Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock();
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock();
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793         struct pid *tty_pgrp = NULL;
794
795         if (!current->signal->leader)
796                 return;
797
798         tty = get_current_tty();
799         if (tty) {
800                 tty_pgrp = get_pid(tty->pgrp);
801                 if (on_exit) {
802                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803                                 tty_vhangup(tty);
804                 }
805                 tty_kref_put(tty);
806         } else if (on_exit) {
807                 struct pid *old_pgrp;
808                 spin_lock_irq(&current->sighand->siglock);
809                 old_pgrp = current->signal->tty_old_pgrp;
810                 current->signal->tty_old_pgrp = NULL;
811                 spin_unlock_irq(&current->sighand->siglock);
812                 if (old_pgrp) {
813                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
814                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
815                         put_pid(old_pgrp);
816                 }
817                 return;
818         }
819         if (tty_pgrp) {
820                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
821                 if (!on_exit)
822                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
823                 put_pid(tty_pgrp);
824         }
825
826         spin_lock_irq(&current->sighand->siglock);
827         put_pid(current->signal->tty_old_pgrp);
828         current->signal->tty_old_pgrp = NULL;
829         spin_unlock_irq(&current->sighand->siglock);
830
831         tty = get_current_tty();
832         if (tty) {
833                 unsigned long flags;
834                 spin_lock_irqsave(&tty->ctrl_lock, flags);
835                 put_pid(tty->session);
836                 put_pid(tty->pgrp);
837                 tty->session = NULL;
838                 tty->pgrp = NULL;
839                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840                 tty_kref_put(tty);
841         } else {
842 #ifdef TTY_DEBUG_HANGUP
843                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844                        " = NULL", tty);
845 #endif
846         }
847
848         /* Now clear signal->tty under the lock */
849         read_lock(&tasklist_lock);
850         session_clear_tty(task_session(current));
851         read_unlock(&tasklist_lock);
852 }
853
854 /**
855  *
856  *      no_tty  - Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860         struct task_struct *tsk = current;
861         tty_lock();
862         disassociate_ctty(0);
863         tty_unlock();
864         proc_clear_tty(tsk);
865 }
866
867
868 /**
869  *      stop_tty        -       propagate flow control
870  *      @tty: tty to stop
871  *
872  *      Perform flow control to the driver. For PTY/TTY pairs we
873  *      must also propagate the TIOCKPKT status. May be called
874  *      on an already stopped device and will not re-call the driver
875  *      method.
876  *
877  *      This functionality is used by both the line disciplines for
878  *      halting incoming flow and by the driver. It may therefore be
879  *      called from any context, may be under the tty atomic_write_lock
880  *      but not always.
881  *
882  *      Locking:
883  *              Uses the tty control lock internally
884  */
885
886 void stop_tty(struct tty_struct *tty)
887 {
888         unsigned long flags;
889         spin_lock_irqsave(&tty->ctrl_lock, flags);
890         if (tty->stopped) {
891                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892                 return;
893         }
894         tty->stopped = 1;
895         if (tty->link && tty->link->packet) {
896                 tty->ctrl_status &= ~TIOCPKT_START;
897                 tty->ctrl_status |= TIOCPKT_STOP;
898                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
899         }
900         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
901         if (tty->ops->stop)
902                 (tty->ops->stop)(tty);
903 }
904
905 EXPORT_SYMBOL(stop_tty);
906
907 /**
908  *      start_tty       -       propagate flow control
909  *      @tty: tty to start
910  *
911  *      Start a tty that has been stopped if at all possible. Perform
912  *      any necessary wakeups and propagate the TIOCPKT status. If this
913  *      is the tty was previous stopped and is being started then the
914  *      driver start method is invoked and the line discipline woken.
915  *
916  *      Locking:
917  *              ctrl_lock
918  */
919
920 void start_tty(struct tty_struct *tty)
921 {
922         unsigned long flags;
923         spin_lock_irqsave(&tty->ctrl_lock, flags);
924         if (!tty->stopped || tty->flow_stopped) {
925                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
926                 return;
927         }
928         tty->stopped = 0;
929         if (tty->link && tty->link->packet) {
930                 tty->ctrl_status &= ~TIOCPKT_STOP;
931                 tty->ctrl_status |= TIOCPKT_START;
932                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
933         }
934         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935         if (tty->ops->start)
936                 (tty->ops->start)(tty);
937         /* If we have a running line discipline it may need kicking */
938         tty_wakeup(tty);
939 }
940
941 EXPORT_SYMBOL(start_tty);
942
943 /* We limit tty time update visibility to every 8 seconds or so. */
944 static void tty_update_time(struct timespec *time)
945 {
946         unsigned long sec = get_seconds();
947         if (abs(sec - time->tv_sec) & ~7)
948                 time->tv_sec = sec;
949 }
950
951 /**
952  *      tty_read        -       read method for tty device files
953  *      @file: pointer to tty file
954  *      @buf: user buffer
955  *      @count: size of user buffer
956  *      @ppos: unused
957  *
958  *      Perform the read system call function on this terminal device. Checks
959  *      for hung up devices before calling the line discipline method.
960  *
961  *      Locking:
962  *              Locks the line discipline internally while needed. Multiple
963  *      read calls may be outstanding in parallel.
964  */
965
966 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
967                         loff_t *ppos)
968 {
969         int i;
970         struct inode *inode = file->f_path.dentry->d_inode;
971         struct tty_struct *tty = file_tty(file);
972         struct tty_ldisc *ld;
973
974         if (tty_paranoia_check(tty, inode, "tty_read"))
975                 return -EIO;
976         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
977                 return -EIO;
978
979         /* We want to wait for the line discipline to sort out in this
980            situation */
981         ld = tty_ldisc_ref_wait(tty);
982         if (ld->ops->read)
983                 i = (ld->ops->read)(tty, file, buf, count);
984         else
985                 i = -EIO;
986         tty_ldisc_deref(ld);
987
988         if (i > 0)
989                 tty_update_time(&inode->i_atime);
990
991         return i;
992 }
993
994 void tty_write_unlock(struct tty_struct *tty)
995         __releases(&tty->atomic_write_lock)
996 {
997         mutex_unlock(&tty->atomic_write_lock);
998         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
999 }
1000
1001 int tty_write_lock(struct tty_struct *tty, int ndelay)
1002         __acquires(&tty->atomic_write_lock)
1003 {
1004         if (!mutex_trylock(&tty->atomic_write_lock)) {
1005                 if (ndelay)
1006                         return -EAGAIN;
1007                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1008                         return -ERESTARTSYS;
1009         }
1010         return 0;
1011 }
1012
1013 /*
1014  * Split writes up in sane blocksizes to avoid
1015  * denial-of-service type attacks
1016  */
1017 static inline ssize_t do_tty_write(
1018         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1019         struct tty_struct *tty,
1020         struct file *file,
1021         const char __user *buf,
1022         size_t count)
1023 {
1024         ssize_t ret, written = 0;
1025         unsigned int chunk;
1026
1027         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1028         if (ret < 0)
1029                 return ret;
1030
1031         /*
1032          * We chunk up writes into a temporary buffer. This
1033          * simplifies low-level drivers immensely, since they
1034          * don't have locking issues and user mode accesses.
1035          *
1036          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1037          * big chunk-size..
1038          *
1039          * The default chunk-size is 2kB, because the NTTY
1040          * layer has problems with bigger chunks. It will
1041          * claim to be able to handle more characters than
1042          * it actually does.
1043          *
1044          * FIXME: This can probably go away now except that 64K chunks
1045          * are too likely to fail unless switched to vmalloc...
1046          */
1047         chunk = 2048;
1048         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1049                 chunk = 65536;
1050         if (count < chunk)
1051                 chunk = count;
1052
1053         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1054         if (tty->write_cnt < chunk) {
1055                 unsigned char *buf_chunk;
1056
1057                 if (chunk < 1024)
1058                         chunk = 1024;
1059
1060                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1061                 if (!buf_chunk) {
1062                         ret = -ENOMEM;
1063                         goto out;
1064                 }
1065                 kfree(tty->write_buf);
1066                 tty->write_cnt = chunk;
1067                 tty->write_buf = buf_chunk;
1068         }
1069
1070         /* Do the write .. */
1071         for (;;) {
1072                 size_t size = count;
1073                 if (size > chunk)
1074                         size = chunk;
1075                 ret = -EFAULT;
1076                 if (copy_from_user(tty->write_buf, buf, size))
1077                         break;
1078                 ret = write(tty, file, tty->write_buf, size);
1079                 if (ret <= 0)
1080                         break;
1081                 written += ret;
1082                 buf += ret;
1083                 count -= ret;
1084                 if (!count)
1085                         break;
1086                 ret = -ERESTARTSYS;
1087                 if (signal_pending(current))
1088                         break;
1089                 cond_resched();
1090         }
1091         if (written) {
1092                struct inode *inode = file->f_path.dentry->d_inode;
1093                 tty_update_time(&inode->i_mtime);
1094                 ret = written;
1095         }
1096 out:
1097         tty_write_unlock(tty);
1098         return ret;
1099 }
1100
1101 /**
1102  * tty_write_message - write a message to a certain tty, not just the console.
1103  * @tty: the destination tty_struct
1104  * @msg: the message to write
1105  *
1106  * This is used for messages that need to be redirected to a specific tty.
1107  * We don't put it into the syslog queue right now maybe in the future if
1108  * really needed.
1109  *
1110  * We must still hold the BTM and test the CLOSING flag for the moment.
1111  */
1112
1113 void tty_write_message(struct tty_struct *tty, char *msg)
1114 {
1115         if (tty) {
1116                 mutex_lock(&tty->atomic_write_lock);
1117                 tty_lock();
1118                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1119                         tty_unlock();
1120                         tty->ops->write(tty, msg, strlen(msg));
1121                 } else
1122                         tty_unlock();
1123                 tty_write_unlock(tty);
1124         }
1125         return;
1126 }
1127
1128
1129 /**
1130  *      tty_write               -       write method for tty device file
1131  *      @file: tty file pointer
1132  *      @buf: user data to write
1133  *      @count: bytes to write
1134  *      @ppos: unused
1135  *
1136  *      Write data to a tty device via the line discipline.
1137  *
1138  *      Locking:
1139  *              Locks the line discipline as required
1140  *              Writes to the tty driver are serialized by the atomic_write_lock
1141  *      and are then processed in chunks to the device. The line discipline
1142  *      write method will not be invoked in parallel for each device.
1143  */
1144
1145 static ssize_t tty_write(struct file *file, const char __user *buf,
1146                                                 size_t count, loff_t *ppos)
1147 {
1148         struct inode *inode = file->f_path.dentry->d_inode;
1149         struct tty_struct *tty = file_tty(file);
1150         struct tty_ldisc *ld;
1151         ssize_t ret;
1152
1153         if (tty_paranoia_check(tty, inode, "tty_write"))
1154                 return -EIO;
1155         if (!tty || !tty->ops->write ||
1156                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1157                         return -EIO;
1158         /* Short term debug to catch buggy drivers */
1159         if (tty->ops->write_room == NULL)
1160                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1161                         tty->driver->name);
1162         ld = tty_ldisc_ref_wait(tty);
1163         if (!ld->ops->write)
1164                 ret = -EIO;
1165         else
1166                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1167         tty_ldisc_deref(ld);
1168         return ret;
1169 }
1170
1171 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1172                                                 size_t count, loff_t *ppos)
1173 {
1174         struct file *p = NULL;
1175
1176         spin_lock(&redirect_lock);
1177         if (redirect) {
1178                 get_file(redirect);
1179                 p = redirect;
1180         }
1181         spin_unlock(&redirect_lock);
1182
1183         if (p) {
1184                 ssize_t res;
1185                 res = vfs_write(p, buf, count, &p->f_pos);
1186                 fput(p);
1187                 return res;
1188         }
1189         return tty_write(file, buf, count, ppos);
1190 }
1191
1192 static char ptychar[] = "pqrstuvwxyzabcde";
1193
1194 /**
1195  *      pty_line_name   -       generate name for a pty
1196  *      @driver: the tty driver in use
1197  *      @index: the minor number
1198  *      @p: output buffer of at least 6 bytes
1199  *
1200  *      Generate a name from a driver reference and write it to the output
1201  *      buffer.
1202  *
1203  *      Locking: None
1204  */
1205 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1206 {
1207         int i = index + driver->name_base;
1208         /* ->name is initialized to "ttyp", but "tty" is expected */
1209         sprintf(p, "%s%c%x",
1210                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1211                 ptychar[i >> 4 & 0xf], i & 0xf);
1212 }
1213
1214 /**
1215  *      tty_line_name   -       generate name for a tty
1216  *      @driver: the tty driver in use
1217  *      @index: the minor number
1218  *      @p: output buffer of at least 7 bytes
1219  *
1220  *      Generate a name from a driver reference and write it to the output
1221  *      buffer.
1222  *
1223  *      Locking: None
1224  */
1225 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1226 {
1227         return sprintf(p, "%s%d", driver->name, index + driver->name_base);
1228 }
1229
1230 /**
1231  *      tty_driver_lookup_tty() - find an existing tty, if any
1232  *      @driver: the driver for the tty
1233  *      @idx:    the minor number
1234  *
1235  *      Return the tty, if found or ERR_PTR() otherwise.
1236  *
1237  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1238  *      be held until the 'fast-open' is also done. Will change once we
1239  *      have refcounting in the driver and per driver locking
1240  */
1241 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1242                 struct inode *inode, int idx)
1243 {
1244         struct tty_struct *tty;
1245
1246         if (driver->ops->lookup)
1247                 return driver->ops->lookup(driver, inode, idx);
1248
1249         tty = driver->ttys[idx];
1250         return tty;
1251 }
1252
1253 /**
1254  *      tty_init_termios        -  helper for termios setup
1255  *      @tty: the tty to set up
1256  *
1257  *      Initialise the termios structures for this tty. Thus runs under
1258  *      the tty_mutex currently so we can be relaxed about ordering.
1259  */
1260
1261 int tty_init_termios(struct tty_struct *tty)
1262 {
1263         struct ktermios *tp;
1264         int idx = tty->index;
1265
1266         tp = tty->driver->termios[idx];
1267         if (tp == NULL) {
1268                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1269                 if (tp == NULL)
1270                         return -ENOMEM;
1271                 memcpy(tp, &tty->driver->init_termios,
1272                                                 sizeof(struct ktermios));
1273                 tty->driver->termios[idx] = tp;
1274         }
1275         tty->termios = tp;
1276         tty->termios_locked = tp + 1;
1277
1278         /* Compatibility until drivers always set this */
1279         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1280         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1281         return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_init_termios);
1284
1285 /**
1286  *      tty_driver_install_tty() - install a tty entry in the driver
1287  *      @driver: the driver for the tty
1288  *      @tty: the tty
1289  *
1290  *      Install a tty object into the driver tables. The tty->index field
1291  *      will be set by the time this is called. This method is responsible
1292  *      for ensuring any need additional structures are allocated and
1293  *      configured.
1294  *
1295  *      Locking: tty_mutex for now
1296  */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298                                                 struct tty_struct *tty)
1299 {
1300         int idx = tty->index;
1301         int ret;
1302
1303         if (driver->ops->install) {
1304                 ret = driver->ops->install(driver, tty);
1305                 return ret;
1306         }
1307
1308         if (tty_init_termios(tty) == 0) {
1309                 tty_driver_kref_get(driver);
1310                 tty->count++;
1311                 driver->ttys[idx] = tty;
1312                 return 0;
1313         }
1314         return -ENOMEM;
1315 }
1316
1317 /**
1318  *      tty_driver_remove_tty() - remove a tty from the driver tables
1319  *      @driver: the driver for the tty
1320  *      @idx:    the minor number
1321  *
1322  *      Remvoe a tty object from the driver tables. The tty->index field
1323  *      will be set by the time this is called.
1324  *
1325  *      Locking: tty_mutex for now
1326  */
1327 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1328 {
1329         if (driver->ops->remove)
1330                 driver->ops->remove(driver, tty);
1331         else
1332                 driver->ttys[tty->index] = NULL;
1333 }
1334
1335 /*
1336  *      tty_reopen()    - fast re-open of an open tty
1337  *      @tty    - the tty to open
1338  *
1339  *      Return 0 on success, -errno on error.
1340  *
1341  *      Locking: tty_mutex must be held from the time the tty was found
1342  *               till this open completes.
1343  */
1344 static int tty_reopen(struct tty_struct *tty)
1345 {
1346         struct tty_driver *driver = tty->driver;
1347
1348         if (test_bit(TTY_CLOSING, &tty->flags) ||
1349                         test_bit(TTY_HUPPING, &tty->flags) ||
1350                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1351                 return -EIO;
1352
1353         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1354             driver->subtype == PTY_TYPE_MASTER) {
1355                 /*
1356                  * special case for PTY masters: only one open permitted,
1357                  * and the slave side open count is incremented as well.
1358                  */
1359                 if (tty->count)
1360                         return -EIO;
1361
1362                 tty->link->count++;
1363         }
1364         tty->count++;
1365         tty->driver = driver; /* N.B. why do this every time?? */
1366
1367         mutex_lock(&tty->ldisc_mutex);
1368         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1369         mutex_unlock(&tty->ldisc_mutex);
1370
1371         return 0;
1372 }
1373
1374 /**
1375  *      tty_init_dev            -       initialise a tty device
1376  *      @driver: tty driver we are opening a device on
1377  *      @idx: device index
1378  *      @ret_tty: returned tty structure
1379  *      @first_ok: ok to open a new device (used by ptmx)
1380  *
1381  *      Prepare a tty device. This may not be a "new" clean device but
1382  *      could also be an active device. The pty drivers require special
1383  *      handling because of this.
1384  *
1385  *      Locking:
1386  *              The function is called under the tty_mutex, which
1387  *      protects us from the tty struct or driver itself going away.
1388  *
1389  *      On exit the tty device has the line discipline attached and
1390  *      a reference count of 1. If a pair was created for pty/tty use
1391  *      and the other was a pty master then it too has a reference count of 1.
1392  *
1393  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1394  * failed open.  The new code protects the open with a mutex, so it's
1395  * really quite straightforward.  The mutex locking can probably be
1396  * relaxed for the (most common) case of reopening a tty.
1397  */
1398
1399 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1400                                                                 int first_ok)
1401 {
1402         struct tty_struct *tty;
1403         int retval;
1404
1405         /* Check if pty master is being opened multiple times */
1406         if (driver->subtype == PTY_TYPE_MASTER &&
1407                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1408                 return ERR_PTR(-EIO);
1409         }
1410
1411         /*
1412          * First time open is complex, especially for PTY devices.
1413          * This code guarantees that either everything succeeds and the
1414          * TTY is ready for operation, or else the table slots are vacated
1415          * and the allocated memory released.  (Except that the termios
1416          * and locked termios may be retained.)
1417          */
1418
1419         if (!try_module_get(driver->owner))
1420                 return ERR_PTR(-ENODEV);
1421
1422         tty = alloc_tty_struct();
1423         if (!tty) {
1424                 retval = -ENOMEM;
1425                 goto err_module_put;
1426         }
1427         initialize_tty_struct(tty, driver, idx);
1428
1429         retval = tty_driver_install_tty(driver, tty);
1430         if (retval < 0)
1431                 goto err_deinit_tty;
1432
1433         /*
1434          * Structures all installed ... call the ldisc open routines.
1435          * If we fail here just call release_tty to clean up.  No need
1436          * to decrement the use counts, as release_tty doesn't care.
1437          */
1438         retval = tty_ldisc_setup(tty, tty->link);
1439         if (retval)
1440                 goto err_release_tty;
1441         return tty;
1442
1443 err_deinit_tty:
1444         deinitialize_tty_struct(tty);
1445         free_tty_struct(tty);
1446 err_module_put:
1447         module_put(driver->owner);
1448         return ERR_PTR(retval);
1449
1450         /* call the tty release_tty routine to clean out this slot */
1451 err_release_tty:
1452         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1453                                  "clearing slot %d\n", idx);
1454         release_tty(tty, idx);
1455         return ERR_PTR(retval);
1456 }
1457
1458 void tty_free_termios(struct tty_struct *tty)
1459 {
1460         struct ktermios *tp;
1461         int idx = tty->index;
1462         /* Kill this flag and push into drivers for locking etc */
1463         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1464                 /* FIXME: Locking on ->termios array */
1465                 tp = tty->termios;
1466                 tty->driver->termios[idx] = NULL;
1467                 kfree(tp);
1468         }
1469 }
1470 EXPORT_SYMBOL(tty_free_termios);
1471
1472 void tty_shutdown(struct tty_struct *tty)
1473 {
1474         tty_driver_remove_tty(tty->driver, tty);
1475         tty_free_termios(tty);
1476 }
1477 EXPORT_SYMBOL(tty_shutdown);
1478
1479 /**
1480  *      release_one_tty         -       release tty structure memory
1481  *      @kref: kref of tty we are obliterating
1482  *
1483  *      Releases memory associated with a tty structure, and clears out the
1484  *      driver table slots. This function is called when a device is no longer
1485  *      in use. It also gets called when setup of a device fails.
1486  *
1487  *      Locking:
1488  *              tty_mutex - sometimes only
1489  *              takes the file list lock internally when working on the list
1490  *      of ttys that the driver keeps.
1491  *
1492  *      This method gets called from a work queue so that the driver private
1493  *      cleanup ops can sleep (needed for USB at least)
1494  */
1495 static void release_one_tty(struct work_struct *work)
1496 {
1497         struct tty_struct *tty =
1498                 container_of(work, struct tty_struct, hangup_work);
1499         struct tty_driver *driver = tty->driver;
1500
1501         if (tty->ops->cleanup)
1502                 tty->ops->cleanup(tty);
1503
1504         tty->magic = 0;
1505         tty_driver_kref_put(driver);
1506         module_put(driver->owner);
1507
1508         spin_lock(&tty_files_lock);
1509         list_del_init(&tty->tty_files);
1510         spin_unlock(&tty_files_lock);
1511
1512         put_pid(tty->pgrp);
1513         put_pid(tty->session);
1514         free_tty_struct(tty);
1515 }
1516
1517 static void queue_release_one_tty(struct kref *kref)
1518 {
1519         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1520
1521         if (tty->ops->shutdown)
1522                 tty->ops->shutdown(tty);
1523         else
1524                 tty_shutdown(tty);
1525
1526         /* The hangup queue is now free so we can reuse it rather than
1527            waste a chunk of memory for each port */
1528         INIT_WORK(&tty->hangup_work, release_one_tty);
1529         schedule_work(&tty->hangup_work);
1530 }
1531
1532 /**
1533  *      tty_kref_put            -       release a tty kref
1534  *      @tty: tty device
1535  *
1536  *      Release a reference to a tty device and if need be let the kref
1537  *      layer destruct the object for us
1538  */
1539
1540 void tty_kref_put(struct tty_struct *tty)
1541 {
1542         if (tty)
1543                 kref_put(&tty->kref, queue_release_one_tty);
1544 }
1545 EXPORT_SYMBOL(tty_kref_put);
1546
1547 /**
1548  *      release_tty             -       release tty structure memory
1549  *
1550  *      Release both @tty and a possible linked partner (think pty pair),
1551  *      and decrement the refcount of the backing module.
1552  *
1553  *      Locking:
1554  *              tty_mutex - sometimes only
1555  *              takes the file list lock internally when working on the list
1556  *      of ttys that the driver keeps.
1557  *              FIXME: should we require tty_mutex is held here ??
1558  *
1559  */
1560 static void release_tty(struct tty_struct *tty, int idx)
1561 {
1562         /* This should always be true but check for the moment */
1563         WARN_ON(tty->index != idx);
1564
1565         if (tty->link)
1566                 tty_kref_put(tty->link);
1567         tty_kref_put(tty);
1568 }
1569
1570 /**
1571  *      tty_release             -       vfs callback for close
1572  *      @inode: inode of tty
1573  *      @filp: file pointer for handle to tty
1574  *
1575  *      Called the last time each file handle is closed that references
1576  *      this tty. There may however be several such references.
1577  *
1578  *      Locking:
1579  *              Takes bkl. See tty_release_dev
1580  *
1581  * Even releasing the tty structures is a tricky business.. We have
1582  * to be very careful that the structures are all released at the
1583  * same time, as interrupts might otherwise get the wrong pointers.
1584  *
1585  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1586  * lead to double frees or releasing memory still in use.
1587  */
1588
1589 int tty_release(struct inode *inode, struct file *filp)
1590 {
1591         struct tty_struct *tty = file_tty(filp);
1592         struct tty_struct *o_tty;
1593         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1594         int     devpts;
1595         int     idx;
1596         char    buf[64];
1597         long    timeout = 0;
1598
1599         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1600                 return 0;
1601
1602         tty_lock();
1603         check_tty_count(tty, "tty_release_dev");
1604
1605         __tty_fasync(-1, filp, 0);
1606
1607         idx = tty->index;
1608         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1609                       tty->driver->subtype == PTY_TYPE_MASTER);
1610         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1611         o_tty = tty->link;
1612
1613 #ifdef TTY_PARANOIA_CHECK
1614         if (idx < 0 || idx >= tty->driver->num) {
1615                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1616                                   "free (%s)\n", tty->name);
1617                 tty_unlock();
1618                 return 0;
1619         }
1620         if (!devpts) {
1621                 if (tty != tty->driver->ttys[idx]) {
1622                         tty_unlock();
1623                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1624                                "for (%s)\n", idx, tty->name);
1625                         return 0;
1626                 }
1627                 if (tty->termios != tty->driver->termios[idx]) {
1628                         tty_unlock();
1629                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1630                                "for (%s)\n",
1631                                idx, tty->name);
1632                         return 0;
1633                 }
1634         }
1635 #endif
1636
1637 #ifdef TTY_DEBUG_HANGUP
1638         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1639                tty_name(tty, buf), tty->count);
1640 #endif
1641
1642 #ifdef TTY_PARANOIA_CHECK
1643         if (tty->driver->other &&
1644              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1645                 if (o_tty != tty->driver->other->ttys[idx]) {
1646                         tty_unlock();
1647                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1648                                           "not o_tty for (%s)\n",
1649                                idx, tty->name);
1650                         return 0 ;
1651                 }
1652                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1653                         tty_unlock();
1654                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1655                                           "not o_termios for (%s)\n",
1656                                idx, tty->name);
1657                         return 0;
1658                 }
1659                 if (o_tty->link != tty) {
1660                         tty_unlock();
1661                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1662                         return 0;
1663                 }
1664         }
1665 #endif
1666         if (tty->ops->close)
1667                 tty->ops->close(tty, filp);
1668
1669         tty_unlock();
1670         /*
1671          * Sanity check: if tty->count is going to zero, there shouldn't be
1672          * any waiters on tty->read_wait or tty->write_wait.  We test the
1673          * wait queues and kick everyone out _before_ actually starting to
1674          * close.  This ensures that we won't block while releasing the tty
1675          * structure.
1676          *
1677          * The test for the o_tty closing is necessary, since the master and
1678          * slave sides may close in any order.  If the slave side closes out
1679          * first, its count will be one, since the master side holds an open.
1680          * Thus this test wouldn't be triggered at the time the slave closes,
1681          * so we do it now.
1682          *
1683          * Note that it's possible for the tty to be opened again while we're
1684          * flushing out waiters.  By recalculating the closing flags before
1685          * each iteration we avoid any problems.
1686          */
1687         while (1) {
1688                 /* Guard against races with tty->count changes elsewhere and
1689                    opens on /dev/tty */
1690
1691                 mutex_lock(&tty_mutex);
1692                 tty_lock();
1693                 tty_closing = tty->count <= 1;
1694                 o_tty_closing = o_tty &&
1695                         (o_tty->count <= (pty_master ? 1 : 0));
1696                 do_sleep = 0;
1697
1698                 if (tty_closing) {
1699                         if (waitqueue_active(&tty->read_wait)) {
1700                                 wake_up_poll(&tty->read_wait, POLLIN);
1701                                 do_sleep++;
1702                         }
1703                         if (waitqueue_active(&tty->write_wait)) {
1704                                 wake_up_poll(&tty->write_wait, POLLOUT);
1705                                 do_sleep++;
1706                         }
1707                 }
1708                 if (o_tty_closing) {
1709                         if (waitqueue_active(&o_tty->read_wait)) {
1710                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1711                                 do_sleep++;
1712                         }
1713                         if (waitqueue_active(&o_tty->write_wait)) {
1714                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1715                                 do_sleep++;
1716                         }
1717                 }
1718                 if (!do_sleep)
1719                         break;
1720
1721                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1722                                     "active!\n", tty_name(tty, buf));
1723                 tty_unlock();
1724                 mutex_unlock(&tty_mutex);
1725                 schedule_timeout_killable(timeout);
1726                 if (timeout < 120 * HZ)
1727                         timeout = 2 * timeout + 1;
1728                 else
1729                         timeout = MAX_SCHEDULE_TIMEOUT;
1730         }
1731
1732         /*
1733          * The closing flags are now consistent with the open counts on
1734          * both sides, and we've completed the last operation that could
1735          * block, so it's safe to proceed with closing.
1736          */
1737         if (pty_master) {
1738                 if (--o_tty->count < 0) {
1739                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1740                                             "(%d) for %s\n",
1741                                o_tty->count, tty_name(o_tty, buf));
1742                         o_tty->count = 0;
1743                 }
1744         }
1745         if (--tty->count < 0) {
1746                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1747                        tty->count, tty_name(tty, buf));
1748                 tty->count = 0;
1749         }
1750
1751         /*
1752          * We've decremented tty->count, so we need to remove this file
1753          * descriptor off the tty->tty_files list; this serves two
1754          * purposes:
1755          *  - check_tty_count sees the correct number of file descriptors
1756          *    associated with this tty.
1757          *  - do_tty_hangup no longer sees this file descriptor as
1758          *    something that needs to be handled for hangups.
1759          */
1760         tty_del_file(filp);
1761
1762         /*
1763          * Perform some housekeeping before deciding whether to return.
1764          *
1765          * Set the TTY_CLOSING flag if this was the last open.  In the
1766          * case of a pty we may have to wait around for the other side
1767          * to close, and TTY_CLOSING makes sure we can't be reopened.
1768          */
1769         if (tty_closing)
1770                 set_bit(TTY_CLOSING, &tty->flags);
1771         if (o_tty_closing)
1772                 set_bit(TTY_CLOSING, &o_tty->flags);
1773
1774         /*
1775          * If _either_ side is closing, make sure there aren't any
1776          * processes that still think tty or o_tty is their controlling
1777          * tty.
1778          */
1779         if (tty_closing || o_tty_closing) {
1780                 read_lock(&tasklist_lock);
1781                 session_clear_tty(tty->session);
1782                 if (o_tty)
1783                         session_clear_tty(o_tty->session);
1784                 read_unlock(&tasklist_lock);
1785         }
1786
1787         mutex_unlock(&tty_mutex);
1788
1789         /* check whether both sides are closing ... */
1790         if (!tty_closing || (o_tty && !o_tty_closing)) {
1791                 tty_unlock();
1792                 return 0;
1793         }
1794
1795 #ifdef TTY_DEBUG_HANGUP
1796         printk(KERN_DEBUG "freeing tty structure...");
1797 #endif
1798         /*
1799          * Ask the line discipline code to release its structures
1800          */
1801         tty_ldisc_release(tty, o_tty);
1802         /*
1803          * The release_tty function takes care of the details of clearing
1804          * the slots and preserving the termios structure.
1805          */
1806         release_tty(tty, idx);
1807
1808         /* Make this pty number available for reallocation */
1809         if (devpts)
1810                 devpts_kill_index(inode, idx);
1811         tty_unlock();
1812         return 0;
1813 }
1814
1815 /**
1816  *      tty_open                -       open a tty device
1817  *      @inode: inode of device file
1818  *      @filp: file pointer to tty
1819  *
1820  *      tty_open and tty_release keep up the tty count that contains the
1821  *      number of opens done on a tty. We cannot use the inode-count, as
1822  *      different inodes might point to the same tty.
1823  *
1824  *      Open-counting is needed for pty masters, as well as for keeping
1825  *      track of serial lines: DTR is dropped when the last close happens.
1826  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1827  *
1828  *      The termios state of a pty is reset on first open so that
1829  *      settings don't persist across reuse.
1830  *
1831  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1832  *               tty->count should protect the rest.
1833  *               ->siglock protects ->signal/->sighand
1834  */
1835
1836 static int tty_open(struct inode *inode, struct file *filp)
1837 {
1838         struct tty_struct *tty = NULL;
1839         int noctty, retval;
1840         struct tty_driver *driver;
1841         int index;
1842         dev_t device = inode->i_rdev;
1843         unsigned saved_flags = filp->f_flags;
1844
1845         nonseekable_open(inode, filp);
1846
1847 retry_open:
1848         retval = tty_alloc_file(filp);
1849         if (retval)
1850                 return -ENOMEM;
1851
1852         noctty = filp->f_flags & O_NOCTTY;
1853         index  = -1;
1854         retval = 0;
1855
1856         mutex_lock(&tty_mutex);
1857         tty_lock();
1858
1859         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1860                 tty = get_current_tty();
1861                 if (!tty) {
1862                         tty_unlock();
1863                         mutex_unlock(&tty_mutex);
1864                         tty_free_file(filp);
1865                         return -ENXIO;
1866                 }
1867                 driver = tty_driver_kref_get(tty->driver);
1868                 index = tty->index;
1869                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1870                 /* noctty = 1; */
1871                 /* FIXME: Should we take a driver reference ? */
1872                 tty_kref_put(tty);
1873                 goto got_driver;
1874         }
1875 #ifdef CONFIG_VT
1876         if (device == MKDEV(TTY_MAJOR, 0)) {
1877                 extern struct tty_driver *console_driver;
1878                 driver = tty_driver_kref_get(console_driver);
1879                 index = fg_console;
1880                 noctty = 1;
1881                 goto got_driver;
1882         }
1883 #endif
1884         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1885                 struct tty_driver *console_driver = console_device(&index);
1886                 if (console_driver) {
1887                         driver = tty_driver_kref_get(console_driver);
1888                         if (driver) {
1889                                 /* Don't let /dev/console block */
1890                                 filp->f_flags |= O_NONBLOCK;
1891                                 noctty = 1;
1892                                 goto got_driver;
1893                         }
1894                 }
1895                 tty_unlock();
1896                 mutex_unlock(&tty_mutex);
1897                 tty_free_file(filp);
1898                 return -ENODEV;
1899         }
1900
1901         driver = get_tty_driver(device, &index);
1902         if (!driver) {
1903                 tty_unlock();
1904                 mutex_unlock(&tty_mutex);
1905                 tty_free_file(filp);
1906                 return -ENODEV;
1907         }
1908 got_driver:
1909         if (!tty) {
1910                 /* check whether we're reopening an existing tty */
1911                 tty = tty_driver_lookup_tty(driver, inode, index);
1912
1913                 if (IS_ERR(tty)) {
1914                         tty_unlock();
1915                         mutex_unlock(&tty_mutex);
1916                         tty_driver_kref_put(driver);
1917                         tty_free_file(filp);
1918                         return PTR_ERR(tty);
1919                 }
1920         }
1921
1922         if (tty) {
1923                 retval = tty_reopen(tty);
1924                 if (retval)
1925                         tty = ERR_PTR(retval);
1926         } else
1927                 tty = tty_init_dev(driver, index, 0);
1928
1929         mutex_unlock(&tty_mutex);
1930         tty_driver_kref_put(driver);
1931         if (IS_ERR(tty)) {
1932                 tty_unlock();
1933                 tty_free_file(filp);
1934                 return PTR_ERR(tty);
1935         }
1936
1937         tty_add_file(tty, filp);
1938
1939         check_tty_count(tty, "tty_open");
1940         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1941             tty->driver->subtype == PTY_TYPE_MASTER)
1942                 noctty = 1;
1943 #ifdef TTY_DEBUG_HANGUP
1944         printk(KERN_DEBUG "opening %s...", tty->name);
1945 #endif
1946         if (tty->ops->open)
1947                 retval = tty->ops->open(tty, filp);
1948         else
1949                 retval = -ENODEV;
1950         filp->f_flags = saved_flags;
1951
1952         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1953                                                 !capable(CAP_SYS_ADMIN))
1954                 retval = -EBUSY;
1955
1956         if (retval) {
1957 #ifdef TTY_DEBUG_HANGUP
1958                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1959                        tty->name);
1960 #endif
1961                 tty_unlock(); /* need to call tty_release without BTM */
1962                 tty_release(inode, filp);
1963                 if (retval != -ERESTARTSYS)
1964                         return retval;
1965
1966                 if (signal_pending(current))
1967                         return retval;
1968
1969                 schedule();
1970                 /*
1971                  * Need to reset f_op in case a hangup happened.
1972                  */
1973                 tty_lock();
1974                 if (filp->f_op == &hung_up_tty_fops)
1975                         filp->f_op = &tty_fops;
1976                 tty_unlock();
1977                 goto retry_open;
1978         }
1979         tty_unlock();
1980
1981
1982         mutex_lock(&tty_mutex);
1983         tty_lock();
1984         spin_lock_irq(&current->sighand->siglock);
1985         if (!noctty &&
1986             current->signal->leader &&
1987             !current->signal->tty &&
1988             tty->session == NULL)
1989                 __proc_set_tty(current, tty);
1990         spin_unlock_irq(&current->sighand->siglock);
1991         tty_unlock();
1992         mutex_unlock(&tty_mutex);
1993         return 0;
1994 }
1995
1996
1997
1998 /**
1999  *      tty_poll        -       check tty status
2000  *      @filp: file being polled
2001  *      @wait: poll wait structures to update
2002  *
2003  *      Call the line discipline polling method to obtain the poll
2004  *      status of the device.
2005  *
2006  *      Locking: locks called line discipline but ldisc poll method
2007  *      may be re-entered freely by other callers.
2008  */
2009
2010 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2011 {
2012         struct tty_struct *tty = file_tty(filp);
2013         struct tty_ldisc *ld;
2014         int ret = 0;
2015
2016         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2017                 return 0;
2018
2019         ld = tty_ldisc_ref_wait(tty);
2020         if (ld->ops->poll)
2021                 ret = (ld->ops->poll)(tty, filp, wait);
2022         tty_ldisc_deref(ld);
2023         return ret;
2024 }
2025
2026 static int __tty_fasync(int fd, struct file *filp, int on)
2027 {
2028         struct tty_struct *tty = file_tty(filp);
2029         unsigned long flags;
2030         int retval = 0;
2031
2032         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2033                 goto out;
2034
2035         retval = fasync_helper(fd, filp, on, &tty->fasync);
2036         if (retval <= 0)
2037                 goto out;
2038
2039         if (on) {
2040                 enum pid_type type;
2041                 struct pid *pid;
2042                 if (!waitqueue_active(&tty->read_wait))
2043                         tty->minimum_to_wake = 1;
2044                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2045                 if (tty->pgrp) {
2046                         pid = tty->pgrp;
2047                         type = PIDTYPE_PGID;
2048                 } else {
2049                         pid = task_pid(current);
2050                         type = PIDTYPE_PID;
2051                 }
2052                 get_pid(pid);
2053                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2054                 retval = __f_setown(filp, pid, type, 0);
2055                 put_pid(pid);
2056                 if (retval)
2057                         goto out;
2058         } else {
2059                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2060                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2061         }
2062         retval = 0;
2063 out:
2064         return retval;
2065 }
2066
2067 static int tty_fasync(int fd, struct file *filp, int on)
2068 {
2069         int retval;
2070         tty_lock();
2071         retval = __tty_fasync(fd, filp, on);
2072         tty_unlock();
2073         return retval;
2074 }
2075
2076 /**
2077  *      tiocsti                 -       fake input character
2078  *      @tty: tty to fake input into
2079  *      @p: pointer to character
2080  *
2081  *      Fake input to a tty device. Does the necessary locking and
2082  *      input management.
2083  *
2084  *      FIXME: does not honour flow control ??
2085  *
2086  *      Locking:
2087  *              Called functions take tty_ldisc_lock
2088  *              current->signal->tty check is safe without locks
2089  *
2090  *      FIXME: may race normal receive processing
2091  */
2092
2093 static int tiocsti(struct tty_struct *tty, char __user *p)
2094 {
2095         char ch, mbz = 0;
2096         struct tty_ldisc *ld;
2097
2098         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2099                 return -EPERM;
2100         if (get_user(ch, p))
2101                 return -EFAULT;
2102         tty_audit_tiocsti(tty, ch);
2103         ld = tty_ldisc_ref_wait(tty);
2104         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2105         tty_ldisc_deref(ld);
2106         return 0;
2107 }
2108
2109 /**
2110  *      tiocgwinsz              -       implement window query ioctl
2111  *      @tty; tty
2112  *      @arg: user buffer for result
2113  *
2114  *      Copies the kernel idea of the window size into the user buffer.
2115  *
2116  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2117  *              is consistent.
2118  */
2119
2120 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2121 {
2122         int err;
2123
2124         mutex_lock(&tty->termios_mutex);
2125         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2126         mutex_unlock(&tty->termios_mutex);
2127
2128         return err ? -EFAULT: 0;
2129 }
2130
2131 /**
2132  *      tty_do_resize           -       resize event
2133  *      @tty: tty being resized
2134  *      @rows: rows (character)
2135  *      @cols: cols (character)
2136  *
2137  *      Update the termios variables and send the necessary signals to
2138  *      peform a terminal resize correctly
2139  */
2140
2141 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2142 {
2143         struct pid *pgrp;
2144         unsigned long flags;
2145
2146         /* Lock the tty */
2147         mutex_lock(&tty->termios_mutex);
2148         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2149                 goto done;
2150         /* Get the PID values and reference them so we can
2151            avoid holding the tty ctrl lock while sending signals */
2152         spin_lock_irqsave(&tty->ctrl_lock, flags);
2153         pgrp = get_pid(tty->pgrp);
2154         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2155
2156         if (pgrp)
2157                 kill_pgrp(pgrp, SIGWINCH, 1);
2158         put_pid(pgrp);
2159
2160         tty->winsize = *ws;
2161 done:
2162         mutex_unlock(&tty->termios_mutex);
2163         return 0;
2164 }
2165
2166 /**
2167  *      tiocswinsz              -       implement window size set ioctl
2168  *      @tty; tty side of tty
2169  *      @arg: user buffer for result
2170  *
2171  *      Copies the user idea of the window size to the kernel. Traditionally
2172  *      this is just advisory information but for the Linux console it
2173  *      actually has driver level meaning and triggers a VC resize.
2174  *
2175  *      Locking:
2176  *              Driver dependent. The default do_resize method takes the
2177  *      tty termios mutex and ctrl_lock. The console takes its own lock
2178  *      then calls into the default method.
2179  */
2180
2181 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2182 {
2183         struct winsize tmp_ws;
2184         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2185                 return -EFAULT;
2186
2187         if (tty->ops->resize)
2188                 return tty->ops->resize(tty, &tmp_ws);
2189         else
2190                 return tty_do_resize(tty, &tmp_ws);
2191 }
2192
2193 /**
2194  *      tioccons        -       allow admin to move logical console
2195  *      @file: the file to become console
2196  *
2197  *      Allow the administrator to move the redirected console device
2198  *
2199  *      Locking: uses redirect_lock to guard the redirect information
2200  */
2201
2202 static int tioccons(struct file *file)
2203 {
2204         if (!capable(CAP_SYS_ADMIN))
2205                 return -EPERM;
2206         if (file->f_op->write == redirected_tty_write) {
2207                 struct file *f;
2208                 spin_lock(&redirect_lock);
2209                 f = redirect;
2210                 redirect = NULL;
2211                 spin_unlock(&redirect_lock);
2212                 if (f)
2213                         fput(f);
2214                 return 0;
2215         }
2216         spin_lock(&redirect_lock);
2217         if (redirect) {
2218                 spin_unlock(&redirect_lock);
2219                 return -EBUSY;
2220         }
2221         get_file(file);
2222         redirect = file;
2223         spin_unlock(&redirect_lock);
2224         return 0;
2225 }
2226
2227 /**
2228  *      fionbio         -       non blocking ioctl
2229  *      @file: file to set blocking value
2230  *      @p: user parameter
2231  *
2232  *      Historical tty interfaces had a blocking control ioctl before
2233  *      the generic functionality existed. This piece of history is preserved
2234  *      in the expected tty API of posix OS's.
2235  *
2236  *      Locking: none, the open file handle ensures it won't go away.
2237  */
2238
2239 static int fionbio(struct file *file, int __user *p)
2240 {
2241         int nonblock;
2242
2243         if (get_user(nonblock, p))
2244                 return -EFAULT;
2245
2246         spin_lock(&file->f_lock);
2247         if (nonblock)
2248                 file->f_flags |= O_NONBLOCK;
2249         else
2250                 file->f_flags &= ~O_NONBLOCK;
2251         spin_unlock(&file->f_lock);
2252         return 0;
2253 }
2254
2255 /**
2256  *      tiocsctty       -       set controlling tty
2257  *      @tty: tty structure
2258  *      @arg: user argument
2259  *
2260  *      This ioctl is used to manage job control. It permits a session
2261  *      leader to set this tty as the controlling tty for the session.
2262  *
2263  *      Locking:
2264  *              Takes tty_mutex() to protect tty instance
2265  *              Takes tasklist_lock internally to walk sessions
2266  *              Takes ->siglock() when updating signal->tty
2267  */
2268
2269 static int tiocsctty(struct tty_struct *tty, int arg)
2270 {
2271         int ret = 0;
2272         if (current->signal->leader && (task_session(current) == tty->session))
2273                 return ret;
2274
2275         mutex_lock(&tty_mutex);
2276         /*
2277          * The process must be a session leader and
2278          * not have a controlling tty already.
2279          */
2280         if (!current->signal->leader || current->signal->tty) {
2281                 ret = -EPERM;
2282                 goto unlock;
2283         }
2284
2285         if (tty->session) {
2286                 /*
2287                  * This tty is already the controlling
2288                  * tty for another session group!
2289                  */
2290                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2291                         /*
2292                          * Steal it away
2293                          */
2294                         read_lock(&tasklist_lock);
2295                         session_clear_tty(tty->session);
2296                         read_unlock(&tasklist_lock);
2297                 } else {
2298                         ret = -EPERM;
2299                         goto unlock;
2300                 }
2301         }
2302         proc_set_tty(current, tty);
2303 unlock:
2304         mutex_unlock(&tty_mutex);
2305         return ret;
2306 }
2307
2308 /**
2309  *      tty_get_pgrp    -       return a ref counted pgrp pid
2310  *      @tty: tty to read
2311  *
2312  *      Returns a refcounted instance of the pid struct for the process
2313  *      group controlling the tty.
2314  */
2315
2316 struct pid *tty_get_pgrp(struct tty_struct *tty)
2317 {
2318         unsigned long flags;
2319         struct pid *pgrp;
2320
2321         spin_lock_irqsave(&tty->ctrl_lock, flags);
2322         pgrp = get_pid(tty->pgrp);
2323         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2324
2325         return pgrp;
2326 }
2327 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2328
2329 /**
2330  *      tiocgpgrp               -       get process group
2331  *      @tty: tty passed by user
2332  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2333  *      @p: returned pid
2334  *
2335  *      Obtain the process group of the tty. If there is no process group
2336  *      return an error.
2337  *
2338  *      Locking: none. Reference to current->signal->tty is safe.
2339  */
2340
2341 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2342 {
2343         struct pid *pid;
2344         int ret;
2345         /*
2346          * (tty == real_tty) is a cheap way of
2347          * testing if the tty is NOT a master pty.
2348          */
2349         if (tty == real_tty && current->signal->tty != real_tty)
2350                 return -ENOTTY;
2351         pid = tty_get_pgrp(real_tty);
2352         ret =  put_user(pid_vnr(pid), p);
2353         put_pid(pid);
2354         return ret;
2355 }
2356
2357 /**
2358  *      tiocspgrp               -       attempt to set process group
2359  *      @tty: tty passed by user
2360  *      @real_tty: tty side device matching tty passed by user
2361  *      @p: pid pointer
2362  *
2363  *      Set the process group of the tty to the session passed. Only
2364  *      permitted where the tty session is our session.
2365  *
2366  *      Locking: RCU, ctrl lock
2367  */
2368
2369 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2370 {
2371         struct pid *pgrp;
2372         pid_t pgrp_nr;
2373         int retval = tty_check_change(real_tty);
2374         unsigned long flags;
2375
2376         if (retval == -EIO)
2377                 return -ENOTTY;
2378         if (retval)
2379                 return retval;
2380         if (!current->signal->tty ||
2381             (current->signal->tty != real_tty) ||
2382             (real_tty->session != task_session(current)))
2383                 return -ENOTTY;
2384         if (get_user(pgrp_nr, p))
2385                 return -EFAULT;
2386         if (pgrp_nr < 0)
2387                 return -EINVAL;
2388         rcu_read_lock();
2389         pgrp = find_vpid(pgrp_nr);
2390         retval = -ESRCH;
2391         if (!pgrp)
2392                 goto out_unlock;
2393         retval = -EPERM;
2394         if (session_of_pgrp(pgrp) != task_session(current))
2395                 goto out_unlock;
2396         retval = 0;
2397         spin_lock_irqsave(&tty->ctrl_lock, flags);
2398         put_pid(real_tty->pgrp);
2399         real_tty->pgrp = get_pid(pgrp);
2400         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2401 out_unlock:
2402         rcu_read_unlock();
2403         return retval;
2404 }
2405
2406 /**
2407  *      tiocgsid                -       get session id
2408  *      @tty: tty passed by user
2409  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2410  *      @p: pointer to returned session id
2411  *
2412  *      Obtain the session id of the tty. If there is no session
2413  *      return an error.
2414  *
2415  *      Locking: none. Reference to current->signal->tty is safe.
2416  */
2417
2418 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2419 {
2420         /*
2421          * (tty == real_tty) is a cheap way of
2422          * testing if the tty is NOT a master pty.
2423         */
2424         if (tty == real_tty && current->signal->tty != real_tty)
2425                 return -ENOTTY;
2426         if (!real_tty->session)
2427                 return -ENOTTY;
2428         return put_user(pid_vnr(real_tty->session), p);
2429 }
2430
2431 /**
2432  *      tiocsetd        -       set line discipline
2433  *      @tty: tty device
2434  *      @p: pointer to user data
2435  *
2436  *      Set the line discipline according to user request.
2437  *
2438  *      Locking: see tty_set_ldisc, this function is just a helper
2439  */
2440
2441 static int tiocsetd(struct tty_struct *tty, int __user *p)
2442 {
2443         int ldisc;
2444         int ret;
2445
2446         if (get_user(ldisc, p))
2447                 return -EFAULT;
2448
2449         ret = tty_set_ldisc(tty, ldisc);
2450
2451         return ret;
2452 }
2453
2454 /**
2455  *      send_break      -       performed time break
2456  *      @tty: device to break on
2457  *      @duration: timeout in mS
2458  *
2459  *      Perform a timed break on hardware that lacks its own driver level
2460  *      timed break functionality.
2461  *
2462  *      Locking:
2463  *              atomic_write_lock serializes
2464  *
2465  */
2466
2467 static int send_break(struct tty_struct *tty, unsigned int duration)
2468 {
2469         int retval;
2470
2471         if (tty->ops->break_ctl == NULL)
2472                 return 0;
2473
2474         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2475                 retval = tty->ops->break_ctl(tty, duration);
2476         else {
2477                 /* Do the work ourselves */
2478                 if (tty_write_lock(tty, 0) < 0)
2479                         return -EINTR;
2480                 retval = tty->ops->break_ctl(tty, -1);
2481                 if (retval)
2482                         goto out;
2483                 if (!signal_pending(current))
2484                         msleep_interruptible(duration);
2485                 retval = tty->ops->break_ctl(tty, 0);
2486 out:
2487                 tty_write_unlock(tty);
2488                 if (signal_pending(current))
2489                         retval = -EINTR;
2490         }
2491         return retval;
2492 }
2493
2494 /**
2495  *      tty_tiocmget            -       get modem status
2496  *      @tty: tty device
2497  *      @file: user file pointer
2498  *      @p: pointer to result
2499  *
2500  *      Obtain the modem status bits from the tty driver if the feature
2501  *      is supported. Return -EINVAL if it is not available.
2502  *
2503  *      Locking: none (up to the driver)
2504  */
2505
2506 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2507 {
2508         int retval = -EINVAL;
2509
2510         if (tty->ops->tiocmget) {
2511                 retval = tty->ops->tiocmget(tty);
2512
2513                 if (retval >= 0)
2514                         retval = put_user(retval, p);
2515         }
2516         return retval;
2517 }
2518
2519 /**
2520  *      tty_tiocmset            -       set modem status
2521  *      @tty: tty device
2522  *      @cmd: command - clear bits, set bits or set all
2523  *      @p: pointer to desired bits
2524  *
2525  *      Set the modem status bits from the tty driver if the feature
2526  *      is supported. Return -EINVAL if it is not available.
2527  *
2528  *      Locking: none (up to the driver)
2529  */
2530
2531 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2532              unsigned __user *p)
2533 {
2534         int retval;
2535         unsigned int set, clear, val;
2536
2537         if (tty->ops->tiocmset == NULL)
2538                 return -EINVAL;
2539
2540         retval = get_user(val, p);
2541         if (retval)
2542                 return retval;
2543         set = clear = 0;
2544         switch (cmd) {
2545         case TIOCMBIS:
2546                 set = val;
2547                 break;
2548         case TIOCMBIC:
2549                 clear = val;
2550                 break;
2551         case TIOCMSET:
2552                 set = val;
2553                 clear = ~val;
2554                 break;
2555         }
2556         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2557         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2558         return tty->ops->tiocmset(tty, set, clear);
2559 }
2560
2561 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2562 {
2563         int retval = -EINVAL;
2564         struct serial_icounter_struct icount;
2565         memset(&icount, 0, sizeof(icount));
2566         if (tty->ops->get_icount)
2567                 retval = tty->ops->get_icount(tty, &icount);
2568         if (retval != 0)
2569                 return retval;
2570         if (copy_to_user(arg, &icount, sizeof(icount)))
2571                 return -EFAULT;
2572         return 0;
2573 }
2574
2575 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2576 {
2577         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2578             tty->driver->subtype == PTY_TYPE_MASTER)
2579                 tty = tty->link;
2580         return tty;
2581 }
2582 EXPORT_SYMBOL(tty_pair_get_tty);
2583
2584 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2585 {
2586         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2587             tty->driver->subtype == PTY_TYPE_MASTER)
2588             return tty;
2589         return tty->link;
2590 }
2591 EXPORT_SYMBOL(tty_pair_get_pty);
2592
2593 /*
2594  * Split this up, as gcc can choke on it otherwise..
2595  */
2596 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2597 {
2598         struct tty_struct *tty = file_tty(file);
2599         struct tty_struct *real_tty;
2600         void __user *p = (void __user *)arg;
2601         int retval;
2602         struct tty_ldisc *ld;
2603         struct inode *inode = file->f_dentry->d_inode;
2604
2605         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2606                 return -EINVAL;
2607
2608         real_tty = tty_pair_get_tty(tty);
2609
2610         /*
2611          * Factor out some common prep work
2612          */
2613         switch (cmd) {
2614         case TIOCSETD:
2615         case TIOCSBRK:
2616         case TIOCCBRK:
2617         case TCSBRK:
2618         case TCSBRKP:
2619                 retval = tty_check_change(tty);
2620                 if (retval)
2621                         return retval;
2622                 if (cmd != TIOCCBRK) {
2623                         tty_wait_until_sent(tty, 0);
2624                         if (signal_pending(current))
2625                                 return -EINTR;
2626                 }
2627                 break;
2628         }
2629
2630         /*
2631          *      Now do the stuff.
2632          */
2633         switch (cmd) {
2634         case TIOCSTI:
2635                 return tiocsti(tty, p);
2636         case TIOCGWINSZ:
2637                 return tiocgwinsz(real_tty, p);
2638         case TIOCSWINSZ:
2639                 return tiocswinsz(real_tty, p);
2640         case TIOCCONS:
2641                 return real_tty != tty ? -EINVAL : tioccons(file);
2642         case FIONBIO:
2643                 return fionbio(file, p);
2644         case TIOCEXCL:
2645                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2646                 return 0;
2647         case TIOCNXCL:
2648                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2649                 return 0;
2650         case TIOCNOTTY:
2651                 if (current->signal->tty != tty)
2652                         return -ENOTTY;
2653                 no_tty();
2654                 return 0;
2655         case TIOCSCTTY:
2656                 return tiocsctty(tty, arg);
2657         case TIOCGPGRP:
2658                 return tiocgpgrp(tty, real_tty, p);
2659         case TIOCSPGRP:
2660                 return tiocspgrp(tty, real_tty, p);
2661         case TIOCGSID:
2662                 return tiocgsid(tty, real_tty, p);
2663         case TIOCGETD:
2664                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2665         case TIOCSETD:
2666                 return tiocsetd(tty, p);
2667         case TIOCVHANGUP:
2668                 if (!capable(CAP_SYS_ADMIN))
2669                         return -EPERM;
2670                 tty_vhangup(tty);
2671                 return 0;
2672         case TIOCGDEV:
2673         {
2674                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2675                 return put_user(ret, (unsigned int __user *)p);
2676         }
2677         /*
2678          * Break handling
2679          */
2680         case TIOCSBRK:  /* Turn break on, unconditionally */
2681                 if (tty->ops->break_ctl)
2682                         return tty->ops->break_ctl(tty, -1);
2683                 return 0;
2684         case TIOCCBRK:  /* Turn break off, unconditionally */
2685                 if (tty->ops->break_ctl)
2686                         return tty->ops->break_ctl(tty, 0);
2687                 return 0;
2688         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2689                 /* non-zero arg means wait for all output data
2690                  * to be sent (performed above) but don't send break.
2691                  * This is used by the tcdrain() termios function.
2692                  */
2693                 if (!arg)
2694                         return send_break(tty, 250);
2695                 return 0;
2696         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2697                 return send_break(tty, arg ? arg*100 : 250);
2698
2699         case TIOCMGET:
2700                 return tty_tiocmget(tty, p);
2701         case TIOCMSET:
2702         case TIOCMBIC:
2703         case TIOCMBIS:
2704                 return tty_tiocmset(tty, cmd, p);
2705         case TIOCGICOUNT:
2706                 retval = tty_tiocgicount(tty, p);
2707                 /* For the moment allow fall through to the old method */
2708                 if (retval != -EINVAL)
2709                         return retval;
2710                 break;
2711         case TCFLSH:
2712                 switch (arg) {
2713                 case TCIFLUSH:
2714                 case TCIOFLUSH:
2715                 /* flush tty buffer and allow ldisc to process ioctl */
2716                         tty_buffer_flush(tty);
2717                         break;
2718                 }
2719                 break;
2720         }
2721         if (tty->ops->ioctl) {
2722                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2723                 if (retval != -ENOIOCTLCMD)
2724                         return retval;
2725         }
2726         ld = tty_ldisc_ref_wait(tty);
2727         retval = -EINVAL;
2728         if (ld->ops->ioctl) {
2729                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2730                 if (retval == -ENOIOCTLCMD)
2731                         retval = -EINVAL;
2732         }
2733         tty_ldisc_deref(ld);
2734         return retval;
2735 }
2736
2737 #ifdef CONFIG_COMPAT
2738 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2739                                 unsigned long arg)
2740 {
2741         struct inode *inode = file->f_dentry->d_inode;
2742         struct tty_struct *tty = file_tty(file);
2743         struct tty_ldisc *ld;
2744         int retval = -ENOIOCTLCMD;
2745
2746         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2747                 return -EINVAL;
2748
2749         if (tty->ops->compat_ioctl) {
2750                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2751                 if (retval != -ENOIOCTLCMD)
2752                         return retval;
2753         }
2754
2755         ld = tty_ldisc_ref_wait(tty);
2756         if (ld->ops->compat_ioctl)
2757                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2758         else
2759                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2760         tty_ldisc_deref(ld);
2761
2762         return retval;
2763 }
2764 #endif
2765
2766 /*
2767  * This implements the "Secure Attention Key" ---  the idea is to
2768  * prevent trojan horses by killing all processes associated with this
2769  * tty when the user hits the "Secure Attention Key".  Required for
2770  * super-paranoid applications --- see the Orange Book for more details.
2771  *
2772  * This code could be nicer; ideally it should send a HUP, wait a few
2773  * seconds, then send a INT, and then a KILL signal.  But you then
2774  * have to coordinate with the init process, since all processes associated
2775  * with the current tty must be dead before the new getty is allowed
2776  * to spawn.
2777  *
2778  * Now, if it would be correct ;-/ The current code has a nasty hole -
2779  * it doesn't catch files in flight. We may send the descriptor to ourselves
2780  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2781  *
2782  * Nasty bug: do_SAK is being called in interrupt context.  This can
2783  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2784  */
2785 void __do_SAK(struct tty_struct *tty)
2786 {
2787 #ifdef TTY_SOFT_SAK
2788         tty_hangup(tty);
2789 #else
2790         struct task_struct *g, *p;
2791         struct pid *session;
2792         int             i;
2793         struct file     *filp;
2794         struct fdtable *fdt;
2795
2796         if (!tty)
2797                 return;
2798         session = tty->session;
2799
2800         tty_ldisc_flush(tty);
2801
2802         tty_driver_flush_buffer(tty);
2803
2804         read_lock(&tasklist_lock);
2805         /* Kill the entire session */
2806         do_each_pid_task(session, PIDTYPE_SID, p) {
2807                 printk(KERN_NOTICE "SAK: killed process %d"
2808                         " (%s): task_session(p)==tty->session\n",
2809                         task_pid_nr(p), p->comm);
2810                 send_sig(SIGKILL, p, 1);
2811         } while_each_pid_task(session, PIDTYPE_SID, p);
2812         /* Now kill any processes that happen to have the
2813          * tty open.
2814          */
2815         do_each_thread(g, p) {
2816                 if (p->signal->tty == tty) {
2817                         printk(KERN_NOTICE "SAK: killed process %d"
2818                             " (%s): task_session(p)==tty->session\n",
2819                             task_pid_nr(p), p->comm);
2820                         send_sig(SIGKILL, p, 1);
2821                         continue;
2822                 }
2823                 task_lock(p);
2824                 if (p->files) {
2825                         /*
2826                          * We don't take a ref to the file, so we must
2827                          * hold ->file_lock instead.
2828                          */
2829                         spin_lock(&p->files->file_lock);
2830                         fdt = files_fdtable(p->files);
2831                         for (i = 0; i < fdt->max_fds; i++) {
2832                                 filp = fcheck_files(p->files, i);
2833                                 if (!filp)
2834                                         continue;
2835                                 if (filp->f_op->read == tty_read &&
2836                                     file_tty(filp) == tty) {
2837                                         printk(KERN_NOTICE "SAK: killed process %d"
2838                                             " (%s): fd#%d opened to the tty\n",
2839                                             task_pid_nr(p), p->comm, i);
2840                                         force_sig(SIGKILL, p);
2841                                         break;
2842                                 }
2843                         }
2844                         spin_unlock(&p->files->file_lock);
2845                 }
2846                 task_unlock(p);
2847         } while_each_thread(g, p);
2848         read_unlock(&tasklist_lock);
2849 #endif
2850 }
2851
2852 static void do_SAK_work(struct work_struct *work)
2853 {
2854         struct tty_struct *tty =
2855                 container_of(work, struct tty_struct, SAK_work);
2856         __do_SAK(tty);
2857 }
2858
2859 /*
2860  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2861  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2862  * the values which we write to it will be identical to the values which it
2863  * already has. --akpm
2864  */
2865 void do_SAK(struct tty_struct *tty)
2866 {
2867         if (!tty)
2868                 return;
2869         schedule_work(&tty->SAK_work);
2870 }
2871
2872 EXPORT_SYMBOL(do_SAK);
2873
2874 static int dev_match_devt(struct device *dev, void *data)
2875 {
2876         dev_t *devt = data;
2877         return dev->devt == *devt;
2878 }
2879
2880 /* Must put_device() after it's unused! */
2881 static struct device *tty_get_device(struct tty_struct *tty)
2882 {
2883         dev_t devt = tty_devnum(tty);
2884         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2885 }
2886
2887
2888 /**
2889  *      initialize_tty_struct
2890  *      @tty: tty to initialize
2891  *
2892  *      This subroutine initializes a tty structure that has been newly
2893  *      allocated.
2894  *
2895  *      Locking: none - tty in question must not be exposed at this point
2896  */
2897
2898 void initialize_tty_struct(struct tty_struct *tty,
2899                 struct tty_driver *driver, int idx)
2900 {
2901         memset(tty, 0, sizeof(struct tty_struct));
2902         kref_init(&tty->kref);
2903         tty->magic = TTY_MAGIC;
2904         tty_ldisc_init(tty);
2905         tty->session = NULL;
2906         tty->pgrp = NULL;
2907         tty->overrun_time = jiffies;
2908         tty->buf.head = tty->buf.tail = NULL;
2909         tty_buffer_init(tty);
2910         mutex_init(&tty->termios_mutex);
2911         mutex_init(&tty->ldisc_mutex);
2912         init_waitqueue_head(&tty->write_wait);
2913         init_waitqueue_head(&tty->read_wait);
2914         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2915         mutex_init(&tty->atomic_read_lock);
2916         mutex_init(&tty->atomic_write_lock);
2917         mutex_init(&tty->output_lock);
2918         mutex_init(&tty->echo_lock);
2919         spin_lock_init(&tty->read_lock);
2920         spin_lock_init(&tty->ctrl_lock);
2921         INIT_LIST_HEAD(&tty->tty_files);
2922         INIT_WORK(&tty->SAK_work, do_SAK_work);
2923
2924         tty->driver = driver;
2925         tty->ops = driver->ops;
2926         tty->index = idx;
2927         tty_line_name(driver, idx, tty->name);
2928         tty->dev = tty_get_device(tty);
2929 }
2930
2931 /**
2932  *      deinitialize_tty_struct
2933  *      @tty: tty to deinitialize
2934  *
2935  *      This subroutine deinitializes a tty structure that has been newly
2936  *      allocated but tty_release cannot be called on that yet.
2937  *
2938  *      Locking: none - tty in question must not be exposed at this point
2939  */
2940 void deinitialize_tty_struct(struct tty_struct *tty)
2941 {
2942         tty_ldisc_deinit(tty);
2943 }
2944
2945 /**
2946  *      tty_put_char    -       write one character to a tty
2947  *      @tty: tty
2948  *      @ch: character
2949  *
2950  *      Write one byte to the tty using the provided put_char method
2951  *      if present. Returns the number of characters successfully output.
2952  *
2953  *      Note: the specific put_char operation in the driver layer may go
2954  *      away soon. Don't call it directly, use this method
2955  */
2956
2957 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2958 {
2959         if (tty->ops->put_char)
2960                 return tty->ops->put_char(tty, ch);
2961         return tty->ops->write(tty, &ch, 1);
2962 }
2963 EXPORT_SYMBOL_GPL(tty_put_char);
2964
2965 struct class *tty_class;
2966
2967 /**
2968  *      tty_register_device - register a tty device
2969  *      @driver: the tty driver that describes the tty device
2970  *      @index: the index in the tty driver for this tty device
2971  *      @device: a struct device that is associated with this tty device.
2972  *              This field is optional, if there is no known struct device
2973  *              for this tty device it can be set to NULL safely.
2974  *
2975  *      Returns a pointer to the struct device for this tty device
2976  *      (or ERR_PTR(-EFOO) on error).
2977  *
2978  *      This call is required to be made to register an individual tty device
2979  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2980  *      that bit is not set, this function should not be called by a tty
2981  *      driver.
2982  *
2983  *      Locking: ??
2984  */
2985
2986 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2987                                    struct device *device)
2988 {
2989         char name[64];
2990         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2991
2992         if (index >= driver->num) {
2993                 printk(KERN_ERR "Attempt to register invalid tty line number "
2994                        " (%d).\n", index);
2995                 return ERR_PTR(-EINVAL);
2996         }
2997
2998         if (driver->type == TTY_DRIVER_TYPE_PTY)
2999                 pty_line_name(driver, index, name);
3000         else
3001                 tty_line_name(driver, index, name);
3002
3003         return device_create(tty_class, device, dev, NULL, name);
3004 }
3005 EXPORT_SYMBOL(tty_register_device);
3006
3007 /**
3008  *      tty_unregister_device - unregister a tty device
3009  *      @driver: the tty driver that describes the tty device
3010  *      @index: the index in the tty driver for this tty device
3011  *
3012  *      If a tty device is registered with a call to tty_register_device() then
3013  *      this function must be called when the tty device is gone.
3014  *
3015  *      Locking: ??
3016  */
3017
3018 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3019 {
3020         device_destroy(tty_class,
3021                 MKDEV(driver->major, driver->minor_start) + index);
3022 }
3023 EXPORT_SYMBOL(tty_unregister_device);
3024
3025 struct tty_driver *alloc_tty_driver(int lines)
3026 {
3027         struct tty_driver *driver;
3028
3029         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3030         if (driver) {
3031                 kref_init(&driver->kref);
3032                 driver->magic = TTY_DRIVER_MAGIC;
3033                 driver->num = lines;
3034                 /* later we'll move allocation of tables here */
3035         }
3036         return driver;
3037 }
3038 EXPORT_SYMBOL(alloc_tty_driver);
3039
3040 static void destruct_tty_driver(struct kref *kref)
3041 {
3042         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3043         int i;
3044         struct ktermios *tp;
3045         void *p;
3046
3047         if (driver->flags & TTY_DRIVER_INSTALLED) {
3048                 /*
3049                  * Free the termios and termios_locked structures because
3050                  * we don't want to get memory leaks when modular tty
3051                  * drivers are removed from the kernel.
3052                  */
3053                 for (i = 0; i < driver->num; i++) {
3054                         tp = driver->termios[i];
3055                         if (tp) {
3056                                 driver->termios[i] = NULL;
3057                                 kfree(tp);
3058                         }
3059                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3060                                 tty_unregister_device(driver, i);
3061                 }
3062                 p = driver->ttys;
3063                 proc_tty_unregister_driver(driver);
3064                 driver->ttys = NULL;
3065                 driver->termios = NULL;
3066                 kfree(p);
3067                 cdev_del(&driver->cdev);
3068         }
3069         kfree(driver);
3070 }
3071
3072 void tty_driver_kref_put(struct tty_driver *driver)
3073 {
3074         kref_put(&driver->kref, destruct_tty_driver);
3075 }
3076 EXPORT_SYMBOL(tty_driver_kref_put);
3077
3078 void tty_set_operations(struct tty_driver *driver,
3079                         const struct tty_operations *op)
3080 {
3081         driver->ops = op;
3082 };
3083 EXPORT_SYMBOL(tty_set_operations);
3084
3085 void put_tty_driver(struct tty_driver *d)
3086 {
3087         tty_driver_kref_put(d);
3088 }
3089 EXPORT_SYMBOL(put_tty_driver);
3090
3091 /*
3092  * Called by a tty driver to register itself.
3093  */
3094 int tty_register_driver(struct tty_driver *driver)
3095 {
3096         int error;
3097         int i;
3098         dev_t dev;
3099         void **p = NULL;
3100         struct device *d;
3101
3102         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3103                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3104                 if (!p)
3105                         return -ENOMEM;
3106         }
3107
3108         if (!driver->major) {
3109                 error = alloc_chrdev_region(&dev, driver->minor_start,
3110                                                 driver->num, driver->name);
3111                 if (!error) {
3112                         driver->major = MAJOR(dev);
3113                         driver->minor_start = MINOR(dev);
3114                 }
3115         } else {
3116                 dev = MKDEV(driver->major, driver->minor_start);
3117                 error = register_chrdev_region(dev, driver->num, driver->name);
3118         }
3119         if (error < 0) {
3120                 kfree(p);
3121                 return error;
3122         }
3123
3124         if (p) {
3125                 driver->ttys = (struct tty_struct **)p;
3126                 driver->termios = (struct ktermios **)(p + driver->num);
3127         } else {
3128                 driver->ttys = NULL;
3129                 driver->termios = NULL;
3130         }
3131
3132         cdev_init(&driver->cdev, &tty_fops);
3133         driver->cdev.owner = driver->owner;
3134         error = cdev_add(&driver->cdev, dev, driver->num);
3135         if (error) {
3136                 unregister_chrdev_region(dev, driver->num);
3137                 driver->ttys = NULL;
3138                 driver->termios = NULL;
3139                 kfree(p);
3140                 return error;
3141         }
3142
3143         mutex_lock(&tty_mutex);
3144         list_add(&driver->tty_drivers, &tty_drivers);
3145         mutex_unlock(&tty_mutex);
3146
3147         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3148                 for (i = 0; i < driver->num; i++) {
3149                         d = tty_register_device(driver, i, NULL);
3150                         if (IS_ERR(d)) {
3151                                 error = PTR_ERR(d);
3152                                 goto err;
3153                         }
3154                 }
3155         }
3156         proc_tty_register_driver(driver);
3157         driver->flags |= TTY_DRIVER_INSTALLED;
3158         return 0;
3159
3160 err:
3161         for (i--; i >= 0; i--)
3162                 tty_unregister_device(driver, i);
3163
3164         mutex_lock(&tty_mutex);
3165         list_del(&driver->tty_drivers);
3166         mutex_unlock(&tty_mutex);
3167
3168         unregister_chrdev_region(dev, driver->num);
3169         driver->ttys = NULL;
3170         driver->termios = NULL;
3171         kfree(p);
3172         return error;
3173 }
3174
3175 EXPORT_SYMBOL(tty_register_driver);
3176
3177 /*
3178  * Called by a tty driver to unregister itself.
3179  */
3180 int tty_unregister_driver(struct tty_driver *driver)
3181 {
3182 #if 0
3183         /* FIXME */
3184         if (driver->refcount)
3185                 return -EBUSY;
3186 #endif
3187         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3188                                 driver->num);
3189         mutex_lock(&tty_mutex);
3190         list_del(&driver->tty_drivers);
3191         mutex_unlock(&tty_mutex);
3192         return 0;
3193 }
3194
3195 EXPORT_SYMBOL(tty_unregister_driver);
3196
3197 dev_t tty_devnum(struct tty_struct *tty)
3198 {
3199         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3200 }
3201 EXPORT_SYMBOL(tty_devnum);
3202
3203 void proc_clear_tty(struct task_struct *p)
3204 {
3205         unsigned long flags;
3206         struct tty_struct *tty;
3207         spin_lock_irqsave(&p->sighand->siglock, flags);
3208         tty = p->signal->tty;
3209         p->signal->tty = NULL;
3210         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3211         tty_kref_put(tty);
3212 }
3213
3214 /* Called under the sighand lock */
3215
3216 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3217 {
3218         if (tty) {
3219                 unsigned long flags;
3220                 /* We should not have a session or pgrp to put here but.... */
3221                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3222                 put_pid(tty->session);
3223                 put_pid(tty->pgrp);
3224                 tty->pgrp = get_pid(task_pgrp(tsk));
3225                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3226                 tty->session = get_pid(task_session(tsk));
3227                 if (tsk->signal->tty) {
3228                         printk(KERN_DEBUG "tty not NULL!!\n");
3229                         tty_kref_put(tsk->signal->tty);
3230                 }
3231         }
3232         put_pid(tsk->signal->tty_old_pgrp);
3233         tsk->signal->tty = tty_kref_get(tty);
3234         tsk->signal->tty_old_pgrp = NULL;
3235 }
3236
3237 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3238 {
3239         spin_lock_irq(&tsk->sighand->siglock);
3240         __proc_set_tty(tsk, tty);
3241         spin_unlock_irq(&tsk->sighand->siglock);
3242 }
3243
3244 struct tty_struct *get_current_tty(void)
3245 {
3246         struct tty_struct *tty;
3247         unsigned long flags;
3248
3249         spin_lock_irqsave(&current->sighand->siglock, flags);
3250         tty = tty_kref_get(current->signal->tty);
3251         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3252         return tty;
3253 }
3254 EXPORT_SYMBOL_GPL(get_current_tty);
3255
3256 void tty_default_fops(struct file_operations *fops)
3257 {
3258         *fops = tty_fops;
3259 }
3260
3261 /*
3262  * Initialize the console device. This is called *early*, so
3263  * we can't necessarily depend on lots of kernel help here.
3264  * Just do some early initializations, and do the complex setup
3265  * later.
3266  */
3267 void __init console_init(void)
3268 {
3269         initcall_t *call;
3270
3271         /* Setup the default TTY line discipline. */
3272         tty_ldisc_begin();
3273
3274         /*
3275          * set up the console device so that later boot sequences can
3276          * inform about problems etc..
3277          */
3278         call = __con_initcall_start;
3279         while (call < __con_initcall_end) {
3280                 (*call)();
3281                 call++;
3282         }
3283 }
3284
3285 static char *tty_devnode(struct device *dev, mode_t *mode)
3286 {
3287         if (!mode)
3288                 return NULL;
3289         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3290             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3291                 *mode = 0666;
3292         return NULL;
3293 }
3294
3295 static int __init tty_class_init(void)
3296 {
3297         tty_class = class_create(THIS_MODULE, "tty");
3298         if (IS_ERR(tty_class))
3299                 return PTR_ERR(tty_class);
3300         tty_class->devnode = tty_devnode;
3301         return 0;
3302 }
3303
3304 postcore_initcall(tty_class_init);
3305
3306 /* 3/2004 jmc: why do these devices exist? */
3307 static struct cdev tty_cdev, console_cdev;
3308
3309 static ssize_t show_cons_active(struct device *dev,
3310                                 struct device_attribute *attr, char *buf)
3311 {
3312         struct console *cs[16];
3313         int i = 0;
3314         struct console *c;
3315         ssize_t count = 0;
3316
3317         console_lock();
3318         for_each_console(c) {
3319                 if (!c->device)
3320                         continue;
3321                 if (!c->write)
3322                         continue;
3323                 if ((c->flags & CON_ENABLED) == 0)
3324                         continue;
3325                 cs[i++] = c;
3326                 if (i >= ARRAY_SIZE(cs))
3327                         break;
3328         }
3329         while (i--) {
3330                 int index = cs[i]->index;
3331                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3332
3333                 /* don't resolve tty0 as some programs depend on it */
3334                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3335                         count += tty_line_name(drv, index, buf + count);
3336                 else
3337                         count += sprintf(buf + count, "%s%d",
3338                                          cs[i]->name, cs[i]->index);
3339
3340                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3341         }
3342         console_unlock();
3343
3344         return count;
3345 }
3346 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3347
3348 static struct device *consdev;
3349
3350 void console_sysfs_notify(void)
3351 {
3352         if (consdev)
3353                 sysfs_notify(&consdev->kobj, NULL, "active");
3354 }
3355
3356 /*
3357  * Ok, now we can initialize the rest of the tty devices and can count
3358  * on memory allocations, interrupts etc..
3359  */
3360 int __init tty_init(void)
3361 {
3362         cdev_init(&tty_cdev, &tty_fops);
3363         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3364             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3365                 panic("Couldn't register /dev/tty driver\n");
3366         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3367
3368         cdev_init(&console_cdev, &console_fops);
3369         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3370             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3371                 panic("Couldn't register /dev/console driver\n");
3372         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3373                               "console");
3374         if (IS_ERR(consdev))
3375                 consdev = NULL;
3376         else
3377                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3378
3379 #ifdef CONFIG_VT
3380         vty_init(&console_fops);
3381 #endif
3382         return 0;
3383 }
3384