proc_fork_connector: a lockless ->real_parent usage is not safe
[pandora-kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 /* Associate a new file with the tty structure */
198 int tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         priv->tty = tty;
207         priv->file = file;
208         file->private_data = priv;
209
210         spin_lock(&tty_files_lock);
211         list_add(&priv->list, &tty->tty_files);
212         spin_unlock(&tty_files_lock);
213
214         return 0;
215 }
216
217 /* Delete file from its tty */
218 void tty_del_file(struct file *file)
219 {
220         struct tty_file_private *priv = file->private_data;
221
222         spin_lock(&tty_files_lock);
223         list_del(&priv->list);
224         spin_unlock(&tty_files_lock);
225         file->private_data = NULL;
226         kfree(priv);
227 }
228
229
230 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
231
232 /**
233  *      tty_name        -       return tty naming
234  *      @tty: tty structure
235  *      @buf: buffer for output
236  *
237  *      Convert a tty structure into a name. The name reflects the kernel
238  *      naming policy and if udev is in use may not reflect user space
239  *
240  *      Locking: none
241  */
242
243 char *tty_name(struct tty_struct *tty, char *buf)
244 {
245         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
246                 strcpy(buf, "NULL tty");
247         else
248                 strcpy(buf, tty->name);
249         return buf;
250 }
251
252 EXPORT_SYMBOL(tty_name);
253
254 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
255                               const char *routine)
256 {
257 #ifdef TTY_PARANOIA_CHECK
258         if (!tty) {
259                 printk(KERN_WARNING
260                         "null TTY for (%d:%d) in %s\n",
261                         imajor(inode), iminor(inode), routine);
262                 return 1;
263         }
264         if (tty->magic != TTY_MAGIC) {
265                 printk(KERN_WARNING
266                         "bad magic number for tty struct (%d:%d) in %s\n",
267                         imajor(inode), iminor(inode), routine);
268                 return 1;
269         }
270 #endif
271         return 0;
272 }
273
274 static int check_tty_count(struct tty_struct *tty, const char *routine)
275 {
276 #ifdef CHECK_TTY_COUNT
277         struct list_head *p;
278         int count = 0;
279
280         spin_lock(&tty_files_lock);
281         list_for_each(p, &tty->tty_files) {
282                 count++;
283         }
284         spin_unlock(&tty_files_lock);
285         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
286             tty->driver->subtype == PTY_TYPE_SLAVE &&
287             tty->link && tty->link->count)
288                 count++;
289         if (tty->count != count) {
290                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
291                                     "!= #fd's(%d) in %s\n",
292                        tty->name, tty->count, count, routine);
293                 return count;
294         }
295 #endif
296         return 0;
297 }
298
299 /**
300  *      get_tty_driver          -       find device of a tty
301  *      @dev_t: device identifier
302  *      @index: returns the index of the tty
303  *
304  *      This routine returns a tty driver structure, given a device number
305  *      and also passes back the index number.
306  *
307  *      Locking: caller must hold tty_mutex
308  */
309
310 static struct tty_driver *get_tty_driver(dev_t device, int *index)
311 {
312         struct tty_driver *p;
313
314         list_for_each_entry(p, &tty_drivers, tty_drivers) {
315                 dev_t base = MKDEV(p->major, p->minor_start);
316                 if (device < base || device >= base + p->num)
317                         continue;
318                 *index = device - base;
319                 return tty_driver_kref_get(p);
320         }
321         return NULL;
322 }
323
324 #ifdef CONFIG_CONSOLE_POLL
325
326 /**
327  *      tty_find_polling_driver -       find device of a polled tty
328  *      @name: name string to match
329  *      @line: pointer to resulting tty line nr
330  *
331  *      This routine returns a tty driver structure, given a name
332  *      and the condition that the tty driver is capable of polled
333  *      operation.
334  */
335 struct tty_driver *tty_find_polling_driver(char *name, int *line)
336 {
337         struct tty_driver *p, *res = NULL;
338         int tty_line = 0;
339         int len;
340         char *str, *stp;
341
342         for (str = name; *str; str++)
343                 if ((*str >= '0' && *str <= '9') || *str == ',')
344                         break;
345         if (!*str)
346                 return NULL;
347
348         len = str - name;
349         tty_line = simple_strtoul(str, &str, 10);
350
351         mutex_lock(&tty_mutex);
352         /* Search through the tty devices to look for a match */
353         list_for_each_entry(p, &tty_drivers, tty_drivers) {
354                 if (strncmp(name, p->name, len) != 0)
355                         continue;
356                 stp = str;
357                 if (*stp == ',')
358                         stp++;
359                 if (*stp == '\0')
360                         stp = NULL;
361
362                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
363                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
364                         res = tty_driver_kref_get(p);
365                         *line = tty_line;
366                         break;
367                 }
368         }
369         mutex_unlock(&tty_mutex);
370
371         return res;
372 }
373 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
374 #endif
375
376 /**
377  *      tty_check_change        -       check for POSIX terminal changes
378  *      @tty: tty to check
379  *
380  *      If we try to write to, or set the state of, a terminal and we're
381  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
382  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
383  *
384  *      Locking: ctrl_lock
385  */
386
387 int tty_check_change(struct tty_struct *tty)
388 {
389         unsigned long flags;
390         int ret = 0;
391
392         if (current->signal->tty != tty)
393                 return 0;
394
395         spin_lock_irqsave(&tty->ctrl_lock, flags);
396
397         if (!tty->pgrp) {
398                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
399                 goto out_unlock;
400         }
401         if (task_pgrp(current) == tty->pgrp)
402                 goto out_unlock;
403         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
404         if (is_ignored(SIGTTOU))
405                 goto out;
406         if (is_current_pgrp_orphaned()) {
407                 ret = -EIO;
408                 goto out;
409         }
410         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
411         set_thread_flag(TIF_SIGPENDING);
412         ret = -ERESTARTSYS;
413 out:
414         return ret;
415 out_unlock:
416         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
417         return ret;
418 }
419
420 EXPORT_SYMBOL(tty_check_change);
421
422 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
423                                 size_t count, loff_t *ppos)
424 {
425         return 0;
426 }
427
428 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
429                                  size_t count, loff_t *ppos)
430 {
431         return -EIO;
432 }
433
434 /* No kernel lock held - none needed ;) */
435 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
436 {
437         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
438 }
439
440 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
441                 unsigned long arg)
442 {
443         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
444 }
445
446 static long hung_up_tty_compat_ioctl(struct file *file,
447                                      unsigned int cmd, unsigned long arg)
448 {
449         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451
452 static const struct file_operations tty_fops = {
453         .llseek         = no_llseek,
454         .read           = tty_read,
455         .write          = tty_write,
456         .poll           = tty_poll,
457         .unlocked_ioctl = tty_ioctl,
458         .compat_ioctl   = tty_compat_ioctl,
459         .open           = tty_open,
460         .release        = tty_release,
461         .fasync         = tty_fasync,
462 };
463
464 static const struct file_operations console_fops = {
465         .llseek         = no_llseek,
466         .read           = tty_read,
467         .write          = redirected_tty_write,
468         .poll           = tty_poll,
469         .unlocked_ioctl = tty_ioctl,
470         .compat_ioctl   = tty_compat_ioctl,
471         .open           = tty_open,
472         .release        = tty_release,
473         .fasync         = tty_fasync,
474 };
475
476 static const struct file_operations hung_up_tty_fops = {
477         .llseek         = no_llseek,
478         .read           = hung_up_tty_read,
479         .write          = hung_up_tty_write,
480         .poll           = hung_up_tty_poll,
481         .unlocked_ioctl = hung_up_tty_ioctl,
482         .compat_ioctl   = hung_up_tty_compat_ioctl,
483         .release        = tty_release,
484 };
485
486 static DEFINE_SPINLOCK(redirect_lock);
487 static struct file *redirect;
488
489 /**
490  *      tty_wakeup      -       request more data
491  *      @tty: terminal
492  *
493  *      Internal and external helper for wakeups of tty. This function
494  *      informs the line discipline if present that the driver is ready
495  *      to receive more output data.
496  */
497
498 void tty_wakeup(struct tty_struct *tty)
499 {
500         struct tty_ldisc *ld;
501
502         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
503                 ld = tty_ldisc_ref(tty);
504                 if (ld) {
505                         if (ld->ops->write_wakeup)
506                                 ld->ops->write_wakeup(tty);
507                         tty_ldisc_deref(ld);
508                 }
509         }
510         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
511 }
512
513 EXPORT_SYMBOL_GPL(tty_wakeup);
514
515 /**
516  *      __tty_hangup            -       actual handler for hangup events
517  *      @work: tty device
518  *
519  *      This can be called by the "eventd" kernel thread.  That is process
520  *      synchronous but doesn't hold any locks, so we need to make sure we
521  *      have the appropriate locks for what we're doing.
522  *
523  *      The hangup event clears any pending redirections onto the hung up
524  *      device. It ensures future writes will error and it does the needed
525  *      line discipline hangup and signal delivery. The tty object itself
526  *      remains intact.
527  *
528  *      Locking:
529  *              BTM
530  *                redirect lock for undoing redirection
531  *                file list lock for manipulating list of ttys
532  *                tty_ldisc_lock from called functions
533  *                termios_mutex resetting termios data
534  *                tasklist_lock to walk task list for hangup event
535  *                  ->siglock to protect ->signal/->sighand
536  */
537 void __tty_hangup(struct tty_struct *tty)
538 {
539         struct file *cons_filp = NULL;
540         struct file *filp, *f = NULL;
541         struct task_struct *p;
542         struct tty_file_private *priv;
543         int    closecount = 0, n;
544         unsigned long flags;
545         int refs = 0;
546
547         if (!tty)
548                 return;
549
550
551         spin_lock(&redirect_lock);
552         if (redirect && file_tty(redirect) == tty) {
553                 f = redirect;
554                 redirect = NULL;
555         }
556         spin_unlock(&redirect_lock);
557
558         tty_lock();
559
560         /* some functions below drop BTM, so we need this bit */
561         set_bit(TTY_HUPPING, &tty->flags);
562
563         /* inuse_filps is protected by the single tty lock,
564            this really needs to change if we want to flush the
565            workqueue with the lock held */
566         check_tty_count(tty, "tty_hangup");
567
568         spin_lock(&tty_files_lock);
569         /* This breaks for file handles being sent over AF_UNIX sockets ? */
570         list_for_each_entry(priv, &tty->tty_files, list) {
571                 filp = priv->file;
572                 if (filp->f_op->write == redirected_tty_write)
573                         cons_filp = filp;
574                 if (filp->f_op->write != tty_write)
575                         continue;
576                 closecount++;
577                 __tty_fasync(-1, filp, 0);      /* can't block */
578                 filp->f_op = &hung_up_tty_fops;
579         }
580         spin_unlock(&tty_files_lock);
581
582         /*
583          * it drops BTM and thus races with reopen
584          * we protect the race by TTY_HUPPING
585          */
586         tty_ldisc_hangup(tty);
587
588         read_lock(&tasklist_lock);
589         if (tty->session) {
590                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
591                         spin_lock_irq(&p->sighand->siglock);
592                         if (p->signal->tty == tty) {
593                                 p->signal->tty = NULL;
594                                 /* We defer the dereferences outside fo
595                                    the tasklist lock */
596                                 refs++;
597                         }
598                         if (!p->signal->leader) {
599                                 spin_unlock_irq(&p->sighand->siglock);
600                                 continue;
601                         }
602                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
603                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
604                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
605                         spin_lock_irqsave(&tty->ctrl_lock, flags);
606                         if (tty->pgrp)
607                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
608                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
609                         spin_unlock_irq(&p->sighand->siglock);
610                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
611         }
612         read_unlock(&tasklist_lock);
613
614         spin_lock_irqsave(&tty->ctrl_lock, flags);
615         clear_bit(TTY_THROTTLED, &tty->flags);
616         clear_bit(TTY_PUSH, &tty->flags);
617         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
618         put_pid(tty->session);
619         put_pid(tty->pgrp);
620         tty->session = NULL;
621         tty->pgrp = NULL;
622         tty->ctrl_status = 0;
623         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
624
625         /* Account for the p->signal references we killed */
626         while (refs--)
627                 tty_kref_put(tty);
628
629         /*
630          * If one of the devices matches a console pointer, we
631          * cannot just call hangup() because that will cause
632          * tty->count and state->count to go out of sync.
633          * So we just call close() the right number of times.
634          */
635         if (cons_filp) {
636                 if (tty->ops->close)
637                         for (n = 0; n < closecount; n++)
638                                 tty->ops->close(tty, cons_filp);
639         } else if (tty->ops->hangup)
640                 (tty->ops->hangup)(tty);
641         /*
642          * We don't want to have driver/ldisc interactions beyond
643          * the ones we did here. The driver layer expects no
644          * calls after ->hangup() from the ldisc side. However we
645          * can't yet guarantee all that.
646          */
647         set_bit(TTY_HUPPED, &tty->flags);
648         clear_bit(TTY_HUPPING, &tty->flags);
649         tty_ldisc_enable(tty);
650
651         tty_unlock();
652
653         if (f)
654                 fput(f);
655 }
656
657 static void do_tty_hangup(struct work_struct *work)
658 {
659         struct tty_struct *tty =
660                 container_of(work, struct tty_struct, hangup_work);
661
662         __tty_hangup(tty);
663 }
664
665 /**
666  *      tty_hangup              -       trigger a hangup event
667  *      @tty: tty to hangup
668  *
669  *      A carrier loss (virtual or otherwise) has occurred on this like
670  *      schedule a hangup sequence to run after this event.
671  */
672
673 void tty_hangup(struct tty_struct *tty)
674 {
675 #ifdef TTY_DEBUG_HANGUP
676         char    buf[64];
677         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
678 #endif
679         schedule_work(&tty->hangup_work);
680 }
681
682 EXPORT_SYMBOL(tty_hangup);
683
684 /**
685  *      tty_vhangup             -       process vhangup
686  *      @tty: tty to hangup
687  *
688  *      The user has asked via system call for the terminal to be hung up.
689  *      We do this synchronously so that when the syscall returns the process
690  *      is complete. That guarantee is necessary for security reasons.
691  */
692
693 void tty_vhangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696         char    buf[64];
697
698         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
699 #endif
700         __tty_hangup(tty);
701 }
702
703 EXPORT_SYMBOL(tty_vhangup);
704
705
706 /**
707  *      tty_vhangup_self        -       process vhangup for own ctty
708  *
709  *      Perform a vhangup on the current controlling tty
710  */
711
712 void tty_vhangup_self(void)
713 {
714         struct tty_struct *tty;
715
716         tty = get_current_tty();
717         if (tty) {
718                 tty_vhangup(tty);
719                 tty_kref_put(tty);
720         }
721 }
722
723 /**
724  *      tty_hung_up_p           -       was tty hung up
725  *      @filp: file pointer of tty
726  *
727  *      Return true if the tty has been subject to a vhangup or a carrier
728  *      loss
729  */
730
731 int tty_hung_up_p(struct file *filp)
732 {
733         return (filp->f_op == &hung_up_tty_fops);
734 }
735
736 EXPORT_SYMBOL(tty_hung_up_p);
737
738 static void session_clear_tty(struct pid *session)
739 {
740         struct task_struct *p;
741         do_each_pid_task(session, PIDTYPE_SID, p) {
742                 proc_clear_tty(p);
743         } while_each_pid_task(session, PIDTYPE_SID, p);
744 }
745
746 /**
747  *      disassociate_ctty       -       disconnect controlling tty
748  *      @on_exit: true if exiting so need to "hang up" the session
749  *
750  *      This function is typically called only by the session leader, when
751  *      it wants to disassociate itself from its controlling tty.
752  *
753  *      It performs the following functions:
754  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
755  *      (2)  Clears the tty from being controlling the session
756  *      (3)  Clears the controlling tty for all processes in the
757  *              session group.
758  *
759  *      The argument on_exit is set to 1 if called when a process is
760  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
761  *
762  *      Locking:
763  *              BTM is taken for hysterical raisins, and held when
764  *                called from no_tty().
765  *                tty_mutex is taken to protect tty
766  *                ->siglock is taken to protect ->signal/->sighand
767  *                tasklist_lock is taken to walk process list for sessions
768  *                  ->siglock is taken to protect ->signal/->sighand
769  */
770
771 void disassociate_ctty(int on_exit)
772 {
773         struct tty_struct *tty;
774         struct pid *tty_pgrp = NULL;
775
776         if (!current->signal->leader)
777                 return;
778
779         tty = get_current_tty();
780         if (tty) {
781                 tty_pgrp = get_pid(tty->pgrp);
782                 if (on_exit) {
783                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
784                                 tty_vhangup(tty);
785                 }
786                 tty_kref_put(tty);
787         } else if (on_exit) {
788                 struct pid *old_pgrp;
789                 spin_lock_irq(&current->sighand->siglock);
790                 old_pgrp = current->signal->tty_old_pgrp;
791                 current->signal->tty_old_pgrp = NULL;
792                 spin_unlock_irq(&current->sighand->siglock);
793                 if (old_pgrp) {
794                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
795                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
796                         put_pid(old_pgrp);
797                 }
798                 return;
799         }
800         if (tty_pgrp) {
801                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
802                 if (!on_exit)
803                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
804                 put_pid(tty_pgrp);
805         }
806
807         spin_lock_irq(&current->sighand->siglock);
808         put_pid(current->signal->tty_old_pgrp);
809         current->signal->tty_old_pgrp = NULL;
810         spin_unlock_irq(&current->sighand->siglock);
811
812         tty = get_current_tty();
813         if (tty) {
814                 unsigned long flags;
815                 spin_lock_irqsave(&tty->ctrl_lock, flags);
816                 put_pid(tty->session);
817                 put_pid(tty->pgrp);
818                 tty->session = NULL;
819                 tty->pgrp = NULL;
820                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
821                 tty_kref_put(tty);
822         } else {
823 #ifdef TTY_DEBUG_HANGUP
824                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
825                        " = NULL", tty);
826 #endif
827         }
828
829         /* Now clear signal->tty under the lock */
830         read_lock(&tasklist_lock);
831         session_clear_tty(task_session(current));
832         read_unlock(&tasklist_lock);
833 }
834
835 /**
836  *
837  *      no_tty  - Ensure the current process does not have a controlling tty
838  */
839 void no_tty(void)
840 {
841         struct task_struct *tsk = current;
842         tty_lock();
843         disassociate_ctty(0);
844         tty_unlock();
845         proc_clear_tty(tsk);
846 }
847
848
849 /**
850  *      stop_tty        -       propagate flow control
851  *      @tty: tty to stop
852  *
853  *      Perform flow control to the driver. For PTY/TTY pairs we
854  *      must also propagate the TIOCKPKT status. May be called
855  *      on an already stopped device and will not re-call the driver
856  *      method.
857  *
858  *      This functionality is used by both the line disciplines for
859  *      halting incoming flow and by the driver. It may therefore be
860  *      called from any context, may be under the tty atomic_write_lock
861  *      but not always.
862  *
863  *      Locking:
864  *              Uses the tty control lock internally
865  */
866
867 void stop_tty(struct tty_struct *tty)
868 {
869         unsigned long flags;
870         spin_lock_irqsave(&tty->ctrl_lock, flags);
871         if (tty->stopped) {
872                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
873                 return;
874         }
875         tty->stopped = 1;
876         if (tty->link && tty->link->packet) {
877                 tty->ctrl_status &= ~TIOCPKT_START;
878                 tty->ctrl_status |= TIOCPKT_STOP;
879                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
880         }
881         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
882         if (tty->ops->stop)
883                 (tty->ops->stop)(tty);
884 }
885
886 EXPORT_SYMBOL(stop_tty);
887
888 /**
889  *      start_tty       -       propagate flow control
890  *      @tty: tty to start
891  *
892  *      Start a tty that has been stopped if at all possible. Perform
893  *      any necessary wakeups and propagate the TIOCPKT status. If this
894  *      is the tty was previous stopped and is being started then the
895  *      driver start method is invoked and the line discipline woken.
896  *
897  *      Locking:
898  *              ctrl_lock
899  */
900
901 void start_tty(struct tty_struct *tty)
902 {
903         unsigned long flags;
904         spin_lock_irqsave(&tty->ctrl_lock, flags);
905         if (!tty->stopped || tty->flow_stopped) {
906                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
907                 return;
908         }
909         tty->stopped = 0;
910         if (tty->link && tty->link->packet) {
911                 tty->ctrl_status &= ~TIOCPKT_STOP;
912                 tty->ctrl_status |= TIOCPKT_START;
913                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
914         }
915         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
916         if (tty->ops->start)
917                 (tty->ops->start)(tty);
918         /* If we have a running line discipline it may need kicking */
919         tty_wakeup(tty);
920 }
921
922 EXPORT_SYMBOL(start_tty);
923
924 /**
925  *      tty_read        -       read method for tty device files
926  *      @file: pointer to tty file
927  *      @buf: user buffer
928  *      @count: size of user buffer
929  *      @ppos: unused
930  *
931  *      Perform the read system call function on this terminal device. Checks
932  *      for hung up devices before calling the line discipline method.
933  *
934  *      Locking:
935  *              Locks the line discipline internally while needed. Multiple
936  *      read calls may be outstanding in parallel.
937  */
938
939 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
940                         loff_t *ppos)
941 {
942         int i;
943         struct inode *inode = file->f_path.dentry->d_inode;
944         struct tty_struct *tty = file_tty(file);
945         struct tty_ldisc *ld;
946
947         if (tty_paranoia_check(tty, inode, "tty_read"))
948                 return -EIO;
949         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
950                 return -EIO;
951
952         /* We want to wait for the line discipline to sort out in this
953            situation */
954         ld = tty_ldisc_ref_wait(tty);
955         if (ld->ops->read)
956                 i = (ld->ops->read)(tty, file, buf, count);
957         else
958                 i = -EIO;
959         tty_ldisc_deref(ld);
960         if (i > 0)
961                 inode->i_atime = current_fs_time(inode->i_sb);
962         return i;
963 }
964
965 void tty_write_unlock(struct tty_struct *tty)
966         __releases(&tty->atomic_write_lock)
967 {
968         mutex_unlock(&tty->atomic_write_lock);
969         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
970 }
971
972 int tty_write_lock(struct tty_struct *tty, int ndelay)
973         __acquires(&tty->atomic_write_lock)
974 {
975         if (!mutex_trylock(&tty->atomic_write_lock)) {
976                 if (ndelay)
977                         return -EAGAIN;
978                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
979                         return -ERESTARTSYS;
980         }
981         return 0;
982 }
983
984 /*
985  * Split writes up in sane blocksizes to avoid
986  * denial-of-service type attacks
987  */
988 static inline ssize_t do_tty_write(
989         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
990         struct tty_struct *tty,
991         struct file *file,
992         const char __user *buf,
993         size_t count)
994 {
995         ssize_t ret, written = 0;
996         unsigned int chunk;
997
998         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
999         if (ret < 0)
1000                 return ret;
1001
1002         /*
1003          * We chunk up writes into a temporary buffer. This
1004          * simplifies low-level drivers immensely, since they
1005          * don't have locking issues and user mode accesses.
1006          *
1007          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008          * big chunk-size..
1009          *
1010          * The default chunk-size is 2kB, because the NTTY
1011          * layer has problems with bigger chunks. It will
1012          * claim to be able to handle more characters than
1013          * it actually does.
1014          *
1015          * FIXME: This can probably go away now except that 64K chunks
1016          * are too likely to fail unless switched to vmalloc...
1017          */
1018         chunk = 2048;
1019         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020                 chunk = 65536;
1021         if (count < chunk)
1022                 chunk = count;
1023
1024         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025         if (tty->write_cnt < chunk) {
1026                 unsigned char *buf_chunk;
1027
1028                 if (chunk < 1024)
1029                         chunk = 1024;
1030
1031                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032                 if (!buf_chunk) {
1033                         ret = -ENOMEM;
1034                         goto out;
1035                 }
1036                 kfree(tty->write_buf);
1037                 tty->write_cnt = chunk;
1038                 tty->write_buf = buf_chunk;
1039         }
1040
1041         /* Do the write .. */
1042         for (;;) {
1043                 size_t size = count;
1044                 if (size > chunk)
1045                         size = chunk;
1046                 ret = -EFAULT;
1047                 if (copy_from_user(tty->write_buf, buf, size))
1048                         break;
1049                 ret = write(tty, file, tty->write_buf, size);
1050                 if (ret <= 0)
1051                         break;
1052                 written += ret;
1053                 buf += ret;
1054                 count -= ret;
1055                 if (!count)
1056                         break;
1057                 ret = -ERESTARTSYS;
1058                 if (signal_pending(current))
1059                         break;
1060                 cond_resched();
1061         }
1062         if (written) {
1063                 struct inode *inode = file->f_path.dentry->d_inode;
1064                 inode->i_mtime = current_fs_time(inode->i_sb);
1065                 ret = written;
1066         }
1067 out:
1068         tty_write_unlock(tty);
1069         return ret;
1070 }
1071
1072 /**
1073  * tty_write_message - write a message to a certain tty, not just the console.
1074  * @tty: the destination tty_struct
1075  * @msg: the message to write
1076  *
1077  * This is used for messages that need to be redirected to a specific tty.
1078  * We don't put it into the syslog queue right now maybe in the future if
1079  * really needed.
1080  *
1081  * We must still hold the BTM and test the CLOSING flag for the moment.
1082  */
1083
1084 void tty_write_message(struct tty_struct *tty, char *msg)
1085 {
1086         if (tty) {
1087                 mutex_lock(&tty->atomic_write_lock);
1088                 tty_lock();
1089                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090                         tty_unlock();
1091                         tty->ops->write(tty, msg, strlen(msg));
1092                 } else
1093                         tty_unlock();
1094                 tty_write_unlock(tty);
1095         }
1096         return;
1097 }
1098
1099
1100 /**
1101  *      tty_write               -       write method for tty device file
1102  *      @file: tty file pointer
1103  *      @buf: user data to write
1104  *      @count: bytes to write
1105  *      @ppos: unused
1106  *
1107  *      Write data to a tty device via the line discipline.
1108  *
1109  *      Locking:
1110  *              Locks the line discipline as required
1111  *              Writes to the tty driver are serialized by the atomic_write_lock
1112  *      and are then processed in chunks to the device. The line discipline
1113  *      write method will not be invoked in parallel for each device.
1114  */
1115
1116 static ssize_t tty_write(struct file *file, const char __user *buf,
1117                                                 size_t count, loff_t *ppos)
1118 {
1119         struct inode *inode = file->f_path.dentry->d_inode;
1120         struct tty_struct *tty = file_tty(file);
1121         struct tty_ldisc *ld;
1122         ssize_t ret;
1123
1124         if (tty_paranoia_check(tty, inode, "tty_write"))
1125                 return -EIO;
1126         if (!tty || !tty->ops->write ||
1127                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1128                         return -EIO;
1129         /* Short term debug to catch buggy drivers */
1130         if (tty->ops->write_room == NULL)
1131                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132                         tty->driver->name);
1133         ld = tty_ldisc_ref_wait(tty);
1134         if (!ld->ops->write)
1135                 ret = -EIO;
1136         else
1137                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138         tty_ldisc_deref(ld);
1139         return ret;
1140 }
1141
1142 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143                                                 size_t count, loff_t *ppos)
1144 {
1145         struct file *p = NULL;
1146
1147         spin_lock(&redirect_lock);
1148         if (redirect) {
1149                 get_file(redirect);
1150                 p = redirect;
1151         }
1152         spin_unlock(&redirect_lock);
1153
1154         if (p) {
1155                 ssize_t res;
1156                 res = vfs_write(p, buf, count, &p->f_pos);
1157                 fput(p);
1158                 return res;
1159         }
1160         return tty_write(file, buf, count, ppos);
1161 }
1162
1163 static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165 /**
1166  *      pty_line_name   -       generate name for a pty
1167  *      @driver: the tty driver in use
1168  *      @index: the minor number
1169  *      @p: output buffer of at least 6 bytes
1170  *
1171  *      Generate a name from a driver reference and write it to the output
1172  *      buffer.
1173  *
1174  *      Locking: None
1175  */
1176 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177 {
1178         int i = index + driver->name_base;
1179         /* ->name is initialized to "ttyp", but "tty" is expected */
1180         sprintf(p, "%s%c%x",
1181                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182                 ptychar[i >> 4 & 0xf], i & 0xf);
1183 }
1184
1185 /**
1186  *      tty_line_name   -       generate name for a tty
1187  *      @driver: the tty driver in use
1188  *      @index: the minor number
1189  *      @p: output buffer of at least 7 bytes
1190  *
1191  *      Generate a name from a driver reference and write it to the output
1192  *      buffer.
1193  *
1194  *      Locking: None
1195  */
1196 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197 {
1198         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1199 }
1200
1201 /**
1202  *      tty_driver_lookup_tty() - find an existing tty, if any
1203  *      @driver: the driver for the tty
1204  *      @idx:    the minor number
1205  *
1206  *      Return the tty, if found or ERR_PTR() otherwise.
1207  *
1208  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1209  *      be held until the 'fast-open' is also done. Will change once we
1210  *      have refcounting in the driver and per driver locking
1211  */
1212 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213                 struct inode *inode, int idx)
1214 {
1215         struct tty_struct *tty;
1216
1217         if (driver->ops->lookup)
1218                 return driver->ops->lookup(driver, inode, idx);
1219
1220         tty = driver->ttys[idx];
1221         return tty;
1222 }
1223
1224 /**
1225  *      tty_init_termios        -  helper for termios setup
1226  *      @tty: the tty to set up
1227  *
1228  *      Initialise the termios structures for this tty. Thus runs under
1229  *      the tty_mutex currently so we can be relaxed about ordering.
1230  */
1231
1232 int tty_init_termios(struct tty_struct *tty)
1233 {
1234         struct ktermios *tp;
1235         int idx = tty->index;
1236
1237         tp = tty->driver->termios[idx];
1238         if (tp == NULL) {
1239                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240                 if (tp == NULL)
1241                         return -ENOMEM;
1242                 memcpy(tp, &tty->driver->init_termios,
1243                                                 sizeof(struct ktermios));
1244                 tty->driver->termios[idx] = tp;
1245         }
1246         tty->termios = tp;
1247         tty->termios_locked = tp + 1;
1248
1249         /* Compatibility until drivers always set this */
1250         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252         return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(tty_init_termios);
1255
1256 /**
1257  *      tty_driver_install_tty() - install a tty entry in the driver
1258  *      @driver: the driver for the tty
1259  *      @tty: the tty
1260  *
1261  *      Install a tty object into the driver tables. The tty->index field
1262  *      will be set by the time this is called. This method is responsible
1263  *      for ensuring any need additional structures are allocated and
1264  *      configured.
1265  *
1266  *      Locking: tty_mutex for now
1267  */
1268 static int tty_driver_install_tty(struct tty_driver *driver,
1269                                                 struct tty_struct *tty)
1270 {
1271         int idx = tty->index;
1272         int ret;
1273
1274         if (driver->ops->install) {
1275                 ret = driver->ops->install(driver, tty);
1276                 return ret;
1277         }
1278
1279         if (tty_init_termios(tty) == 0) {
1280                 tty_driver_kref_get(driver);
1281                 tty->count++;
1282                 driver->ttys[idx] = tty;
1283                 return 0;
1284         }
1285         return -ENOMEM;
1286 }
1287
1288 /**
1289  *      tty_driver_remove_tty() - remove a tty from the driver tables
1290  *      @driver: the driver for the tty
1291  *      @idx:    the minor number
1292  *
1293  *      Remvoe a tty object from the driver tables. The tty->index field
1294  *      will be set by the time this is called.
1295  *
1296  *      Locking: tty_mutex for now
1297  */
1298 static void tty_driver_remove_tty(struct tty_driver *driver,
1299                                                 struct tty_struct *tty)
1300 {
1301         if (driver->ops->remove)
1302                 driver->ops->remove(driver, tty);
1303         else
1304                 driver->ttys[tty->index] = NULL;
1305 }
1306
1307 /*
1308  *      tty_reopen()    - fast re-open of an open tty
1309  *      @tty    - the tty to open
1310  *
1311  *      Return 0 on success, -errno on error.
1312  *
1313  *      Locking: tty_mutex must be held from the time the tty was found
1314  *               till this open completes.
1315  */
1316 static int tty_reopen(struct tty_struct *tty)
1317 {
1318         struct tty_driver *driver = tty->driver;
1319
1320         if (test_bit(TTY_CLOSING, &tty->flags) ||
1321                         test_bit(TTY_HUPPING, &tty->flags) ||
1322                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1323                 return -EIO;
1324
1325         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1326             driver->subtype == PTY_TYPE_MASTER) {
1327                 /*
1328                  * special case for PTY masters: only one open permitted,
1329                  * and the slave side open count is incremented as well.
1330                  */
1331                 if (tty->count)
1332                         return -EIO;
1333
1334                 tty->link->count++;
1335         }
1336         tty->count++;
1337         tty->driver = driver; /* N.B. why do this every time?? */
1338
1339         mutex_lock(&tty->ldisc_mutex);
1340         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1341         mutex_unlock(&tty->ldisc_mutex);
1342
1343         return 0;
1344 }
1345
1346 /**
1347  *      tty_init_dev            -       initialise a tty device
1348  *      @driver: tty driver we are opening a device on
1349  *      @idx: device index
1350  *      @ret_tty: returned tty structure
1351  *      @first_ok: ok to open a new device (used by ptmx)
1352  *
1353  *      Prepare a tty device. This may not be a "new" clean device but
1354  *      could also be an active device. The pty drivers require special
1355  *      handling because of this.
1356  *
1357  *      Locking:
1358  *              The function is called under the tty_mutex, which
1359  *      protects us from the tty struct or driver itself going away.
1360  *
1361  *      On exit the tty device has the line discipline attached and
1362  *      a reference count of 1. If a pair was created for pty/tty use
1363  *      and the other was a pty master then it too has a reference count of 1.
1364  *
1365  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1366  * failed open.  The new code protects the open with a mutex, so it's
1367  * really quite straightforward.  The mutex locking can probably be
1368  * relaxed for the (most common) case of reopening a tty.
1369  */
1370
1371 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1372                                                                 int first_ok)
1373 {
1374         struct tty_struct *tty;
1375         int retval;
1376
1377         /* Check if pty master is being opened multiple times */
1378         if (driver->subtype == PTY_TYPE_MASTER &&
1379                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1380                 return ERR_PTR(-EIO);
1381         }
1382
1383         /*
1384          * First time open is complex, especially for PTY devices.
1385          * This code guarantees that either everything succeeds and the
1386          * TTY is ready for operation, or else the table slots are vacated
1387          * and the allocated memory released.  (Except that the termios
1388          * and locked termios may be retained.)
1389          */
1390
1391         if (!try_module_get(driver->owner))
1392                 return ERR_PTR(-ENODEV);
1393
1394         tty = alloc_tty_struct();
1395         if (!tty) {
1396                 retval = -ENOMEM;
1397                 goto err_module_put;
1398         }
1399         initialize_tty_struct(tty, driver, idx);
1400
1401         retval = tty_driver_install_tty(driver, tty);
1402         if (retval < 0)
1403                 goto err_deinit_tty;
1404
1405         /*
1406          * Structures all installed ... call the ldisc open routines.
1407          * If we fail here just call release_tty to clean up.  No need
1408          * to decrement the use counts, as release_tty doesn't care.
1409          */
1410         retval = tty_ldisc_setup(tty, tty->link);
1411         if (retval)
1412                 goto err_release_tty;
1413         return tty;
1414
1415 err_deinit_tty:
1416         deinitialize_tty_struct(tty);
1417         free_tty_struct(tty);
1418 err_module_put:
1419         module_put(driver->owner);
1420         return ERR_PTR(retval);
1421
1422         /* call the tty release_tty routine to clean out this slot */
1423 err_release_tty:
1424         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1425                                  "clearing slot %d\n", idx);
1426         release_tty(tty, idx);
1427         return ERR_PTR(retval);
1428 }
1429
1430 void tty_free_termios(struct tty_struct *tty)
1431 {
1432         struct ktermios *tp;
1433         int idx = tty->index;
1434         /* Kill this flag and push into drivers for locking etc */
1435         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1436                 /* FIXME: Locking on ->termios array */
1437                 tp = tty->termios;
1438                 tty->driver->termios[idx] = NULL;
1439                 kfree(tp);
1440         }
1441 }
1442 EXPORT_SYMBOL(tty_free_termios);
1443
1444 void tty_shutdown(struct tty_struct *tty)
1445 {
1446         tty_driver_remove_tty(tty->driver, tty);
1447         tty_free_termios(tty);
1448 }
1449 EXPORT_SYMBOL(tty_shutdown);
1450
1451 /**
1452  *      release_one_tty         -       release tty structure memory
1453  *      @kref: kref of tty we are obliterating
1454  *
1455  *      Releases memory associated with a tty structure, and clears out the
1456  *      driver table slots. This function is called when a device is no longer
1457  *      in use. It also gets called when setup of a device fails.
1458  *
1459  *      Locking:
1460  *              tty_mutex - sometimes only
1461  *              takes the file list lock internally when working on the list
1462  *      of ttys that the driver keeps.
1463  *
1464  *      This method gets called from a work queue so that the driver private
1465  *      cleanup ops can sleep (needed for USB at least)
1466  */
1467 static void release_one_tty(struct work_struct *work)
1468 {
1469         struct tty_struct *tty =
1470                 container_of(work, struct tty_struct, hangup_work);
1471         struct tty_driver *driver = tty->driver;
1472
1473         if (tty->ops->cleanup)
1474                 tty->ops->cleanup(tty);
1475
1476         tty->magic = 0;
1477         tty_driver_kref_put(driver);
1478         module_put(driver->owner);
1479
1480         spin_lock(&tty_files_lock);
1481         list_del_init(&tty->tty_files);
1482         spin_unlock(&tty_files_lock);
1483
1484         put_pid(tty->pgrp);
1485         put_pid(tty->session);
1486         free_tty_struct(tty);
1487 }
1488
1489 static void queue_release_one_tty(struct kref *kref)
1490 {
1491         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1492
1493         if (tty->ops->shutdown)
1494                 tty->ops->shutdown(tty);
1495         else
1496                 tty_shutdown(tty);
1497
1498         /* The hangup queue is now free so we can reuse it rather than
1499            waste a chunk of memory for each port */
1500         INIT_WORK(&tty->hangup_work, release_one_tty);
1501         schedule_work(&tty->hangup_work);
1502 }
1503
1504 /**
1505  *      tty_kref_put            -       release a tty kref
1506  *      @tty: tty device
1507  *
1508  *      Release a reference to a tty device and if need be let the kref
1509  *      layer destruct the object for us
1510  */
1511
1512 void tty_kref_put(struct tty_struct *tty)
1513 {
1514         if (tty)
1515                 kref_put(&tty->kref, queue_release_one_tty);
1516 }
1517 EXPORT_SYMBOL(tty_kref_put);
1518
1519 /**
1520  *      release_tty             -       release tty structure memory
1521  *
1522  *      Release both @tty and a possible linked partner (think pty pair),
1523  *      and decrement the refcount of the backing module.
1524  *
1525  *      Locking:
1526  *              tty_mutex - sometimes only
1527  *              takes the file list lock internally when working on the list
1528  *      of ttys that the driver keeps.
1529  *              FIXME: should we require tty_mutex is held here ??
1530  *
1531  */
1532 static void release_tty(struct tty_struct *tty, int idx)
1533 {
1534         /* This should always be true but check for the moment */
1535         WARN_ON(tty->index != idx);
1536
1537         if (tty->link)
1538                 tty_kref_put(tty->link);
1539         tty_kref_put(tty);
1540 }
1541
1542 /**
1543  *      tty_release             -       vfs callback for close
1544  *      @inode: inode of tty
1545  *      @filp: file pointer for handle to tty
1546  *
1547  *      Called the last time each file handle is closed that references
1548  *      this tty. There may however be several such references.
1549  *
1550  *      Locking:
1551  *              Takes bkl. See tty_release_dev
1552  *
1553  * Even releasing the tty structures is a tricky business.. We have
1554  * to be very careful that the structures are all released at the
1555  * same time, as interrupts might otherwise get the wrong pointers.
1556  *
1557  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1558  * lead to double frees or releasing memory still in use.
1559  */
1560
1561 int tty_release(struct inode *inode, struct file *filp)
1562 {
1563         struct tty_struct *tty = file_tty(filp);
1564         struct tty_struct *o_tty;
1565         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1566         int     devpts;
1567         int     idx;
1568         char    buf[64];
1569
1570         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1571                 return 0;
1572
1573         tty_lock();
1574         check_tty_count(tty, "tty_release_dev");
1575
1576         __tty_fasync(-1, filp, 0);
1577
1578         idx = tty->index;
1579         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1580                       tty->driver->subtype == PTY_TYPE_MASTER);
1581         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1582         o_tty = tty->link;
1583
1584 #ifdef TTY_PARANOIA_CHECK
1585         if (idx < 0 || idx >= tty->driver->num) {
1586                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1587                                   "free (%s)\n", tty->name);
1588                 tty_unlock();
1589                 return 0;
1590         }
1591         if (!devpts) {
1592                 if (tty != tty->driver->ttys[idx]) {
1593                         tty_unlock();
1594                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1595                                "for (%s)\n", idx, tty->name);
1596                         return 0;
1597                 }
1598                 if (tty->termios != tty->driver->termios[idx]) {
1599                         tty_unlock();
1600                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1601                                "for (%s)\n",
1602                                idx, tty->name);
1603                         return 0;
1604                 }
1605         }
1606 #endif
1607
1608 #ifdef TTY_DEBUG_HANGUP
1609         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1610                tty_name(tty, buf), tty->count);
1611 #endif
1612
1613 #ifdef TTY_PARANOIA_CHECK
1614         if (tty->driver->other &&
1615              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1616                 if (o_tty != tty->driver->other->ttys[idx]) {
1617                         tty_unlock();
1618                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1619                                           "not o_tty for (%s)\n",
1620                                idx, tty->name);
1621                         return 0 ;
1622                 }
1623                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1624                         tty_unlock();
1625                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1626                                           "not o_termios for (%s)\n",
1627                                idx, tty->name);
1628                         return 0;
1629                 }
1630                 if (o_tty->link != tty) {
1631                         tty_unlock();
1632                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1633                         return 0;
1634                 }
1635         }
1636 #endif
1637         if (tty->ops->close)
1638                 tty->ops->close(tty, filp);
1639
1640         tty_unlock();
1641         /*
1642          * Sanity check: if tty->count is going to zero, there shouldn't be
1643          * any waiters on tty->read_wait or tty->write_wait.  We test the
1644          * wait queues and kick everyone out _before_ actually starting to
1645          * close.  This ensures that we won't block while releasing the tty
1646          * structure.
1647          *
1648          * The test for the o_tty closing is necessary, since the master and
1649          * slave sides may close in any order.  If the slave side closes out
1650          * first, its count will be one, since the master side holds an open.
1651          * Thus this test wouldn't be triggered at the time the slave closes,
1652          * so we do it now.
1653          *
1654          * Note that it's possible for the tty to be opened again while we're
1655          * flushing out waiters.  By recalculating the closing flags before
1656          * each iteration we avoid any problems.
1657          */
1658         while (1) {
1659                 /* Guard against races with tty->count changes elsewhere and
1660                    opens on /dev/tty */
1661
1662                 mutex_lock(&tty_mutex);
1663                 tty_lock();
1664                 tty_closing = tty->count <= 1;
1665                 o_tty_closing = o_tty &&
1666                         (o_tty->count <= (pty_master ? 1 : 0));
1667                 do_sleep = 0;
1668
1669                 if (tty_closing) {
1670                         if (waitqueue_active(&tty->read_wait)) {
1671                                 wake_up_poll(&tty->read_wait, POLLIN);
1672                                 do_sleep++;
1673                         }
1674                         if (waitqueue_active(&tty->write_wait)) {
1675                                 wake_up_poll(&tty->write_wait, POLLOUT);
1676                                 do_sleep++;
1677                         }
1678                 }
1679                 if (o_tty_closing) {
1680                         if (waitqueue_active(&o_tty->read_wait)) {
1681                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1682                                 do_sleep++;
1683                         }
1684                         if (waitqueue_active(&o_tty->write_wait)) {
1685                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1686                                 do_sleep++;
1687                         }
1688                 }
1689                 if (!do_sleep)
1690                         break;
1691
1692                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1693                                     "active!\n", tty_name(tty, buf));
1694                 tty_unlock();
1695                 mutex_unlock(&tty_mutex);
1696                 schedule();
1697         }
1698
1699         /*
1700          * The closing flags are now consistent with the open counts on
1701          * both sides, and we've completed the last operation that could
1702          * block, so it's safe to proceed with closing.
1703          */
1704         if (pty_master) {
1705                 if (--o_tty->count < 0) {
1706                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1707                                             "(%d) for %s\n",
1708                                o_tty->count, tty_name(o_tty, buf));
1709                         o_tty->count = 0;
1710                 }
1711         }
1712         if (--tty->count < 0) {
1713                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1714                        tty->count, tty_name(tty, buf));
1715                 tty->count = 0;
1716         }
1717
1718         /*
1719          * We've decremented tty->count, so we need to remove this file
1720          * descriptor off the tty->tty_files list; this serves two
1721          * purposes:
1722          *  - check_tty_count sees the correct number of file descriptors
1723          *    associated with this tty.
1724          *  - do_tty_hangup no longer sees this file descriptor as
1725          *    something that needs to be handled for hangups.
1726          */
1727         tty_del_file(filp);
1728
1729         /*
1730          * Perform some housekeeping before deciding whether to return.
1731          *
1732          * Set the TTY_CLOSING flag if this was the last open.  In the
1733          * case of a pty we may have to wait around for the other side
1734          * to close, and TTY_CLOSING makes sure we can't be reopened.
1735          */
1736         if (tty_closing)
1737                 set_bit(TTY_CLOSING, &tty->flags);
1738         if (o_tty_closing)
1739                 set_bit(TTY_CLOSING, &o_tty->flags);
1740
1741         /*
1742          * If _either_ side is closing, make sure there aren't any
1743          * processes that still think tty or o_tty is their controlling
1744          * tty.
1745          */
1746         if (tty_closing || o_tty_closing) {
1747                 read_lock(&tasklist_lock);
1748                 session_clear_tty(tty->session);
1749                 if (o_tty)
1750                         session_clear_tty(o_tty->session);
1751                 read_unlock(&tasklist_lock);
1752         }
1753
1754         mutex_unlock(&tty_mutex);
1755
1756         /* check whether both sides are closing ... */
1757         if (!tty_closing || (o_tty && !o_tty_closing)) {
1758                 tty_unlock();
1759                 return 0;
1760         }
1761
1762 #ifdef TTY_DEBUG_HANGUP
1763         printk(KERN_DEBUG "freeing tty structure...");
1764 #endif
1765         /*
1766          * Ask the line discipline code to release its structures
1767          */
1768         tty_ldisc_release(tty, o_tty);
1769         /*
1770          * The release_tty function takes care of the details of clearing
1771          * the slots and preserving the termios structure.
1772          */
1773         release_tty(tty, idx);
1774
1775         /* Make this pty number available for reallocation */
1776         if (devpts)
1777                 devpts_kill_index(inode, idx);
1778         tty_unlock();
1779         return 0;
1780 }
1781
1782 /**
1783  *      tty_open                -       open a tty device
1784  *      @inode: inode of device file
1785  *      @filp: file pointer to tty
1786  *
1787  *      tty_open and tty_release keep up the tty count that contains the
1788  *      number of opens done on a tty. We cannot use the inode-count, as
1789  *      different inodes might point to the same tty.
1790  *
1791  *      Open-counting is needed for pty masters, as well as for keeping
1792  *      track of serial lines: DTR is dropped when the last close happens.
1793  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1794  *
1795  *      The termios state of a pty is reset on first open so that
1796  *      settings don't persist across reuse.
1797  *
1798  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1799  *               tty->count should protect the rest.
1800  *               ->siglock protects ->signal/->sighand
1801  */
1802
1803 static int tty_open(struct inode *inode, struct file *filp)
1804 {
1805         struct tty_struct *tty = NULL;
1806         int noctty, retval;
1807         struct tty_driver *driver;
1808         int index;
1809         dev_t device = inode->i_rdev;
1810         unsigned saved_flags = filp->f_flags;
1811
1812         nonseekable_open(inode, filp);
1813
1814 retry_open:
1815         noctty = filp->f_flags & O_NOCTTY;
1816         index  = -1;
1817         retval = 0;
1818
1819         mutex_lock(&tty_mutex);
1820         tty_lock();
1821
1822         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1823                 tty = get_current_tty();
1824                 if (!tty) {
1825                         tty_unlock();
1826                         mutex_unlock(&tty_mutex);
1827                         return -ENXIO;
1828                 }
1829                 driver = tty_driver_kref_get(tty->driver);
1830                 index = tty->index;
1831                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1832                 /* noctty = 1; */
1833                 /* FIXME: Should we take a driver reference ? */
1834                 tty_kref_put(tty);
1835                 goto got_driver;
1836         }
1837 #ifdef CONFIG_VT
1838         if (device == MKDEV(TTY_MAJOR, 0)) {
1839                 extern struct tty_driver *console_driver;
1840                 driver = tty_driver_kref_get(console_driver);
1841                 index = fg_console;
1842                 noctty = 1;
1843                 goto got_driver;
1844         }
1845 #endif
1846         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1847                 struct tty_driver *console_driver = console_device(&index);
1848                 if (console_driver) {
1849                         driver = tty_driver_kref_get(console_driver);
1850                         if (driver) {
1851                                 /* Don't let /dev/console block */
1852                                 filp->f_flags |= O_NONBLOCK;
1853                                 noctty = 1;
1854                                 goto got_driver;
1855                         }
1856                 }
1857                 tty_unlock();
1858                 mutex_unlock(&tty_mutex);
1859                 return -ENODEV;
1860         }
1861
1862         driver = get_tty_driver(device, &index);
1863         if (!driver) {
1864                 tty_unlock();
1865                 mutex_unlock(&tty_mutex);
1866                 return -ENODEV;
1867         }
1868 got_driver:
1869         if (!tty) {
1870                 /* check whether we're reopening an existing tty */
1871                 tty = tty_driver_lookup_tty(driver, inode, index);
1872
1873                 if (IS_ERR(tty)) {
1874                         tty_unlock();
1875                         mutex_unlock(&tty_mutex);
1876                         return PTR_ERR(tty);
1877                 }
1878         }
1879
1880         if (tty) {
1881                 retval = tty_reopen(tty);
1882                 if (retval)
1883                         tty = ERR_PTR(retval);
1884         } else
1885                 tty = tty_init_dev(driver, index, 0);
1886
1887         mutex_unlock(&tty_mutex);
1888         tty_driver_kref_put(driver);
1889         if (IS_ERR(tty)) {
1890                 tty_unlock();
1891                 return PTR_ERR(tty);
1892         }
1893
1894         retval = tty_add_file(tty, filp);
1895         if (retval) {
1896                 tty_unlock();
1897                 tty_release(inode, filp);
1898                 return retval;
1899         }
1900
1901         check_tty_count(tty, "tty_open");
1902         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1903             tty->driver->subtype == PTY_TYPE_MASTER)
1904                 noctty = 1;
1905 #ifdef TTY_DEBUG_HANGUP
1906         printk(KERN_DEBUG "opening %s...", tty->name);
1907 #endif
1908         if (tty->ops->open)
1909                 retval = tty->ops->open(tty, filp);
1910         else
1911                 retval = -ENODEV;
1912         filp->f_flags = saved_flags;
1913
1914         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1915                                                 !capable(CAP_SYS_ADMIN))
1916                 retval = -EBUSY;
1917
1918         if (retval) {
1919 #ifdef TTY_DEBUG_HANGUP
1920                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1921                        tty->name);
1922 #endif
1923                 tty_unlock(); /* need to call tty_release without BTM */
1924                 tty_release(inode, filp);
1925                 if (retval != -ERESTARTSYS)
1926                         return retval;
1927
1928                 if (signal_pending(current))
1929                         return retval;
1930
1931                 schedule();
1932                 /*
1933                  * Need to reset f_op in case a hangup happened.
1934                  */
1935                 tty_lock();
1936                 if (filp->f_op == &hung_up_tty_fops)
1937                         filp->f_op = &tty_fops;
1938                 tty_unlock();
1939                 goto retry_open;
1940         }
1941         tty_unlock();
1942
1943
1944         mutex_lock(&tty_mutex);
1945         tty_lock();
1946         spin_lock_irq(&current->sighand->siglock);
1947         if (!noctty &&
1948             current->signal->leader &&
1949             !current->signal->tty &&
1950             tty->session == NULL)
1951                 __proc_set_tty(current, tty);
1952         spin_unlock_irq(&current->sighand->siglock);
1953         tty_unlock();
1954         mutex_unlock(&tty_mutex);
1955         return 0;
1956 }
1957
1958
1959
1960 /**
1961  *      tty_poll        -       check tty status
1962  *      @filp: file being polled
1963  *      @wait: poll wait structures to update
1964  *
1965  *      Call the line discipline polling method to obtain the poll
1966  *      status of the device.
1967  *
1968  *      Locking: locks called line discipline but ldisc poll method
1969  *      may be re-entered freely by other callers.
1970  */
1971
1972 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1973 {
1974         struct tty_struct *tty = file_tty(filp);
1975         struct tty_ldisc *ld;
1976         int ret = 0;
1977
1978         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1979                 return 0;
1980
1981         ld = tty_ldisc_ref_wait(tty);
1982         if (ld->ops->poll)
1983                 ret = (ld->ops->poll)(tty, filp, wait);
1984         tty_ldisc_deref(ld);
1985         return ret;
1986 }
1987
1988 static int __tty_fasync(int fd, struct file *filp, int on)
1989 {
1990         struct tty_struct *tty = file_tty(filp);
1991         unsigned long flags;
1992         int retval = 0;
1993
1994         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1995                 goto out;
1996
1997         retval = fasync_helper(fd, filp, on, &tty->fasync);
1998         if (retval <= 0)
1999                 goto out;
2000
2001         if (on) {
2002                 enum pid_type type;
2003                 struct pid *pid;
2004                 if (!waitqueue_active(&tty->read_wait))
2005                         tty->minimum_to_wake = 1;
2006                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2007                 if (tty->pgrp) {
2008                         pid = tty->pgrp;
2009                         type = PIDTYPE_PGID;
2010                 } else {
2011                         pid = task_pid(current);
2012                         type = PIDTYPE_PID;
2013                 }
2014                 get_pid(pid);
2015                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2016                 retval = __f_setown(filp, pid, type, 0);
2017                 put_pid(pid);
2018                 if (retval)
2019                         goto out;
2020         } else {
2021                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2022                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2023         }
2024         retval = 0;
2025 out:
2026         return retval;
2027 }
2028
2029 static int tty_fasync(int fd, struct file *filp, int on)
2030 {
2031         int retval;
2032         tty_lock();
2033         retval = __tty_fasync(fd, filp, on);
2034         tty_unlock();
2035         return retval;
2036 }
2037
2038 /**
2039  *      tiocsti                 -       fake input character
2040  *      @tty: tty to fake input into
2041  *      @p: pointer to character
2042  *
2043  *      Fake input to a tty device. Does the necessary locking and
2044  *      input management.
2045  *
2046  *      FIXME: does not honour flow control ??
2047  *
2048  *      Locking:
2049  *              Called functions take tty_ldisc_lock
2050  *              current->signal->tty check is safe without locks
2051  *
2052  *      FIXME: may race normal receive processing
2053  */
2054
2055 static int tiocsti(struct tty_struct *tty, char __user *p)
2056 {
2057         char ch, mbz = 0;
2058         struct tty_ldisc *ld;
2059
2060         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2061                 return -EPERM;
2062         if (get_user(ch, p))
2063                 return -EFAULT;
2064         tty_audit_tiocsti(tty, ch);
2065         ld = tty_ldisc_ref_wait(tty);
2066         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2067         tty_ldisc_deref(ld);
2068         return 0;
2069 }
2070
2071 /**
2072  *      tiocgwinsz              -       implement window query ioctl
2073  *      @tty; tty
2074  *      @arg: user buffer for result
2075  *
2076  *      Copies the kernel idea of the window size into the user buffer.
2077  *
2078  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2079  *              is consistent.
2080  */
2081
2082 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2083 {
2084         int err;
2085
2086         mutex_lock(&tty->termios_mutex);
2087         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2088         mutex_unlock(&tty->termios_mutex);
2089
2090         return err ? -EFAULT: 0;
2091 }
2092
2093 /**
2094  *      tty_do_resize           -       resize event
2095  *      @tty: tty being resized
2096  *      @rows: rows (character)
2097  *      @cols: cols (character)
2098  *
2099  *      Update the termios variables and send the necessary signals to
2100  *      peform a terminal resize correctly
2101  */
2102
2103 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2104 {
2105         struct pid *pgrp;
2106         unsigned long flags;
2107
2108         /* Lock the tty */
2109         mutex_lock(&tty->termios_mutex);
2110         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2111                 goto done;
2112         /* Get the PID values and reference them so we can
2113            avoid holding the tty ctrl lock while sending signals */
2114         spin_lock_irqsave(&tty->ctrl_lock, flags);
2115         pgrp = get_pid(tty->pgrp);
2116         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2117
2118         if (pgrp)
2119                 kill_pgrp(pgrp, SIGWINCH, 1);
2120         put_pid(pgrp);
2121
2122         tty->winsize = *ws;
2123 done:
2124         mutex_unlock(&tty->termios_mutex);
2125         return 0;
2126 }
2127
2128 /**
2129  *      tiocswinsz              -       implement window size set ioctl
2130  *      @tty; tty side of tty
2131  *      @arg: user buffer for result
2132  *
2133  *      Copies the user idea of the window size to the kernel. Traditionally
2134  *      this is just advisory information but for the Linux console it
2135  *      actually has driver level meaning and triggers a VC resize.
2136  *
2137  *      Locking:
2138  *              Driver dependent. The default do_resize method takes the
2139  *      tty termios mutex and ctrl_lock. The console takes its own lock
2140  *      then calls into the default method.
2141  */
2142
2143 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2144 {
2145         struct winsize tmp_ws;
2146         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2147                 return -EFAULT;
2148
2149         if (tty->ops->resize)
2150                 return tty->ops->resize(tty, &tmp_ws);
2151         else
2152                 return tty_do_resize(tty, &tmp_ws);
2153 }
2154
2155 /**
2156  *      tioccons        -       allow admin to move logical console
2157  *      @file: the file to become console
2158  *
2159  *      Allow the administrator to move the redirected console device
2160  *
2161  *      Locking: uses redirect_lock to guard the redirect information
2162  */
2163
2164 static int tioccons(struct file *file)
2165 {
2166         if (!capable(CAP_SYS_ADMIN))
2167                 return -EPERM;
2168         if (file->f_op->write == redirected_tty_write) {
2169                 struct file *f;
2170                 spin_lock(&redirect_lock);
2171                 f = redirect;
2172                 redirect = NULL;
2173                 spin_unlock(&redirect_lock);
2174                 if (f)
2175                         fput(f);
2176                 return 0;
2177         }
2178         spin_lock(&redirect_lock);
2179         if (redirect) {
2180                 spin_unlock(&redirect_lock);
2181                 return -EBUSY;
2182         }
2183         get_file(file);
2184         redirect = file;
2185         spin_unlock(&redirect_lock);
2186         return 0;
2187 }
2188
2189 /**
2190  *      fionbio         -       non blocking ioctl
2191  *      @file: file to set blocking value
2192  *      @p: user parameter
2193  *
2194  *      Historical tty interfaces had a blocking control ioctl before
2195  *      the generic functionality existed. This piece of history is preserved
2196  *      in the expected tty API of posix OS's.
2197  *
2198  *      Locking: none, the open file handle ensures it won't go away.
2199  */
2200
2201 static int fionbio(struct file *file, int __user *p)
2202 {
2203         int nonblock;
2204
2205         if (get_user(nonblock, p))
2206                 return -EFAULT;
2207
2208         spin_lock(&file->f_lock);
2209         if (nonblock)
2210                 file->f_flags |= O_NONBLOCK;
2211         else
2212                 file->f_flags &= ~O_NONBLOCK;
2213         spin_unlock(&file->f_lock);
2214         return 0;
2215 }
2216
2217 /**
2218  *      tiocsctty       -       set controlling tty
2219  *      @tty: tty structure
2220  *      @arg: user argument
2221  *
2222  *      This ioctl is used to manage job control. It permits a session
2223  *      leader to set this tty as the controlling tty for the session.
2224  *
2225  *      Locking:
2226  *              Takes tty_mutex() to protect tty instance
2227  *              Takes tasklist_lock internally to walk sessions
2228  *              Takes ->siglock() when updating signal->tty
2229  */
2230
2231 static int tiocsctty(struct tty_struct *tty, int arg)
2232 {
2233         int ret = 0;
2234         if (current->signal->leader && (task_session(current) == tty->session))
2235                 return ret;
2236
2237         mutex_lock(&tty_mutex);
2238         /*
2239          * The process must be a session leader and
2240          * not have a controlling tty already.
2241          */
2242         if (!current->signal->leader || current->signal->tty) {
2243                 ret = -EPERM;
2244                 goto unlock;
2245         }
2246
2247         if (tty->session) {
2248                 /*
2249                  * This tty is already the controlling
2250                  * tty for another session group!
2251                  */
2252                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2253                         /*
2254                          * Steal it away
2255                          */
2256                         read_lock(&tasklist_lock);
2257                         session_clear_tty(tty->session);
2258                         read_unlock(&tasklist_lock);
2259                 } else {
2260                         ret = -EPERM;
2261                         goto unlock;
2262                 }
2263         }
2264         proc_set_tty(current, tty);
2265 unlock:
2266         mutex_unlock(&tty_mutex);
2267         return ret;
2268 }
2269
2270 /**
2271  *      tty_get_pgrp    -       return a ref counted pgrp pid
2272  *      @tty: tty to read
2273  *
2274  *      Returns a refcounted instance of the pid struct for the process
2275  *      group controlling the tty.
2276  */
2277
2278 struct pid *tty_get_pgrp(struct tty_struct *tty)
2279 {
2280         unsigned long flags;
2281         struct pid *pgrp;
2282
2283         spin_lock_irqsave(&tty->ctrl_lock, flags);
2284         pgrp = get_pid(tty->pgrp);
2285         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2286
2287         return pgrp;
2288 }
2289 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2290
2291 /**
2292  *      tiocgpgrp               -       get process group
2293  *      @tty: tty passed by user
2294  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2295  *      @p: returned pid
2296  *
2297  *      Obtain the process group of the tty. If there is no process group
2298  *      return an error.
2299  *
2300  *      Locking: none. Reference to current->signal->tty is safe.
2301  */
2302
2303 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2304 {
2305         struct pid *pid;
2306         int ret;
2307         /*
2308          * (tty == real_tty) is a cheap way of
2309          * testing if the tty is NOT a master pty.
2310          */
2311         if (tty == real_tty && current->signal->tty != real_tty)
2312                 return -ENOTTY;
2313         pid = tty_get_pgrp(real_tty);
2314         ret =  put_user(pid_vnr(pid), p);
2315         put_pid(pid);
2316         return ret;
2317 }
2318
2319 /**
2320  *      tiocspgrp               -       attempt to set process group
2321  *      @tty: tty passed by user
2322  *      @real_tty: tty side device matching tty passed by user
2323  *      @p: pid pointer
2324  *
2325  *      Set the process group of the tty to the session passed. Only
2326  *      permitted where the tty session is our session.
2327  *
2328  *      Locking: RCU, ctrl lock
2329  */
2330
2331 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2332 {
2333         struct pid *pgrp;
2334         pid_t pgrp_nr;
2335         int retval = tty_check_change(real_tty);
2336         unsigned long flags;
2337
2338         if (retval == -EIO)
2339                 return -ENOTTY;
2340         if (retval)
2341                 return retval;
2342         if (!current->signal->tty ||
2343             (current->signal->tty != real_tty) ||
2344             (real_tty->session != task_session(current)))
2345                 return -ENOTTY;
2346         if (get_user(pgrp_nr, p))
2347                 return -EFAULT;
2348         if (pgrp_nr < 0)
2349                 return -EINVAL;
2350         rcu_read_lock();
2351         pgrp = find_vpid(pgrp_nr);
2352         retval = -ESRCH;
2353         if (!pgrp)
2354                 goto out_unlock;
2355         retval = -EPERM;
2356         if (session_of_pgrp(pgrp) != task_session(current))
2357                 goto out_unlock;
2358         retval = 0;
2359         spin_lock_irqsave(&tty->ctrl_lock, flags);
2360         put_pid(real_tty->pgrp);
2361         real_tty->pgrp = get_pid(pgrp);
2362         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2363 out_unlock:
2364         rcu_read_unlock();
2365         return retval;
2366 }
2367
2368 /**
2369  *      tiocgsid                -       get session id
2370  *      @tty: tty passed by user
2371  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2372  *      @p: pointer to returned session id
2373  *
2374  *      Obtain the session id of the tty. If there is no session
2375  *      return an error.
2376  *
2377  *      Locking: none. Reference to current->signal->tty is safe.
2378  */
2379
2380 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2381 {
2382         /*
2383          * (tty == real_tty) is a cheap way of
2384          * testing if the tty is NOT a master pty.
2385         */
2386         if (tty == real_tty && current->signal->tty != real_tty)
2387                 return -ENOTTY;
2388         if (!real_tty->session)
2389                 return -ENOTTY;
2390         return put_user(pid_vnr(real_tty->session), p);
2391 }
2392
2393 /**
2394  *      tiocsetd        -       set line discipline
2395  *      @tty: tty device
2396  *      @p: pointer to user data
2397  *
2398  *      Set the line discipline according to user request.
2399  *
2400  *      Locking: see tty_set_ldisc, this function is just a helper
2401  */
2402
2403 static int tiocsetd(struct tty_struct *tty, int __user *p)
2404 {
2405         int ldisc;
2406         int ret;
2407
2408         if (get_user(ldisc, p))
2409                 return -EFAULT;
2410
2411         ret = tty_set_ldisc(tty, ldisc);
2412
2413         return ret;
2414 }
2415
2416 /**
2417  *      send_break      -       performed time break
2418  *      @tty: device to break on
2419  *      @duration: timeout in mS
2420  *
2421  *      Perform a timed break on hardware that lacks its own driver level
2422  *      timed break functionality.
2423  *
2424  *      Locking:
2425  *              atomic_write_lock serializes
2426  *
2427  */
2428
2429 static int send_break(struct tty_struct *tty, unsigned int duration)
2430 {
2431         int retval;
2432
2433         if (tty->ops->break_ctl == NULL)
2434                 return 0;
2435
2436         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2437                 retval = tty->ops->break_ctl(tty, duration);
2438         else {
2439                 /* Do the work ourselves */
2440                 if (tty_write_lock(tty, 0) < 0)
2441                         return -EINTR;
2442                 retval = tty->ops->break_ctl(tty, -1);
2443                 if (retval)
2444                         goto out;
2445                 if (!signal_pending(current))
2446                         msleep_interruptible(duration);
2447                 retval = tty->ops->break_ctl(tty, 0);
2448 out:
2449                 tty_write_unlock(tty);
2450                 if (signal_pending(current))
2451                         retval = -EINTR;
2452         }
2453         return retval;
2454 }
2455
2456 /**
2457  *      tty_tiocmget            -       get modem status
2458  *      @tty: tty device
2459  *      @file: user file pointer
2460  *      @p: pointer to result
2461  *
2462  *      Obtain the modem status bits from the tty driver if the feature
2463  *      is supported. Return -EINVAL if it is not available.
2464  *
2465  *      Locking: none (up to the driver)
2466  */
2467
2468 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2469 {
2470         int retval = -EINVAL;
2471
2472         if (tty->ops->tiocmget) {
2473                 retval = tty->ops->tiocmget(tty);
2474
2475                 if (retval >= 0)
2476                         retval = put_user(retval, p);
2477         }
2478         return retval;
2479 }
2480
2481 /**
2482  *      tty_tiocmset            -       set modem status
2483  *      @tty: tty device
2484  *      @cmd: command - clear bits, set bits or set all
2485  *      @p: pointer to desired bits
2486  *
2487  *      Set the modem status bits from the tty driver if the feature
2488  *      is supported. Return -EINVAL if it is not available.
2489  *
2490  *      Locking: none (up to the driver)
2491  */
2492
2493 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2494              unsigned __user *p)
2495 {
2496         int retval;
2497         unsigned int set, clear, val;
2498
2499         if (tty->ops->tiocmset == NULL)
2500                 return -EINVAL;
2501
2502         retval = get_user(val, p);
2503         if (retval)
2504                 return retval;
2505         set = clear = 0;
2506         switch (cmd) {
2507         case TIOCMBIS:
2508                 set = val;
2509                 break;
2510         case TIOCMBIC:
2511                 clear = val;
2512                 break;
2513         case TIOCMSET:
2514                 set = val;
2515                 clear = ~val;
2516                 break;
2517         }
2518         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2520         return tty->ops->tiocmset(tty, set, clear);
2521 }
2522
2523 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2524 {
2525         int retval = -EINVAL;
2526         struct serial_icounter_struct icount;
2527         memset(&icount, 0, sizeof(icount));
2528         if (tty->ops->get_icount)
2529                 retval = tty->ops->get_icount(tty, &icount);
2530         if (retval != 0)
2531                 return retval;
2532         if (copy_to_user(arg, &icount, sizeof(icount)))
2533                 return -EFAULT;
2534         return 0;
2535 }
2536
2537 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2538 {
2539         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2540             tty->driver->subtype == PTY_TYPE_MASTER)
2541                 tty = tty->link;
2542         return tty;
2543 }
2544 EXPORT_SYMBOL(tty_pair_get_tty);
2545
2546 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2547 {
2548         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2549             tty->driver->subtype == PTY_TYPE_MASTER)
2550             return tty;
2551         return tty->link;
2552 }
2553 EXPORT_SYMBOL(tty_pair_get_pty);
2554
2555 /*
2556  * Split this up, as gcc can choke on it otherwise..
2557  */
2558 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2559 {
2560         struct tty_struct *tty = file_tty(file);
2561         struct tty_struct *real_tty;
2562         void __user *p = (void __user *)arg;
2563         int retval;
2564         struct tty_ldisc *ld;
2565         struct inode *inode = file->f_dentry->d_inode;
2566
2567         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2568                 return -EINVAL;
2569
2570         real_tty = tty_pair_get_tty(tty);
2571
2572         /*
2573          * Factor out some common prep work
2574          */
2575         switch (cmd) {
2576         case TIOCSETD:
2577         case TIOCSBRK:
2578         case TIOCCBRK:
2579         case TCSBRK:
2580         case TCSBRKP:
2581                 retval = tty_check_change(tty);
2582                 if (retval)
2583                         return retval;
2584                 if (cmd != TIOCCBRK) {
2585                         tty_wait_until_sent(tty, 0);
2586                         if (signal_pending(current))
2587                                 return -EINTR;
2588                 }
2589                 break;
2590         }
2591
2592         /*
2593          *      Now do the stuff.
2594          */
2595         switch (cmd) {
2596         case TIOCSTI:
2597                 return tiocsti(tty, p);
2598         case TIOCGWINSZ:
2599                 return tiocgwinsz(real_tty, p);
2600         case TIOCSWINSZ:
2601                 return tiocswinsz(real_tty, p);
2602         case TIOCCONS:
2603                 return real_tty != tty ? -EINVAL : tioccons(file);
2604         case FIONBIO:
2605                 return fionbio(file, p);
2606         case TIOCEXCL:
2607                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2608                 return 0;
2609         case TIOCNXCL:
2610                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2611                 return 0;
2612         case TIOCNOTTY:
2613                 if (current->signal->tty != tty)
2614                         return -ENOTTY;
2615                 no_tty();
2616                 return 0;
2617         case TIOCSCTTY:
2618                 return tiocsctty(tty, arg);
2619         case TIOCGPGRP:
2620                 return tiocgpgrp(tty, real_tty, p);
2621         case TIOCSPGRP:
2622                 return tiocspgrp(tty, real_tty, p);
2623         case TIOCGSID:
2624                 return tiocgsid(tty, real_tty, p);
2625         case TIOCGETD:
2626                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2627         case TIOCSETD:
2628                 return tiocsetd(tty, p);
2629         case TIOCVHANGUP:
2630                 if (!capable(CAP_SYS_ADMIN))
2631                         return -EPERM;
2632                 tty_vhangup(tty);
2633                 return 0;
2634         case TIOCGDEV:
2635         {
2636                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2637                 return put_user(ret, (unsigned int __user *)p);
2638         }
2639         /*
2640          * Break handling
2641          */
2642         case TIOCSBRK:  /* Turn break on, unconditionally */
2643                 if (tty->ops->break_ctl)
2644                         return tty->ops->break_ctl(tty, -1);
2645                 return 0;
2646         case TIOCCBRK:  /* Turn break off, unconditionally */
2647                 if (tty->ops->break_ctl)
2648                         return tty->ops->break_ctl(tty, 0);
2649                 return 0;
2650         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2651                 /* non-zero arg means wait for all output data
2652                  * to be sent (performed above) but don't send break.
2653                  * This is used by the tcdrain() termios function.
2654                  */
2655                 if (!arg)
2656                         return send_break(tty, 250);
2657                 return 0;
2658         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2659                 return send_break(tty, arg ? arg*100 : 250);
2660
2661         case TIOCMGET:
2662                 return tty_tiocmget(tty, p);
2663         case TIOCMSET:
2664         case TIOCMBIC:
2665         case TIOCMBIS:
2666                 return tty_tiocmset(tty, cmd, p);
2667         case TIOCGICOUNT:
2668                 retval = tty_tiocgicount(tty, p);
2669                 /* For the moment allow fall through to the old method */
2670                 if (retval != -EINVAL)
2671                         return retval;
2672                 break;
2673         case TCFLSH:
2674                 switch (arg) {
2675                 case TCIFLUSH:
2676                 case TCIOFLUSH:
2677                 /* flush tty buffer and allow ldisc to process ioctl */
2678                         tty_buffer_flush(tty);
2679                         break;
2680                 }
2681                 break;
2682         }
2683         if (tty->ops->ioctl) {
2684                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2685                 if (retval != -ENOIOCTLCMD)
2686                         return retval;
2687         }
2688         ld = tty_ldisc_ref_wait(tty);
2689         retval = -EINVAL;
2690         if (ld->ops->ioctl) {
2691                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2692                 if (retval == -ENOIOCTLCMD)
2693                         retval = -EINVAL;
2694         }
2695         tty_ldisc_deref(ld);
2696         return retval;
2697 }
2698
2699 #ifdef CONFIG_COMPAT
2700 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2701                                 unsigned long arg)
2702 {
2703         struct inode *inode = file->f_dentry->d_inode;
2704         struct tty_struct *tty = file_tty(file);
2705         struct tty_ldisc *ld;
2706         int retval = -ENOIOCTLCMD;
2707
2708         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2709                 return -EINVAL;
2710
2711         if (tty->ops->compat_ioctl) {
2712                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2713                 if (retval != -ENOIOCTLCMD)
2714                         return retval;
2715         }
2716
2717         ld = tty_ldisc_ref_wait(tty);
2718         if (ld->ops->compat_ioctl)
2719                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2720         tty_ldisc_deref(ld);
2721
2722         return retval;
2723 }
2724 #endif
2725
2726 /*
2727  * This implements the "Secure Attention Key" ---  the idea is to
2728  * prevent trojan horses by killing all processes associated with this
2729  * tty when the user hits the "Secure Attention Key".  Required for
2730  * super-paranoid applications --- see the Orange Book for more details.
2731  *
2732  * This code could be nicer; ideally it should send a HUP, wait a few
2733  * seconds, then send a INT, and then a KILL signal.  But you then
2734  * have to coordinate with the init process, since all processes associated
2735  * with the current tty must be dead before the new getty is allowed
2736  * to spawn.
2737  *
2738  * Now, if it would be correct ;-/ The current code has a nasty hole -
2739  * it doesn't catch files in flight. We may send the descriptor to ourselves
2740  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2741  *
2742  * Nasty bug: do_SAK is being called in interrupt context.  This can
2743  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2744  */
2745 void __do_SAK(struct tty_struct *tty)
2746 {
2747 #ifdef TTY_SOFT_SAK
2748         tty_hangup(tty);
2749 #else
2750         struct task_struct *g, *p;
2751         struct pid *session;
2752         int             i;
2753         struct file     *filp;
2754         struct fdtable *fdt;
2755
2756         if (!tty)
2757                 return;
2758         session = tty->session;
2759
2760         tty_ldisc_flush(tty);
2761
2762         tty_driver_flush_buffer(tty);
2763
2764         read_lock(&tasklist_lock);
2765         /* Kill the entire session */
2766         do_each_pid_task(session, PIDTYPE_SID, p) {
2767                 printk(KERN_NOTICE "SAK: killed process %d"
2768                         " (%s): task_session(p)==tty->session\n",
2769                         task_pid_nr(p), p->comm);
2770                 send_sig(SIGKILL, p, 1);
2771         } while_each_pid_task(session, PIDTYPE_SID, p);
2772         /* Now kill any processes that happen to have the
2773          * tty open.
2774          */
2775         do_each_thread(g, p) {
2776                 if (p->signal->tty == tty) {
2777                         printk(KERN_NOTICE "SAK: killed process %d"
2778                             " (%s): task_session(p)==tty->session\n",
2779                             task_pid_nr(p), p->comm);
2780                         send_sig(SIGKILL, p, 1);
2781                         continue;
2782                 }
2783                 task_lock(p);
2784                 if (p->files) {
2785                         /*
2786                          * We don't take a ref to the file, so we must
2787                          * hold ->file_lock instead.
2788                          */
2789                         spin_lock(&p->files->file_lock);
2790                         fdt = files_fdtable(p->files);
2791                         for (i = 0; i < fdt->max_fds; i++) {
2792                                 filp = fcheck_files(p->files, i);
2793                                 if (!filp)
2794                                         continue;
2795                                 if (filp->f_op->read == tty_read &&
2796                                     file_tty(filp) == tty) {
2797                                         printk(KERN_NOTICE "SAK: killed process %d"
2798                                             " (%s): fd#%d opened to the tty\n",
2799                                             task_pid_nr(p), p->comm, i);
2800                                         force_sig(SIGKILL, p);
2801                                         break;
2802                                 }
2803                         }
2804                         spin_unlock(&p->files->file_lock);
2805                 }
2806                 task_unlock(p);
2807         } while_each_thread(g, p);
2808         read_unlock(&tasklist_lock);
2809 #endif
2810 }
2811
2812 static void do_SAK_work(struct work_struct *work)
2813 {
2814         struct tty_struct *tty =
2815                 container_of(work, struct tty_struct, SAK_work);
2816         __do_SAK(tty);
2817 }
2818
2819 /*
2820  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2821  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2822  * the values which we write to it will be identical to the values which it
2823  * already has. --akpm
2824  */
2825 void do_SAK(struct tty_struct *tty)
2826 {
2827         if (!tty)
2828                 return;
2829         schedule_work(&tty->SAK_work);
2830 }
2831
2832 EXPORT_SYMBOL(do_SAK);
2833
2834 static int dev_match_devt(struct device *dev, void *data)
2835 {
2836         dev_t *devt = data;
2837         return dev->devt == *devt;
2838 }
2839
2840 /* Must put_device() after it's unused! */
2841 static struct device *tty_get_device(struct tty_struct *tty)
2842 {
2843         dev_t devt = tty_devnum(tty);
2844         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2845 }
2846
2847
2848 /**
2849  *      initialize_tty_struct
2850  *      @tty: tty to initialize
2851  *
2852  *      This subroutine initializes a tty structure that has been newly
2853  *      allocated.
2854  *
2855  *      Locking: none - tty in question must not be exposed at this point
2856  */
2857
2858 void initialize_tty_struct(struct tty_struct *tty,
2859                 struct tty_driver *driver, int idx)
2860 {
2861         memset(tty, 0, sizeof(struct tty_struct));
2862         kref_init(&tty->kref);
2863         tty->magic = TTY_MAGIC;
2864         tty_ldisc_init(tty);
2865         tty->session = NULL;
2866         tty->pgrp = NULL;
2867         tty->overrun_time = jiffies;
2868         tty->buf.head = tty->buf.tail = NULL;
2869         tty_buffer_init(tty);
2870         mutex_init(&tty->termios_mutex);
2871         mutex_init(&tty->ldisc_mutex);
2872         init_waitqueue_head(&tty->write_wait);
2873         init_waitqueue_head(&tty->read_wait);
2874         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2875         mutex_init(&tty->atomic_read_lock);
2876         mutex_init(&tty->atomic_write_lock);
2877         mutex_init(&tty->output_lock);
2878         mutex_init(&tty->echo_lock);
2879         spin_lock_init(&tty->read_lock);
2880         spin_lock_init(&tty->ctrl_lock);
2881         INIT_LIST_HEAD(&tty->tty_files);
2882         INIT_WORK(&tty->SAK_work, do_SAK_work);
2883
2884         tty->driver = driver;
2885         tty->ops = driver->ops;
2886         tty->index = idx;
2887         tty_line_name(driver, idx, tty->name);
2888         tty->dev = tty_get_device(tty);
2889 }
2890
2891 /**
2892  *      deinitialize_tty_struct
2893  *      @tty: tty to deinitialize
2894  *
2895  *      This subroutine deinitializes a tty structure that has been newly
2896  *      allocated but tty_release cannot be called on that yet.
2897  *
2898  *      Locking: none - tty in question must not be exposed at this point
2899  */
2900 void deinitialize_tty_struct(struct tty_struct *tty)
2901 {
2902         tty_ldisc_deinit(tty);
2903 }
2904
2905 /**
2906  *      tty_put_char    -       write one character to a tty
2907  *      @tty: tty
2908  *      @ch: character
2909  *
2910  *      Write one byte to the tty using the provided put_char method
2911  *      if present. Returns the number of characters successfully output.
2912  *
2913  *      Note: the specific put_char operation in the driver layer may go
2914  *      away soon. Don't call it directly, use this method
2915  */
2916
2917 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2918 {
2919         if (tty->ops->put_char)
2920                 return tty->ops->put_char(tty, ch);
2921         return tty->ops->write(tty, &ch, 1);
2922 }
2923 EXPORT_SYMBOL_GPL(tty_put_char);
2924
2925 struct class *tty_class;
2926
2927 /**
2928  *      tty_register_device - register a tty device
2929  *      @driver: the tty driver that describes the tty device
2930  *      @index: the index in the tty driver for this tty device
2931  *      @device: a struct device that is associated with this tty device.
2932  *              This field is optional, if there is no known struct device
2933  *              for this tty device it can be set to NULL safely.
2934  *
2935  *      Returns a pointer to the struct device for this tty device
2936  *      (or ERR_PTR(-EFOO) on error).
2937  *
2938  *      This call is required to be made to register an individual tty device
2939  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2940  *      that bit is not set, this function should not be called by a tty
2941  *      driver.
2942  *
2943  *      Locking: ??
2944  */
2945
2946 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2947                                    struct device *device)
2948 {
2949         char name[64];
2950         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2951
2952         if (index >= driver->num) {
2953                 printk(KERN_ERR "Attempt to register invalid tty line number "
2954                        " (%d).\n", index);
2955                 return ERR_PTR(-EINVAL);
2956         }
2957
2958         if (driver->type == TTY_DRIVER_TYPE_PTY)
2959                 pty_line_name(driver, index, name);
2960         else
2961                 tty_line_name(driver, index, name);
2962
2963         return device_create(tty_class, device, dev, NULL, name);
2964 }
2965 EXPORT_SYMBOL(tty_register_device);
2966
2967 /**
2968  *      tty_unregister_device - unregister a tty device
2969  *      @driver: the tty driver that describes the tty device
2970  *      @index: the index in the tty driver for this tty device
2971  *
2972  *      If a tty device is registered with a call to tty_register_device() then
2973  *      this function must be called when the tty device is gone.
2974  *
2975  *      Locking: ??
2976  */
2977
2978 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2979 {
2980         device_destroy(tty_class,
2981                 MKDEV(driver->major, driver->minor_start) + index);
2982 }
2983 EXPORT_SYMBOL(tty_unregister_device);
2984
2985 struct tty_driver *alloc_tty_driver(int lines)
2986 {
2987         struct tty_driver *driver;
2988
2989         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2990         if (driver) {
2991                 kref_init(&driver->kref);
2992                 driver->magic = TTY_DRIVER_MAGIC;
2993                 driver->num = lines;
2994                 /* later we'll move allocation of tables here */
2995         }
2996         return driver;
2997 }
2998 EXPORT_SYMBOL(alloc_tty_driver);
2999
3000 static void destruct_tty_driver(struct kref *kref)
3001 {
3002         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3003         int i;
3004         struct ktermios *tp;
3005         void *p;
3006
3007         if (driver->flags & TTY_DRIVER_INSTALLED) {
3008                 /*
3009                  * Free the termios and termios_locked structures because
3010                  * we don't want to get memory leaks when modular tty
3011                  * drivers are removed from the kernel.
3012                  */
3013                 for (i = 0; i < driver->num; i++) {
3014                         tp = driver->termios[i];
3015                         if (tp) {
3016                                 driver->termios[i] = NULL;
3017                                 kfree(tp);
3018                         }
3019                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3020                                 tty_unregister_device(driver, i);
3021                 }
3022                 p = driver->ttys;
3023                 proc_tty_unregister_driver(driver);
3024                 driver->ttys = NULL;
3025                 driver->termios = NULL;
3026                 kfree(p);
3027                 cdev_del(&driver->cdev);
3028         }
3029         kfree(driver);
3030 }
3031
3032 void tty_driver_kref_put(struct tty_driver *driver)
3033 {
3034         kref_put(&driver->kref, destruct_tty_driver);
3035 }
3036 EXPORT_SYMBOL(tty_driver_kref_put);
3037
3038 void tty_set_operations(struct tty_driver *driver,
3039                         const struct tty_operations *op)
3040 {
3041         driver->ops = op;
3042 };
3043 EXPORT_SYMBOL(tty_set_operations);
3044
3045 void put_tty_driver(struct tty_driver *d)
3046 {
3047         tty_driver_kref_put(d);
3048 }
3049 EXPORT_SYMBOL(put_tty_driver);
3050
3051 /*
3052  * Called by a tty driver to register itself.
3053  */
3054 int tty_register_driver(struct tty_driver *driver)
3055 {
3056         int error;
3057         int i;
3058         dev_t dev;
3059         void **p = NULL;
3060         struct device *d;
3061
3062         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3063                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3064                 if (!p)
3065                         return -ENOMEM;
3066         }
3067
3068         if (!driver->major) {
3069                 error = alloc_chrdev_region(&dev, driver->minor_start,
3070                                                 driver->num, driver->name);
3071                 if (!error) {
3072                         driver->major = MAJOR(dev);
3073                         driver->minor_start = MINOR(dev);
3074                 }
3075         } else {
3076                 dev = MKDEV(driver->major, driver->minor_start);
3077                 error = register_chrdev_region(dev, driver->num, driver->name);
3078         }
3079         if (error < 0) {
3080                 kfree(p);
3081                 return error;
3082         }
3083
3084         if (p) {
3085                 driver->ttys = (struct tty_struct **)p;
3086                 driver->termios = (struct ktermios **)(p + driver->num);
3087         } else {
3088                 driver->ttys = NULL;
3089                 driver->termios = NULL;
3090         }
3091
3092         cdev_init(&driver->cdev, &tty_fops);
3093         driver->cdev.owner = driver->owner;
3094         error = cdev_add(&driver->cdev, dev, driver->num);
3095         if (error) {
3096                 unregister_chrdev_region(dev, driver->num);
3097                 driver->ttys = NULL;
3098                 driver->termios = NULL;
3099                 kfree(p);
3100                 return error;
3101         }
3102
3103         mutex_lock(&tty_mutex);
3104         list_add(&driver->tty_drivers, &tty_drivers);
3105         mutex_unlock(&tty_mutex);
3106
3107         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3108                 for (i = 0; i < driver->num; i++) {
3109                         d = tty_register_device(driver, i, NULL);
3110                         if (IS_ERR(d)) {
3111                                 error = PTR_ERR(d);
3112                                 goto err;
3113                         }
3114                 }
3115         }
3116         proc_tty_register_driver(driver);
3117         driver->flags |= TTY_DRIVER_INSTALLED;
3118         return 0;
3119
3120 err:
3121         for (i--; i >= 0; i--)
3122                 tty_unregister_device(driver, i);
3123
3124         mutex_lock(&tty_mutex);
3125         list_del(&driver->tty_drivers);
3126         mutex_unlock(&tty_mutex);
3127
3128         unregister_chrdev_region(dev, driver->num);
3129         driver->ttys = NULL;
3130         driver->termios = NULL;
3131         kfree(p);
3132         return error;
3133 }
3134
3135 EXPORT_SYMBOL(tty_register_driver);
3136
3137 /*
3138  * Called by a tty driver to unregister itself.
3139  */
3140 int tty_unregister_driver(struct tty_driver *driver)
3141 {
3142 #if 0
3143         /* FIXME */
3144         if (driver->refcount)
3145                 return -EBUSY;
3146 #endif
3147         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3148                                 driver->num);
3149         mutex_lock(&tty_mutex);
3150         list_del(&driver->tty_drivers);
3151         mutex_unlock(&tty_mutex);
3152         return 0;
3153 }
3154
3155 EXPORT_SYMBOL(tty_unregister_driver);
3156
3157 dev_t tty_devnum(struct tty_struct *tty)
3158 {
3159         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3160 }
3161 EXPORT_SYMBOL(tty_devnum);
3162
3163 void proc_clear_tty(struct task_struct *p)
3164 {
3165         unsigned long flags;
3166         struct tty_struct *tty;
3167         spin_lock_irqsave(&p->sighand->siglock, flags);
3168         tty = p->signal->tty;
3169         p->signal->tty = NULL;
3170         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3171         tty_kref_put(tty);
3172 }
3173
3174 /* Called under the sighand lock */
3175
3176 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3177 {
3178         if (tty) {
3179                 unsigned long flags;
3180                 /* We should not have a session or pgrp to put here but.... */
3181                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3182                 put_pid(tty->session);
3183                 put_pid(tty->pgrp);
3184                 tty->pgrp = get_pid(task_pgrp(tsk));
3185                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3186                 tty->session = get_pid(task_session(tsk));
3187                 if (tsk->signal->tty) {
3188                         printk(KERN_DEBUG "tty not NULL!!\n");
3189                         tty_kref_put(tsk->signal->tty);
3190                 }
3191         }
3192         put_pid(tsk->signal->tty_old_pgrp);
3193         tsk->signal->tty = tty_kref_get(tty);
3194         tsk->signal->tty_old_pgrp = NULL;
3195 }
3196
3197 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3198 {
3199         spin_lock_irq(&tsk->sighand->siglock);
3200         __proc_set_tty(tsk, tty);
3201         spin_unlock_irq(&tsk->sighand->siglock);
3202 }
3203
3204 struct tty_struct *get_current_tty(void)
3205 {
3206         struct tty_struct *tty;
3207         unsigned long flags;
3208
3209         spin_lock_irqsave(&current->sighand->siglock, flags);
3210         tty = tty_kref_get(current->signal->tty);
3211         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3212         return tty;
3213 }
3214 EXPORT_SYMBOL_GPL(get_current_tty);
3215
3216 void tty_default_fops(struct file_operations *fops)
3217 {
3218         *fops = tty_fops;
3219 }
3220
3221 /*
3222  * Initialize the console device. This is called *early*, so
3223  * we can't necessarily depend on lots of kernel help here.
3224  * Just do some early initializations, and do the complex setup
3225  * later.
3226  */
3227 void __init console_init(void)
3228 {
3229         initcall_t *call;
3230
3231         /* Setup the default TTY line discipline. */
3232         tty_ldisc_begin();
3233
3234         /*
3235          * set up the console device so that later boot sequences can
3236          * inform about problems etc..
3237          */
3238         call = __con_initcall_start;
3239         while (call < __con_initcall_end) {
3240                 (*call)();
3241                 call++;
3242         }
3243 }
3244
3245 static char *tty_devnode(struct device *dev, mode_t *mode)
3246 {
3247         if (!mode)
3248                 return NULL;
3249         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3250             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3251                 *mode = 0666;
3252         return NULL;
3253 }
3254
3255 static int __init tty_class_init(void)
3256 {
3257         tty_class = class_create(THIS_MODULE, "tty");
3258         if (IS_ERR(tty_class))
3259                 return PTR_ERR(tty_class);
3260         tty_class->devnode = tty_devnode;
3261         return 0;
3262 }
3263
3264 postcore_initcall(tty_class_init);
3265
3266 /* 3/2004 jmc: why do these devices exist? */
3267 static struct cdev tty_cdev, console_cdev;
3268
3269 static ssize_t show_cons_active(struct device *dev,
3270                                 struct device_attribute *attr, char *buf)
3271 {
3272         struct console *cs[16];
3273         int i = 0;
3274         struct console *c;
3275         ssize_t count = 0;
3276
3277         console_lock();
3278         for_each_console(c) {
3279                 if (!c->device)
3280                         continue;
3281                 if (!c->write)
3282                         continue;
3283                 if ((c->flags & CON_ENABLED) == 0)
3284                         continue;
3285                 cs[i++] = c;
3286                 if (i >= ARRAY_SIZE(cs))
3287                         break;
3288         }
3289         while (i--)
3290                 count += sprintf(buf + count, "%s%d%c",
3291                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3292         console_unlock();
3293
3294         return count;
3295 }
3296 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3297
3298 static struct device *consdev;
3299
3300 void console_sysfs_notify(void)
3301 {
3302         if (consdev)
3303                 sysfs_notify(&consdev->kobj, NULL, "active");
3304 }
3305
3306 /*
3307  * Ok, now we can initialize the rest of the tty devices and can count
3308  * on memory allocations, interrupts etc..
3309  */
3310 int __init tty_init(void)
3311 {
3312         cdev_init(&tty_cdev, &tty_fops);
3313         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3314             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3315                 panic("Couldn't register /dev/tty driver\n");
3316         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3317
3318         cdev_init(&console_cdev, &console_fops);
3319         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3320             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3321                 panic("Couldn't register /dev/console driver\n");
3322         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3323                               "console");
3324         if (IS_ERR(consdev))
3325                 consdev = NULL;
3326         else
3327                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3328
3329 #ifdef CONFIG_VT
3330         vty_init(&console_fops);
3331 #endif
3332         return 0;
3333 }
3334