target: use ->exectute_task for all CDB emulation
[pandora-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_cdb.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_ua.h"
59
60 static int sub_api_initialized;
61
62 static struct workqueue_struct *target_completion_wq;
63 static struct kmem_cache *se_cmd_cache;
64 static struct kmem_cache *se_sess_cache;
65 struct kmem_cache *se_tmr_req_cache;
66 struct kmem_cache *se_ua_cache;
67 struct kmem_cache *t10_pr_reg_cache;
68 struct kmem_cache *t10_alua_lu_gp_cache;
69 struct kmem_cache *t10_alua_lu_gp_mem_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
72
73 static int transport_generic_write_pending(struct se_cmd *);
74 static int transport_processing_thread(void *param);
75 static int __transport_execute_tasks(struct se_device *dev);
76 static void transport_complete_task_attr(struct se_cmd *cmd);
77 static void transport_handle_queue_full(struct se_cmd *cmd,
78                 struct se_device *dev);
79 static void transport_free_dev_tasks(struct se_cmd *cmd);
80 static int transport_generic_get_mem(struct se_cmd *cmd);
81 static void transport_put_cmd(struct se_cmd *cmd);
82 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
83 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
84 static void transport_generic_request_failure(struct se_cmd *, int, int);
85 static void target_complete_ok_work(struct work_struct *work);
86
87 int init_se_kmem_caches(void)
88 {
89         se_cmd_cache = kmem_cache_create("se_cmd_cache",
90                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
91         if (!se_cmd_cache) {
92                 pr_err("kmem_cache_create for struct se_cmd failed\n");
93                 goto out;
94         }
95         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
96                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
97                         0, NULL);
98         if (!se_tmr_req_cache) {
99                 pr_err("kmem_cache_create() for struct se_tmr_req"
100                                 " failed\n");
101                 goto out_free_cmd_cache;
102         }
103         se_sess_cache = kmem_cache_create("se_sess_cache",
104                         sizeof(struct se_session), __alignof__(struct se_session),
105                         0, NULL);
106         if (!se_sess_cache) {
107                 pr_err("kmem_cache_create() for struct se_session"
108                                 " failed\n");
109                 goto out_free_tmr_req_cache;
110         }
111         se_ua_cache = kmem_cache_create("se_ua_cache",
112                         sizeof(struct se_ua), __alignof__(struct se_ua),
113                         0, NULL);
114         if (!se_ua_cache) {
115                 pr_err("kmem_cache_create() for struct se_ua failed\n");
116                 goto out_free_sess_cache;
117         }
118         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
119                         sizeof(struct t10_pr_registration),
120                         __alignof__(struct t10_pr_registration), 0, NULL);
121         if (!t10_pr_reg_cache) {
122                 pr_err("kmem_cache_create() for struct t10_pr_registration"
123                                 " failed\n");
124                 goto out_free_ua_cache;
125         }
126         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
127                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
128                         0, NULL);
129         if (!t10_alua_lu_gp_cache) {
130                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
131                                 " failed\n");
132                 goto out_free_pr_reg_cache;
133         }
134         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
135                         sizeof(struct t10_alua_lu_gp_member),
136                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
137         if (!t10_alua_lu_gp_mem_cache) {
138                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
139                                 "cache failed\n");
140                 goto out_free_lu_gp_cache;
141         }
142         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
143                         sizeof(struct t10_alua_tg_pt_gp),
144                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
145         if (!t10_alua_tg_pt_gp_cache) {
146                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147                                 "cache failed\n");
148                 goto out_free_lu_gp_mem_cache;
149         }
150         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
151                         "t10_alua_tg_pt_gp_mem_cache",
152                         sizeof(struct t10_alua_tg_pt_gp_member),
153                         __alignof__(struct t10_alua_tg_pt_gp_member),
154                         0, NULL);
155         if (!t10_alua_tg_pt_gp_mem_cache) {
156                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
157                                 "mem_t failed\n");
158                 goto out_free_tg_pt_gp_cache;
159         }
160
161         target_completion_wq = alloc_workqueue("target_completion",
162                                                WQ_MEM_RECLAIM, 0);
163         if (!target_completion_wq)
164                 goto out_free_tg_pt_gp_mem_cache;
165
166         return 0;
167
168 out_free_tg_pt_gp_mem_cache:
169         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
170 out_free_tg_pt_gp_cache:
171         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 out_free_lu_gp_mem_cache:
173         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
174 out_free_lu_gp_cache:
175         kmem_cache_destroy(t10_alua_lu_gp_cache);
176 out_free_pr_reg_cache:
177         kmem_cache_destroy(t10_pr_reg_cache);
178 out_free_ua_cache:
179         kmem_cache_destroy(se_ua_cache);
180 out_free_sess_cache:
181         kmem_cache_destroy(se_sess_cache);
182 out_free_tmr_req_cache:
183         kmem_cache_destroy(se_tmr_req_cache);
184 out_free_cmd_cache:
185         kmem_cache_destroy(se_cmd_cache);
186 out:
187         return -ENOMEM;
188 }
189
190 void release_se_kmem_caches(void)
191 {
192         destroy_workqueue(target_completion_wq);
193         kmem_cache_destroy(se_cmd_cache);
194         kmem_cache_destroy(se_tmr_req_cache);
195         kmem_cache_destroy(se_sess_cache);
196         kmem_cache_destroy(se_ua_cache);
197         kmem_cache_destroy(t10_pr_reg_cache);
198         kmem_cache_destroy(t10_alua_lu_gp_cache);
199         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
200         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
201         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
202 }
203
204 /* This code ensures unique mib indexes are handed out. */
205 static DEFINE_SPINLOCK(scsi_mib_index_lock);
206 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
207
208 /*
209  * Allocate a new row index for the entry type specified
210  */
211 u32 scsi_get_new_index(scsi_index_t type)
212 {
213         u32 new_index;
214
215         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
216
217         spin_lock(&scsi_mib_index_lock);
218         new_index = ++scsi_mib_index[type];
219         spin_unlock(&scsi_mib_index_lock);
220
221         return new_index;
222 }
223
224 void transport_init_queue_obj(struct se_queue_obj *qobj)
225 {
226         atomic_set(&qobj->queue_cnt, 0);
227         INIT_LIST_HEAD(&qobj->qobj_list);
228         init_waitqueue_head(&qobj->thread_wq);
229         spin_lock_init(&qobj->cmd_queue_lock);
230 }
231 EXPORT_SYMBOL(transport_init_queue_obj);
232
233 void transport_subsystem_check_init(void)
234 {
235         int ret;
236
237         if (sub_api_initialized)
238                 return;
239
240         ret = request_module("target_core_iblock");
241         if (ret != 0)
242                 pr_err("Unable to load target_core_iblock\n");
243
244         ret = request_module("target_core_file");
245         if (ret != 0)
246                 pr_err("Unable to load target_core_file\n");
247
248         ret = request_module("target_core_pscsi");
249         if (ret != 0)
250                 pr_err("Unable to load target_core_pscsi\n");
251
252         ret = request_module("target_core_stgt");
253         if (ret != 0)
254                 pr_err("Unable to load target_core_stgt\n");
255
256         sub_api_initialized = 1;
257         return;
258 }
259
260 struct se_session *transport_init_session(void)
261 {
262         struct se_session *se_sess;
263
264         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
265         if (!se_sess) {
266                 pr_err("Unable to allocate struct se_session from"
267                                 " se_sess_cache\n");
268                 return ERR_PTR(-ENOMEM);
269         }
270         INIT_LIST_HEAD(&se_sess->sess_list);
271         INIT_LIST_HEAD(&se_sess->sess_acl_list);
272         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
273         INIT_LIST_HEAD(&se_sess->sess_wait_list);
274         spin_lock_init(&se_sess->sess_cmd_lock);
275
276         return se_sess;
277 }
278 EXPORT_SYMBOL(transport_init_session);
279
280 /*
281  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
282  */
283 void __transport_register_session(
284         struct se_portal_group *se_tpg,
285         struct se_node_acl *se_nacl,
286         struct se_session *se_sess,
287         void *fabric_sess_ptr)
288 {
289         unsigned char buf[PR_REG_ISID_LEN];
290
291         se_sess->se_tpg = se_tpg;
292         se_sess->fabric_sess_ptr = fabric_sess_ptr;
293         /*
294          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
295          *
296          * Only set for struct se_session's that will actually be moving I/O.
297          * eg: *NOT* discovery sessions.
298          */
299         if (se_nacl) {
300                 /*
301                  * If the fabric module supports an ISID based TransportID,
302                  * save this value in binary from the fabric I_T Nexus now.
303                  */
304                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
305                         memset(&buf[0], 0, PR_REG_ISID_LEN);
306                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
307                                         &buf[0], PR_REG_ISID_LEN);
308                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
309                 }
310                 spin_lock_irq(&se_nacl->nacl_sess_lock);
311                 /*
312                  * The se_nacl->nacl_sess pointer will be set to the
313                  * last active I_T Nexus for each struct se_node_acl.
314                  */
315                 se_nacl->nacl_sess = se_sess;
316
317                 list_add_tail(&se_sess->sess_acl_list,
318                               &se_nacl->acl_sess_list);
319                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
320         }
321         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
322
323         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
324                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
325 }
326 EXPORT_SYMBOL(__transport_register_session);
327
328 void transport_register_session(
329         struct se_portal_group *se_tpg,
330         struct se_node_acl *se_nacl,
331         struct se_session *se_sess,
332         void *fabric_sess_ptr)
333 {
334         spin_lock_bh(&se_tpg->session_lock);
335         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
336         spin_unlock_bh(&se_tpg->session_lock);
337 }
338 EXPORT_SYMBOL(transport_register_session);
339
340 void transport_deregister_session_configfs(struct se_session *se_sess)
341 {
342         struct se_node_acl *se_nacl;
343         unsigned long flags;
344         /*
345          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
346          */
347         se_nacl = se_sess->se_node_acl;
348         if (se_nacl) {
349                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
350                 list_del(&se_sess->sess_acl_list);
351                 /*
352                  * If the session list is empty, then clear the pointer.
353                  * Otherwise, set the struct se_session pointer from the tail
354                  * element of the per struct se_node_acl active session list.
355                  */
356                 if (list_empty(&se_nacl->acl_sess_list))
357                         se_nacl->nacl_sess = NULL;
358                 else {
359                         se_nacl->nacl_sess = container_of(
360                                         se_nacl->acl_sess_list.prev,
361                                         struct se_session, sess_acl_list);
362                 }
363                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
364         }
365 }
366 EXPORT_SYMBOL(transport_deregister_session_configfs);
367
368 void transport_free_session(struct se_session *se_sess)
369 {
370         kmem_cache_free(se_sess_cache, se_sess);
371 }
372 EXPORT_SYMBOL(transport_free_session);
373
374 void transport_deregister_session(struct se_session *se_sess)
375 {
376         struct se_portal_group *se_tpg = se_sess->se_tpg;
377         struct se_node_acl *se_nacl;
378         unsigned long flags;
379
380         if (!se_tpg) {
381                 transport_free_session(se_sess);
382                 return;
383         }
384
385         spin_lock_irqsave(&se_tpg->session_lock, flags);
386         list_del(&se_sess->sess_list);
387         se_sess->se_tpg = NULL;
388         se_sess->fabric_sess_ptr = NULL;
389         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
390
391         /*
392          * Determine if we need to do extra work for this initiator node's
393          * struct se_node_acl if it had been previously dynamically generated.
394          */
395         se_nacl = se_sess->se_node_acl;
396         if (se_nacl) {
397                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
398                 if (se_nacl->dynamic_node_acl) {
399                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
400                                         se_tpg)) {
401                                 list_del(&se_nacl->acl_list);
402                                 se_tpg->num_node_acls--;
403                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
404
405                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
406                                 core_free_device_list_for_node(se_nacl, se_tpg);
407                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
408                                                 se_nacl);
409                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
410                         }
411                 }
412                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
413         }
414
415         transport_free_session(se_sess);
416
417         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
418                 se_tpg->se_tpg_tfo->get_fabric_name());
419 }
420 EXPORT_SYMBOL(transport_deregister_session);
421
422 /*
423  * Called with cmd->t_state_lock held.
424  */
425 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
426 {
427         struct se_device *dev = cmd->se_dev;
428         struct se_task *task;
429         unsigned long flags;
430
431         if (!dev)
432                 return;
433
434         list_for_each_entry(task, &cmd->t_task_list, t_list) {
435                 if (task->task_flags & TF_ACTIVE)
436                         continue;
437
438                 if (!atomic_read(&task->task_state_active))
439                         continue;
440
441                 spin_lock_irqsave(&dev->execute_task_lock, flags);
442                 list_del(&task->t_state_list);
443                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
444                         cmd->se_tfo->get_task_tag(cmd), dev, task);
445                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
446
447                 atomic_set(&task->task_state_active, 0);
448                 atomic_dec(&cmd->t_task_cdbs_ex_left);
449         }
450 }
451
452 /*      transport_cmd_check_stop():
453  *
454  *      'transport_off = 1' determines if t_transport_active should be cleared.
455  *      'transport_off = 2' determines if task_dev_state should be removed.
456  *
457  *      A non-zero u8 t_state sets cmd->t_state.
458  *      Returns 1 when command is stopped, else 0.
459  */
460 static int transport_cmd_check_stop(
461         struct se_cmd *cmd,
462         int transport_off,
463         u8 t_state)
464 {
465         unsigned long flags;
466
467         spin_lock_irqsave(&cmd->t_state_lock, flags);
468         /*
469          * Determine if IOCTL context caller in requesting the stopping of this
470          * command for LUN shutdown purposes.
471          */
472         if (atomic_read(&cmd->transport_lun_stop)) {
473                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
474                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
475                         cmd->se_tfo->get_task_tag(cmd));
476
477                 atomic_set(&cmd->t_transport_active, 0);
478                 if (transport_off == 2)
479                         transport_all_task_dev_remove_state(cmd);
480                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
481
482                 complete(&cmd->transport_lun_stop_comp);
483                 return 1;
484         }
485         /*
486          * Determine if frontend context caller is requesting the stopping of
487          * this command for frontend exceptions.
488          */
489         if (atomic_read(&cmd->t_transport_stop)) {
490                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
491                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
492                         cmd->se_tfo->get_task_tag(cmd));
493
494                 if (transport_off == 2)
495                         transport_all_task_dev_remove_state(cmd);
496
497                 /*
498                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
499                  * to FE.
500                  */
501                 if (transport_off == 2)
502                         cmd->se_lun = NULL;
503                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
504
505                 complete(&cmd->t_transport_stop_comp);
506                 return 1;
507         }
508         if (transport_off) {
509                 atomic_set(&cmd->t_transport_active, 0);
510                 if (transport_off == 2) {
511                         transport_all_task_dev_remove_state(cmd);
512                         /*
513                          * Clear struct se_cmd->se_lun before the transport_off == 2
514                          * handoff to fabric module.
515                          */
516                         cmd->se_lun = NULL;
517                         /*
518                          * Some fabric modules like tcm_loop can release
519                          * their internally allocated I/O reference now and
520                          * struct se_cmd now.
521                          *
522                          * Fabric modules are expected to return '1' here if the
523                          * se_cmd being passed is released at this point,
524                          * or zero if not being released.
525                          */
526                         if (cmd->se_tfo->check_stop_free != NULL) {
527                                 spin_unlock_irqrestore(
528                                         &cmd->t_state_lock, flags);
529
530                                 return cmd->se_tfo->check_stop_free(cmd);
531                         }
532                 }
533                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
534
535                 return 0;
536         } else if (t_state)
537                 cmd->t_state = t_state;
538         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
539
540         return 0;
541 }
542
543 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
544 {
545         return transport_cmd_check_stop(cmd, 2, 0);
546 }
547
548 static void transport_lun_remove_cmd(struct se_cmd *cmd)
549 {
550         struct se_lun *lun = cmd->se_lun;
551         unsigned long flags;
552
553         if (!lun)
554                 return;
555
556         spin_lock_irqsave(&cmd->t_state_lock, flags);
557         if (!atomic_read(&cmd->transport_dev_active)) {
558                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
559                 goto check_lun;
560         }
561         atomic_set(&cmd->transport_dev_active, 0);
562         transport_all_task_dev_remove_state(cmd);
563         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
564
565
566 check_lun:
567         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
568         if (atomic_read(&cmd->transport_lun_active)) {
569                 list_del(&cmd->se_lun_node);
570                 atomic_set(&cmd->transport_lun_active, 0);
571 #if 0
572                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
573                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
574 #endif
575         }
576         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
577 }
578
579 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
580 {
581         if (!cmd->se_tmr_req)
582                 transport_lun_remove_cmd(cmd);
583
584         if (transport_cmd_check_stop_to_fabric(cmd))
585                 return;
586         if (remove) {
587                 transport_remove_cmd_from_queue(cmd);
588                 transport_put_cmd(cmd);
589         }
590 }
591
592 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
593                 bool at_head)
594 {
595         struct se_device *dev = cmd->se_dev;
596         struct se_queue_obj *qobj = &dev->dev_queue_obj;
597         unsigned long flags;
598
599         if (t_state) {
600                 spin_lock_irqsave(&cmd->t_state_lock, flags);
601                 cmd->t_state = t_state;
602                 atomic_set(&cmd->t_transport_active, 1);
603                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
604         }
605
606         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
607
608         /* If the cmd is already on the list, remove it before we add it */
609         if (!list_empty(&cmd->se_queue_node))
610                 list_del(&cmd->se_queue_node);
611         else
612                 atomic_inc(&qobj->queue_cnt);
613
614         if (at_head)
615                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
616         else
617                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
618         atomic_set(&cmd->t_transport_queue_active, 1);
619         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
620
621         wake_up_interruptible(&qobj->thread_wq);
622 }
623
624 static struct se_cmd *
625 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
626 {
627         struct se_cmd *cmd;
628         unsigned long flags;
629
630         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
631         if (list_empty(&qobj->qobj_list)) {
632                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
633                 return NULL;
634         }
635         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
636
637         atomic_set(&cmd->t_transport_queue_active, 0);
638
639         list_del_init(&cmd->se_queue_node);
640         atomic_dec(&qobj->queue_cnt);
641         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
642
643         return cmd;
644 }
645
646 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
647 {
648         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
649         unsigned long flags;
650
651         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
652         if (!atomic_read(&cmd->t_transport_queue_active)) {
653                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
654                 return;
655         }
656         atomic_set(&cmd->t_transport_queue_active, 0);
657         atomic_dec(&qobj->queue_cnt);
658         list_del_init(&cmd->se_queue_node);
659         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
660
661         if (atomic_read(&cmd->t_transport_queue_active)) {
662                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
663                         cmd->se_tfo->get_task_tag(cmd),
664                         atomic_read(&cmd->t_transport_queue_active));
665         }
666 }
667
668 /*
669  * Completion function used by TCM subsystem plugins (such as FILEIO)
670  * for queueing up response from struct se_subsystem_api->do_task()
671  */
672 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
673 {
674         struct se_task *task = list_entry(cmd->t_task_list.next,
675                                 struct se_task, t_list);
676
677         if (good) {
678                 cmd->scsi_status = SAM_STAT_GOOD;
679                 task->task_scsi_status = GOOD;
680         } else {
681                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
682                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
683                 task->task_se_cmd->transport_error_status =
684                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
685         }
686
687         transport_complete_task(task, good);
688 }
689 EXPORT_SYMBOL(transport_complete_sync_cache);
690
691 static void target_complete_failure_work(struct work_struct *work)
692 {
693         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
694
695         transport_generic_request_failure(cmd, 1, 1);
696 }
697
698 /*      transport_complete_task():
699  *
700  *      Called from interrupt and non interrupt context depending
701  *      on the transport plugin.
702  */
703 void transport_complete_task(struct se_task *task, int success)
704 {
705         struct se_cmd *cmd = task->task_se_cmd;
706         struct se_device *dev = cmd->se_dev;
707         unsigned long flags;
708 #if 0
709         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
710                         cmd->t_task_cdb[0], dev);
711 #endif
712         if (dev)
713                 atomic_inc(&dev->depth_left);
714
715         spin_lock_irqsave(&cmd->t_state_lock, flags);
716         task->task_flags &= ~TF_ACTIVE;
717
718         /*
719          * See if any sense data exists, if so set the TASK_SENSE flag.
720          * Also check for any other post completion work that needs to be
721          * done by the plugins.
722          */
723         if (dev && dev->transport->transport_complete) {
724                 if (dev->transport->transport_complete(task) != 0) {
725                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
726                         task->task_sense = 1;
727                         success = 1;
728                 }
729         }
730
731         /*
732          * See if we are waiting for outstanding struct se_task
733          * to complete for an exception condition
734          */
735         if (task->task_flags & TF_REQUEST_STOP) {
736                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
737                 complete(&task->task_stop_comp);
738                 return;
739         }
740
741         if (!success)
742                 cmd->t_tasks_failed = 1;
743
744         /*
745          * Decrement the outstanding t_task_cdbs_left count.  The last
746          * struct se_task from struct se_cmd will complete itself into the
747          * device queue depending upon int success.
748          */
749         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
750                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
751                 return;
752         }
753
754         if (cmd->t_tasks_failed) {
755                 if (!task->task_error_status) {
756                         task->task_error_status =
757                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
758                         cmd->transport_error_status =
759                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
760                 }
761                 INIT_WORK(&cmd->work, target_complete_failure_work);
762         } else {
763                 atomic_set(&cmd->t_transport_complete, 1);
764                 INIT_WORK(&cmd->work, target_complete_ok_work);
765         }
766
767         cmd->t_state = TRANSPORT_COMPLETE;
768         atomic_set(&cmd->t_transport_active, 1);
769         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770
771         queue_work(target_completion_wq, &cmd->work);
772 }
773 EXPORT_SYMBOL(transport_complete_task);
774
775 /*
776  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
777  * struct se_task list are ready to be added to the active execution list
778  * struct se_device
779
780  * Called with se_dev_t->execute_task_lock called.
781  */
782 static inline int transport_add_task_check_sam_attr(
783         struct se_task *task,
784         struct se_task *task_prev,
785         struct se_device *dev)
786 {
787         /*
788          * No SAM Task attribute emulation enabled, add to tail of
789          * execution queue
790          */
791         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
792                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793                 return 0;
794         }
795         /*
796          * HEAD_OF_QUEUE attribute for received CDB, which means
797          * the first task that is associated with a struct se_cmd goes to
798          * head of the struct se_device->execute_task_list, and task_prev
799          * after that for each subsequent task
800          */
801         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
802                 list_add(&task->t_execute_list,
803                                 (task_prev != NULL) ?
804                                 &task_prev->t_execute_list :
805                                 &dev->execute_task_list);
806
807                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
808                                 " in execution queue\n",
809                                 task->task_se_cmd->t_task_cdb[0]);
810                 return 1;
811         }
812         /*
813          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
814          * transitioned from Dermant -> Active state, and are added to the end
815          * of the struct se_device->execute_task_list
816          */
817         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818         return 0;
819 }
820
821 /*      __transport_add_task_to_execute_queue():
822  *
823  *      Called with se_dev_t->execute_task_lock called.
824  */
825 static void __transport_add_task_to_execute_queue(
826         struct se_task *task,
827         struct se_task *task_prev,
828         struct se_device *dev)
829 {
830         int head_of_queue;
831
832         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
833         atomic_inc(&dev->execute_tasks);
834
835         if (atomic_read(&task->task_state_active))
836                 return;
837         /*
838          * Determine if this task needs to go to HEAD_OF_QUEUE for the
839          * state list as well.  Running with SAM Task Attribute emulation
840          * will always return head_of_queue == 0 here
841          */
842         if (head_of_queue)
843                 list_add(&task->t_state_list, (task_prev) ?
844                                 &task_prev->t_state_list :
845                                 &dev->state_task_list);
846         else
847                 list_add_tail(&task->t_state_list, &dev->state_task_list);
848
849         atomic_set(&task->task_state_active, 1);
850
851         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
853                 task, dev);
854 }
855
856 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
857 {
858         struct se_device *dev = cmd->se_dev;
859         struct se_task *task;
860         unsigned long flags;
861
862         spin_lock_irqsave(&cmd->t_state_lock, flags);
863         list_for_each_entry(task, &cmd->t_task_list, t_list) {
864                 if (atomic_read(&task->task_state_active))
865                         continue;
866
867                 spin_lock(&dev->execute_task_lock);
868                 list_add_tail(&task->t_state_list, &dev->state_task_list);
869                 atomic_set(&task->task_state_active, 1);
870
871                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
872                         task->task_se_cmd->se_tfo->get_task_tag(
873                         task->task_se_cmd), task, dev);
874
875                 spin_unlock(&dev->execute_task_lock);
876         }
877         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
878 }
879
880 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
881 {
882         struct se_device *dev = cmd->se_dev;
883         struct se_task *task, *task_prev = NULL;
884         unsigned long flags;
885
886         spin_lock_irqsave(&dev->execute_task_lock, flags);
887         list_for_each_entry(task, &cmd->t_task_list, t_list) {
888                 if (!list_empty(&task->t_execute_list))
889                         continue;
890                 /*
891                  * __transport_add_task_to_execute_queue() handles the
892                  * SAM Task Attribute emulation if enabled
893                  */
894                 __transport_add_task_to_execute_queue(task, task_prev, dev);
895                 task_prev = task;
896         }
897         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
898 }
899
900 void __transport_remove_task_from_execute_queue(struct se_task *task,
901                 struct se_device *dev)
902 {
903         list_del_init(&task->t_execute_list);
904         atomic_dec(&dev->execute_tasks);
905 }
906
907 void transport_remove_task_from_execute_queue(
908         struct se_task *task,
909         struct se_device *dev)
910 {
911         unsigned long flags;
912
913         if (WARN_ON(list_empty(&task->t_execute_list)))
914                 return;
915
916         spin_lock_irqsave(&dev->execute_task_lock, flags);
917         __transport_remove_task_from_execute_queue(task, dev);
918         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
919 }
920
921 /*
922  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
923  */
924
925 static void target_qf_do_work(struct work_struct *work)
926 {
927         struct se_device *dev = container_of(work, struct se_device,
928                                         qf_work_queue);
929         LIST_HEAD(qf_cmd_list);
930         struct se_cmd *cmd, *cmd_tmp;
931
932         spin_lock_irq(&dev->qf_cmd_lock);
933         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
934         spin_unlock_irq(&dev->qf_cmd_lock);
935
936         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
937                 list_del(&cmd->se_qf_node);
938                 atomic_dec(&dev->dev_qf_count);
939                 smp_mb__after_atomic_dec();
940
941                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
942                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
943                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
944                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
945                         : "UNKNOWN");
946
947                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
948         }
949 }
950
951 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
952 {
953         switch (cmd->data_direction) {
954         case DMA_NONE:
955                 return "NONE";
956         case DMA_FROM_DEVICE:
957                 return "READ";
958         case DMA_TO_DEVICE:
959                 return "WRITE";
960         case DMA_BIDIRECTIONAL:
961                 return "BIDI";
962         default:
963                 break;
964         }
965
966         return "UNKNOWN";
967 }
968
969 void transport_dump_dev_state(
970         struct se_device *dev,
971         char *b,
972         int *bl)
973 {
974         *bl += sprintf(b + *bl, "Status: ");
975         switch (dev->dev_status) {
976         case TRANSPORT_DEVICE_ACTIVATED:
977                 *bl += sprintf(b + *bl, "ACTIVATED");
978                 break;
979         case TRANSPORT_DEVICE_DEACTIVATED:
980                 *bl += sprintf(b + *bl, "DEACTIVATED");
981                 break;
982         case TRANSPORT_DEVICE_SHUTDOWN:
983                 *bl += sprintf(b + *bl, "SHUTDOWN");
984                 break;
985         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
986         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
987                 *bl += sprintf(b + *bl, "OFFLINE");
988                 break;
989         default:
990                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
991                 break;
992         }
993
994         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
995                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
996                 dev->queue_depth);
997         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
998                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
999         *bl += sprintf(b + *bl, "        ");
1000 }
1001
1002 void transport_dump_vpd_proto_id(
1003         struct t10_vpd *vpd,
1004         unsigned char *p_buf,
1005         int p_buf_len)
1006 {
1007         unsigned char buf[VPD_TMP_BUF_SIZE];
1008         int len;
1009
1010         memset(buf, 0, VPD_TMP_BUF_SIZE);
1011         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1012
1013         switch (vpd->protocol_identifier) {
1014         case 0x00:
1015                 sprintf(buf+len, "Fibre Channel\n");
1016                 break;
1017         case 0x10:
1018                 sprintf(buf+len, "Parallel SCSI\n");
1019                 break;
1020         case 0x20:
1021                 sprintf(buf+len, "SSA\n");
1022                 break;
1023         case 0x30:
1024                 sprintf(buf+len, "IEEE 1394\n");
1025                 break;
1026         case 0x40:
1027                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1028                                 " Protocol\n");
1029                 break;
1030         case 0x50:
1031                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1032                 break;
1033         case 0x60:
1034                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1035                 break;
1036         case 0x70:
1037                 sprintf(buf+len, "Automation/Drive Interface Transport"
1038                                 " Protocol\n");
1039                 break;
1040         case 0x80:
1041                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1042                 break;
1043         default:
1044                 sprintf(buf+len, "Unknown 0x%02x\n",
1045                                 vpd->protocol_identifier);
1046                 break;
1047         }
1048
1049         if (p_buf)
1050                 strncpy(p_buf, buf, p_buf_len);
1051         else
1052                 pr_debug("%s", buf);
1053 }
1054
1055 void
1056 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1057 {
1058         /*
1059          * Check if the Protocol Identifier Valid (PIV) bit is set..
1060          *
1061          * from spc3r23.pdf section 7.5.1
1062          */
1063          if (page_83[1] & 0x80) {
1064                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1065                 vpd->protocol_identifier_set = 1;
1066                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1067         }
1068 }
1069 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1070
1071 int transport_dump_vpd_assoc(
1072         struct t10_vpd *vpd,
1073         unsigned char *p_buf,
1074         int p_buf_len)
1075 {
1076         unsigned char buf[VPD_TMP_BUF_SIZE];
1077         int ret = 0;
1078         int len;
1079
1080         memset(buf, 0, VPD_TMP_BUF_SIZE);
1081         len = sprintf(buf, "T10 VPD Identifier Association: ");
1082
1083         switch (vpd->association) {
1084         case 0x00:
1085                 sprintf(buf+len, "addressed logical unit\n");
1086                 break;
1087         case 0x10:
1088                 sprintf(buf+len, "target port\n");
1089                 break;
1090         case 0x20:
1091                 sprintf(buf+len, "SCSI target device\n");
1092                 break;
1093         default:
1094                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1095                 ret = -EINVAL;
1096                 break;
1097         }
1098
1099         if (p_buf)
1100                 strncpy(p_buf, buf, p_buf_len);
1101         else
1102                 pr_debug("%s", buf);
1103
1104         return ret;
1105 }
1106
1107 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1108 {
1109         /*
1110          * The VPD identification association..
1111          *
1112          * from spc3r23.pdf Section 7.6.3.1 Table 297
1113          */
1114         vpd->association = (page_83[1] & 0x30);
1115         return transport_dump_vpd_assoc(vpd, NULL, 0);
1116 }
1117 EXPORT_SYMBOL(transport_set_vpd_assoc);
1118
1119 int transport_dump_vpd_ident_type(
1120         struct t10_vpd *vpd,
1121         unsigned char *p_buf,
1122         int p_buf_len)
1123 {
1124         unsigned char buf[VPD_TMP_BUF_SIZE];
1125         int ret = 0;
1126         int len;
1127
1128         memset(buf, 0, VPD_TMP_BUF_SIZE);
1129         len = sprintf(buf, "T10 VPD Identifier Type: ");
1130
1131         switch (vpd->device_identifier_type) {
1132         case 0x00:
1133                 sprintf(buf+len, "Vendor specific\n");
1134                 break;
1135         case 0x01:
1136                 sprintf(buf+len, "T10 Vendor ID based\n");
1137                 break;
1138         case 0x02:
1139                 sprintf(buf+len, "EUI-64 based\n");
1140                 break;
1141         case 0x03:
1142                 sprintf(buf+len, "NAA\n");
1143                 break;
1144         case 0x04:
1145                 sprintf(buf+len, "Relative target port identifier\n");
1146                 break;
1147         case 0x08:
1148                 sprintf(buf+len, "SCSI name string\n");
1149                 break;
1150         default:
1151                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1152                                 vpd->device_identifier_type);
1153                 ret = -EINVAL;
1154                 break;
1155         }
1156
1157         if (p_buf) {
1158                 if (p_buf_len < strlen(buf)+1)
1159                         return -EINVAL;
1160                 strncpy(p_buf, buf, p_buf_len);
1161         } else {
1162                 pr_debug("%s", buf);
1163         }
1164
1165         return ret;
1166 }
1167
1168 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1169 {
1170         /*
1171          * The VPD identifier type..
1172          *
1173          * from spc3r23.pdf Section 7.6.3.1 Table 298
1174          */
1175         vpd->device_identifier_type = (page_83[1] & 0x0f);
1176         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1177 }
1178 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1179
1180 int transport_dump_vpd_ident(
1181         struct t10_vpd *vpd,
1182         unsigned char *p_buf,
1183         int p_buf_len)
1184 {
1185         unsigned char buf[VPD_TMP_BUF_SIZE];
1186         int ret = 0;
1187
1188         memset(buf, 0, VPD_TMP_BUF_SIZE);
1189
1190         switch (vpd->device_identifier_code_set) {
1191         case 0x01: /* Binary */
1192                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1193                         &vpd->device_identifier[0]);
1194                 break;
1195         case 0x02: /* ASCII */
1196                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1197                         &vpd->device_identifier[0]);
1198                 break;
1199         case 0x03: /* UTF-8 */
1200                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1201                         &vpd->device_identifier[0]);
1202                 break;
1203         default:
1204                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1205                         " 0x%02x", vpd->device_identifier_code_set);
1206                 ret = -EINVAL;
1207                 break;
1208         }
1209
1210         if (p_buf)
1211                 strncpy(p_buf, buf, p_buf_len);
1212         else
1213                 pr_debug("%s", buf);
1214
1215         return ret;
1216 }
1217
1218 int
1219 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1220 {
1221         static const char hex_str[] = "0123456789abcdef";
1222         int j = 0, i = 4; /* offset to start of the identifer */
1223
1224         /*
1225          * The VPD Code Set (encoding)
1226          *
1227          * from spc3r23.pdf Section 7.6.3.1 Table 296
1228          */
1229         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1230         switch (vpd->device_identifier_code_set) {
1231         case 0x01: /* Binary */
1232                 vpd->device_identifier[j++] =
1233                                 hex_str[vpd->device_identifier_type];
1234                 while (i < (4 + page_83[3])) {
1235                         vpd->device_identifier[j++] =
1236                                 hex_str[(page_83[i] & 0xf0) >> 4];
1237                         vpd->device_identifier[j++] =
1238                                 hex_str[page_83[i] & 0x0f];
1239                         i++;
1240                 }
1241                 break;
1242         case 0x02: /* ASCII */
1243         case 0x03: /* UTF-8 */
1244                 while (i < (4 + page_83[3]))
1245                         vpd->device_identifier[j++] = page_83[i++];
1246                 break;
1247         default:
1248                 break;
1249         }
1250
1251         return transport_dump_vpd_ident(vpd, NULL, 0);
1252 }
1253 EXPORT_SYMBOL(transport_set_vpd_ident);
1254
1255 static void core_setup_task_attr_emulation(struct se_device *dev)
1256 {
1257         /*
1258          * If this device is from Target_Core_Mod/pSCSI, disable the
1259          * SAM Task Attribute emulation.
1260          *
1261          * This is currently not available in upsream Linux/SCSI Target
1262          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1263          */
1264         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1265                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1266                 return;
1267         }
1268
1269         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1270         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1271                 " device\n", dev->transport->name,
1272                 dev->transport->get_device_rev(dev));
1273 }
1274
1275 static void scsi_dump_inquiry(struct se_device *dev)
1276 {
1277         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1278         int i, device_type;
1279         /*
1280          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1281          */
1282         pr_debug("  Vendor: ");
1283         for (i = 0; i < 8; i++)
1284                 if (wwn->vendor[i] >= 0x20)
1285                         pr_debug("%c", wwn->vendor[i]);
1286                 else
1287                         pr_debug(" ");
1288
1289         pr_debug("  Model: ");
1290         for (i = 0; i < 16; i++)
1291                 if (wwn->model[i] >= 0x20)
1292                         pr_debug("%c", wwn->model[i]);
1293                 else
1294                         pr_debug(" ");
1295
1296         pr_debug("  Revision: ");
1297         for (i = 0; i < 4; i++)
1298                 if (wwn->revision[i] >= 0x20)
1299                         pr_debug("%c", wwn->revision[i]);
1300                 else
1301                         pr_debug(" ");
1302
1303         pr_debug("\n");
1304
1305         device_type = dev->transport->get_device_type(dev);
1306         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1307         pr_debug("                 ANSI SCSI revision: %02x\n",
1308                                 dev->transport->get_device_rev(dev));
1309 }
1310
1311 struct se_device *transport_add_device_to_core_hba(
1312         struct se_hba *hba,
1313         struct se_subsystem_api *transport,
1314         struct se_subsystem_dev *se_dev,
1315         u32 device_flags,
1316         void *transport_dev,
1317         struct se_dev_limits *dev_limits,
1318         const char *inquiry_prod,
1319         const char *inquiry_rev)
1320 {
1321         int force_pt;
1322         struct se_device  *dev;
1323
1324         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1325         if (!dev) {
1326                 pr_err("Unable to allocate memory for se_dev_t\n");
1327                 return NULL;
1328         }
1329
1330         transport_init_queue_obj(&dev->dev_queue_obj);
1331         dev->dev_flags          = device_flags;
1332         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1333         dev->dev_ptr            = transport_dev;
1334         dev->se_hba             = hba;
1335         dev->se_sub_dev         = se_dev;
1336         dev->transport          = transport;
1337         atomic_set(&dev->active_cmds, 0);
1338         INIT_LIST_HEAD(&dev->dev_list);
1339         INIT_LIST_HEAD(&dev->dev_sep_list);
1340         INIT_LIST_HEAD(&dev->dev_tmr_list);
1341         INIT_LIST_HEAD(&dev->execute_task_list);
1342         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1343         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1344         INIT_LIST_HEAD(&dev->state_task_list);
1345         INIT_LIST_HEAD(&dev->qf_cmd_list);
1346         spin_lock_init(&dev->execute_task_lock);
1347         spin_lock_init(&dev->delayed_cmd_lock);
1348         spin_lock_init(&dev->ordered_cmd_lock);
1349         spin_lock_init(&dev->state_task_lock);
1350         spin_lock_init(&dev->dev_alua_lock);
1351         spin_lock_init(&dev->dev_reservation_lock);
1352         spin_lock_init(&dev->dev_status_lock);
1353         spin_lock_init(&dev->dev_status_thr_lock);
1354         spin_lock_init(&dev->se_port_lock);
1355         spin_lock_init(&dev->se_tmr_lock);
1356         spin_lock_init(&dev->qf_cmd_lock);
1357
1358         dev->queue_depth        = dev_limits->queue_depth;
1359         atomic_set(&dev->depth_left, dev->queue_depth);
1360         atomic_set(&dev->dev_ordered_id, 0);
1361
1362         se_dev_set_default_attribs(dev, dev_limits);
1363
1364         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1365         dev->creation_time = get_jiffies_64();
1366         spin_lock_init(&dev->stats_lock);
1367
1368         spin_lock(&hba->device_lock);
1369         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1370         hba->dev_count++;
1371         spin_unlock(&hba->device_lock);
1372         /*
1373          * Setup the SAM Task Attribute emulation for struct se_device
1374          */
1375         core_setup_task_attr_emulation(dev);
1376         /*
1377          * Force PR and ALUA passthrough emulation with internal object use.
1378          */
1379         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1380         /*
1381          * Setup the Reservations infrastructure for struct se_device
1382          */
1383         core_setup_reservations(dev, force_pt);
1384         /*
1385          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1386          */
1387         if (core_setup_alua(dev, force_pt) < 0)
1388                 goto out;
1389
1390         /*
1391          * Startup the struct se_device processing thread
1392          */
1393         dev->process_thread = kthread_run(transport_processing_thread, dev,
1394                                           "LIO_%s", dev->transport->name);
1395         if (IS_ERR(dev->process_thread)) {
1396                 pr_err("Unable to create kthread: LIO_%s\n",
1397                         dev->transport->name);
1398                 goto out;
1399         }
1400         /*
1401          * Setup work_queue for QUEUE_FULL
1402          */
1403         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1404         /*
1405          * Preload the initial INQUIRY const values if we are doing
1406          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1407          * passthrough because this is being provided by the backend LLD.
1408          * This is required so that transport_get_inquiry() copies these
1409          * originals once back into DEV_T10_WWN(dev) for the virtual device
1410          * setup.
1411          */
1412         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1413                 if (!inquiry_prod || !inquiry_rev) {
1414                         pr_err("All non TCM/pSCSI plugins require"
1415                                 " INQUIRY consts\n");
1416                         goto out;
1417                 }
1418
1419                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1420                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1421                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1422         }
1423         scsi_dump_inquiry(dev);
1424
1425         return dev;
1426 out:
1427         kthread_stop(dev->process_thread);
1428
1429         spin_lock(&hba->device_lock);
1430         list_del(&dev->dev_list);
1431         hba->dev_count--;
1432         spin_unlock(&hba->device_lock);
1433
1434         se_release_vpd_for_dev(dev);
1435
1436         kfree(dev);
1437
1438         return NULL;
1439 }
1440 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1441
1442 /*      transport_generic_prepare_cdb():
1443  *
1444  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1445  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1446  *      The point of this is since we are mapping iSCSI LUNs to
1447  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1448  *      devices and HBAs for a loop.
1449  */
1450 static inline void transport_generic_prepare_cdb(
1451         unsigned char *cdb)
1452 {
1453         switch (cdb[0]) {
1454         case READ_10: /* SBC - RDProtect */
1455         case READ_12: /* SBC - RDProtect */
1456         case READ_16: /* SBC - RDProtect */
1457         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1458         case VERIFY: /* SBC - VRProtect */
1459         case VERIFY_16: /* SBC - VRProtect */
1460         case WRITE_VERIFY: /* SBC - VRProtect */
1461         case WRITE_VERIFY_12: /* SBC - VRProtect */
1462                 break;
1463         default:
1464                 cdb[1] &= 0x1f; /* clear logical unit number */
1465                 break;
1466         }
1467 }
1468
1469 static struct se_task *
1470 transport_generic_get_task(struct se_cmd *cmd,
1471                 enum dma_data_direction data_direction)
1472 {
1473         struct se_task *task;
1474         struct se_device *dev = cmd->se_dev;
1475
1476         task = dev->transport->alloc_task(cmd->t_task_cdb);
1477         if (!task) {
1478                 pr_err("Unable to allocate struct se_task\n");
1479                 return NULL;
1480         }
1481
1482         INIT_LIST_HEAD(&task->t_list);
1483         INIT_LIST_HEAD(&task->t_execute_list);
1484         INIT_LIST_HEAD(&task->t_state_list);
1485         init_completion(&task->task_stop_comp);
1486         task->task_se_cmd = cmd;
1487         task->task_data_direction = data_direction;
1488
1489         return task;
1490 }
1491
1492 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1493
1494 /*
1495  * Used by fabric modules containing a local struct se_cmd within their
1496  * fabric dependent per I/O descriptor.
1497  */
1498 void transport_init_se_cmd(
1499         struct se_cmd *cmd,
1500         struct target_core_fabric_ops *tfo,
1501         struct se_session *se_sess,
1502         u32 data_length,
1503         int data_direction,
1504         int task_attr,
1505         unsigned char *sense_buffer)
1506 {
1507         INIT_LIST_HEAD(&cmd->se_lun_node);
1508         INIT_LIST_HEAD(&cmd->se_delayed_node);
1509         INIT_LIST_HEAD(&cmd->se_ordered_node);
1510         INIT_LIST_HEAD(&cmd->se_qf_node);
1511         INIT_LIST_HEAD(&cmd->se_queue_node);
1512         INIT_LIST_HEAD(&cmd->se_cmd_list);
1513         INIT_LIST_HEAD(&cmd->t_task_list);
1514         init_completion(&cmd->transport_lun_fe_stop_comp);
1515         init_completion(&cmd->transport_lun_stop_comp);
1516         init_completion(&cmd->t_transport_stop_comp);
1517         init_completion(&cmd->cmd_wait_comp);
1518         spin_lock_init(&cmd->t_state_lock);
1519         atomic_set(&cmd->transport_dev_active, 1);
1520
1521         cmd->se_tfo = tfo;
1522         cmd->se_sess = se_sess;
1523         cmd->data_length = data_length;
1524         cmd->data_direction = data_direction;
1525         cmd->sam_task_attr = task_attr;
1526         cmd->sense_buffer = sense_buffer;
1527 }
1528 EXPORT_SYMBOL(transport_init_se_cmd);
1529
1530 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1531 {
1532         /*
1533          * Check if SAM Task Attribute emulation is enabled for this
1534          * struct se_device storage object
1535          */
1536         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1537                 return 0;
1538
1539         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1540                 pr_debug("SAM Task Attribute ACA"
1541                         " emulation is not supported\n");
1542                 return -EINVAL;
1543         }
1544         /*
1545          * Used to determine when ORDERED commands should go from
1546          * Dormant to Active status.
1547          */
1548         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1549         smp_mb__after_atomic_inc();
1550         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1551                         cmd->se_ordered_id, cmd->sam_task_attr,
1552                         cmd->se_dev->transport->name);
1553         return 0;
1554 }
1555
1556 /*      transport_generic_allocate_tasks():
1557  *
1558  *      Called from fabric RX Thread.
1559  */
1560 int transport_generic_allocate_tasks(
1561         struct se_cmd *cmd,
1562         unsigned char *cdb)
1563 {
1564         int ret;
1565
1566         transport_generic_prepare_cdb(cdb);
1567         /*
1568          * Ensure that the received CDB is less than the max (252 + 8) bytes
1569          * for VARIABLE_LENGTH_CMD
1570          */
1571         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1572                 pr_err("Received SCSI CDB with command_size: %d that"
1573                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1574                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1575                 return -EINVAL;
1576         }
1577         /*
1578          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1579          * allocate the additional extended CDB buffer now..  Otherwise
1580          * setup the pointer from __t_task_cdb to t_task_cdb.
1581          */
1582         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1583                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1584                                                 GFP_KERNEL);
1585                 if (!cmd->t_task_cdb) {
1586                         pr_err("Unable to allocate cmd->t_task_cdb"
1587                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1588                                 scsi_command_size(cdb),
1589                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1590                         return -ENOMEM;
1591                 }
1592         } else
1593                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1594         /*
1595          * Copy the original CDB into cmd->
1596          */
1597         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1598         /*
1599          * Setup the received CDB based on SCSI defined opcodes and
1600          * perform unit attention, persistent reservations and ALUA
1601          * checks for virtual device backends.  The cmd->t_task_cdb
1602          * pointer is expected to be setup before we reach this point.
1603          */
1604         ret = transport_generic_cmd_sequencer(cmd, cdb);
1605         if (ret < 0)
1606                 return ret;
1607         /*
1608          * Check for SAM Task Attribute Emulation
1609          */
1610         if (transport_check_alloc_task_attr(cmd) < 0) {
1611                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1612                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1613                 return -EINVAL;
1614         }
1615         spin_lock(&cmd->se_lun->lun_sep_lock);
1616         if (cmd->se_lun->lun_sep)
1617                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1618         spin_unlock(&cmd->se_lun->lun_sep_lock);
1619         return 0;
1620 }
1621 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1622
1623 /*
1624  * Used by fabric module frontends to queue tasks directly.
1625  * Many only be used from process context only
1626  */
1627 int transport_handle_cdb_direct(
1628         struct se_cmd *cmd)
1629 {
1630         int ret;
1631
1632         if (!cmd->se_lun) {
1633                 dump_stack();
1634                 pr_err("cmd->se_lun is NULL\n");
1635                 return -EINVAL;
1636         }
1637         if (in_interrupt()) {
1638                 dump_stack();
1639                 pr_err("transport_generic_handle_cdb cannot be called"
1640                                 " from interrupt context\n");
1641                 return -EINVAL;
1642         }
1643         /*
1644          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1645          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1646          * in existing usage to ensure that outstanding descriptors are handled
1647          * correctly during shutdown via transport_wait_for_tasks()
1648          *
1649          * Also, we don't take cmd->t_state_lock here as we only expect
1650          * this to be called for initial descriptor submission.
1651          */
1652         cmd->t_state = TRANSPORT_NEW_CMD;
1653         atomic_set(&cmd->t_transport_active, 1);
1654         /*
1655          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1656          * so follow TRANSPORT_NEW_CMD processing thread context usage
1657          * and call transport_generic_request_failure() if necessary..
1658          */
1659         ret = transport_generic_new_cmd(cmd);
1660         if (ret < 0) {
1661                 cmd->transport_error_status = ret;
1662                 transport_generic_request_failure(cmd, 0,
1663                                 (cmd->data_direction != DMA_TO_DEVICE));
1664         }
1665         return 0;
1666 }
1667 EXPORT_SYMBOL(transport_handle_cdb_direct);
1668
1669 /*
1670  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1671  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1672  * complete setup in TCM process context w/ TFO->new_cmd_map().
1673  */
1674 int transport_generic_handle_cdb_map(
1675         struct se_cmd *cmd)
1676 {
1677         if (!cmd->se_lun) {
1678                 dump_stack();
1679                 pr_err("cmd->se_lun is NULL\n");
1680                 return -EINVAL;
1681         }
1682
1683         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1684         return 0;
1685 }
1686 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1687
1688 /*      transport_generic_handle_data():
1689  *
1690  *
1691  */
1692 int transport_generic_handle_data(
1693         struct se_cmd *cmd)
1694 {
1695         /*
1696          * For the software fabric case, then we assume the nexus is being
1697          * failed/shutdown when signals are pending from the kthread context
1698          * caller, so we return a failure.  For the HW target mode case running
1699          * in interrupt code, the signal_pending() check is skipped.
1700          */
1701         if (!in_interrupt() && signal_pending(current))
1702                 return -EPERM;
1703         /*
1704          * If the received CDB has aleady been ABORTED by the generic
1705          * target engine, we now call transport_check_aborted_status()
1706          * to queue any delated TASK_ABORTED status for the received CDB to the
1707          * fabric module as we are expecting no further incoming DATA OUT
1708          * sequences at this point.
1709          */
1710         if (transport_check_aborted_status(cmd, 1) != 0)
1711                 return 0;
1712
1713         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1714         return 0;
1715 }
1716 EXPORT_SYMBOL(transport_generic_handle_data);
1717
1718 /*      transport_generic_handle_tmr():
1719  *
1720  *
1721  */
1722 int transport_generic_handle_tmr(
1723         struct se_cmd *cmd)
1724 {
1725         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1726         return 0;
1727 }
1728 EXPORT_SYMBOL(transport_generic_handle_tmr);
1729
1730 /*
1731  * If the task is active, request it to be stopped and sleep until it
1732  * has completed.
1733  */
1734 bool target_stop_task(struct se_task *task, unsigned long *flags)
1735 {
1736         struct se_cmd *cmd = task->task_se_cmd;
1737         bool was_active = false;
1738
1739         if (task->task_flags & TF_ACTIVE) {
1740                 task->task_flags |= TF_REQUEST_STOP;
1741                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1742
1743                 pr_debug("Task %p waiting to complete\n", task);
1744                 wait_for_completion(&task->task_stop_comp);
1745                 pr_debug("Task %p stopped successfully\n", task);
1746
1747                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1748                 atomic_dec(&cmd->t_task_cdbs_left);
1749                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1750                 was_active = true;
1751         }
1752
1753         return was_active;
1754 }
1755
1756 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1757 {
1758         struct se_task *task, *task_tmp;
1759         unsigned long flags;
1760         int ret = 0;
1761
1762         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1763                 cmd->se_tfo->get_task_tag(cmd));
1764
1765         /*
1766          * No tasks remain in the execution queue
1767          */
1768         spin_lock_irqsave(&cmd->t_state_lock, flags);
1769         list_for_each_entry_safe(task, task_tmp,
1770                                 &cmd->t_task_list, t_list) {
1771                 pr_debug("Processing task %p\n", task);
1772                 /*
1773                  * If the struct se_task has not been sent and is not active,
1774                  * remove the struct se_task from the execution queue.
1775                  */
1776                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1777                         spin_unlock_irqrestore(&cmd->t_state_lock,
1778                                         flags);
1779                         transport_remove_task_from_execute_queue(task,
1780                                         cmd->se_dev);
1781
1782                         pr_debug("Task %p removed from execute queue\n", task);
1783                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1784                         continue;
1785                 }
1786
1787                 if (!target_stop_task(task, &flags)) {
1788                         pr_debug("Task %p - did nothing\n", task);
1789                         ret++;
1790                 }
1791         }
1792         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1793
1794         return ret;
1795 }
1796
1797 /*
1798  * Handle SAM-esque emulation for generic transport request failures.
1799  */
1800 static void transport_generic_request_failure(
1801         struct se_cmd *cmd,
1802         int complete,
1803         int sc)
1804 {
1805         int ret = 0;
1806
1807         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1808                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1809                 cmd->t_task_cdb[0]);
1810         pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1811                 cmd->se_tfo->get_cmd_state(cmd),
1812                 cmd->t_state,
1813                 cmd->transport_error_status);
1814         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1815                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1816                 " t_transport_active: %d t_transport_stop: %d"
1817                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1818                 atomic_read(&cmd->t_task_cdbs_left),
1819                 atomic_read(&cmd->t_task_cdbs_sent),
1820                 atomic_read(&cmd->t_task_cdbs_ex_left),
1821                 atomic_read(&cmd->t_transport_active),
1822                 atomic_read(&cmd->t_transport_stop),
1823                 atomic_read(&cmd->t_transport_sent));
1824
1825         /*
1826          * For SAM Task Attribute emulation for failed struct se_cmd
1827          */
1828         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1829                 transport_complete_task_attr(cmd);
1830
1831         if (complete) {
1832                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1833         }
1834
1835         switch (cmd->transport_error_status) {
1836         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1837                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1838                 break;
1839         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1840                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1841                 break;
1842         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1843                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1844                 break;
1845         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1846                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1847                 break;
1848         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1849                 if (!sc)
1850                         transport_new_cmd_failure(cmd);
1851                 /*
1852                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1853                  * we force this session to fall back to session
1854                  * recovery.
1855                  */
1856                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1857                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1858
1859                 goto check_stop;
1860         case PYX_TRANSPORT_LU_COMM_FAILURE:
1861         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1862                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1863                 break;
1864         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1865                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1866                 break;
1867         case PYX_TRANSPORT_WRITE_PROTECTED:
1868                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1869                 break;
1870         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1871                 /*
1872                  * No SENSE Data payload for this case, set SCSI Status
1873                  * and queue the response to $FABRIC_MOD.
1874                  *
1875                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1876                  */
1877                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1878                 /*
1879                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1880                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1881                  * CONFLICT STATUS.
1882                  *
1883                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1884                  */
1885                 if (cmd->se_sess &&
1886                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1887                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1888                                 cmd->orig_fe_lun, 0x2C,
1889                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1890
1891                 ret = cmd->se_tfo->queue_status(cmd);
1892                 if (ret == -EAGAIN || ret == -ENOMEM)
1893                         goto queue_full;
1894                 goto check_stop;
1895         case PYX_TRANSPORT_USE_SENSE_REASON:
1896                 /*
1897                  * struct se_cmd->scsi_sense_reason already set
1898                  */
1899                 break;
1900         default:
1901                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1902                         cmd->t_task_cdb[0],
1903                         cmd->transport_error_status);
1904                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1905                 break;
1906         }
1907         /*
1908          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1909          * make the call to transport_send_check_condition_and_sense()
1910          * directly.  Otherwise expect the fabric to make the call to
1911          * transport_send_check_condition_and_sense() after handling
1912          * possible unsoliticied write data payloads.
1913          */
1914         if (!sc && !cmd->se_tfo->new_cmd_map)
1915                 transport_new_cmd_failure(cmd);
1916         else {
1917                 ret = transport_send_check_condition_and_sense(cmd,
1918                                 cmd->scsi_sense_reason, 0);
1919                 if (ret == -EAGAIN || ret == -ENOMEM)
1920                         goto queue_full;
1921         }
1922
1923 check_stop:
1924         transport_lun_remove_cmd(cmd);
1925         if (!transport_cmd_check_stop_to_fabric(cmd))
1926                 ;
1927         return;
1928
1929 queue_full:
1930         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1931         transport_handle_queue_full(cmd, cmd->se_dev);
1932 }
1933
1934 static inline u32 transport_lba_21(unsigned char *cdb)
1935 {
1936         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1937 }
1938
1939 static inline u32 transport_lba_32(unsigned char *cdb)
1940 {
1941         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1942 }
1943
1944 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1945 {
1946         unsigned int __v1, __v2;
1947
1948         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1949         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1950
1951         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1952 }
1953
1954 /*
1955  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1956  */
1957 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1958 {
1959         unsigned int __v1, __v2;
1960
1961         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1962         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1963
1964         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1965 }
1966
1967 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1968 {
1969         unsigned long flags;
1970
1971         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1972         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1973         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1974 }
1975
1976 static inline int transport_tcq_window_closed(struct se_device *dev)
1977 {
1978         if (dev->dev_tcq_window_closed++ <
1979                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1980                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1981         } else
1982                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1983
1984         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1985         return 0;
1986 }
1987
1988 /*
1989  * Called from Fabric Module context from transport_execute_tasks()
1990  *
1991  * The return of this function determins if the tasks from struct se_cmd
1992  * get added to the execution queue in transport_execute_tasks(),
1993  * or are added to the delayed or ordered lists here.
1994  */
1995 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1996 {
1997         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1998                 return 1;
1999         /*
2000          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2001          * to allow the passed struct se_cmd list of tasks to the front of the list.
2002          */
2003          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2004                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2005                 smp_mb__after_atomic_inc();
2006                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2007                         " 0x%02x, se_ordered_id: %u\n",
2008                         cmd->t_task_cdb[0],
2009                         cmd->se_ordered_id);
2010                 return 1;
2011         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2012                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2013                 list_add_tail(&cmd->se_ordered_node,
2014                                 &cmd->se_dev->ordered_cmd_list);
2015                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2016
2017                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2018                 smp_mb__after_atomic_inc();
2019
2020                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2021                                 " list, se_ordered_id: %u\n",
2022                                 cmd->t_task_cdb[0],
2023                                 cmd->se_ordered_id);
2024                 /*
2025                  * Add ORDERED command to tail of execution queue if
2026                  * no other older commands exist that need to be
2027                  * completed first.
2028                  */
2029                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2030                         return 1;
2031         } else {
2032                 /*
2033                  * For SIMPLE and UNTAGGED Task Attribute commands
2034                  */
2035                 atomic_inc(&cmd->se_dev->simple_cmds);
2036                 smp_mb__after_atomic_inc();
2037         }
2038         /*
2039          * Otherwise if one or more outstanding ORDERED task attribute exist,
2040          * add the dormant task(s) built for the passed struct se_cmd to the
2041          * execution queue and become in Active state for this struct se_device.
2042          */
2043         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2044                 /*
2045                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2046                  * will be drained upon completion of HEAD_OF_QUEUE task.
2047                  */
2048                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2049                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2050                 list_add_tail(&cmd->se_delayed_node,
2051                                 &cmd->se_dev->delayed_cmd_list);
2052                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2053
2054                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2055                         " delayed CMD list, se_ordered_id: %u\n",
2056                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2057                         cmd->se_ordered_id);
2058                 /*
2059                  * Return zero to let transport_execute_tasks() know
2060                  * not to add the delayed tasks to the execution list.
2061                  */
2062                 return 0;
2063         }
2064         /*
2065          * Otherwise, no ORDERED task attributes exist..
2066          */
2067         return 1;
2068 }
2069
2070 /*
2071  * Called from fabric module context in transport_generic_new_cmd() and
2072  * transport_generic_process_write()
2073  */
2074 static int transport_execute_tasks(struct se_cmd *cmd)
2075 {
2076         int add_tasks;
2077
2078         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2079                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2080                 transport_generic_request_failure(cmd, 0, 1);
2081                 return 0;
2082         }
2083
2084         /*
2085          * Call transport_cmd_check_stop() to see if a fabric exception
2086          * has occurred that prevents execution.
2087          */
2088         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2089                 /*
2090                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2091                  * attribute for the tasks of the received struct se_cmd CDB
2092                  */
2093                 add_tasks = transport_execute_task_attr(cmd);
2094                 if (!add_tasks)
2095                         goto execute_tasks;
2096                 /*
2097                  * This calls transport_add_tasks_from_cmd() to handle
2098                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2099                  * (if enabled) in __transport_add_task_to_execute_queue() and
2100                  * transport_add_task_check_sam_attr().
2101                  */
2102                 transport_add_tasks_from_cmd(cmd);
2103         }
2104         /*
2105          * Kick the execution queue for the cmd associated struct se_device
2106          * storage object.
2107          */
2108 execute_tasks:
2109         __transport_execute_tasks(cmd->se_dev);
2110         return 0;
2111 }
2112
2113 /*
2114  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2115  * from struct se_device->execute_task_list and
2116  *
2117  * Called from transport_processing_thread()
2118  */
2119 static int __transport_execute_tasks(struct se_device *dev)
2120 {
2121         int error;
2122         struct se_cmd *cmd = NULL;
2123         struct se_task *task = NULL;
2124         unsigned long flags;
2125
2126         /*
2127          * Check if there is enough room in the device and HBA queue to send
2128          * struct se_tasks to the selected transport.
2129          */
2130 check_depth:
2131         if (!atomic_read(&dev->depth_left))
2132                 return transport_tcq_window_closed(dev);
2133
2134         dev->dev_tcq_window_closed = 0;
2135
2136         spin_lock_irq(&dev->execute_task_lock);
2137         if (list_empty(&dev->execute_task_list)) {
2138                 spin_unlock_irq(&dev->execute_task_lock);
2139                 return 0;
2140         }
2141         task = list_first_entry(&dev->execute_task_list,
2142                                 struct se_task, t_execute_list);
2143         __transport_remove_task_from_execute_queue(task, dev);
2144         spin_unlock_irq(&dev->execute_task_lock);
2145
2146         atomic_dec(&dev->depth_left);
2147
2148         cmd = task->task_se_cmd;
2149
2150         spin_lock_irqsave(&cmd->t_state_lock, flags);
2151         task->task_flags |= (TF_ACTIVE | TF_SENT);
2152         atomic_inc(&cmd->t_task_cdbs_sent);
2153
2154         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2155             cmd->t_task_list_num)
2156                 atomic_set(&cmd->t_transport_sent, 1);
2157
2158         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2159
2160         if (cmd->execute_task)
2161                 error = cmd->execute_task(task);
2162         else
2163                 error = dev->transport->do_task(task);
2164         if (error != 0) {
2165                 cmd->transport_error_status = error;
2166                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2167                 task->task_flags &= ~TF_ACTIVE;
2168                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2169                 atomic_set(&cmd->t_transport_sent, 0);
2170                 transport_stop_tasks_for_cmd(cmd);
2171                 atomic_inc(&dev->depth_left);
2172                 transport_generic_request_failure(cmd, 0, 1);
2173         }
2174
2175         goto check_depth;
2176
2177         return 0;
2178 }
2179
2180 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2181 {
2182         unsigned long flags;
2183         /*
2184          * Any unsolicited data will get dumped for failed command inside of
2185          * the fabric plugin
2186          */
2187         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2188         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2189         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2190         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2191 }
2192
2193 static inline u32 transport_get_sectors_6(
2194         unsigned char *cdb,
2195         struct se_cmd *cmd,
2196         int *ret)
2197 {
2198         struct se_device *dev = cmd->se_dev;
2199
2200         /*
2201          * Assume TYPE_DISK for non struct se_device objects.
2202          * Use 8-bit sector value.
2203          */
2204         if (!dev)
2205                 goto type_disk;
2206
2207         /*
2208          * Use 24-bit allocation length for TYPE_TAPE.
2209          */
2210         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2211                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2212
2213         /*
2214          * Everything else assume TYPE_DISK Sector CDB location.
2215          * Use 8-bit sector value.
2216          */
2217 type_disk:
2218         return (u32)cdb[4];
2219 }
2220
2221 static inline u32 transport_get_sectors_10(
2222         unsigned char *cdb,
2223         struct se_cmd *cmd,
2224         int *ret)
2225 {
2226         struct se_device *dev = cmd->se_dev;
2227
2228         /*
2229          * Assume TYPE_DISK for non struct se_device objects.
2230          * Use 16-bit sector value.
2231          */
2232         if (!dev)
2233                 goto type_disk;
2234
2235         /*
2236          * XXX_10 is not defined in SSC, throw an exception
2237          */
2238         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2239                 *ret = -EINVAL;
2240                 return 0;
2241         }
2242
2243         /*
2244          * Everything else assume TYPE_DISK Sector CDB location.
2245          * Use 16-bit sector value.
2246          */
2247 type_disk:
2248         return (u32)(cdb[7] << 8) + cdb[8];
2249 }
2250
2251 static inline u32 transport_get_sectors_12(
2252         unsigned char *cdb,
2253         struct se_cmd *cmd,
2254         int *ret)
2255 {
2256         struct se_device *dev = cmd->se_dev;
2257
2258         /*
2259          * Assume TYPE_DISK for non struct se_device objects.
2260          * Use 32-bit sector value.
2261          */
2262         if (!dev)
2263                 goto type_disk;
2264
2265         /*
2266          * XXX_12 is not defined in SSC, throw an exception
2267          */
2268         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2269                 *ret = -EINVAL;
2270                 return 0;
2271         }
2272
2273         /*
2274          * Everything else assume TYPE_DISK Sector CDB location.
2275          * Use 32-bit sector value.
2276          */
2277 type_disk:
2278         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2279 }
2280
2281 static inline u32 transport_get_sectors_16(
2282         unsigned char *cdb,
2283         struct se_cmd *cmd,
2284         int *ret)
2285 {
2286         struct se_device *dev = cmd->se_dev;
2287
2288         /*
2289          * Assume TYPE_DISK for non struct se_device objects.
2290          * Use 32-bit sector value.
2291          */
2292         if (!dev)
2293                 goto type_disk;
2294
2295         /*
2296          * Use 24-bit allocation length for TYPE_TAPE.
2297          */
2298         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2299                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2300
2301 type_disk:
2302         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2303                     (cdb[12] << 8) + cdb[13];
2304 }
2305
2306 /*
2307  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2308  */
2309 static inline u32 transport_get_sectors_32(
2310         unsigned char *cdb,
2311         struct se_cmd *cmd,
2312         int *ret)
2313 {
2314         /*
2315          * Assume TYPE_DISK for non struct se_device objects.
2316          * Use 32-bit sector value.
2317          */
2318         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2319                     (cdb[30] << 8) + cdb[31];
2320
2321 }
2322
2323 static inline u32 transport_get_size(
2324         u32 sectors,
2325         unsigned char *cdb,
2326         struct se_cmd *cmd)
2327 {
2328         struct se_device *dev = cmd->se_dev;
2329
2330         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2331                 if (cdb[1] & 1) { /* sectors */
2332                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2333                 } else /* bytes */
2334                         return sectors;
2335         }
2336 #if 0
2337         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2338                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2339                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2340                         dev->transport->name);
2341 #endif
2342         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2343 }
2344
2345 static void transport_xor_callback(struct se_cmd *cmd)
2346 {
2347         unsigned char *buf, *addr;
2348         struct scatterlist *sg;
2349         unsigned int offset;
2350         int i;
2351         int count;
2352         /*
2353          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2354          *
2355          * 1) read the specified logical block(s);
2356          * 2) transfer logical blocks from the data-out buffer;
2357          * 3) XOR the logical blocks transferred from the data-out buffer with
2358          *    the logical blocks read, storing the resulting XOR data in a buffer;
2359          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2360          *    blocks transferred from the data-out buffer; and
2361          * 5) transfer the resulting XOR data to the data-in buffer.
2362          */
2363         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2364         if (!buf) {
2365                 pr_err("Unable to allocate xor_callback buf\n");
2366                 return;
2367         }
2368         /*
2369          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2370          * into the locally allocated *buf
2371          */
2372         sg_copy_to_buffer(cmd->t_data_sg,
2373                           cmd->t_data_nents,
2374                           buf,
2375                           cmd->data_length);
2376
2377         /*
2378          * Now perform the XOR against the BIDI read memory located at
2379          * cmd->t_mem_bidi_list
2380          */
2381
2382         offset = 0;
2383         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2384                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2385                 if (!addr)
2386                         goto out;
2387
2388                 for (i = 0; i < sg->length; i++)
2389                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2390
2391                 offset += sg->length;
2392                 kunmap_atomic(addr, KM_USER0);
2393         }
2394
2395 out:
2396         kfree(buf);
2397 }
2398
2399 /*
2400  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2401  */
2402 static int transport_get_sense_data(struct se_cmd *cmd)
2403 {
2404         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2405         struct se_device *dev = cmd->se_dev;
2406         struct se_task *task = NULL, *task_tmp;
2407         unsigned long flags;
2408         u32 offset = 0;
2409
2410         WARN_ON(!cmd->se_lun);
2411
2412         if (!dev)
2413                 return 0;
2414
2415         spin_lock_irqsave(&cmd->t_state_lock, flags);
2416         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2417                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2418                 return 0;
2419         }
2420
2421         list_for_each_entry_safe(task, task_tmp,
2422                                 &cmd->t_task_list, t_list) {
2423                 if (!task->task_sense)
2424                         continue;
2425
2426                 if (!dev->transport->get_sense_buffer) {
2427                         pr_err("dev->transport->get_sense_buffer"
2428                                         " is NULL\n");
2429                         continue;
2430                 }
2431
2432                 sense_buffer = dev->transport->get_sense_buffer(task);
2433                 if (!sense_buffer) {
2434                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2435                                 " sense buffer for task with sense\n",
2436                                 cmd->se_tfo->get_task_tag(cmd), task);
2437                         continue;
2438                 }
2439                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2440
2441                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2442                                 TRANSPORT_SENSE_BUFFER);
2443
2444                 memcpy(&buffer[offset], sense_buffer,
2445                                 TRANSPORT_SENSE_BUFFER);
2446                 cmd->scsi_status = task->task_scsi_status;
2447                 /* Automatically padded */
2448                 cmd->scsi_sense_length =
2449                                 (TRANSPORT_SENSE_BUFFER + offset);
2450
2451                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2452                                 " and sense\n",
2453                         dev->se_hba->hba_id, dev->transport->name,
2454                                 cmd->scsi_status);
2455                 return 0;
2456         }
2457         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2458
2459         return -1;
2460 }
2461
2462 static int
2463 transport_handle_reservation_conflict(struct se_cmd *cmd)
2464 {
2465         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2466         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2467         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2468         /*
2469          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2470          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2471          * CONFLICT STATUS.
2472          *
2473          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2474          */
2475         if (cmd->se_sess &&
2476             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2477                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2478                         cmd->orig_fe_lun, 0x2C,
2479                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2480         return -EINVAL;
2481 }
2482
2483 static inline long long transport_dev_end_lba(struct se_device *dev)
2484 {
2485         return dev->transport->get_blocks(dev) + 1;
2486 }
2487
2488 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2489 {
2490         struct se_device *dev = cmd->se_dev;
2491         u32 sectors;
2492
2493         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2494                 return 0;
2495
2496         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2497
2498         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2499                 pr_err("LBA: %llu Sectors: %u exceeds"
2500                         " transport_dev_end_lba(): %llu\n",
2501                         cmd->t_task_lba, sectors,
2502                         transport_dev_end_lba(dev));
2503                 return -EINVAL;
2504         }
2505
2506         return 0;
2507 }
2508
2509 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2510 {
2511         /*
2512          * Determine if the received WRITE_SAME is used to for direct
2513          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2514          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2515          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2516          */
2517         int passthrough = (dev->transport->transport_type ==
2518                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2519
2520         if (!passthrough) {
2521                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2522                         pr_err("WRITE_SAME PBDATA and LBDATA"
2523                                 " bits not supported for Block Discard"
2524                                 " Emulation\n");
2525                         return -ENOSYS;
2526                 }
2527                 /*
2528                  * Currently for the emulated case we only accept
2529                  * tpws with the UNMAP=1 bit set.
2530                  */
2531                 if (!(flags[0] & 0x08)) {
2532                         pr_err("WRITE_SAME w/o UNMAP bit not"
2533                                 " supported for Block Discard Emulation\n");
2534                         return -ENOSYS;
2535                 }
2536         }
2537
2538         return 0;
2539 }
2540
2541 /*      transport_generic_cmd_sequencer():
2542  *
2543  *      Generic Command Sequencer that should work for most DAS transport
2544  *      drivers.
2545  *
2546  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2547  *      RX Thread.
2548  *
2549  *      FIXME: Need to support other SCSI OPCODES where as well.
2550  */
2551 static int transport_generic_cmd_sequencer(
2552         struct se_cmd *cmd,
2553         unsigned char *cdb)
2554 {
2555         struct se_device *dev = cmd->se_dev;
2556         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2557         int ret = 0, sector_ret = 0, passthrough;
2558         u32 sectors = 0, size = 0, pr_reg_type = 0;
2559         u16 service_action;
2560         u8 alua_ascq = 0;
2561         /*
2562          * Check for an existing UNIT ATTENTION condition
2563          */
2564         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2565                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2566                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2567                 return -EINVAL;
2568         }
2569         /*
2570          * Check status of Asymmetric Logical Unit Assignment port
2571          */
2572         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2573         if (ret != 0) {
2574                 /*
2575                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2576                  * The ALUA additional sense code qualifier (ASCQ) is determined
2577                  * by the ALUA primary or secondary access state..
2578                  */
2579                 if (ret > 0) {
2580 #if 0
2581                         pr_debug("[%s]: ALUA TG Port not available,"
2582                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2583                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2584 #endif
2585                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2586                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2587                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2588                         return -EINVAL;
2589                 }
2590                 goto out_invalid_cdb_field;
2591         }
2592         /*
2593          * Check status for SPC-3 Persistent Reservations
2594          */
2595         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2596                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2597                                         cmd, cdb, pr_reg_type) != 0)
2598                         return transport_handle_reservation_conflict(cmd);
2599                 /*
2600                  * This means the CDB is allowed for the SCSI Initiator port
2601                  * when said port is *NOT* holding the legacy SPC-2 or
2602                  * SPC-3 Persistent Reservation.
2603                  */
2604         }
2605
2606         /*
2607          * If we operate in passthrough mode we skip most CDB emulation and
2608          * instead hand the commands down to the physical SCSI device.
2609          */
2610         passthrough =
2611                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2612
2613         switch (cdb[0]) {
2614         case READ_6:
2615                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2616                 if (sector_ret)
2617                         goto out_unsupported_cdb;
2618                 size = transport_get_size(sectors, cdb, cmd);
2619                 cmd->t_task_lba = transport_lba_21(cdb);
2620                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2621                 break;
2622         case READ_10:
2623                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2624                 if (sector_ret)
2625                         goto out_unsupported_cdb;
2626                 size = transport_get_size(sectors, cdb, cmd);
2627                 cmd->t_task_lba = transport_lba_32(cdb);
2628                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2629                 break;
2630         case READ_12:
2631                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2632                 if (sector_ret)
2633                         goto out_unsupported_cdb;
2634                 size = transport_get_size(sectors, cdb, cmd);
2635                 cmd->t_task_lba = transport_lba_32(cdb);
2636                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2637                 break;
2638         case READ_16:
2639                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2640                 if (sector_ret)
2641                         goto out_unsupported_cdb;
2642                 size = transport_get_size(sectors, cdb, cmd);
2643                 cmd->t_task_lba = transport_lba_64(cdb);
2644                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2645                 break;
2646         case WRITE_6:
2647                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2648                 if (sector_ret)
2649                         goto out_unsupported_cdb;
2650                 size = transport_get_size(sectors, cdb, cmd);
2651                 cmd->t_task_lba = transport_lba_21(cdb);
2652                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2653                 break;
2654         case WRITE_10:
2655                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2656                 if (sector_ret)
2657                         goto out_unsupported_cdb;
2658                 size = transport_get_size(sectors, cdb, cmd);
2659                 cmd->t_task_lba = transport_lba_32(cdb);
2660                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2661                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2662                 break;
2663         case WRITE_12:
2664                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2665                 if (sector_ret)
2666                         goto out_unsupported_cdb;
2667                 size = transport_get_size(sectors, cdb, cmd);
2668                 cmd->t_task_lba = transport_lba_32(cdb);
2669                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2670                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2671                 break;
2672         case WRITE_16:
2673                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2674                 if (sector_ret)
2675                         goto out_unsupported_cdb;
2676                 size = transport_get_size(sectors, cdb, cmd);
2677                 cmd->t_task_lba = transport_lba_64(cdb);
2678                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2679                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2680                 break;
2681         case XDWRITEREAD_10:
2682                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2683                     !(cmd->t_tasks_bidi))
2684                         goto out_invalid_cdb_field;
2685                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2686                 if (sector_ret)
2687                         goto out_unsupported_cdb;
2688                 size = transport_get_size(sectors, cdb, cmd);
2689                 cmd->t_task_lba = transport_lba_32(cdb);
2690                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2691
2692                 /*
2693                  * Do now allow BIDI commands for passthrough mode.
2694                  */
2695                 if (passthrough)
2696                         goto out_unsupported_cdb;
2697
2698                 /*
2699                  * Setup BIDI XOR callback to be run after I/O completion.
2700                  */
2701                 cmd->transport_complete_callback = &transport_xor_callback;
2702                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2703                 break;
2704         case VARIABLE_LENGTH_CMD:
2705                 service_action = get_unaligned_be16(&cdb[8]);
2706                 switch (service_action) {
2707                 case XDWRITEREAD_32:
2708                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2709                         if (sector_ret)
2710                                 goto out_unsupported_cdb;
2711                         size = transport_get_size(sectors, cdb, cmd);
2712                         /*
2713                          * Use WRITE_32 and READ_32 opcodes for the emulated
2714                          * XDWRITE_READ_32 logic.
2715                          */
2716                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2717                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2718
2719                         /*
2720                          * Do now allow BIDI commands for passthrough mode.
2721                          */
2722                         if (passthrough)
2723                                 goto out_unsupported_cdb;
2724
2725                         /*
2726                          * Setup BIDI XOR callback to be run during after I/O
2727                          * completion.
2728                          */
2729                         cmd->transport_complete_callback = &transport_xor_callback;
2730                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2731                         break;
2732                 case WRITE_SAME_32:
2733                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2734                         if (sector_ret)
2735                                 goto out_unsupported_cdb;
2736
2737                         if (sectors)
2738                                 size = transport_get_size(1, cdb, cmd);
2739                         else {
2740                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2741                                        " supported\n");
2742                                 goto out_invalid_cdb_field;
2743                         }
2744
2745                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2746                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2747
2748                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2749                                 goto out_invalid_cdb_field;
2750                         if (!passthrough)
2751                                 cmd->execute_task = target_emulate_write_same;
2752                         break;
2753                 default:
2754                         pr_err("VARIABLE_LENGTH_CMD service action"
2755                                 " 0x%04x not supported\n", service_action);
2756                         goto out_unsupported_cdb;
2757                 }
2758                 break;
2759         case MAINTENANCE_IN:
2760                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2761                         /* MAINTENANCE_IN from SCC-2 */
2762                         /*
2763                          * Check for emulated MI_REPORT_TARGET_PGS.
2764                          */
2765                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2766                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2767                                 cmd->execute_task =
2768                                         target_emulate_report_target_port_groups;
2769                         }
2770                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2771                                (cdb[8] << 8) | cdb[9];
2772                 } else {
2773                         /* GPCMD_SEND_KEY from multi media commands */
2774                         size = (cdb[8] << 8) + cdb[9];
2775                 }
2776                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2777                 break;
2778         case MODE_SELECT:
2779                 size = cdb[4];
2780                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2781                 break;
2782         case MODE_SELECT_10:
2783                 size = (cdb[7] << 8) + cdb[8];
2784                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2785                 break;
2786         case MODE_SENSE:
2787                 size = cdb[4];
2788                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2789                 if (!passthrough)
2790                         cmd->execute_task = target_emulate_modesense;
2791                 break;
2792         case MODE_SENSE_10:
2793                 size = (cdb[7] << 8) + cdb[8];
2794                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2795                 if (!passthrough)
2796                         cmd->execute_task = target_emulate_modesense;
2797                 break;
2798         case GPCMD_READ_BUFFER_CAPACITY:
2799         case GPCMD_SEND_OPC:
2800         case LOG_SELECT:
2801         case LOG_SENSE:
2802                 size = (cdb[7] << 8) + cdb[8];
2803                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2804                 break;
2805         case READ_BLOCK_LIMITS:
2806                 size = READ_BLOCK_LEN;
2807                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2808                 break;
2809         case GPCMD_GET_CONFIGURATION:
2810         case GPCMD_READ_FORMAT_CAPACITIES:
2811         case GPCMD_READ_DISC_INFO:
2812         case GPCMD_READ_TRACK_RZONE_INFO:
2813                 size = (cdb[7] << 8) + cdb[8];
2814                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2815                 break;
2816         case PERSISTENT_RESERVE_IN:
2817                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2818                         cmd->execute_task = target_scsi3_emulate_pr_in;
2819                 size = (cdb[7] << 8) + cdb[8];
2820                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2821                 break;
2822         case PERSISTENT_RESERVE_OUT:
2823                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2824                         cmd->execute_task = target_scsi3_emulate_pr_out;
2825                 size = (cdb[7] << 8) + cdb[8];
2826                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2827                 break;
2828         case GPCMD_MECHANISM_STATUS:
2829         case GPCMD_READ_DVD_STRUCTURE:
2830                 size = (cdb[8] << 8) + cdb[9];
2831                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2832                 break;
2833         case READ_POSITION:
2834                 size = READ_POSITION_LEN;
2835                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836                 break;
2837         case MAINTENANCE_OUT:
2838                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2839                         /* MAINTENANCE_OUT from SCC-2
2840                          *
2841                          * Check for emulated MO_SET_TARGET_PGS.
2842                          */
2843                         if (cdb[1] == MO_SET_TARGET_PGS &&
2844                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2845                                 cmd->execute_task =
2846                                         target_emulate_set_target_port_groups;
2847                         }
2848
2849                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2850                                (cdb[8] << 8) | cdb[9];
2851                 } else  {
2852                         /* GPCMD_REPORT_KEY from multi media commands */
2853                         size = (cdb[8] << 8) + cdb[9];
2854                 }
2855                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2856                 break;
2857         case INQUIRY:
2858                 size = (cdb[3] << 8) + cdb[4];
2859                 /*
2860                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2861                  * See spc4r17 section 5.3
2862                  */
2863                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2864                         cmd->sam_task_attr = MSG_HEAD_TAG;
2865                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2866                 if (!passthrough)
2867                         cmd->execute_task = target_emulate_inquiry;
2868                 break;
2869         case READ_BUFFER:
2870                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2871                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2872                 break;
2873         case READ_CAPACITY:
2874                 size = READ_CAP_LEN;
2875                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2876                 if (!passthrough)
2877                         cmd->execute_task = target_emulate_readcapacity;
2878                 break;
2879         case READ_MEDIA_SERIAL_NUMBER:
2880         case SECURITY_PROTOCOL_IN:
2881         case SECURITY_PROTOCOL_OUT:
2882                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2883                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2884                 break;
2885         case SERVICE_ACTION_IN:
2886                 switch (cmd->t_task_cdb[1] & 0x1f) {
2887                 case SAI_READ_CAPACITY_16:
2888                         if (!passthrough)
2889                                 cmd->execute_task =
2890                                         target_emulate_readcapacity_16;
2891                         break;
2892                 default:
2893                         if (passthrough)
2894                                 break;
2895
2896                         pr_err("Unsupported SA: 0x%02x\n",
2897                                 cmd->t_task_cdb[1] & 0x1f);
2898                         goto out_unsupported_cdb;
2899                 }
2900                 /*FALLTHROUGH*/
2901         case ACCESS_CONTROL_IN:
2902         case ACCESS_CONTROL_OUT:
2903         case EXTENDED_COPY:
2904         case READ_ATTRIBUTE:
2905         case RECEIVE_COPY_RESULTS:
2906         case WRITE_ATTRIBUTE:
2907                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2908                        (cdb[12] << 8) | cdb[13];
2909                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2910                 break;
2911         case RECEIVE_DIAGNOSTIC:
2912         case SEND_DIAGNOSTIC:
2913                 size = (cdb[3] << 8) | cdb[4];
2914                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2915                 break;
2916 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2917 #if 0
2918         case GPCMD_READ_CD:
2919                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2920                 size = (2336 * sectors);
2921                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2922                 break;
2923 #endif
2924         case READ_TOC:
2925                 size = cdb[8];
2926                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2927                 break;
2928         case REQUEST_SENSE:
2929                 size = cdb[4];
2930                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2931                 if (!passthrough)
2932                         cmd->execute_task = target_emulate_request_sense;
2933                 break;
2934         case READ_ELEMENT_STATUS:
2935                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2936                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2937                 break;
2938         case WRITE_BUFFER:
2939                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2940                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2941                 break;
2942         case RESERVE:
2943         case RESERVE_10:
2944                 /*
2945                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2946                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2947                  */
2948                 if (cdb[0] == RESERVE_10)
2949                         size = (cdb[7] << 8) | cdb[8];
2950                 else
2951                         size = cmd->data_length;
2952
2953                 /*
2954                  * Setup the legacy emulated handler for SPC-2 and
2955                  * >= SPC-3 compatible reservation handling (CRH=1)
2956                  * Otherwise, we assume the underlying SCSI logic is
2957                  * is running in SPC_PASSTHROUGH, and wants reservations
2958                  * emulation disabled.
2959                  */
2960                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2961                         cmd->execute_task = target_scsi2_reservation_reserve;
2962                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2963                 break;
2964         case RELEASE:
2965         case RELEASE_10:
2966                 /*
2967                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2968                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2969                 */
2970                 if (cdb[0] == RELEASE_10)
2971                         size = (cdb[7] << 8) | cdb[8];
2972                 else
2973                         size = cmd->data_length;
2974
2975                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2976                         cmd->execute_task = target_scsi2_reservation_release;
2977                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2978                 break;
2979         case SYNCHRONIZE_CACHE:
2980         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2981                 /*
2982                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2983                  */
2984                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2985                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2986                         cmd->t_task_lba = transport_lba_32(cdb);
2987                 } else {
2988                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2989                         cmd->t_task_lba = transport_lba_64(cdb);
2990                 }
2991                 if (sector_ret)
2992                         goto out_unsupported_cdb;
2993
2994                 size = transport_get_size(sectors, cdb, cmd);
2995                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2996
2997                 if (passthrough)
2998                         break;
2999
3000                 /*
3001                  * Check to ensure that LBA + Range does not exceed past end of
3002                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3003                  */
3004                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3005                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3006                                 goto out_invalid_cdb_field;
3007                 }
3008                 cmd->execute_task = target_emulate_synchronize_cache;
3009                 break;
3010         case UNMAP:
3011                 size = get_unaligned_be16(&cdb[7]);
3012                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3013                 if (!passthrough)
3014                         cmd->execute_task = target_emulate_unmap;
3015                 break;
3016         case WRITE_SAME_16:
3017                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3018                 if (sector_ret)
3019                         goto out_unsupported_cdb;
3020
3021                 if (sectors)
3022                         size = transport_get_size(1, cdb, cmd);
3023                 else {
3024                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3025                         goto out_invalid_cdb_field;
3026                 }
3027
3028                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3029                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3030
3031                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3032                         goto out_invalid_cdb_field;
3033                 if (!passthrough)
3034                         cmd->execute_task = target_emulate_write_same;
3035                 break;
3036         case WRITE_SAME:
3037                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3038                 if (sector_ret)
3039                         goto out_unsupported_cdb;
3040
3041                 if (sectors)
3042                         size = transport_get_size(1, cdb, cmd);
3043                 else {
3044                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3045                         goto out_invalid_cdb_field;
3046                 }
3047
3048                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3049                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3050                 /*
3051                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3052                  * of byte 1 bit 3 UNMAP instead of original reserved field
3053                  */
3054                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3055                         goto out_invalid_cdb_field;
3056                 if (!passthrough)
3057                         cmd->execute_task = target_emulate_write_same;
3058                 break;
3059         case ALLOW_MEDIUM_REMOVAL:
3060         case ERASE:
3061         case REZERO_UNIT:
3062         case SEEK_10:
3063         case SPACE:
3064         case START_STOP:
3065         case TEST_UNIT_READY:
3066         case VERIFY:
3067         case WRITE_FILEMARKS:
3068                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3069                 if (!passthrough)
3070                         cmd->execute_task = target_emulate_noop;
3071                 break;
3072         case GPCMD_CLOSE_TRACK:
3073         case INITIALIZE_ELEMENT_STATUS:
3074         case GPCMD_LOAD_UNLOAD:
3075         case GPCMD_SET_SPEED:
3076         case MOVE_MEDIUM:
3077                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3078                 break;
3079         case REPORT_LUNS:
3080                 cmd->execute_task = target_report_luns;
3081                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3082                 /*
3083                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3084                  * See spc4r17 section 5.3
3085                  */
3086                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3087                         cmd->sam_task_attr = MSG_HEAD_TAG;
3088                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3089                 break;
3090         default:
3091                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3092                         " 0x%02x, sending CHECK_CONDITION.\n",
3093                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3094                 goto out_unsupported_cdb;
3095         }
3096
3097         if (size != cmd->data_length) {
3098                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3099                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3100                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3101                                 cmd->data_length, size, cdb[0]);
3102
3103                 cmd->cmd_spdtl = size;
3104
3105                 if (cmd->data_direction == DMA_TO_DEVICE) {
3106                         pr_err("Rejecting underflow/overflow"
3107                                         " WRITE data\n");
3108                         goto out_invalid_cdb_field;
3109                 }
3110                 /*
3111                  * Reject READ_* or WRITE_* with overflow/underflow for
3112                  * type SCF_SCSI_DATA_SG_IO_CDB.
3113                  */
3114                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3115                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3116                                 " CDB on non 512-byte sector setup subsystem"
3117                                 " plugin: %s\n", dev->transport->name);
3118                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3119                         goto out_invalid_cdb_field;
3120                 }
3121
3122                 if (size > cmd->data_length) {
3123                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3124                         cmd->residual_count = (size - cmd->data_length);
3125                 } else {
3126                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3127                         cmd->residual_count = (cmd->data_length - size);
3128                 }
3129                 cmd->data_length = size;
3130         }
3131
3132         /* reject any command that we don't have a handler for */
3133         if (!(passthrough || cmd->execute_task ||
3134              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3135                 goto out_unsupported_cdb;
3136
3137         /* Let's limit control cdbs to a page, for simplicity's sake. */
3138         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3139             size > PAGE_SIZE)
3140                 goto out_invalid_cdb_field;
3141
3142         transport_set_supported_SAM_opcode(cmd);
3143         return ret;
3144
3145 out_unsupported_cdb:
3146         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3147         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3148         return -EINVAL;
3149 out_invalid_cdb_field:
3150         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3151         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3152         return -EINVAL;
3153 }
3154
3155 /*
3156  * Called from I/O completion to determine which dormant/delayed
3157  * and ordered cmds need to have their tasks added to the execution queue.
3158  */
3159 static void transport_complete_task_attr(struct se_cmd *cmd)
3160 {
3161         struct se_device *dev = cmd->se_dev;
3162         struct se_cmd *cmd_p, *cmd_tmp;
3163         int new_active_tasks = 0;
3164
3165         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3166                 atomic_dec(&dev->simple_cmds);
3167                 smp_mb__after_atomic_dec();
3168                 dev->dev_cur_ordered_id++;
3169                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3170                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3171                         cmd->se_ordered_id);
3172         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3173                 atomic_dec(&dev->dev_hoq_count);
3174                 smp_mb__after_atomic_dec();
3175                 dev->dev_cur_ordered_id++;
3176                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3177                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3178                         cmd->se_ordered_id);
3179         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3180                 spin_lock(&dev->ordered_cmd_lock);
3181                 list_del(&cmd->se_ordered_node);
3182                 atomic_dec(&dev->dev_ordered_sync);
3183                 smp_mb__after_atomic_dec();
3184                 spin_unlock(&dev->ordered_cmd_lock);
3185
3186                 dev->dev_cur_ordered_id++;
3187                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3188                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3189         }
3190         /*
3191          * Process all commands up to the last received
3192          * ORDERED task attribute which requires another blocking
3193          * boundary
3194          */
3195         spin_lock(&dev->delayed_cmd_lock);
3196         list_for_each_entry_safe(cmd_p, cmd_tmp,
3197                         &dev->delayed_cmd_list, se_delayed_node) {
3198
3199                 list_del(&cmd_p->se_delayed_node);
3200                 spin_unlock(&dev->delayed_cmd_lock);
3201
3202                 pr_debug("Calling add_tasks() for"
3203                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3204                         " Dormant -> Active, se_ordered_id: %u\n",
3205                         cmd_p->t_task_cdb[0],
3206                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3207
3208                 transport_add_tasks_from_cmd(cmd_p);
3209                 new_active_tasks++;
3210
3211                 spin_lock(&dev->delayed_cmd_lock);
3212                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3213                         break;
3214         }
3215         spin_unlock(&dev->delayed_cmd_lock);
3216         /*
3217          * If new tasks have become active, wake up the transport thread
3218          * to do the processing of the Active tasks.
3219          */
3220         if (new_active_tasks != 0)
3221                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3222 }
3223
3224 static void transport_complete_qf(struct se_cmd *cmd)
3225 {
3226         int ret = 0;
3227
3228         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3229                 transport_complete_task_attr(cmd);
3230
3231         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3232                 ret = cmd->se_tfo->queue_status(cmd);
3233                 if (ret)
3234                         goto out;
3235         }
3236
3237         switch (cmd->data_direction) {
3238         case DMA_FROM_DEVICE:
3239                 ret = cmd->se_tfo->queue_data_in(cmd);
3240                 break;
3241         case DMA_TO_DEVICE:
3242                 if (cmd->t_bidi_data_sg) {
3243                         ret = cmd->se_tfo->queue_data_in(cmd);
3244                         if (ret < 0)
3245                                 break;
3246                 }
3247                 /* Fall through for DMA_TO_DEVICE */
3248         case DMA_NONE:
3249                 ret = cmd->se_tfo->queue_status(cmd);
3250                 break;
3251         default:
3252                 break;
3253         }
3254
3255 out:
3256         if (ret < 0) {
3257                 transport_handle_queue_full(cmd, cmd->se_dev);
3258                 return;
3259         }
3260         transport_lun_remove_cmd(cmd);
3261         transport_cmd_check_stop_to_fabric(cmd);
3262 }
3263
3264 static void transport_handle_queue_full(
3265         struct se_cmd *cmd,
3266         struct se_device *dev)
3267 {
3268         spin_lock_irq(&dev->qf_cmd_lock);
3269         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3270         atomic_inc(&dev->dev_qf_count);
3271         smp_mb__after_atomic_inc();
3272         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3273
3274         schedule_work(&cmd->se_dev->qf_work_queue);
3275 }
3276
3277 static void target_complete_ok_work(struct work_struct *work)
3278 {
3279         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3280         int reason = 0, ret;
3281
3282         /*
3283          * Check if we need to move delayed/dormant tasks from cmds on the
3284          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3285          * Attribute.
3286          */
3287         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3288                 transport_complete_task_attr(cmd);
3289         /*
3290          * Check to schedule QUEUE_FULL work, or execute an existing
3291          * cmd->transport_qf_callback()
3292          */
3293         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3294                 schedule_work(&cmd->se_dev->qf_work_queue);
3295
3296         /*
3297          * Check if we need to retrieve a sense buffer from
3298          * the struct se_cmd in question.
3299          */
3300         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3301                 if (transport_get_sense_data(cmd) < 0)
3302                         reason = TCM_NON_EXISTENT_LUN;
3303
3304                 /*
3305                  * Only set when an struct se_task->task_scsi_status returned
3306                  * a non GOOD status.
3307                  */
3308                 if (cmd->scsi_status) {
3309                         ret = transport_send_check_condition_and_sense(
3310                                         cmd, reason, 1);
3311                         if (ret == -EAGAIN || ret == -ENOMEM)
3312                                 goto queue_full;
3313
3314                         transport_lun_remove_cmd(cmd);
3315                         transport_cmd_check_stop_to_fabric(cmd);
3316                         return;
3317                 }
3318         }
3319         /*
3320          * Check for a callback, used by amongst other things
3321          * XDWRITE_READ_10 emulation.
3322          */
3323         if (cmd->transport_complete_callback)
3324                 cmd->transport_complete_callback(cmd);
3325
3326         switch (cmd->data_direction) {
3327         case DMA_FROM_DEVICE:
3328                 spin_lock(&cmd->se_lun->lun_sep_lock);
3329                 if (cmd->se_lun->lun_sep) {
3330                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3331                                         cmd->data_length;
3332                 }
3333                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3334
3335                 ret = cmd->se_tfo->queue_data_in(cmd);
3336                 if (ret == -EAGAIN || ret == -ENOMEM)
3337                         goto queue_full;
3338                 break;
3339         case DMA_TO_DEVICE:
3340                 spin_lock(&cmd->se_lun->lun_sep_lock);
3341                 if (cmd->se_lun->lun_sep) {
3342                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3343                                 cmd->data_length;
3344                 }
3345                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3346                 /*
3347                  * Check if we need to send READ payload for BIDI-COMMAND
3348                  */
3349                 if (cmd->t_bidi_data_sg) {
3350                         spin_lock(&cmd->se_lun->lun_sep_lock);
3351                         if (cmd->se_lun->lun_sep) {
3352                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3353                                         cmd->data_length;
3354                         }
3355                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3356                         ret = cmd->se_tfo->queue_data_in(cmd);
3357                         if (ret == -EAGAIN || ret == -ENOMEM)
3358                                 goto queue_full;
3359                         break;
3360                 }
3361                 /* Fall through for DMA_TO_DEVICE */
3362         case DMA_NONE:
3363                 ret = cmd->se_tfo->queue_status(cmd);
3364                 if (ret == -EAGAIN || ret == -ENOMEM)
3365                         goto queue_full;
3366                 break;
3367         default:
3368                 break;
3369         }
3370
3371         transport_lun_remove_cmd(cmd);
3372         transport_cmd_check_stop_to_fabric(cmd);
3373         return;
3374
3375 queue_full:
3376         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3377                 " data_direction: %d\n", cmd, cmd->data_direction);
3378         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3379         transport_handle_queue_full(cmd, cmd->se_dev);
3380 }
3381
3382 static void transport_free_dev_tasks(struct se_cmd *cmd)
3383 {
3384         struct se_task *task, *task_tmp;
3385         unsigned long flags;
3386         LIST_HEAD(dispose_list);
3387
3388         spin_lock_irqsave(&cmd->t_state_lock, flags);
3389         list_for_each_entry_safe(task, task_tmp,
3390                                 &cmd->t_task_list, t_list) {
3391                 if (!(task->task_flags & TF_ACTIVE))
3392                         list_move_tail(&task->t_list, &dispose_list);
3393         }
3394         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3395
3396         while (!list_empty(&dispose_list)) {
3397                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3398
3399                 if (task->task_sg != cmd->t_data_sg &&
3400                     task->task_sg != cmd->t_bidi_data_sg)
3401                         kfree(task->task_sg);
3402
3403                 list_del(&task->t_list);
3404
3405                 cmd->se_dev->transport->free_task(task);
3406         }
3407 }
3408
3409 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3410 {
3411         struct scatterlist *sg;
3412         int count;
3413
3414         for_each_sg(sgl, sg, nents, count)
3415                 __free_page(sg_page(sg));
3416
3417         kfree(sgl);
3418 }
3419
3420 static inline void transport_free_pages(struct se_cmd *cmd)
3421 {
3422         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3423                 return;
3424
3425         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3426         cmd->t_data_sg = NULL;
3427         cmd->t_data_nents = 0;
3428
3429         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3430         cmd->t_bidi_data_sg = NULL;
3431         cmd->t_bidi_data_nents = 0;
3432 }
3433
3434 /**
3435  * transport_put_cmd - release a reference to a command
3436  * @cmd:       command to release
3437  *
3438  * This routine releases our reference to the command and frees it if possible.
3439  */
3440 static void transport_put_cmd(struct se_cmd *cmd)
3441 {
3442         unsigned long flags;
3443         int free_tasks = 0;
3444
3445         spin_lock_irqsave(&cmd->t_state_lock, flags);
3446         if (atomic_read(&cmd->t_fe_count)) {
3447                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3448                         goto out_busy;
3449         }
3450
3451         if (atomic_read(&cmd->t_se_count)) {
3452                 if (!atomic_dec_and_test(&cmd->t_se_count))
3453                         goto out_busy;
3454         }
3455
3456         if (atomic_read(&cmd->transport_dev_active)) {
3457                 atomic_set(&cmd->transport_dev_active, 0);
3458                 transport_all_task_dev_remove_state(cmd);
3459                 free_tasks = 1;
3460         }
3461         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3462
3463         if (free_tasks != 0)
3464                 transport_free_dev_tasks(cmd);
3465
3466         transport_free_pages(cmd);
3467         transport_release_cmd(cmd);
3468         return;
3469 out_busy:
3470         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3471 }
3472
3473 /*
3474  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3475  * allocating in the core.
3476  * @cmd:  Associated se_cmd descriptor
3477  * @mem:  SGL style memory for TCM WRITE / READ
3478  * @sg_mem_num: Number of SGL elements
3479  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3480  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3481  *
3482  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3483  * of parameters.
3484  */
3485 int transport_generic_map_mem_to_cmd(
3486         struct se_cmd *cmd,
3487         struct scatterlist *sgl,
3488         u32 sgl_count,
3489         struct scatterlist *sgl_bidi,
3490         u32 sgl_bidi_count)
3491 {
3492         if (!sgl || !sgl_count)
3493                 return 0;
3494
3495         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3496             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3497
3498                 cmd->t_data_sg = sgl;
3499                 cmd->t_data_nents = sgl_count;
3500
3501                 if (sgl_bidi && sgl_bidi_count) {
3502                         cmd->t_bidi_data_sg = sgl_bidi;
3503                         cmd->t_bidi_data_nents = sgl_bidi_count;
3504                 }
3505                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3506         }
3507
3508         return 0;
3509 }
3510 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3511
3512 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3513 {
3514         struct scatterlist *sg = cmd->t_data_sg;
3515
3516         BUG_ON(!sg);
3517         /*
3518          * We need to take into account a possible offset here for fabrics like
3519          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3520          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3521          */
3522         return kmap(sg_page(sg)) + sg->offset;
3523 }
3524 EXPORT_SYMBOL(transport_kmap_first_data_page);
3525
3526 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3527 {
3528         kunmap(sg_page(cmd->t_data_sg));
3529 }
3530 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3531
3532 static int
3533 transport_generic_get_mem(struct se_cmd *cmd)
3534 {
3535         u32 length = cmd->data_length;
3536         unsigned int nents;
3537         struct page *page;
3538         int i = 0;
3539
3540         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3541         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3542         if (!cmd->t_data_sg)
3543                 return -ENOMEM;
3544
3545         cmd->t_data_nents = nents;
3546         sg_init_table(cmd->t_data_sg, nents);
3547
3548         while (length) {
3549                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3550                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3551                 if (!page)
3552                         goto out;
3553
3554                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3555                 length -= page_len;
3556                 i++;
3557         }
3558         return 0;
3559
3560 out:
3561         while (i >= 0) {
3562                 __free_page(sg_page(&cmd->t_data_sg[i]));
3563                 i--;
3564         }
3565         kfree(cmd->t_data_sg);
3566         cmd->t_data_sg = NULL;
3567         return -ENOMEM;
3568 }
3569
3570 /* Reduce sectors if they are too long for the device */
3571 static inline sector_t transport_limit_task_sectors(
3572         struct se_device *dev,
3573         unsigned long long lba,
3574         sector_t sectors)
3575 {
3576         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3577
3578         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3579                 if ((lba + sectors) > transport_dev_end_lba(dev))
3580                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3581
3582         return sectors;
3583 }
3584
3585
3586 /*
3587  * This function can be used by HW target mode drivers to create a linked
3588  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3589  * This is intended to be called during the completion path by TCM Core
3590  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3591  */
3592 void transport_do_task_sg_chain(struct se_cmd *cmd)
3593 {
3594         struct scatterlist *sg_first = NULL;
3595         struct scatterlist *sg_prev = NULL;
3596         int sg_prev_nents = 0;
3597         struct scatterlist *sg;
3598         struct se_task *task;
3599         u32 chained_nents = 0;
3600         int i;
3601
3602         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3603
3604         /*
3605          * Walk the struct se_task list and setup scatterlist chains
3606          * for each contiguously allocated struct se_task->task_sg[].
3607          */
3608         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3609                 if (!task->task_sg)
3610                         continue;
3611
3612                 if (!sg_first) {
3613                         sg_first = task->task_sg;
3614                         chained_nents = task->task_sg_nents;
3615                 } else {
3616                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3617                         chained_nents += task->task_sg_nents;
3618                 }
3619                 /*
3620                  * For the padded tasks, use the extra SGL vector allocated
3621                  * in transport_allocate_data_tasks() for the sg_prev_nents
3622                  * offset into sg_chain() above.
3623                  *
3624                  * We do not need the padding for the last task (or a single
3625                  * task), but in that case we will never use the sg_prev_nents
3626                  * value below which would be incorrect.
3627                  */
3628                 sg_prev_nents = (task->task_sg_nents + 1);
3629                 sg_prev = task->task_sg;
3630         }
3631         /*
3632          * Setup the starting pointer and total t_tasks_sg_linked_no including
3633          * padding SGs for linking and to mark the end.
3634          */
3635         cmd->t_tasks_sg_chained = sg_first;
3636         cmd->t_tasks_sg_chained_no = chained_nents;
3637
3638         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3639                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3640                 cmd->t_tasks_sg_chained_no);
3641
3642         for_each_sg(cmd->t_tasks_sg_chained, sg,
3643                         cmd->t_tasks_sg_chained_no, i) {
3644
3645                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3646                         i, sg, sg_page(sg), sg->length, sg->offset);
3647                 if (sg_is_chain(sg))
3648                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3649                 if (sg_is_last(sg))
3650                         pr_debug("SG: %p sg_is_last=1\n", sg);
3651         }
3652 }
3653 EXPORT_SYMBOL(transport_do_task_sg_chain);
3654
3655 /*
3656  * Break up cmd into chunks transport can handle
3657  */
3658 static int
3659 transport_allocate_data_tasks(struct se_cmd *cmd,
3660         enum dma_data_direction data_direction,
3661         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3662 {
3663         struct se_device *dev = cmd->se_dev;
3664         int task_count, i;
3665         unsigned long long lba;
3666         sector_t sectors, dev_max_sectors;
3667         u32 sector_size;
3668
3669         if (transport_cmd_get_valid_sectors(cmd) < 0)
3670                 return -EINVAL;
3671
3672         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3673         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3674
3675         WARN_ON(cmd->data_length % sector_size);
3676
3677         lba = cmd->t_task_lba;
3678         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3679         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3680
3681         /*
3682          * If we need just a single task reuse the SG list in the command
3683          * and avoid a lot of work.
3684          */
3685         if (task_count == 1) {
3686                 struct se_task *task;
3687                 unsigned long flags;
3688
3689                 task = transport_generic_get_task(cmd, data_direction);
3690                 if (!task)
3691                         return -ENOMEM;
3692
3693                 task->task_sg = cmd_sg;
3694                 task->task_sg_nents = sgl_nents;
3695
3696                 task->task_lba = lba;
3697                 task->task_sectors = sectors;
3698                 task->task_size = task->task_sectors * sector_size;
3699
3700                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3701                 list_add_tail(&task->t_list, &cmd->t_task_list);
3702                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3703
3704                 return task_count;
3705         }
3706
3707         for (i = 0; i < task_count; i++) {
3708                 struct se_task *task;
3709                 unsigned int task_size, task_sg_nents_padded;
3710                 struct scatterlist *sg;
3711                 unsigned long flags;
3712                 int count;
3713
3714                 task = transport_generic_get_task(cmd, data_direction);
3715                 if (!task)
3716                         return -ENOMEM;
3717
3718                 task->task_lba = lba;
3719                 task->task_sectors = min(sectors, dev_max_sectors);
3720                 task->task_size = task->task_sectors * sector_size;
3721
3722                 /*
3723                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3724                  * in order to calculate the number per task SGL entries
3725                  */
3726                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3727                 /*
3728                  * Check if the fabric module driver is requesting that all
3729                  * struct se_task->task_sg[] be chained together..  If so,
3730                  * then allocate an extra padding SG entry for linking and
3731                  * marking the end of the chained SGL for every task except
3732                  * the last one for (task_count > 1) operation, or skipping
3733                  * the extra padding for the (task_count == 1) case.
3734                  */
3735                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3736                         task_sg_nents_padded = (task->task_sg_nents + 1);
3737                 } else
3738                         task_sg_nents_padded = task->task_sg_nents;
3739
3740                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3741                                         task_sg_nents_padded, GFP_KERNEL);
3742                 if (!task->task_sg) {
3743                         cmd->se_dev->transport->free_task(task);
3744                         return -ENOMEM;
3745                 }
3746
3747                 sg_init_table(task->task_sg, task_sg_nents_padded);
3748
3749                 task_size = task->task_size;
3750
3751                 /* Build new sgl, only up to task_size */
3752                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3753                         if (cmd_sg->length > task_size)
3754                                 break;
3755
3756                         *sg = *cmd_sg;
3757                         task_size -= cmd_sg->length;
3758                         cmd_sg = sg_next(cmd_sg);
3759                 }
3760
3761                 lba += task->task_sectors;
3762                 sectors -= task->task_sectors;
3763
3764                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3765                 list_add_tail(&task->t_list, &cmd->t_task_list);
3766                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3767         }
3768
3769         return task_count;
3770 }
3771
3772 static int
3773 transport_allocate_control_task(struct se_cmd *cmd)
3774 {
3775         struct se_task *task;
3776         unsigned long flags;
3777
3778         task = transport_generic_get_task(cmd, cmd->data_direction);
3779         if (!task)
3780                 return -ENOMEM;
3781
3782         task->task_sg = cmd->t_data_sg;
3783         task->task_size = cmd->data_length;
3784         task->task_sg_nents = cmd->t_data_nents;
3785
3786         spin_lock_irqsave(&cmd->t_state_lock, flags);
3787         list_add_tail(&task->t_list, &cmd->t_task_list);
3788         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3789
3790         /* Success! Return number of tasks allocated */
3791         return 1;
3792 }
3793
3794 /*
3795  * Allocate any required ressources to execute the command, and either place
3796  * it on the execution queue if possible.  For writes we might not have the
3797  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3798  */
3799 int transport_generic_new_cmd(struct se_cmd *cmd)
3800 {
3801         struct se_device *dev = cmd->se_dev;
3802         int task_cdbs, task_cdbs_bidi = 0;
3803         int set_counts = 1;
3804         int ret = 0;
3805
3806         /*
3807          * Determine is the TCM fabric module has already allocated physical
3808          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3809          * beforehand.
3810          */
3811         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3812             cmd->data_length) {
3813                 ret = transport_generic_get_mem(cmd);
3814                 if (ret < 0)
3815                         return ret;
3816         }
3817
3818         /*
3819          * For BIDI command set up the read tasks first.
3820          */
3821         if (cmd->t_bidi_data_sg &&
3822             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3823                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3824
3825                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3826                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3827                                 cmd->t_bidi_data_nents);
3828                 if (task_cdbs_bidi <= 0)
3829                         goto out_fail;
3830
3831                 atomic_inc(&cmd->t_fe_count);
3832                 atomic_inc(&cmd->t_se_count);
3833                 set_counts = 0;
3834         }
3835
3836         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3837                 task_cdbs = transport_allocate_data_tasks(cmd,
3838                                         cmd->data_direction, cmd->t_data_sg,
3839                                         cmd->t_data_nents);
3840         } else {
3841                 task_cdbs = transport_allocate_control_task(cmd);
3842         }
3843
3844         if (task_cdbs <= 0)
3845                 goto out_fail;
3846
3847         if (set_counts) {
3848                 atomic_inc(&cmd->t_fe_count);
3849                 atomic_inc(&cmd->t_se_count);
3850         }
3851
3852         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3853         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3854         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3855
3856         /*
3857          * For WRITEs, let the fabric know its buffer is ready..
3858          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3859          * will be added to the struct se_device execution queue after its WRITE
3860          * data has arrived. (ie: It gets handled by the transport processing
3861          * thread a second time)
3862          */
3863         if (cmd->data_direction == DMA_TO_DEVICE) {
3864                 transport_add_tasks_to_state_queue(cmd);
3865                 return transport_generic_write_pending(cmd);
3866         }
3867         /*
3868          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3869          * to the execution queue.
3870          */
3871         transport_execute_tasks(cmd);
3872         return 0;
3873
3874 out_fail:
3875         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3876         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3877         return -EINVAL;
3878 }
3879 EXPORT_SYMBOL(transport_generic_new_cmd);
3880
3881 /*      transport_generic_process_write():
3882  *
3883  *
3884  */
3885 void transport_generic_process_write(struct se_cmd *cmd)
3886 {
3887         transport_execute_tasks(cmd);
3888 }
3889 EXPORT_SYMBOL(transport_generic_process_write);
3890
3891 static void transport_write_pending_qf(struct se_cmd *cmd)
3892 {
3893         int ret;
3894
3895         ret = cmd->se_tfo->write_pending(cmd);
3896         if (ret == -EAGAIN || ret == -ENOMEM) {
3897                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3898                          cmd);
3899                 transport_handle_queue_full(cmd, cmd->se_dev);
3900         }
3901 }
3902
3903 static int transport_generic_write_pending(struct se_cmd *cmd)
3904 {
3905         unsigned long flags;
3906         int ret;
3907
3908         spin_lock_irqsave(&cmd->t_state_lock, flags);
3909         cmd->t_state = TRANSPORT_WRITE_PENDING;
3910         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3911
3912         /*
3913          * Clear the se_cmd for WRITE_PENDING status in order to set
3914          * cmd->t_transport_active=0 so that transport_generic_handle_data
3915          * can be called from HW target mode interrupt code.  This is safe
3916          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3917          * because the se_cmd->se_lun pointer is not being cleared.
3918          */
3919         transport_cmd_check_stop(cmd, 1, 0);
3920
3921         /*
3922          * Call the fabric write_pending function here to let the
3923          * frontend know that WRITE buffers are ready.
3924          */
3925         ret = cmd->se_tfo->write_pending(cmd);
3926         if (ret == -EAGAIN || ret == -ENOMEM)
3927                 goto queue_full;
3928         else if (ret < 0)
3929                 return ret;
3930
3931         return PYX_TRANSPORT_WRITE_PENDING;
3932
3933 queue_full:
3934         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3935         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3936         transport_handle_queue_full(cmd, cmd->se_dev);
3937         return 0;
3938 }
3939
3940 /**
3941  * transport_release_cmd - free a command
3942  * @cmd:       command to free
3943  *
3944  * This routine unconditionally frees a command, and reference counting
3945  * or list removal must be done in the caller.
3946  */
3947 void transport_release_cmd(struct se_cmd *cmd)
3948 {
3949         BUG_ON(!cmd->se_tfo);
3950
3951         if (cmd->se_tmr_req)
3952                 core_tmr_release_req(cmd->se_tmr_req);
3953         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3954                 kfree(cmd->t_task_cdb);
3955         /*
3956          * Check if target_wait_for_sess_cmds() is expecting to
3957          * release se_cmd directly here..
3958          */
3959         if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3960                 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3961                         return;
3962
3963         cmd->se_tfo->release_cmd(cmd);
3964 }
3965 EXPORT_SYMBOL(transport_release_cmd);
3966
3967 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3968 {
3969         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3970                 if (wait_for_tasks && cmd->se_tmr_req)
3971                          transport_wait_for_tasks(cmd);
3972
3973                 transport_release_cmd(cmd);
3974         } else {
3975                 if (wait_for_tasks)
3976                         transport_wait_for_tasks(cmd);
3977
3978                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3979
3980                 if (cmd->se_lun)
3981                         transport_lun_remove_cmd(cmd);
3982
3983                 transport_free_dev_tasks(cmd);
3984
3985                 transport_put_cmd(cmd);
3986         }
3987 }
3988 EXPORT_SYMBOL(transport_generic_free_cmd);
3989
3990 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3991  * @se_sess:    session to reference
3992  * @se_cmd:     command descriptor to add
3993  */
3994 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3995 {
3996         unsigned long flags;
3997
3998         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3999         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4000         se_cmd->check_release = 1;
4001         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4002 }
4003 EXPORT_SYMBOL(target_get_sess_cmd);
4004
4005 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
4006  * @se_sess:    session to reference
4007  * @se_cmd:     command descriptor to drop
4008  */
4009 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4010 {
4011         unsigned long flags;
4012
4013         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4014         if (list_empty(&se_cmd->se_cmd_list)) {
4015                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4016                 WARN_ON(1);
4017                 return 0;
4018         }
4019
4020         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4021                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4022                 complete(&se_cmd->cmd_wait_comp);
4023                 return 1;
4024         }
4025         list_del(&se_cmd->se_cmd_list);
4026         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4027
4028         return 0;
4029 }
4030 EXPORT_SYMBOL(target_put_sess_cmd);
4031
4032 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4033  * @se_sess:    session to split
4034  */
4035 void target_splice_sess_cmd_list(struct se_session *se_sess)
4036 {
4037         struct se_cmd *se_cmd;
4038         unsigned long flags;
4039
4040         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4041         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4042
4043         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4044         se_sess->sess_tearing_down = 1;
4045
4046         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4047
4048         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4049                 se_cmd->cmd_wait_set = 1;
4050
4051         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4052 }
4053 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4054
4055 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4056  * @se_sess:    session to wait for active I/O
4057  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4058  */
4059 void target_wait_for_sess_cmds(
4060         struct se_session *se_sess,
4061         int wait_for_tasks)
4062 {
4063         struct se_cmd *se_cmd, *tmp_cmd;
4064         bool rc = false;
4065
4066         list_for_each_entry_safe(se_cmd, tmp_cmd,
4067                                 &se_sess->sess_wait_list, se_cmd_list) {
4068                 list_del(&se_cmd->se_cmd_list);
4069
4070                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4071                         " %d\n", se_cmd, se_cmd->t_state,
4072                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4073
4074                 if (wait_for_tasks) {
4075                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4076                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4077                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4078
4079                         rc = transport_wait_for_tasks(se_cmd);
4080
4081                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4082                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4083                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4084                 }
4085
4086                 if (!rc) {
4087                         wait_for_completion(&se_cmd->cmd_wait_comp);
4088                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4089                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4090                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4091                 }
4092
4093                 se_cmd->se_tfo->release_cmd(se_cmd);
4094         }
4095 }
4096 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4097
4098 /*      transport_lun_wait_for_tasks():
4099  *
4100  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4101  *      an struct se_lun to be successfully shutdown.
4102  */
4103 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4104 {
4105         unsigned long flags;
4106         int ret;
4107         /*
4108          * If the frontend has already requested this struct se_cmd to
4109          * be stopped, we can safely ignore this struct se_cmd.
4110          */
4111         spin_lock_irqsave(&cmd->t_state_lock, flags);
4112         if (atomic_read(&cmd->t_transport_stop)) {
4113                 atomic_set(&cmd->transport_lun_stop, 0);
4114                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4115                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4116                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4117                 transport_cmd_check_stop(cmd, 1, 0);
4118                 return -EPERM;
4119         }
4120         atomic_set(&cmd->transport_lun_fe_stop, 1);
4121         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4122
4123         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4124
4125         ret = transport_stop_tasks_for_cmd(cmd);
4126
4127         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4128                         " %d\n", cmd, cmd->t_task_list_num, ret);
4129         if (!ret) {
4130                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4131                                 cmd->se_tfo->get_task_tag(cmd));
4132                 wait_for_completion(&cmd->transport_lun_stop_comp);
4133                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4134                                 cmd->se_tfo->get_task_tag(cmd));
4135         }
4136         transport_remove_cmd_from_queue(cmd);
4137
4138         return 0;
4139 }
4140
4141 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4142 {
4143         struct se_cmd *cmd = NULL;
4144         unsigned long lun_flags, cmd_flags;
4145         /*
4146          * Do exception processing and return CHECK_CONDITION status to the
4147          * Initiator Port.
4148          */
4149         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4150         while (!list_empty(&lun->lun_cmd_list)) {
4151                 cmd = list_first_entry(&lun->lun_cmd_list,
4152                        struct se_cmd, se_lun_node);
4153                 list_del(&cmd->se_lun_node);
4154
4155                 atomic_set(&cmd->transport_lun_active, 0);
4156                 /*
4157                  * This will notify iscsi_target_transport.c:
4158                  * transport_cmd_check_stop() that a LUN shutdown is in
4159                  * progress for the iscsi_cmd_t.
4160                  */
4161                 spin_lock(&cmd->t_state_lock);
4162                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4163                         "_lun_stop for  ITT: 0x%08x\n",
4164                         cmd->se_lun->unpacked_lun,
4165                         cmd->se_tfo->get_task_tag(cmd));
4166                 atomic_set(&cmd->transport_lun_stop, 1);
4167                 spin_unlock(&cmd->t_state_lock);
4168
4169                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4170
4171                 if (!cmd->se_lun) {
4172                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4173                                 cmd->se_tfo->get_task_tag(cmd),
4174                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4175                         BUG();
4176                 }
4177                 /*
4178                  * If the Storage engine still owns the iscsi_cmd_t, determine
4179                  * and/or stop its context.
4180                  */
4181                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4182                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4183                         cmd->se_tfo->get_task_tag(cmd));
4184
4185                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4186                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4187                         continue;
4188                 }
4189
4190                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4191                         "_wait_for_tasks(): SUCCESS\n",
4192                         cmd->se_lun->unpacked_lun,
4193                         cmd->se_tfo->get_task_tag(cmd));
4194
4195                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4196                 if (!atomic_read(&cmd->transport_dev_active)) {
4197                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4198                         goto check_cond;
4199                 }
4200                 atomic_set(&cmd->transport_dev_active, 0);
4201                 transport_all_task_dev_remove_state(cmd);
4202                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4203
4204                 transport_free_dev_tasks(cmd);
4205                 /*
4206                  * The Storage engine stopped this struct se_cmd before it was
4207                  * send to the fabric frontend for delivery back to the
4208                  * Initiator Node.  Return this SCSI CDB back with an
4209                  * CHECK_CONDITION status.
4210                  */
4211 check_cond:
4212                 transport_send_check_condition_and_sense(cmd,
4213                                 TCM_NON_EXISTENT_LUN, 0);
4214                 /*
4215                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4216                  * be released, notify the waiting thread now that LU has
4217                  * finished accessing it.
4218                  */
4219                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4220                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4221                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4222                                 " struct se_cmd: %p ITT: 0x%08x\n",
4223                                 lun->unpacked_lun,
4224                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4225
4226                         spin_unlock_irqrestore(&cmd->t_state_lock,
4227                                         cmd_flags);
4228                         transport_cmd_check_stop(cmd, 1, 0);
4229                         complete(&cmd->transport_lun_fe_stop_comp);
4230                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4231                         continue;
4232                 }
4233                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4234                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4235
4236                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4237                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4238         }
4239         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4240 }
4241
4242 static int transport_clear_lun_thread(void *p)
4243 {
4244         struct se_lun *lun = (struct se_lun *)p;
4245
4246         __transport_clear_lun_from_sessions(lun);
4247         complete(&lun->lun_shutdown_comp);
4248
4249         return 0;
4250 }
4251
4252 int transport_clear_lun_from_sessions(struct se_lun *lun)
4253 {
4254         struct task_struct *kt;
4255
4256         kt = kthread_run(transport_clear_lun_thread, lun,
4257                         "tcm_cl_%u", lun->unpacked_lun);
4258         if (IS_ERR(kt)) {
4259                 pr_err("Unable to start clear_lun thread\n");
4260                 return PTR_ERR(kt);
4261         }
4262         wait_for_completion(&lun->lun_shutdown_comp);
4263
4264         return 0;
4265 }
4266
4267 /**
4268  * transport_wait_for_tasks - wait for completion to occur
4269  * @cmd:        command to wait
4270  *
4271  * Called from frontend fabric context to wait for storage engine
4272  * to pause and/or release frontend generated struct se_cmd.
4273  */
4274 bool transport_wait_for_tasks(struct se_cmd *cmd)
4275 {
4276         unsigned long flags;
4277
4278         spin_lock_irqsave(&cmd->t_state_lock, flags);
4279         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4280                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4281                 return false;
4282         }
4283         /*
4284          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4285          * has been set in transport_set_supported_SAM_opcode().
4286          */
4287         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4288                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4289                 return false;
4290         }
4291         /*
4292          * If we are already stopped due to an external event (ie: LUN shutdown)
4293          * sleep until the connection can have the passed struct se_cmd back.
4294          * The cmd->transport_lun_stopped_sem will be upped by
4295          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4296          * has completed its operation on the struct se_cmd.
4297          */
4298         if (atomic_read(&cmd->transport_lun_stop)) {
4299
4300                 pr_debug("wait_for_tasks: Stopping"
4301                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4302                         "_stop_comp); for ITT: 0x%08x\n",
4303                         cmd->se_tfo->get_task_tag(cmd));
4304                 /*
4305                  * There is a special case for WRITES where a FE exception +
4306                  * LUN shutdown means ConfigFS context is still sleeping on
4307                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4308                  * We go ahead and up transport_lun_stop_comp just to be sure
4309                  * here.
4310                  */
4311                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4312                 complete(&cmd->transport_lun_stop_comp);
4313                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4314                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4315
4316                 transport_all_task_dev_remove_state(cmd);
4317                 /*
4318                  * At this point, the frontend who was the originator of this
4319                  * struct se_cmd, now owns the structure and can be released through
4320                  * normal means below.
4321                  */
4322                 pr_debug("wait_for_tasks: Stopped"
4323                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4324                         "stop_comp); for ITT: 0x%08x\n",
4325                         cmd->se_tfo->get_task_tag(cmd));
4326
4327                 atomic_set(&cmd->transport_lun_stop, 0);
4328         }
4329         if (!atomic_read(&cmd->t_transport_active) ||
4330              atomic_read(&cmd->t_transport_aborted)) {
4331                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4332                 return false;
4333         }
4334
4335         atomic_set(&cmd->t_transport_stop, 1);
4336
4337         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4338                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4339                 cmd, cmd->se_tfo->get_task_tag(cmd),
4340                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4341
4342         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4343
4344         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4345
4346         wait_for_completion(&cmd->t_transport_stop_comp);
4347
4348         spin_lock_irqsave(&cmd->t_state_lock, flags);
4349         atomic_set(&cmd->t_transport_active, 0);
4350         atomic_set(&cmd->t_transport_stop, 0);
4351
4352         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4353                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4354                 cmd->se_tfo->get_task_tag(cmd));
4355
4356         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4357
4358         return true;
4359 }
4360 EXPORT_SYMBOL(transport_wait_for_tasks);
4361
4362 static int transport_get_sense_codes(
4363         struct se_cmd *cmd,
4364         u8 *asc,
4365         u8 *ascq)
4366 {
4367         *asc = cmd->scsi_asc;
4368         *ascq = cmd->scsi_ascq;
4369
4370         return 0;
4371 }
4372
4373 static int transport_set_sense_codes(
4374         struct se_cmd *cmd,
4375         u8 asc,
4376         u8 ascq)
4377 {
4378         cmd->scsi_asc = asc;
4379         cmd->scsi_ascq = ascq;
4380
4381         return 0;
4382 }
4383
4384 int transport_send_check_condition_and_sense(
4385         struct se_cmd *cmd,
4386         u8 reason,
4387         int from_transport)
4388 {
4389         unsigned char *buffer = cmd->sense_buffer;
4390         unsigned long flags;
4391         int offset;
4392         u8 asc = 0, ascq = 0;
4393
4394         spin_lock_irqsave(&cmd->t_state_lock, flags);
4395         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4396                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4397                 return 0;
4398         }
4399         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4400         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4401
4402         if (!reason && from_transport)
4403                 goto after_reason;
4404
4405         if (!from_transport)
4406                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4407         /*
4408          * Data Segment and SenseLength of the fabric response PDU.
4409          *
4410          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4411          * from include/scsi/scsi_cmnd.h
4412          */
4413         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4414                                 TRANSPORT_SENSE_BUFFER);
4415         /*
4416          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4417          * SENSE KEY values from include/scsi/scsi.h
4418          */
4419         switch (reason) {
4420         case TCM_NON_EXISTENT_LUN:
4421                 /* CURRENT ERROR */
4422                 buffer[offset] = 0x70;
4423                 /* ILLEGAL REQUEST */
4424                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4425                 /* LOGICAL UNIT NOT SUPPORTED */
4426                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4427                 break;
4428         case TCM_UNSUPPORTED_SCSI_OPCODE:
4429         case TCM_SECTOR_COUNT_TOO_MANY:
4430                 /* CURRENT ERROR */
4431                 buffer[offset] = 0x70;
4432                 /* ILLEGAL REQUEST */
4433                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4434                 /* INVALID COMMAND OPERATION CODE */
4435                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4436                 break;
4437         case TCM_UNKNOWN_MODE_PAGE:
4438                 /* CURRENT ERROR */
4439                 buffer[offset] = 0x70;
4440                 /* ILLEGAL REQUEST */
4441                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4442                 /* INVALID FIELD IN CDB */
4443                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4444                 break;
4445         case TCM_CHECK_CONDITION_ABORT_CMD:
4446                 /* CURRENT ERROR */
4447                 buffer[offset] = 0x70;
4448                 /* ABORTED COMMAND */
4449                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4450                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4451                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4452                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4453                 break;
4454         case TCM_INCORRECT_AMOUNT_OF_DATA:
4455                 /* CURRENT ERROR */
4456                 buffer[offset] = 0x70;
4457                 /* ABORTED COMMAND */
4458                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4459                 /* WRITE ERROR */
4460                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4461                 /* NOT ENOUGH UNSOLICITED DATA */
4462                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4463                 break;
4464         case TCM_INVALID_CDB_FIELD:
4465                 /* CURRENT ERROR */
4466                 buffer[offset] = 0x70;
4467                 /* ABORTED COMMAND */
4468                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4469                 /* INVALID FIELD IN CDB */
4470                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4471                 break;
4472         case TCM_INVALID_PARAMETER_LIST:
4473                 /* CURRENT ERROR */
4474                 buffer[offset] = 0x70;
4475                 /* ABORTED COMMAND */
4476                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4477                 /* INVALID FIELD IN PARAMETER LIST */
4478                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4479                 break;
4480         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4481                 /* CURRENT ERROR */
4482                 buffer[offset] = 0x70;
4483                 /* ABORTED COMMAND */
4484                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4485                 /* WRITE ERROR */
4486                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4487                 /* UNEXPECTED_UNSOLICITED_DATA */
4488                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4489                 break;
4490         case TCM_SERVICE_CRC_ERROR:
4491                 /* CURRENT ERROR */
4492                 buffer[offset] = 0x70;
4493                 /* ABORTED COMMAND */
4494                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4495                 /* PROTOCOL SERVICE CRC ERROR */
4496                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4497                 /* N/A */
4498                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4499                 break;
4500         case TCM_SNACK_REJECTED:
4501                 /* CURRENT ERROR */
4502                 buffer[offset] = 0x70;
4503                 /* ABORTED COMMAND */
4504                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4505                 /* READ ERROR */
4506                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4507                 /* FAILED RETRANSMISSION REQUEST */
4508                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4509                 break;
4510         case TCM_WRITE_PROTECTED:
4511                 /* CURRENT ERROR */
4512                 buffer[offset] = 0x70;
4513                 /* DATA PROTECT */
4514                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4515                 /* WRITE PROTECTED */
4516                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4517                 break;
4518         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4519                 /* CURRENT ERROR */
4520                 buffer[offset] = 0x70;
4521                 /* UNIT ATTENTION */
4522                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4523                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4524                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4525                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4526                 break;
4527         case TCM_CHECK_CONDITION_NOT_READY:
4528                 /* CURRENT ERROR */
4529                 buffer[offset] = 0x70;
4530                 /* Not Ready */
4531                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4532                 transport_get_sense_codes(cmd, &asc, &ascq);
4533                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4534                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4535                 break;
4536         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4537         default:
4538                 /* CURRENT ERROR */
4539                 buffer[offset] = 0x70;
4540                 /* ILLEGAL REQUEST */
4541                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4542                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4543                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4544                 break;
4545         }
4546         /*
4547          * This code uses linux/include/scsi/scsi.h SAM status codes!
4548          */
4549         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4550         /*
4551          * Automatically padded, this value is encoded in the fabric's
4552          * data_length response PDU containing the SCSI defined sense data.
4553          */
4554         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4555
4556 after_reason:
4557         return cmd->se_tfo->queue_status(cmd);
4558 }
4559 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4560
4561 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4562 {
4563         int ret = 0;
4564
4565         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4566                 if (!send_status ||
4567                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4568                         return 1;
4569 #if 0
4570                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4571                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4572                         cmd->t_task_cdb[0],
4573                         cmd->se_tfo->get_task_tag(cmd));
4574 #endif
4575                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4576                 cmd->se_tfo->queue_status(cmd);
4577                 ret = 1;
4578         }
4579         return ret;
4580 }
4581 EXPORT_SYMBOL(transport_check_aborted_status);
4582
4583 void transport_send_task_abort(struct se_cmd *cmd)
4584 {
4585         unsigned long flags;
4586
4587         spin_lock_irqsave(&cmd->t_state_lock, flags);
4588         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4589                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4590                 return;
4591         }
4592         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4593
4594         /*
4595          * If there are still expected incoming fabric WRITEs, we wait
4596          * until until they have completed before sending a TASK_ABORTED
4597          * response.  This response with TASK_ABORTED status will be
4598          * queued back to fabric module by transport_check_aborted_status().
4599          */
4600         if (cmd->data_direction == DMA_TO_DEVICE) {
4601                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4602                         atomic_inc(&cmd->t_transport_aborted);
4603                         smp_mb__after_atomic_inc();
4604                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4605                         transport_new_cmd_failure(cmd);
4606                         return;
4607                 }
4608         }
4609         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4610 #if 0
4611         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4612                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4613                 cmd->se_tfo->get_task_tag(cmd));
4614 #endif
4615         cmd->se_tfo->queue_status(cmd);
4616 }
4617
4618 /*      transport_generic_do_tmr():
4619  *
4620  *
4621  */
4622 int transport_generic_do_tmr(struct se_cmd *cmd)
4623 {
4624         struct se_device *dev = cmd->se_dev;
4625         struct se_tmr_req *tmr = cmd->se_tmr_req;
4626         int ret;
4627
4628         switch (tmr->function) {
4629         case TMR_ABORT_TASK:
4630                 tmr->response = TMR_FUNCTION_REJECTED;
4631                 break;
4632         case TMR_ABORT_TASK_SET:
4633         case TMR_CLEAR_ACA:
4634         case TMR_CLEAR_TASK_SET:
4635                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4636                 break;
4637         case TMR_LUN_RESET:
4638                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4639                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4640                                          TMR_FUNCTION_REJECTED;
4641                 break;
4642         case TMR_TARGET_WARM_RESET:
4643                 tmr->response = TMR_FUNCTION_REJECTED;
4644                 break;
4645         case TMR_TARGET_COLD_RESET:
4646                 tmr->response = TMR_FUNCTION_REJECTED;
4647                 break;
4648         default:
4649                 pr_err("Uknown TMR function: 0x%02x.\n",
4650                                 tmr->function);
4651                 tmr->response = TMR_FUNCTION_REJECTED;
4652                 break;
4653         }
4654
4655         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4656         cmd->se_tfo->queue_tm_rsp(cmd);
4657
4658         transport_cmd_check_stop_to_fabric(cmd);
4659         return 0;
4660 }
4661
4662 /*      transport_processing_thread():
4663  *
4664  *
4665  */
4666 static int transport_processing_thread(void *param)
4667 {
4668         int ret;
4669         struct se_cmd *cmd;
4670         struct se_device *dev = (struct se_device *) param;
4671
4672         set_user_nice(current, -20);
4673
4674         while (!kthread_should_stop()) {
4675                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4676                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4677                                 kthread_should_stop());
4678                 if (ret < 0)
4679                         goto out;
4680
4681 get_cmd:
4682                 __transport_execute_tasks(dev);
4683
4684                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4685                 if (!cmd)
4686                         continue;
4687
4688                 switch (cmd->t_state) {
4689                 case TRANSPORT_NEW_CMD:
4690                         BUG();
4691                         break;
4692                 case TRANSPORT_NEW_CMD_MAP:
4693                         if (!cmd->se_tfo->new_cmd_map) {
4694                                 pr_err("cmd->se_tfo->new_cmd_map is"
4695                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4696                                 BUG();
4697                         }
4698                         ret = cmd->se_tfo->new_cmd_map(cmd);
4699                         if (ret < 0) {
4700                                 cmd->transport_error_status = ret;
4701                                 transport_generic_request_failure(cmd,
4702                                                 0, (cmd->data_direction !=
4703                                                     DMA_TO_DEVICE));
4704                                 break;
4705                         }
4706                         ret = transport_generic_new_cmd(cmd);
4707                         if (ret < 0) {
4708                                 cmd->transport_error_status = ret;
4709                                 transport_generic_request_failure(cmd,
4710                                         0, (cmd->data_direction !=
4711                                          DMA_TO_DEVICE));
4712                         }
4713                         break;
4714                 case TRANSPORT_PROCESS_WRITE:
4715                         transport_generic_process_write(cmd);
4716                         break;
4717                 case TRANSPORT_PROCESS_TMR:
4718                         transport_generic_do_tmr(cmd);
4719                         break;
4720                 case TRANSPORT_COMPLETE_QF_WP:
4721                         transport_write_pending_qf(cmd);
4722                         break;
4723                 case TRANSPORT_COMPLETE_QF_OK:
4724                         transport_complete_qf(cmd);
4725                         break;
4726                 default:
4727                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4728                                 "i_state: %d on SE LUN: %u\n",
4729                                 cmd->t_state,
4730                                 cmd->se_tfo->get_task_tag(cmd),
4731                                 cmd->se_tfo->get_cmd_state(cmd),
4732                                 cmd->se_lun->unpacked_lun);
4733                         BUG();
4734                 }
4735
4736                 goto get_cmd;
4737         }
4738
4739 out:
4740         WARN_ON(!list_empty(&dev->state_task_list));
4741         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4742         dev->process_thread = NULL;
4743         return 0;
4744 }