67 {
68         struct mv_ep *ep;
69         u32 epctrlx;
70         int i = 0;
71
72         /* ep0 in and out */
73         for (i = 0; i < 2; i++) {
74                 ep = &udc->eps[i];
75                 ep->udc = udc;
76
77                 /* ep0 dQH */
78                 ep->dqh = &udc->ep_dqh[i];
79
80                 /* configure ep0 endpoint capabilities in dQH */
81                 ep->dqh->max_packet_length =
82                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
83                         | EP_QUEUE_HEAD_IOS;
84
85                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
86                 if (i) {        /* TX */
87                         epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
88                                 | (USB_ENDPOINT_XFER_CONTROL
89                                         << EPCTRL_TX_EP_TYPE_SHIFT);
90
91                 } else {        /* RX */
92                         epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
93                                 | (USB_ENDPOINT_XFER_CONTROL
94                                         << EPCTRL_RX_EP_TYPE_SHIFT);
95                 }
96
97                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
98         }
99 }
100
101 /* protocol ep0 stall, will automatically be cleared on new transaction */
102 static void ep0_stall(struct mv_udc *udc)
103 {
104         u32     epctrlx;
105
106         /* set TX and RX to stall */
107         epctrlx = readl(&udc->op_regs->epctrlx[0]);
108         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
109         writel(epctrlx, &udc->op_regs->epctrlx[0]);
110
111         /* update ep0 state */
112         udc->ep0_state = WAIT_FOR_SETUP;
113         udc->ep0_dir = EP_DIR_OUT;
114 }
115
116 static int process_ep_req(struct mv_udc *udc, int index,
117         struct mv_req *curr_req)
118 {
119         struct mv_dtd   *curr_dtd;
120         struct mv_dqh   *curr_dqh;
121         int td_complete, actual, remaining_length;
122         int i, direction;
123         int retval = 0;
124         u32 errors;
125
126         curr_dqh = &udc->ep_dqh[index];
127         direction = index % 2;
128
129         curr_dtd = curr_req->head;
130         td_complete = 0;
131         actual = curr_req->req.length;
132
133         for (i = 0; i < curr_req->dtd_count; i++) {
134                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
135                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
136                                 udc->eps[index].name);
137                         return 1;
138                 }
139
140                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
141                 if (!errors) {
142                         remaining_length +=
143                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
144                                         >> DTD_LENGTH_BIT_POS;
145                         actual -= remaining_length;
146                 } else {
147                         dev_info(&udc->dev->dev,
148                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
149                                 index >> 1, direction ? "SEND" : "RECV",
150                                 errors);
151                         if (errors & DTD_STATUS_HALTED) {
152                                 /* Clear the errors and Halt condition */
153                                 curr_dqh->size_ioc_int_sts &= ~errors;
154                                 retval = -EPIPE;
155                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
156                                 retval = -EPROTO;
157                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
158                                 retval = -EILSEQ;
159                         }
160                 }
161                 if (i != curr_req->dtd_count - 1)
162                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
163         }
164         if (retval)
165                 return retval;
166
167         curr_req->req.actual = actual;
168
169         return 0;
170 }
171
172 /*
173  * done() - retire a request; caller blocked irqs
174  * @status : request status to be set, only works when
175  * request is still in progress.
176  */
177 static void done(struct mv_ep *ep, struct mv_req *req, int status)
178 {
179         struct mv_udc *udc = NULL;
180         unsigned char stopped = ep->stopped;
181         struct mv_dtd *curr_td, *next_td;
182         int j;
183
184         udc = (struct mv_udc *)ep->udc;
185         /* Removed the req from fsl_ep->queue */
186         list_del_init(&req->queue);
187
188         /* req.status should be set as -EINPROGRESS in ep_queue() */
189         if (req->req.status == -EINPROGRESS)
190                 req->req.status = status;
191         else
192                 status = req->req.status;
193
194         /* Free dtd for the request */
195         next_td = req->head;
196         for (j = 0; j < req->dtd_count; j++) {
197                 curr_td = next_td;
198                 if (j != req->dtd_count - 1)
199                         next_td = curr_td->next_dtd_virt;
200                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
201         }
202
203         if (req->mapped) {
204                 dma_unmap_single(ep->udc->gadget.dev.parent,
205                         req->req.dma, req->req.length,
206                         ((ep_dir(ep) == EP_DIR_IN) ?
207                                 DMA_TO_DEVICE : DMA_FROM_DEVICE));
208                 req->req.dma = DMA_ADDR_INVALID;
209                 req->mapped = 0;
210         } else
211                 dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
212                         req->req.dma, req->req.length,
213                         ((ep_dir(ep) == EP_DIR_IN) ?
214                                 DMA_TO_DEVICE : DMA_FROM_DEVICE));
215
216         if (status && (status != -ESHUTDOWN))
217                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
218                         ep->ep.name, &req->req, status,
219                         req->req.actual, req->req.length);
220
221         ep->stopped = 1;
222
223         spin_unlock(&ep->udc->lock);
224         /*
225          * complete() is from gadget layer,
226          * eg fsg->bulk_in_complete()
227          */
228         if (req->req.complete)
229                 req->req.complete(&ep->ep, &req->req);
230
231         spin_lock(&ep->udc->lock);
232         ep->stopped = stopped;
233 }
234
235 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
236 {
237         u32 tmp, epstatus, bit_pos, direction;
238         struct mv_udc *udc;
239         struct mv_dqh *dqh;
240         unsigned int loops;
241         int readsafe, retval = 0;
242
243         udc = ep->udc;
244         direction = ep_dir(ep);
245         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
246         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
247
248         /* check if the pipe is empty */
249         if (!(list_empty(&ep->queue))) {
250                 struct mv_req *lastreq;
251                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
252                 lastreq->tail->dtd_next =
253                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
254                 if (readl(&udc->op_regs->epprime) & bit_pos) {
255                         loops = LOOPS(PRIME_TIMEOUT);
256                         while (readl(&udc->op_regs->epprime) & bit_pos) {
257                                 if (loops == 0) {
258                                         retval = -ETIME;
259                                         goto done;
260                                 }
261                                 udelay(LOOPS_USEC);
262                                 loops--;
263                         }
264                         if (readl(&udc->op_regs->epstatus) & bit_pos)
265                                 goto done;
266                 }
267                 readsafe = 0;
268                 loops = LOOPS(READSAFE_TIMEOUT);
269                 while (readsafe == 0) {
270                         if (loops == 0) {
271                                 retval = -ETIME;
272                                 goto done;
273                         }
274                         /* start with setting the semaphores */
275                         tmp = readl(&udc->op_regs->usbcmd);
276                         tmp |= USBCMD_ATDTW_TRIPWIRE_SET;
277                         writel(tmp, &udc->op_regs->usbcmd);
278
279                         /* read the endpoint status */
280                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
281
282                         /*
283                          * Reread the ATDTW semaphore bit to check if it is
284                          * cleared. When hardware see a hazard, it will clear
285                          * the bit or else we remain set to 1 and we can
286                          * proceed with priming of endpoint if not already
287                          * primed.
288                          */
289                         if (readl(&udc->op_regs->usbcmd)
290                                 & USBCMD_ATDTW_TRIPWIRE_SET) {
291                                 readsafe = 1;
292                         }
293                         loops--;
294                         udelay(LOOPS_USEC);
295                 }
296
297                 /* Clear the semaphore */
298                 tmp = readl(&udc->op_regs->usbcmd);
299                 tmp &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
300                 writel(tmp, &udc->op_regs->usbcmd);
301
302                 /* If endpoint is not active, we activate it now. */
303                 if (!epstatus) {
304                         if (direction == EP_DIR_IN) {
305                                 struct mv_dtd *curr_dtd = dma_to_virt(
306                                         &udc->dev->dev, dqh->curr_dtd_ptr);
307
308                                 loops = LOOPS(DTD_TIMEOUT);
309                                 while (curr_dtd->size_ioc_sts
310                                         & DTD_STATUS_ACTIVE) {
311                                         if (loops == 0) {
312                                                 retval = -ETIME;
313                                                 goto done;
314                                         }
315                                         loops--;
316                                         udelay(LOOPS_USEC);
317                                 }
318                         }
319                         /* No other transfers on the queue */
320
321                         /* Write dQH next pointer and terminate bit to 0 */
322                         dqh->next_dtd_ptr = req->head->td_dma
323                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
324                         dqh->size_ioc_int_sts = 0;
325
326                         /*
327                          * Ensure that updates to the QH will
328                          * occur before priming.
329                          */
330                         wmb();
331
332                         /* Prime the Endpoint */
333                         writel(bit_pos, &udc->op_regs->epprime);
334                 }
335         } else {
336                 /* Write dQH next pointer and terminate bit to 0 */
337                 dqh->next_dtd_ptr = req->head->td_dma
338                         & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
339                 dqh->size_ioc_int_sts = 0;
340
341                 /* Ensure that updates to the QH will occur before priming. */
342                 wmb();
343
344                 /* Prime the Endpoint */
345                 writel(bit_pos, &udc->op_regs->epprime);
346
347                 if (direction == EP_DIR_IN) {
348                         /* FIXME add status check after prime the IN ep */
349                         int prime_again;
350                         u32 curr_dtd_ptr = dqh->curr_dtd_ptr;
351
352                         loops = LOOPS(DTD_TIMEOUT);
353                         prime_again = 0;
354                         while ((curr_dtd_ptr != req->head->td_dma)) {
355                                 curr_dtd_ptr = dqh->curr_dtd_ptr;
356                                 if (loops == 0) {
357                                         dev_err(&udc->dev->dev,
358                                                 "failed to prime %s\n",
359                                                 ep->name);
360                                         retval = -ETIME;
361                                         goto done;
362                                 }
363                                 loops--;
364                                 udelay(LOOPS_USEC);
365
366                                 if (loops == (LOOPS(DTD_TIMEOUT) >> 2)) {
367                                         if (prime_again)
368                                                 goto done;
369                                         dev_info(&udc->dev->dev,
370                                                 "prime again\n");
371                                         writel(bit_pos,
372                                                 &udc->op_regs->epprime);
373                                         prime_again = 1;
374                                 }
375                         }
376                 }
377         }
378 done:
379         return retval;
380 }
381
382 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
383                 dma_addr_t *dma, int *is_last)
384 {
385         u32 temp;
386         struct mv_dtd *dtd;
387         struct mv_udc *udc;
388
389         /* how big will this transfer be? */
390         *length = min(req->req.length - req->req.actual,
391                         (unsigned)EP_MAX_LENGTH_TRANSFER);
392
393         udc = req->ep->udc;
394
395         /*
396          * Be careful that no _GFP_HIGHMEM is set,
397          * or we can not use dma_to_virt
398          */
399         dtd = dma_pool_alloc(udc->dtd_pool, GFP_KERNEL, dma);
400         if (dtd == NULL)
401                 return dtd;
402
403         dtd->td_dma = *dma;
404         /* initialize buffer page pointers */
405         temp = (u32)(req->req.dma + req->req.actual);
406         dtd->buff_ptr0 = cpu_to_le32(temp);
407         temp &= ~0xFFF;
408         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
409         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
410         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
411         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
412
413         req->req.actual += *length;
414
415         /* zlp is needed if req->req.zero is set */
416         if (req->req.zero) {
417                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
418                         *is_last = 1;
419                 else
420                         *is_last = 0;
421         } else if (req->req.length == req->req.actual)
422                 *is_last = 1;
423         else
424                 *is_last = 0;
425
426         /* Fill in the transfer size; set active bit */
427         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
428
429         /* Enable interrupt for the last dtd of a request */
430         if (*is_last && !req->req.no_interrupt)
431                 temp |= DTD_IOC;
432
433         dtd->size_ioc_sts = temp;
434
435         mb();
436
437         return dtd;
438 }
439
440 /* generate dTD linked list for a request */
441 static int req_to_dtd(struct mv_req *req)
442 {
443         unsigned count;
444         int is_last, is_first = 1;
445         struct mv_dtd *dtd, *last_dtd = NULL;
446         struct mv_udc *udc;
447         dma_addr_t dma;
448
449         udc = req->ep->udc;
450
451         do {
452                 dtd = build_dtd(req, &count, &dma, &is_last);
453                 if (dtd == NULL)
454                         return -ENOMEM;
455
456                 if (is_first) {
457                         is_first = 0;
458                         req->head = dtd;
459                 } else {
460                         last_dtd->dtd_next = dma;
461                         last_dtd->next_dtd_virt = dtd;
462                 }
463                 last_dtd = dtd;
464                 req->dtd_count++;
465         } while (!is_last);
466
467         /* set terminate bit to 1 for the last dTD */
468         dtd->dtd_next = DTD_NEXT_TERMINATE;
469
470         req->tail = dtd;
471
472         return 0;
473 }
474
475 static int mv_ep_enable(struct usb_ep *_ep,
476                 const struct usb_endpoint_descriptor *desc)
477 {
478         struct mv_udc *udc;
479         struct mv_ep *ep;
480         struct mv_dqh *dqh;
481         u16 max = 0;
482         u32 bit_pos, epctrlx, direction;
483         unsigned char zlt = 0, ios = 0, mult = 0;
484
485         ep = container_of(_ep, struct mv_ep, ep);
486         udc = ep->udc;
487
488         if (!_ep || !desc || ep->desc
489                         || desc->bDescriptorType != USB_DT_ENDPOINT)
490                 return -EINVAL;
491
492         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
493                 return -ESHUTDOWN;
494
495         direction = ep_dir(ep);
496         max = le16_to_cpu(desc->wMaxPacketSize);
497
498         /*
499          * disable HW zero length termination select
500          * driver handles zero length packet through req->req.zero
501          */
502         zlt = 1;
503
504         /* Get the endpoint queue head address */
505         dqh = (struct mv_dqh *)ep->dqh;
506
507         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
508
509         /* Check if the Endpoint is Primed */
510         if ((readl(&udc->op_regs->epprime) & bit_pos)
511                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
512                 dev_info(&udc->dev->dev,
513                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
514                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
515                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
516                         (unsigned)readl(&udc->op_regs->epprime),
517                         (unsigned)readl(&udc->op_regs->epstatus),
518                         (unsigned)bit_pos);
519                 goto en_done;
520         }
521         /* Set the max packet length, interrupt on Setup and Mult fields */
522         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
523         case USB_ENDPOINT_XFER_BULK:
524                 zlt = 1;
525                 mult = 0;
526                 break;
527         case USB_ENDPOINT_XFER_CONTROL:
528                 ios = 1;
529         case USB_ENDPOINT_XFER_INT:
530                 mult = 0;
531                 break;
532         case USB_ENDPOINT_XFER_ISOC:
533                 /* Calculate transactions needed for high bandwidth iso */
534                 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
535                 max = max & 0x8ff;      /* bit 0~10 */
536                 /* 3 transactions at most */
537                 if (mult > 3)
538                         goto en_done;
539                 break;
540         default:
541                 goto en_done;
542         }
543         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
544                 | (mult << EP_QUEUE_HEAD_MULT_POS)
545                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
546                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
547         dqh->next_dtd_ptr = 1;
548         dqh->size_ioc_int_sts = 0;
549
550         ep->ep.maxpacket = max;
551         ep->desc = desc;
552         ep->stopped = 0;
553
554         /* Enable the endpoint for Rx or Tx and set the endpoint type */
555         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
556         if (direction == EP_DIR_IN) {
557                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
558                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
559                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
560                                 << EPCTRL_TX_EP_TYPE_SHIFT);
561         } else {
562                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
563                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
564                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
565                                 << EPCTRL_RX_EP_TYPE_SHIFT);
566         }
567         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
568
569         /*
570          * Implement Guideline (GL# USB-7) The unused endpoint type must
571          * be programmed to bulk.
572          */
573         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
574         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
575                 epctrlx |= ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
576                                 << EPCTRL_RX_EP_TYPE_SHIFT);
577                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
578         }
579
580         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
581         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
582                 epctrlx |= ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
583                                 << EPCTRL_TX_EP_TYPE_SHIFT);
584                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
585         }
586
587         return 0;
588 en_done:
589         return -EINVAL;
590 }
591
592 static int  mv_ep_disable(struct usb_ep *_ep)
593 {
594         struct mv_udc *udc;
595         struct mv_ep *ep;
596         struct mv_dqh *dqh;
597         u32 bit_pos, epctrlx, direction;
598
599         ep = container_of(_ep, struct mv_ep, ep);
600         if ((_ep == NULL) || !ep->desc)
601                 return -EINVAL;
602
603         udc = ep->udc;
604
605         /* Get the endpoint queue head address */
606         dqh = ep->dqh;
607
608         direction = ep_dir(ep);
609         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
610
611         /* Reset the max packet length and the interrupt on Setup */
612         dqh->max_packet_length = 0;
613
614         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
615         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
616         epctrlx &= ~((direction == EP_DIR_IN)
617                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
618                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
619         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
620
621         /* nuke all pending requests (does flush) */
622         nuke(ep, -ESHUTDOWN);
623
624         ep->desc = NULL;
625         ep->stopped = 1;
626         return 0;
627 }
628
629 static struct usb_request *
630 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
631 {
632         struct mv_req *req = NULL;
633
634         req = kzalloc(sizeof *req, gfp_flags);
635         if (!req)
636                 return NULL;
637
638         req->req.dma = DMA_ADDR_INVALID;
639         INIT_LIST_HEAD(&req->queue);
640
641         return &req->req;
642 }
643
644 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
645 {
646         struct mv_req *req = NULL;
647
648         req = container_of(_req, struct mv_req, req);
649
650         if (_req)
651                 kfree(req);
652 }
653
654 static void mv_ep_fifo_flush(struct usb_ep *_ep)
655 {
656         struct mv_udc *udc;
657         u32 bit_pos, direction;
658         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
659         unsigned int loops;
660
661         udc = ep->udc;
662         direction = ep_dir(ep);
663         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
664         /*
665          * Flushing will halt the pipe
666          * Write 1 to the Flush register
667          */
668         writel(bit_pos, &udc->op_regs->epflush);
669
670         /* Wait until flushing completed */
671         loops = LOOPS(FLUSH_TIMEOUT);
672         while (readl(&udc->op_regs->epflush) & bit_pos) {
673                 /*
674                  * ENDPTFLUSH bit should be cleared to indicate this
675                  * operation is complete
676                  */
677                 if (loops == 0) {
678                         dev_err(&udc->dev->dev,
679                                 "TIMEOUT for ENDPTFLUSH=0x%x, bit_pos=0x%x\n",
680                                 (unsigned)readl(&udc->op_regs->epflush),
681                                 (unsigned)bit_pos);
682                         return;
683                 }
684                 loops--;
685                 udelay(LOOPS_USEC);
686         }
687         loops = LOOPS(EPSTATUS_TIMEOUT);
688         while (readl(&udc->op_regs->epstatus) & bit_pos) {
689                 unsigned int inter_loops;
690
691                 if (loops == 0) {
692                         dev_err(&udc->dev->dev,
693                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
694                                 (unsigned)readl(&udc->op_regs->epstatus),
695                                 (unsigned)bit_pos);
696                         return;
697                 }
698                 /* Write 1 to the Flush register */
699                 writel(bit_pos, &udc->op_regs->epflush);
700
701                 /* Wait until flushing completed */
702                 inter_loops = LOOPS(FLUSH_TIMEOUT);
703                 while (readl(&udc->op_regs->epflush) & bit_pos) {
704                         /*
705                          * ENDPTFLUSH bit should be cleared to indicate this
706                          * operation is complete
707                          */
708                         if (inter_loops == 0) {
709                                 dev_err(&udc->dev->dev,
710                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
711                                         "bit_pos=0x%x\n",
712                                         (unsigned)readl(&udc->op_regs->epflush),
713                                         (unsigned)bit_pos);
714                                 return;
715                         }
716                         inter_loops--;
717                         udelay(LOOPS_USEC);
718                 }
719                 loops--;
720         }
721 }
722
723 /* queues (submits) an I/O request to an endpoint */
724 static int
725 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
726 {
727         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
728         struct mv_req *req = container_of(_req, struct mv_req, req);
729         struct mv_udc *udc = ep->udc;
730         unsigned long flags;
731
732         /* catch various bogus parameters */
733         if (!_req || !req->req.complete || !req->req.buf
734                         || !list_empty(&req->queue)) {
735                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
736                 return -EINVAL;
737         }
738         if (unlikely(!_ep || !ep->desc)) {
739                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
740                 return -EINVAL;
741         }
742         if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
743                 if (req->req.length > ep->ep.maxpacket)
744                         return -EMSGSIZE;
745         }
746
747         udc = ep->udc;
748         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
749                 return -ESHUTDOWN;
750
751         req->ep = ep;
752
753         /* map virtual address to hardware */
754         if (req->req.dma == DMA_ADDR_INVALID) {
755                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
756                                         req->req.buf,
757                                         req->req.length, ep_dir(ep)
758                                                 ? DMA_TO_DEVICE
759                                                 : DMA_FROM_DEVICE);
760                 req->mapped = 1;
761         } else {
762                 dma_sync_single_for_device(ep->udc->gadget.dev.parent,
763                                         req->req.dma, req->req.length,
764                                         ep_dir(ep)
765                                                 ? DMA_TO_DEVICE
766                                                 : DMA_FROM_DEVICE);
767                 req->mapped = 0;
768         }
769
770         req->req.status = -EINPROGRESS;
771         req->req.actual = 0;
772         req->dtd_count = 0;
773
774         spin_lock_irqsave(&udc->lock, flags);
775
776         /* build dtds and push them to device queue */
777         if (!req_to_dtd(req)) {
778                 int retval;
779                 retval = queue_dtd(ep, req);
780                 if (retval) {
781                         spin_unlock_irqrestore(&udc->lock, flags);
782                         return retval;
783                 }
784         } else {
785                 spin_unlock_irqrestore(&udc->lock, flags);
786                 return -ENOMEM;
787         }
788
789         /* Update ep0 state */
790         if (ep->ep_num == 0)
791                 udc->ep0_state = DATA_STATE_XMIT;
792
793         /* irq handler advances the queue */
794         if (req != NULL)
795                 list_add_tail(&req->queue, &ep->queue);
796         spin_unlock_irqrestore(&udc->lock, flags);
797
798         return 0;
799 }
800
801 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
802 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
803 {
804         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
805         struct mv_req *req;
806         struct mv_udc *udc = ep->udc;
807         unsigned long flags;
808         int stopped, ret = 0;
809         u32 epctrlx;
810
811         if (!_ep || !_req)
812                 return -EINVAL;
813
814         spin_lock_irqsave(&ep->udc->lock, flags);
815         stopped = ep->stopped;
816
817         /* Stop the ep before we deal with the queue */
818         ep->stopped = 1;
819         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
820         if (ep_dir(ep) == EP_DIR_IN)
821                 epctrlx &= ~EPCTRL_TX_ENABLE;
822         else
823                 epctrlx &= ~EPCTRL_RX_ENABLE;
824         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
825
826         /* make sure it's actually queued on this endpoint */
827         list_for_each_entry(req, &ep->queue, queue) {
828                 if (&req->req == _req)
829                         break;
830         }
831         if (&req->req != _req) {
832                 ret = -EINVAL;
833                 goto out;
834         }
835
836         /* The request is in progress, or completed but not dequeued */
837         if (ep->queue.next == &req->queue) {
838                 _req->status = -ECONNRESET;
839                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
840
841                 /* The request isn't the last request in this ep queue */
842                 if (req->queue.next != &ep->queue) {
843                         struct mv_dqh *qh;
844                         struct mv_req *next_req;
845
846                         qh = ep->dqh;
847                         next_req = list_entry(req->queue.next, struct mv_req,
848                                         queue);
849
850                         /* Point the QH to the first TD of next request */
851                         writel((u32) next_req->head, &qh->curr_dtd_ptr);
852                 } else {
853                         struct mv_dqh *qh;
854
855                         qh = ep->dqh;
856                         qh->next_dtd_ptr = 1;
857                         qh->size_ioc_int_sts = 0;
858                 }
859
860                 /* The request hasn't been processed, patch up the TD chain */
861         } else {
862                 struct mv_req *prev_req;
863
864                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
865                 writel(readl(&req->tail->dtd_next),
866                                 &prev_req->tail->dtd_next);
867
868         }
869
870         done(ep, req, -ECONNRESET);
871
872         /* Enable EP */
873 out:
874         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
875         if (ep_dir(ep) == EP_DIR_IN)
876                 epctrlx |= EPCTRL_TX_ENABLE;
877         else
878                 epctrlx |= EPCTRL_RX_ENABLE;
879         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
880         ep->stopped = stopped;
881
882         spin_unlock_irqrestore(&ep->udc->lock, flags);
883         return ret;
884 }
885
886 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
887 {
888         u32 epctrlx;
889
890         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
891
892         if (stall) {
893                 if (direction == EP_DIR_IN)
894                         epctrlx |= EPCTRL_TX_EP_STALL;
895                 else
896                         epctrlx |= EPCTRL_RX_EP_STALL;
897         } else {
898                 if (direction == EP_DIR_IN) {
899                         epctrlx &= ~EPCTRL_TX_EP_STALL;
900                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
901                 } else {
902                         epctrlx &= ~EPCTRL_RX_EP_STALL;
903                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
904                 }
905         }
906         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
907 }
908
909 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
910 {
911         u32 epctrlx;
912
913         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
914
915         if (direction == EP_DIR_OUT)
916                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
917         else
918                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
919 }
920
921 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
922 {
923         struct mv_ep *ep;
924         unsigned long flags = 0;
925         int status = 0;
926         struct mv_udc *udc;
927
928         ep = container_of(_ep, struct mv_ep, ep);
929         udc = ep->udc;
930         if (!_ep || !ep->desc) {
931                 status = -EINVAL;
932                 goto out;
933         }
934
935         if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
936                 status = -EOPNOTSUPP;
937                 goto out;
938         }
939
940         /*
941          * Attempt to halt IN ep will fail if any transfer requests
942          * are still queue
943          */
944         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
945                 status = -EAGAIN;
946                 goto out;
947         }
948
949         spin_lock_irqsave(&ep->udc->lock, flags);
950         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
951         if (halt && wedge)
952                 ep->wedge = 1;
953         else if (!halt)
954                 ep->wedge = 0;
955         spin_unlock_irqrestore(&ep->udc->lock, flags);
956
957         if (ep->ep_num == 0) {
958                 udc->ep0_state = WAIT_FOR_SETUP;
959                 udc->ep0_dir = EP_DIR_OUT;
960         }
961 out:
962         return status;
963 }
964
965 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
966 {
967         return mv_ep_set_halt_wedge(_ep, halt, 0);
968 }
969
970 static int mv_ep_set_wedge(struct usb_ep *_ep)
971 {
972         return mv_ep_set_halt_wedge(_ep, 1, 1);
973 }
974
975 static struct usb_ep_ops mv_ep_ops = {
976         .enable         = mv_ep_enable,
977         .disable        = mv_ep_disable,
978
979         .alloc_request  = mv_alloc_request,
980         .free_request   = mv_free_request,
981
982         .queue          = mv_ep_queue,
983         .dequeue        = mv_ep_dequeue,
984
985         .set_wedge      = mv_ep_set_wedge,
986         .set_halt       = mv_ep_set_halt,
987         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
988 };
989
990 static void udc_stop(struct mv_udc *udc)
991 {
992         u32 tmp;
993
994         /* Disable interrupts */
995         tmp = readl(&udc->op_regs->usbintr);
996         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
997                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
998         writel(tmp, &udc->op_regs->usbintr);
999
1000         /* Reset the Run the bit in the command register to stop VUSB */
1001         tmp = readl(&udc->op_regs->usbcmd);
1002         tmp &= ~USBCMD_RUN_STOP;
1003         writel(tmp, &udc->op_regs->usbcmd);
1004 }
1005
1006 static void udc_start(struct mv_udc *udc)
1007 {
1008         u32 usbintr;
1009
1010         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1011                 | USBINTR_PORT_CHANGE_DETECT_EN
1012                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1013         /* Enable interrupts */
1014         writel(usbintr, &udc->op_regs->usbintr);
1015
1016         /* Set the Run bit in the command register */
1017         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1018 }
1019
1020 static int udc_reset(struct mv_udc *udc)
1021 {
1022         unsigned int loops;
1023         u32 tmp, portsc;
1024
1025         /* Stop the controller */
1026         tmp = readl(&udc->op_regs->usbcmd);
1027         tmp &= ~USBCMD_RUN_STOP;
1028         writel(tmp, &udc->op_regs->usbcmd);
1029
1030         /* Reset the controller to get default values */
1031         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1032
1033         /* wait for reset to complete */
1034         loops = LOOPS(RESET_TIMEOUT);
1035         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1036                 if (loops == 0) {
1037                         dev_err(&udc->dev->dev,
1038                                 "Wait for RESET completed TIMEOUT\n");
1039                         return -ETIMEDOUT;
1040                 }
1041                 loops--;
1042                 udelay(LOOPS_USEC);
1043         }
1044
1045         /* set controller to device mode */
1046         tmp = readl(&udc->op_regs->usbmode);
1047         tmp |= USBMODE_CTRL_MODE_DEVICE;
1048
1049         /* turn setup lockout off, require setup tripwire in usbcmd */
1050         tmp |= USBMODE_SETUP_LOCK_OFF | USBMODE_STREAM_DISABLE;
1051
1052         writel(tmp, &udc->op_regs->usbmode);
1053
1054         writel(0x0, &udc->op_regs->epsetupstat);
1055
1056         /* Configure the Endpoint List Address */
1057         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1058                 &udc->op_regs->eplistaddr);
1059
1060         portsc = readl(&udc->op_regs->portsc[0]);
1061         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1062                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1063
1064         if (udc->force_fs)
1065                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1066         else
1067                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1068
1069         writel(portsc, &udc->op_regs->portsc[0]);
1070
1071         tmp = readl(&udc->op_regs->epctrlx[0]);
1072         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1073         writel(tmp, &udc->op_regs->epctrlx[0]);
1074
1075         return 0;
1076 }
1077
1078 static int mv_udc_get_frame(struct usb_gadget *gadget)
1079 {
1080         struct mv_udc *udc;
1081         u16     retval;
1082
1083         if (!gadget)
1084                 return -ENODEV;
1085
1086         udc = container_of(gadget, struct mv_udc, gadget);
1087
1088         retval = readl(udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1089
1090         return retval;
1091 }
1092
1093 /* Tries to wake up the host connected to this gadget */
1094 static int mv_udc_wakeup(struct usb_gadget *gadget)
1095 {
1096         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1097         u32 portsc;
1098
1099         /* Remote wakeup feature not enabled by host */
1100         if (!udc->remote_wakeup)
1101                 return -ENOTSUPP;
1102
1103         portsc = readl(&udc->op_regs->portsc);
1104         /* not suspended? */
1105         if (!(portsc & PORTSCX_PORT_SUSPEND))
1106                 return 0;
1107         /* trigger force resume */
1108         portsc |= PORTSCX_PORT_FORCE_RESUME;
1109         writel(portsc, &udc->op_regs->portsc[0]);
1110         return 0;
1111 }
1112
1113 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1114 {
1115         struct mv_udc *udc;
1116         unsigned long flags;
1117
1118         udc = container_of(gadget, struct mv_udc, gadget);
1119         spin_lock_irqsave(&udc->lock, flags);
1120
1121         udc->softconnect = (is_on != 0);
1122         if (udc->driver && udc->softconnect)
1123                 udc_start(udc);
1124         else
1125                 udc_stop(udc);
1126
1127         spin_unlock_irqrestore(&udc->lock, flags);
1128         return 0;
1129 }
1130
1131 static int mv_udc_start(struct usb_gadget_driver *driver,
1132                 int (*bind)(struct usb_gadget *));
1133 static int mv_udc_stop(struct usb_gadget_driver *driver);
1134 /* device controller usb_gadget_ops structure */
1135 static const struct usb_gadget_ops mv_ops = {
1136
1137         /* returns the current frame number */
1138         .get_frame      = mv_udc_get_frame,
1139
1140         /* tries to wake up the host connected to this gadget */
1141         .wakeup         = mv_udc_wakeup,
1142
1143         /* D+ pullup, software-controlled connect/disconnect to USB host */
1144         .pullup         = mv_udc_pullup,
1145         .start          = mv_udc_start,
1146         .stop           = mv_udc_stop,
1147 };
1148
1149 static void mv_udc_testmode(struct mv_udc *udc, u16 index, bool enter)
1150 {
1151         dev_info(&udc->dev->dev, "Test Mode is not support yet\n");
1152 }
1153
1154 static int eps_init(struct mv_udc *udc)
1155 {
1156         struct mv_ep    *ep;
1157         char name[14];
1158         int i;
1159
1160         /* initialize ep0 */
1161         ep = &udc->eps[0];
1162         ep->udc = udc;
1163         strncpy(ep->name, "ep0", sizeof(ep->name));
1164         ep->ep.name = ep->name;
1165         ep->ep.ops = &mv_ep_ops;
1166         ep->wedge = 0;
1167         ep->stopped = 0;
1168         ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
1169         ep->ep_num = 0;
1170         ep->desc = &mv_ep0_desc;
1171         INIT_LIST_HEAD(&ep->queue);
1172
1173         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1174
1175         /* initialize other endpoints */
1176         for (i = 2; i < udc->max_eps * 2; i++) {
1177                 ep = &udc->eps[i];
1178                 if (i % 2) {
1179                         snprintf(name, sizeof(name), "ep%din", i / 2);
1180                         ep->direction = EP_DIR_IN;
1181                 } else {
1182                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1183                         ep->direction = EP_DIR_OUT;
1184                 }
1185                 ep->udc = udc;
1186                 strncpy(ep->name, name, sizeof(ep->name));
1187                 ep->ep.name = ep->name;
1188
1189                 ep->ep.ops = &mv_ep_ops;
1190                 ep->stopped = 0;
1191                 ep->ep.maxpacket = (unsigned short) ~0;
1192                 ep->ep_num = i / 2;
1193
1194                 INIT_LIST_HEAD(&ep->queue);
1195                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1196
1197                 ep->dqh = &udc->ep_dqh[i];
1198         }
1199
1200         return 0;
1201 }
1202
1203 /* delete all endpoint requests, called with spinlock held */
1204 static void nuke(struct mv_ep *ep, int status)
1205 {
1206         /* called with spinlock held */
1207         ep->stopped = 1;
1208
1209         /* endpoint fifo flush */
1210         mv_ep_fifo_flush(&ep->ep);
1211
1212         while (!list_empty(&ep->queue)) {
1213                 struct mv_req *req = NULL;
1214                 req = list_entry(ep->queue.next, struct mv_req, queue);
1215                 done(ep, req, status);
1216         }
1217 }
1218
1219 /* stop all USB activities */
1220 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1221 {
1222         struct mv_ep    *ep;
1223
1224         nuke(&udc->eps[0], -ESHUTDOWN);
1225
1226         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1227                 nuke(ep, -ESHUTDOWN);
1228         }
1229
1230         /* report disconnect; the driver is already quiesced */
1231         if (driver) {
1232                 spin_unlock(&udc->lock);
1233                 driver->disconnect(&udc->gadget);
1234                 spin_lock(&udc->lock);
1235         }
1236 }
1237
1238 static int mv_udc_start(struct usb_gadget_driver *driver,
1239                 int (*bind)(struct usb_gadget *))
1240 {
1241         struct mv_udc *udc = the_controller;
1242         int retval = 0;
1243         unsigned long flags;
1244
1245         if (!udc)
1246                 return -ENODEV;
1247
1248         if (udc->driver)
1249                 return -EBUSY;
1250
1251         spin_lock_irqsave(&udc->lock, flags);
1252
1253         /* hook up the driver ... */
1254         driver->driver.bus = NULL;
1255         udc->driver = driver;
1256         udc->gadget.dev.driver = &driver->driver;
1257
1258         udc->usb_state = USB_STATE_ATTACHED;
1259         udc->ep0_state = WAIT_FOR_SETUP;
1260         udc->ep0_dir = USB_DIR_OUT;
1261
1262         spin_unlock_irqrestore(&udc->lock, flags);
1263
1264         retval = bind(&udc->gadget);
1265         if (retval) {
1266                 dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
1267                                 driver->driver.name, retval);
1268                 udc->driver = NULL;
1269                 udc->gadget.dev.driver = NULL;
1270                 return retval;
1271         }
1272         udc_reset(udc);
1273         ep0_reset(udc);
1274         udc_start(udc);
1275
1276         return 0;
1277 }
1278
1279 static int mv_udc_stop(struct usb_gadget_driver *driver)
1280 {
1281         struct mv_udc *udc = the_controller;
1282         unsigned long flags;
1283
1284         if (!udc)
1285                 return -ENODEV;
1286
1287         udc_stop(udc);
1288
1289         spin_lock_irqsave(&udc->lock, flags);
1290
1291         /* stop all usb activities */
1292         udc->gadget.speed = USB_SPEED_UNKNOWN;
1293         stop_activity(udc, driver);
1294         spin_unlock_irqrestore(&udc->lock, flags);
1295
1296         /* unbind gadget driver */
1297         driver->unbind(&udc->gadget);
1298         udc->gadget.dev.driver = NULL;
1299         udc->driver = NULL;
1300
1301         return 0;
1302 }
1303
1304 static int
1305 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1306 {
1307         int retval = 0;
1308         struct mv_req *req;
1309         struct mv_ep *ep;
1310
1311         ep = &udc->eps[0];
1312         udc->ep0_dir = direction;
1313
1314         req = udc->status_req;
1315
1316         /* fill in the reqest structure */
1317         if (empty == false) {
1318                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1319                 req->req.length = 2;
1320         } else
1321                 req->req.length = 0;
1322
1323         req->ep = ep;
1324         req->req.status = -EINPROGRESS;
1325         req->req.actual = 0;
1326         req->req.complete = NULL;
1327         req->dtd_count = 0;
1328
1329         /* prime the data phase */
1330         if (!req_to_dtd(req))
1331                 retval = queue_dtd(ep, req);
1332         else{   /* no mem */
1333                 retval = -ENOMEM;
1334                 goto out;
1335         }
1336
1337         if (retval) {
1338                 dev_err(&udc->dev->dev, "response error on GET_STATUS request\n");
1339                 goto out;
1340         }
1341
1342         list_add_tail(&req->queue, &ep->queue);
1343
1344         return 0;
1345 out:
1346         return retval;
1347 }
1348
1349 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1350 {
1351         udc->dev_addr = (u8)setup->wValue;
1352
1353         /* update usb state */
1354         udc->usb_state = USB_STATE_ADDRESS;
1355
1356         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1357                 ep0_stall(udc);
1358 }
1359
1360 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1361         struct usb_ctrlrequest *setup)
1362 {
1363         u16 status;
1364         int retval;
1365
1366         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1367                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1368                 return;
1369
1370         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1371                 status = 1 << USB_DEVICE_SELF_POWERED;
1372                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1373         } else if ((setup->bRequestType & USB_RECIP_MASK)
1374                         == USB_RECIP_INTERFACE) {
1375                 /* get interface status */
1376                 status = 0;
1377         } else if ((setup->bRequestType & USB_RECIP_MASK)
1378                         == USB_RECIP_ENDPOINT) {
1379                 u8 ep_num, direction;
1380
1381                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1382                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1383                                 ? EP_DIR_IN : EP_DIR_OUT;
1384                 status = ep_is_stall(udc, ep_num, direction)
1385                                 << USB_ENDPOINT_HALT;
1386         }
1387
1388         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1389         if (retval)
1390                 ep0_stall(udc);
1391 }
1392
1393 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1394 {
1395         u8 ep_num;
1396         u8 direction;
1397         struct mv_ep *ep;
1398
1399         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1400                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1401                 switch (setup->wValue) {
1402                 case USB_DEVICE_REMOTE_WAKEUP:
1403                         udc->remote_wakeup = 0;
1404                         break;
1405                 case USB_DEVICE_TEST_MODE:
1406                         mv_udc_testmode(udc, 0, false);
1407                         break;
1408                 default:
1409                         goto out;
1410                 }
1411         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1412                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1413                 switch (setup->wValue) {
1414                 case USB_ENDPOINT_HALT:
1415                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1416                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1417                                 ? EP_DIR_IN : EP_DIR_OUT;
1418                         if (setup->wValue != 0 || setup->wLength != 0
1419                                 || ep_num > udc->max_eps)
1420                                 goto out;
1421                         ep = &udc->eps[ep_num * 2 + direction];
1422                         if (ep->wedge == 1)
1423                                 break;
1424                         spin_unlock(&udc->lock);
1425                         ep_set_stall(udc, ep_num, direction, 0);
1426                         spin_lock(&udc->lock);
1427                         break;
1428                 default:
1429                         goto out;
1430                 }
1431         } else
1432                 goto out;
1433
1434         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1435                 ep0_stall(udc);
1436         else
1437                 udc->ep0_state = DATA_STATE_XMIT;
1438 out:
1439         return;
1440 }
1441
1442 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1443 {
1444         u8 ep_num;
1445         u8 direction;
1446
1447         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1448                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1449                 switch (setup->wValue) {
1450                 case USB_DEVICE_REMOTE_WAKEUP:
1451                         udc->remote_wakeup = 1;
1452                         break;
1453                 case USB_DEVICE_TEST_MODE:
1454                         if (setup->wIndex & 0xFF
1455                                 && udc->gadget.speed != USB_SPEED_HIGH)
1456                                 goto out;
1457                         if (udc->usb_state == USB_STATE_CONFIGURED
1458                                 || udc->usb_state == USB_STATE_ADDRESS
1459                                 || udc->usb_state == USB_STATE_DEFAULT)
1460                                 mv_udc_testmode(udc,
1461                                         setup->wIndex & 0xFF00, true);
1462                         else
1463                                 goto out;
1464                         break;
1465                 default:
1466                         goto out;
1467                 }
1468         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1469                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1470                 switch (setup->wValue) {
1471                 case USB_ENDPOINT_HALT:
1472                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1473                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1474                                 ? EP_DIR_IN : EP_DIR_OUT;
1475                         if (setup->wValue != 0 || setup->wLength != 0
1476                                 || ep_num > udc->max_eps)
1477                                 goto out;
1478                         spin_unlock(&udc->lock);
1479                         ep_set_stall(udc, ep_num, direction, 1);
1480                         spin_lock(&udc->lock);
1481                         break;
1482                 default:
1483                         goto out;
1484                 }
1485         } else
1486                 goto out;
1487
1488         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1489                 ep0_stall(udc);
1490 out:
1491         return;
1492 }
1493
1494 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1495         struct usb_ctrlrequest *setup)
1496 {
1497         bool delegate = false;
1498
1499         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1500
1501         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1502                         setup->bRequestType, setup->bRequest,
1503                         setup->wValue, setup->wIndex, setup->wLength);
1504         /* We process some stardard setup requests here */
1505         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1506                 switch (setup->bRequest) {
1507                 case USB_REQ_GET_STATUS:
1508                         ch9getstatus(udc, ep_num, setup);
1509                         break;
1510
1511                 case USB_REQ_SET_ADDRESS:
1512                         ch9setaddress(udc, setup);
1513                         break;
1514
1515                 case USB_REQ_CLEAR_FEATURE:
1516                         ch9clearfeature(udc, setup);
1517                         break;
1518
1519                 case USB_REQ_SET_FEATURE:
1520                         ch9setfeature(udc, setup);
1521                         break;
1522
1523                 default:
1524                         delegate = true;
1525                 }
1526         } else
1527                 delegate = true;
1528
1529         /* delegate USB standard requests to the gadget driver */
1530         if (delegate == true) {
1531                 /* USB requests handled by gadget */
1532                 if (setup->wLength) {
1533                         /* DATA phase from gadget, STATUS phase from udc */
1534                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1535                                         ?  EP_DIR_IN : EP_DIR_OUT;
1536                         spin_unlock(&udc->lock);
1537                         if (udc->driver->setup(&udc->gadget,
1538                                 &udc->local_setup_buff) < 0)
1539                                 ep0_stall(udc);
1540                         spin_lock(&udc->lock);
1541                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1542                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1543                 } else {
1544                         /* no DATA phase, IN STATUS phase from gadget */
1545                         udc->ep0_dir = EP_DIR_IN;
1546                         spin_unlock(&udc->lock);
1547                         if (udc->driver->setup(&udc->gadget,
1548                                 &udc->local_setup_buff) < 0)
1549                                 ep0_stall(udc);
1550                         spin_lock(&udc->lock);
1551                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1552                 }
1553         }
1554 }
1555
1556 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1557 static void ep0_req_complete(struct mv_udc *udc,
1558         struct mv_ep *ep0, struct mv_req *req)
1559 {
1560         u32 new_addr;
1561
1562         if (udc->usb_state == USB_STATE_ADDRESS) {
1563                 /* set the new address */
1564                 new_addr = (u32)udc->dev_addr;
1565                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1566                         &udc->op_regs->deviceaddr);
1567         }
1568
1569         done(ep0, req, 0);
1570
1571         switch (udc->ep0_state) {
1572         case DATA_STATE_XMIT:
1573                 /* receive status phase */
1574                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1575                         ep0_stall(udc);
1576                 break;
1577         case DATA_STATE_RECV:
1578                 /* send status phase */
1579                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1580                         ep0_stall(udc);
1581                 break;
1582         case WAIT_FOR_OUT_STATUS:
1583                 udc->ep0_state = WAIT_FOR_SETUP;
1584                 break;
1585         case WAIT_FOR_SETUP:
1586                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1587                 break;
1588         default:
1589                 ep0_stall(udc);
1590                 break;
1591         }
1592 }
1593
1594 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1595 {
1596         u32 temp;
1597         struct mv_dqh *dqh;
1598
1599         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1600
1601         /* Clear bit in ENDPTSETUPSTAT */
1602         temp = readl(&udc->op_regs->epsetupstat);
1603         writel(temp | (1 << ep_num), &udc->op_regs->epsetupstat);
1604
1605         /* while a hazard exists when setup package arrives */
1606         do {
1607                 /* Set Setup Tripwire */
1608                 temp = readl(&udc->op_regs->usbcmd);
1609                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1610
1611                 /* Copy the setup packet to local buffer */
1612                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1613         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1614
1615         /* Clear Setup Tripwire */
1616         temp = readl(&udc->op_regs->usbcmd);
1617         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1618 }
1619
1620 static void irq_process_tr_complete(struct mv_udc *udc)
1621 {
1622         u32 tmp, bit_pos;
1623         int i, ep_num = 0, direction = 0;
1624         struct mv_ep    *curr_ep;
1625         struct mv_req *curr_req, *temp_req;
1626         int status;
1627
1628         /*
1629          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1630          * because the setup packets are to be read ASAP
1631          */
1632
1633         /* Process all Setup packet received interrupts */
1634         tmp = readl(&udc->op_regs->epsetupstat);
1635
1636         if (tmp) {
1637                 for (i = 0; i < udc->max_eps; i++) {
1638                         if (tmp & (1 << i)) {
1639                                 get_setup_data(udc, i,
1640                                         (u8 *)(&udc->local_setup_buff));
1641                                 handle_setup_packet(udc, i,
1642                                         &udc->local_setup_buff);
1643                         }
1644                 }
1645         }
1646
1647         /* Don't clear the endpoint setup status register here.
1648          * It is cleared as a setup packet is read out of the buffer
1649          */
1650
1651         /* Process non-setup transaction complete interrupts */
1652         tmp = readl(&udc->op_regs->epcomplete);
1653
1654         if (!tmp)
1655                 return;
1656
1657         writel(tmp, &udc->op_regs->epcomplete);
1658
1659         for (i = 0; i < udc->max_eps * 2; i++) {
1660                 ep_num = i >> 1;
1661                 direction = i % 2;
1662
1663                 bit_pos = 1 << (ep_num + 16 * direction);
1664
1665                 if (!(bit_pos & tmp))
1666                         continue;
1667
1668                 if (i == 1)
1669                         curr_ep = &udc->eps[0];
1670                 else
1671                         curr_ep = &udc->eps[i];
1672                 /* process the req queue until an uncomplete request */
1673                 list_for_each_entry_safe(curr_req, temp_req,
1674                         &curr_ep->queue, queue) {
1675                         status = process_ep_req(udc, i, curr_req);
1676                         if (status)
1677                                 break;
1678
1679                         /* write back status to req */
1680                         curr_req->req.status = status;
1681
1682                         /* ep0 request completion */
1683                         if (ep_num == 0) {
1684                                 ep0_req_complete(udc, curr_ep, curr_req);
1685                                 break;
1686                         } else {
1687                                 done(curr_ep, curr_req, status);
1688                         }
1689                 }
1690         }
1691 }
1692
1693 void irq_process_reset(struct mv_udc *udc)
1694 {
1695         u32 tmp;
1696         unsigned int loops;
1697
1698         udc->ep0_dir = EP_DIR_OUT;
1699         udc->ep0_state = WAIT_FOR_SETUP;
1700         udc->remote_wakeup = 0;         /* default to 0 on reset */
1701
1702         /* The address bits are past bit 25-31. Set the address */
1703         tmp = readl(&udc->op_regs->deviceaddr);
1704         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1705         writel(tmp, &udc->op_regs->deviceaddr);
1706
1707         /* Clear all the setup token semaphores */
1708         tmp = readl(&udc->op_regs->epsetupstat);
1709         writel(tmp, &udc->op_regs->epsetupstat);
1710
1711         /* Clear all the endpoint complete status bits */
1712         tmp = readl(&udc->op_regs->epcomplete);
1713         writel(tmp, &udc->op_regs->epcomplete);
1714
1715         /* wait until all endptprime bits cleared */
1716         loops = LOOPS(PRIME_TIMEOUT);
1717         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1718                 if (loops == 0) {
1719                         dev_err(&udc->dev->dev,
1720                                 "Timeout for ENDPTPRIME = 0x%x\n",
1721                                 readl(&udc->op_regs->epprime));
1722                         break;
1723                 }
1724                 loops--;
1725                 udelay(LOOPS_USEC);
1726         }
1727
1728         /* Write 1s to the Flush register */
1729         writel((u32)~0, &udc->op_regs->epflush);
1730
1731         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1732                 dev_info(&udc->dev->dev, "usb bus reset\n");
1733                 udc->usb_state = USB_STATE_DEFAULT;
1734                 /* reset all the queues, stop all USB activities */
1735                 stop_activity(udc, udc->driver);
1736         } else {
1737                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1738                         readl(&udc->op_regs->portsc));
1739
1740                 /*
1741                  * re-initialize
1742                  * controller reset
1743                  */
1744                 udc_reset(udc);
1745
1746                 /* reset all the queues, stop all USB activities */
1747                 stop_activity(udc, udc->driver);
1748
1749                 /* reset ep0 dQH and endptctrl */
1750                 ep0_reset(udc);
1751
1752                 /* enable interrupt and set controller to run state */
1753                 udc_start(udc);
1754
1755                 udc->usb_state = USB_STATE_ATTACHED;
1756         }
1757 }
1758
1759 static void handle_bus_resume(struct mv_udc *udc)
1760 {
1761         udc->usb_state = udc->resume_state;
1762         udc->resume_state = 0;
1763
1764         /* report resume to the driver */
1765         if (udc->driver) {
1766                 if (udc->driver->resume) {
1767                         spin_unlock(&udc->lock);
1768                         udc->driver->resume(&udc->gadget);
1769                         spin_lock(&udc->lock);
1770                 }
1771         }
1772 }
1773
1774 static void irq_process_suspend(struct mv_udc *udc)
1775 {
1776         udc->resume_state = udc->usb_state;
1777         udc->usb_state = USB_STATE_SUSPENDED;
1778
1779         if (udc->driver->suspend) {
1780                 spin_unlock(&udc->lock);
1781                 udc->driver->suspend(&udc->gadget);
1782                 spin_lock(&udc->lock);
1783         }
1784 }
1785
1786 static void irq_process_port_change(struct mv_udc *udc)
1787 {
1788         u32 portsc;
1789
1790         portsc = readl(&udc->op_regs->portsc[0]);
1791         if (!(portsc & PORTSCX_PORT_RESET)) {
1792                 /* Get the speed */
1793                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1794                 switch (speed) {
1795                 case PORTSCX_PORT_SPEED_HIGH:
1796                         udc->gadget.speed = USB_SPEED_HIGH;
1797                         break;
1798                 case PORTSCX_PORT_SPEED_FULL:
1799                         udc->gadget.speed = USB_SPEED_FULL;
1800                         break;
1801                 case PORTSCX_PORT_SPEED_LOW:
1802                         udc->gadget.speed = USB_SPEED_LOW;
1803                         break;
1804                 default:
1805                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1806                         break;
1807                 }
1808         }
1809
1810         if (portsc & PORTSCX_PORT_SUSPEND) {
1811                 udc->resume_state = udc->usb_state;
1812                 udc->usb_state = USB_STATE_SUSPENDED;
1813                 if (udc->driver->suspend) {
1814                         spin_unlock(&udc->lock);
1815                         udc->driver->suspend(&udc->gadget);
1816                         spin_lock(&udc->lock);
1817                 }
1818         }
1819
1820         if (!(portsc & PORTSCX_PORT_SUSPEND)
1821                 && udc->usb_state == USB_STATE_SUSPENDED) {
1822                 handle_bus_resume(udc);
1823         }
1824
1825         if (!udc->resume_state)
1826                 udc->usb_state = USB_STATE_DEFAULT;
1827 }
1828
1829 static void irq_process_error(struct mv_udc *udc)
1830 {
1831         /* Increment the error count */
1832         udc->errors++;
1833 }
1834
1835 static irqreturn_t mv_udc_irq(int irq, void *dev)
1836 {
1837         struct mv_udc *udc = (struct mv_udc *)dev;
1838         u32 status, intr;
1839
1840         spin_lock(&udc->lock);
1841
1842         status = readl(&udc->op_regs->usbsts);
1843         intr = readl(&udc->op_regs->usbintr);
1844         status &= intr;
1845
1846         if (status == 0) {
1847                 spin_unlock(&udc->lock);
1848                 return IRQ_NONE;
1849         }
1850
1851         /* Clear all the interrupts occurred */
1852         writel(status, &udc->op_regs->usbsts);
1853
1854         if (status & USBSTS_ERR)
1855                 irq_process_error(udc);
1856
1857         if (status & USBSTS_RESET)
1858                 irq_process_reset(udc);
1859
1860         if (status & USBSTS_PORT_CHANGE)
1861                 irq_process_port_change(udc);
1862
1863         if (status & USBSTS_INT)
1864                 irq_process_tr_complete(udc);
1865
1866         if (status & USBSTS_SUSPEND)
1867                 irq_process_suspend(udc);
1868
1869         spin_unlock(&udc->lock);
1870
1871         return IRQ_HANDLED;
1872 }
1873
1874 /* release device structure */
1875 static void gadget_release(struct device *_dev)
1876 {
1877         struct mv_udc *udc = the_controller;
1878
1879         complete(udc->done);
1880         kfree(udc);
1881 }
1882
1883 static int mv_udc_remove(struct platform_device *dev)
1884 {
1885         struct mv_udc *udc = the_controller;
1886         DECLARE_COMPLETION(done);
1887
1888         usb_del_gadget_udc(&udc->gadget);
1889
1890         udc->done = &done;
1891
1892         /* free memory allocated in probe */
1893         if (udc->dtd_pool)
1894                 dma_pool_destroy(udc->dtd_pool);
1895
1896         if (udc->ep_dqh)
1897                 dma_free_coherent(&dev->dev, udc->ep_dqh_size,
1898                         udc->ep_dqh, udc->ep_dqh_dma);
1899
1900         kfree(udc->eps);
1901
1902         if (udc->irq)
1903                 free_irq(udc->irq, &dev->dev);
1904
1905         if (udc->cap_regs)
1906                 iounmap(udc->cap_regs);
1907         udc->cap_regs = NULL;
1908
1909         if (udc->phy_regs)
1910                 iounmap((void *)udc->phy_regs);
1911         udc->phy_regs = 0;
1912
1913         if (udc->status_req) {
1914                 kfree(udc->status_req->req.buf);
1915                 kfree(udc->status_req);
1916         }
1917
1918         device_unregister(&udc->gadget.dev);
1919
1920         /* free dev, wait for the release() finished */
1921         wait_for_completion(&done);
1922
1923         the_controller = NULL;
1924
1925         return 0;
1926 }
1927
1928 int mv_udc_probe(struct platform_device *dev)
1929 {
1930         struct mv_udc *udc;
1931         int retval = 0;
1932         struct resource *r;
1933         size_t size;
1934
1935         udc = kzalloc(sizeof *udc, GFP_KERNEL);
1936         if (udc == NULL) {
1937                 dev_err(&dev->dev, "failed to allocate memory for udc\n");
1938                 retval = -ENOMEM;
1939                 goto error;
1940         }
1941
1942         spin_lock_init(&udc->lock);
1943
1944         udc->dev = dev;
1945
1946         udc->clk = clk_get(&dev->dev, "U2OCLK");
1947         if (IS_ERR(udc->clk)) {
1948                 retval = PTR_ERR(udc->clk);
1949                 goto error;
1950         }
1951
1952         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "u2o");
1953         if (r == NULL) {
1954                 dev_err(&dev->dev, "no I/O memory resource defined\n");
1955                 retval = -ENODEV;
1956                 goto error;
1957         }
1958
1959         udc->cap_regs = (struct mv_cap_regs __iomem *)
1960                 ioremap(r->start, resource_size(r));
1961         if (udc->cap_regs == NULL) {
1962                 dev_err(&dev->dev, "failed to map I/O memory\n");
1963                 retval = -EBUSY;
1964                 goto error;
1965         }
1966
1967         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "u2ophy");
1968         if (r == NULL) {
1969                 dev_err(&dev->dev, "no phy I/O memory resource defined\n");
1970                 retval = -ENODEV;
1971                 goto error;
1972         }
1973
1974         udc->phy_regs = (unsigned int)ioremap(r->start, resource_size(r));
1975         if (udc->phy_regs == 0) {
1976                 dev_err(&dev->dev, "failed to map phy I/O memory\n");
1977                 retval = -EBUSY;
1978                 goto error;
1979         }
1980
1981         /* we will acces controller register, so enable the clk */
1982         clk_enable(udc->clk);
1983         retval = mv_udc_phy_init(udc->phy_regs);
1984         if (retval) {
1985                 dev_err(&dev->dev, "phy initialization error %d\n", retval);
1986                 goto error;
1987         }
1988
1989         udc->op_regs = (struct mv_op_regs __iomem *)((u32)udc->cap_regs
1990                 + (readl(&udc->cap_regs->caplength_hciversion)
1991                         & CAPLENGTH_MASK));
1992         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
1993
1994         size = udc->max_eps * sizeof(struct mv_dqh) *2;
1995         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
1996         udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
1997                                         &udc->ep_dqh_dma, GFP_KERNEL);
1998
1999         if (udc->ep_dqh == NULL) {
2000                 dev_err(&dev->dev, "allocate dQH memory failed\n");
2001                 retval = -ENOMEM;
2002                 goto error;
2003         }
2004         udc->ep_dqh_size = size;
2005
2006         /* create dTD dma_pool resource */
2007         udc->dtd_pool = dma_pool_create("mv_dtd",
2008                         &dev->dev,
2009                         sizeof(struct mv_dtd),
2010                         DTD_ALIGNMENT,
2011                         DMA_BOUNDARY);
2012
2013         if (!udc->dtd_pool) {
2014                 retval = -ENOMEM;
2015                 goto error;
2016         }
2017
2018         size = udc->max_eps * sizeof(struct mv_ep) *2;
2019         udc->eps = kzalloc(size, GFP_KERNEL);
2020         if (udc->eps == NULL) {
2021                 dev_err(&dev->dev, "allocate ep memory failed\n");
2022                 retval = -ENOMEM;
2023                 goto error;
2024         }
2025
2026         /* initialize ep0 status request structure */
2027         udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
2028         if (!udc->status_req) {
2029                 dev_err(&dev->dev, "allocate status_req memory failed\n");
2030                 retval = -ENOMEM;
2031                 goto error;
2032         }
2033         INIT_LIST_HEAD(&udc->status_req->queue);
2034
2035         /* allocate a small amount of memory to get valid address */
2036         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2037         udc->status_req->req.dma = virt_to_phys(udc->status_req->req.buf);
2038
2039         udc->resume_state = USB_STATE_NOTATTACHED;
2040         udc->usb_state = USB_STATE_POWERED;
2041         udc->ep0_dir = EP_DIR_OUT;
2042         udc->remote_wakeup = 0;
2043
2044         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2045         if (r == NULL) {
2046                 dev_err(&dev->dev, "no IRQ resource defined\n");
2047                 retval = -ENODEV;
2048                 goto error;
2049         }
2050         udc->irq = r->start;
2051         if (request_irq(udc->irq, mv_udc_irq,
2052                 IRQF_DISABLED | IRQF_SHARED, driver_name, udc)) {
2053                 dev_err(&dev->dev, "Request irq %d for UDC failed\n",
2054                         udc->irq);
2055                 retval = -ENODEV;
2056                 goto error;
2057         }
2058
2059         /* initialize gadget structure */
2060         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2061         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2062         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2063         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2064         udc->gadget.is_dualspeed = 1;           /* support dual speed */
2065
2066         /* the "gadget" abstracts/virtualizes the controller */
2067         dev_set_name(&udc->gadget.dev, "gadget");
2068         udc->gadget.dev.parent = &dev->dev;
2069         udc->gadget.dev.dma_mask = dev->dev.dma_mask;
2070         udc->gadget.dev.release = gadget_release;
2071         udc->gadget.name = driver_name;         /* gadget name */
2072
2073         retval = device_register(&udc->gadget.dev);
2074         if (retval)
2075                 goto error;
2076
2077         eps_init(udc);
2078
2079         the_controller = udc;
2080
2081         retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
2082         if (!retval)
2083                 return retval;
2084 error:
2085         if (udc)
2086                 mv_udc_remove(udc->dev);
2087         return retval;
2088 }
2089
2090 #ifdef CONFIG_PM
2091 static int mv_udc_suspend(struct device *_dev)
2092 {
2093         struct mv_udc *udc = the_controller;
2094
2095         udc_stop(udc);
2096
2097         return 0;
2098 }
2099
2100 static int mv_udc_resume(struct device *_dev)
2101 {
2102         struct mv_udc *udc = the_controller;
2103         int retval;
2104
2105         retval = mv_udc_phy_init(udc->phy_regs);
2106         if (retval) {
2107                 dev_err(_dev, "phy initialization error %d\n", retval);
2108                 return retval;
2109         }
2110         udc_reset(udc);
2111         ep0_reset(udc);
2112         udc_start(udc);
2113
2114         return 0;
2115 }
2116
2117 static const struct dev_pm_ops mv_udc_pm_ops = {
2118         .suspend        = mv_udc_suspend,
2119         .resume         = mv_udc_resume,
2120 };
2121 #endif
2122
2123 static struct platform_driver udc_driver = {
2124         .probe          = mv_udc_probe,
2125         .remove         = __exit_p(mv_udc_remove),
2126         .driver         = {
2127                 .owner  = THIS_MODULE,
2128                 .name   = "pxa-u2o",
2129 #ifdef CONFIG_PM
2130                 .pm     = &mv_udc_pm_ops,
2131 #endif
2132         },
2133 };
2134 MODULE_ALIAS("platform:pxa-u2o");
2135
2136 MODULE_DESCRIPTION(DRIVER_DESC);
2137 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2138 MODULE_VERSION(DRIVER_VERSION);
2139 MODULE_LICENSE("GPL");
2140
2141
2142 static int __init init(void)
2143 {
2144         return platform_driver_register(&udc_driver);
2145 }
2146 module_init(init);
2147
2148
2149 static void __exit cleanup(void)
2150 {
2151         platform_driver_unregister(&udc_driver);
2152 }
2153 module_exit(cleanup);
2154