Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/parisc-2.6
[pandora-kernel.git] / drivers / staging / echo / echo.h
1 /*
2  * SpanDSP - a series of DSP components for telephony
3  *
4  * echo.c - A line echo canceller.  This code is being developed
5  *          against and partially complies with G168.
6  *
7  * Written by Steve Underwood <steveu@coppice.org>
8  *         and David Rowe <david_at_rowetel_dot_com>
9  *
10  * Copyright (C) 2001 Steve Underwood and 2007 David Rowe
11  *
12  * All rights reserved.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2, as
16  * published by the Free Software Foundation.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27
28 #ifndef __ECHO_H
29 #define __ECHO_H
30
31 /*
32 Line echo cancellation for voice
33
34 What does it do?
35
36 This module aims to provide G.168-2002 compliant echo cancellation, to remove
37 electrical echoes (e.g. from 2-4 wire hybrids) from voice calls.
38
39
40 How does it work?
41
42 The heart of the echo cancellor is FIR filter. This is adapted to match the
43 echo impulse response of the telephone line. It must be long enough to
44 adequately cover the duration of that impulse response. The signal transmitted
45 to the telephone line is passed through the FIR filter. Once the FIR is
46 properly adapted, the resulting output is an estimate of the echo signal
47 received from the line. This is subtracted from the received signal. The result
48 is an estimate of the signal which originated at the far end of the line, free
49 from echos of our own transmitted signal.
50
51 The least mean squares (LMS) algorithm is attributed to Widrow and Hoff, and
52 was introduced in 1960. It is the commonest form of filter adaption used in
53 things like modem line equalisers and line echo cancellers. There it works very
54 well.  However, it only works well for signals of constant amplitude. It works
55 very poorly for things like speech echo cancellation, where the signal level
56 varies widely.  This is quite easy to fix. If the signal level is normalised -
57 similar to applying AGC - LMS can work as well for a signal of varying
58 amplitude as it does for a modem signal. This normalised least mean squares
59 (NLMS) algorithm is the commonest one used for speech echo cancellation. Many
60 other algorithms exist - e.g. RLS (essentially the same as Kalman filtering),
61 FAP, etc. Some perform significantly better than NLMS.  However, factors such
62 as computational complexity and patents favour the use of NLMS.
63
64 A simple refinement to NLMS can improve its performance with speech. NLMS tends
65 to adapt best to the strongest parts of a signal. If the signal is white noise,
66 the NLMS algorithm works very well. However, speech has more low frequency than
67 high frequency content. Pre-whitening (i.e. filtering the signal to flatten its
68 spectrum) the echo signal improves the adapt rate for speech, and ensures the
69 final residual signal is not heavily biased towards high frequencies. A very
70 low complexity filter is adequate for this, so pre-whitening adds little to the
71 compute requirements of the echo canceller.
72
73 An FIR filter adapted using pre-whitened NLMS performs well, provided certain
74 conditions are met:
75
76     - The transmitted signal has poor self-correlation.
77     - There is no signal being generated within the environment being
78       cancelled.
79
80 The difficulty is that neither of these can be guaranteed.
81
82 If the adaption is performed while transmitting noise (or something fairly
83 noise like, such as voice) the adaption works very well. If the adaption is
84 performed while transmitting something highly correlative (typically narrow
85 band energy such as signalling tones or DTMF), the adaption can go seriously
86 wrong. The reason is there is only one solution for the adaption on a near
87 random signal - the impulse response of the line. For a repetitive signal,
88 there are any number of solutions which converge the adaption, and nothing
89 guides the adaption to choose the generalised one. Allowing an untrained
90 canceller to converge on this kind of narrowband energy probably a good thing,
91 since at least it cancels the tones. Allowing a well converged canceller to
92 continue converging on such energy is just a way to ruin its generalised
93 adaption. A narrowband detector is needed, so adapation can be suspended at
94 appropriate times.
95
96 The adaption process is based on trying to eliminate the received signal. When
97 there is any signal from within the environment being cancelled it may upset
98 the adaption process. Similarly, if the signal we are transmitting is small,
99 noise may dominate and disturb the adaption process. If we can ensure that the
100 adaption is only performed when we are transmitting a significant signal level,
101 and the environment is not, things will be OK. Clearly, it is easy to tell when
102 we are sending a significant signal. Telling, if the environment is generating
103 a significant signal, and doing it with sufficient speed that the adaption will
104 not have diverged too much more we stop it, is a little harder.
105
106 The key problem in detecting when the environment is sourcing significant
107 energy is that we must do this very quickly. Given a reasonably long sample of
108 the received signal, there are a number of strategies which may be used to
109 assess whether that signal contains a strong far end component. However, by the
110 time that assessment is complete the far end signal will have already caused
111 major mis-convergence in the adaption process. An assessment algorithm is
112 needed which produces a fairly accurate result from a very short burst of far
113 end energy.
114
115 How do I use it?
116
117 The echo cancellor processes both the transmit and receive streams sample by
118 sample. The processing function is not declared inline. Unfortunately,
119 cancellation requires many operations per sample, so the call overhead is only
120 a minor burden.
121 */
122
123 #include "fir.h"
124 #include "oslec.h"
125
126 /*
127     G.168 echo canceller descriptor. This defines the working state for a line
128     echo canceller.
129 */
130 struct oslec_state {
131         int16_t tx, rx;
132         int16_t clean;
133         int16_t clean_nlp;
134
135         int nonupdate_dwell;
136         int curr_pos;
137         int taps;
138         int log2taps;
139         int adaption_mode;
140
141         int cond_met;
142         int32_t Pstates;
143         int16_t adapt;
144         int32_t factor;
145         int16_t shift;
146
147         /* Average levels and averaging filter states */
148         int Ltxacc, Lrxacc, Lcleanacc, Lclean_bgacc;
149         int Ltx, Lrx;
150         int Lclean;
151         int Lclean_bg;
152         int Lbgn, Lbgn_acc, Lbgn_upper, Lbgn_upper_acc;
153
154         /* foreground and background filter states */
155         struct fir16_state_t fir_state;
156         struct fir16_state_t fir_state_bg;
157         int16_t *fir_taps16[2];
158
159         /* DC blocking filter states */
160         int tx_1, tx_2, rx_1, rx_2;
161
162         /* optional High Pass Filter states */
163         int32_t xvtx[5], yvtx[5];
164         int32_t xvrx[5], yvrx[5];
165
166         /* Parameters for the optional Hoth noise generator */
167         int cng_level;
168         int cng_rndnum;
169         int cng_filter;
170
171         /* snapshot sample of coeffs used for development */
172         int16_t *snapshot;
173 };
174
175 #endif /* __ECHO_H */