Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6
[pandora-kernel.git] / drivers / staging / iio / ring_sw.c
1 /* The industrial I/O simple minimally locked ring buffer.
2  *
3  * Copyright (c) 2008 Jonathan Cameron
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/workqueue.h>
15 #include "ring_sw.h"
16 #include "trigger.h"
17
18 static inline int __iio_allocate_sw_ring_buffer(struct iio_sw_ring_buffer *ring,
19                                                 int bytes_per_datum, int length)
20 {
21         if ((length == 0) || (bytes_per_datum == 0))
22                 return -EINVAL;
23         __iio_update_ring_buffer(&ring->buf, bytes_per_datum, length);
24         ring->data = kmalloc(length*ring->buf.bytes_per_datum, GFP_ATOMIC);
25         ring->read_p = NULL;
26         ring->write_p = NULL;
27         ring->last_written_p = NULL;
28         ring->half_p = NULL;
29         return ring->data ? 0 : -ENOMEM;
30 }
31
32 static inline void __iio_init_sw_ring_buffer(struct iio_sw_ring_buffer *ring)
33 {
34         spin_lock_init(&ring->use_lock);
35 }
36
37 static inline void __iio_free_sw_ring_buffer(struct iio_sw_ring_buffer *ring)
38 {
39         kfree(ring->data);
40 }
41
42 void iio_mark_sw_rb_in_use(struct iio_ring_buffer *r)
43 {
44         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
45         spin_lock(&ring->use_lock);
46         ring->use_count++;
47         spin_unlock(&ring->use_lock);
48 }
49 EXPORT_SYMBOL(iio_mark_sw_rb_in_use);
50
51 void iio_unmark_sw_rb_in_use(struct iio_ring_buffer *r)
52 {
53         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
54         spin_lock(&ring->use_lock);
55         ring->use_count--;
56         spin_unlock(&ring->use_lock);
57 }
58 EXPORT_SYMBOL(iio_unmark_sw_rb_in_use);
59
60
61 /* Ring buffer related functionality */
62 /* Store to ring is typically called in the bh of a data ready interrupt handler
63  * in the device driver */
64 /* Lock always held if their is a chance this may be called */
65 /* Only one of these per ring may run concurrently - enforced by drivers */
66 static int iio_store_to_sw_ring(struct iio_sw_ring_buffer *ring,
67                                 unsigned char *data, s64 timestamp)
68 {
69         int ret = 0;
70         int code;
71         unsigned char *temp_ptr, *change_test_ptr;
72
73         /* initial store */
74         if (unlikely(ring->write_p == NULL)) {
75                 ring->write_p = ring->data;
76                 /* Doesn't actually matter if this is out of the set
77                  * as long as the read pointer is valid before this
78                  * passes it - guaranteed as set later in this function.
79                  */
80                 ring->half_p = ring->data - ring->buf.length*ring->buf.bytes_per_datum/2;
81         }
82         /* Copy data to where ever the current write pointer says */
83         memcpy(ring->write_p, data, ring->buf.bytes_per_datum);
84         barrier();
85         /* Update the pointer used to get most recent value.
86          * Always valid as either points to latest or second latest value.
87          * Before this runs it is null and read attempts fail with -EAGAIN.
88          */
89         ring->last_written_p = ring->write_p;
90         barrier();
91         /* temp_ptr used to ensure we never have an invalid pointer
92          * it may be slightly lagging, but never invalid
93          */
94         temp_ptr = ring->write_p + ring->buf.bytes_per_datum;
95         /* End of ring, back to the beginning */
96         if (temp_ptr == ring->data + ring->buf.length*ring->buf.bytes_per_datum)
97                 temp_ptr = ring->data;
98         /* Update the write pointer
99          * always valid as long as this is the only function able to write.
100          * Care needed with smp systems to ensure more than one ring fill
101          * is never scheduled.
102          */
103         ring->write_p = temp_ptr;
104
105         if (ring->read_p == NULL)
106                 ring->read_p = ring->data;
107         /* Buffer full - move the read pointer and create / escalate
108          * ring event */
109         /* Tricky case - if the read pointer moves before we adjust it.
110          * Handle by not pushing if it has moved - may result in occasional
111          * unnecessary buffer full events when it wasn't quite true.
112          */
113         else if (ring->write_p == ring->read_p) {
114                 change_test_ptr = ring->read_p;
115                 temp_ptr = change_test_ptr + ring->buf.bytes_per_datum;
116                 if (temp_ptr
117                     == ring->data + ring->buf.length*ring->buf.bytes_per_datum) {
118                         temp_ptr = ring->data;
119                 }
120                 /* We are moving pointer on one because the ring is full.  Any
121                  * change to the read pointer will be this or greater.
122                  */
123                 if (change_test_ptr == ring->read_p)
124                         ring->read_p = temp_ptr;
125
126                 spin_lock(&ring->buf.shared_ev_pointer.lock);
127
128                 ret = iio_push_or_escallate_ring_event(&ring->buf,
129                                IIO_EVENT_CODE_RING_100_FULL, timestamp);
130                 spin_unlock(&ring->buf.shared_ev_pointer.lock);
131                 if (ret)
132                         goto error_ret;
133         }
134         /* investigate if our event barrier has been passed */
135         /* There are definite 'issues' with this and chances of
136          * simultaneous read */
137         /* Also need to use loop count to ensure this only happens once */
138         ring->half_p += ring->buf.bytes_per_datum;
139         if (ring->half_p == ring->data + ring->buf.length*ring->buf.bytes_per_datum)
140                 ring->half_p = ring->data;
141         if (ring->half_p == ring->read_p) {
142                 spin_lock(&ring->buf.shared_ev_pointer.lock);
143                 code = IIO_EVENT_CODE_RING_50_FULL;
144                 ret = __iio_push_event(&ring->buf.ev_int,
145                                        code,
146                                        timestamp,
147                                        &ring->buf.shared_ev_pointer);
148                 spin_unlock(&ring->buf.shared_ev_pointer.lock);
149         }
150 error_ret:
151         return ret;
152 }
153
154 int iio_rip_sw_rb(struct iio_ring_buffer *r,
155                   size_t count, u8 **data, int *dead_offset)
156 {
157         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
158
159         u8 *initial_read_p, *initial_write_p, *current_read_p, *end_read_p;
160         int ret, max_copied;
161         int bytes_to_rip;
162
163         /* A userspace program has probably made an error if it tries to
164          *  read something that is not a whole number of bpds.
165          * Return an error.
166          */
167         if (count % ring->buf.bytes_per_datum) {
168                 ret = -EINVAL;
169                 printk(KERN_INFO "Ring buffer read request not whole number of"
170                        "samples: Request bytes %zd, Current bytes per datum %d\n",
171                        count, ring->buf.bytes_per_datum);
172                 goto error_ret;
173         }
174         /* Limit size to whole of ring buffer */
175         bytes_to_rip = min((size_t)(ring->buf.bytes_per_datum*ring->buf.length), count);
176
177         *data = kmalloc(bytes_to_rip, GFP_KERNEL);
178         if (*data == NULL) {
179                 ret = -ENOMEM;
180                 goto error_ret;
181         }
182
183         /* build local copy */
184         initial_read_p = ring->read_p;
185         if (unlikely(initial_read_p == NULL)) { /* No data here as yet */
186                 ret = 0;
187                 goto error_free_data_cpy;
188         }
189
190         initial_write_p = ring->write_p;
191
192         /* Need a consistent pair */
193         while ((initial_read_p != ring->read_p)
194                || (initial_write_p != ring->write_p)) {
195                 initial_read_p = ring->read_p;
196                 initial_write_p = ring->write_p;
197         }
198         if (initial_write_p == initial_read_p) {
199                 /* No new data available.*/
200                 ret = 0;
201                 goto error_free_data_cpy;
202         }
203
204         if (initial_write_p >= initial_read_p + bytes_to_rip) {
205                 /* write_p is greater than necessary, all is easy */
206                 max_copied = bytes_to_rip;
207                 memcpy(*data, initial_read_p, max_copied);
208                 end_read_p = initial_read_p + max_copied;
209         } else if (initial_write_p > initial_read_p) {
210                 /*not enough data to cpy */
211                 max_copied = initial_write_p - initial_read_p;
212                 memcpy(*data, initial_read_p, max_copied);
213                 end_read_p = initial_write_p;
214         } else {
215                 /* going through 'end' of ring buffer */
216                 max_copied = ring->data
217                         + ring->buf.length*ring->buf.bytes_per_datum - initial_read_p;
218                 memcpy(*data, initial_read_p, max_copied);
219                 /* possible we are done if we align precisely with end */
220                 if (max_copied == bytes_to_rip)
221                         end_read_p = ring->data;
222                 else if (initial_write_p
223                          > ring->data + bytes_to_rip - max_copied) {
224                         /* enough data to finish */
225                         memcpy(*data + max_copied, ring->data,
226                                bytes_to_rip - max_copied);
227                         max_copied = bytes_to_rip;
228                         end_read_p = ring->data + (bytes_to_rip - max_copied);
229                 } else {  /* not enough data */
230                         memcpy(*data + max_copied, ring->data,
231                                initial_write_p - ring->data);
232                         max_copied += initial_write_p - ring->data;
233                         end_read_p = initial_write_p;
234                 }
235         }
236         /* Now to verify which section was cleanly copied - i.e. how far
237          * read pointer has been pushed */
238         current_read_p = ring->read_p;
239
240         if (initial_read_p <= current_read_p)
241                 *dead_offset = current_read_p - initial_read_p;
242         else
243                 *dead_offset = ring->buf.length*ring->buf.bytes_per_datum
244                         - (initial_read_p - current_read_p);
245
246         /* possible issue if the initial write has been lapped or indeed
247          * the point we were reading to has been passed */
248         /* No valid data read.
249          * In this case the read pointer is already correct having been
250          * pushed further than we would look. */
251         if (max_copied - *dead_offset < 0) {
252                 ret = 0;
253                 goto error_free_data_cpy;
254         }
255
256         /* setup the next read position */
257         /* Beware, this may fail due to concurrency fun and games.
258          *  Possible that sufficient fill commands have run to push the read
259          * pointer past where we would be after the rip. If this occurs, leave
260          * it be.
261          */
262         /* Tricky - deal with loops */
263
264         while (ring->read_p != end_read_p)
265                 ring->read_p = end_read_p;
266
267         return max_copied - *dead_offset;
268
269 error_free_data_cpy:
270         kfree(*data);
271 error_ret:
272         return ret;
273 }
274 EXPORT_SYMBOL(iio_rip_sw_rb);
275
276 int iio_store_to_sw_rb(struct iio_ring_buffer *r, u8 *data, s64 timestamp)
277 {
278         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
279         return iio_store_to_sw_ring(ring, data, timestamp);
280 }
281 EXPORT_SYMBOL(iio_store_to_sw_rb);
282
283 static int iio_read_last_from_sw_ring(struct iio_sw_ring_buffer *ring,
284                                       unsigned char *data)
285 {
286         unsigned char *last_written_p_copy;
287
288         iio_mark_sw_rb_in_use(&ring->buf);
289 again:
290         barrier();
291         last_written_p_copy = ring->last_written_p;
292         barrier(); /*unnessecary? */
293         /* Check there is anything here */
294         if (last_written_p_copy == NULL)
295                 return -EAGAIN;
296         memcpy(data, last_written_p_copy, ring->buf.bytes_per_datum);
297
298         if (unlikely(ring->last_written_p != last_written_p_copy))
299                 goto again;
300
301         iio_unmark_sw_rb_in_use(&ring->buf);
302         return 0;
303 }
304
305 int iio_read_last_from_sw_rb(struct iio_ring_buffer *r,
306                              unsigned char *data)
307 {
308         return iio_read_last_from_sw_ring(iio_to_sw_ring(r), data);
309 }
310 EXPORT_SYMBOL(iio_read_last_from_sw_rb);
311
312 int iio_request_update_sw_rb(struct iio_ring_buffer *r)
313 {
314         int ret = 0;
315         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
316
317         spin_lock(&ring->use_lock);
318         if (!ring->update_needed)
319                 goto error_ret;
320         if (ring->use_count) {
321                 ret = -EAGAIN;
322                 goto error_ret;
323         }
324         __iio_free_sw_ring_buffer(ring);
325         ret = __iio_allocate_sw_ring_buffer(ring, ring->buf.bytes_per_datum,
326                                             ring->buf.length);
327 error_ret:
328         spin_unlock(&ring->use_lock);
329         return ret;
330 }
331 EXPORT_SYMBOL(iio_request_update_sw_rb);
332
333 int iio_get_bytes_per_datum_sw_rb(struct iio_ring_buffer *r)
334 {
335         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
336         return ring->buf.bytes_per_datum;
337 }
338 EXPORT_SYMBOL(iio_get_bytes_per_datum_sw_rb);
339
340 int iio_set_bytes_per_datum_sw_rb(struct iio_ring_buffer *r, size_t bpd)
341 {
342         if (r->bytes_per_datum != bpd) {
343                 r->bytes_per_datum = bpd;
344                 if (r->access.mark_param_change)
345                         r->access.mark_param_change(r);
346         }
347         return 0;
348 }
349 EXPORT_SYMBOL(iio_set_bytes_per_datum_sw_rb);
350
351 int iio_get_length_sw_rb(struct iio_ring_buffer *r)
352 {
353         return r->length;
354 }
355 EXPORT_SYMBOL(iio_get_length_sw_rb);
356
357 int iio_set_length_sw_rb(struct iio_ring_buffer *r, int length)
358 {
359         if (r->length != length) {
360                 r->length = length;
361                 if (r->access.mark_param_change)
362                         r->access.mark_param_change(r);
363         }
364         return 0;
365 }
366 EXPORT_SYMBOL(iio_set_length_sw_rb);
367
368 int iio_mark_update_needed_sw_rb(struct iio_ring_buffer *r)
369 {
370         struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
371         ring->update_needed = true;
372         return 0;
373 }
374 EXPORT_SYMBOL(iio_mark_update_needed_sw_rb);
375
376 static void iio_sw_rb_release(struct device *dev)
377 {
378         struct iio_ring_buffer *r = to_iio_ring_buffer(dev);
379         kfree(iio_to_sw_ring(r));
380 }
381
382 static IIO_RING_ENABLE_ATTR;
383 static IIO_RING_BYTES_PER_DATUM_ATTR;
384 static IIO_RING_LENGTH_ATTR;
385
386 /* Standard set of ring buffer attributes */
387 static struct attribute *iio_ring_attributes[] = {
388         &dev_attr_length.attr,
389         &dev_attr_bytes_per_datum.attr,
390         &dev_attr_enable.attr,
391         NULL,
392 };
393
394 static struct attribute_group iio_ring_attribute_group = {
395         .attrs = iio_ring_attributes,
396 };
397
398 static const struct attribute_group *iio_ring_attribute_groups[] = {
399         &iio_ring_attribute_group,
400         NULL
401 };
402
403 static struct device_type iio_sw_ring_type = {
404         .release = iio_sw_rb_release,
405         .groups = iio_ring_attribute_groups,
406 };
407
408 struct iio_ring_buffer *iio_sw_rb_allocate(struct iio_dev *indio_dev)
409 {
410         struct iio_ring_buffer *buf;
411         struct iio_sw_ring_buffer *ring;
412
413         ring = kzalloc(sizeof *ring, GFP_KERNEL);
414         if (!ring)
415                 return NULL;
416         buf = &ring->buf;
417         iio_ring_buffer_init(buf, indio_dev);
418         __iio_init_sw_ring_buffer(ring);
419         buf->dev.type = &iio_sw_ring_type;
420         device_initialize(&buf->dev);
421         buf->dev.parent = &indio_dev->dev;
422         buf->dev.bus = &iio_bus_type;
423         dev_set_drvdata(&buf->dev, (void *)buf);
424
425         return buf;
426 }
427 EXPORT_SYMBOL(iio_sw_rb_allocate);
428
429 void iio_sw_rb_free(struct iio_ring_buffer *r)
430 {
431         if (r)
432                 iio_put_ring_buffer(r);
433 }
434 EXPORT_SYMBOL(iio_sw_rb_free);
435
436 int iio_sw_ring_preenable(struct iio_dev *indio_dev)
437 {
438         struct iio_ring_buffer *ring = indio_dev->ring;
439         size_t size;
440         dev_dbg(&indio_dev->dev, "%s\n", __func__);
441         /* Check if there are any scan elements enabled, if not fail*/
442         if (!(ring->scan_count || ring->scan_timestamp))
443                 return -EINVAL;
444         if (ring->scan_timestamp)
445                 if (ring->scan_count)
446                         /* Timestamp (aligned to s64) and data */
447                         size = (((ring->scan_count * ring->bpe)
448                                         + sizeof(s64) - 1)
449                                 & ~(sizeof(s64) - 1))
450                                 + sizeof(s64);
451                 else /* Timestamp only  */
452                         size = sizeof(s64);
453         else /* Data only */
454                 size = ring->scan_count * ring->bpe;
455         ring->access.set_bytes_per_datum(ring, size);
456
457         return 0;
458 }
459 EXPORT_SYMBOL(iio_sw_ring_preenable);
460
461 void iio_sw_trigger_bh_to_ring(struct work_struct *work_s)
462 {
463         struct iio_sw_ring_helper_state *st
464                 = container_of(work_s, struct iio_sw_ring_helper_state,
465                         work_trigger_to_ring);
466         struct iio_ring_buffer *ring = st->indio_dev->ring;
467         int len = 0;
468         size_t datasize = ring->access.get_bytes_per_datum(ring);
469         char *data = kmalloc(datasize, GFP_KERNEL);
470
471         if (data == NULL) {
472                 dev_err(st->indio_dev->dev.parent,
473                         "memory alloc failed in ring bh");
474                 return;
475         }
476
477         if (ring->scan_count)
478                 len = st->get_ring_element(st, data);
479
480           /* Guaranteed to be aligned with 8 byte boundary */
481         if (ring->scan_timestamp)
482                 *(s64 *)(((phys_addr_t)data + len
483                                 + sizeof(s64) - 1) & ~(sizeof(s64) - 1))
484                         = st->last_timestamp;
485         ring->access.store_to(ring,
486                         (u8 *)data,
487                         st->last_timestamp);
488
489         iio_trigger_notify_done(st->indio_dev->trig);
490         kfree(data);
491
492         return;
493 }
494 EXPORT_SYMBOL(iio_sw_trigger_bh_to_ring);
495
496 void iio_sw_poll_func_th(struct iio_dev *indio_dev, s64 time)
497 {       struct iio_sw_ring_helper_state *h
498                 = iio_dev_get_devdata(indio_dev);
499         h->last_timestamp = time;
500         schedule_work(&h->work_trigger_to_ring);
501 }
502 EXPORT_SYMBOL(iio_sw_poll_func_th);
503
504 MODULE_DESCRIPTION("Industrialio I/O software ring buffer");
505 MODULE_LICENSE("GPL");