ath6kl: fix struct hif_scatter_req list handling
[pandora-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54
55 #include "target_core_alua.h"
56 #include "target_core_cdb.h"
57 #include "target_core_hba.h"
58 #include "target_core_pr.h"
59 #include "target_core_ua.h"
60
61 static int sub_api_initialized;
62
63 static struct workqueue_struct *target_completion_wq;
64 static struct kmem_cache *se_sess_cache;
65 struct kmem_cache *se_tmr_req_cache;
66 struct kmem_cache *se_ua_cache;
67 struct kmem_cache *t10_pr_reg_cache;
68 struct kmem_cache *t10_alua_lu_gp_cache;
69 struct kmem_cache *t10_alua_lu_gp_mem_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
72
73 static int transport_generic_write_pending(struct se_cmd *);
74 static int transport_processing_thread(void *param);
75 static int __transport_execute_tasks(struct se_device *dev);
76 static void transport_complete_task_attr(struct se_cmd *cmd);
77 static void transport_handle_queue_full(struct se_cmd *cmd,
78                 struct se_device *dev);
79 static void transport_free_dev_tasks(struct se_cmd *cmd);
80 static int transport_generic_get_mem(struct se_cmd *cmd);
81 static void transport_put_cmd(struct se_cmd *cmd);
82 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
83 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
84 static void transport_generic_request_failure(struct se_cmd *);
85 static void target_complete_ok_work(struct work_struct *work);
86
87 int init_se_kmem_caches(void)
88 {
89         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
90                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
91                         0, NULL);
92         if (!se_tmr_req_cache) {
93                 pr_err("kmem_cache_create() for struct se_tmr_req"
94                                 " failed\n");
95                 goto out;
96         }
97         se_sess_cache = kmem_cache_create("se_sess_cache",
98                         sizeof(struct se_session), __alignof__(struct se_session),
99                         0, NULL);
100         if (!se_sess_cache) {
101                 pr_err("kmem_cache_create() for struct se_session"
102                                 " failed\n");
103                 goto out_free_tmr_req_cache;
104         }
105         se_ua_cache = kmem_cache_create("se_ua_cache",
106                         sizeof(struct se_ua), __alignof__(struct se_ua),
107                         0, NULL);
108         if (!se_ua_cache) {
109                 pr_err("kmem_cache_create() for struct se_ua failed\n");
110                 goto out_free_sess_cache;
111         }
112         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
113                         sizeof(struct t10_pr_registration),
114                         __alignof__(struct t10_pr_registration), 0, NULL);
115         if (!t10_pr_reg_cache) {
116                 pr_err("kmem_cache_create() for struct t10_pr_registration"
117                                 " failed\n");
118                 goto out_free_ua_cache;
119         }
120         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
121                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
122                         0, NULL);
123         if (!t10_alua_lu_gp_cache) {
124                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
125                                 " failed\n");
126                 goto out_free_pr_reg_cache;
127         }
128         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
129                         sizeof(struct t10_alua_lu_gp_member),
130                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
131         if (!t10_alua_lu_gp_mem_cache) {
132                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
133                                 "cache failed\n");
134                 goto out_free_lu_gp_cache;
135         }
136         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
137                         sizeof(struct t10_alua_tg_pt_gp),
138                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
139         if (!t10_alua_tg_pt_gp_cache) {
140                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
141                                 "cache failed\n");
142                 goto out_free_lu_gp_mem_cache;
143         }
144         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
145                         "t10_alua_tg_pt_gp_mem_cache",
146                         sizeof(struct t10_alua_tg_pt_gp_member),
147                         __alignof__(struct t10_alua_tg_pt_gp_member),
148                         0, NULL);
149         if (!t10_alua_tg_pt_gp_mem_cache) {
150                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
151                                 "mem_t failed\n");
152                 goto out_free_tg_pt_gp_cache;
153         }
154
155         target_completion_wq = alloc_workqueue("target_completion",
156                                                WQ_MEM_RECLAIM, 0);
157         if (!target_completion_wq)
158                 goto out_free_tg_pt_gp_mem_cache;
159
160         return 0;
161
162 out_free_tg_pt_gp_mem_cache:
163         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
164 out_free_tg_pt_gp_cache:
165         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
166 out_free_lu_gp_mem_cache:
167         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
168 out_free_lu_gp_cache:
169         kmem_cache_destroy(t10_alua_lu_gp_cache);
170 out_free_pr_reg_cache:
171         kmem_cache_destroy(t10_pr_reg_cache);
172 out_free_ua_cache:
173         kmem_cache_destroy(se_ua_cache);
174 out_free_sess_cache:
175         kmem_cache_destroy(se_sess_cache);
176 out_free_tmr_req_cache:
177         kmem_cache_destroy(se_tmr_req_cache);
178 out:
179         return -ENOMEM;
180 }
181
182 void release_se_kmem_caches(void)
183 {
184         destroy_workqueue(target_completion_wq);
185         kmem_cache_destroy(se_tmr_req_cache);
186         kmem_cache_destroy(se_sess_cache);
187         kmem_cache_destroy(se_ua_cache);
188         kmem_cache_destroy(t10_pr_reg_cache);
189         kmem_cache_destroy(t10_alua_lu_gp_cache);
190         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
191         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
192         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200  * Allocate a new row index for the entry type specified
201  */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204         u32 new_index;
205
206         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208         spin_lock(&scsi_mib_index_lock);
209         new_index = ++scsi_mib_index[type];
210         spin_unlock(&scsi_mib_index_lock);
211
212         return new_index;
213 }
214
215 void transport_init_queue_obj(struct se_queue_obj *qobj)
216 {
217         atomic_set(&qobj->queue_cnt, 0);
218         INIT_LIST_HEAD(&qobj->qobj_list);
219         init_waitqueue_head(&qobj->thread_wq);
220         spin_lock_init(&qobj->cmd_queue_lock);
221 }
222 EXPORT_SYMBOL(transport_init_queue_obj);
223
224 void transport_subsystem_check_init(void)
225 {
226         int ret;
227
228         if (sub_api_initialized)
229                 return;
230
231         ret = request_module("target_core_iblock");
232         if (ret != 0)
233                 pr_err("Unable to load target_core_iblock\n");
234
235         ret = request_module("target_core_file");
236         if (ret != 0)
237                 pr_err("Unable to load target_core_file\n");
238
239         ret = request_module("target_core_pscsi");
240         if (ret != 0)
241                 pr_err("Unable to load target_core_pscsi\n");
242
243         ret = request_module("target_core_stgt");
244         if (ret != 0)
245                 pr_err("Unable to load target_core_stgt\n");
246
247         sub_api_initialized = 1;
248         return;
249 }
250
251 struct se_session *transport_init_session(void)
252 {
253         struct se_session *se_sess;
254
255         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
256         if (!se_sess) {
257                 pr_err("Unable to allocate struct se_session from"
258                                 " se_sess_cache\n");
259                 return ERR_PTR(-ENOMEM);
260         }
261         INIT_LIST_HEAD(&se_sess->sess_list);
262         INIT_LIST_HEAD(&se_sess->sess_acl_list);
263         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
264         INIT_LIST_HEAD(&se_sess->sess_wait_list);
265         spin_lock_init(&se_sess->sess_cmd_lock);
266
267         return se_sess;
268 }
269 EXPORT_SYMBOL(transport_init_session);
270
271 /*
272  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
273  */
274 void __transport_register_session(
275         struct se_portal_group *se_tpg,
276         struct se_node_acl *se_nacl,
277         struct se_session *se_sess,
278         void *fabric_sess_ptr)
279 {
280         unsigned char buf[PR_REG_ISID_LEN];
281
282         se_sess->se_tpg = se_tpg;
283         se_sess->fabric_sess_ptr = fabric_sess_ptr;
284         /*
285          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
286          *
287          * Only set for struct se_session's that will actually be moving I/O.
288          * eg: *NOT* discovery sessions.
289          */
290         if (se_nacl) {
291                 /*
292                  * If the fabric module supports an ISID based TransportID,
293                  * save this value in binary from the fabric I_T Nexus now.
294                  */
295                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
296                         memset(&buf[0], 0, PR_REG_ISID_LEN);
297                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
298                                         &buf[0], PR_REG_ISID_LEN);
299                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
300                 }
301                 spin_lock_irq(&se_nacl->nacl_sess_lock);
302                 /*
303                  * The se_nacl->nacl_sess pointer will be set to the
304                  * last active I_T Nexus for each struct se_node_acl.
305                  */
306                 se_nacl->nacl_sess = se_sess;
307
308                 list_add_tail(&se_sess->sess_acl_list,
309                               &se_nacl->acl_sess_list);
310                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
311         }
312         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
313
314         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
315                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
316 }
317 EXPORT_SYMBOL(__transport_register_session);
318
319 void transport_register_session(
320         struct se_portal_group *se_tpg,
321         struct se_node_acl *se_nacl,
322         struct se_session *se_sess,
323         void *fabric_sess_ptr)
324 {
325         spin_lock_bh(&se_tpg->session_lock);
326         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
327         spin_unlock_bh(&se_tpg->session_lock);
328 }
329 EXPORT_SYMBOL(transport_register_session);
330
331 void transport_deregister_session_configfs(struct se_session *se_sess)
332 {
333         struct se_node_acl *se_nacl;
334         unsigned long flags;
335         /*
336          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
337          */
338         se_nacl = se_sess->se_node_acl;
339         if (se_nacl) {
340                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
341                 list_del(&se_sess->sess_acl_list);
342                 /*
343                  * If the session list is empty, then clear the pointer.
344                  * Otherwise, set the struct se_session pointer from the tail
345                  * element of the per struct se_node_acl active session list.
346                  */
347                 if (list_empty(&se_nacl->acl_sess_list))
348                         se_nacl->nacl_sess = NULL;
349                 else {
350                         se_nacl->nacl_sess = container_of(
351                                         se_nacl->acl_sess_list.prev,
352                                         struct se_session, sess_acl_list);
353                 }
354                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
355         }
356 }
357 EXPORT_SYMBOL(transport_deregister_session_configfs);
358
359 void transport_free_session(struct se_session *se_sess)
360 {
361         kmem_cache_free(se_sess_cache, se_sess);
362 }
363 EXPORT_SYMBOL(transport_free_session);
364
365 void transport_deregister_session(struct se_session *se_sess)
366 {
367         struct se_portal_group *se_tpg = se_sess->se_tpg;
368         struct se_node_acl *se_nacl;
369         unsigned long flags;
370
371         if (!se_tpg) {
372                 transport_free_session(se_sess);
373                 return;
374         }
375
376         spin_lock_irqsave(&se_tpg->session_lock, flags);
377         list_del(&se_sess->sess_list);
378         se_sess->se_tpg = NULL;
379         se_sess->fabric_sess_ptr = NULL;
380         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
381
382         /*
383          * Determine if we need to do extra work for this initiator node's
384          * struct se_node_acl if it had been previously dynamically generated.
385          */
386         se_nacl = se_sess->se_node_acl;
387         if (se_nacl) {
388                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
389                 if (se_nacl->dynamic_node_acl) {
390                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
391                                         se_tpg)) {
392                                 list_del(&se_nacl->acl_list);
393                                 se_tpg->num_node_acls--;
394                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
395
396                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
397                                 core_free_device_list_for_node(se_nacl, se_tpg);
398                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
399                                                 se_nacl);
400                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
401                         }
402                 }
403                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
404         }
405
406         transport_free_session(se_sess);
407
408         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
409                 se_tpg->se_tpg_tfo->get_fabric_name());
410 }
411 EXPORT_SYMBOL(transport_deregister_session);
412
413 /*
414  * Called with cmd->t_state_lock held.
415  */
416 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
417 {
418         struct se_device *dev = cmd->se_dev;
419         struct se_task *task;
420         unsigned long flags;
421
422         if (!dev)
423                 return;
424
425         list_for_each_entry(task, &cmd->t_task_list, t_list) {
426                 if (task->task_flags & TF_ACTIVE)
427                         continue;
428
429                 if (!atomic_read(&task->task_state_active))
430                         continue;
431
432                 spin_lock_irqsave(&dev->execute_task_lock, flags);
433                 list_del(&task->t_state_list);
434                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
435                         cmd->se_tfo->get_task_tag(cmd), dev, task);
436                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
437
438                 atomic_set(&task->task_state_active, 0);
439                 atomic_dec(&cmd->t_task_cdbs_ex_left);
440         }
441 }
442
443 /*      transport_cmd_check_stop():
444  *
445  *      'transport_off = 1' determines if t_transport_active should be cleared.
446  *      'transport_off = 2' determines if task_dev_state should be removed.
447  *
448  *      A non-zero u8 t_state sets cmd->t_state.
449  *      Returns 1 when command is stopped, else 0.
450  */
451 static int transport_cmd_check_stop(
452         struct se_cmd *cmd,
453         int transport_off,
454         u8 t_state)
455 {
456         unsigned long flags;
457
458         spin_lock_irqsave(&cmd->t_state_lock, flags);
459         /*
460          * Determine if IOCTL context caller in requesting the stopping of this
461          * command for LUN shutdown purposes.
462          */
463         if (atomic_read(&cmd->transport_lun_stop)) {
464                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
465                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
466                         cmd->se_tfo->get_task_tag(cmd));
467
468                 atomic_set(&cmd->t_transport_active, 0);
469                 if (transport_off == 2)
470                         transport_all_task_dev_remove_state(cmd);
471                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
472
473                 complete(&cmd->transport_lun_stop_comp);
474                 return 1;
475         }
476         /*
477          * Determine if frontend context caller is requesting the stopping of
478          * this command for frontend exceptions.
479          */
480         if (atomic_read(&cmd->t_transport_stop)) {
481                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
482                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
483                         cmd->se_tfo->get_task_tag(cmd));
484
485                 if (transport_off == 2)
486                         transport_all_task_dev_remove_state(cmd);
487
488                 /*
489                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
490                  * to FE.
491                  */
492                 if (transport_off == 2)
493                         cmd->se_lun = NULL;
494                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
495
496                 complete(&cmd->t_transport_stop_comp);
497                 return 1;
498         }
499         if (transport_off) {
500                 atomic_set(&cmd->t_transport_active, 0);
501                 if (transport_off == 2) {
502                         transport_all_task_dev_remove_state(cmd);
503                         /*
504                          * Clear struct se_cmd->se_lun before the transport_off == 2
505                          * handoff to fabric module.
506                          */
507                         cmd->se_lun = NULL;
508                         /*
509                          * Some fabric modules like tcm_loop can release
510                          * their internally allocated I/O reference now and
511                          * struct se_cmd now.
512                          *
513                          * Fabric modules are expected to return '1' here if the
514                          * se_cmd being passed is released at this point,
515                          * or zero if not being released.
516                          */
517                         if (cmd->se_tfo->check_stop_free != NULL) {
518                                 spin_unlock_irqrestore(
519                                         &cmd->t_state_lock, flags);
520
521                                 return cmd->se_tfo->check_stop_free(cmd);
522                         }
523                 }
524                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526                 return 0;
527         } else if (t_state)
528                 cmd->t_state = t_state;
529         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
530
531         return 0;
532 }
533
534 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
535 {
536         return transport_cmd_check_stop(cmd, 2, 0);
537 }
538
539 static void transport_lun_remove_cmd(struct se_cmd *cmd)
540 {
541         struct se_lun *lun = cmd->se_lun;
542         unsigned long flags;
543
544         if (!lun)
545                 return;
546
547         spin_lock_irqsave(&cmd->t_state_lock, flags);
548         if (!atomic_read(&cmd->transport_dev_active)) {
549                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550                 goto check_lun;
551         }
552         atomic_set(&cmd->transport_dev_active, 0);
553         transport_all_task_dev_remove_state(cmd);
554         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555
556
557 check_lun:
558         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
559         if (atomic_read(&cmd->transport_lun_active)) {
560                 list_del(&cmd->se_lun_node);
561                 atomic_set(&cmd->transport_lun_active, 0);
562 #if 0
563                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
564                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
565 #endif
566         }
567         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
568 }
569
570 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
571 {
572         if (!cmd->se_tmr_req)
573                 transport_lun_remove_cmd(cmd);
574
575         if (transport_cmd_check_stop_to_fabric(cmd))
576                 return;
577         if (remove) {
578                 transport_remove_cmd_from_queue(cmd);
579                 transport_put_cmd(cmd);
580         }
581 }
582
583 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
584                 bool at_head)
585 {
586         struct se_device *dev = cmd->se_dev;
587         struct se_queue_obj *qobj = &dev->dev_queue_obj;
588         unsigned long flags;
589
590         if (t_state) {
591                 spin_lock_irqsave(&cmd->t_state_lock, flags);
592                 cmd->t_state = t_state;
593                 atomic_set(&cmd->t_transport_active, 1);
594                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
595         }
596
597         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
598
599         /* If the cmd is already on the list, remove it before we add it */
600         if (!list_empty(&cmd->se_queue_node))
601                 list_del(&cmd->se_queue_node);
602         else
603                 atomic_inc(&qobj->queue_cnt);
604
605         if (at_head)
606                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
607         else
608                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
609         atomic_set(&cmd->t_transport_queue_active, 1);
610         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
611
612         wake_up_interruptible(&qobj->thread_wq);
613 }
614
615 static struct se_cmd *
616 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
617 {
618         struct se_cmd *cmd;
619         unsigned long flags;
620
621         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
622         if (list_empty(&qobj->qobj_list)) {
623                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
624                 return NULL;
625         }
626         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
627
628         atomic_set(&cmd->t_transport_queue_active, 0);
629
630         list_del_init(&cmd->se_queue_node);
631         atomic_dec(&qobj->queue_cnt);
632         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
633
634         return cmd;
635 }
636
637 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
638 {
639         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
640         unsigned long flags;
641
642         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
643         if (!atomic_read(&cmd->t_transport_queue_active)) {
644                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
645                 return;
646         }
647         atomic_set(&cmd->t_transport_queue_active, 0);
648         atomic_dec(&qobj->queue_cnt);
649         list_del_init(&cmd->se_queue_node);
650         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
651
652         if (atomic_read(&cmd->t_transport_queue_active)) {
653                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
654                         cmd->se_tfo->get_task_tag(cmd),
655                         atomic_read(&cmd->t_transport_queue_active));
656         }
657 }
658
659 /*
660  * Completion function used by TCM subsystem plugins (such as FILEIO)
661  * for queueing up response from struct se_subsystem_api->do_task()
662  */
663 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
664 {
665         struct se_task *task = list_entry(cmd->t_task_list.next,
666                                 struct se_task, t_list);
667
668         if (good) {
669                 cmd->scsi_status = SAM_STAT_GOOD;
670                 task->task_scsi_status = GOOD;
671         } else {
672                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
673                 task->task_se_cmd->scsi_sense_reason =
674                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
675
676         }
677
678         transport_complete_task(task, good);
679 }
680 EXPORT_SYMBOL(transport_complete_sync_cache);
681
682 static void target_complete_failure_work(struct work_struct *work)
683 {
684         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
685
686         transport_generic_request_failure(cmd);
687 }
688
689 /*      transport_complete_task():
690  *
691  *      Called from interrupt and non interrupt context depending
692  *      on the transport plugin.
693  */
694 void transport_complete_task(struct se_task *task, int success)
695 {
696         struct se_cmd *cmd = task->task_se_cmd;
697         struct se_device *dev = cmd->se_dev;
698         unsigned long flags;
699 #if 0
700         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
701                         cmd->t_task_cdb[0], dev);
702 #endif
703         if (dev)
704                 atomic_inc(&dev->depth_left);
705
706         spin_lock_irqsave(&cmd->t_state_lock, flags);
707         task->task_flags &= ~TF_ACTIVE;
708
709         /*
710          * See if any sense data exists, if so set the TASK_SENSE flag.
711          * Also check for any other post completion work that needs to be
712          * done by the plugins.
713          */
714         if (dev && dev->transport->transport_complete) {
715                 if (dev->transport->transport_complete(task) != 0) {
716                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
717                         task->task_sense = 1;
718                         success = 1;
719                 }
720         }
721
722         /*
723          * See if we are waiting for outstanding struct se_task
724          * to complete for an exception condition
725          */
726         if (task->task_flags & TF_REQUEST_STOP) {
727                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
728                 complete(&task->task_stop_comp);
729                 return;
730         }
731
732         if (!success)
733                 cmd->t_tasks_failed = 1;
734
735         /*
736          * Decrement the outstanding t_task_cdbs_left count.  The last
737          * struct se_task from struct se_cmd will complete itself into the
738          * device queue depending upon int success.
739          */
740         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
741                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
742                 return;
743         }
744
745         if (cmd->t_tasks_failed) {
746                 if (!task->task_error_status) {
747                         task->task_error_status =
748                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
749                         cmd->scsi_sense_reason =
750                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
751                 }
752
753                 INIT_WORK(&cmd->work, target_complete_failure_work);
754         } else {
755                 atomic_set(&cmd->t_transport_complete, 1);
756                 INIT_WORK(&cmd->work, target_complete_ok_work);
757         }
758
759         cmd->t_state = TRANSPORT_COMPLETE;
760         atomic_set(&cmd->t_transport_active, 1);
761         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
762
763         queue_work(target_completion_wq, &cmd->work);
764 }
765 EXPORT_SYMBOL(transport_complete_task);
766
767 /*
768  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
769  * struct se_task list are ready to be added to the active execution list
770  * struct se_device
771
772  * Called with se_dev_t->execute_task_lock called.
773  */
774 static inline int transport_add_task_check_sam_attr(
775         struct se_task *task,
776         struct se_task *task_prev,
777         struct se_device *dev)
778 {
779         /*
780          * No SAM Task attribute emulation enabled, add to tail of
781          * execution queue
782          */
783         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
784                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
785                 return 0;
786         }
787         /*
788          * HEAD_OF_QUEUE attribute for received CDB, which means
789          * the first task that is associated with a struct se_cmd goes to
790          * head of the struct se_device->execute_task_list, and task_prev
791          * after that for each subsequent task
792          */
793         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
794                 list_add(&task->t_execute_list,
795                                 (task_prev != NULL) ?
796                                 &task_prev->t_execute_list :
797                                 &dev->execute_task_list);
798
799                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
800                                 " in execution queue\n",
801                                 task->task_se_cmd->t_task_cdb[0]);
802                 return 1;
803         }
804         /*
805          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
806          * transitioned from Dermant -> Active state, and are added to the end
807          * of the struct se_device->execute_task_list
808          */
809         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
810         return 0;
811 }
812
813 /*      __transport_add_task_to_execute_queue():
814  *
815  *      Called with se_dev_t->execute_task_lock called.
816  */
817 static void __transport_add_task_to_execute_queue(
818         struct se_task *task,
819         struct se_task *task_prev,
820         struct se_device *dev)
821 {
822         int head_of_queue;
823
824         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
825         atomic_inc(&dev->execute_tasks);
826
827         if (atomic_read(&task->task_state_active))
828                 return;
829         /*
830          * Determine if this task needs to go to HEAD_OF_QUEUE for the
831          * state list as well.  Running with SAM Task Attribute emulation
832          * will always return head_of_queue == 0 here
833          */
834         if (head_of_queue)
835                 list_add(&task->t_state_list, (task_prev) ?
836                                 &task_prev->t_state_list :
837                                 &dev->state_task_list);
838         else
839                 list_add_tail(&task->t_state_list, &dev->state_task_list);
840
841         atomic_set(&task->task_state_active, 1);
842
843         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
844                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
845                 task, dev);
846 }
847
848 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
849 {
850         struct se_device *dev = cmd->se_dev;
851         struct se_task *task;
852         unsigned long flags;
853
854         spin_lock_irqsave(&cmd->t_state_lock, flags);
855         list_for_each_entry(task, &cmd->t_task_list, t_list) {
856                 if (atomic_read(&task->task_state_active))
857                         continue;
858
859                 spin_lock(&dev->execute_task_lock);
860                 list_add_tail(&task->t_state_list, &dev->state_task_list);
861                 atomic_set(&task->task_state_active, 1);
862
863                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
864                         task->task_se_cmd->se_tfo->get_task_tag(
865                         task->task_se_cmd), task, dev);
866
867                 spin_unlock(&dev->execute_task_lock);
868         }
869         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
870 }
871
872 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
873 {
874         struct se_device *dev = cmd->se_dev;
875         struct se_task *task, *task_prev = NULL;
876         unsigned long flags;
877
878         spin_lock_irqsave(&dev->execute_task_lock, flags);
879         list_for_each_entry(task, &cmd->t_task_list, t_list) {
880                 if (!list_empty(&task->t_execute_list))
881                         continue;
882                 /*
883                  * __transport_add_task_to_execute_queue() handles the
884                  * SAM Task Attribute emulation if enabled
885                  */
886                 __transport_add_task_to_execute_queue(task, task_prev, dev);
887                 task_prev = task;
888         }
889         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
890 }
891
892 void __transport_remove_task_from_execute_queue(struct se_task *task,
893                 struct se_device *dev)
894 {
895         list_del_init(&task->t_execute_list);
896         atomic_dec(&dev->execute_tasks);
897 }
898
899 void transport_remove_task_from_execute_queue(
900         struct se_task *task,
901         struct se_device *dev)
902 {
903         unsigned long flags;
904
905         if (WARN_ON(list_empty(&task->t_execute_list)))
906                 return;
907
908         spin_lock_irqsave(&dev->execute_task_lock, flags);
909         __transport_remove_task_from_execute_queue(task, dev);
910         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
911 }
912
913 /*
914  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
915  */
916
917 static void target_qf_do_work(struct work_struct *work)
918 {
919         struct se_device *dev = container_of(work, struct se_device,
920                                         qf_work_queue);
921         LIST_HEAD(qf_cmd_list);
922         struct se_cmd *cmd, *cmd_tmp;
923
924         spin_lock_irq(&dev->qf_cmd_lock);
925         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
926         spin_unlock_irq(&dev->qf_cmd_lock);
927
928         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
929                 list_del(&cmd->se_qf_node);
930                 atomic_dec(&dev->dev_qf_count);
931                 smp_mb__after_atomic_dec();
932
933                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
934                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
935                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
936                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
937                         : "UNKNOWN");
938
939                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
940         }
941 }
942
943 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
944 {
945         switch (cmd->data_direction) {
946         case DMA_NONE:
947                 return "NONE";
948         case DMA_FROM_DEVICE:
949                 return "READ";
950         case DMA_TO_DEVICE:
951                 return "WRITE";
952         case DMA_BIDIRECTIONAL:
953                 return "BIDI";
954         default:
955                 break;
956         }
957
958         return "UNKNOWN";
959 }
960
961 void transport_dump_dev_state(
962         struct se_device *dev,
963         char *b,
964         int *bl)
965 {
966         *bl += sprintf(b + *bl, "Status: ");
967         switch (dev->dev_status) {
968         case TRANSPORT_DEVICE_ACTIVATED:
969                 *bl += sprintf(b + *bl, "ACTIVATED");
970                 break;
971         case TRANSPORT_DEVICE_DEACTIVATED:
972                 *bl += sprintf(b + *bl, "DEACTIVATED");
973                 break;
974         case TRANSPORT_DEVICE_SHUTDOWN:
975                 *bl += sprintf(b + *bl, "SHUTDOWN");
976                 break;
977         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
978         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
979                 *bl += sprintf(b + *bl, "OFFLINE");
980                 break;
981         default:
982                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
983                 break;
984         }
985
986         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
987                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
988                 dev->queue_depth);
989         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
990                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
991         *bl += sprintf(b + *bl, "        ");
992 }
993
994 void transport_dump_vpd_proto_id(
995         struct t10_vpd *vpd,
996         unsigned char *p_buf,
997         int p_buf_len)
998 {
999         unsigned char buf[VPD_TMP_BUF_SIZE];
1000         int len;
1001
1002         memset(buf, 0, VPD_TMP_BUF_SIZE);
1003         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1004
1005         switch (vpd->protocol_identifier) {
1006         case 0x00:
1007                 sprintf(buf+len, "Fibre Channel\n");
1008                 break;
1009         case 0x10:
1010                 sprintf(buf+len, "Parallel SCSI\n");
1011                 break;
1012         case 0x20:
1013                 sprintf(buf+len, "SSA\n");
1014                 break;
1015         case 0x30:
1016                 sprintf(buf+len, "IEEE 1394\n");
1017                 break;
1018         case 0x40:
1019                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1020                                 " Protocol\n");
1021                 break;
1022         case 0x50:
1023                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1024                 break;
1025         case 0x60:
1026                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1027                 break;
1028         case 0x70:
1029                 sprintf(buf+len, "Automation/Drive Interface Transport"
1030                                 " Protocol\n");
1031                 break;
1032         case 0x80:
1033                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1034                 break;
1035         default:
1036                 sprintf(buf+len, "Unknown 0x%02x\n",
1037                                 vpd->protocol_identifier);
1038                 break;
1039         }
1040
1041         if (p_buf)
1042                 strncpy(p_buf, buf, p_buf_len);
1043         else
1044                 pr_debug("%s", buf);
1045 }
1046
1047 void
1048 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1049 {
1050         /*
1051          * Check if the Protocol Identifier Valid (PIV) bit is set..
1052          *
1053          * from spc3r23.pdf section 7.5.1
1054          */
1055          if (page_83[1] & 0x80) {
1056                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1057                 vpd->protocol_identifier_set = 1;
1058                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1059         }
1060 }
1061 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1062
1063 int transport_dump_vpd_assoc(
1064         struct t10_vpd *vpd,
1065         unsigned char *p_buf,
1066         int p_buf_len)
1067 {
1068         unsigned char buf[VPD_TMP_BUF_SIZE];
1069         int ret = 0;
1070         int len;
1071
1072         memset(buf, 0, VPD_TMP_BUF_SIZE);
1073         len = sprintf(buf, "T10 VPD Identifier Association: ");
1074
1075         switch (vpd->association) {
1076         case 0x00:
1077                 sprintf(buf+len, "addressed logical unit\n");
1078                 break;
1079         case 0x10:
1080                 sprintf(buf+len, "target port\n");
1081                 break;
1082         case 0x20:
1083                 sprintf(buf+len, "SCSI target device\n");
1084                 break;
1085         default:
1086                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1087                 ret = -EINVAL;
1088                 break;
1089         }
1090
1091         if (p_buf)
1092                 strncpy(p_buf, buf, p_buf_len);
1093         else
1094                 pr_debug("%s", buf);
1095
1096         return ret;
1097 }
1098
1099 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1100 {
1101         /*
1102          * The VPD identification association..
1103          *
1104          * from spc3r23.pdf Section 7.6.3.1 Table 297
1105          */
1106         vpd->association = (page_83[1] & 0x30);
1107         return transport_dump_vpd_assoc(vpd, NULL, 0);
1108 }
1109 EXPORT_SYMBOL(transport_set_vpd_assoc);
1110
1111 int transport_dump_vpd_ident_type(
1112         struct t10_vpd *vpd,
1113         unsigned char *p_buf,
1114         int p_buf_len)
1115 {
1116         unsigned char buf[VPD_TMP_BUF_SIZE];
1117         int ret = 0;
1118         int len;
1119
1120         memset(buf, 0, VPD_TMP_BUF_SIZE);
1121         len = sprintf(buf, "T10 VPD Identifier Type: ");
1122
1123         switch (vpd->device_identifier_type) {
1124         case 0x00:
1125                 sprintf(buf+len, "Vendor specific\n");
1126                 break;
1127         case 0x01:
1128                 sprintf(buf+len, "T10 Vendor ID based\n");
1129                 break;
1130         case 0x02:
1131                 sprintf(buf+len, "EUI-64 based\n");
1132                 break;
1133         case 0x03:
1134                 sprintf(buf+len, "NAA\n");
1135                 break;
1136         case 0x04:
1137                 sprintf(buf+len, "Relative target port identifier\n");
1138                 break;
1139         case 0x08:
1140                 sprintf(buf+len, "SCSI name string\n");
1141                 break;
1142         default:
1143                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1144                                 vpd->device_identifier_type);
1145                 ret = -EINVAL;
1146                 break;
1147         }
1148
1149         if (p_buf) {
1150                 if (p_buf_len < strlen(buf)+1)
1151                         return -EINVAL;
1152                 strncpy(p_buf, buf, p_buf_len);
1153         } else {
1154                 pr_debug("%s", buf);
1155         }
1156
1157         return ret;
1158 }
1159
1160 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1161 {
1162         /*
1163          * The VPD identifier type..
1164          *
1165          * from spc3r23.pdf Section 7.6.3.1 Table 298
1166          */
1167         vpd->device_identifier_type = (page_83[1] & 0x0f);
1168         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1169 }
1170 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1171
1172 int transport_dump_vpd_ident(
1173         struct t10_vpd *vpd,
1174         unsigned char *p_buf,
1175         int p_buf_len)
1176 {
1177         unsigned char buf[VPD_TMP_BUF_SIZE];
1178         int ret = 0;
1179
1180         memset(buf, 0, VPD_TMP_BUF_SIZE);
1181
1182         switch (vpd->device_identifier_code_set) {
1183         case 0x01: /* Binary */
1184                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1185                         &vpd->device_identifier[0]);
1186                 break;
1187         case 0x02: /* ASCII */
1188                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1189                         &vpd->device_identifier[0]);
1190                 break;
1191         case 0x03: /* UTF-8 */
1192                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1193                         &vpd->device_identifier[0]);
1194                 break;
1195         default:
1196                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1197                         " 0x%02x", vpd->device_identifier_code_set);
1198                 ret = -EINVAL;
1199                 break;
1200         }
1201
1202         if (p_buf)
1203                 strncpy(p_buf, buf, p_buf_len);
1204         else
1205                 pr_debug("%s", buf);
1206
1207         return ret;
1208 }
1209
1210 int
1211 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1212 {
1213         static const char hex_str[] = "0123456789abcdef";
1214         int j = 0, i = 4; /* offset to start of the identifer */
1215
1216         /*
1217          * The VPD Code Set (encoding)
1218          *
1219          * from spc3r23.pdf Section 7.6.3.1 Table 296
1220          */
1221         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1222         switch (vpd->device_identifier_code_set) {
1223         case 0x01: /* Binary */
1224                 vpd->device_identifier[j++] =
1225                                 hex_str[vpd->device_identifier_type];
1226                 while (i < (4 + page_83[3])) {
1227                         vpd->device_identifier[j++] =
1228                                 hex_str[(page_83[i] & 0xf0) >> 4];
1229                         vpd->device_identifier[j++] =
1230                                 hex_str[page_83[i] & 0x0f];
1231                         i++;
1232                 }
1233                 break;
1234         case 0x02: /* ASCII */
1235         case 0x03: /* UTF-8 */
1236                 while (i < (4 + page_83[3]))
1237                         vpd->device_identifier[j++] = page_83[i++];
1238                 break;
1239         default:
1240                 break;
1241         }
1242
1243         return transport_dump_vpd_ident(vpd, NULL, 0);
1244 }
1245 EXPORT_SYMBOL(transport_set_vpd_ident);
1246
1247 static void core_setup_task_attr_emulation(struct se_device *dev)
1248 {
1249         /*
1250          * If this device is from Target_Core_Mod/pSCSI, disable the
1251          * SAM Task Attribute emulation.
1252          *
1253          * This is currently not available in upsream Linux/SCSI Target
1254          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1255          */
1256         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1257                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1258                 return;
1259         }
1260
1261         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1262         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1263                 " device\n", dev->transport->name,
1264                 dev->transport->get_device_rev(dev));
1265 }
1266
1267 static void scsi_dump_inquiry(struct se_device *dev)
1268 {
1269         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1270         int i, device_type;
1271         /*
1272          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1273          */
1274         pr_debug("  Vendor: ");
1275         for (i = 0; i < 8; i++)
1276                 if (wwn->vendor[i] >= 0x20)
1277                         pr_debug("%c", wwn->vendor[i]);
1278                 else
1279                         pr_debug(" ");
1280
1281         pr_debug("  Model: ");
1282         for (i = 0; i < 16; i++)
1283                 if (wwn->model[i] >= 0x20)
1284                         pr_debug("%c", wwn->model[i]);
1285                 else
1286                         pr_debug(" ");
1287
1288         pr_debug("  Revision: ");
1289         for (i = 0; i < 4; i++)
1290                 if (wwn->revision[i] >= 0x20)
1291                         pr_debug("%c", wwn->revision[i]);
1292                 else
1293                         pr_debug(" ");
1294
1295         pr_debug("\n");
1296
1297         device_type = dev->transport->get_device_type(dev);
1298         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1299         pr_debug("                 ANSI SCSI revision: %02x\n",
1300                                 dev->transport->get_device_rev(dev));
1301 }
1302
1303 struct se_device *transport_add_device_to_core_hba(
1304         struct se_hba *hba,
1305         struct se_subsystem_api *transport,
1306         struct se_subsystem_dev *se_dev,
1307         u32 device_flags,
1308         void *transport_dev,
1309         struct se_dev_limits *dev_limits,
1310         const char *inquiry_prod,
1311         const char *inquiry_rev)
1312 {
1313         int force_pt;
1314         struct se_device  *dev;
1315
1316         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1317         if (!dev) {
1318                 pr_err("Unable to allocate memory for se_dev_t\n");
1319                 return NULL;
1320         }
1321
1322         transport_init_queue_obj(&dev->dev_queue_obj);
1323         dev->dev_flags          = device_flags;
1324         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1325         dev->dev_ptr            = transport_dev;
1326         dev->se_hba             = hba;
1327         dev->se_sub_dev         = se_dev;
1328         dev->transport          = transport;
1329         INIT_LIST_HEAD(&dev->dev_list);
1330         INIT_LIST_HEAD(&dev->dev_sep_list);
1331         INIT_LIST_HEAD(&dev->dev_tmr_list);
1332         INIT_LIST_HEAD(&dev->execute_task_list);
1333         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1334         INIT_LIST_HEAD(&dev->state_task_list);
1335         INIT_LIST_HEAD(&dev->qf_cmd_list);
1336         spin_lock_init(&dev->execute_task_lock);
1337         spin_lock_init(&dev->delayed_cmd_lock);
1338         spin_lock_init(&dev->dev_reservation_lock);
1339         spin_lock_init(&dev->dev_status_lock);
1340         spin_lock_init(&dev->se_port_lock);
1341         spin_lock_init(&dev->se_tmr_lock);
1342         spin_lock_init(&dev->qf_cmd_lock);
1343
1344         dev->queue_depth        = dev_limits->queue_depth;
1345         atomic_set(&dev->depth_left, dev->queue_depth);
1346         atomic_set(&dev->dev_ordered_id, 0);
1347
1348         se_dev_set_default_attribs(dev, dev_limits);
1349
1350         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1351         dev->creation_time = get_jiffies_64();
1352         spin_lock_init(&dev->stats_lock);
1353
1354         spin_lock(&hba->device_lock);
1355         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1356         hba->dev_count++;
1357         spin_unlock(&hba->device_lock);
1358         /*
1359          * Setup the SAM Task Attribute emulation for struct se_device
1360          */
1361         core_setup_task_attr_emulation(dev);
1362         /*
1363          * Force PR and ALUA passthrough emulation with internal object use.
1364          */
1365         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1366         /*
1367          * Setup the Reservations infrastructure for struct se_device
1368          */
1369         core_setup_reservations(dev, force_pt);
1370         /*
1371          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1372          */
1373         if (core_setup_alua(dev, force_pt) < 0)
1374                 goto out;
1375
1376         /*
1377          * Startup the struct se_device processing thread
1378          */
1379         dev->process_thread = kthread_run(transport_processing_thread, dev,
1380                                           "LIO_%s", dev->transport->name);
1381         if (IS_ERR(dev->process_thread)) {
1382                 pr_err("Unable to create kthread: LIO_%s\n",
1383                         dev->transport->name);
1384                 goto out;
1385         }
1386         /*
1387          * Setup work_queue for QUEUE_FULL
1388          */
1389         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1390         /*
1391          * Preload the initial INQUIRY const values if we are doing
1392          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1393          * passthrough because this is being provided by the backend LLD.
1394          * This is required so that transport_get_inquiry() copies these
1395          * originals once back into DEV_T10_WWN(dev) for the virtual device
1396          * setup.
1397          */
1398         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1399                 if (!inquiry_prod || !inquiry_rev) {
1400                         pr_err("All non TCM/pSCSI plugins require"
1401                                 " INQUIRY consts\n");
1402                         goto out;
1403                 }
1404
1405                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1406                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1407                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1408         }
1409         scsi_dump_inquiry(dev);
1410
1411         return dev;
1412 out:
1413         kthread_stop(dev->process_thread);
1414
1415         spin_lock(&hba->device_lock);
1416         list_del(&dev->dev_list);
1417         hba->dev_count--;
1418         spin_unlock(&hba->device_lock);
1419
1420         se_release_vpd_for_dev(dev);
1421
1422         kfree(dev);
1423
1424         return NULL;
1425 }
1426 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1427
1428 /*      transport_generic_prepare_cdb():
1429  *
1430  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1431  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1432  *      The point of this is since we are mapping iSCSI LUNs to
1433  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1434  *      devices and HBAs for a loop.
1435  */
1436 static inline void transport_generic_prepare_cdb(
1437         unsigned char *cdb)
1438 {
1439         switch (cdb[0]) {
1440         case READ_10: /* SBC - RDProtect */
1441         case READ_12: /* SBC - RDProtect */
1442         case READ_16: /* SBC - RDProtect */
1443         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1444         case VERIFY: /* SBC - VRProtect */
1445         case VERIFY_16: /* SBC - VRProtect */
1446         case WRITE_VERIFY: /* SBC - VRProtect */
1447         case WRITE_VERIFY_12: /* SBC - VRProtect */
1448         case MAINTENANCE_IN: /* SPC - Parameter Data Format for SA RTPG */
1449                 break;
1450         default:
1451                 cdb[1] &= 0x1f; /* clear logical unit number */
1452                 break;
1453         }
1454 }
1455
1456 static struct se_task *
1457 transport_generic_get_task(struct se_cmd *cmd,
1458                 enum dma_data_direction data_direction)
1459 {
1460         struct se_task *task;
1461         struct se_device *dev = cmd->se_dev;
1462
1463         task = dev->transport->alloc_task(cmd->t_task_cdb);
1464         if (!task) {
1465                 pr_err("Unable to allocate struct se_task\n");
1466                 return NULL;
1467         }
1468
1469         INIT_LIST_HEAD(&task->t_list);
1470         INIT_LIST_HEAD(&task->t_execute_list);
1471         INIT_LIST_HEAD(&task->t_state_list);
1472         init_completion(&task->task_stop_comp);
1473         task->task_se_cmd = cmd;
1474         task->task_data_direction = data_direction;
1475
1476         return task;
1477 }
1478
1479 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1480
1481 /*
1482  * Used by fabric modules containing a local struct se_cmd within their
1483  * fabric dependent per I/O descriptor.
1484  */
1485 void transport_init_se_cmd(
1486         struct se_cmd *cmd,
1487         struct target_core_fabric_ops *tfo,
1488         struct se_session *se_sess,
1489         u32 data_length,
1490         int data_direction,
1491         int task_attr,
1492         unsigned char *sense_buffer)
1493 {
1494         INIT_LIST_HEAD(&cmd->se_lun_node);
1495         INIT_LIST_HEAD(&cmd->se_delayed_node);
1496         INIT_LIST_HEAD(&cmd->se_qf_node);
1497         INIT_LIST_HEAD(&cmd->se_queue_node);
1498         INIT_LIST_HEAD(&cmd->se_cmd_list);
1499         INIT_LIST_HEAD(&cmd->t_task_list);
1500         init_completion(&cmd->transport_lun_fe_stop_comp);
1501         init_completion(&cmd->transport_lun_stop_comp);
1502         init_completion(&cmd->t_transport_stop_comp);
1503         init_completion(&cmd->cmd_wait_comp);
1504         spin_lock_init(&cmd->t_state_lock);
1505         atomic_set(&cmd->transport_dev_active, 1);
1506
1507         cmd->se_tfo = tfo;
1508         cmd->se_sess = se_sess;
1509         cmd->data_length = data_length;
1510         cmd->data_direction = data_direction;
1511         cmd->sam_task_attr = task_attr;
1512         cmd->sense_buffer = sense_buffer;
1513 }
1514 EXPORT_SYMBOL(transport_init_se_cmd);
1515
1516 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1517 {
1518         /*
1519          * Check if SAM Task Attribute emulation is enabled for this
1520          * struct se_device storage object
1521          */
1522         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1523                 return 0;
1524
1525         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1526                 pr_debug("SAM Task Attribute ACA"
1527                         " emulation is not supported\n");
1528                 return -EINVAL;
1529         }
1530         /*
1531          * Used to determine when ORDERED commands should go from
1532          * Dormant to Active status.
1533          */
1534         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1535         smp_mb__after_atomic_inc();
1536         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1537                         cmd->se_ordered_id, cmd->sam_task_attr,
1538                         cmd->se_dev->transport->name);
1539         return 0;
1540 }
1541
1542 /*      transport_generic_allocate_tasks():
1543  *
1544  *      Called from fabric RX Thread.
1545  */
1546 int transport_generic_allocate_tasks(
1547         struct se_cmd *cmd,
1548         unsigned char *cdb)
1549 {
1550         int ret;
1551
1552         transport_generic_prepare_cdb(cdb);
1553         /*
1554          * Ensure that the received CDB is less than the max (252 + 8) bytes
1555          * for VARIABLE_LENGTH_CMD
1556          */
1557         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1558                 pr_err("Received SCSI CDB with command_size: %d that"
1559                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1560                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1561                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1562                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1563                 return -EINVAL;
1564         }
1565         /*
1566          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1567          * allocate the additional extended CDB buffer now..  Otherwise
1568          * setup the pointer from __t_task_cdb to t_task_cdb.
1569          */
1570         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1571                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1572                                                 GFP_KERNEL);
1573                 if (!cmd->t_task_cdb) {
1574                         pr_err("Unable to allocate cmd->t_task_cdb"
1575                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1576                                 scsi_command_size(cdb),
1577                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1578                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1579                         cmd->scsi_sense_reason =
1580                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1581                         return -ENOMEM;
1582                 }
1583         } else
1584                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1585         /*
1586          * Copy the original CDB into cmd->
1587          */
1588         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1589         /*
1590          * Setup the received CDB based on SCSI defined opcodes and
1591          * perform unit attention, persistent reservations and ALUA
1592          * checks for virtual device backends.  The cmd->t_task_cdb
1593          * pointer is expected to be setup before we reach this point.
1594          */
1595         ret = transport_generic_cmd_sequencer(cmd, cdb);
1596         if (ret < 0)
1597                 return ret;
1598         /*
1599          * Check for SAM Task Attribute Emulation
1600          */
1601         if (transport_check_alloc_task_attr(cmd) < 0) {
1602                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1603                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1604                 return -EINVAL;
1605         }
1606         spin_lock(&cmd->se_lun->lun_sep_lock);
1607         if (cmd->se_lun->lun_sep)
1608                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1609         spin_unlock(&cmd->se_lun->lun_sep_lock);
1610         return 0;
1611 }
1612 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1613
1614 /*
1615  * Used by fabric module frontends to queue tasks directly.
1616  * Many only be used from process context only
1617  */
1618 int transport_handle_cdb_direct(
1619         struct se_cmd *cmd)
1620 {
1621         int ret;
1622
1623         if (!cmd->se_lun) {
1624                 dump_stack();
1625                 pr_err("cmd->se_lun is NULL\n");
1626                 return -EINVAL;
1627         }
1628         if (in_interrupt()) {
1629                 dump_stack();
1630                 pr_err("transport_generic_handle_cdb cannot be called"
1631                                 " from interrupt context\n");
1632                 return -EINVAL;
1633         }
1634         /*
1635          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1636          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1637          * in existing usage to ensure that outstanding descriptors are handled
1638          * correctly during shutdown via transport_wait_for_tasks()
1639          *
1640          * Also, we don't take cmd->t_state_lock here as we only expect
1641          * this to be called for initial descriptor submission.
1642          */
1643         cmd->t_state = TRANSPORT_NEW_CMD;
1644         atomic_set(&cmd->t_transport_active, 1);
1645         /*
1646          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1647          * so follow TRANSPORT_NEW_CMD processing thread context usage
1648          * and call transport_generic_request_failure() if necessary..
1649          */
1650         ret = transport_generic_new_cmd(cmd);
1651         if (ret < 0)
1652                 transport_generic_request_failure(cmd);
1653
1654         return 0;
1655 }
1656 EXPORT_SYMBOL(transport_handle_cdb_direct);
1657
1658 /*
1659  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1660  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1661  * complete setup in TCM process context w/ TFO->new_cmd_map().
1662  */
1663 int transport_generic_handle_cdb_map(
1664         struct se_cmd *cmd)
1665 {
1666         if (!cmd->se_lun) {
1667                 dump_stack();
1668                 pr_err("cmd->se_lun is NULL\n");
1669                 return -EINVAL;
1670         }
1671
1672         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1673         return 0;
1674 }
1675 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1676
1677 /*      transport_generic_handle_data():
1678  *
1679  *
1680  */
1681 int transport_generic_handle_data(
1682         struct se_cmd *cmd)
1683 {
1684         /*
1685          * For the software fabric case, then we assume the nexus is being
1686          * failed/shutdown when signals are pending from the kthread context
1687          * caller, so we return a failure.  For the HW target mode case running
1688          * in interrupt code, the signal_pending() check is skipped.
1689          */
1690         if (!in_interrupt() && signal_pending(current))
1691                 return -EPERM;
1692         /*
1693          * If the received CDB has aleady been ABORTED by the generic
1694          * target engine, we now call transport_check_aborted_status()
1695          * to queue any delated TASK_ABORTED status for the received CDB to the
1696          * fabric module as we are expecting no further incoming DATA OUT
1697          * sequences at this point.
1698          */
1699         if (transport_check_aborted_status(cmd, 1) != 0)
1700                 return 0;
1701
1702         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1703         return 0;
1704 }
1705 EXPORT_SYMBOL(transport_generic_handle_data);
1706
1707 /*      transport_generic_handle_tmr():
1708  *
1709  *
1710  */
1711 int transport_generic_handle_tmr(
1712         struct se_cmd *cmd)
1713 {
1714         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1715         return 0;
1716 }
1717 EXPORT_SYMBOL(transport_generic_handle_tmr);
1718
1719 /*
1720  * If the task is active, request it to be stopped and sleep until it
1721  * has completed.
1722  */
1723 bool target_stop_task(struct se_task *task, unsigned long *flags)
1724 {
1725         struct se_cmd *cmd = task->task_se_cmd;
1726         bool was_active = false;
1727
1728         if (task->task_flags & TF_ACTIVE) {
1729                 task->task_flags |= TF_REQUEST_STOP;
1730                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1731
1732                 pr_debug("Task %p waiting to complete\n", task);
1733                 wait_for_completion(&task->task_stop_comp);
1734                 pr_debug("Task %p stopped successfully\n", task);
1735
1736                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1737                 atomic_dec(&cmd->t_task_cdbs_left);
1738                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1739                 was_active = true;
1740         }
1741
1742         return was_active;
1743 }
1744
1745 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1746 {
1747         struct se_task *task, *task_tmp;
1748         unsigned long flags;
1749         int ret = 0;
1750
1751         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1752                 cmd->se_tfo->get_task_tag(cmd));
1753
1754         /*
1755          * No tasks remain in the execution queue
1756          */
1757         spin_lock_irqsave(&cmd->t_state_lock, flags);
1758         list_for_each_entry_safe(task, task_tmp,
1759                                 &cmd->t_task_list, t_list) {
1760                 pr_debug("Processing task %p\n", task);
1761                 /*
1762                  * If the struct se_task has not been sent and is not active,
1763                  * remove the struct se_task from the execution queue.
1764                  */
1765                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1766                         spin_unlock_irqrestore(&cmd->t_state_lock,
1767                                         flags);
1768                         transport_remove_task_from_execute_queue(task,
1769                                         cmd->se_dev);
1770
1771                         pr_debug("Task %p removed from execute queue\n", task);
1772                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1773                         continue;
1774                 }
1775
1776                 if (!target_stop_task(task, &flags)) {
1777                         pr_debug("Task %p - did nothing\n", task);
1778                         ret++;
1779                 }
1780         }
1781         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1782
1783         return ret;
1784 }
1785
1786 /*
1787  * Handle SAM-esque emulation for generic transport request failures.
1788  */
1789 static void transport_generic_request_failure(struct se_cmd *cmd)
1790 {
1791         int ret = 0;
1792
1793         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1794                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1795                 cmd->t_task_cdb[0]);
1796         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1797                 cmd->se_tfo->get_cmd_state(cmd),
1798                 cmd->t_state, cmd->scsi_sense_reason);
1799         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1800                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1801                 " t_transport_active: %d t_transport_stop: %d"
1802                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1803                 atomic_read(&cmd->t_task_cdbs_left),
1804                 atomic_read(&cmd->t_task_cdbs_sent),
1805                 atomic_read(&cmd->t_task_cdbs_ex_left),
1806                 atomic_read(&cmd->t_transport_active),
1807                 atomic_read(&cmd->t_transport_stop),
1808                 atomic_read(&cmd->t_transport_sent));
1809
1810         /*
1811          * For SAM Task Attribute emulation for failed struct se_cmd
1812          */
1813         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1814                 transport_complete_task_attr(cmd);
1815
1816         switch (cmd->scsi_sense_reason) {
1817         case TCM_NON_EXISTENT_LUN:
1818         case TCM_UNSUPPORTED_SCSI_OPCODE:
1819         case TCM_INVALID_CDB_FIELD:
1820         case TCM_INVALID_PARAMETER_LIST:
1821         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1822         case TCM_UNKNOWN_MODE_PAGE:
1823         case TCM_WRITE_PROTECTED:
1824         case TCM_ADDRESS_OUT_OF_RANGE:
1825         case TCM_CHECK_CONDITION_ABORT_CMD:
1826         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1827         case TCM_CHECK_CONDITION_NOT_READY:
1828                 break;
1829         case TCM_RESERVATION_CONFLICT:
1830                 /*
1831                  * No SENSE Data payload for this case, set SCSI Status
1832                  * and queue the response to $FABRIC_MOD.
1833                  *
1834                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1835                  */
1836                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1837                 /*
1838                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1839                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1840                  * CONFLICT STATUS.
1841                  *
1842                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1843                  */
1844                 if (cmd->se_sess &&
1845                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1846                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1847                                 cmd->orig_fe_lun, 0x2C,
1848                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1849
1850                 ret = cmd->se_tfo->queue_status(cmd);
1851                 if (ret == -EAGAIN || ret == -ENOMEM)
1852                         goto queue_full;
1853                 goto check_stop;
1854         default:
1855                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1856                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1857                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1858                 break;
1859         }
1860         /*
1861          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1862          * make the call to transport_send_check_condition_and_sense()
1863          * directly.  Otherwise expect the fabric to make the call to
1864          * transport_send_check_condition_and_sense() after handling
1865          * possible unsoliticied write data payloads.
1866          */
1867         ret = transport_send_check_condition_and_sense(cmd,
1868                         cmd->scsi_sense_reason, 0);
1869         if (ret == -EAGAIN || ret == -ENOMEM)
1870                 goto queue_full;
1871
1872 check_stop:
1873         transport_lun_remove_cmd(cmd);
1874         if (!transport_cmd_check_stop_to_fabric(cmd))
1875                 ;
1876         return;
1877
1878 queue_full:
1879         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1880         transport_handle_queue_full(cmd, cmd->se_dev);
1881 }
1882
1883 static inline u32 transport_lba_21(unsigned char *cdb)
1884 {
1885         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1886 }
1887
1888 static inline u32 transport_lba_32(unsigned char *cdb)
1889 {
1890         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1891 }
1892
1893 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1894 {
1895         unsigned int __v1, __v2;
1896
1897         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1898         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1899
1900         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1901 }
1902
1903 /*
1904  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1905  */
1906 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1907 {
1908         unsigned int __v1, __v2;
1909
1910         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1911         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1912
1913         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1914 }
1915
1916 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1917 {
1918         unsigned long flags;
1919
1920         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1921         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1922         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1923 }
1924
1925 static inline int transport_tcq_window_closed(struct se_device *dev)
1926 {
1927         if (dev->dev_tcq_window_closed++ <
1928                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1929                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1930         } else
1931                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1932
1933         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1934         return 0;
1935 }
1936
1937 /*
1938  * Called from Fabric Module context from transport_execute_tasks()
1939  *
1940  * The return of this function determins if the tasks from struct se_cmd
1941  * get added to the execution queue in transport_execute_tasks(),
1942  * or are added to the delayed or ordered lists here.
1943  */
1944 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1945 {
1946         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1947                 return 1;
1948         /*
1949          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1950          * to allow the passed struct se_cmd list of tasks to the front of the list.
1951          */
1952          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1953                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1954                         " 0x%02x, se_ordered_id: %u\n",
1955                         cmd->t_task_cdb[0],
1956                         cmd->se_ordered_id);
1957                 return 1;
1958         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1959                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1960                 smp_mb__after_atomic_inc();
1961
1962                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1963                                 " list, se_ordered_id: %u\n",
1964                                 cmd->t_task_cdb[0],
1965                                 cmd->se_ordered_id);
1966                 /*
1967                  * Add ORDERED command to tail of execution queue if
1968                  * no other older commands exist that need to be
1969                  * completed first.
1970                  */
1971                 if (!atomic_read(&cmd->se_dev->simple_cmds))
1972                         return 1;
1973         } else {
1974                 /*
1975                  * For SIMPLE and UNTAGGED Task Attribute commands
1976                  */
1977                 atomic_inc(&cmd->se_dev->simple_cmds);
1978                 smp_mb__after_atomic_inc();
1979         }
1980         /*
1981          * Otherwise if one or more outstanding ORDERED task attribute exist,
1982          * add the dormant task(s) built for the passed struct se_cmd to the
1983          * execution queue and become in Active state for this struct se_device.
1984          */
1985         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1986                 /*
1987                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
1988                  * will be drained upon completion of HEAD_OF_QUEUE task.
1989                  */
1990                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
1991                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1992                 list_add_tail(&cmd->se_delayed_node,
1993                                 &cmd->se_dev->delayed_cmd_list);
1994                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1995
1996                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1997                         " delayed CMD list, se_ordered_id: %u\n",
1998                         cmd->t_task_cdb[0], cmd->sam_task_attr,
1999                         cmd->se_ordered_id);
2000                 /*
2001                  * Return zero to let transport_execute_tasks() know
2002                  * not to add the delayed tasks to the execution list.
2003                  */
2004                 return 0;
2005         }
2006         /*
2007          * Otherwise, no ORDERED task attributes exist..
2008          */
2009         return 1;
2010 }
2011
2012 /*
2013  * Called from fabric module context in transport_generic_new_cmd() and
2014  * transport_generic_process_write()
2015  */
2016 static int transport_execute_tasks(struct se_cmd *cmd)
2017 {
2018         int add_tasks;
2019
2020         if (se_dev_check_online(cmd->se_dev) != 0) {
2021                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2022                 transport_generic_request_failure(cmd);
2023                 return 0;
2024         }
2025
2026         /*
2027          * Call transport_cmd_check_stop() to see if a fabric exception
2028          * has occurred that prevents execution.
2029          */
2030         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2031                 /*
2032                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2033                  * attribute for the tasks of the received struct se_cmd CDB
2034                  */
2035                 add_tasks = transport_execute_task_attr(cmd);
2036                 if (!add_tasks)
2037                         goto execute_tasks;
2038                 /*
2039                  * This calls transport_add_tasks_from_cmd() to handle
2040                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2041                  * (if enabled) in __transport_add_task_to_execute_queue() and
2042                  * transport_add_task_check_sam_attr().
2043                  */
2044                 transport_add_tasks_from_cmd(cmd);
2045         }
2046         /*
2047          * Kick the execution queue for the cmd associated struct se_device
2048          * storage object.
2049          */
2050 execute_tasks:
2051         __transport_execute_tasks(cmd->se_dev);
2052         return 0;
2053 }
2054
2055 /*
2056  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2057  * from struct se_device->execute_task_list and
2058  *
2059  * Called from transport_processing_thread()
2060  */
2061 static int __transport_execute_tasks(struct se_device *dev)
2062 {
2063         int error;
2064         struct se_cmd *cmd = NULL;
2065         struct se_task *task = NULL;
2066         unsigned long flags;
2067
2068         /*
2069          * Check if there is enough room in the device and HBA queue to send
2070          * struct se_tasks to the selected transport.
2071          */
2072 check_depth:
2073         if (!atomic_read(&dev->depth_left))
2074                 return transport_tcq_window_closed(dev);
2075
2076         dev->dev_tcq_window_closed = 0;
2077
2078         spin_lock_irq(&dev->execute_task_lock);
2079         if (list_empty(&dev->execute_task_list)) {
2080                 spin_unlock_irq(&dev->execute_task_lock);
2081                 return 0;
2082         }
2083         task = list_first_entry(&dev->execute_task_list,
2084                                 struct se_task, t_execute_list);
2085         __transport_remove_task_from_execute_queue(task, dev);
2086         spin_unlock_irq(&dev->execute_task_lock);
2087
2088         atomic_dec(&dev->depth_left);
2089
2090         cmd = task->task_se_cmd;
2091
2092         spin_lock_irqsave(&cmd->t_state_lock, flags);
2093         task->task_flags |= (TF_ACTIVE | TF_SENT);
2094         atomic_inc(&cmd->t_task_cdbs_sent);
2095
2096         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2097             cmd->t_task_list_num)
2098                 atomic_set(&cmd->t_transport_sent, 1);
2099
2100         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2101
2102         if (cmd->execute_task)
2103                 error = cmd->execute_task(task);
2104         else
2105                 error = dev->transport->do_task(task);
2106         if (error != 0) {
2107                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2108                 task->task_flags &= ~TF_ACTIVE;
2109                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2110                 atomic_set(&cmd->t_transport_sent, 0);
2111                 transport_stop_tasks_for_cmd(cmd);
2112                 atomic_inc(&dev->depth_left);
2113                 transport_generic_request_failure(cmd);
2114         }
2115
2116         goto check_depth;
2117
2118         return 0;
2119 }
2120
2121 static inline u32 transport_get_sectors_6(
2122         unsigned char *cdb,
2123         struct se_cmd *cmd,
2124         int *ret)
2125 {
2126         struct se_device *dev = cmd->se_dev;
2127
2128         /*
2129          * Assume TYPE_DISK for non struct se_device objects.
2130          * Use 8-bit sector value.
2131          */
2132         if (!dev)
2133                 goto type_disk;
2134
2135         /*
2136          * Use 24-bit allocation length for TYPE_TAPE.
2137          */
2138         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2139                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2140
2141         /*
2142          * Everything else assume TYPE_DISK Sector CDB location.
2143          * Use 8-bit sector value.  SBC-3 says:
2144          *
2145          *   A TRANSFER LENGTH field set to zero specifies that 256
2146          *   logical blocks shall be written.  Any other value
2147          *   specifies the number of logical blocks that shall be
2148          *   written.
2149          */
2150 type_disk:
2151         return cdb[4] ? : 256;
2152 }
2153
2154 static inline u32 transport_get_sectors_10(
2155         unsigned char *cdb,
2156         struct se_cmd *cmd,
2157         int *ret)
2158 {
2159         struct se_device *dev = cmd->se_dev;
2160
2161         /*
2162          * Assume TYPE_DISK for non struct se_device objects.
2163          * Use 16-bit sector value.
2164          */
2165         if (!dev)
2166                 goto type_disk;
2167
2168         /*
2169          * XXX_10 is not defined in SSC, throw an exception
2170          */
2171         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2172                 *ret = -EINVAL;
2173                 return 0;
2174         }
2175
2176         /*
2177          * Everything else assume TYPE_DISK Sector CDB location.
2178          * Use 16-bit sector value.
2179          */
2180 type_disk:
2181         return (u32)(cdb[7] << 8) + cdb[8];
2182 }
2183
2184 static inline u32 transport_get_sectors_12(
2185         unsigned char *cdb,
2186         struct se_cmd *cmd,
2187         int *ret)
2188 {
2189         struct se_device *dev = cmd->se_dev;
2190
2191         /*
2192          * Assume TYPE_DISK for non struct se_device objects.
2193          * Use 32-bit sector value.
2194          */
2195         if (!dev)
2196                 goto type_disk;
2197
2198         /*
2199          * XXX_12 is not defined in SSC, throw an exception
2200          */
2201         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2202                 *ret = -EINVAL;
2203                 return 0;
2204         }
2205
2206         /*
2207          * Everything else assume TYPE_DISK Sector CDB location.
2208          * Use 32-bit sector value.
2209          */
2210 type_disk:
2211         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2212 }
2213
2214 static inline u32 transport_get_sectors_16(
2215         unsigned char *cdb,
2216         struct se_cmd *cmd,
2217         int *ret)
2218 {
2219         struct se_device *dev = cmd->se_dev;
2220
2221         /*
2222          * Assume TYPE_DISK for non struct se_device objects.
2223          * Use 32-bit sector value.
2224          */
2225         if (!dev)
2226                 goto type_disk;
2227
2228         /*
2229          * Use 24-bit allocation length for TYPE_TAPE.
2230          */
2231         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2232                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2233
2234 type_disk:
2235         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2236                     (cdb[12] << 8) + cdb[13];
2237 }
2238
2239 /*
2240  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2241  */
2242 static inline u32 transport_get_sectors_32(
2243         unsigned char *cdb,
2244         struct se_cmd *cmd,
2245         int *ret)
2246 {
2247         /*
2248          * Assume TYPE_DISK for non struct se_device objects.
2249          * Use 32-bit sector value.
2250          */
2251         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2252                     (cdb[30] << 8) + cdb[31];
2253
2254 }
2255
2256 static inline u32 transport_get_size(
2257         u32 sectors,
2258         unsigned char *cdb,
2259         struct se_cmd *cmd)
2260 {
2261         struct se_device *dev = cmd->se_dev;
2262
2263         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2264                 if (cdb[1] & 1) { /* sectors */
2265                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2266                 } else /* bytes */
2267                         return sectors;
2268         }
2269 #if 0
2270         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2271                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2272                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2273                         dev->transport->name);
2274 #endif
2275         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2276 }
2277
2278 static void transport_xor_callback(struct se_cmd *cmd)
2279 {
2280         unsigned char *buf, *addr;
2281         struct scatterlist *sg;
2282         unsigned int offset;
2283         int i;
2284         int count;
2285         /*
2286          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2287          *
2288          * 1) read the specified logical block(s);
2289          * 2) transfer logical blocks from the data-out buffer;
2290          * 3) XOR the logical blocks transferred from the data-out buffer with
2291          *    the logical blocks read, storing the resulting XOR data in a buffer;
2292          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2293          *    blocks transferred from the data-out buffer; and
2294          * 5) transfer the resulting XOR data to the data-in buffer.
2295          */
2296         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2297         if (!buf) {
2298                 pr_err("Unable to allocate xor_callback buf\n");
2299                 return;
2300         }
2301         /*
2302          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2303          * into the locally allocated *buf
2304          */
2305         sg_copy_to_buffer(cmd->t_data_sg,
2306                           cmd->t_data_nents,
2307                           buf,
2308                           cmd->data_length);
2309
2310         /*
2311          * Now perform the XOR against the BIDI read memory located at
2312          * cmd->t_mem_bidi_list
2313          */
2314
2315         offset = 0;
2316         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2317                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2318                 if (!addr)
2319                         goto out;
2320
2321                 for (i = 0; i < sg->length; i++)
2322                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2323
2324                 offset += sg->length;
2325                 kunmap_atomic(addr, KM_USER0);
2326         }
2327
2328 out:
2329         kfree(buf);
2330 }
2331
2332 /*
2333  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2334  */
2335 static int transport_get_sense_data(struct se_cmd *cmd)
2336 {
2337         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2338         struct se_device *dev = cmd->se_dev;
2339         struct se_task *task = NULL, *task_tmp;
2340         unsigned long flags;
2341         u32 offset = 0;
2342
2343         WARN_ON(!cmd->se_lun);
2344
2345         if (!dev)
2346                 return 0;
2347
2348         spin_lock_irqsave(&cmd->t_state_lock, flags);
2349         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2350                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2351                 return 0;
2352         }
2353
2354         list_for_each_entry_safe(task, task_tmp,
2355                                 &cmd->t_task_list, t_list) {
2356                 if (!task->task_sense)
2357                         continue;
2358
2359                 if (!dev->transport->get_sense_buffer) {
2360                         pr_err("dev->transport->get_sense_buffer"
2361                                         " is NULL\n");
2362                         continue;
2363                 }
2364
2365                 sense_buffer = dev->transport->get_sense_buffer(task);
2366                 if (!sense_buffer) {
2367                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2368                                 " sense buffer for task with sense\n",
2369                                 cmd->se_tfo->get_task_tag(cmd), task);
2370                         continue;
2371                 }
2372                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2373
2374                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2375                                 TRANSPORT_SENSE_BUFFER);
2376
2377                 memcpy(&buffer[offset], sense_buffer,
2378                                 TRANSPORT_SENSE_BUFFER);
2379                 cmd->scsi_status = task->task_scsi_status;
2380                 /* Automatically padded */
2381                 cmd->scsi_sense_length =
2382                                 (TRANSPORT_SENSE_BUFFER + offset);
2383
2384                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2385                                 " and sense\n",
2386                         dev->se_hba->hba_id, dev->transport->name,
2387                                 cmd->scsi_status);
2388                 return 0;
2389         }
2390         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2391
2392         return -1;
2393 }
2394
2395 static inline long long transport_dev_end_lba(struct se_device *dev)
2396 {
2397         return dev->transport->get_blocks(dev) + 1;
2398 }
2399
2400 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2401 {
2402         struct se_device *dev = cmd->se_dev;
2403         u32 sectors;
2404
2405         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2406                 return 0;
2407
2408         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2409
2410         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2411                 pr_err("LBA: %llu Sectors: %u exceeds"
2412                         " transport_dev_end_lba(): %llu\n",
2413                         cmd->t_task_lba, sectors,
2414                         transport_dev_end_lba(dev));
2415                 return -EINVAL;
2416         }
2417
2418         return 0;
2419 }
2420
2421 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2422 {
2423         /*
2424          * Determine if the received WRITE_SAME is used to for direct
2425          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2426          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2427          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2428          */
2429         int passthrough = (dev->transport->transport_type ==
2430                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2431
2432         if (!passthrough) {
2433                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2434                         pr_err("WRITE_SAME PBDATA and LBDATA"
2435                                 " bits not supported for Block Discard"
2436                                 " Emulation\n");
2437                         return -ENOSYS;
2438                 }
2439                 /*
2440                  * Currently for the emulated case we only accept
2441                  * tpws with the UNMAP=1 bit set.
2442                  */
2443                 if (!(flags[0] & 0x08)) {
2444                         pr_err("WRITE_SAME w/o UNMAP bit not"
2445                                 " supported for Block Discard Emulation\n");
2446                         return -ENOSYS;
2447                 }
2448         }
2449
2450         return 0;
2451 }
2452
2453 /*      transport_generic_cmd_sequencer():
2454  *
2455  *      Generic Command Sequencer that should work for most DAS transport
2456  *      drivers.
2457  *
2458  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2459  *      RX Thread.
2460  *
2461  *      FIXME: Need to support other SCSI OPCODES where as well.
2462  */
2463 static int transport_generic_cmd_sequencer(
2464         struct se_cmd *cmd,
2465         unsigned char *cdb)
2466 {
2467         struct se_device *dev = cmd->se_dev;
2468         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2469         int ret = 0, sector_ret = 0, passthrough;
2470         u32 sectors = 0, size = 0, pr_reg_type = 0;
2471         u16 service_action;
2472         u8 alua_ascq = 0;
2473         /*
2474          * Check for an existing UNIT ATTENTION condition
2475          */
2476         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2477                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2478                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2479                 return -EINVAL;
2480         }
2481         /*
2482          * Check status of Asymmetric Logical Unit Assignment port
2483          */
2484         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2485         if (ret != 0) {
2486                 /*
2487                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2488                  * The ALUA additional sense code qualifier (ASCQ) is determined
2489                  * by the ALUA primary or secondary access state..
2490                  */
2491                 if (ret > 0) {
2492 #if 0
2493                         pr_debug("[%s]: ALUA TG Port not available,"
2494                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2495                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2496 #endif
2497                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2498                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2499                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2500                         return -EINVAL;
2501                 }
2502                 goto out_invalid_cdb_field;
2503         }
2504         /*
2505          * Check status for SPC-3 Persistent Reservations
2506          */
2507         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2508                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2509                                         cmd, cdb, pr_reg_type) != 0) {
2510                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2511                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2512                         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2513                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2514                         return -EBUSY;
2515                 }
2516                 /*
2517                  * This means the CDB is allowed for the SCSI Initiator port
2518                  * when said port is *NOT* holding the legacy SPC-2 or
2519                  * SPC-3 Persistent Reservation.
2520                  */
2521         }
2522
2523         /*
2524          * If we operate in passthrough mode we skip most CDB emulation and
2525          * instead hand the commands down to the physical SCSI device.
2526          */
2527         passthrough =
2528                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2529
2530         switch (cdb[0]) {
2531         case READ_6:
2532                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2533                 if (sector_ret)
2534                         goto out_unsupported_cdb;
2535                 size = transport_get_size(sectors, cdb, cmd);
2536                 cmd->t_task_lba = transport_lba_21(cdb);
2537                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2538                 break;
2539         case READ_10:
2540                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2541                 if (sector_ret)
2542                         goto out_unsupported_cdb;
2543                 size = transport_get_size(sectors, cdb, cmd);
2544                 cmd->t_task_lba = transport_lba_32(cdb);
2545                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2546                 break;
2547         case READ_12:
2548                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2549                 if (sector_ret)
2550                         goto out_unsupported_cdb;
2551                 size = transport_get_size(sectors, cdb, cmd);
2552                 cmd->t_task_lba = transport_lba_32(cdb);
2553                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2554                 break;
2555         case READ_16:
2556                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2557                 if (sector_ret)
2558                         goto out_unsupported_cdb;
2559                 size = transport_get_size(sectors, cdb, cmd);
2560                 cmd->t_task_lba = transport_lba_64(cdb);
2561                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2562                 break;
2563         case WRITE_6:
2564                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2565                 if (sector_ret)
2566                         goto out_unsupported_cdb;
2567                 size = transport_get_size(sectors, cdb, cmd);
2568                 cmd->t_task_lba = transport_lba_21(cdb);
2569                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2570                 break;
2571         case WRITE_10:
2572                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2573                 if (sector_ret)
2574                         goto out_unsupported_cdb;
2575                 size = transport_get_size(sectors, cdb, cmd);
2576                 cmd->t_task_lba = transport_lba_32(cdb);
2577                 if (cdb[1] & 0x8)
2578                         cmd->se_cmd_flags |= SCF_FUA;
2579                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2580                 break;
2581         case WRITE_12:
2582                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2583                 if (sector_ret)
2584                         goto out_unsupported_cdb;
2585                 size = transport_get_size(sectors, cdb, cmd);
2586                 cmd->t_task_lba = transport_lba_32(cdb);
2587                 if (cdb[1] & 0x8)
2588                         cmd->se_cmd_flags |= SCF_FUA;
2589                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2590                 break;
2591         case WRITE_16:
2592                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2593                 if (sector_ret)
2594                         goto out_unsupported_cdb;
2595                 size = transport_get_size(sectors, cdb, cmd);
2596                 cmd->t_task_lba = transport_lba_64(cdb);
2597                 if (cdb[1] & 0x8)
2598                         cmd->se_cmd_flags |= SCF_FUA;
2599                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2600                 break;
2601         case XDWRITEREAD_10:
2602                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2603                     !(cmd->se_cmd_flags & SCF_BIDI))
2604                         goto out_invalid_cdb_field;
2605                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2606                 if (sector_ret)
2607                         goto out_unsupported_cdb;
2608                 size = transport_get_size(sectors, cdb, cmd);
2609                 cmd->t_task_lba = transport_lba_32(cdb);
2610                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2611
2612                 /*
2613                  * Do now allow BIDI commands for passthrough mode.
2614                  */
2615                 if (passthrough)
2616                         goto out_unsupported_cdb;
2617
2618                 /*
2619                  * Setup BIDI XOR callback to be run after I/O completion.
2620                  */
2621                 cmd->transport_complete_callback = &transport_xor_callback;
2622                 if (cdb[1] & 0x8)
2623                         cmd->se_cmd_flags |= SCF_FUA;
2624                 break;
2625         case VARIABLE_LENGTH_CMD:
2626                 service_action = get_unaligned_be16(&cdb[8]);
2627                 switch (service_action) {
2628                 case XDWRITEREAD_32:
2629                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2630                         if (sector_ret)
2631                                 goto out_unsupported_cdb;
2632                         size = transport_get_size(sectors, cdb, cmd);
2633                         /*
2634                          * Use WRITE_32 and READ_32 opcodes for the emulated
2635                          * XDWRITE_READ_32 logic.
2636                          */
2637                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2638                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2639
2640                         /*
2641                          * Do now allow BIDI commands for passthrough mode.
2642                          */
2643                         if (passthrough)
2644                                 goto out_unsupported_cdb;
2645
2646                         /*
2647                          * Setup BIDI XOR callback to be run during after I/O
2648                          * completion.
2649                          */
2650                         cmd->transport_complete_callback = &transport_xor_callback;
2651                         if (cdb[1] & 0x8)
2652                                 cmd->se_cmd_flags |= SCF_FUA;
2653                         break;
2654                 case WRITE_SAME_32:
2655                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2656                         if (sector_ret)
2657                                 goto out_unsupported_cdb;
2658
2659                         if (sectors)
2660                                 size = transport_get_size(1, cdb, cmd);
2661                         else {
2662                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2663                                        " supported\n");
2664                                 goto out_invalid_cdb_field;
2665                         }
2666
2667                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2668                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2669
2670                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2671                                 goto out_unsupported_cdb;
2672                         if (!passthrough)
2673                                 cmd->execute_task = target_emulate_write_same;
2674                         break;
2675                 default:
2676                         pr_err("VARIABLE_LENGTH_CMD service action"
2677                                 " 0x%04x not supported\n", service_action);
2678                         goto out_unsupported_cdb;
2679                 }
2680                 break;
2681         case MAINTENANCE_IN:
2682                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2683                         /* MAINTENANCE_IN from SCC-2 */
2684                         /*
2685                          * Check for emulated MI_REPORT_TARGET_PGS.
2686                          */
2687                         if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS &&
2688                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2689                                 cmd->execute_task =
2690                                         target_emulate_report_target_port_groups;
2691                         }
2692                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2693                                (cdb[8] << 8) | cdb[9];
2694                 } else {
2695                         /* GPCMD_SEND_KEY from multi media commands */
2696                         size = (cdb[8] << 8) + cdb[9];
2697                 }
2698                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2699                 break;
2700         case MODE_SELECT:
2701                 size = cdb[4];
2702                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2703                 break;
2704         case MODE_SELECT_10:
2705                 size = (cdb[7] << 8) + cdb[8];
2706                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2707                 break;
2708         case MODE_SENSE:
2709                 size = cdb[4];
2710                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2711                 if (!passthrough)
2712                         cmd->execute_task = target_emulate_modesense;
2713                 break;
2714         case MODE_SENSE_10:
2715                 size = (cdb[7] << 8) + cdb[8];
2716                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2717                 if (!passthrough)
2718                         cmd->execute_task = target_emulate_modesense;
2719                 break;
2720         case GPCMD_READ_BUFFER_CAPACITY:
2721         case GPCMD_SEND_OPC:
2722         case LOG_SELECT:
2723         case LOG_SENSE:
2724                 size = (cdb[7] << 8) + cdb[8];
2725                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2726                 break;
2727         case READ_BLOCK_LIMITS:
2728                 size = READ_BLOCK_LEN;
2729                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2730                 break;
2731         case GPCMD_GET_CONFIGURATION:
2732         case GPCMD_READ_FORMAT_CAPACITIES:
2733         case GPCMD_READ_DISC_INFO:
2734         case GPCMD_READ_TRACK_RZONE_INFO:
2735                 size = (cdb[7] << 8) + cdb[8];
2736                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2737                 break;
2738         case PERSISTENT_RESERVE_IN:
2739                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2740                         cmd->execute_task = target_scsi3_emulate_pr_in;
2741                 size = (cdb[7] << 8) + cdb[8];
2742                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2743                 break;
2744         case PERSISTENT_RESERVE_OUT:
2745                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2746                         cmd->execute_task = target_scsi3_emulate_pr_out;
2747                 size = (cdb[7] << 8) + cdb[8];
2748                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2749                 break;
2750         case GPCMD_MECHANISM_STATUS:
2751         case GPCMD_READ_DVD_STRUCTURE:
2752                 size = (cdb[8] << 8) + cdb[9];
2753                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2754                 break;
2755         case READ_POSITION:
2756                 size = READ_POSITION_LEN;
2757                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2758                 break;
2759         case MAINTENANCE_OUT:
2760                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2761                         /* MAINTENANCE_OUT from SCC-2
2762                          *
2763                          * Check for emulated MO_SET_TARGET_PGS.
2764                          */
2765                         if (cdb[1] == MO_SET_TARGET_PGS &&
2766                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2767                                 cmd->execute_task =
2768                                         target_emulate_set_target_port_groups;
2769                         }
2770
2771                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2772                                (cdb[8] << 8) | cdb[9];
2773                 } else  {
2774                         /* GPCMD_REPORT_KEY from multi media commands */
2775                         size = (cdb[8] << 8) + cdb[9];
2776                 }
2777                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2778                 break;
2779         case INQUIRY:
2780                 size = (cdb[3] << 8) + cdb[4];
2781                 /*
2782                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2783                  * See spc4r17 section 5.3
2784                  */
2785                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2786                         cmd->sam_task_attr = MSG_HEAD_TAG;
2787                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2788                 if (!passthrough)
2789                         cmd->execute_task = target_emulate_inquiry;
2790                 break;
2791         case READ_BUFFER:
2792                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2793                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2794                 break;
2795         case READ_CAPACITY:
2796                 size = READ_CAP_LEN;
2797                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2798                 if (!passthrough)
2799                         cmd->execute_task = target_emulate_readcapacity;
2800                 break;
2801         case READ_MEDIA_SERIAL_NUMBER:
2802         case SECURITY_PROTOCOL_IN:
2803         case SECURITY_PROTOCOL_OUT:
2804                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2805                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2806                 break;
2807         case SERVICE_ACTION_IN:
2808                 switch (cmd->t_task_cdb[1] & 0x1f) {
2809                 case SAI_READ_CAPACITY_16:
2810                         if (!passthrough)
2811                                 cmd->execute_task =
2812                                         target_emulate_readcapacity_16;
2813                         break;
2814                 default:
2815                         if (passthrough)
2816                                 break;
2817
2818                         pr_err("Unsupported SA: 0x%02x\n",
2819                                 cmd->t_task_cdb[1] & 0x1f);
2820                         goto out_unsupported_cdb;
2821                 }
2822                 /*FALLTHROUGH*/
2823         case ACCESS_CONTROL_IN:
2824         case ACCESS_CONTROL_OUT:
2825         case EXTENDED_COPY:
2826         case READ_ATTRIBUTE:
2827         case RECEIVE_COPY_RESULTS:
2828         case WRITE_ATTRIBUTE:
2829                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2830                        (cdb[12] << 8) | cdb[13];
2831                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2832                 break;
2833         case RECEIVE_DIAGNOSTIC:
2834         case SEND_DIAGNOSTIC:
2835                 size = (cdb[3] << 8) | cdb[4];
2836                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2837                 break;
2838 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2839 #if 0
2840         case GPCMD_READ_CD:
2841                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2842                 size = (2336 * sectors);
2843                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2844                 break;
2845 #endif
2846         case READ_TOC:
2847                 size = cdb[8];
2848                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2849                 break;
2850         case REQUEST_SENSE:
2851                 size = cdb[4];
2852                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2853                 if (!passthrough)
2854                         cmd->execute_task = target_emulate_request_sense;
2855                 break;
2856         case READ_ELEMENT_STATUS:
2857                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2858                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2859                 break;
2860         case WRITE_BUFFER:
2861                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2862                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2863                 break;
2864         case RESERVE:
2865         case RESERVE_10:
2866                 /*
2867                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2868                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2869                  */
2870                 if (cdb[0] == RESERVE_10)
2871                         size = (cdb[7] << 8) | cdb[8];
2872                 else
2873                         size = cmd->data_length;
2874
2875                 /*
2876                  * Setup the legacy emulated handler for SPC-2 and
2877                  * >= SPC-3 compatible reservation handling (CRH=1)
2878                  * Otherwise, we assume the underlying SCSI logic is
2879                  * is running in SPC_PASSTHROUGH, and wants reservations
2880                  * emulation disabled.
2881                  */
2882                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2883                         cmd->execute_task = target_scsi2_reservation_reserve;
2884                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2885                 break;
2886         case RELEASE:
2887         case RELEASE_10:
2888                 /*
2889                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2890                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2891                 */
2892                 if (cdb[0] == RELEASE_10)
2893                         size = (cdb[7] << 8) | cdb[8];
2894                 else
2895                         size = cmd->data_length;
2896
2897                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2898                         cmd->execute_task = target_scsi2_reservation_release;
2899                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2900                 break;
2901         case SYNCHRONIZE_CACHE:
2902         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2903                 /*
2904                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2905                  */
2906                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2907                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2908                         cmd->t_task_lba = transport_lba_32(cdb);
2909                 } else {
2910                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2911                         cmd->t_task_lba = transport_lba_64(cdb);
2912                 }
2913                 if (sector_ret)
2914                         goto out_unsupported_cdb;
2915
2916                 size = transport_get_size(sectors, cdb, cmd);
2917                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2918
2919                 if (passthrough)
2920                         break;
2921
2922                 /*
2923                  * Check to ensure that LBA + Range does not exceed past end of
2924                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2925                  */
2926                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2927                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2928                                 goto out_invalid_cdb_field;
2929                 }
2930                 cmd->execute_task = target_emulate_synchronize_cache;
2931                 break;
2932         case UNMAP:
2933                 size = get_unaligned_be16(&cdb[7]);
2934                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2935                 if (!passthrough)
2936                         cmd->execute_task = target_emulate_unmap;
2937                 break;
2938         case WRITE_SAME_16:
2939                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2940                 if (sector_ret)
2941                         goto out_unsupported_cdb;
2942
2943                 if (sectors)
2944                         size = transport_get_size(1, cdb, cmd);
2945                 else {
2946                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2947                         goto out_invalid_cdb_field;
2948                 }
2949
2950                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2951                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2952
2953                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2954                         goto out_unsupported_cdb;
2955                 if (!passthrough)
2956                         cmd->execute_task = target_emulate_write_same;
2957                 break;
2958         case WRITE_SAME:
2959                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2960                 if (sector_ret)
2961                         goto out_unsupported_cdb;
2962
2963                 if (sectors)
2964                         size = transport_get_size(1, cdb, cmd);
2965                 else {
2966                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2967                         goto out_invalid_cdb_field;
2968                 }
2969
2970                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2971                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2972                 /*
2973                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2974                  * of byte 1 bit 3 UNMAP instead of original reserved field
2975                  */
2976                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2977                         goto out_unsupported_cdb;
2978                 if (!passthrough)
2979                         cmd->execute_task = target_emulate_write_same;
2980                 break;
2981         case ALLOW_MEDIUM_REMOVAL:
2982         case ERASE:
2983         case REZERO_UNIT:
2984         case SEEK_10:
2985         case SPACE:
2986         case START_STOP:
2987         case TEST_UNIT_READY:
2988         case VERIFY:
2989         case WRITE_FILEMARKS:
2990                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2991                 if (!passthrough)
2992                         cmd->execute_task = target_emulate_noop;
2993                 break;
2994         case GPCMD_CLOSE_TRACK:
2995         case INITIALIZE_ELEMENT_STATUS:
2996         case GPCMD_LOAD_UNLOAD:
2997         case GPCMD_SET_SPEED:
2998         case MOVE_MEDIUM:
2999                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3000                 break;
3001         case REPORT_LUNS:
3002                 cmd->execute_task = target_report_luns;
3003                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3004                 /*
3005                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3006                  * See spc4r17 section 5.3
3007                  */
3008                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3009                         cmd->sam_task_attr = MSG_HEAD_TAG;
3010                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3011                 break;
3012         default:
3013                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3014                         " 0x%02x, sending CHECK_CONDITION.\n",
3015                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3016                 goto out_unsupported_cdb;
3017         }
3018
3019         if (size != cmd->data_length) {
3020                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3021                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3022                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3023                                 cmd->data_length, size, cdb[0]);
3024
3025                 cmd->cmd_spdtl = size;
3026
3027                 if (cmd->data_direction == DMA_TO_DEVICE) {
3028                         pr_err("Rejecting underflow/overflow"
3029                                         " WRITE data\n");
3030                         goto out_invalid_cdb_field;
3031                 }
3032                 /*
3033                  * Reject READ_* or WRITE_* with overflow/underflow for
3034                  * type SCF_SCSI_DATA_SG_IO_CDB.
3035                  */
3036                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3037                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3038                                 " CDB on non 512-byte sector setup subsystem"
3039                                 " plugin: %s\n", dev->transport->name);
3040                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3041                         goto out_invalid_cdb_field;
3042                 }
3043                 /*
3044                  * For the overflow case keep the existing fabric provided
3045                  * ->data_length.  Otherwise for the underflow case, reset
3046                  * ->data_length to the smaller SCSI expected data transfer
3047                  * length.
3048                  */
3049                 if (size > cmd->data_length) {
3050                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3051                         cmd->residual_count = (size - cmd->data_length);
3052                 } else {
3053                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3054                         cmd->residual_count = (cmd->data_length - size);
3055                         cmd->data_length = size;
3056                 }
3057         }
3058
3059         /* reject any command that we don't have a handler for */
3060         if (!(passthrough || cmd->execute_task ||
3061              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3062                 goto out_unsupported_cdb;
3063
3064         transport_set_supported_SAM_opcode(cmd);
3065         return ret;
3066
3067 out_unsupported_cdb:
3068         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3069         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3070         return -EINVAL;
3071 out_invalid_cdb_field:
3072         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3073         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3074         return -EINVAL;
3075 }
3076
3077 /*
3078  * Called from I/O completion to determine which dormant/delayed
3079  * and ordered cmds need to have their tasks added to the execution queue.
3080  */
3081 static void transport_complete_task_attr(struct se_cmd *cmd)
3082 {
3083         struct se_device *dev = cmd->se_dev;
3084         struct se_cmd *cmd_p, *cmd_tmp;
3085         int new_active_tasks = 0;
3086
3087         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3088                 atomic_dec(&dev->simple_cmds);
3089                 smp_mb__after_atomic_dec();
3090                 dev->dev_cur_ordered_id++;
3091                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3092                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3093                         cmd->se_ordered_id);
3094         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3095                 dev->dev_cur_ordered_id++;
3096                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3097                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3098                         cmd->se_ordered_id);
3099         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3100                 atomic_dec(&dev->dev_ordered_sync);
3101                 smp_mb__after_atomic_dec();
3102
3103                 dev->dev_cur_ordered_id++;
3104                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3105                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3106         }
3107         /*
3108          * Process all commands up to the last received
3109          * ORDERED task attribute which requires another blocking
3110          * boundary
3111          */
3112         spin_lock(&dev->delayed_cmd_lock);
3113         list_for_each_entry_safe(cmd_p, cmd_tmp,
3114                         &dev->delayed_cmd_list, se_delayed_node) {
3115
3116                 list_del(&cmd_p->se_delayed_node);
3117                 spin_unlock(&dev->delayed_cmd_lock);
3118
3119                 pr_debug("Calling add_tasks() for"
3120                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3121                         " Dormant -> Active, se_ordered_id: %u\n",
3122                         cmd_p->t_task_cdb[0],
3123                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3124
3125                 transport_add_tasks_from_cmd(cmd_p);
3126                 new_active_tasks++;
3127
3128                 spin_lock(&dev->delayed_cmd_lock);
3129                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3130                         break;
3131         }
3132         spin_unlock(&dev->delayed_cmd_lock);
3133         /*
3134          * If new tasks have become active, wake up the transport thread
3135          * to do the processing of the Active tasks.
3136          */
3137         if (new_active_tasks != 0)
3138                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3139 }
3140
3141 static void transport_complete_qf(struct se_cmd *cmd)
3142 {
3143         int ret = 0;
3144
3145         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3146                 transport_complete_task_attr(cmd);
3147
3148         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3149                 ret = cmd->se_tfo->queue_status(cmd);
3150                 goto out;
3151         }
3152
3153         switch (cmd->data_direction) {
3154         case DMA_FROM_DEVICE:
3155                 ret = cmd->se_tfo->queue_data_in(cmd);
3156                 break;
3157         case DMA_TO_DEVICE:
3158                 if (cmd->t_bidi_data_sg) {
3159                         ret = cmd->se_tfo->queue_data_in(cmd);
3160                         if (ret < 0)
3161                                 break;
3162                 }
3163                 /* Fall through for DMA_TO_DEVICE */
3164         case DMA_NONE:
3165                 ret = cmd->se_tfo->queue_status(cmd);
3166                 break;
3167         default:
3168                 break;
3169         }
3170
3171 out:
3172         if (ret < 0) {
3173                 transport_handle_queue_full(cmd, cmd->se_dev);
3174                 return;
3175         }
3176         transport_lun_remove_cmd(cmd);
3177         transport_cmd_check_stop_to_fabric(cmd);
3178 }
3179
3180 static void transport_handle_queue_full(
3181         struct se_cmd *cmd,
3182         struct se_device *dev)
3183 {
3184         spin_lock_irq(&dev->qf_cmd_lock);
3185         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3186         atomic_inc(&dev->dev_qf_count);
3187         smp_mb__after_atomic_inc();
3188         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3189
3190         schedule_work(&cmd->se_dev->qf_work_queue);
3191 }
3192
3193 static void target_complete_ok_work(struct work_struct *work)
3194 {
3195         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3196         int reason = 0, ret;
3197
3198         /*
3199          * Check if we need to move delayed/dormant tasks from cmds on the
3200          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3201          * Attribute.
3202          */
3203         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3204                 transport_complete_task_attr(cmd);
3205         /*
3206          * Check to schedule QUEUE_FULL work, or execute an existing
3207          * cmd->transport_qf_callback()
3208          */
3209         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3210                 schedule_work(&cmd->se_dev->qf_work_queue);
3211
3212         /*
3213          * Check if we need to retrieve a sense buffer from
3214          * the struct se_cmd in question.
3215          */
3216         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3217                 if (transport_get_sense_data(cmd) < 0)
3218                         reason = TCM_NON_EXISTENT_LUN;
3219
3220                 /*
3221                  * Only set when an struct se_task->task_scsi_status returned
3222                  * a non GOOD status.
3223                  */
3224                 if (cmd->scsi_status) {
3225                         ret = transport_send_check_condition_and_sense(
3226                                         cmd, reason, 1);
3227                         if (ret == -EAGAIN || ret == -ENOMEM)
3228                                 goto queue_full;
3229
3230                         transport_lun_remove_cmd(cmd);
3231                         transport_cmd_check_stop_to_fabric(cmd);
3232                         return;
3233                 }
3234         }
3235         /*
3236          * Check for a callback, used by amongst other things
3237          * XDWRITE_READ_10 emulation.
3238          */
3239         if (cmd->transport_complete_callback)
3240                 cmd->transport_complete_callback(cmd);
3241
3242         switch (cmd->data_direction) {
3243         case DMA_FROM_DEVICE:
3244                 spin_lock(&cmd->se_lun->lun_sep_lock);
3245                 if (cmd->se_lun->lun_sep) {
3246                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3247                                         cmd->data_length;
3248                 }
3249                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3250
3251                 ret = cmd->se_tfo->queue_data_in(cmd);
3252                 if (ret == -EAGAIN || ret == -ENOMEM)
3253                         goto queue_full;
3254                 break;
3255         case DMA_TO_DEVICE:
3256                 spin_lock(&cmd->se_lun->lun_sep_lock);
3257                 if (cmd->se_lun->lun_sep) {
3258                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3259                                 cmd->data_length;
3260                 }
3261                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3262                 /*
3263                  * Check if we need to send READ payload for BIDI-COMMAND
3264                  */
3265                 if (cmd->t_bidi_data_sg) {
3266                         spin_lock(&cmd->se_lun->lun_sep_lock);
3267                         if (cmd->se_lun->lun_sep) {
3268                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3269                                         cmd->data_length;
3270                         }
3271                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3272                         ret = cmd->se_tfo->queue_data_in(cmd);
3273                         if (ret == -EAGAIN || ret == -ENOMEM)
3274                                 goto queue_full;
3275                         break;
3276                 }
3277                 /* Fall through for DMA_TO_DEVICE */
3278         case DMA_NONE:
3279                 ret = cmd->se_tfo->queue_status(cmd);
3280                 if (ret == -EAGAIN || ret == -ENOMEM)
3281                         goto queue_full;
3282                 break;
3283         default:
3284                 break;
3285         }
3286
3287         transport_lun_remove_cmd(cmd);
3288         transport_cmd_check_stop_to_fabric(cmd);
3289         return;
3290
3291 queue_full:
3292         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3293                 " data_direction: %d\n", cmd, cmd->data_direction);
3294         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3295         transport_handle_queue_full(cmd, cmd->se_dev);
3296 }
3297
3298 static void transport_free_dev_tasks(struct se_cmd *cmd)
3299 {
3300         struct se_task *task, *task_tmp;
3301         unsigned long flags;
3302         LIST_HEAD(dispose_list);
3303
3304         spin_lock_irqsave(&cmd->t_state_lock, flags);
3305         list_for_each_entry_safe(task, task_tmp,
3306                                 &cmd->t_task_list, t_list) {
3307                 if (!(task->task_flags & TF_ACTIVE))
3308                         list_move_tail(&task->t_list, &dispose_list);
3309         }
3310         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3311
3312         while (!list_empty(&dispose_list)) {
3313                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3314
3315                 if (task->task_sg != cmd->t_data_sg &&
3316                     task->task_sg != cmd->t_bidi_data_sg)
3317                         kfree(task->task_sg);
3318
3319                 list_del(&task->t_list);
3320
3321                 cmd->se_dev->transport->free_task(task);
3322         }
3323 }
3324
3325 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3326 {
3327         struct scatterlist *sg;
3328         int count;
3329
3330         for_each_sg(sgl, sg, nents, count)
3331                 __free_page(sg_page(sg));
3332
3333         kfree(sgl);
3334 }
3335
3336 static inline void transport_free_pages(struct se_cmd *cmd)
3337 {
3338         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3339                 return;
3340
3341         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3342         cmd->t_data_sg = NULL;
3343         cmd->t_data_nents = 0;
3344
3345         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3346         cmd->t_bidi_data_sg = NULL;
3347         cmd->t_bidi_data_nents = 0;
3348 }
3349
3350 /**
3351  * transport_put_cmd - release a reference to a command
3352  * @cmd:       command to release
3353  *
3354  * This routine releases our reference to the command and frees it if possible.
3355  */
3356 static void transport_put_cmd(struct se_cmd *cmd)
3357 {
3358         unsigned long flags;
3359         int free_tasks = 0;
3360
3361         spin_lock_irqsave(&cmd->t_state_lock, flags);
3362         if (atomic_read(&cmd->t_fe_count)) {
3363                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3364                         goto out_busy;
3365         }
3366
3367         if (atomic_read(&cmd->t_se_count)) {
3368                 if (!atomic_dec_and_test(&cmd->t_se_count))
3369                         goto out_busy;
3370         }
3371
3372         if (atomic_read(&cmd->transport_dev_active)) {
3373                 atomic_set(&cmd->transport_dev_active, 0);
3374                 transport_all_task_dev_remove_state(cmd);
3375                 free_tasks = 1;
3376         }
3377         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3378
3379         if (free_tasks != 0)
3380                 transport_free_dev_tasks(cmd);
3381
3382         transport_free_pages(cmd);
3383         transport_release_cmd(cmd);
3384         return;
3385 out_busy:
3386         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3387 }
3388
3389 /*
3390  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3391  * allocating in the core.
3392  * @cmd:  Associated se_cmd descriptor
3393  * @mem:  SGL style memory for TCM WRITE / READ
3394  * @sg_mem_num: Number of SGL elements
3395  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3396  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3397  *
3398  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3399  * of parameters.
3400  */
3401 int transport_generic_map_mem_to_cmd(
3402         struct se_cmd *cmd,
3403         struct scatterlist *sgl,
3404         u32 sgl_count,
3405         struct scatterlist *sgl_bidi,
3406         u32 sgl_bidi_count)
3407 {
3408         if (!sgl || !sgl_count)
3409                 return 0;
3410
3411         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3412             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3413                 /*
3414                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3415                  * scatterlists already have been set to follow what the fabric
3416                  * passes for the original expected data transfer length.
3417                  */
3418                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3419                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3420                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3421                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3422                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3423                         return -EINVAL;
3424                 }
3425
3426                 cmd->t_data_sg = sgl;
3427                 cmd->t_data_nents = sgl_count;
3428
3429                 if (sgl_bidi && sgl_bidi_count) {
3430                         cmd->t_bidi_data_sg = sgl_bidi;
3431                         cmd->t_bidi_data_nents = sgl_bidi_count;
3432                 }
3433                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3434         }
3435
3436         return 0;
3437 }
3438 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3439
3440 void *transport_kmap_data_sg(struct se_cmd *cmd)
3441 {
3442         struct scatterlist *sg = cmd->t_data_sg;
3443         struct page **pages;
3444         int i;
3445
3446         BUG_ON(!sg);
3447         /*
3448          * We need to take into account a possible offset here for fabrics like
3449          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3450          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3451          */
3452         if (!cmd->t_data_nents)
3453                 return NULL;
3454         else if (cmd->t_data_nents == 1)
3455                 return kmap(sg_page(sg)) + sg->offset;
3456
3457         /* >1 page. use vmap */
3458         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3459         if (!pages)
3460                 return NULL;
3461
3462         /* convert sg[] to pages[] */
3463         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3464                 pages[i] = sg_page(sg);
3465         }
3466
3467         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3468         kfree(pages);
3469         if (!cmd->t_data_vmap)
3470                 return NULL;
3471
3472         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3473 }
3474 EXPORT_SYMBOL(transport_kmap_data_sg);
3475
3476 void transport_kunmap_data_sg(struct se_cmd *cmd)
3477 {
3478         if (!cmd->t_data_nents)
3479                 return;
3480         else if (cmd->t_data_nents == 1)
3481                 kunmap(sg_page(cmd->t_data_sg));
3482
3483         vunmap(cmd->t_data_vmap);
3484         cmd->t_data_vmap = NULL;
3485 }
3486 EXPORT_SYMBOL(transport_kunmap_data_sg);
3487
3488 static int
3489 transport_generic_get_mem(struct se_cmd *cmd)
3490 {
3491         u32 length = cmd->data_length;
3492         unsigned int nents;
3493         struct page *page;
3494         int i = 0;
3495
3496         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3497         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3498         if (!cmd->t_data_sg)
3499                 return -ENOMEM;
3500
3501         cmd->t_data_nents = nents;
3502         sg_init_table(cmd->t_data_sg, nents);
3503
3504         while (length) {
3505                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3506                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3507                 if (!page)
3508                         goto out;
3509
3510                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3511                 length -= page_len;
3512                 i++;
3513         }
3514         return 0;
3515
3516 out:
3517         while (i > 0) {
3518                 i--;
3519                 __free_page(sg_page(&cmd->t_data_sg[i]));
3520         }
3521         kfree(cmd->t_data_sg);
3522         cmd->t_data_sg = NULL;
3523         return -ENOMEM;
3524 }
3525
3526 /* Reduce sectors if they are too long for the device */
3527 static inline sector_t transport_limit_task_sectors(
3528         struct se_device *dev,
3529         unsigned long long lba,
3530         sector_t sectors)
3531 {
3532         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3533
3534         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3535                 if ((lba + sectors) > transport_dev_end_lba(dev))
3536                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3537
3538         return sectors;
3539 }
3540
3541
3542 /*
3543  * This function can be used by HW target mode drivers to create a linked
3544  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3545  * This is intended to be called during the completion path by TCM Core
3546  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3547  */
3548 void transport_do_task_sg_chain(struct se_cmd *cmd)
3549 {
3550         struct scatterlist *sg_first = NULL;
3551         struct scatterlist *sg_prev = NULL;
3552         int sg_prev_nents = 0;
3553         struct scatterlist *sg;
3554         struct se_task *task;
3555         u32 chained_nents = 0;
3556         int i;
3557
3558         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3559
3560         /*
3561          * Walk the struct se_task list and setup scatterlist chains
3562          * for each contiguously allocated struct se_task->task_sg[].
3563          */
3564         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3565                 if (!task->task_sg)
3566                         continue;
3567
3568                 if (!sg_first) {
3569                         sg_first = task->task_sg;
3570                         chained_nents = task->task_sg_nents;
3571                 } else {
3572                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3573                         chained_nents += task->task_sg_nents;
3574                 }
3575                 /*
3576                  * For the padded tasks, use the extra SGL vector allocated
3577                  * in transport_allocate_data_tasks() for the sg_prev_nents
3578                  * offset into sg_chain() above.
3579                  *
3580                  * We do not need the padding for the last task (or a single
3581                  * task), but in that case we will never use the sg_prev_nents
3582                  * value below which would be incorrect.
3583                  */
3584                 sg_prev_nents = (task->task_sg_nents + 1);
3585                 sg_prev = task->task_sg;
3586         }
3587         /*
3588          * Setup the starting pointer and total t_tasks_sg_linked_no including
3589          * padding SGs for linking and to mark the end.
3590          */
3591         cmd->t_tasks_sg_chained = sg_first;
3592         cmd->t_tasks_sg_chained_no = chained_nents;
3593
3594         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3595                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3596                 cmd->t_tasks_sg_chained_no);
3597
3598         for_each_sg(cmd->t_tasks_sg_chained, sg,
3599                         cmd->t_tasks_sg_chained_no, i) {
3600
3601                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3602                         i, sg, sg_page(sg), sg->length, sg->offset);
3603                 if (sg_is_chain(sg))
3604                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3605                 if (sg_is_last(sg))
3606                         pr_debug("SG: %p sg_is_last=1\n", sg);
3607         }
3608 }
3609 EXPORT_SYMBOL(transport_do_task_sg_chain);
3610
3611 /*
3612  * Break up cmd into chunks transport can handle
3613  */
3614 static int
3615 transport_allocate_data_tasks(struct se_cmd *cmd,
3616         enum dma_data_direction data_direction,
3617         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3618 {
3619         struct se_device *dev = cmd->se_dev;
3620         int task_count, i;
3621         unsigned long long lba;
3622         sector_t sectors, dev_max_sectors;
3623         u32 sector_size;
3624
3625         if (transport_cmd_get_valid_sectors(cmd) < 0)
3626                 return -EINVAL;
3627
3628         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3629         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3630
3631         WARN_ON(cmd->data_length % sector_size);
3632
3633         lba = cmd->t_task_lba;
3634         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3635         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3636
3637         /*
3638          * If we need just a single task reuse the SG list in the command
3639          * and avoid a lot of work.
3640          */
3641         if (task_count == 1) {
3642                 struct se_task *task;
3643                 unsigned long flags;
3644
3645                 task = transport_generic_get_task(cmd, data_direction);
3646                 if (!task)
3647                         return -ENOMEM;
3648
3649                 task->task_sg = cmd_sg;
3650                 task->task_sg_nents = sgl_nents;
3651
3652                 task->task_lba = lba;
3653                 task->task_sectors = sectors;
3654                 task->task_size = task->task_sectors * sector_size;
3655
3656                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3657                 list_add_tail(&task->t_list, &cmd->t_task_list);
3658                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3659
3660                 return task_count;
3661         }
3662
3663         for (i = 0; i < task_count; i++) {
3664                 struct se_task *task;
3665                 unsigned int task_size, task_sg_nents_padded;
3666                 struct scatterlist *sg;
3667                 unsigned long flags;
3668                 int count;
3669
3670                 task = transport_generic_get_task(cmd, data_direction);
3671                 if (!task)
3672                         return -ENOMEM;
3673
3674                 task->task_lba = lba;
3675                 task->task_sectors = min(sectors, dev_max_sectors);
3676                 task->task_size = task->task_sectors * sector_size;
3677
3678                 /*
3679                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3680                  * in order to calculate the number per task SGL entries
3681                  */
3682                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3683                 /*
3684                  * Check if the fabric module driver is requesting that all
3685                  * struct se_task->task_sg[] be chained together..  If so,
3686                  * then allocate an extra padding SG entry for linking and
3687                  * marking the end of the chained SGL for every task except
3688                  * the last one for (task_count > 1) operation, or skipping
3689                  * the extra padding for the (task_count == 1) case.
3690                  */
3691                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3692                         task_sg_nents_padded = (task->task_sg_nents + 1);
3693                 } else
3694                         task_sg_nents_padded = task->task_sg_nents;
3695
3696                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3697                                         task_sg_nents_padded, GFP_KERNEL);
3698                 if (!task->task_sg) {
3699                         cmd->se_dev->transport->free_task(task);
3700                         return -ENOMEM;
3701                 }
3702
3703                 sg_init_table(task->task_sg, task_sg_nents_padded);
3704
3705                 task_size = task->task_size;
3706
3707                 /* Build new sgl, only up to task_size */
3708                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3709                         if (cmd_sg->length > task_size)
3710                                 break;
3711
3712                         *sg = *cmd_sg;
3713                         task_size -= cmd_sg->length;
3714                         cmd_sg = sg_next(cmd_sg);
3715                 }
3716
3717                 lba += task->task_sectors;
3718                 sectors -= task->task_sectors;
3719
3720                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3721                 list_add_tail(&task->t_list, &cmd->t_task_list);
3722                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3723         }
3724
3725         return task_count;
3726 }
3727
3728 static int
3729 transport_allocate_control_task(struct se_cmd *cmd)
3730 {
3731         struct se_task *task;
3732         unsigned long flags;
3733
3734         /* Workaround for handling zero-length control CDBs */
3735         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3736             !cmd->data_length)
3737                 return 0;
3738
3739         task = transport_generic_get_task(cmd, cmd->data_direction);
3740         if (!task)
3741                 return -ENOMEM;
3742
3743         task->task_sg = cmd->t_data_sg;
3744         task->task_size = cmd->data_length;
3745         task->task_sg_nents = cmd->t_data_nents;
3746
3747         spin_lock_irqsave(&cmd->t_state_lock, flags);
3748         list_add_tail(&task->t_list, &cmd->t_task_list);
3749         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3750
3751         /* Success! Return number of tasks allocated */
3752         return 1;
3753 }
3754
3755 /*
3756  * Allocate any required ressources to execute the command, and either place
3757  * it on the execution queue if possible.  For writes we might not have the
3758  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3759  */
3760 int transport_generic_new_cmd(struct se_cmd *cmd)
3761 {
3762         struct se_device *dev = cmd->se_dev;
3763         int task_cdbs, task_cdbs_bidi = 0;
3764         int set_counts = 1;
3765         int ret = 0;
3766
3767         /*
3768          * Determine is the TCM fabric module has already allocated physical
3769          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3770          * beforehand.
3771          */
3772         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3773             cmd->data_length) {
3774                 ret = transport_generic_get_mem(cmd);
3775                 if (ret < 0)
3776                         goto out_fail;
3777         }
3778
3779         /*
3780          * For BIDI command set up the read tasks first.
3781          */
3782         if (cmd->t_bidi_data_sg &&
3783             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3784                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3785
3786                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3787                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3788                                 cmd->t_bidi_data_nents);
3789                 if (task_cdbs_bidi <= 0)
3790                         goto out_fail;
3791
3792                 atomic_inc(&cmd->t_fe_count);
3793                 atomic_inc(&cmd->t_se_count);
3794                 set_counts = 0;
3795         }
3796
3797         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3798                 task_cdbs = transport_allocate_data_tasks(cmd,
3799                                         cmd->data_direction, cmd->t_data_sg,
3800                                         cmd->t_data_nents);
3801         } else {
3802                 task_cdbs = transport_allocate_control_task(cmd);
3803         }
3804
3805         if (task_cdbs < 0)
3806                 goto out_fail;
3807         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3808                 cmd->t_state = TRANSPORT_COMPLETE;
3809                 atomic_set(&cmd->t_transport_active, 1);
3810
3811                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3812                         u8 ua_asc = 0, ua_ascq = 0;
3813
3814                         core_scsi3_ua_clear_for_request_sense(cmd,
3815                                         &ua_asc, &ua_ascq);
3816                 }
3817
3818                 INIT_WORK(&cmd->work, target_complete_ok_work);
3819                 queue_work(target_completion_wq, &cmd->work);
3820                 return 0;
3821         }
3822
3823         if (set_counts) {
3824                 atomic_inc(&cmd->t_fe_count);
3825                 atomic_inc(&cmd->t_se_count);
3826         }
3827
3828         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3829         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3830         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3831
3832         /*
3833          * For WRITEs, let the fabric know its buffer is ready..
3834          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3835          * will be added to the struct se_device execution queue after its WRITE
3836          * data has arrived. (ie: It gets handled by the transport processing
3837          * thread a second time)
3838          */
3839         if (cmd->data_direction == DMA_TO_DEVICE) {
3840                 transport_add_tasks_to_state_queue(cmd);
3841                 return transport_generic_write_pending(cmd);
3842         }
3843         /*
3844          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3845          * to the execution queue.
3846          */
3847         transport_execute_tasks(cmd);
3848         return 0;
3849
3850 out_fail:
3851         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3852         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3853         return -EINVAL;
3854 }
3855 EXPORT_SYMBOL(transport_generic_new_cmd);
3856
3857 /*      transport_generic_process_write():
3858  *
3859  *
3860  */
3861 void transport_generic_process_write(struct se_cmd *cmd)
3862 {
3863         transport_execute_tasks(cmd);
3864 }
3865 EXPORT_SYMBOL(transport_generic_process_write);
3866
3867 static void transport_write_pending_qf(struct se_cmd *cmd)
3868 {
3869         int ret;
3870
3871         ret = cmd->se_tfo->write_pending(cmd);
3872         if (ret == -EAGAIN || ret == -ENOMEM) {
3873                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3874                          cmd);
3875                 transport_handle_queue_full(cmd, cmd->se_dev);
3876         }
3877 }
3878
3879 static int transport_generic_write_pending(struct se_cmd *cmd)
3880 {
3881         unsigned long flags;
3882         int ret;
3883
3884         spin_lock_irqsave(&cmd->t_state_lock, flags);
3885         cmd->t_state = TRANSPORT_WRITE_PENDING;
3886         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3887
3888         /*
3889          * Clear the se_cmd for WRITE_PENDING status in order to set
3890          * cmd->t_transport_active=0 so that transport_generic_handle_data
3891          * can be called from HW target mode interrupt code.  This is safe
3892          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3893          * because the se_cmd->se_lun pointer is not being cleared.
3894          */
3895         transport_cmd_check_stop(cmd, 1, 0);
3896
3897         /*
3898          * Call the fabric write_pending function here to let the
3899          * frontend know that WRITE buffers are ready.
3900          */
3901         ret = cmd->se_tfo->write_pending(cmd);
3902         if (ret == -EAGAIN || ret == -ENOMEM)
3903                 goto queue_full;
3904         else if (ret < 0)
3905                 return ret;
3906
3907         return 1;
3908
3909 queue_full:
3910         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3911         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3912         transport_handle_queue_full(cmd, cmd->se_dev);
3913         return 0;
3914 }
3915
3916 /**
3917  * transport_release_cmd - free a command
3918  * @cmd:       command to free
3919  *
3920  * This routine unconditionally frees a command, and reference counting
3921  * or list removal must be done in the caller.
3922  */
3923 void transport_release_cmd(struct se_cmd *cmd)
3924 {
3925         BUG_ON(!cmd->se_tfo);
3926
3927         if (cmd->se_tmr_req)
3928                 core_tmr_release_req(cmd->se_tmr_req);
3929         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3930                 kfree(cmd->t_task_cdb);
3931         /*
3932          * Check if target_wait_for_sess_cmds() is expecting to
3933          * release se_cmd directly here..
3934          */
3935         if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3936                 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3937                         return;
3938
3939         cmd->se_tfo->release_cmd(cmd);
3940 }
3941 EXPORT_SYMBOL(transport_release_cmd);
3942
3943 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3944 {
3945         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3946                 if (wait_for_tasks && cmd->se_tmr_req)
3947                          transport_wait_for_tasks(cmd);
3948
3949                 transport_release_cmd(cmd);
3950         } else {
3951                 if (wait_for_tasks)
3952                         transport_wait_for_tasks(cmd);
3953
3954                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3955
3956                 if (cmd->se_lun)
3957                         transport_lun_remove_cmd(cmd);
3958
3959                 transport_free_dev_tasks(cmd);
3960
3961                 transport_put_cmd(cmd);
3962         }
3963 }
3964 EXPORT_SYMBOL(transport_generic_free_cmd);
3965
3966 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3967  * @se_sess:    session to reference
3968  * @se_cmd:     command descriptor to add
3969  */
3970 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3971 {
3972         unsigned long flags;
3973
3974         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3975         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3976         se_cmd->check_release = 1;
3977         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3978 }
3979 EXPORT_SYMBOL(target_get_sess_cmd);
3980
3981 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
3982  * @se_sess:    session to reference
3983  * @se_cmd:     command descriptor to drop
3984  */
3985 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3986 {
3987         unsigned long flags;
3988
3989         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3990         if (list_empty(&se_cmd->se_cmd_list)) {
3991                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3992                 WARN_ON(1);
3993                 return 0;
3994         }
3995
3996         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3997                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3998                 complete(&se_cmd->cmd_wait_comp);
3999                 return 1;
4000         }
4001         list_del(&se_cmd->se_cmd_list);
4002         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4003
4004         return 0;
4005 }
4006 EXPORT_SYMBOL(target_put_sess_cmd);
4007
4008 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4009  * @se_sess:    session to split
4010  */
4011 void target_splice_sess_cmd_list(struct se_session *se_sess)
4012 {
4013         struct se_cmd *se_cmd;
4014         unsigned long flags;
4015
4016         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4017         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4018
4019         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4020         se_sess->sess_tearing_down = 1;
4021
4022         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4023
4024         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4025                 se_cmd->cmd_wait_set = 1;
4026
4027         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4028 }
4029 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4030
4031 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4032  * @se_sess:    session to wait for active I/O
4033  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4034  */
4035 void target_wait_for_sess_cmds(
4036         struct se_session *se_sess,
4037         int wait_for_tasks)
4038 {
4039         struct se_cmd *se_cmd, *tmp_cmd;
4040         bool rc = false;
4041
4042         list_for_each_entry_safe(se_cmd, tmp_cmd,
4043                                 &se_sess->sess_wait_list, se_cmd_list) {
4044                 list_del(&se_cmd->se_cmd_list);
4045
4046                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4047                         " %d\n", se_cmd, se_cmd->t_state,
4048                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4049
4050                 if (wait_for_tasks) {
4051                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4052                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4053                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4054
4055                         rc = transport_wait_for_tasks(se_cmd);
4056
4057                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4058                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4059                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4060                 }
4061
4062                 if (!rc) {
4063                         wait_for_completion(&se_cmd->cmd_wait_comp);
4064                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4065                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4066                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4067                 }
4068
4069                 se_cmd->se_tfo->release_cmd(se_cmd);
4070         }
4071 }
4072 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4073
4074 /*      transport_lun_wait_for_tasks():
4075  *
4076  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4077  *      an struct se_lun to be successfully shutdown.
4078  */
4079 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4080 {
4081         unsigned long flags;
4082         int ret;
4083         /*
4084          * If the frontend has already requested this struct se_cmd to
4085          * be stopped, we can safely ignore this struct se_cmd.
4086          */
4087         spin_lock_irqsave(&cmd->t_state_lock, flags);
4088         if (atomic_read(&cmd->t_transport_stop)) {
4089                 atomic_set(&cmd->transport_lun_stop, 0);
4090                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4091                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4092                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4093                 transport_cmd_check_stop(cmd, 1, 0);
4094                 return -EPERM;
4095         }
4096         atomic_set(&cmd->transport_lun_fe_stop, 1);
4097         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4098
4099         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4100
4101         ret = transport_stop_tasks_for_cmd(cmd);
4102
4103         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4104                         " %d\n", cmd, cmd->t_task_list_num, ret);
4105         if (!ret) {
4106                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4107                                 cmd->se_tfo->get_task_tag(cmd));
4108                 wait_for_completion(&cmd->transport_lun_stop_comp);
4109                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4110                                 cmd->se_tfo->get_task_tag(cmd));
4111         }
4112         transport_remove_cmd_from_queue(cmd);
4113
4114         return 0;
4115 }
4116
4117 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4118 {
4119         struct se_cmd *cmd = NULL;
4120         unsigned long lun_flags, cmd_flags;
4121         /*
4122          * Do exception processing and return CHECK_CONDITION status to the
4123          * Initiator Port.
4124          */
4125         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4126         while (!list_empty(&lun->lun_cmd_list)) {
4127                 cmd = list_first_entry(&lun->lun_cmd_list,
4128                        struct se_cmd, se_lun_node);
4129                 list_del(&cmd->se_lun_node);
4130
4131                 atomic_set(&cmd->transport_lun_active, 0);
4132                 /*
4133                  * This will notify iscsi_target_transport.c:
4134                  * transport_cmd_check_stop() that a LUN shutdown is in
4135                  * progress for the iscsi_cmd_t.
4136                  */
4137                 spin_lock(&cmd->t_state_lock);
4138                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4139                         "_lun_stop for  ITT: 0x%08x\n",
4140                         cmd->se_lun->unpacked_lun,
4141                         cmd->se_tfo->get_task_tag(cmd));
4142                 atomic_set(&cmd->transport_lun_stop, 1);
4143                 spin_unlock(&cmd->t_state_lock);
4144
4145                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4146
4147                 if (!cmd->se_lun) {
4148                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4149                                 cmd->se_tfo->get_task_tag(cmd),
4150                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4151                         BUG();
4152                 }
4153                 /*
4154                  * If the Storage engine still owns the iscsi_cmd_t, determine
4155                  * and/or stop its context.
4156                  */
4157                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4158                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4159                         cmd->se_tfo->get_task_tag(cmd));
4160
4161                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4162                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4163                         continue;
4164                 }
4165
4166                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4167                         "_wait_for_tasks(): SUCCESS\n",
4168                         cmd->se_lun->unpacked_lun,
4169                         cmd->se_tfo->get_task_tag(cmd));
4170
4171                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4172                 if (!atomic_read(&cmd->transport_dev_active)) {
4173                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4174                         goto check_cond;
4175                 }
4176                 atomic_set(&cmd->transport_dev_active, 0);
4177                 transport_all_task_dev_remove_state(cmd);
4178                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4179
4180                 transport_free_dev_tasks(cmd);
4181                 /*
4182                  * The Storage engine stopped this struct se_cmd before it was
4183                  * send to the fabric frontend for delivery back to the
4184                  * Initiator Node.  Return this SCSI CDB back with an
4185                  * CHECK_CONDITION status.
4186                  */
4187 check_cond:
4188                 transport_send_check_condition_and_sense(cmd,
4189                                 TCM_NON_EXISTENT_LUN, 0);
4190                 /*
4191                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4192                  * be released, notify the waiting thread now that LU has
4193                  * finished accessing it.
4194                  */
4195                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4196                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4197                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4198                                 " struct se_cmd: %p ITT: 0x%08x\n",
4199                                 lun->unpacked_lun,
4200                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4201
4202                         spin_unlock_irqrestore(&cmd->t_state_lock,
4203                                         cmd_flags);
4204                         transport_cmd_check_stop(cmd, 1, 0);
4205                         complete(&cmd->transport_lun_fe_stop_comp);
4206                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4207                         continue;
4208                 }
4209                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4210                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4211
4212                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4213                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4214         }
4215         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4216 }
4217
4218 static int transport_clear_lun_thread(void *p)
4219 {
4220         struct se_lun *lun = (struct se_lun *)p;
4221
4222         __transport_clear_lun_from_sessions(lun);
4223         complete(&lun->lun_shutdown_comp);
4224
4225         return 0;
4226 }
4227
4228 int transport_clear_lun_from_sessions(struct se_lun *lun)
4229 {
4230         struct task_struct *kt;
4231
4232         kt = kthread_run(transport_clear_lun_thread, lun,
4233                         "tcm_cl_%u", lun->unpacked_lun);
4234         if (IS_ERR(kt)) {
4235                 pr_err("Unable to start clear_lun thread\n");
4236                 return PTR_ERR(kt);
4237         }
4238         wait_for_completion(&lun->lun_shutdown_comp);
4239
4240         return 0;
4241 }
4242
4243 /**
4244  * transport_wait_for_tasks - wait for completion to occur
4245  * @cmd:        command to wait
4246  *
4247  * Called from frontend fabric context to wait for storage engine
4248  * to pause and/or release frontend generated struct se_cmd.
4249  */
4250 bool transport_wait_for_tasks(struct se_cmd *cmd)
4251 {
4252         unsigned long flags;
4253
4254         spin_lock_irqsave(&cmd->t_state_lock, flags);
4255         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4256                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4257                 return false;
4258         }
4259         /*
4260          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4261          * has been set in transport_set_supported_SAM_opcode().
4262          */
4263         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4264                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4265                 return false;
4266         }
4267         /*
4268          * If we are already stopped due to an external event (ie: LUN shutdown)
4269          * sleep until the connection can have the passed struct se_cmd back.
4270          * The cmd->transport_lun_stopped_sem will be upped by
4271          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4272          * has completed its operation on the struct se_cmd.
4273          */
4274         if (atomic_read(&cmd->transport_lun_stop)) {
4275
4276                 pr_debug("wait_for_tasks: Stopping"
4277                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4278                         "_stop_comp); for ITT: 0x%08x\n",
4279                         cmd->se_tfo->get_task_tag(cmd));
4280                 /*
4281                  * There is a special case for WRITES where a FE exception +
4282                  * LUN shutdown means ConfigFS context is still sleeping on
4283                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4284                  * We go ahead and up transport_lun_stop_comp just to be sure
4285                  * here.
4286                  */
4287                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4288                 complete(&cmd->transport_lun_stop_comp);
4289                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4290                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4291
4292                 transport_all_task_dev_remove_state(cmd);
4293                 /*
4294                  * At this point, the frontend who was the originator of this
4295                  * struct se_cmd, now owns the structure and can be released through
4296                  * normal means below.
4297                  */
4298                 pr_debug("wait_for_tasks: Stopped"
4299                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4300                         "stop_comp); for ITT: 0x%08x\n",
4301                         cmd->se_tfo->get_task_tag(cmd));
4302
4303                 atomic_set(&cmd->transport_lun_stop, 0);
4304         }
4305         if (!atomic_read(&cmd->t_transport_active) ||
4306              atomic_read(&cmd->t_transport_aborted)) {
4307                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4308                 return false;
4309         }
4310
4311         atomic_set(&cmd->t_transport_stop, 1);
4312
4313         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4314                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4315                 cmd, cmd->se_tfo->get_task_tag(cmd),
4316                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4317
4318         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4319
4320         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4321
4322         wait_for_completion(&cmd->t_transport_stop_comp);
4323
4324         spin_lock_irqsave(&cmd->t_state_lock, flags);
4325         atomic_set(&cmd->t_transport_active, 0);
4326         atomic_set(&cmd->t_transport_stop, 0);
4327
4328         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4329                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4330                 cmd->se_tfo->get_task_tag(cmd));
4331
4332         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4333
4334         return true;
4335 }
4336 EXPORT_SYMBOL(transport_wait_for_tasks);
4337
4338 static int transport_get_sense_codes(
4339         struct se_cmd *cmd,
4340         u8 *asc,
4341         u8 *ascq)
4342 {
4343         *asc = cmd->scsi_asc;
4344         *ascq = cmd->scsi_ascq;
4345
4346         return 0;
4347 }
4348
4349 static int transport_set_sense_codes(
4350         struct se_cmd *cmd,
4351         u8 asc,
4352         u8 ascq)
4353 {
4354         cmd->scsi_asc = asc;
4355         cmd->scsi_ascq = ascq;
4356
4357         return 0;
4358 }
4359
4360 int transport_send_check_condition_and_sense(
4361         struct se_cmd *cmd,
4362         u8 reason,
4363         int from_transport)
4364 {
4365         unsigned char *buffer = cmd->sense_buffer;
4366         unsigned long flags;
4367         int offset;
4368         u8 asc = 0, ascq = 0;
4369
4370         spin_lock_irqsave(&cmd->t_state_lock, flags);
4371         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4372                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4373                 return 0;
4374         }
4375         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4376         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4377
4378         if (!reason && from_transport)
4379                 goto after_reason;
4380
4381         if (!from_transport)
4382                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4383         /*
4384          * Data Segment and SenseLength of the fabric response PDU.
4385          *
4386          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4387          * from include/scsi/scsi_cmnd.h
4388          */
4389         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4390                                 TRANSPORT_SENSE_BUFFER);
4391         /*
4392          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4393          * SENSE KEY values from include/scsi/scsi.h
4394          */
4395         switch (reason) {
4396         case TCM_NON_EXISTENT_LUN:
4397                 /* CURRENT ERROR */
4398                 buffer[offset] = 0x70;
4399                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4400                 /* ILLEGAL REQUEST */
4401                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4402                 /* LOGICAL UNIT NOT SUPPORTED */
4403                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4404                 break;
4405         case TCM_UNSUPPORTED_SCSI_OPCODE:
4406         case TCM_SECTOR_COUNT_TOO_MANY:
4407                 /* CURRENT ERROR */
4408                 buffer[offset] = 0x70;
4409                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4410                 /* ILLEGAL REQUEST */
4411                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4412                 /* INVALID COMMAND OPERATION CODE */
4413                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4414                 break;
4415         case TCM_UNKNOWN_MODE_PAGE:
4416                 /* CURRENT ERROR */
4417                 buffer[offset] = 0x70;
4418                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4419                 /* ILLEGAL REQUEST */
4420                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4421                 /* INVALID FIELD IN CDB */
4422                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4423                 break;
4424         case TCM_CHECK_CONDITION_ABORT_CMD:
4425                 /* CURRENT ERROR */
4426                 buffer[offset] = 0x70;
4427                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4428                 /* ABORTED COMMAND */
4429                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4430                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4431                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4432                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4433                 break;
4434         case TCM_INCORRECT_AMOUNT_OF_DATA:
4435                 /* CURRENT ERROR */
4436                 buffer[offset] = 0x70;
4437                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4438                 /* ABORTED COMMAND */
4439                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4440                 /* WRITE ERROR */
4441                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4442                 /* NOT ENOUGH UNSOLICITED DATA */
4443                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4444                 break;
4445         case TCM_INVALID_CDB_FIELD:
4446                 /* CURRENT ERROR */
4447                 buffer[offset] = 0x70;
4448                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4449                 /* ILLEGAL REQUEST */
4450                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4451                 /* INVALID FIELD IN CDB */
4452                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4453                 break;
4454         case TCM_INVALID_PARAMETER_LIST:
4455                 /* CURRENT ERROR */
4456                 buffer[offset] = 0x70;
4457                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4458                 /* ILLEGAL REQUEST */
4459                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4460                 /* INVALID FIELD IN PARAMETER LIST */
4461                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4462                 break;
4463         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4464                 /* CURRENT ERROR */
4465                 buffer[offset] = 0x70;
4466                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4467                 /* ABORTED COMMAND */
4468                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4469                 /* WRITE ERROR */
4470                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4471                 /* UNEXPECTED_UNSOLICITED_DATA */
4472                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4473                 break;
4474         case TCM_SERVICE_CRC_ERROR:
4475                 /* CURRENT ERROR */
4476                 buffer[offset] = 0x70;
4477                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4478                 /* ABORTED COMMAND */
4479                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4480                 /* PROTOCOL SERVICE CRC ERROR */
4481                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4482                 /* N/A */
4483                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4484                 break;
4485         case TCM_SNACK_REJECTED:
4486                 /* CURRENT ERROR */
4487                 buffer[offset] = 0x70;
4488                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4489                 /* ABORTED COMMAND */
4490                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4491                 /* READ ERROR */
4492                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4493                 /* FAILED RETRANSMISSION REQUEST */
4494                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4495                 break;
4496         case TCM_WRITE_PROTECTED:
4497                 /* CURRENT ERROR */
4498                 buffer[offset] = 0x70;
4499                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4500                 /* DATA PROTECT */
4501                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4502                 /* WRITE PROTECTED */
4503                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4504                 break;
4505         case TCM_ADDRESS_OUT_OF_RANGE:
4506                 /* CURRENT ERROR */
4507                 buffer[offset] = 0x70;
4508                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4509                 /* ILLEGAL REQUEST */
4510                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4511                 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
4512                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
4513                 break;
4514         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4515                 /* CURRENT ERROR */
4516                 buffer[offset] = 0x70;
4517                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4518                 /* UNIT ATTENTION */
4519                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4520                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4521                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4522                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4523                 break;
4524         case TCM_CHECK_CONDITION_NOT_READY:
4525                 /* CURRENT ERROR */
4526                 buffer[offset] = 0x70;
4527                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4528                 /* Not Ready */
4529                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4530                 transport_get_sense_codes(cmd, &asc, &ascq);
4531                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4532                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4533                 break;
4534         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4535         default:
4536                 /* CURRENT ERROR */
4537                 buffer[offset] = 0x70;
4538                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4539                 /* ILLEGAL REQUEST */
4540                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4541                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4542                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x08;
4543                 break;
4544         }
4545         /*
4546          * This code uses linux/include/scsi/scsi.h SAM status codes!
4547          */
4548         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4549         /*
4550          * Automatically padded, this value is encoded in the fabric's
4551          * data_length response PDU containing the SCSI defined sense data.
4552          */
4553         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4554
4555 after_reason:
4556         return cmd->se_tfo->queue_status(cmd);
4557 }
4558 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4559
4560 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4561 {
4562         int ret = 0;
4563
4564         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4565                 if (!send_status ||
4566                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4567                         return 1;
4568 #if 0
4569                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4570                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4571                         cmd->t_task_cdb[0],
4572                         cmd->se_tfo->get_task_tag(cmd));
4573 #endif
4574                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4575                 cmd->se_tfo->queue_status(cmd);
4576                 ret = 1;
4577         }
4578         return ret;
4579 }
4580 EXPORT_SYMBOL(transport_check_aborted_status);
4581
4582 void transport_send_task_abort(struct se_cmd *cmd)
4583 {
4584         unsigned long flags;
4585
4586         spin_lock_irqsave(&cmd->t_state_lock, flags);
4587         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4588                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4589                 return;
4590         }
4591         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4592
4593         /*
4594          * If there are still expected incoming fabric WRITEs, we wait
4595          * until until they have completed before sending a TASK_ABORTED
4596          * response.  This response with TASK_ABORTED status will be
4597          * queued back to fabric module by transport_check_aborted_status().
4598          */
4599         if (cmd->data_direction == DMA_TO_DEVICE) {
4600                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4601                         atomic_inc(&cmd->t_transport_aborted);
4602                         smp_mb__after_atomic_inc();
4603                 }
4604         }
4605         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4606 #if 0
4607         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4608                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4609                 cmd->se_tfo->get_task_tag(cmd));
4610 #endif
4611         cmd->se_tfo->queue_status(cmd);
4612 }
4613
4614 /*      transport_generic_do_tmr():
4615  *
4616  *
4617  */
4618 int transport_generic_do_tmr(struct se_cmd *cmd)
4619 {
4620         struct se_device *dev = cmd->se_dev;
4621         struct se_tmr_req *tmr = cmd->se_tmr_req;
4622         int ret;
4623
4624         switch (tmr->function) {
4625         case TMR_ABORT_TASK:
4626                 tmr->response = TMR_FUNCTION_REJECTED;
4627                 break;
4628         case TMR_ABORT_TASK_SET:
4629         case TMR_CLEAR_ACA:
4630         case TMR_CLEAR_TASK_SET:
4631                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4632                 break;
4633         case TMR_LUN_RESET:
4634                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4635                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4636                                          TMR_FUNCTION_REJECTED;
4637                 break;
4638         case TMR_TARGET_WARM_RESET:
4639                 tmr->response = TMR_FUNCTION_REJECTED;
4640                 break;
4641         case TMR_TARGET_COLD_RESET:
4642                 tmr->response = TMR_FUNCTION_REJECTED;
4643                 break;
4644         default:
4645                 pr_err("Uknown TMR function: 0x%02x.\n",
4646                                 tmr->function);
4647                 tmr->response = TMR_FUNCTION_REJECTED;
4648                 break;
4649         }
4650
4651         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4652         cmd->se_tfo->queue_tm_rsp(cmd);
4653
4654         transport_cmd_check_stop_to_fabric(cmd);
4655         return 0;
4656 }
4657
4658 /*      transport_processing_thread():
4659  *
4660  *
4661  */
4662 static int transport_processing_thread(void *param)
4663 {
4664         int ret;
4665         struct se_cmd *cmd;
4666         struct se_device *dev = (struct se_device *) param;
4667
4668         while (!kthread_should_stop()) {
4669                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4670                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4671                                 kthread_should_stop());
4672                 if (ret < 0)
4673                         goto out;
4674
4675 get_cmd:
4676                 __transport_execute_tasks(dev);
4677
4678                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4679                 if (!cmd)
4680                         continue;
4681
4682                 switch (cmd->t_state) {
4683                 case TRANSPORT_NEW_CMD:
4684                         BUG();
4685                         break;
4686                 case TRANSPORT_NEW_CMD_MAP:
4687                         if (!cmd->se_tfo->new_cmd_map) {
4688                                 pr_err("cmd->se_tfo->new_cmd_map is"
4689                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4690                                 BUG();
4691                         }
4692                         ret = cmd->se_tfo->new_cmd_map(cmd);
4693                         if (ret < 0) {
4694                                 transport_generic_request_failure(cmd);
4695                                 break;
4696                         }
4697                         ret = transport_generic_new_cmd(cmd);
4698                         if (ret < 0) {
4699                                 transport_generic_request_failure(cmd);
4700                                 break;
4701                         }
4702                         break;
4703                 case TRANSPORT_PROCESS_WRITE:
4704                         transport_generic_process_write(cmd);
4705                         break;
4706                 case TRANSPORT_PROCESS_TMR:
4707                         transport_generic_do_tmr(cmd);
4708                         break;
4709                 case TRANSPORT_COMPLETE_QF_WP:
4710                         transport_write_pending_qf(cmd);
4711                         break;
4712                 case TRANSPORT_COMPLETE_QF_OK:
4713                         transport_complete_qf(cmd);
4714                         break;
4715                 default:
4716                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4717                                 "i_state: %d on SE LUN: %u\n",
4718                                 cmd->t_state,
4719                                 cmd->se_tfo->get_task_tag(cmd),
4720                                 cmd->se_tfo->get_cmd_state(cmd),
4721                                 cmd->se_lun->unpacked_lun);
4722                         BUG();
4723                 }
4724
4725                 goto get_cmd;
4726         }
4727
4728 out:
4729         WARN_ON(!list_empty(&dev->state_task_list));
4730         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4731         dev->process_thread = NULL;
4732         return 0;
4733 }