serial: PL011: move interrupt clearing
[pandora-kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (tty->dev)
185                 put_device(tty->dev);
186         kfree(tty->write_buf);
187         tty_buffer_free_all(tty);
188         kfree(tty);
189 }
190
191 static inline struct tty_struct *file_tty(struct file *file)
192 {
193         return ((struct tty_file_private *)file->private_data)->tty;
194 }
195
196 int tty_alloc_file(struct file *file)
197 {
198         struct tty_file_private *priv;
199
200         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
201         if (!priv)
202                 return -ENOMEM;
203
204         file->private_data = priv;
205
206         return 0;
207 }
208
209 /* Associate a new file with the tty structure */
210 void tty_add_file(struct tty_struct *tty, struct file *file)
211 {
212         struct tty_file_private *priv = file->private_data;
213
214         priv->tty = tty;
215         priv->file = file;
216
217         spin_lock(&tty_files_lock);
218         list_add(&priv->list, &tty->tty_files);
219         spin_unlock(&tty_files_lock);
220 }
221
222 /**
223  * tty_free_file - free file->private_data
224  *
225  * This shall be used only for fail path handling when tty_add_file was not
226  * called yet.
227  */
228 void tty_free_file(struct file *file)
229 {
230         struct tty_file_private *priv = file->private_data;
231
232         file->private_data = NULL;
233         kfree(priv);
234 }
235
236 /* Delete file from its tty */
237 void tty_del_file(struct file *file)
238 {
239         struct tty_file_private *priv = file->private_data;
240
241         spin_lock(&tty_files_lock);
242         list_del(&priv->list);
243         spin_unlock(&tty_files_lock);
244         tty_free_file(file);
245 }
246
247
248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
249
250 /**
251  *      tty_name        -       return tty naming
252  *      @tty: tty structure
253  *      @buf: buffer for output
254  *
255  *      Convert a tty structure into a name. The name reflects the kernel
256  *      naming policy and if udev is in use may not reflect user space
257  *
258  *      Locking: none
259  */
260
261 char *tty_name(struct tty_struct *tty, char *buf)
262 {
263         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
264                 strcpy(buf, "NULL tty");
265         else
266                 strcpy(buf, tty->name);
267         return buf;
268 }
269
270 EXPORT_SYMBOL(tty_name);
271
272 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
273                               const char *routine)
274 {
275 #ifdef TTY_PARANOIA_CHECK
276         if (!tty) {
277                 printk(KERN_WARNING
278                         "null TTY for (%d:%d) in %s\n",
279                         imajor(inode), iminor(inode), routine);
280                 return 1;
281         }
282         if (tty->magic != TTY_MAGIC) {
283                 printk(KERN_WARNING
284                         "bad magic number for tty struct (%d:%d) in %s\n",
285                         imajor(inode), iminor(inode), routine);
286                 return 1;
287         }
288 #endif
289         return 0;
290 }
291
292 static int check_tty_count(struct tty_struct *tty, const char *routine)
293 {
294 #ifdef CHECK_TTY_COUNT
295         struct list_head *p;
296         int count = 0;
297
298         spin_lock(&tty_files_lock);
299         list_for_each(p, &tty->tty_files) {
300                 count++;
301         }
302         spin_unlock(&tty_files_lock);
303         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
304             tty->driver->subtype == PTY_TYPE_SLAVE &&
305             tty->link && tty->link->count)
306                 count++;
307         if (tty->count != count) {
308                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
309                                     "!= #fd's(%d) in %s\n",
310                        tty->name, tty->count, count, routine);
311                 return count;
312         }
313 #endif
314         return 0;
315 }
316
317 /**
318  *      get_tty_driver          -       find device of a tty
319  *      @dev_t: device identifier
320  *      @index: returns the index of the tty
321  *
322  *      This routine returns a tty driver structure, given a device number
323  *      and also passes back the index number.
324  *
325  *      Locking: caller must hold tty_mutex
326  */
327
328 static struct tty_driver *get_tty_driver(dev_t device, int *index)
329 {
330         struct tty_driver *p;
331
332         list_for_each_entry(p, &tty_drivers, tty_drivers) {
333                 dev_t base = MKDEV(p->major, p->minor_start);
334                 if (device < base || device >= base + p->num)
335                         continue;
336                 *index = device - base;
337                 return tty_driver_kref_get(p);
338         }
339         return NULL;
340 }
341
342 #ifdef CONFIG_CONSOLE_POLL
343
344 /**
345  *      tty_find_polling_driver -       find device of a polled tty
346  *      @name: name string to match
347  *      @line: pointer to resulting tty line nr
348  *
349  *      This routine returns a tty driver structure, given a name
350  *      and the condition that the tty driver is capable of polled
351  *      operation.
352  */
353 struct tty_driver *tty_find_polling_driver(char *name, int *line)
354 {
355         struct tty_driver *p, *res = NULL;
356         int tty_line = 0;
357         int len;
358         char *str, *stp;
359
360         for (str = name; *str; str++)
361                 if ((*str >= '0' && *str <= '9') || *str == ',')
362                         break;
363         if (!*str)
364                 return NULL;
365
366         len = str - name;
367         tty_line = simple_strtoul(str, &str, 10);
368
369         mutex_lock(&tty_mutex);
370         /* Search through the tty devices to look for a match */
371         list_for_each_entry(p, &tty_drivers, tty_drivers) {
372                 if (strncmp(name, p->name, len) != 0)
373                         continue;
374                 stp = str;
375                 if (*stp == ',')
376                         stp++;
377                 if (*stp == '\0')
378                         stp = NULL;
379
380                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
381                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
382                         res = tty_driver_kref_get(p);
383                         *line = tty_line;
384                         break;
385                 }
386         }
387         mutex_unlock(&tty_mutex);
388
389         return res;
390 }
391 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
392 #endif
393
394 /**
395  *      tty_check_change        -       check for POSIX terminal changes
396  *      @tty: tty to check
397  *
398  *      If we try to write to, or set the state of, a terminal and we're
399  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
400  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
401  *
402  *      Locking: ctrl_lock
403  */
404
405 int tty_check_change(struct tty_struct *tty)
406 {
407         unsigned long flags;
408         int ret = 0;
409
410         if (current->signal->tty != tty)
411                 return 0;
412
413         spin_lock_irqsave(&tty->ctrl_lock, flags);
414
415         if (!tty->pgrp) {
416                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
417                 goto out_unlock;
418         }
419         if (task_pgrp(current) == tty->pgrp)
420                 goto out_unlock;
421         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422         if (is_ignored(SIGTTOU))
423                 goto out;
424         if (is_current_pgrp_orphaned()) {
425                 ret = -EIO;
426                 goto out;
427         }
428         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
429         set_thread_flag(TIF_SIGPENDING);
430         ret = -ERESTARTSYS;
431 out:
432         return ret;
433 out_unlock:
434         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
435         return ret;
436 }
437
438 EXPORT_SYMBOL(tty_check_change);
439
440 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
441                                 size_t count, loff_t *ppos)
442 {
443         return 0;
444 }
445
446 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
447                                  size_t count, loff_t *ppos)
448 {
449         return -EIO;
450 }
451
452 /* No kernel lock held - none needed ;) */
453 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
454 {
455         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
456 }
457
458 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
459                 unsigned long arg)
460 {
461         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
462 }
463
464 static long hung_up_tty_compat_ioctl(struct file *file,
465                                      unsigned int cmd, unsigned long arg)
466 {
467         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
468 }
469
470 static const struct file_operations tty_fops = {
471         .llseek         = no_llseek,
472         .read           = tty_read,
473         .write          = tty_write,
474         .poll           = tty_poll,
475         .unlocked_ioctl = tty_ioctl,
476         .compat_ioctl   = tty_compat_ioctl,
477         .open           = tty_open,
478         .release        = tty_release,
479         .fasync         = tty_fasync,
480 };
481
482 static const struct file_operations console_fops = {
483         .llseek         = no_llseek,
484         .read           = tty_read,
485         .write          = redirected_tty_write,
486         .poll           = tty_poll,
487         .unlocked_ioctl = tty_ioctl,
488         .compat_ioctl   = tty_compat_ioctl,
489         .open           = tty_open,
490         .release        = tty_release,
491         .fasync         = tty_fasync,
492 };
493
494 static const struct file_operations hung_up_tty_fops = {
495         .llseek         = no_llseek,
496         .read           = hung_up_tty_read,
497         .write          = hung_up_tty_write,
498         .poll           = hung_up_tty_poll,
499         .unlocked_ioctl = hung_up_tty_ioctl,
500         .compat_ioctl   = hung_up_tty_compat_ioctl,
501         .release        = tty_release,
502 };
503
504 static DEFINE_SPINLOCK(redirect_lock);
505 static struct file *redirect;
506
507 /**
508  *      tty_wakeup      -       request more data
509  *      @tty: terminal
510  *
511  *      Internal and external helper for wakeups of tty. This function
512  *      informs the line discipline if present that the driver is ready
513  *      to receive more output data.
514  */
515
516 void tty_wakeup(struct tty_struct *tty)
517 {
518         struct tty_ldisc *ld;
519
520         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521                 ld = tty_ldisc_ref(tty);
522                 if (ld) {
523                         if (ld->ops->write_wakeup)
524                                 ld->ops->write_wakeup(tty);
525                         tty_ldisc_deref(ld);
526                 }
527         }
528         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
529 }
530
531 EXPORT_SYMBOL_GPL(tty_wakeup);
532
533 /**
534  *      __tty_hangup            -       actual handler for hangup events
535  *      @work: tty device
536  *
537  *      This can be called by the "eventd" kernel thread.  That is process
538  *      synchronous but doesn't hold any locks, so we need to make sure we
539  *      have the appropriate locks for what we're doing.
540  *
541  *      The hangup event clears any pending redirections onto the hung up
542  *      device. It ensures future writes will error and it does the needed
543  *      line discipline hangup and signal delivery. The tty object itself
544  *      remains intact.
545  *
546  *      Locking:
547  *              BTM
548  *                redirect lock for undoing redirection
549  *                file list lock for manipulating list of ttys
550  *                tty_ldisc_lock from called functions
551  *                termios_mutex resetting termios data
552  *                tasklist_lock to walk task list for hangup event
553  *                  ->siglock to protect ->signal/->sighand
554  */
555 void __tty_hangup(struct tty_struct *tty)
556 {
557         struct file *cons_filp = NULL;
558         struct file *filp, *f = NULL;
559         struct task_struct *p;
560         struct tty_file_private *priv;
561         int    closecount = 0, n;
562         unsigned long flags;
563         int refs = 0;
564
565         if (!tty)
566                 return;
567
568
569         spin_lock(&redirect_lock);
570         if (redirect && file_tty(redirect) == tty) {
571                 f = redirect;
572                 redirect = NULL;
573         }
574         spin_unlock(&redirect_lock);
575
576         tty_lock();
577
578         /* some functions below drop BTM, so we need this bit */
579         set_bit(TTY_HUPPING, &tty->flags);
580
581         /* inuse_filps is protected by the single tty lock,
582            this really needs to change if we want to flush the
583            workqueue with the lock held */
584         check_tty_count(tty, "tty_hangup");
585
586         spin_lock(&tty_files_lock);
587         /* This breaks for file handles being sent over AF_UNIX sockets ? */
588         list_for_each_entry(priv, &tty->tty_files, list) {
589                 filp = priv->file;
590                 if (filp->f_op->write == redirected_tty_write)
591                         cons_filp = filp;
592                 if (filp->f_op->write != tty_write)
593                         continue;
594                 closecount++;
595                 __tty_fasync(-1, filp, 0);      /* can't block */
596                 filp->f_op = &hung_up_tty_fops;
597         }
598         spin_unlock(&tty_files_lock);
599
600         /*
601          * it drops BTM and thus races with reopen
602          * we protect the race by TTY_HUPPING
603          */
604         tty_ldisc_hangup(tty);
605
606         read_lock(&tasklist_lock);
607         if (tty->session) {
608                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609                         spin_lock_irq(&p->sighand->siglock);
610                         if (p->signal->tty == tty) {
611                                 p->signal->tty = NULL;
612                                 /* We defer the dereferences outside fo
613                                    the tasklist lock */
614                                 refs++;
615                         }
616                         if (!p->signal->leader) {
617                                 spin_unlock_irq(&p->sighand->siglock);
618                                 continue;
619                         }
620                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
623                         spin_lock_irqsave(&tty->ctrl_lock, flags);
624                         if (tty->pgrp)
625                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627                         spin_unlock_irq(&p->sighand->siglock);
628                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629         }
630         read_unlock(&tasklist_lock);
631
632         spin_lock_irqsave(&tty->ctrl_lock, flags);
633         clear_bit(TTY_THROTTLED, &tty->flags);
634         clear_bit(TTY_PUSH, &tty->flags);
635         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636         put_pid(tty->session);
637         put_pid(tty->pgrp);
638         tty->session = NULL;
639         tty->pgrp = NULL;
640         tty->ctrl_status = 0;
641         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
642
643         /* Account for the p->signal references we killed */
644         while (refs--)
645                 tty_kref_put(tty);
646
647         /*
648          * If one of the devices matches a console pointer, we
649          * cannot just call hangup() because that will cause
650          * tty->count and state->count to go out of sync.
651          * So we just call close() the right number of times.
652          */
653         if (cons_filp) {
654                 if (tty->ops->close)
655                         for (n = 0; n < closecount; n++)
656                                 tty->ops->close(tty, cons_filp);
657         } else if (tty->ops->hangup)
658                 (tty->ops->hangup)(tty);
659         /*
660          * We don't want to have driver/ldisc interactions beyond
661          * the ones we did here. The driver layer expects no
662          * calls after ->hangup() from the ldisc side. However we
663          * can't yet guarantee all that.
664          */
665         set_bit(TTY_HUPPED, &tty->flags);
666         clear_bit(TTY_HUPPING, &tty->flags);
667         tty_ldisc_enable(tty);
668
669         tty_unlock();
670
671         if (f)
672                 fput(f);
673 }
674
675 static void do_tty_hangup(struct work_struct *work)
676 {
677         struct tty_struct *tty =
678                 container_of(work, struct tty_struct, hangup_work);
679
680         __tty_hangup(tty);
681 }
682
683 /**
684  *      tty_hangup              -       trigger a hangup event
685  *      @tty: tty to hangup
686  *
687  *      A carrier loss (virtual or otherwise) has occurred on this like
688  *      schedule a hangup sequence to run after this event.
689  */
690
691 void tty_hangup(struct tty_struct *tty)
692 {
693 #ifdef TTY_DEBUG_HANGUP
694         char    buf[64];
695         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
696 #endif
697         schedule_work(&tty->hangup_work);
698 }
699
700 EXPORT_SYMBOL(tty_hangup);
701
702 /**
703  *      tty_vhangup             -       process vhangup
704  *      @tty: tty to hangup
705  *
706  *      The user has asked via system call for the terminal to be hung up.
707  *      We do this synchronously so that when the syscall returns the process
708  *      is complete. That guarantee is necessary for security reasons.
709  */
710
711 void tty_vhangup(struct tty_struct *tty)
712 {
713 #ifdef TTY_DEBUG_HANGUP
714         char    buf[64];
715
716         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
717 #endif
718         __tty_hangup(tty);
719 }
720
721 EXPORT_SYMBOL(tty_vhangup);
722
723
724 /**
725  *      tty_vhangup_self        -       process vhangup for own ctty
726  *
727  *      Perform a vhangup on the current controlling tty
728  */
729
730 void tty_vhangup_self(void)
731 {
732         struct tty_struct *tty;
733
734         tty = get_current_tty();
735         if (tty) {
736                 tty_vhangup(tty);
737                 tty_kref_put(tty);
738         }
739 }
740
741 /**
742  *      tty_hung_up_p           -       was tty hung up
743  *      @filp: file pointer of tty
744  *
745  *      Return true if the tty has been subject to a vhangup or a carrier
746  *      loss
747  */
748
749 int tty_hung_up_p(struct file *filp)
750 {
751         return (filp->f_op == &hung_up_tty_fops);
752 }
753
754 EXPORT_SYMBOL(tty_hung_up_p);
755
756 static void session_clear_tty(struct pid *session)
757 {
758         struct task_struct *p;
759         do_each_pid_task(session, PIDTYPE_SID, p) {
760                 proc_clear_tty(p);
761         } while_each_pid_task(session, PIDTYPE_SID, p);
762 }
763
764 /**
765  *      disassociate_ctty       -       disconnect controlling tty
766  *      @on_exit: true if exiting so need to "hang up" the session
767  *
768  *      This function is typically called only by the session leader, when
769  *      it wants to disassociate itself from its controlling tty.
770  *
771  *      It performs the following functions:
772  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
773  *      (2)  Clears the tty from being controlling the session
774  *      (3)  Clears the controlling tty for all processes in the
775  *              session group.
776  *
777  *      The argument on_exit is set to 1 if called when a process is
778  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
779  *
780  *      Locking:
781  *              BTM is taken for hysterical raisins, and held when
782  *                called from no_tty().
783  *                tty_mutex is taken to protect tty
784  *                ->siglock is taken to protect ->signal/->sighand
785  *                tasklist_lock is taken to walk process list for sessions
786  *                  ->siglock is taken to protect ->signal/->sighand
787  */
788
789 void disassociate_ctty(int on_exit)
790 {
791         struct tty_struct *tty;
792
793         if (!current->signal->leader)
794                 return;
795
796         tty = get_current_tty();
797         if (tty) {
798                 struct pid *tty_pgrp = get_pid(tty->pgrp);
799                 if (on_exit) {
800                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
801                                 tty_vhangup(tty);
802                 }
803                 tty_kref_put(tty);
804                 if (tty_pgrp) {
805                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806                         if (!on_exit)
807                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808                         put_pid(tty_pgrp);
809                 }
810         } else if (on_exit) {
811                 struct pid *old_pgrp;
812                 spin_lock_irq(&current->sighand->siglock);
813                 old_pgrp = current->signal->tty_old_pgrp;
814                 current->signal->tty_old_pgrp = NULL;
815                 spin_unlock_irq(&current->sighand->siglock);
816                 if (old_pgrp) {
817                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
818                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
819                         put_pid(old_pgrp);
820                 }
821                 return;
822         }
823
824         spin_lock_irq(&current->sighand->siglock);
825         put_pid(current->signal->tty_old_pgrp);
826         current->signal->tty_old_pgrp = NULL;
827         spin_unlock_irq(&current->sighand->siglock);
828
829         tty = get_current_tty();
830         if (tty) {
831                 unsigned long flags;
832                 spin_lock_irqsave(&tty->ctrl_lock, flags);
833                 put_pid(tty->session);
834                 put_pid(tty->pgrp);
835                 tty->session = NULL;
836                 tty->pgrp = NULL;
837                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
838                 tty_kref_put(tty);
839         } else {
840 #ifdef TTY_DEBUG_HANGUP
841                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
842                        " = NULL", tty);
843 #endif
844         }
845
846         /* Now clear signal->tty under the lock */
847         read_lock(&tasklist_lock);
848         session_clear_tty(task_session(current));
849         read_unlock(&tasklist_lock);
850 }
851
852 /**
853  *
854  *      no_tty  - Ensure the current process does not have a controlling tty
855  */
856 void no_tty(void)
857 {
858         struct task_struct *tsk = current;
859         tty_lock();
860         disassociate_ctty(0);
861         tty_unlock();
862         proc_clear_tty(tsk);
863 }
864
865
866 /**
867  *      stop_tty        -       propagate flow control
868  *      @tty: tty to stop
869  *
870  *      Perform flow control to the driver. For PTY/TTY pairs we
871  *      must also propagate the TIOCKPKT status. May be called
872  *      on an already stopped device and will not re-call the driver
873  *      method.
874  *
875  *      This functionality is used by both the line disciplines for
876  *      halting incoming flow and by the driver. It may therefore be
877  *      called from any context, may be under the tty atomic_write_lock
878  *      but not always.
879  *
880  *      Locking:
881  *              Uses the tty control lock internally
882  */
883
884 void stop_tty(struct tty_struct *tty)
885 {
886         unsigned long flags;
887         spin_lock_irqsave(&tty->ctrl_lock, flags);
888         if (tty->stopped) {
889                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
890                 return;
891         }
892         tty->stopped = 1;
893         if (tty->link && tty->link->packet) {
894                 tty->ctrl_status &= ~TIOCPKT_START;
895                 tty->ctrl_status |= TIOCPKT_STOP;
896                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
897         }
898         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
899         if (tty->ops->stop)
900                 (tty->ops->stop)(tty);
901 }
902
903 EXPORT_SYMBOL(stop_tty);
904
905 /**
906  *      start_tty       -       propagate flow control
907  *      @tty: tty to start
908  *
909  *      Start a tty that has been stopped if at all possible. Perform
910  *      any necessary wakeups and propagate the TIOCPKT status. If this
911  *      is the tty was previous stopped and is being started then the
912  *      driver start method is invoked and the line discipline woken.
913  *
914  *      Locking:
915  *              ctrl_lock
916  */
917
918 void start_tty(struct tty_struct *tty)
919 {
920         unsigned long flags;
921         spin_lock_irqsave(&tty->ctrl_lock, flags);
922         if (!tty->stopped || tty->flow_stopped) {
923                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
924                 return;
925         }
926         tty->stopped = 0;
927         if (tty->link && tty->link->packet) {
928                 tty->ctrl_status &= ~TIOCPKT_STOP;
929                 tty->ctrl_status |= TIOCPKT_START;
930                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
931         }
932         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
933         if (tty->ops->start)
934                 (tty->ops->start)(tty);
935         /* If we have a running line discipline it may need kicking */
936         tty_wakeup(tty);
937 }
938
939 EXPORT_SYMBOL(start_tty);
940
941 /**
942  *      tty_read        -       read method for tty device files
943  *      @file: pointer to tty file
944  *      @buf: user buffer
945  *      @count: size of user buffer
946  *      @ppos: unused
947  *
948  *      Perform the read system call function on this terminal device. Checks
949  *      for hung up devices before calling the line discipline method.
950  *
951  *      Locking:
952  *              Locks the line discipline internally while needed. Multiple
953  *      read calls may be outstanding in parallel.
954  */
955
956 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
957                         loff_t *ppos)
958 {
959         int i;
960         struct inode *inode = file->f_path.dentry->d_inode;
961         struct tty_struct *tty = file_tty(file);
962         struct tty_ldisc *ld;
963
964         if (tty_paranoia_check(tty, inode, "tty_read"))
965                 return -EIO;
966         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
967                 return -EIO;
968
969         /* We want to wait for the line discipline to sort out in this
970            situation */
971         ld = tty_ldisc_ref_wait(tty);
972         if (ld->ops->read)
973                 i = (ld->ops->read)(tty, file, buf, count);
974         else
975                 i = -EIO;
976         tty_ldisc_deref(ld);
977         if (i > 0)
978                 inode->i_atime = current_fs_time(inode->i_sb);
979         return i;
980 }
981
982 void tty_write_unlock(struct tty_struct *tty)
983         __releases(&tty->atomic_write_lock)
984 {
985         mutex_unlock(&tty->atomic_write_lock);
986         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
987 }
988
989 int tty_write_lock(struct tty_struct *tty, int ndelay)
990         __acquires(&tty->atomic_write_lock)
991 {
992         if (!mutex_trylock(&tty->atomic_write_lock)) {
993                 if (ndelay)
994                         return -EAGAIN;
995                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
996                         return -ERESTARTSYS;
997         }
998         return 0;
999 }
1000
1001 /*
1002  * Split writes up in sane blocksizes to avoid
1003  * denial-of-service type attacks
1004  */
1005 static inline ssize_t do_tty_write(
1006         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1007         struct tty_struct *tty,
1008         struct file *file,
1009         const char __user *buf,
1010         size_t count)
1011 {
1012         ssize_t ret, written = 0;
1013         unsigned int chunk;
1014
1015         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1016         if (ret < 0)
1017                 return ret;
1018
1019         /*
1020          * We chunk up writes into a temporary buffer. This
1021          * simplifies low-level drivers immensely, since they
1022          * don't have locking issues and user mode accesses.
1023          *
1024          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1025          * big chunk-size..
1026          *
1027          * The default chunk-size is 2kB, because the NTTY
1028          * layer has problems with bigger chunks. It will
1029          * claim to be able to handle more characters than
1030          * it actually does.
1031          *
1032          * FIXME: This can probably go away now except that 64K chunks
1033          * are too likely to fail unless switched to vmalloc...
1034          */
1035         chunk = 2048;
1036         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1037                 chunk = 65536;
1038         if (count < chunk)
1039                 chunk = count;
1040
1041         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1042         if (tty->write_cnt < chunk) {
1043                 unsigned char *buf_chunk;
1044
1045                 if (chunk < 1024)
1046                         chunk = 1024;
1047
1048                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1049                 if (!buf_chunk) {
1050                         ret = -ENOMEM;
1051                         goto out;
1052                 }
1053                 kfree(tty->write_buf);
1054                 tty->write_cnt = chunk;
1055                 tty->write_buf = buf_chunk;
1056         }
1057
1058         /* Do the write .. */
1059         for (;;) {
1060                 size_t size = count;
1061                 if (size > chunk)
1062                         size = chunk;
1063                 ret = -EFAULT;
1064                 if (copy_from_user(tty->write_buf, buf, size))
1065                         break;
1066                 ret = write(tty, file, tty->write_buf, size);
1067                 if (ret <= 0)
1068                         break;
1069                 written += ret;
1070                 buf += ret;
1071                 count -= ret;
1072                 if (!count)
1073                         break;
1074                 ret = -ERESTARTSYS;
1075                 if (signal_pending(current))
1076                         break;
1077                 cond_resched();
1078         }
1079         if (written) {
1080                 struct inode *inode = file->f_path.dentry->d_inode;
1081                 inode->i_mtime = current_fs_time(inode->i_sb);
1082                 ret = written;
1083         }
1084 out:
1085         tty_write_unlock(tty);
1086         return ret;
1087 }
1088
1089 /**
1090  * tty_write_message - write a message to a certain tty, not just the console.
1091  * @tty: the destination tty_struct
1092  * @msg: the message to write
1093  *
1094  * This is used for messages that need to be redirected to a specific tty.
1095  * We don't put it into the syslog queue right now maybe in the future if
1096  * really needed.
1097  *
1098  * We must still hold the BTM and test the CLOSING flag for the moment.
1099  */
1100
1101 void tty_write_message(struct tty_struct *tty, char *msg)
1102 {
1103         if (tty) {
1104                 mutex_lock(&tty->atomic_write_lock);
1105                 tty_lock();
1106                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1107                         tty_unlock();
1108                         tty->ops->write(tty, msg, strlen(msg));
1109                 } else
1110                         tty_unlock();
1111                 tty_write_unlock(tty);
1112         }
1113         return;
1114 }
1115
1116
1117 /**
1118  *      tty_write               -       write method for tty device file
1119  *      @file: tty file pointer
1120  *      @buf: user data to write
1121  *      @count: bytes to write
1122  *      @ppos: unused
1123  *
1124  *      Write data to a tty device via the line discipline.
1125  *
1126  *      Locking:
1127  *              Locks the line discipline as required
1128  *              Writes to the tty driver are serialized by the atomic_write_lock
1129  *      and are then processed in chunks to the device. The line discipline
1130  *      write method will not be invoked in parallel for each device.
1131  */
1132
1133 static ssize_t tty_write(struct file *file, const char __user *buf,
1134                                                 size_t count, loff_t *ppos)
1135 {
1136         struct inode *inode = file->f_path.dentry->d_inode;
1137         struct tty_struct *tty = file_tty(file);
1138         struct tty_ldisc *ld;
1139         ssize_t ret;
1140
1141         if (tty_paranoia_check(tty, inode, "tty_write"))
1142                 return -EIO;
1143         if (!tty || !tty->ops->write ||
1144                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1145                         return -EIO;
1146         /* Short term debug to catch buggy drivers */
1147         if (tty->ops->write_room == NULL)
1148                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1149                         tty->driver->name);
1150         ld = tty_ldisc_ref_wait(tty);
1151         if (!ld->ops->write)
1152                 ret = -EIO;
1153         else
1154                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1155         tty_ldisc_deref(ld);
1156         return ret;
1157 }
1158
1159 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1160                                                 size_t count, loff_t *ppos)
1161 {
1162         struct file *p = NULL;
1163
1164         spin_lock(&redirect_lock);
1165         if (redirect) {
1166                 get_file(redirect);
1167                 p = redirect;
1168         }
1169         spin_unlock(&redirect_lock);
1170
1171         if (p) {
1172                 ssize_t res;
1173                 res = vfs_write(p, buf, count, &p->f_pos);
1174                 fput(p);
1175                 return res;
1176         }
1177         return tty_write(file, buf, count, ppos);
1178 }
1179
1180 static char ptychar[] = "pqrstuvwxyzabcde";
1181
1182 /**
1183  *      pty_line_name   -       generate name for a pty
1184  *      @driver: the tty driver in use
1185  *      @index: the minor number
1186  *      @p: output buffer of at least 6 bytes
1187  *
1188  *      Generate a name from a driver reference and write it to the output
1189  *      buffer.
1190  *
1191  *      Locking: None
1192  */
1193 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1194 {
1195         int i = index + driver->name_base;
1196         /* ->name is initialized to "ttyp", but "tty" is expected */
1197         sprintf(p, "%s%c%x",
1198                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1199                 ptychar[i >> 4 & 0xf], i & 0xf);
1200 }
1201
1202 /**
1203  *      tty_line_name   -       generate name for a tty
1204  *      @driver: the tty driver in use
1205  *      @index: the minor number
1206  *      @p: output buffer of at least 7 bytes
1207  *
1208  *      Generate a name from a driver reference and write it to the output
1209  *      buffer.
1210  *
1211  *      Locking: None
1212  */
1213 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1214 {
1215         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1216 }
1217
1218 /**
1219  *      tty_driver_lookup_tty() - find an existing tty, if any
1220  *      @driver: the driver for the tty
1221  *      @idx:    the minor number
1222  *
1223  *      Return the tty, if found or ERR_PTR() otherwise.
1224  *
1225  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1226  *      be held until the 'fast-open' is also done. Will change once we
1227  *      have refcounting in the driver and per driver locking
1228  */
1229 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1230                 struct inode *inode, int idx)
1231 {
1232         if (driver->ops->lookup)
1233                 return driver->ops->lookup(driver, inode, idx);
1234
1235         return driver->ttys[idx];
1236 }
1237
1238 /**
1239  *      tty_init_termios        -  helper for termios setup
1240  *      @tty: the tty to set up
1241  *
1242  *      Initialise the termios structures for this tty. Thus runs under
1243  *      the tty_mutex currently so we can be relaxed about ordering.
1244  */
1245
1246 int tty_init_termios(struct tty_struct *tty)
1247 {
1248         struct ktermios *tp;
1249         int idx = tty->index;
1250
1251         tp = tty->driver->termios[idx];
1252         if (tp == NULL) {
1253                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1254                 if (tp == NULL)
1255                         return -ENOMEM;
1256                 memcpy(tp, &tty->driver->init_termios,
1257                                                 sizeof(struct ktermios));
1258                 tty->driver->termios[idx] = tp;
1259         }
1260         tty->termios = tp;
1261         tty->termios_locked = tp + 1;
1262
1263         /* Compatibility until drivers always set this */
1264         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1265         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1266         return 0;
1267 }
1268 EXPORT_SYMBOL_GPL(tty_init_termios);
1269
1270 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1271 {
1272         int ret = tty_init_termios(tty);
1273         if (ret)
1274                 return ret;
1275
1276         tty_driver_kref_get(driver);
1277         tty->count++;
1278         driver->ttys[tty->index] = tty;
1279         return 0;
1280 }
1281 EXPORT_SYMBOL_GPL(tty_standard_install);
1282
1283 /**
1284  *      tty_driver_install_tty() - install a tty entry in the driver
1285  *      @driver: the driver for the tty
1286  *      @tty: the tty
1287  *
1288  *      Install a tty object into the driver tables. The tty->index field
1289  *      will be set by the time this is called. This method is responsible
1290  *      for ensuring any need additional structures are allocated and
1291  *      configured.
1292  *
1293  *      Locking: tty_mutex for now
1294  */
1295 static int tty_driver_install_tty(struct tty_driver *driver,
1296                                                 struct tty_struct *tty)
1297 {
1298         return driver->ops->install ? driver->ops->install(driver, tty) :
1299                 tty_standard_install(driver, tty);
1300 }
1301
1302 /**
1303  *      tty_driver_remove_tty() - remove a tty from the driver tables
1304  *      @driver: the driver for the tty
1305  *      @idx:    the minor number
1306  *
1307  *      Remvoe a tty object from the driver tables. The tty->index field
1308  *      will be set by the time this is called.
1309  *
1310  *      Locking: tty_mutex for now
1311  */
1312 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1313 {
1314         if (driver->ops->remove)
1315                 driver->ops->remove(driver, tty);
1316         else
1317                 driver->ttys[tty->index] = NULL;
1318 }
1319
1320 /*
1321  *      tty_reopen()    - fast re-open of an open tty
1322  *      @tty    - the tty to open
1323  *
1324  *      Return 0 on success, -errno on error.
1325  *
1326  *      Locking: tty_mutex must be held from the time the tty was found
1327  *               till this open completes.
1328  */
1329 static int tty_reopen(struct tty_struct *tty)
1330 {
1331         struct tty_driver *driver = tty->driver;
1332
1333         if (test_bit(TTY_CLOSING, &tty->flags) ||
1334                         test_bit(TTY_HUPPING, &tty->flags) ||
1335                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1336                 return -EIO;
1337
1338         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1339             driver->subtype == PTY_TYPE_MASTER) {
1340                 /*
1341                  * special case for PTY masters: only one open permitted,
1342                  * and the slave side open count is incremented as well.
1343                  */
1344                 if (tty->count)
1345                         return -EIO;
1346
1347                 tty->link->count++;
1348         }
1349         tty->count++;
1350
1351         mutex_lock(&tty->ldisc_mutex);
1352         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1353         mutex_unlock(&tty->ldisc_mutex);
1354
1355         return 0;
1356 }
1357
1358 /**
1359  *      tty_init_dev            -       initialise a tty device
1360  *      @driver: tty driver we are opening a device on
1361  *      @idx: device index
1362  *      @ret_tty: returned tty structure
1363  *
1364  *      Prepare a tty device. This may not be a "new" clean device but
1365  *      could also be an active device. The pty drivers require special
1366  *      handling because of this.
1367  *
1368  *      Locking:
1369  *              The function is called under the tty_mutex, which
1370  *      protects us from the tty struct or driver itself going away.
1371  *
1372  *      On exit the tty device has the line discipline attached and
1373  *      a reference count of 1. If a pair was created for pty/tty use
1374  *      and the other was a pty master then it too has a reference count of 1.
1375  *
1376  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1377  * failed open.  The new code protects the open with a mutex, so it's
1378  * really quite straightforward.  The mutex locking can probably be
1379  * relaxed for the (most common) case of reopening a tty.
1380  */
1381
1382 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1383 {
1384         struct tty_struct *tty;
1385         int retval;
1386
1387         /*
1388          * First time open is complex, especially for PTY devices.
1389          * This code guarantees that either everything succeeds and the
1390          * TTY is ready for operation, or else the table slots are vacated
1391          * and the allocated memory released.  (Except that the termios
1392          * and locked termios may be retained.)
1393          */
1394
1395         if (!try_module_get(driver->owner))
1396                 return ERR_PTR(-ENODEV);
1397
1398         tty = alloc_tty_struct();
1399         if (!tty) {
1400                 retval = -ENOMEM;
1401                 goto err_module_put;
1402         }
1403         initialize_tty_struct(tty, driver, idx);
1404
1405         retval = tty_driver_install_tty(driver, tty);
1406         if (retval < 0)
1407                 goto err_deinit_tty;
1408
1409         /*
1410          * Structures all installed ... call the ldisc open routines.
1411          * If we fail here just call release_tty to clean up.  No need
1412          * to decrement the use counts, as release_tty doesn't care.
1413          */
1414         retval = tty_ldisc_setup(tty, tty->link);
1415         if (retval)
1416                 goto err_release_tty;
1417         return tty;
1418
1419 err_deinit_tty:
1420         deinitialize_tty_struct(tty);
1421         free_tty_struct(tty);
1422 err_module_put:
1423         module_put(driver->owner);
1424         return ERR_PTR(retval);
1425
1426         /* call the tty release_tty routine to clean out this slot */
1427 err_release_tty:
1428         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1429                                  "clearing slot %d\n", idx);
1430         release_tty(tty, idx);
1431         return ERR_PTR(retval);
1432 }
1433
1434 void tty_free_termios(struct tty_struct *tty)
1435 {
1436         struct ktermios *tp;
1437         int idx = tty->index;
1438         /* Kill this flag and push into drivers for locking etc */
1439         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1440                 /* FIXME: Locking on ->termios array */
1441                 tp = tty->termios;
1442                 tty->driver->termios[idx] = NULL;
1443                 kfree(tp);
1444         }
1445 }
1446 EXPORT_SYMBOL(tty_free_termios);
1447
1448 void tty_shutdown(struct tty_struct *tty)
1449 {
1450         tty_driver_remove_tty(tty->driver, tty);
1451         tty_free_termios(tty);
1452 }
1453 EXPORT_SYMBOL(tty_shutdown);
1454
1455 /**
1456  *      release_one_tty         -       release tty structure memory
1457  *      @kref: kref of tty we are obliterating
1458  *
1459  *      Releases memory associated with a tty structure, and clears out the
1460  *      driver table slots. This function is called when a device is no longer
1461  *      in use. It also gets called when setup of a device fails.
1462  *
1463  *      Locking:
1464  *              tty_mutex - sometimes only
1465  *              takes the file list lock internally when working on the list
1466  *      of ttys that the driver keeps.
1467  *
1468  *      This method gets called from a work queue so that the driver private
1469  *      cleanup ops can sleep (needed for USB at least)
1470  */
1471 static void release_one_tty(struct work_struct *work)
1472 {
1473         struct tty_struct *tty =
1474                 container_of(work, struct tty_struct, hangup_work);
1475         struct tty_driver *driver = tty->driver;
1476
1477         if (tty->ops->cleanup)
1478                 tty->ops->cleanup(tty);
1479
1480         tty->magic = 0;
1481         tty_driver_kref_put(driver);
1482         module_put(driver->owner);
1483
1484         spin_lock(&tty_files_lock);
1485         list_del_init(&tty->tty_files);
1486         spin_unlock(&tty_files_lock);
1487
1488         put_pid(tty->pgrp);
1489         put_pid(tty->session);
1490         free_tty_struct(tty);
1491 }
1492
1493 static void queue_release_one_tty(struct kref *kref)
1494 {
1495         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1496
1497         if (tty->ops->shutdown)
1498                 tty->ops->shutdown(tty);
1499         else
1500                 tty_shutdown(tty);
1501
1502         /* The hangup queue is now free so we can reuse it rather than
1503            waste a chunk of memory for each port */
1504         INIT_WORK(&tty->hangup_work, release_one_tty);
1505         schedule_work(&tty->hangup_work);
1506 }
1507
1508 /**
1509  *      tty_kref_put            -       release a tty kref
1510  *      @tty: tty device
1511  *
1512  *      Release a reference to a tty device and if need be let the kref
1513  *      layer destruct the object for us
1514  */
1515
1516 void tty_kref_put(struct tty_struct *tty)
1517 {
1518         if (tty)
1519                 kref_put(&tty->kref, queue_release_one_tty);
1520 }
1521 EXPORT_SYMBOL(tty_kref_put);
1522
1523 /**
1524  *      release_tty             -       release tty structure memory
1525  *
1526  *      Release both @tty and a possible linked partner (think pty pair),
1527  *      and decrement the refcount of the backing module.
1528  *
1529  *      Locking:
1530  *              tty_mutex - sometimes only
1531  *              takes the file list lock internally when working on the list
1532  *      of ttys that the driver keeps.
1533  *              FIXME: should we require tty_mutex is held here ??
1534  *
1535  */
1536 static void release_tty(struct tty_struct *tty, int idx)
1537 {
1538         /* This should always be true but check for the moment */
1539         WARN_ON(tty->index != idx);
1540
1541         if (tty->link)
1542                 tty_kref_put(tty->link);
1543         tty_kref_put(tty);
1544 }
1545
1546 /**
1547  *      tty_release_checks - check a tty before real release
1548  *      @tty: tty to check
1549  *      @o_tty: link of @tty (if any)
1550  *      @idx: index of the tty
1551  *
1552  *      Performs some paranoid checking before true release of the @tty.
1553  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1554  */
1555 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1556                 int idx)
1557 {
1558 #ifdef TTY_PARANOIA_CHECK
1559         if (idx < 0 || idx >= tty->driver->num) {
1560                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1561                                 __func__, tty->name);
1562                 return -1;
1563         }
1564
1565         /* not much to check for devpts */
1566         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1567                 return 0;
1568
1569         if (tty != tty->driver->ttys[idx]) {
1570                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1571                                 __func__, idx, tty->name);
1572                 return -1;
1573         }
1574         if (tty->termios != tty->driver->termios[idx]) {
1575                 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1576                                 __func__, idx, tty->name);
1577                 return -1;
1578         }
1579         if (tty->driver->other) {
1580                 if (o_tty != tty->driver->other->ttys[idx]) {
1581                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1582                                         __func__, idx, tty->name);
1583                         return -1;
1584                 }
1585                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1586                         printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1587                                         __func__, idx, tty->name);
1588                         return -1;
1589                 }
1590                 if (o_tty->link != tty) {
1591                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1592                         return -1;
1593                 }
1594         }
1595 #endif
1596         return 0;
1597 }
1598
1599 /**
1600  *      tty_release             -       vfs callback for close
1601  *      @inode: inode of tty
1602  *      @filp: file pointer for handle to tty
1603  *
1604  *      Called the last time each file handle is closed that references
1605  *      this tty. There may however be several such references.
1606  *
1607  *      Locking:
1608  *              Takes bkl. See tty_release_dev
1609  *
1610  * Even releasing the tty structures is a tricky business.. We have
1611  * to be very careful that the structures are all released at the
1612  * same time, as interrupts might otherwise get the wrong pointers.
1613  *
1614  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1615  * lead to double frees or releasing memory still in use.
1616  */
1617
1618 int tty_release(struct inode *inode, struct file *filp)
1619 {
1620         struct tty_struct *tty = file_tty(filp);
1621         struct tty_struct *o_tty;
1622         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1623         int     devpts;
1624         int     idx;
1625         char    buf[64];
1626
1627         if (tty_paranoia_check(tty, inode, __func__))
1628                 return 0;
1629
1630         tty_lock();
1631         check_tty_count(tty, __func__);
1632
1633         __tty_fasync(-1, filp, 0);
1634
1635         idx = tty->index;
1636         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1637                       tty->driver->subtype == PTY_TYPE_MASTER);
1638         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1639         o_tty = tty->link;
1640
1641         if (tty_release_checks(tty, o_tty, idx)) {
1642                 tty_unlock();
1643                 return 0;
1644         }
1645
1646 #ifdef TTY_DEBUG_HANGUP
1647         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1648                         tty_name(tty, buf), tty->count);
1649 #endif
1650
1651         if (tty->ops->close)
1652                 tty->ops->close(tty, filp);
1653
1654         tty_unlock();
1655         /*
1656          * Sanity check: if tty->count is going to zero, there shouldn't be
1657          * any waiters on tty->read_wait or tty->write_wait.  We test the
1658          * wait queues and kick everyone out _before_ actually starting to
1659          * close.  This ensures that we won't block while releasing the tty
1660          * structure.
1661          *
1662          * The test for the o_tty closing is necessary, since the master and
1663          * slave sides may close in any order.  If the slave side closes out
1664          * first, its count will be one, since the master side holds an open.
1665          * Thus this test wouldn't be triggered at the time the slave closes,
1666          * so we do it now.
1667          *
1668          * Note that it's possible for the tty to be opened again while we're
1669          * flushing out waiters.  By recalculating the closing flags before
1670          * each iteration we avoid any problems.
1671          */
1672         while (1) {
1673                 /* Guard against races with tty->count changes elsewhere and
1674                    opens on /dev/tty */
1675
1676                 mutex_lock(&tty_mutex);
1677                 tty_lock();
1678                 tty_closing = tty->count <= 1;
1679                 o_tty_closing = o_tty &&
1680                         (o_tty->count <= (pty_master ? 1 : 0));
1681                 do_sleep = 0;
1682
1683                 if (tty_closing) {
1684                         if (waitqueue_active(&tty->read_wait)) {
1685                                 wake_up_poll(&tty->read_wait, POLLIN);
1686                                 do_sleep++;
1687                         }
1688                         if (waitqueue_active(&tty->write_wait)) {
1689                                 wake_up_poll(&tty->write_wait, POLLOUT);
1690                                 do_sleep++;
1691                         }
1692                 }
1693                 if (o_tty_closing) {
1694                         if (waitqueue_active(&o_tty->read_wait)) {
1695                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1696                                 do_sleep++;
1697                         }
1698                         if (waitqueue_active(&o_tty->write_wait)) {
1699                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1700                                 do_sleep++;
1701                         }
1702                 }
1703                 if (!do_sleep)
1704                         break;
1705
1706                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1707                                 __func__, tty_name(tty, buf));
1708                 tty_unlock();
1709                 mutex_unlock(&tty_mutex);
1710                 schedule();
1711         }
1712
1713         /*
1714          * The closing flags are now consistent with the open counts on
1715          * both sides, and we've completed the last operation that could
1716          * block, so it's safe to proceed with closing.
1717          */
1718         if (pty_master) {
1719                 if (--o_tty->count < 0) {
1720                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1721                                 __func__, o_tty->count, tty_name(o_tty, buf));
1722                         o_tty->count = 0;
1723                 }
1724         }
1725         if (--tty->count < 0) {
1726                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1727                                 __func__, tty->count, tty_name(tty, buf));
1728                 tty->count = 0;
1729         }
1730
1731         /*
1732          * We've decremented tty->count, so we need to remove this file
1733          * descriptor off the tty->tty_files list; this serves two
1734          * purposes:
1735          *  - check_tty_count sees the correct number of file descriptors
1736          *    associated with this tty.
1737          *  - do_tty_hangup no longer sees this file descriptor as
1738          *    something that needs to be handled for hangups.
1739          */
1740         tty_del_file(filp);
1741
1742         /*
1743          * Perform some housekeeping before deciding whether to return.
1744          *
1745          * Set the TTY_CLOSING flag if this was the last open.  In the
1746          * case of a pty we may have to wait around for the other side
1747          * to close, and TTY_CLOSING makes sure we can't be reopened.
1748          */
1749         if (tty_closing)
1750                 set_bit(TTY_CLOSING, &tty->flags);
1751         if (o_tty_closing)
1752                 set_bit(TTY_CLOSING, &o_tty->flags);
1753
1754         /*
1755          * If _either_ side is closing, make sure there aren't any
1756          * processes that still think tty or o_tty is their controlling
1757          * tty.
1758          */
1759         if (tty_closing || o_tty_closing) {
1760                 read_lock(&tasklist_lock);
1761                 session_clear_tty(tty->session);
1762                 if (o_tty)
1763                         session_clear_tty(o_tty->session);
1764                 read_unlock(&tasklist_lock);
1765         }
1766
1767         mutex_unlock(&tty_mutex);
1768
1769         /* check whether both sides are closing ... */
1770         if (!tty_closing || (o_tty && !o_tty_closing)) {
1771                 tty_unlock();
1772                 return 0;
1773         }
1774
1775 #ifdef TTY_DEBUG_HANGUP
1776         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1777 #endif
1778         /*
1779          * Ask the line discipline code to release its structures
1780          */
1781         tty_ldisc_release(tty, o_tty);
1782         /*
1783          * The release_tty function takes care of the details of clearing
1784          * the slots and preserving the termios structure.
1785          */
1786         release_tty(tty, idx);
1787
1788         /* Make this pty number available for reallocation */
1789         if (devpts)
1790                 devpts_kill_index(inode, idx);
1791         tty_unlock();
1792         return 0;
1793 }
1794
1795 /**
1796  *      tty_open_current_tty - get tty of current task for open
1797  *      @device: device number
1798  *      @filp: file pointer to tty
1799  *      @return: tty of the current task iff @device is /dev/tty
1800  *
1801  *      We cannot return driver and index like for the other nodes because
1802  *      devpts will not work then. It expects inodes to be from devpts FS.
1803  */
1804 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1805 {
1806         struct tty_struct *tty;
1807
1808         if (device != MKDEV(TTYAUX_MAJOR, 0))
1809                 return NULL;
1810
1811         tty = get_current_tty();
1812         if (!tty)
1813                 return ERR_PTR(-ENXIO);
1814
1815         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1816         /* noctty = 1; */
1817         tty_kref_put(tty);
1818         /* FIXME: we put a reference and return a TTY! */
1819         return tty;
1820 }
1821
1822 /**
1823  *      tty_lookup_driver - lookup a tty driver for a given device file
1824  *      @device: device number
1825  *      @filp: file pointer to tty
1826  *      @noctty: set if the device should not become a controlling tty
1827  *      @index: index for the device in the @return driver
1828  *      @return: driver for this inode (with increased refcount)
1829  *
1830  *      If @return is not erroneous, the caller is responsible to decrement the
1831  *      refcount by tty_driver_kref_put.
1832  *
1833  *      Locking: tty_mutex protects get_tty_driver
1834  */
1835 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1836                 int *noctty, int *index)
1837 {
1838         struct tty_driver *driver;
1839
1840         switch (device) {
1841 #ifdef CONFIG_VT
1842         case MKDEV(TTY_MAJOR, 0): {
1843                 extern struct tty_driver *console_driver;
1844                 driver = tty_driver_kref_get(console_driver);
1845                 *index = fg_console;
1846                 *noctty = 1;
1847                 break;
1848         }
1849 #endif
1850         case MKDEV(TTYAUX_MAJOR, 1): {
1851                 struct tty_driver *console_driver = console_device(index);
1852                 if (console_driver) {
1853                         driver = tty_driver_kref_get(console_driver);
1854                         if (driver) {
1855                                 /* Don't let /dev/console block */
1856                                 filp->f_flags |= O_NONBLOCK;
1857                                 *noctty = 1;
1858                                 break;
1859                         }
1860                 }
1861                 return ERR_PTR(-ENODEV);
1862         }
1863         default:
1864                 driver = get_tty_driver(device, index);
1865                 if (!driver)
1866                         return ERR_PTR(-ENODEV);
1867                 break;
1868         }
1869         return driver;
1870 }
1871
1872 /**
1873  *      tty_open                -       open a tty device
1874  *      @inode: inode of device file
1875  *      @filp: file pointer to tty
1876  *
1877  *      tty_open and tty_release keep up the tty count that contains the
1878  *      number of opens done on a tty. We cannot use the inode-count, as
1879  *      different inodes might point to the same tty.
1880  *
1881  *      Open-counting is needed for pty masters, as well as for keeping
1882  *      track of serial lines: DTR is dropped when the last close happens.
1883  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1884  *
1885  *      The termios state of a pty is reset on first open so that
1886  *      settings don't persist across reuse.
1887  *
1888  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1889  *               tty->count should protect the rest.
1890  *               ->siglock protects ->signal/->sighand
1891  */
1892
1893 static int tty_open(struct inode *inode, struct file *filp)
1894 {
1895         struct tty_struct *tty;
1896         int noctty, retval;
1897         struct tty_driver *driver = NULL;
1898         int index;
1899         dev_t device = inode->i_rdev;
1900         unsigned saved_flags = filp->f_flags;
1901
1902         nonseekable_open(inode, filp);
1903
1904 retry_open:
1905         retval = tty_alloc_file(filp);
1906         if (retval)
1907                 return -ENOMEM;
1908
1909         noctty = filp->f_flags & O_NOCTTY;
1910         index  = -1;
1911         retval = 0;
1912
1913         mutex_lock(&tty_mutex);
1914         tty_lock();
1915
1916         tty = tty_open_current_tty(device, filp);
1917         if (IS_ERR(tty)) {
1918                 retval = PTR_ERR(tty);
1919                 goto err_unlock;
1920         } else if (!tty) {
1921                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1922                 if (IS_ERR(driver)) {
1923                         retval = PTR_ERR(driver);
1924                         goto err_unlock;
1925                 }
1926
1927                 /* check whether we're reopening an existing tty */
1928                 tty = tty_driver_lookup_tty(driver, inode, index);
1929                 if (IS_ERR(tty)) {
1930                         retval = PTR_ERR(tty);
1931                         goto err_unlock;
1932                 }
1933         }
1934
1935         if (tty) {
1936                 retval = tty_reopen(tty);
1937                 if (retval)
1938                         tty = ERR_PTR(retval);
1939         } else
1940                 tty = tty_init_dev(driver, index);
1941
1942         mutex_unlock(&tty_mutex);
1943         if (driver)
1944                 tty_driver_kref_put(driver);
1945         if (IS_ERR(tty)) {
1946                 tty_unlock();
1947                 retval = PTR_ERR(tty);
1948                 goto err_file;
1949         }
1950
1951         tty_add_file(tty, filp);
1952
1953         check_tty_count(tty, __func__);
1954         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1955             tty->driver->subtype == PTY_TYPE_MASTER)
1956                 noctty = 1;
1957 #ifdef TTY_DEBUG_HANGUP
1958         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1959 #endif
1960         if (tty->ops->open)
1961                 retval = tty->ops->open(tty, filp);
1962         else
1963                 retval = -ENODEV;
1964         filp->f_flags = saved_flags;
1965
1966         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1967                                                 !capable(CAP_SYS_ADMIN))
1968                 retval = -EBUSY;
1969
1970         if (retval) {
1971 #ifdef TTY_DEBUG_HANGUP
1972                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1973                                 retval, tty->name);
1974 #endif
1975                 tty_unlock(); /* need to call tty_release without BTM */
1976                 tty_release(inode, filp);
1977                 if (retval != -ERESTARTSYS)
1978                         return retval;
1979
1980                 if (signal_pending(current))
1981                         return retval;
1982
1983                 schedule();
1984                 /*
1985                  * Need to reset f_op in case a hangup happened.
1986                  */
1987                 tty_lock();
1988                 if (filp->f_op == &hung_up_tty_fops)
1989                         filp->f_op = &tty_fops;
1990                 tty_unlock();
1991                 goto retry_open;
1992         }
1993         tty_unlock();
1994
1995
1996         mutex_lock(&tty_mutex);
1997         tty_lock();
1998         spin_lock_irq(&current->sighand->siglock);
1999         if (!noctty &&
2000             current->signal->leader &&
2001             !current->signal->tty &&
2002             tty->session == NULL)
2003                 __proc_set_tty(current, tty);
2004         spin_unlock_irq(&current->sighand->siglock);
2005         tty_unlock();
2006         mutex_unlock(&tty_mutex);
2007         return 0;
2008 err_unlock:
2009         tty_unlock();
2010         mutex_unlock(&tty_mutex);
2011         /* after locks to avoid deadlock */
2012         if (!IS_ERR_OR_NULL(driver))
2013                 tty_driver_kref_put(driver);
2014 err_file:
2015         tty_free_file(filp);
2016         return retval;
2017 }
2018
2019
2020
2021 /**
2022  *      tty_poll        -       check tty status
2023  *      @filp: file being polled
2024  *      @wait: poll wait structures to update
2025  *
2026  *      Call the line discipline polling method to obtain the poll
2027  *      status of the device.
2028  *
2029  *      Locking: locks called line discipline but ldisc poll method
2030  *      may be re-entered freely by other callers.
2031  */
2032
2033 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2034 {
2035         struct tty_struct *tty = file_tty(filp);
2036         struct tty_ldisc *ld;
2037         int ret = 0;
2038
2039         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2040                 return 0;
2041
2042         ld = tty_ldisc_ref_wait(tty);
2043         if (ld->ops->poll)
2044                 ret = (ld->ops->poll)(tty, filp, wait);
2045         tty_ldisc_deref(ld);
2046         return ret;
2047 }
2048
2049 static int __tty_fasync(int fd, struct file *filp, int on)
2050 {
2051         struct tty_struct *tty = file_tty(filp);
2052         unsigned long flags;
2053         int retval = 0;
2054
2055         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2056                 goto out;
2057
2058         retval = fasync_helper(fd, filp, on, &tty->fasync);
2059         if (retval <= 0)
2060                 goto out;
2061
2062         if (on) {
2063                 enum pid_type type;
2064                 struct pid *pid;
2065                 if (!waitqueue_active(&tty->read_wait))
2066                         tty->minimum_to_wake = 1;
2067                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2068                 if (tty->pgrp) {
2069                         pid = tty->pgrp;
2070                         type = PIDTYPE_PGID;
2071                 } else {
2072                         pid = task_pid(current);
2073                         type = PIDTYPE_PID;
2074                 }
2075                 get_pid(pid);
2076                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2077                 retval = __f_setown(filp, pid, type, 0);
2078                 put_pid(pid);
2079                 if (retval)
2080                         goto out;
2081         } else {
2082                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2083                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2084         }
2085         retval = 0;
2086 out:
2087         return retval;
2088 }
2089
2090 static int tty_fasync(int fd, struct file *filp, int on)
2091 {
2092         int retval;
2093         tty_lock();
2094         retval = __tty_fasync(fd, filp, on);
2095         tty_unlock();
2096         return retval;
2097 }
2098
2099 /**
2100  *      tiocsti                 -       fake input character
2101  *      @tty: tty to fake input into
2102  *      @p: pointer to character
2103  *
2104  *      Fake input to a tty device. Does the necessary locking and
2105  *      input management.
2106  *
2107  *      FIXME: does not honour flow control ??
2108  *
2109  *      Locking:
2110  *              Called functions take tty_ldisc_lock
2111  *              current->signal->tty check is safe without locks
2112  *
2113  *      FIXME: may race normal receive processing
2114  */
2115
2116 static int tiocsti(struct tty_struct *tty, char __user *p)
2117 {
2118         char ch, mbz = 0;
2119         struct tty_ldisc *ld;
2120
2121         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2122                 return -EPERM;
2123         if (get_user(ch, p))
2124                 return -EFAULT;
2125         tty_audit_tiocsti(tty, ch);
2126         ld = tty_ldisc_ref_wait(tty);
2127         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2128         tty_ldisc_deref(ld);
2129         return 0;
2130 }
2131
2132 /**
2133  *      tiocgwinsz              -       implement window query ioctl
2134  *      @tty; tty
2135  *      @arg: user buffer for result
2136  *
2137  *      Copies the kernel idea of the window size into the user buffer.
2138  *
2139  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2140  *              is consistent.
2141  */
2142
2143 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2144 {
2145         int err;
2146
2147         mutex_lock(&tty->termios_mutex);
2148         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2149         mutex_unlock(&tty->termios_mutex);
2150
2151         return err ? -EFAULT: 0;
2152 }
2153
2154 /**
2155  *      tty_do_resize           -       resize event
2156  *      @tty: tty being resized
2157  *      @rows: rows (character)
2158  *      @cols: cols (character)
2159  *
2160  *      Update the termios variables and send the necessary signals to
2161  *      peform a terminal resize correctly
2162  */
2163
2164 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2165 {
2166         struct pid *pgrp;
2167         unsigned long flags;
2168
2169         /* Lock the tty */
2170         mutex_lock(&tty->termios_mutex);
2171         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2172                 goto done;
2173         /* Get the PID values and reference them so we can
2174            avoid holding the tty ctrl lock while sending signals */
2175         spin_lock_irqsave(&tty->ctrl_lock, flags);
2176         pgrp = get_pid(tty->pgrp);
2177         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2178
2179         if (pgrp)
2180                 kill_pgrp(pgrp, SIGWINCH, 1);
2181         put_pid(pgrp);
2182
2183         tty->winsize = *ws;
2184 done:
2185         mutex_unlock(&tty->termios_mutex);
2186         return 0;
2187 }
2188
2189 /**
2190  *      tiocswinsz              -       implement window size set ioctl
2191  *      @tty; tty side of tty
2192  *      @arg: user buffer for result
2193  *
2194  *      Copies the user idea of the window size to the kernel. Traditionally
2195  *      this is just advisory information but for the Linux console it
2196  *      actually has driver level meaning and triggers a VC resize.
2197  *
2198  *      Locking:
2199  *              Driver dependent. The default do_resize method takes the
2200  *      tty termios mutex and ctrl_lock. The console takes its own lock
2201  *      then calls into the default method.
2202  */
2203
2204 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2205 {
2206         struct winsize tmp_ws;
2207         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2208                 return -EFAULT;
2209
2210         if (tty->ops->resize)
2211                 return tty->ops->resize(tty, &tmp_ws);
2212         else
2213                 return tty_do_resize(tty, &tmp_ws);
2214 }
2215
2216 /**
2217  *      tioccons        -       allow admin to move logical console
2218  *      @file: the file to become console
2219  *
2220  *      Allow the administrator to move the redirected console device
2221  *
2222  *      Locking: uses redirect_lock to guard the redirect information
2223  */
2224
2225 static int tioccons(struct file *file)
2226 {
2227         if (!capable(CAP_SYS_ADMIN))
2228                 return -EPERM;
2229         if (file->f_op->write == redirected_tty_write) {
2230                 struct file *f;
2231                 spin_lock(&redirect_lock);
2232                 f = redirect;
2233                 redirect = NULL;
2234                 spin_unlock(&redirect_lock);
2235                 if (f)
2236                         fput(f);
2237                 return 0;
2238         }
2239         spin_lock(&redirect_lock);
2240         if (redirect) {
2241                 spin_unlock(&redirect_lock);
2242                 return -EBUSY;
2243         }
2244         get_file(file);
2245         redirect = file;
2246         spin_unlock(&redirect_lock);
2247         return 0;
2248 }
2249
2250 /**
2251  *      fionbio         -       non blocking ioctl
2252  *      @file: file to set blocking value
2253  *      @p: user parameter
2254  *
2255  *      Historical tty interfaces had a blocking control ioctl before
2256  *      the generic functionality existed. This piece of history is preserved
2257  *      in the expected tty API of posix OS's.
2258  *
2259  *      Locking: none, the open file handle ensures it won't go away.
2260  */
2261
2262 static int fionbio(struct file *file, int __user *p)
2263 {
2264         int nonblock;
2265
2266         if (get_user(nonblock, p))
2267                 return -EFAULT;
2268
2269         spin_lock(&file->f_lock);
2270         if (nonblock)
2271                 file->f_flags |= O_NONBLOCK;
2272         else
2273                 file->f_flags &= ~O_NONBLOCK;
2274         spin_unlock(&file->f_lock);
2275         return 0;
2276 }
2277
2278 /**
2279  *      tiocsctty       -       set controlling tty
2280  *      @tty: tty structure
2281  *      @arg: user argument
2282  *
2283  *      This ioctl is used to manage job control. It permits a session
2284  *      leader to set this tty as the controlling tty for the session.
2285  *
2286  *      Locking:
2287  *              Takes tty_mutex() to protect tty instance
2288  *              Takes tasklist_lock internally to walk sessions
2289  *              Takes ->siglock() when updating signal->tty
2290  */
2291
2292 static int tiocsctty(struct tty_struct *tty, int arg)
2293 {
2294         int ret = 0;
2295         if (current->signal->leader && (task_session(current) == tty->session))
2296                 return ret;
2297
2298         mutex_lock(&tty_mutex);
2299         /*
2300          * The process must be a session leader and
2301          * not have a controlling tty already.
2302          */
2303         if (!current->signal->leader || current->signal->tty) {
2304                 ret = -EPERM;
2305                 goto unlock;
2306         }
2307
2308         if (tty->session) {
2309                 /*
2310                  * This tty is already the controlling
2311                  * tty for another session group!
2312                  */
2313                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2314                         /*
2315                          * Steal it away
2316                          */
2317                         read_lock(&tasklist_lock);
2318                         session_clear_tty(tty->session);
2319                         read_unlock(&tasklist_lock);
2320                 } else {
2321                         ret = -EPERM;
2322                         goto unlock;
2323                 }
2324         }
2325         proc_set_tty(current, tty);
2326 unlock:
2327         mutex_unlock(&tty_mutex);
2328         return ret;
2329 }
2330
2331 /**
2332  *      tty_get_pgrp    -       return a ref counted pgrp pid
2333  *      @tty: tty to read
2334  *
2335  *      Returns a refcounted instance of the pid struct for the process
2336  *      group controlling the tty.
2337  */
2338
2339 struct pid *tty_get_pgrp(struct tty_struct *tty)
2340 {
2341         unsigned long flags;
2342         struct pid *pgrp;
2343
2344         spin_lock_irqsave(&tty->ctrl_lock, flags);
2345         pgrp = get_pid(tty->pgrp);
2346         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2347
2348         return pgrp;
2349 }
2350 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2351
2352 /**
2353  *      tiocgpgrp               -       get process group
2354  *      @tty: tty passed by user
2355  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2356  *      @p: returned pid
2357  *
2358  *      Obtain the process group of the tty. If there is no process group
2359  *      return an error.
2360  *
2361  *      Locking: none. Reference to current->signal->tty is safe.
2362  */
2363
2364 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2365 {
2366         struct pid *pid;
2367         int ret;
2368         /*
2369          * (tty == real_tty) is a cheap way of
2370          * testing if the tty is NOT a master pty.
2371          */
2372         if (tty == real_tty && current->signal->tty != real_tty)
2373                 return -ENOTTY;
2374         pid = tty_get_pgrp(real_tty);
2375         ret =  put_user(pid_vnr(pid), p);
2376         put_pid(pid);
2377         return ret;
2378 }
2379
2380 /**
2381  *      tiocspgrp               -       attempt to set process group
2382  *      @tty: tty passed by user
2383  *      @real_tty: tty side device matching tty passed by user
2384  *      @p: pid pointer
2385  *
2386  *      Set the process group of the tty to the session passed. Only
2387  *      permitted where the tty session is our session.
2388  *
2389  *      Locking: RCU, ctrl lock
2390  */
2391
2392 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2393 {
2394         struct pid *pgrp;
2395         pid_t pgrp_nr;
2396         int retval = tty_check_change(real_tty);
2397         unsigned long flags;
2398
2399         if (retval == -EIO)
2400                 return -ENOTTY;
2401         if (retval)
2402                 return retval;
2403         if (!current->signal->tty ||
2404             (current->signal->tty != real_tty) ||
2405             (real_tty->session != task_session(current)))
2406                 return -ENOTTY;
2407         if (get_user(pgrp_nr, p))
2408                 return -EFAULT;
2409         if (pgrp_nr < 0)
2410                 return -EINVAL;
2411         rcu_read_lock();
2412         pgrp = find_vpid(pgrp_nr);
2413         retval = -ESRCH;
2414         if (!pgrp)
2415                 goto out_unlock;
2416         retval = -EPERM;
2417         if (session_of_pgrp(pgrp) != task_session(current))
2418                 goto out_unlock;
2419         retval = 0;
2420         spin_lock_irqsave(&tty->ctrl_lock, flags);
2421         put_pid(real_tty->pgrp);
2422         real_tty->pgrp = get_pid(pgrp);
2423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2424 out_unlock:
2425         rcu_read_unlock();
2426         return retval;
2427 }
2428
2429 /**
2430  *      tiocgsid                -       get session id
2431  *      @tty: tty passed by user
2432  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2433  *      @p: pointer to returned session id
2434  *
2435  *      Obtain the session id of the tty. If there is no session
2436  *      return an error.
2437  *
2438  *      Locking: none. Reference to current->signal->tty is safe.
2439  */
2440
2441 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2442 {
2443         /*
2444          * (tty == real_tty) is a cheap way of
2445          * testing if the tty is NOT a master pty.
2446         */
2447         if (tty == real_tty && current->signal->tty != real_tty)
2448                 return -ENOTTY;
2449         if (!real_tty->session)
2450                 return -ENOTTY;
2451         return put_user(pid_vnr(real_tty->session), p);
2452 }
2453
2454 /**
2455  *      tiocsetd        -       set line discipline
2456  *      @tty: tty device
2457  *      @p: pointer to user data
2458  *
2459  *      Set the line discipline according to user request.
2460  *
2461  *      Locking: see tty_set_ldisc, this function is just a helper
2462  */
2463
2464 static int tiocsetd(struct tty_struct *tty, int __user *p)
2465 {
2466         int ldisc;
2467         int ret;
2468
2469         if (get_user(ldisc, p))
2470                 return -EFAULT;
2471
2472         ret = tty_set_ldisc(tty, ldisc);
2473
2474         return ret;
2475 }
2476
2477 /**
2478  *      send_break      -       performed time break
2479  *      @tty: device to break on
2480  *      @duration: timeout in mS
2481  *
2482  *      Perform a timed break on hardware that lacks its own driver level
2483  *      timed break functionality.
2484  *
2485  *      Locking:
2486  *              atomic_write_lock serializes
2487  *
2488  */
2489
2490 static int send_break(struct tty_struct *tty, unsigned int duration)
2491 {
2492         int retval;
2493
2494         if (tty->ops->break_ctl == NULL)
2495                 return 0;
2496
2497         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2498                 retval = tty->ops->break_ctl(tty, duration);
2499         else {
2500                 /* Do the work ourselves */
2501                 if (tty_write_lock(tty, 0) < 0)
2502                         return -EINTR;
2503                 retval = tty->ops->break_ctl(tty, -1);
2504                 if (retval)
2505                         goto out;
2506                 if (!signal_pending(current))
2507                         msleep_interruptible(duration);
2508                 retval = tty->ops->break_ctl(tty, 0);
2509 out:
2510                 tty_write_unlock(tty);
2511                 if (signal_pending(current))
2512                         retval = -EINTR;
2513         }
2514         return retval;
2515 }
2516
2517 /**
2518  *      tty_tiocmget            -       get modem status
2519  *      @tty: tty device
2520  *      @file: user file pointer
2521  *      @p: pointer to result
2522  *
2523  *      Obtain the modem status bits from the tty driver if the feature
2524  *      is supported. Return -EINVAL if it is not available.
2525  *
2526  *      Locking: none (up to the driver)
2527  */
2528
2529 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2530 {
2531         int retval = -EINVAL;
2532
2533         if (tty->ops->tiocmget) {
2534                 retval = tty->ops->tiocmget(tty);
2535
2536                 if (retval >= 0)
2537                         retval = put_user(retval, p);
2538         }
2539         return retval;
2540 }
2541
2542 /**
2543  *      tty_tiocmset            -       set modem status
2544  *      @tty: tty device
2545  *      @cmd: command - clear bits, set bits or set all
2546  *      @p: pointer to desired bits
2547  *
2548  *      Set the modem status bits from the tty driver if the feature
2549  *      is supported. Return -EINVAL if it is not available.
2550  *
2551  *      Locking: none (up to the driver)
2552  */
2553
2554 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2555              unsigned __user *p)
2556 {
2557         int retval;
2558         unsigned int set, clear, val;
2559
2560         if (tty->ops->tiocmset == NULL)
2561                 return -EINVAL;
2562
2563         retval = get_user(val, p);
2564         if (retval)
2565                 return retval;
2566         set = clear = 0;
2567         switch (cmd) {
2568         case TIOCMBIS:
2569                 set = val;
2570                 break;
2571         case TIOCMBIC:
2572                 clear = val;
2573                 break;
2574         case TIOCMSET:
2575                 set = val;
2576                 clear = ~val;
2577                 break;
2578         }
2579         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2580         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2581         return tty->ops->tiocmset(tty, set, clear);
2582 }
2583
2584 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2585 {
2586         int retval = -EINVAL;
2587         struct serial_icounter_struct icount;
2588         memset(&icount, 0, sizeof(icount));
2589         if (tty->ops->get_icount)
2590                 retval = tty->ops->get_icount(tty, &icount);
2591         if (retval != 0)
2592                 return retval;
2593         if (copy_to_user(arg, &icount, sizeof(icount)))
2594                 return -EFAULT;
2595         return 0;
2596 }
2597
2598 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2599 {
2600         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2601             tty->driver->subtype == PTY_TYPE_MASTER)
2602                 tty = tty->link;
2603         return tty;
2604 }
2605 EXPORT_SYMBOL(tty_pair_get_tty);
2606
2607 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2608 {
2609         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2610             tty->driver->subtype == PTY_TYPE_MASTER)
2611             return tty;
2612         return tty->link;
2613 }
2614 EXPORT_SYMBOL(tty_pair_get_pty);
2615
2616 /*
2617  * Split this up, as gcc can choke on it otherwise..
2618  */
2619 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2620 {
2621         struct tty_struct *tty = file_tty(file);
2622         struct tty_struct *real_tty;
2623         void __user *p = (void __user *)arg;
2624         int retval;
2625         struct tty_ldisc *ld;
2626         struct inode *inode = file->f_dentry->d_inode;
2627
2628         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2629                 return -EINVAL;
2630
2631         real_tty = tty_pair_get_tty(tty);
2632
2633         /*
2634          * Factor out some common prep work
2635          */
2636         switch (cmd) {
2637         case TIOCSETD:
2638         case TIOCSBRK:
2639         case TIOCCBRK:
2640         case TCSBRK:
2641         case TCSBRKP:
2642                 retval = tty_check_change(tty);
2643                 if (retval)
2644                         return retval;
2645                 if (cmd != TIOCCBRK) {
2646                         tty_wait_until_sent(tty, 0);
2647                         if (signal_pending(current))
2648                                 return -EINTR;
2649                 }
2650                 break;
2651         }
2652
2653         /*
2654          *      Now do the stuff.
2655          */
2656         switch (cmd) {
2657         case TIOCSTI:
2658                 return tiocsti(tty, p);
2659         case TIOCGWINSZ:
2660                 return tiocgwinsz(real_tty, p);
2661         case TIOCSWINSZ:
2662                 return tiocswinsz(real_tty, p);
2663         case TIOCCONS:
2664                 return real_tty != tty ? -EINVAL : tioccons(file);
2665         case FIONBIO:
2666                 return fionbio(file, p);
2667         case TIOCEXCL:
2668                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2669                 return 0;
2670         case TIOCNXCL:
2671                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2672                 return 0;
2673         case TIOCNOTTY:
2674                 if (current->signal->tty != tty)
2675                         return -ENOTTY;
2676                 no_tty();
2677                 return 0;
2678         case TIOCSCTTY:
2679                 return tiocsctty(tty, arg);
2680         case TIOCGPGRP:
2681                 return tiocgpgrp(tty, real_tty, p);
2682         case TIOCSPGRP:
2683                 return tiocspgrp(tty, real_tty, p);
2684         case TIOCGSID:
2685                 return tiocgsid(tty, real_tty, p);
2686         case TIOCGETD:
2687                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2688         case TIOCSETD:
2689                 return tiocsetd(tty, p);
2690         case TIOCVHANGUP:
2691                 if (!capable(CAP_SYS_ADMIN))
2692                         return -EPERM;
2693                 tty_vhangup(tty);
2694                 return 0;
2695         case TIOCGDEV:
2696         {
2697                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2698                 return put_user(ret, (unsigned int __user *)p);
2699         }
2700         /*
2701          * Break handling
2702          */
2703         case TIOCSBRK:  /* Turn break on, unconditionally */
2704                 if (tty->ops->break_ctl)
2705                         return tty->ops->break_ctl(tty, -1);
2706                 return 0;
2707         case TIOCCBRK:  /* Turn break off, unconditionally */
2708                 if (tty->ops->break_ctl)
2709                         return tty->ops->break_ctl(tty, 0);
2710                 return 0;
2711         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2712                 /* non-zero arg means wait for all output data
2713                  * to be sent (performed above) but don't send break.
2714                  * This is used by the tcdrain() termios function.
2715                  */
2716                 if (!arg)
2717                         return send_break(tty, 250);
2718                 return 0;
2719         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2720                 return send_break(tty, arg ? arg*100 : 250);
2721
2722         case TIOCMGET:
2723                 return tty_tiocmget(tty, p);
2724         case TIOCMSET:
2725         case TIOCMBIC:
2726         case TIOCMBIS:
2727                 return tty_tiocmset(tty, cmd, p);
2728         case TIOCGICOUNT:
2729                 retval = tty_tiocgicount(tty, p);
2730                 /* For the moment allow fall through to the old method */
2731                 if (retval != -EINVAL)
2732                         return retval;
2733                 break;
2734         case TCFLSH:
2735                 switch (arg) {
2736                 case TCIFLUSH:
2737                 case TCIOFLUSH:
2738                 /* flush tty buffer and allow ldisc to process ioctl */
2739                         tty_buffer_flush(tty);
2740                         break;
2741                 }
2742                 break;
2743         }
2744         if (tty->ops->ioctl) {
2745                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2746                 if (retval != -ENOIOCTLCMD)
2747                         return retval;
2748         }
2749         ld = tty_ldisc_ref_wait(tty);
2750         retval = -EINVAL;
2751         if (ld->ops->ioctl) {
2752                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2753                 if (retval == -ENOIOCTLCMD)
2754                         retval = -EINVAL;
2755         }
2756         tty_ldisc_deref(ld);
2757         return retval;
2758 }
2759
2760 #ifdef CONFIG_COMPAT
2761 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2762                                 unsigned long arg)
2763 {
2764         struct inode *inode = file->f_dentry->d_inode;
2765         struct tty_struct *tty = file_tty(file);
2766         struct tty_ldisc *ld;
2767         int retval = -ENOIOCTLCMD;
2768
2769         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2770                 return -EINVAL;
2771
2772         if (tty->ops->compat_ioctl) {
2773                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2774                 if (retval != -ENOIOCTLCMD)
2775                         return retval;
2776         }
2777
2778         ld = tty_ldisc_ref_wait(tty);
2779         if (ld->ops->compat_ioctl)
2780                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2781         else
2782                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2783         tty_ldisc_deref(ld);
2784
2785         return retval;
2786 }
2787 #endif
2788
2789 /*
2790  * This implements the "Secure Attention Key" ---  the idea is to
2791  * prevent trojan horses by killing all processes associated with this
2792  * tty when the user hits the "Secure Attention Key".  Required for
2793  * super-paranoid applications --- see the Orange Book for more details.
2794  *
2795  * This code could be nicer; ideally it should send a HUP, wait a few
2796  * seconds, then send a INT, and then a KILL signal.  But you then
2797  * have to coordinate with the init process, since all processes associated
2798  * with the current tty must be dead before the new getty is allowed
2799  * to spawn.
2800  *
2801  * Now, if it would be correct ;-/ The current code has a nasty hole -
2802  * it doesn't catch files in flight. We may send the descriptor to ourselves
2803  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2804  *
2805  * Nasty bug: do_SAK is being called in interrupt context.  This can
2806  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2807  */
2808 void __do_SAK(struct tty_struct *tty)
2809 {
2810 #ifdef TTY_SOFT_SAK
2811         tty_hangup(tty);
2812 #else
2813         struct task_struct *g, *p;
2814         struct pid *session;
2815         int             i;
2816         struct file     *filp;
2817         struct fdtable *fdt;
2818
2819         if (!tty)
2820                 return;
2821         session = tty->session;
2822
2823         tty_ldisc_flush(tty);
2824
2825         tty_driver_flush_buffer(tty);
2826
2827         read_lock(&tasklist_lock);
2828         /* Kill the entire session */
2829         do_each_pid_task(session, PIDTYPE_SID, p) {
2830                 printk(KERN_NOTICE "SAK: killed process %d"
2831                         " (%s): task_session(p)==tty->session\n",
2832                         task_pid_nr(p), p->comm);
2833                 send_sig(SIGKILL, p, 1);
2834         } while_each_pid_task(session, PIDTYPE_SID, p);
2835         /* Now kill any processes that happen to have the
2836          * tty open.
2837          */
2838         do_each_thread(g, p) {
2839                 if (p->signal->tty == tty) {
2840                         printk(KERN_NOTICE "SAK: killed process %d"
2841                             " (%s): task_session(p)==tty->session\n",
2842                             task_pid_nr(p), p->comm);
2843                         send_sig(SIGKILL, p, 1);
2844                         continue;
2845                 }
2846                 task_lock(p);
2847                 if (p->files) {
2848                         /*
2849                          * We don't take a ref to the file, so we must
2850                          * hold ->file_lock instead.
2851                          */
2852                         spin_lock(&p->files->file_lock);
2853                         fdt = files_fdtable(p->files);
2854                         for (i = 0; i < fdt->max_fds; i++) {
2855                                 filp = fcheck_files(p->files, i);
2856                                 if (!filp)
2857                                         continue;
2858                                 if (filp->f_op->read == tty_read &&
2859                                     file_tty(filp) == tty) {
2860                                         printk(KERN_NOTICE "SAK: killed process %d"
2861                                             " (%s): fd#%d opened to the tty\n",
2862                                             task_pid_nr(p), p->comm, i);
2863                                         force_sig(SIGKILL, p);
2864                                         break;
2865                                 }
2866                         }
2867                         spin_unlock(&p->files->file_lock);
2868                 }
2869                 task_unlock(p);
2870         } while_each_thread(g, p);
2871         read_unlock(&tasklist_lock);
2872 #endif
2873 }
2874
2875 static void do_SAK_work(struct work_struct *work)
2876 {
2877         struct tty_struct *tty =
2878                 container_of(work, struct tty_struct, SAK_work);
2879         __do_SAK(tty);
2880 }
2881
2882 /*
2883  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2884  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2885  * the values which we write to it will be identical to the values which it
2886  * already has. --akpm
2887  */
2888 void do_SAK(struct tty_struct *tty)
2889 {
2890         if (!tty)
2891                 return;
2892         schedule_work(&tty->SAK_work);
2893 }
2894
2895 EXPORT_SYMBOL(do_SAK);
2896
2897 static int dev_match_devt(struct device *dev, void *data)
2898 {
2899         dev_t *devt = data;
2900         return dev->devt == *devt;
2901 }
2902
2903 /* Must put_device() after it's unused! */
2904 static struct device *tty_get_device(struct tty_struct *tty)
2905 {
2906         dev_t devt = tty_devnum(tty);
2907         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2908 }
2909
2910
2911 /**
2912  *      initialize_tty_struct
2913  *      @tty: tty to initialize
2914  *
2915  *      This subroutine initializes a tty structure that has been newly
2916  *      allocated.
2917  *
2918  *      Locking: none - tty in question must not be exposed at this point
2919  */
2920
2921 void initialize_tty_struct(struct tty_struct *tty,
2922                 struct tty_driver *driver, int idx)
2923 {
2924         memset(tty, 0, sizeof(struct tty_struct));
2925         kref_init(&tty->kref);
2926         tty->magic = TTY_MAGIC;
2927         tty_ldisc_init(tty);
2928         tty->session = NULL;
2929         tty->pgrp = NULL;
2930         tty->overrun_time = jiffies;
2931         tty_buffer_init(tty);
2932         mutex_init(&tty->termios_mutex);
2933         mutex_init(&tty->ldisc_mutex);
2934         init_waitqueue_head(&tty->write_wait);
2935         init_waitqueue_head(&tty->read_wait);
2936         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2937         mutex_init(&tty->atomic_read_lock);
2938         mutex_init(&tty->atomic_write_lock);
2939         mutex_init(&tty->output_lock);
2940         mutex_init(&tty->echo_lock);
2941         spin_lock_init(&tty->read_lock);
2942         spin_lock_init(&tty->ctrl_lock);
2943         INIT_LIST_HEAD(&tty->tty_files);
2944         INIT_WORK(&tty->SAK_work, do_SAK_work);
2945
2946         tty->driver = driver;
2947         tty->ops = driver->ops;
2948         tty->index = idx;
2949         tty_line_name(driver, idx, tty->name);
2950         tty->dev = tty_get_device(tty);
2951 }
2952
2953 /**
2954  *      deinitialize_tty_struct
2955  *      @tty: tty to deinitialize
2956  *
2957  *      This subroutine deinitializes a tty structure that has been newly
2958  *      allocated but tty_release cannot be called on that yet.
2959  *
2960  *      Locking: none - tty in question must not be exposed at this point
2961  */
2962 void deinitialize_tty_struct(struct tty_struct *tty)
2963 {
2964         tty_ldisc_deinit(tty);
2965 }
2966
2967 /**
2968  *      tty_put_char    -       write one character to a tty
2969  *      @tty: tty
2970  *      @ch: character
2971  *
2972  *      Write one byte to the tty using the provided put_char method
2973  *      if present. Returns the number of characters successfully output.
2974  *
2975  *      Note: the specific put_char operation in the driver layer may go
2976  *      away soon. Don't call it directly, use this method
2977  */
2978
2979 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2980 {
2981         if (tty->ops->put_char)
2982                 return tty->ops->put_char(tty, ch);
2983         return tty->ops->write(tty, &ch, 1);
2984 }
2985 EXPORT_SYMBOL_GPL(tty_put_char);
2986
2987 struct class *tty_class;
2988
2989 /**
2990  *      tty_register_device - register a tty device
2991  *      @driver: the tty driver that describes the tty device
2992  *      @index: the index in the tty driver for this tty device
2993  *      @device: a struct device that is associated with this tty device.
2994  *              This field is optional, if there is no known struct device
2995  *              for this tty device it can be set to NULL safely.
2996  *
2997  *      Returns a pointer to the struct device for this tty device
2998  *      (or ERR_PTR(-EFOO) on error).
2999  *
3000  *      This call is required to be made to register an individual tty device
3001  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3002  *      that bit is not set, this function should not be called by a tty
3003  *      driver.
3004  *
3005  *      Locking: ??
3006  */
3007
3008 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3009                                    struct device *device)
3010 {
3011         char name[64];
3012         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3013
3014         if (index >= driver->num) {
3015                 printk(KERN_ERR "Attempt to register invalid tty line number "
3016                        " (%d).\n", index);
3017                 return ERR_PTR(-EINVAL);
3018         }
3019
3020         if (driver->type == TTY_DRIVER_TYPE_PTY)
3021                 pty_line_name(driver, index, name);
3022         else
3023                 tty_line_name(driver, index, name);
3024
3025         return device_create(tty_class, device, dev, NULL, name);
3026 }
3027 EXPORT_SYMBOL(tty_register_device);
3028
3029 /**
3030  *      tty_unregister_device - unregister a tty device
3031  *      @driver: the tty driver that describes the tty device
3032  *      @index: the index in the tty driver for this tty device
3033  *
3034  *      If a tty device is registered with a call to tty_register_device() then
3035  *      this function must be called when the tty device is gone.
3036  *
3037  *      Locking: ??
3038  */
3039
3040 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3041 {
3042         device_destroy(tty_class,
3043                 MKDEV(driver->major, driver->minor_start) + index);
3044 }
3045 EXPORT_SYMBOL(tty_unregister_device);
3046
3047 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3048 {
3049         struct tty_driver *driver;
3050
3051         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3052         if (driver) {
3053                 kref_init(&driver->kref);
3054                 driver->magic = TTY_DRIVER_MAGIC;
3055                 driver->num = lines;
3056                 driver->owner = owner;
3057                 /* later we'll move allocation of tables here */
3058         }
3059         return driver;
3060 }
3061 EXPORT_SYMBOL(__alloc_tty_driver);
3062
3063 static void destruct_tty_driver(struct kref *kref)
3064 {
3065         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3066         int i;
3067         struct ktermios *tp;
3068         void *p;
3069
3070         if (driver->flags & TTY_DRIVER_INSTALLED) {
3071                 /*
3072                  * Free the termios and termios_locked structures because
3073                  * we don't want to get memory leaks when modular tty
3074                  * drivers are removed from the kernel.
3075                  */
3076                 for (i = 0; i < driver->num; i++) {
3077                         tp = driver->termios[i];
3078                         if (tp) {
3079                                 driver->termios[i] = NULL;
3080                                 kfree(tp);
3081                         }
3082                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3083                                 tty_unregister_device(driver, i);
3084                 }
3085                 p = driver->ttys;
3086                 proc_tty_unregister_driver(driver);
3087                 driver->ttys = NULL;
3088                 driver->termios = NULL;
3089                 kfree(p);
3090                 cdev_del(&driver->cdev);
3091         }
3092         kfree(driver);
3093 }
3094
3095 void tty_driver_kref_put(struct tty_driver *driver)
3096 {
3097         kref_put(&driver->kref, destruct_tty_driver);
3098 }
3099 EXPORT_SYMBOL(tty_driver_kref_put);
3100
3101 void tty_set_operations(struct tty_driver *driver,
3102                         const struct tty_operations *op)
3103 {
3104         driver->ops = op;
3105 };
3106 EXPORT_SYMBOL(tty_set_operations);
3107
3108 void put_tty_driver(struct tty_driver *d)
3109 {
3110         tty_driver_kref_put(d);
3111 }
3112 EXPORT_SYMBOL(put_tty_driver);
3113
3114 /*
3115  * Called by a tty driver to register itself.
3116  */
3117 int tty_register_driver(struct tty_driver *driver)
3118 {
3119         int error;
3120         int i;
3121         dev_t dev;
3122         void **p = NULL;
3123         struct device *d;
3124
3125         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3126                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3127                 if (!p)
3128                         return -ENOMEM;
3129         }
3130
3131         if (!driver->major) {
3132                 error = alloc_chrdev_region(&dev, driver->minor_start,
3133                                                 driver->num, driver->name);
3134                 if (!error) {
3135                         driver->major = MAJOR(dev);
3136                         driver->minor_start = MINOR(dev);
3137                 }
3138         } else {
3139                 dev = MKDEV(driver->major, driver->minor_start);
3140                 error = register_chrdev_region(dev, driver->num, driver->name);
3141         }
3142         if (error < 0) {
3143                 kfree(p);
3144                 return error;
3145         }
3146
3147         if (p) {
3148                 driver->ttys = (struct tty_struct **)p;
3149                 driver->termios = (struct ktermios **)(p + driver->num);
3150         } else {
3151                 driver->ttys = NULL;
3152                 driver->termios = NULL;
3153         }
3154
3155         cdev_init(&driver->cdev, &tty_fops);
3156         driver->cdev.owner = driver->owner;
3157         error = cdev_add(&driver->cdev, dev, driver->num);
3158         if (error) {
3159                 unregister_chrdev_region(dev, driver->num);
3160                 driver->ttys = NULL;
3161                 driver->termios = NULL;
3162                 kfree(p);
3163                 return error;
3164         }
3165
3166         mutex_lock(&tty_mutex);
3167         list_add(&driver->tty_drivers, &tty_drivers);
3168         mutex_unlock(&tty_mutex);
3169
3170         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3171                 for (i = 0; i < driver->num; i++) {
3172                         d = tty_register_device(driver, i, NULL);
3173                         if (IS_ERR(d)) {
3174                                 error = PTR_ERR(d);
3175                                 goto err;
3176                         }
3177                 }
3178         }
3179         proc_tty_register_driver(driver);
3180         driver->flags |= TTY_DRIVER_INSTALLED;
3181         return 0;
3182
3183 err:
3184         for (i--; i >= 0; i--)
3185                 tty_unregister_device(driver, i);
3186
3187         mutex_lock(&tty_mutex);
3188         list_del(&driver->tty_drivers);
3189         mutex_unlock(&tty_mutex);
3190
3191         unregister_chrdev_region(dev, driver->num);
3192         driver->ttys = NULL;
3193         driver->termios = NULL;
3194         kfree(p);
3195         return error;
3196 }
3197
3198 EXPORT_SYMBOL(tty_register_driver);
3199
3200 /*
3201  * Called by a tty driver to unregister itself.
3202  */
3203 int tty_unregister_driver(struct tty_driver *driver)
3204 {
3205 #if 0
3206         /* FIXME */
3207         if (driver->refcount)
3208                 return -EBUSY;
3209 #endif
3210         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3211                                 driver->num);
3212         mutex_lock(&tty_mutex);
3213         list_del(&driver->tty_drivers);
3214         mutex_unlock(&tty_mutex);
3215         return 0;
3216 }
3217
3218 EXPORT_SYMBOL(tty_unregister_driver);
3219
3220 dev_t tty_devnum(struct tty_struct *tty)
3221 {
3222         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3223 }
3224 EXPORT_SYMBOL(tty_devnum);
3225
3226 void proc_clear_tty(struct task_struct *p)
3227 {
3228         unsigned long flags;
3229         struct tty_struct *tty;
3230         spin_lock_irqsave(&p->sighand->siglock, flags);
3231         tty = p->signal->tty;
3232         p->signal->tty = NULL;
3233         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3234         tty_kref_put(tty);
3235 }
3236
3237 /* Called under the sighand lock */
3238
3239 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3240 {
3241         if (tty) {
3242                 unsigned long flags;
3243                 /* We should not have a session or pgrp to put here but.... */
3244                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3245                 put_pid(tty->session);
3246                 put_pid(tty->pgrp);
3247                 tty->pgrp = get_pid(task_pgrp(tsk));
3248                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3249                 tty->session = get_pid(task_session(tsk));
3250                 if (tsk->signal->tty) {
3251                         printk(KERN_DEBUG "tty not NULL!!\n");
3252                         tty_kref_put(tsk->signal->tty);
3253                 }
3254         }
3255         put_pid(tsk->signal->tty_old_pgrp);
3256         tsk->signal->tty = tty_kref_get(tty);
3257         tsk->signal->tty_old_pgrp = NULL;
3258 }
3259
3260 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3261 {
3262         spin_lock_irq(&tsk->sighand->siglock);
3263         __proc_set_tty(tsk, tty);
3264         spin_unlock_irq(&tsk->sighand->siglock);
3265 }
3266
3267 struct tty_struct *get_current_tty(void)
3268 {
3269         struct tty_struct *tty;
3270         unsigned long flags;
3271
3272         spin_lock_irqsave(&current->sighand->siglock, flags);
3273         tty = tty_kref_get(current->signal->tty);
3274         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3275         return tty;
3276 }
3277 EXPORT_SYMBOL_GPL(get_current_tty);
3278
3279 void tty_default_fops(struct file_operations *fops)
3280 {
3281         *fops = tty_fops;
3282 }
3283
3284 /*
3285  * Initialize the console device. This is called *early*, so
3286  * we can't necessarily depend on lots of kernel help here.
3287  * Just do some early initializations, and do the complex setup
3288  * later.
3289  */
3290 void __init console_init(void)
3291 {
3292         initcall_t *call;
3293
3294         /* Setup the default TTY line discipline. */
3295         tty_ldisc_begin();
3296
3297         /*
3298          * set up the console device so that later boot sequences can
3299          * inform about problems etc..
3300          */
3301         call = __con_initcall_start;
3302         while (call < __con_initcall_end) {
3303                 (*call)();
3304                 call++;
3305         }
3306 }
3307
3308 static char *tty_devnode(struct device *dev, umode_t *mode)
3309 {
3310         if (!mode)
3311                 return NULL;
3312         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3313             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3314                 *mode = 0666;
3315         return NULL;
3316 }
3317
3318 static int __init tty_class_init(void)
3319 {
3320         tty_class = class_create(THIS_MODULE, "tty");
3321         if (IS_ERR(tty_class))
3322                 return PTR_ERR(tty_class);
3323         tty_class->devnode = tty_devnode;
3324         return 0;
3325 }
3326
3327 postcore_initcall(tty_class_init);
3328
3329 /* 3/2004 jmc: why do these devices exist? */
3330 static struct cdev tty_cdev, console_cdev;
3331
3332 static ssize_t show_cons_active(struct device *dev,
3333                                 struct device_attribute *attr, char *buf)
3334 {
3335         struct console *cs[16];
3336         int i = 0;
3337         struct console *c;
3338         ssize_t count = 0;
3339
3340         console_lock();
3341         for_each_console(c) {
3342                 if (!c->device)
3343                         continue;
3344                 if (!c->write)
3345                         continue;
3346                 if ((c->flags & CON_ENABLED) == 0)
3347                         continue;
3348                 cs[i++] = c;
3349                 if (i >= ARRAY_SIZE(cs))
3350                         break;
3351         }
3352         while (i--)
3353                 count += sprintf(buf + count, "%s%d%c",
3354                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3355         console_unlock();
3356
3357         return count;
3358 }
3359 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3360
3361 static struct device *consdev;
3362
3363 void console_sysfs_notify(void)
3364 {
3365         if (consdev)
3366                 sysfs_notify(&consdev->kobj, NULL, "active");
3367 }
3368
3369 /*
3370  * Ok, now we can initialize the rest of the tty devices and can count
3371  * on memory allocations, interrupts etc..
3372  */
3373 int __init tty_init(void)
3374 {
3375         cdev_init(&tty_cdev, &tty_fops);
3376         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3377             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3378                 panic("Couldn't register /dev/tty driver\n");
3379         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3380
3381         cdev_init(&console_cdev, &console_fops);
3382         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3383             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3384                 panic("Couldn't register /dev/console driver\n");
3385         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3386                               "console");
3387         if (IS_ERR(consdev))
3388                 consdev = NULL;
3389         else
3390                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3391
3392 #ifdef CONFIG_VT
3393         vty_init(&console_fops);
3394 #endif
3395         return 0;
3396 }
3397