Merge branch 'fix/hda' of git://github.com/tiwai/sound
[pandora-kernel.git] / drivers / staging / zcache / tmem.c
1 /*
2  * In-kernel transcendent memory (generic implementation)
3  *
4  * Copyright (c) 2009-2011, Dan Magenheimer, Oracle Corp.
5  *
6  * The primary purpose of Transcedent Memory ("tmem") is to map object-oriented
7  * "handles" (triples containing a pool id, and object id, and an index), to
8  * pages in a page-accessible memory (PAM).  Tmem references the PAM pages via
9  * an abstract "pampd" (PAM page-descriptor), which can be operated on by a
10  * set of functions (pamops).  Each pampd contains some representation of
11  * PAGE_SIZE bytes worth of data. Tmem must support potentially millions of
12  * pages and must be able to insert, find, and delete these pages at a
13  * potential frequency of thousands per second concurrently across many CPUs,
14  * (and, if used with KVM, across many vcpus across many guests).
15  * Tmem is tracked with a hierarchy of data structures, organized by
16  * the elements in a handle-tuple: pool_id, object_id, and page index.
17  * One or more "clients" (e.g. guests) each provide one or more tmem_pools.
18  * Each pool, contains a hash table of rb_trees of tmem_objs.  Each
19  * tmem_obj contains a radix-tree-like tree of pointers, with intermediate
20  * nodes called tmem_objnodes.  Each leaf pointer in this tree points to
21  * a pampd, which is accessible only through a small set of callbacks
22  * registered by the PAM implementation (see tmem_register_pamops). Tmem
23  * does all memory allocation via a set of callbacks registered by the tmem
24  * host implementation (e.g. see tmem_register_hostops).
25  */
26
27 #include <linux/list.h>
28 #include <linux/spinlock.h>
29 #include <linux/atomic.h>
30
31 #include "tmem.h"
32
33 /* data structure sentinels used for debugging... see tmem.h */
34 #define POOL_SENTINEL 0x87658765
35 #define OBJ_SENTINEL 0x12345678
36 #define OBJNODE_SENTINEL 0xfedcba09
37
38 /*
39  * A tmem host implementation must use this function to register callbacks
40  * for memory allocation.
41  */
42 static struct tmem_hostops tmem_hostops;
43
44 static void tmem_objnode_tree_init(void);
45
46 void tmem_register_hostops(struct tmem_hostops *m)
47 {
48         tmem_objnode_tree_init();
49         tmem_hostops = *m;
50 }
51
52 /*
53  * A tmem host implementation must use this function to register
54  * callbacks for a page-accessible memory (PAM) implementation
55  */
56 static struct tmem_pamops tmem_pamops;
57
58 void tmem_register_pamops(struct tmem_pamops *m)
59 {
60         tmem_pamops = *m;
61 }
62
63 /*
64  * Oid's are potentially very sparse and tmem_objs may have an indeterminately
65  * short life, being added and deleted at a relatively high frequency.
66  * So an rb_tree is an ideal data structure to manage tmem_objs.  But because
67  * of the potentially huge number of tmem_objs, each pool manages a hashtable
68  * of rb_trees to reduce search, insert, delete, and rebalancing time.
69  * Each hashbucket also has a lock to manage concurrent access.
70  *
71  * The following routines manage tmem_objs.  When any tmem_obj is accessed,
72  * the hashbucket lock must be held.
73  */
74
75 /* searches for object==oid in pool, returns locked object if found */
76 static struct tmem_obj *tmem_obj_find(struct tmem_hashbucket *hb,
77                                         struct tmem_oid *oidp)
78 {
79         struct rb_node *rbnode;
80         struct tmem_obj *obj;
81
82         rbnode = hb->obj_rb_root.rb_node;
83         while (rbnode) {
84                 BUG_ON(RB_EMPTY_NODE(rbnode));
85                 obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node);
86                 switch (tmem_oid_compare(oidp, &obj->oid)) {
87                 case 0: /* equal */
88                         goto out;
89                 case -1:
90                         rbnode = rbnode->rb_left;
91                         break;
92                 case 1:
93                         rbnode = rbnode->rb_right;
94                         break;
95                 }
96         }
97         obj = NULL;
98 out:
99         return obj;
100 }
101
102 static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *);
103
104 /* free an object that has no more pampds in it */
105 static void tmem_obj_free(struct tmem_obj *obj, struct tmem_hashbucket *hb)
106 {
107         struct tmem_pool *pool;
108
109         BUG_ON(obj == NULL);
110         ASSERT_SENTINEL(obj, OBJ);
111         BUG_ON(obj->pampd_count > 0);
112         pool = obj->pool;
113         BUG_ON(pool == NULL);
114         if (obj->objnode_tree_root != NULL) /* may be "stump" with no leaves */
115                 tmem_pampd_destroy_all_in_obj(obj);
116         BUG_ON(obj->objnode_tree_root != NULL);
117         BUG_ON((long)obj->objnode_count != 0);
118         atomic_dec(&pool->obj_count);
119         BUG_ON(atomic_read(&pool->obj_count) < 0);
120         INVERT_SENTINEL(obj, OBJ);
121         obj->pool = NULL;
122         tmem_oid_set_invalid(&obj->oid);
123         rb_erase(&obj->rb_tree_node, &hb->obj_rb_root);
124 }
125
126 /*
127  * initialize, and insert an tmem_object_root (called only if find failed)
128  */
129 static void tmem_obj_init(struct tmem_obj *obj, struct tmem_hashbucket *hb,
130                                         struct tmem_pool *pool,
131                                         struct tmem_oid *oidp)
132 {
133         struct rb_root *root = &hb->obj_rb_root;
134         struct rb_node **new = &(root->rb_node), *parent = NULL;
135         struct tmem_obj *this;
136
137         BUG_ON(pool == NULL);
138         atomic_inc(&pool->obj_count);
139         obj->objnode_tree_height = 0;
140         obj->objnode_tree_root = NULL;
141         obj->pool = pool;
142         obj->oid = *oidp;
143         obj->objnode_count = 0;
144         obj->pampd_count = 0;
145         (*tmem_pamops.new_obj)(obj);
146         SET_SENTINEL(obj, OBJ);
147         while (*new) {
148                 BUG_ON(RB_EMPTY_NODE(*new));
149                 this = rb_entry(*new, struct tmem_obj, rb_tree_node);
150                 parent = *new;
151                 switch (tmem_oid_compare(oidp, &this->oid)) {
152                 case 0:
153                         BUG(); /* already present; should never happen! */
154                         break;
155                 case -1:
156                         new = &(*new)->rb_left;
157                         break;
158                 case 1:
159                         new = &(*new)->rb_right;
160                         break;
161                 }
162         }
163         rb_link_node(&obj->rb_tree_node, parent, new);
164         rb_insert_color(&obj->rb_tree_node, root);
165 }
166
167 /*
168  * Tmem is managed as a set of tmem_pools with certain attributes, such as
169  * "ephemeral" vs "persistent".  These attributes apply to all tmem_objs
170  * and all pampds that belong to a tmem_pool.  A tmem_pool is created
171  * or deleted relatively rarely (for example, when a filesystem is
172  * mounted or unmounted.
173  */
174
175 /* flush all data from a pool and, optionally, free it */
176 static void tmem_pool_flush(struct tmem_pool *pool, bool destroy)
177 {
178         struct rb_node *rbnode;
179         struct tmem_obj *obj;
180         struct tmem_hashbucket *hb = &pool->hashbucket[0];
181         int i;
182
183         BUG_ON(pool == NULL);
184         for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) {
185                 spin_lock(&hb->lock);
186                 rbnode = rb_first(&hb->obj_rb_root);
187                 while (rbnode != NULL) {
188                         obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node);
189                         rbnode = rb_next(rbnode);
190                         tmem_pampd_destroy_all_in_obj(obj);
191                         tmem_obj_free(obj, hb);
192                         (*tmem_hostops.obj_free)(obj, pool);
193                 }
194                 spin_unlock(&hb->lock);
195         }
196         if (destroy)
197                 list_del(&pool->pool_list);
198 }
199
200 /*
201  * A tmem_obj contains a radix-tree-like tree in which the intermediate
202  * nodes are called tmem_objnodes.  (The kernel lib/radix-tree.c implementation
203  * is very specialized and tuned for specific uses and is not particularly
204  * suited for use from this code, though some code from the core algorithms has
205  * been reused, thus the copyright notices below).  Each tmem_objnode contains
206  * a set of pointers which point to either a set of intermediate tmem_objnodes
207  * or a set of of pampds.
208  *
209  * Portions Copyright (C) 2001 Momchil Velikov
210  * Portions Copyright (C) 2001 Christoph Hellwig
211  * Portions Copyright (C) 2005 SGI, Christoph Lameter <clameter@sgi.com>
212  */
213
214 struct tmem_objnode_tree_path {
215         struct tmem_objnode *objnode;
216         int offset;
217 };
218
219 /* objnode height_to_maxindex translation */
220 static unsigned long tmem_objnode_tree_h2max[OBJNODE_TREE_MAX_PATH + 1];
221
222 static void tmem_objnode_tree_init(void)
223 {
224         unsigned int ht, tmp;
225
226         for (ht = 0; ht < ARRAY_SIZE(tmem_objnode_tree_h2max); ht++) {
227                 tmp = ht * OBJNODE_TREE_MAP_SHIFT;
228                 if (tmp >= OBJNODE_TREE_INDEX_BITS)
229                         tmem_objnode_tree_h2max[ht] = ~0UL;
230                 else
231                         tmem_objnode_tree_h2max[ht] =
232                             (~0UL >> (OBJNODE_TREE_INDEX_BITS - tmp - 1)) >> 1;
233         }
234 }
235
236 static struct tmem_objnode *tmem_objnode_alloc(struct tmem_obj *obj)
237 {
238         struct tmem_objnode *objnode;
239
240         ASSERT_SENTINEL(obj, OBJ);
241         BUG_ON(obj->pool == NULL);
242         ASSERT_SENTINEL(obj->pool, POOL);
243         objnode = (*tmem_hostops.objnode_alloc)(obj->pool);
244         if (unlikely(objnode == NULL))
245                 goto out;
246         objnode->obj = obj;
247         SET_SENTINEL(objnode, OBJNODE);
248         memset(&objnode->slots, 0, sizeof(objnode->slots));
249         objnode->slots_in_use = 0;
250         obj->objnode_count++;
251 out:
252         return objnode;
253 }
254
255 static void tmem_objnode_free(struct tmem_objnode *objnode)
256 {
257         struct tmem_pool *pool;
258         int i;
259
260         BUG_ON(objnode == NULL);
261         for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++)
262                 BUG_ON(objnode->slots[i] != NULL);
263         ASSERT_SENTINEL(objnode, OBJNODE);
264         INVERT_SENTINEL(objnode, OBJNODE);
265         BUG_ON(objnode->obj == NULL);
266         ASSERT_SENTINEL(objnode->obj, OBJ);
267         pool = objnode->obj->pool;
268         BUG_ON(pool == NULL);
269         ASSERT_SENTINEL(pool, POOL);
270         objnode->obj->objnode_count--;
271         objnode->obj = NULL;
272         (*tmem_hostops.objnode_free)(objnode, pool);
273 }
274
275 /*
276  * lookup index in object and return associated pampd (or NULL if not found)
277  */
278 static void **__tmem_pampd_lookup_in_obj(struct tmem_obj *obj, uint32_t index)
279 {
280         unsigned int height, shift;
281         struct tmem_objnode **slot = NULL;
282
283         BUG_ON(obj == NULL);
284         ASSERT_SENTINEL(obj, OBJ);
285         BUG_ON(obj->pool == NULL);
286         ASSERT_SENTINEL(obj->pool, POOL);
287
288         height = obj->objnode_tree_height;
289         if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height])
290                 goto out;
291         if (height == 0 && obj->objnode_tree_root) {
292                 slot = &obj->objnode_tree_root;
293                 goto out;
294         }
295         shift = (height-1) * OBJNODE_TREE_MAP_SHIFT;
296         slot = &obj->objnode_tree_root;
297         while (height > 0) {
298                 if (*slot == NULL)
299                         goto out;
300                 slot = (struct tmem_objnode **)
301                         ((*slot)->slots +
302                          ((index >> shift) & OBJNODE_TREE_MAP_MASK));
303                 shift -= OBJNODE_TREE_MAP_SHIFT;
304                 height--;
305         }
306 out:
307         return slot != NULL ? (void **)slot : NULL;
308 }
309
310 static void *tmem_pampd_lookup_in_obj(struct tmem_obj *obj, uint32_t index)
311 {
312         struct tmem_objnode **slot;
313
314         slot = (struct tmem_objnode **)__tmem_pampd_lookup_in_obj(obj, index);
315         return slot != NULL ? *slot : NULL;
316 }
317
318 static void *tmem_pampd_replace_in_obj(struct tmem_obj *obj, uint32_t index,
319                                         void *new_pampd)
320 {
321         struct tmem_objnode **slot;
322         void *ret = NULL;
323
324         slot = (struct tmem_objnode **)__tmem_pampd_lookup_in_obj(obj, index);
325         if ((slot != NULL) && (*slot != NULL)) {
326                 void *old_pampd = *(void **)slot;
327                 *(void **)slot = new_pampd;
328                 (*tmem_pamops.free)(old_pampd, obj->pool, NULL, 0);
329                 ret = new_pampd;
330         }
331         return ret;
332 }
333
334 static int tmem_pampd_add_to_obj(struct tmem_obj *obj, uint32_t index,
335                                         void *pampd)
336 {
337         int ret = 0;
338         struct tmem_objnode *objnode = NULL, *newnode, *slot;
339         unsigned int height, shift;
340         int offset = 0;
341
342         /* if necessary, extend the tree to be higher  */
343         if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height]) {
344                 height = obj->objnode_tree_height + 1;
345                 if (index > tmem_objnode_tree_h2max[height])
346                         while (index > tmem_objnode_tree_h2max[height])
347                                 height++;
348                 if (obj->objnode_tree_root == NULL) {
349                         obj->objnode_tree_height = height;
350                         goto insert;
351                 }
352                 do {
353                         newnode = tmem_objnode_alloc(obj);
354                         if (!newnode) {
355                                 ret = -ENOMEM;
356                                 goto out;
357                         }
358                         newnode->slots[0] = obj->objnode_tree_root;
359                         newnode->slots_in_use = 1;
360                         obj->objnode_tree_root = newnode;
361                         obj->objnode_tree_height++;
362                 } while (height > obj->objnode_tree_height);
363         }
364 insert:
365         slot = obj->objnode_tree_root;
366         height = obj->objnode_tree_height;
367         shift = (height-1) * OBJNODE_TREE_MAP_SHIFT;
368         while (height > 0) {
369                 if (slot == NULL) {
370                         /* add a child objnode.  */
371                         slot = tmem_objnode_alloc(obj);
372                         if (!slot) {
373                                 ret = -ENOMEM;
374                                 goto out;
375                         }
376                         if (objnode) {
377
378                                 objnode->slots[offset] = slot;
379                                 objnode->slots_in_use++;
380                         } else
381                                 obj->objnode_tree_root = slot;
382                 }
383                 /* go down a level */
384                 offset = (index >> shift) & OBJNODE_TREE_MAP_MASK;
385                 objnode = slot;
386                 slot = objnode->slots[offset];
387                 shift -= OBJNODE_TREE_MAP_SHIFT;
388                 height--;
389         }
390         BUG_ON(slot != NULL);
391         if (objnode) {
392                 objnode->slots_in_use++;
393                 objnode->slots[offset] = pampd;
394         } else
395                 obj->objnode_tree_root = pampd;
396         obj->pampd_count++;
397 out:
398         return ret;
399 }
400
401 static void *tmem_pampd_delete_from_obj(struct tmem_obj *obj, uint32_t index)
402 {
403         struct tmem_objnode_tree_path path[OBJNODE_TREE_MAX_PATH + 1];
404         struct tmem_objnode_tree_path *pathp = path;
405         struct tmem_objnode *slot = NULL;
406         unsigned int height, shift;
407         int offset;
408
409         BUG_ON(obj == NULL);
410         ASSERT_SENTINEL(obj, OBJ);
411         BUG_ON(obj->pool == NULL);
412         ASSERT_SENTINEL(obj->pool, POOL);
413         height = obj->objnode_tree_height;
414         if (index > tmem_objnode_tree_h2max[height])
415                 goto out;
416         slot = obj->objnode_tree_root;
417         if (height == 0 && obj->objnode_tree_root) {
418                 obj->objnode_tree_root = NULL;
419                 goto out;
420         }
421         shift = (height - 1) * OBJNODE_TREE_MAP_SHIFT;
422         pathp->objnode = NULL;
423         do {
424                 if (slot == NULL)
425                         goto out;
426                 pathp++;
427                 offset = (index >> shift) & OBJNODE_TREE_MAP_MASK;
428                 pathp->offset = offset;
429                 pathp->objnode = slot;
430                 slot = slot->slots[offset];
431                 shift -= OBJNODE_TREE_MAP_SHIFT;
432                 height--;
433         } while (height > 0);
434         if (slot == NULL)
435                 goto out;
436         while (pathp->objnode) {
437                 pathp->objnode->slots[pathp->offset] = NULL;
438                 pathp->objnode->slots_in_use--;
439                 if (pathp->objnode->slots_in_use) {
440                         if (pathp->objnode == obj->objnode_tree_root) {
441                                 while (obj->objnode_tree_height > 0 &&
442                                   obj->objnode_tree_root->slots_in_use == 1 &&
443                                   obj->objnode_tree_root->slots[0]) {
444                                         struct tmem_objnode *to_free =
445                                                 obj->objnode_tree_root;
446
447                                         obj->objnode_tree_root =
448                                                         to_free->slots[0];
449                                         obj->objnode_tree_height--;
450                                         to_free->slots[0] = NULL;
451                                         to_free->slots_in_use = 0;
452                                         tmem_objnode_free(to_free);
453                                 }
454                         }
455                         goto out;
456                 }
457                 tmem_objnode_free(pathp->objnode); /* 0 slots used, free it */
458                 pathp--;
459         }
460         obj->objnode_tree_height = 0;
461         obj->objnode_tree_root = NULL;
462
463 out:
464         if (slot != NULL)
465                 obj->pampd_count--;
466         BUG_ON(obj->pampd_count < 0);
467         return slot;
468 }
469
470 /* recursively walk the objnode_tree destroying pampds and objnodes */
471 static void tmem_objnode_node_destroy(struct tmem_obj *obj,
472                                         struct tmem_objnode *objnode,
473                                         unsigned int ht)
474 {
475         int i;
476
477         if (ht == 0)
478                 return;
479         for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++) {
480                 if (objnode->slots[i]) {
481                         if (ht == 1) {
482                                 obj->pampd_count--;
483                                 (*tmem_pamops.free)(objnode->slots[i],
484                                                 obj->pool, NULL, 0);
485                                 objnode->slots[i] = NULL;
486                                 continue;
487                         }
488                         tmem_objnode_node_destroy(obj, objnode->slots[i], ht-1);
489                         tmem_objnode_free(objnode->slots[i]);
490                         objnode->slots[i] = NULL;
491                 }
492         }
493 }
494
495 static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *obj)
496 {
497         if (obj->objnode_tree_root == NULL)
498                 return;
499         if (obj->objnode_tree_height == 0) {
500                 obj->pampd_count--;
501                 (*tmem_pamops.free)(obj->objnode_tree_root, obj->pool, NULL, 0);
502         } else {
503                 tmem_objnode_node_destroy(obj, obj->objnode_tree_root,
504                                         obj->objnode_tree_height);
505                 tmem_objnode_free(obj->objnode_tree_root);
506                 obj->objnode_tree_height = 0;
507         }
508         obj->objnode_tree_root = NULL;
509         (*tmem_pamops.free_obj)(obj->pool, obj);
510 }
511
512 /*
513  * Tmem is operated on by a set of well-defined actions:
514  * "put", "get", "flush", "flush_object", "new pool" and "destroy pool".
515  * (The tmem ABI allows for subpages and exchanges but these operations
516  * are not included in this implementation.)
517  *
518  * These "tmem core" operations are implemented in the following functions.
519  */
520
521 /*
522  * "Put" a page, e.g. copy a page from the kernel into newly allocated
523  * PAM space (if such space is available).  Tmem_put is complicated by
524  * a corner case: What if a page with matching handle already exists in
525  * tmem?  To guarantee coherency, one of two actions is necessary: Either
526  * the data for the page must be overwritten, or the page must be
527  * "flushed" so that the data is not accessible to a subsequent "get".
528  * Since these "duplicate puts" are relatively rare, this implementation
529  * always flushes for simplicity.
530  */
531 int tmem_put(struct tmem_pool *pool, struct tmem_oid *oidp, uint32_t index,
532                 char *data, size_t size, bool raw, bool ephemeral)
533 {
534         struct tmem_obj *obj = NULL, *objfound = NULL, *objnew = NULL;
535         void *pampd = NULL, *pampd_del = NULL;
536         int ret = -ENOMEM;
537         struct tmem_hashbucket *hb;
538
539         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
540         spin_lock(&hb->lock);
541         obj = objfound = tmem_obj_find(hb, oidp);
542         if (obj != NULL) {
543                 pampd = tmem_pampd_lookup_in_obj(objfound, index);
544                 if (pampd != NULL) {
545                         /* if found, is a dup put, flush the old one */
546                         pampd_del = tmem_pampd_delete_from_obj(obj, index);
547                         BUG_ON(pampd_del != pampd);
548                         (*tmem_pamops.free)(pampd, pool, oidp, index);
549                         if (obj->pampd_count == 0) {
550                                 objnew = obj;
551                                 objfound = NULL;
552                         }
553                         pampd = NULL;
554                 }
555         } else {
556                 obj = objnew = (*tmem_hostops.obj_alloc)(pool);
557                 if (unlikely(obj == NULL)) {
558                         ret = -ENOMEM;
559                         goto out;
560                 }
561                 tmem_obj_init(obj, hb, pool, oidp);
562         }
563         BUG_ON(obj == NULL);
564         BUG_ON(((objnew != obj) && (objfound != obj)) || (objnew == objfound));
565         pampd = (*tmem_pamops.create)(data, size, raw, ephemeral,
566                                         obj->pool, &obj->oid, index);
567         if (unlikely(pampd == NULL))
568                 goto free;
569         ret = tmem_pampd_add_to_obj(obj, index, pampd);
570         if (unlikely(ret == -ENOMEM))
571                 /* may have partially built objnode tree ("stump") */
572                 goto delete_and_free;
573         goto out;
574
575 delete_and_free:
576         (void)tmem_pampd_delete_from_obj(obj, index);
577 free:
578         if (pampd)
579                 (*tmem_pamops.free)(pampd, pool, NULL, 0);
580         if (objnew) {
581                 tmem_obj_free(objnew, hb);
582                 (*tmem_hostops.obj_free)(objnew, pool);
583         }
584 out:
585         spin_unlock(&hb->lock);
586         return ret;
587 }
588
589 /*
590  * "Get" a page, e.g. if one can be found, copy the tmem page with the
591  * matching handle from PAM space to the kernel.  By tmem definition,
592  * when a "get" is successful on an ephemeral page, the page is "flushed",
593  * and when a "get" is successful on a persistent page, the page is retained
594  * in tmem.  Note that to preserve
595  * coherency, "get" can never be skipped if tmem contains the data.
596  * That is, if a get is done with a certain handle and fails, any
597  * subsequent "get" must also fail (unless of course there is a
598  * "put" done with the same handle).
599
600  */
601 int tmem_get(struct tmem_pool *pool, struct tmem_oid *oidp, uint32_t index,
602                 char *data, size_t *size, bool raw, int get_and_free)
603 {
604         struct tmem_obj *obj;
605         void *pampd;
606         bool ephemeral = is_ephemeral(pool);
607         int ret = -1;
608         struct tmem_hashbucket *hb;
609         bool free = (get_and_free == 1) || ((get_and_free == 0) && ephemeral);
610         bool lock_held = false;
611
612         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
613         spin_lock(&hb->lock);
614         lock_held = true;
615         obj = tmem_obj_find(hb, oidp);
616         if (obj == NULL)
617                 goto out;
618         if (free)
619                 pampd = tmem_pampd_delete_from_obj(obj, index);
620         else
621                 pampd = tmem_pampd_lookup_in_obj(obj, index);
622         if (pampd == NULL)
623                 goto out;
624         if (free) {
625                 if (obj->pampd_count == 0) {
626                         tmem_obj_free(obj, hb);
627                         (*tmem_hostops.obj_free)(obj, pool);
628                         obj = NULL;
629                 }
630         }
631         if (tmem_pamops.is_remote(pampd)) {
632                 lock_held = false;
633                 spin_unlock(&hb->lock);
634         }
635         if (free)
636                 ret = (*tmem_pamops.get_data_and_free)(
637                                 data, size, raw, pampd, pool, oidp, index);
638         else
639                 ret = (*tmem_pamops.get_data)(
640                                 data, size, raw, pampd, pool, oidp, index);
641         if (ret < 0)
642                 goto out;
643         ret = 0;
644 out:
645         if (lock_held)
646                 spin_unlock(&hb->lock);
647         return ret;
648 }
649
650 /*
651  * If a page in tmem matches the handle, "flush" this page from tmem such
652  * that any subsequent "get" does not succeed (unless, of course, there
653  * was another "put" with the same handle).
654  */
655 int tmem_flush_page(struct tmem_pool *pool,
656                                 struct tmem_oid *oidp, uint32_t index)
657 {
658         struct tmem_obj *obj;
659         void *pampd;
660         int ret = -1;
661         struct tmem_hashbucket *hb;
662
663         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
664         spin_lock(&hb->lock);
665         obj = tmem_obj_find(hb, oidp);
666         if (obj == NULL)
667                 goto out;
668         pampd = tmem_pampd_delete_from_obj(obj, index);
669         if (pampd == NULL)
670                 goto out;
671         (*tmem_pamops.free)(pampd, pool, oidp, index);
672         if (obj->pampd_count == 0) {
673                 tmem_obj_free(obj, hb);
674                 (*tmem_hostops.obj_free)(obj, pool);
675         }
676         ret = 0;
677
678 out:
679         spin_unlock(&hb->lock);
680         return ret;
681 }
682
683 /*
684  * If a page in tmem matches the handle, replace the page so that any
685  * subsequent "get" gets the new page.  Returns 0 if
686  * there was a page to replace, else returns -1.
687  */
688 int tmem_replace(struct tmem_pool *pool, struct tmem_oid *oidp,
689                         uint32_t index, void *new_pampd)
690 {
691         struct tmem_obj *obj;
692         int ret = -1;
693         struct tmem_hashbucket *hb;
694
695         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
696         spin_lock(&hb->lock);
697         obj = tmem_obj_find(hb, oidp);
698         if (obj == NULL)
699                 goto out;
700         new_pampd = tmem_pampd_replace_in_obj(obj, index, new_pampd);
701         ret = (*tmem_pamops.replace_in_obj)(new_pampd, obj);
702 out:
703         spin_unlock(&hb->lock);
704         return ret;
705 }
706
707 /*
708  * "Flush" all pages in tmem matching this oid.
709  */
710 int tmem_flush_object(struct tmem_pool *pool, struct tmem_oid *oidp)
711 {
712         struct tmem_obj *obj;
713         struct tmem_hashbucket *hb;
714         int ret = -1;
715
716         hb = &pool->hashbucket[tmem_oid_hash(oidp)];
717         spin_lock(&hb->lock);
718         obj = tmem_obj_find(hb, oidp);
719         if (obj == NULL)
720                 goto out;
721         tmem_pampd_destroy_all_in_obj(obj);
722         tmem_obj_free(obj, hb);
723         (*tmem_hostops.obj_free)(obj, pool);
724         ret = 0;
725
726 out:
727         spin_unlock(&hb->lock);
728         return ret;
729 }
730
731 /*
732  * "Flush" all pages (and tmem_objs) from this tmem_pool and disable
733  * all subsequent access to this tmem_pool.
734  */
735 int tmem_destroy_pool(struct tmem_pool *pool)
736 {
737         int ret = -1;
738
739         if (pool == NULL)
740                 goto out;
741         tmem_pool_flush(pool, 1);
742         ret = 0;
743 out:
744         return ret;
745 }
746
747 static LIST_HEAD(tmem_global_pool_list);
748
749 /*
750  * Create a new tmem_pool with the provided flag and return
751  * a pool id provided by the tmem host implementation.
752  */
753 void tmem_new_pool(struct tmem_pool *pool, uint32_t flags)
754 {
755         int persistent = flags & TMEM_POOL_PERSIST;
756         int shared = flags & TMEM_POOL_SHARED;
757         struct tmem_hashbucket *hb = &pool->hashbucket[0];
758         int i;
759
760         for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) {
761                 hb->obj_rb_root = RB_ROOT;
762                 spin_lock_init(&hb->lock);
763         }
764         INIT_LIST_HEAD(&pool->pool_list);
765         atomic_set(&pool->obj_count, 0);
766         SET_SENTINEL(pool, POOL);
767         list_add_tail(&pool->pool_list, &tmem_global_pool_list);
768         pool->persistent = persistent;
769         pool->shared = shared;
770 }