MIPS: Enable ISA_DMA_API config to fix build failure
[pandora-kernel.git] / drivers / spi / spi_mpc8xxx.c
1 /*
2  * MPC8xxx SPI controller driver.
3  *
4  * Maintainer: Kumar Gala
5  *
6  * Copyright (C) 2006 Polycom, Inc.
7  *
8  * CPM SPI and QE buffer descriptors mode support:
9  * Copyright (c) 2009  MontaVista Software, Inc.
10  * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
11  *
12  * This program is free software; you can redistribute  it and/or modify it
13  * under  the terms of  the GNU General  Public License as published by the
14  * Free Software Foundation;  either version 2 of the  License, or (at your
15  * option) any later version.
16  */
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/bug.h>
22 #include <linux/errno.h>
23 #include <linux/err.h>
24 #include <linux/io.h>
25 #include <linux/completion.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/irq.h>
29 #include <linux/device.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi_bitbang.h>
32 #include <linux/platform_device.h>
33 #include <linux/fsl_devices.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/of.h>
38 #include <linux/of_platform.h>
39 #include <linux/gpio.h>
40 #include <linux/of_gpio.h>
41 #include <linux/slab.h>
42
43 #include <sysdev/fsl_soc.h>
44 #include <asm/cpm.h>
45 #include <asm/qe.h>
46 #include <asm/irq.h>
47
48 /* CPM1 and CPM2 are mutually exclusive. */
49 #ifdef CONFIG_CPM1
50 #include <asm/cpm1.h>
51 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0)
52 #else
53 #include <asm/cpm2.h>
54 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0)
55 #endif
56
57 /* SPI Controller registers */
58 struct mpc8xxx_spi_reg {
59         u8 res1[0x20];
60         __be32 mode;
61         __be32 event;
62         __be32 mask;
63         __be32 command;
64         __be32 transmit;
65         __be32 receive;
66 };
67
68 /* SPI Controller mode register definitions */
69 #define SPMODE_LOOP             (1 << 30)
70 #define SPMODE_CI_INACTIVEHIGH  (1 << 29)
71 #define SPMODE_CP_BEGIN_EDGECLK (1 << 28)
72 #define SPMODE_DIV16            (1 << 27)
73 #define SPMODE_REV              (1 << 26)
74 #define SPMODE_MS               (1 << 25)
75 #define SPMODE_ENABLE           (1 << 24)
76 #define SPMODE_LEN(x)           ((x) << 20)
77 #define SPMODE_PM(x)            ((x) << 16)
78 #define SPMODE_OP               (1 << 14)
79 #define SPMODE_CG(x)            ((x) << 7)
80
81 /*
82  * Default for SPI Mode:
83  *      SPI MODE 0 (inactive low, phase middle, MSB, 8-bit length, slow clk
84  */
85 #define SPMODE_INIT_VAL (SPMODE_CI_INACTIVEHIGH | SPMODE_DIV16 | SPMODE_REV | \
86                          SPMODE_MS | SPMODE_LEN(7) | SPMODE_PM(0xf))
87
88 /* SPIE register values */
89 #define SPIE_NE         0x00000200      /* Not empty */
90 #define SPIE_NF         0x00000100      /* Not full */
91
92 /* SPIM register values */
93 #define SPIM_NE         0x00000200      /* Not empty */
94 #define SPIM_NF         0x00000100      /* Not full */
95
96 #define SPIE_TXB        0x00000200      /* Last char is written to tx fifo */
97 #define SPIE_RXB        0x00000100      /* Last char is written to rx buf */
98
99 /* SPCOM register values */
100 #define SPCOM_STR       (1 << 23)       /* Start transmit */
101
102 #define SPI_PRAM_SIZE   0x100
103 #define SPI_MRBLR       ((unsigned int)PAGE_SIZE)
104
105 /* SPI Controller driver's private data. */
106 struct mpc8xxx_spi {
107         struct device *dev;
108         struct mpc8xxx_spi_reg __iomem *base;
109
110         /* rx & tx bufs from the spi_transfer */
111         const void *tx;
112         void *rx;
113
114         int subblock;
115         struct spi_pram __iomem *pram;
116         struct cpm_buf_desc __iomem *tx_bd;
117         struct cpm_buf_desc __iomem *rx_bd;
118
119         struct spi_transfer *xfer_in_progress;
120
121         /* dma addresses for CPM transfers */
122         dma_addr_t tx_dma;
123         dma_addr_t rx_dma;
124         bool map_tx_dma;
125         bool map_rx_dma;
126
127         dma_addr_t dma_dummy_tx;
128         dma_addr_t dma_dummy_rx;
129
130         /* functions to deal with different sized buffers */
131         void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
132         u32(*get_tx) (struct mpc8xxx_spi *);
133
134         unsigned int count;
135         unsigned int irq;
136
137         unsigned nsecs;         /* (clock cycle time)/2 */
138
139         u32 spibrg;             /* SPIBRG input clock */
140         u32 rx_shift;           /* RX data reg shift when in qe mode */
141         u32 tx_shift;           /* TX data reg shift when in qe mode */
142
143         unsigned int flags;
144
145         struct workqueue_struct *workqueue;
146         struct work_struct work;
147
148         struct list_head queue;
149         spinlock_t lock;
150
151         struct completion done;
152 };
153
154 static void *mpc8xxx_dummy_rx;
155 static DEFINE_MUTEX(mpc8xxx_dummy_rx_lock);
156 static int mpc8xxx_dummy_rx_refcnt;
157
158 struct spi_mpc8xxx_cs {
159         /* functions to deal with different sized buffers */
160         void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
161         u32 (*get_tx) (struct mpc8xxx_spi *);
162         u32 rx_shift;           /* RX data reg shift when in qe mode */
163         u32 tx_shift;           /* TX data reg shift when in qe mode */
164         u32 hw_mode;            /* Holds HW mode register settings */
165 };
166
167 static inline void mpc8xxx_spi_write_reg(__be32 __iomem *reg, u32 val)
168 {
169         out_be32(reg, val);
170 }
171
172 static inline u32 mpc8xxx_spi_read_reg(__be32 __iomem *reg)
173 {
174         return in_be32(reg);
175 }
176
177 #define MPC83XX_SPI_RX_BUF(type)                                          \
178 static                                                                    \
179 void mpc8xxx_spi_rx_buf_##type(u32 data, struct mpc8xxx_spi *mpc8xxx_spi) \
180 {                                                                         \
181         type *rx = mpc8xxx_spi->rx;                                       \
182         *rx++ = (type)(data >> mpc8xxx_spi->rx_shift);                    \
183         mpc8xxx_spi->rx = rx;                                             \
184 }
185
186 #define MPC83XX_SPI_TX_BUF(type)                                \
187 static                                                          \
188 u32 mpc8xxx_spi_tx_buf_##type(struct mpc8xxx_spi *mpc8xxx_spi)  \
189 {                                                               \
190         u32 data;                                               \
191         const type *tx = mpc8xxx_spi->tx;                       \
192         if (!tx)                                                \
193                 return 0;                                       \
194         data = *tx++ << mpc8xxx_spi->tx_shift;                  \
195         mpc8xxx_spi->tx = tx;                                   \
196         return data;                                            \
197 }
198
199 MPC83XX_SPI_RX_BUF(u8)
200 MPC83XX_SPI_RX_BUF(u16)
201 MPC83XX_SPI_RX_BUF(u32)
202 MPC83XX_SPI_TX_BUF(u8)
203 MPC83XX_SPI_TX_BUF(u16)
204 MPC83XX_SPI_TX_BUF(u32)
205
206 static void mpc8xxx_spi_change_mode(struct spi_device *spi)
207 {
208         struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
209         struct spi_mpc8xxx_cs *cs = spi->controller_state;
210         __be32 __iomem *mode = &mspi->base->mode;
211         unsigned long flags;
212
213         if (cs->hw_mode == mpc8xxx_spi_read_reg(mode))
214                 return;
215
216         /* Turn off IRQs locally to minimize time that SPI is disabled. */
217         local_irq_save(flags);
218
219         /* Turn off SPI unit prior changing mode */
220         mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
221
222         /* When in CPM mode, we need to reinit tx and rx. */
223         if (mspi->flags & SPI_CPM_MODE) {
224                 if (mspi->flags & SPI_QE) {
225                         qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock,
226                                      QE_CR_PROTOCOL_UNSPECIFIED, 0);
227                 } else {
228                         cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX);
229                         if (mspi->flags & SPI_CPM1) {
230                                 out_be16(&mspi->pram->rbptr,
231                                          in_be16(&mspi->pram->rbase));
232                                 out_be16(&mspi->pram->tbptr,
233                                          in_be16(&mspi->pram->tbase));
234                         }
235                 }
236         }
237         mpc8xxx_spi_write_reg(mode, cs->hw_mode);
238         local_irq_restore(flags);
239 }
240
241 static void mpc8xxx_spi_chipselect(struct spi_device *spi, int value)
242 {
243         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
244         struct fsl_spi_platform_data *pdata = spi->dev.parent->platform_data;
245         bool pol = spi->mode & SPI_CS_HIGH;
246         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
247
248         if (value == BITBANG_CS_INACTIVE) {
249                 if (pdata->cs_control)
250                         pdata->cs_control(spi, !pol);
251         }
252
253         if (value == BITBANG_CS_ACTIVE) {
254                 mpc8xxx_spi->rx_shift = cs->rx_shift;
255                 mpc8xxx_spi->tx_shift = cs->tx_shift;
256                 mpc8xxx_spi->get_rx = cs->get_rx;
257                 mpc8xxx_spi->get_tx = cs->get_tx;
258
259                 mpc8xxx_spi_change_mode(spi);
260
261                 if (pdata->cs_control)
262                         pdata->cs_control(spi, pol);
263         }
264 }
265
266 static int
267 mspi_apply_cpu_mode_quirks(struct spi_mpc8xxx_cs *cs,
268                            struct spi_device *spi,
269                            struct mpc8xxx_spi *mpc8xxx_spi,
270                            int bits_per_word)
271 {
272         cs->rx_shift = 0;
273         cs->tx_shift = 0;
274         if (bits_per_word <= 8) {
275                 cs->get_rx = mpc8xxx_spi_rx_buf_u8;
276                 cs->get_tx = mpc8xxx_spi_tx_buf_u8;
277                 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
278                         cs->rx_shift = 16;
279                         cs->tx_shift = 24;
280                 }
281         } else if (bits_per_word <= 16) {
282                 cs->get_rx = mpc8xxx_spi_rx_buf_u16;
283                 cs->get_tx = mpc8xxx_spi_tx_buf_u16;
284                 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
285                         cs->rx_shift = 16;
286                         cs->tx_shift = 16;
287                 }
288         } else if (bits_per_word <= 32) {
289                 cs->get_rx = mpc8xxx_spi_rx_buf_u32;
290                 cs->get_tx = mpc8xxx_spi_tx_buf_u32;
291         } else
292                 return -EINVAL;
293
294         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE &&
295             spi->mode & SPI_LSB_FIRST) {
296                 cs->tx_shift = 0;
297                 if (bits_per_word <= 8)
298                         cs->rx_shift = 8;
299                 else
300                         cs->rx_shift = 0;
301         }
302         mpc8xxx_spi->rx_shift = cs->rx_shift;
303         mpc8xxx_spi->tx_shift = cs->tx_shift;
304         mpc8xxx_spi->get_rx = cs->get_rx;
305         mpc8xxx_spi->get_tx = cs->get_tx;
306
307         return bits_per_word;
308 }
309
310 static int
311 mspi_apply_qe_mode_quirks(struct spi_mpc8xxx_cs *cs,
312                           struct spi_device *spi,
313                           int bits_per_word)
314 {
315         /* QE uses Little Endian for words > 8
316          * so transform all words > 8 into 8 bits
317          * Unfortnatly that doesn't work for LSB so
318          * reject these for now */
319         /* Note: 32 bits word, LSB works iff
320          * tfcr/rfcr is set to CPMFCR_GBL */
321         if (spi->mode & SPI_LSB_FIRST &&
322             bits_per_word > 8)
323                 return -EINVAL;
324         if (bits_per_word > 8)
325                 return 8; /* pretend its 8 bits */
326         return bits_per_word;
327 }
328
329 static
330 int mpc8xxx_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
331 {
332         struct mpc8xxx_spi *mpc8xxx_spi;
333         int bits_per_word;
334         u8 pm;
335         u32 hz;
336         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
337
338         mpc8xxx_spi = spi_master_get_devdata(spi->master);
339
340         if (t) {
341                 bits_per_word = t->bits_per_word;
342                 hz = t->speed_hz;
343         } else {
344                 bits_per_word = 0;
345                 hz = 0;
346         }
347
348         /* spi_transfer level calls that work per-word */
349         if (!bits_per_word)
350                 bits_per_word = spi->bits_per_word;
351
352         /* Make sure its a bit width we support [4..16, 32] */
353         if ((bits_per_word < 4)
354             || ((bits_per_word > 16) && (bits_per_word != 32)))
355                 return -EINVAL;
356
357         if (!hz)
358                 hz = spi->max_speed_hz;
359
360         if (!(mpc8xxx_spi->flags & SPI_CPM_MODE))
361                 bits_per_word = mspi_apply_cpu_mode_quirks(cs, spi,
362                                                            mpc8xxx_spi,
363                                                            bits_per_word);
364         else if (mpc8xxx_spi->flags & SPI_QE)
365                 bits_per_word = mspi_apply_qe_mode_quirks(cs, spi,
366                                                           bits_per_word);
367
368         if (bits_per_word < 0)
369                 return bits_per_word;
370
371         if (bits_per_word == 32)
372                 bits_per_word = 0;
373         else
374                 bits_per_word = bits_per_word - 1;
375
376         /* mask out bits we are going to set */
377         cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16
378                                   | SPMODE_PM(0xF));
379
380         cs->hw_mode |= SPMODE_LEN(bits_per_word);
381
382         if ((mpc8xxx_spi->spibrg / hz) > 64) {
383                 cs->hw_mode |= SPMODE_DIV16;
384                 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
385
386                 WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
387                           "Will use %d Hz instead.\n", dev_name(&spi->dev),
388                           hz, mpc8xxx_spi->spibrg / 1024);
389                 if (pm > 16)
390                         pm = 16;
391         } else
392                 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
393         if (pm)
394                 pm--;
395
396         cs->hw_mode |= SPMODE_PM(pm);
397
398         mpc8xxx_spi_change_mode(spi);
399         return 0;
400 }
401
402 static void mpc8xxx_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi)
403 {
404         struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd;
405         struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd;
406         unsigned int xfer_len = min(mspi->count, SPI_MRBLR);
407         unsigned int xfer_ofs;
408
409         xfer_ofs = mspi->xfer_in_progress->len - mspi->count;
410
411         out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs);
412         out_be16(&rx_bd->cbd_datlen, 0);
413         out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP);
414
415         out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs);
416         out_be16(&tx_bd->cbd_datlen, xfer_len);
417         out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP |
418                                  BD_SC_LAST);
419
420         /* start transfer */
421         mpc8xxx_spi_write_reg(&mspi->base->command, SPCOM_STR);
422 }
423
424 static int mpc8xxx_spi_cpm_bufs(struct mpc8xxx_spi *mspi,
425                                 struct spi_transfer *t, bool is_dma_mapped)
426 {
427         struct device *dev = mspi->dev;
428
429         if (is_dma_mapped) {
430                 mspi->map_tx_dma = 0;
431                 mspi->map_rx_dma = 0;
432         } else {
433                 mspi->map_tx_dma = 1;
434                 mspi->map_rx_dma = 1;
435         }
436
437         if (!t->tx_buf) {
438                 mspi->tx_dma = mspi->dma_dummy_tx;
439                 mspi->map_tx_dma = 0;
440         }
441
442         if (!t->rx_buf) {
443                 mspi->rx_dma = mspi->dma_dummy_rx;
444                 mspi->map_rx_dma = 0;
445         }
446
447         if (mspi->map_tx_dma) {
448                 void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */
449
450                 mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len,
451                                               DMA_TO_DEVICE);
452                 if (dma_mapping_error(dev, mspi->tx_dma)) {
453                         dev_err(dev, "unable to map tx dma\n");
454                         return -ENOMEM;
455                 }
456         } else if (t->tx_buf) {
457                 mspi->tx_dma = t->tx_dma;
458         }
459
460         if (mspi->map_rx_dma) {
461                 mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len,
462                                               DMA_FROM_DEVICE);
463                 if (dma_mapping_error(dev, mspi->rx_dma)) {
464                         dev_err(dev, "unable to map rx dma\n");
465                         goto err_rx_dma;
466                 }
467         } else if (t->rx_buf) {
468                 mspi->rx_dma = t->rx_dma;
469         }
470
471         /* enable rx ints */
472         mpc8xxx_spi_write_reg(&mspi->base->mask, SPIE_RXB);
473
474         mspi->xfer_in_progress = t;
475         mspi->count = t->len;
476
477         /* start CPM transfers */
478         mpc8xxx_spi_cpm_bufs_start(mspi);
479
480         return 0;
481
482 err_rx_dma:
483         if (mspi->map_tx_dma)
484                 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
485         return -ENOMEM;
486 }
487
488 static void mpc8xxx_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi)
489 {
490         struct device *dev = mspi->dev;
491         struct spi_transfer *t = mspi->xfer_in_progress;
492
493         if (mspi->map_tx_dma)
494                 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
495         if (mspi->map_rx_dma)
496                 dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE);
497         mspi->xfer_in_progress = NULL;
498 }
499
500 static int mpc8xxx_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
501                                 struct spi_transfer *t, unsigned int len)
502 {
503         u32 word;
504
505         mspi->count = len;
506
507         /* enable rx ints */
508         mpc8xxx_spi_write_reg(&mspi->base->mask, SPIM_NE);
509
510         /* transmit word */
511         word = mspi->get_tx(mspi);
512         mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
513
514         return 0;
515 }
516
517 static int mpc8xxx_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
518                             bool is_dma_mapped)
519 {
520         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
521         unsigned int len = t->len;
522         u8 bits_per_word;
523         int ret;
524
525         bits_per_word = spi->bits_per_word;
526         if (t->bits_per_word)
527                 bits_per_word = t->bits_per_word;
528
529         if (bits_per_word > 8) {
530                 /* invalid length? */
531                 if (len & 1)
532                         return -EINVAL;
533                 len /= 2;
534         }
535         if (bits_per_word > 16) {
536                 /* invalid length? */
537                 if (len & 1)
538                         return -EINVAL;
539                 len /= 2;
540         }
541
542         mpc8xxx_spi->tx = t->tx_buf;
543         mpc8xxx_spi->rx = t->rx_buf;
544
545         INIT_COMPLETION(mpc8xxx_spi->done);
546
547         if (mpc8xxx_spi->flags & SPI_CPM_MODE)
548                 ret = mpc8xxx_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped);
549         else
550                 ret = mpc8xxx_spi_cpu_bufs(mpc8xxx_spi, t, len);
551         if (ret)
552                 return ret;
553
554         wait_for_completion(&mpc8xxx_spi->done);
555
556         /* disable rx ints */
557         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
558
559         if (mpc8xxx_spi->flags & SPI_CPM_MODE)
560                 mpc8xxx_spi_cpm_bufs_complete(mpc8xxx_spi);
561
562         return mpc8xxx_spi->count;
563 }
564
565 static void mpc8xxx_spi_do_one_msg(struct spi_message *m)
566 {
567         struct spi_device *spi = m->spi;
568         struct spi_transfer *t;
569         unsigned int cs_change;
570         const int nsecs = 50;
571         int status;
572
573         cs_change = 1;
574         status = 0;
575         list_for_each_entry(t, &m->transfers, transfer_list) {
576                 if (t->bits_per_word || t->speed_hz) {
577                         /* Don't allow changes if CS is active */
578                         status = -EINVAL;
579
580                         if (cs_change)
581                                 status = mpc8xxx_spi_setup_transfer(spi, t);
582                         if (status < 0)
583                                 break;
584                 }
585
586                 if (cs_change) {
587                         mpc8xxx_spi_chipselect(spi, BITBANG_CS_ACTIVE);
588                         ndelay(nsecs);
589                 }
590                 cs_change = t->cs_change;
591                 if (t->len)
592                         status = mpc8xxx_spi_bufs(spi, t, m->is_dma_mapped);
593                 if (status) {
594                         status = -EMSGSIZE;
595                         break;
596                 }
597                 m->actual_length += t->len;
598
599                 if (t->delay_usecs)
600                         udelay(t->delay_usecs);
601
602                 if (cs_change) {
603                         ndelay(nsecs);
604                         mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
605                         ndelay(nsecs);
606                 }
607         }
608
609         m->status = status;
610         m->complete(m->context);
611
612         if (status || !cs_change) {
613                 ndelay(nsecs);
614                 mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
615         }
616
617         mpc8xxx_spi_setup_transfer(spi, NULL);
618 }
619
620 static void mpc8xxx_spi_work(struct work_struct *work)
621 {
622         struct mpc8xxx_spi *mpc8xxx_spi = container_of(work, struct mpc8xxx_spi,
623                                                        work);
624
625         spin_lock_irq(&mpc8xxx_spi->lock);
626         while (!list_empty(&mpc8xxx_spi->queue)) {
627                 struct spi_message *m = container_of(mpc8xxx_spi->queue.next,
628                                                    struct spi_message, queue);
629
630                 list_del_init(&m->queue);
631                 spin_unlock_irq(&mpc8xxx_spi->lock);
632
633                 mpc8xxx_spi_do_one_msg(m);
634
635                 spin_lock_irq(&mpc8xxx_spi->lock);
636         }
637         spin_unlock_irq(&mpc8xxx_spi->lock);
638 }
639
640 static int mpc8xxx_spi_setup(struct spi_device *spi)
641 {
642         struct mpc8xxx_spi *mpc8xxx_spi;
643         int retval;
644         u32 hw_mode;
645         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
646
647         if (!spi->max_speed_hz)
648                 return -EINVAL;
649
650         if (!cs) {
651                 cs = kzalloc(sizeof *cs, GFP_KERNEL);
652                 if (!cs)
653                         return -ENOMEM;
654                 spi->controller_state = cs;
655         }
656         mpc8xxx_spi = spi_master_get_devdata(spi->master);
657
658         hw_mode = cs->hw_mode; /* Save original settings */
659         cs->hw_mode = mpc8xxx_spi_read_reg(&mpc8xxx_spi->base->mode);
660         /* mask out bits we are going to set */
661         cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH
662                          | SPMODE_REV | SPMODE_LOOP);
663
664         if (spi->mode & SPI_CPHA)
665                 cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK;
666         if (spi->mode & SPI_CPOL)
667                 cs->hw_mode |= SPMODE_CI_INACTIVEHIGH;
668         if (!(spi->mode & SPI_LSB_FIRST))
669                 cs->hw_mode |= SPMODE_REV;
670         if (spi->mode & SPI_LOOP)
671                 cs->hw_mode |= SPMODE_LOOP;
672
673         retval = mpc8xxx_spi_setup_transfer(spi, NULL);
674         if (retval < 0) {
675                 cs->hw_mode = hw_mode; /* Restore settings */
676                 return retval;
677         }
678         return 0;
679 }
680
681 static void mpc8xxx_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events)
682 {
683         u16 len;
684
685         dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__,
686                 in_be16(&mspi->rx_bd->cbd_datlen), mspi->count);
687
688         len = in_be16(&mspi->rx_bd->cbd_datlen);
689         if (len > mspi->count) {
690                 WARN_ON(1);
691                 len = mspi->count;
692         }
693
694         /* Clear the events */
695         mpc8xxx_spi_write_reg(&mspi->base->event, events);
696
697         mspi->count -= len;
698         if (mspi->count)
699                 mpc8xxx_spi_cpm_bufs_start(mspi);
700         else
701                 complete(&mspi->done);
702 }
703
704 static void mpc8xxx_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
705 {
706         /* We need handle RX first */
707         if (events & SPIE_NE) {
708                 u32 rx_data = mpc8xxx_spi_read_reg(&mspi->base->receive);
709
710                 if (mspi->rx)
711                         mspi->get_rx(rx_data, mspi);
712         }
713
714         if ((events & SPIE_NF) == 0)
715                 /* spin until TX is done */
716                 while (((events =
717                         mpc8xxx_spi_read_reg(&mspi->base->event)) &
718                                                 SPIE_NF) == 0)
719                         cpu_relax();
720
721         /* Clear the events */
722         mpc8xxx_spi_write_reg(&mspi->base->event, events);
723
724         mspi->count -= 1;
725         if (mspi->count) {
726                 u32 word = mspi->get_tx(mspi);
727
728                 mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
729         } else {
730                 complete(&mspi->done);
731         }
732 }
733
734 static irqreturn_t mpc8xxx_spi_irq(s32 irq, void *context_data)
735 {
736         struct mpc8xxx_spi *mspi = context_data;
737         irqreturn_t ret = IRQ_NONE;
738         u32 events;
739
740         /* Get interrupt events(tx/rx) */
741         events = mpc8xxx_spi_read_reg(&mspi->base->event);
742         if (events)
743                 ret = IRQ_HANDLED;
744
745         dev_dbg(mspi->dev, "%s: events %x\n", __func__, events);
746
747         if (mspi->flags & SPI_CPM_MODE)
748                 mpc8xxx_spi_cpm_irq(mspi, events);
749         else
750                 mpc8xxx_spi_cpu_irq(mspi, events);
751
752         return ret;
753 }
754
755 static int mpc8xxx_spi_transfer(struct spi_device *spi,
756                                 struct spi_message *m)
757 {
758         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
759         unsigned long flags;
760
761         m->actual_length = 0;
762         m->status = -EINPROGRESS;
763
764         spin_lock_irqsave(&mpc8xxx_spi->lock, flags);
765         list_add_tail(&m->queue, &mpc8xxx_spi->queue);
766         queue_work(mpc8xxx_spi->workqueue, &mpc8xxx_spi->work);
767         spin_unlock_irqrestore(&mpc8xxx_spi->lock, flags);
768
769         return 0;
770 }
771
772
773 static void mpc8xxx_spi_cleanup(struct spi_device *spi)
774 {
775         kfree(spi->controller_state);
776 }
777
778 static void *mpc8xxx_spi_alloc_dummy_rx(void)
779 {
780         mutex_lock(&mpc8xxx_dummy_rx_lock);
781
782         if (!mpc8xxx_dummy_rx)
783                 mpc8xxx_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL);
784         if (mpc8xxx_dummy_rx)
785                 mpc8xxx_dummy_rx_refcnt++;
786
787         mutex_unlock(&mpc8xxx_dummy_rx_lock);
788
789         return mpc8xxx_dummy_rx;
790 }
791
792 static void mpc8xxx_spi_free_dummy_rx(void)
793 {
794         mutex_lock(&mpc8xxx_dummy_rx_lock);
795
796         switch (mpc8xxx_dummy_rx_refcnt) {
797         case 0:
798                 WARN_ON(1);
799                 break;
800         case 1:
801                 kfree(mpc8xxx_dummy_rx);
802                 mpc8xxx_dummy_rx = NULL;
803                 /* fall through */
804         default:
805                 mpc8xxx_dummy_rx_refcnt--;
806                 break;
807         }
808
809         mutex_unlock(&mpc8xxx_dummy_rx_lock);
810 }
811
812 static unsigned long mpc8xxx_spi_cpm_get_pram(struct mpc8xxx_spi *mspi)
813 {
814         struct device *dev = mspi->dev;
815         struct device_node *np = dev->of_node;
816         const u32 *iprop;
817         int size;
818         unsigned long spi_base_ofs;
819         unsigned long pram_ofs = -ENOMEM;
820
821         /* Can't use of_address_to_resource(), QE muram isn't at 0. */
822         iprop = of_get_property(np, "reg", &size);
823
824         /* QE with a fixed pram location? */
825         if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4)
826                 return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE);
827
828         /* QE but with a dynamic pram location? */
829         if (mspi->flags & SPI_QE) {
830                 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
831                 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock,
832                                 QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs);
833                 return pram_ofs;
834         }
835
836         /* CPM1 and CPM2 pram must be at a fixed addr. */
837         if (!iprop || size != sizeof(*iprop) * 4)
838                 return -ENOMEM;
839
840         spi_base_ofs = cpm_muram_alloc_fixed(iprop[2], 2);
841         if (IS_ERR_VALUE(spi_base_ofs))
842                 return -ENOMEM;
843
844         if (mspi->flags & SPI_CPM2) {
845                 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
846                 if (!IS_ERR_VALUE(pram_ofs)) {
847                         u16 __iomem *spi_base = cpm_muram_addr(spi_base_ofs);
848
849                         out_be16(spi_base, pram_ofs);
850                 }
851         } else {
852                 struct spi_pram __iomem *pram = cpm_muram_addr(spi_base_ofs);
853                 u16 rpbase = in_be16(&pram->rpbase);
854
855                 /* Microcode relocation patch applied? */
856                 if (rpbase)
857                         pram_ofs = rpbase;
858                 else
859                         return spi_base_ofs;
860         }
861
862         cpm_muram_free(spi_base_ofs);
863         return pram_ofs;
864 }
865
866 static int mpc8xxx_spi_cpm_init(struct mpc8xxx_spi *mspi)
867 {
868         struct device *dev = mspi->dev;
869         struct device_node *np = dev->of_node;
870         const u32 *iprop;
871         int size;
872         unsigned long pram_ofs;
873         unsigned long bds_ofs;
874
875         if (!(mspi->flags & SPI_CPM_MODE))
876                 return 0;
877
878         if (!mpc8xxx_spi_alloc_dummy_rx())
879                 return -ENOMEM;
880
881         if (mspi->flags & SPI_QE) {
882                 iprop = of_get_property(np, "cell-index", &size);
883                 if (iprop && size == sizeof(*iprop))
884                         mspi->subblock = *iprop;
885
886                 switch (mspi->subblock) {
887                 default:
888                         dev_warn(dev, "cell-index unspecified, assuming SPI1");
889                         /* fall through */
890                 case 0:
891                         mspi->subblock = QE_CR_SUBBLOCK_SPI1;
892                         break;
893                 case 1:
894                         mspi->subblock = QE_CR_SUBBLOCK_SPI2;
895                         break;
896                 }
897         }
898
899         pram_ofs = mpc8xxx_spi_cpm_get_pram(mspi);
900         if (IS_ERR_VALUE(pram_ofs)) {
901                 dev_err(dev, "can't allocate spi parameter ram\n");
902                 goto err_pram;
903         }
904
905         bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) +
906                                   sizeof(*mspi->rx_bd), 8);
907         if (IS_ERR_VALUE(bds_ofs)) {
908                 dev_err(dev, "can't allocate bds\n");
909                 goto err_bds;
910         }
911
912         mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE,
913                                             DMA_TO_DEVICE);
914         if (dma_mapping_error(dev, mspi->dma_dummy_tx)) {
915                 dev_err(dev, "unable to map dummy tx buffer\n");
916                 goto err_dummy_tx;
917         }
918
919         mspi->dma_dummy_rx = dma_map_single(dev, mpc8xxx_dummy_rx, SPI_MRBLR,
920                                             DMA_FROM_DEVICE);
921         if (dma_mapping_error(dev, mspi->dma_dummy_rx)) {
922                 dev_err(dev, "unable to map dummy rx buffer\n");
923                 goto err_dummy_rx;
924         }
925
926         mspi->pram = cpm_muram_addr(pram_ofs);
927
928         mspi->tx_bd = cpm_muram_addr(bds_ofs);
929         mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd));
930
931         /* Initialize parameter ram. */
932         out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd));
933         out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd));
934         out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL);
935         out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL);
936         out_be16(&mspi->pram->mrblr, SPI_MRBLR);
937         out_be32(&mspi->pram->rstate, 0);
938         out_be32(&mspi->pram->rdp, 0);
939         out_be16(&mspi->pram->rbptr, 0);
940         out_be16(&mspi->pram->rbc, 0);
941         out_be32(&mspi->pram->rxtmp, 0);
942         out_be32(&mspi->pram->tstate, 0);
943         out_be32(&mspi->pram->tdp, 0);
944         out_be16(&mspi->pram->tbptr, 0);
945         out_be16(&mspi->pram->tbc, 0);
946         out_be32(&mspi->pram->txtmp, 0);
947
948         return 0;
949
950 err_dummy_rx:
951         dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
952 err_dummy_tx:
953         cpm_muram_free(bds_ofs);
954 err_bds:
955         cpm_muram_free(pram_ofs);
956 err_pram:
957         mpc8xxx_spi_free_dummy_rx();
958         return -ENOMEM;
959 }
960
961 static void mpc8xxx_spi_cpm_free(struct mpc8xxx_spi *mspi)
962 {
963         struct device *dev = mspi->dev;
964
965         dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE);
966         dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
967         cpm_muram_free(cpm_muram_offset(mspi->tx_bd));
968         cpm_muram_free(cpm_muram_offset(mspi->pram));
969         mpc8xxx_spi_free_dummy_rx();
970 }
971
972 static const char *mpc8xxx_spi_strmode(unsigned int flags)
973 {
974         if (flags & SPI_QE_CPU_MODE) {
975                 return "QE CPU";
976         } else if (flags & SPI_CPM_MODE) {
977                 if (flags & SPI_QE)
978                         return "QE";
979                 else if (flags & SPI_CPM2)
980                         return "CPM2";
981                 else
982                         return "CPM1";
983         }
984         return "CPU";
985 }
986
987 static struct spi_master * __devinit
988 mpc8xxx_spi_probe(struct device *dev, struct resource *mem, unsigned int irq)
989 {
990         struct fsl_spi_platform_data *pdata = dev->platform_data;
991         struct spi_master *master;
992         struct mpc8xxx_spi *mpc8xxx_spi;
993         u32 regval;
994         int ret = 0;
995
996         master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
997         if (master == NULL) {
998                 ret = -ENOMEM;
999                 goto err;
1000         }
1001
1002         dev_set_drvdata(dev, master);
1003
1004         /* the spi->mode bits understood by this driver: */
1005         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH
1006                         | SPI_LSB_FIRST | SPI_LOOP;
1007
1008         master->setup = mpc8xxx_spi_setup;
1009         master->transfer = mpc8xxx_spi_transfer;
1010         master->cleanup = mpc8xxx_spi_cleanup;
1011         master->dev.of_node = dev->of_node;
1012
1013         mpc8xxx_spi = spi_master_get_devdata(master);
1014         mpc8xxx_spi->dev = dev;
1015         mpc8xxx_spi->get_rx = mpc8xxx_spi_rx_buf_u8;
1016         mpc8xxx_spi->get_tx = mpc8xxx_spi_tx_buf_u8;
1017         mpc8xxx_spi->flags = pdata->flags;
1018         mpc8xxx_spi->spibrg = pdata->sysclk;
1019
1020         ret = mpc8xxx_spi_cpm_init(mpc8xxx_spi);
1021         if (ret)
1022                 goto err_cpm_init;
1023
1024         mpc8xxx_spi->rx_shift = 0;
1025         mpc8xxx_spi->tx_shift = 0;
1026         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
1027                 mpc8xxx_spi->rx_shift = 16;
1028                 mpc8xxx_spi->tx_shift = 24;
1029         }
1030
1031         init_completion(&mpc8xxx_spi->done);
1032
1033         mpc8xxx_spi->base = ioremap(mem->start, resource_size(mem));
1034         if (mpc8xxx_spi->base == NULL) {
1035                 ret = -ENOMEM;
1036                 goto err_ioremap;
1037         }
1038
1039         mpc8xxx_spi->irq = irq;
1040
1041         /* Register for SPI Interrupt */
1042         ret = request_irq(mpc8xxx_spi->irq, mpc8xxx_spi_irq,
1043                           0, "mpc8xxx_spi", mpc8xxx_spi);
1044
1045         if (ret != 0)
1046                 goto unmap_io;
1047
1048         master->bus_num = pdata->bus_num;
1049         master->num_chipselect = pdata->max_chipselect;
1050
1051         /* SPI controller initializations */
1052         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, 0);
1053         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
1054         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->command, 0);
1055         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->event, 0xffffffff);
1056
1057         /* Enable SPI interface */
1058         regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
1059         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE)
1060                 regval |= SPMODE_OP;
1061
1062         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, regval);
1063         spin_lock_init(&mpc8xxx_spi->lock);
1064         init_completion(&mpc8xxx_spi->done);
1065         INIT_WORK(&mpc8xxx_spi->work, mpc8xxx_spi_work);
1066         INIT_LIST_HEAD(&mpc8xxx_spi->queue);
1067
1068         mpc8xxx_spi->workqueue = create_singlethread_workqueue(
1069                 dev_name(master->dev.parent));
1070         if (mpc8xxx_spi->workqueue == NULL) {
1071                 ret = -EBUSY;
1072                 goto free_irq;
1073         }
1074
1075         ret = spi_register_master(master);
1076         if (ret < 0)
1077                 goto unreg_master;
1078
1079         dev_info(dev, "at 0x%p (irq = %d), %s mode\n", mpc8xxx_spi->base,
1080                  mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags));
1081
1082         return master;
1083
1084 unreg_master:
1085         destroy_workqueue(mpc8xxx_spi->workqueue);
1086 free_irq:
1087         free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
1088 unmap_io:
1089         iounmap(mpc8xxx_spi->base);
1090 err_ioremap:
1091         mpc8xxx_spi_cpm_free(mpc8xxx_spi);
1092 err_cpm_init:
1093         spi_master_put(master);
1094 err:
1095         return ERR_PTR(ret);
1096 }
1097
1098 static int __devexit mpc8xxx_spi_remove(struct device *dev)
1099 {
1100         struct mpc8xxx_spi *mpc8xxx_spi;
1101         struct spi_master *master;
1102
1103         master = dev_get_drvdata(dev);
1104         mpc8xxx_spi = spi_master_get_devdata(master);
1105
1106         flush_workqueue(mpc8xxx_spi->workqueue);
1107         destroy_workqueue(mpc8xxx_spi->workqueue);
1108         spi_unregister_master(master);
1109
1110         free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
1111         iounmap(mpc8xxx_spi->base);
1112         mpc8xxx_spi_cpm_free(mpc8xxx_spi);
1113
1114         return 0;
1115 }
1116
1117 struct mpc8xxx_spi_probe_info {
1118         struct fsl_spi_platform_data pdata;
1119         int *gpios;
1120         bool *alow_flags;
1121 };
1122
1123 static struct mpc8xxx_spi_probe_info *
1124 to_of_pinfo(struct fsl_spi_platform_data *pdata)
1125 {
1126         return container_of(pdata, struct mpc8xxx_spi_probe_info, pdata);
1127 }
1128
1129 static void mpc8xxx_spi_cs_control(struct spi_device *spi, bool on)
1130 {
1131         struct device *dev = spi->dev.parent;
1132         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(dev->platform_data);
1133         u16 cs = spi->chip_select;
1134         int gpio = pinfo->gpios[cs];
1135         bool alow = pinfo->alow_flags[cs];
1136
1137         gpio_set_value(gpio, on ^ alow);
1138 }
1139
1140 static int of_mpc8xxx_spi_get_chipselects(struct device *dev)
1141 {
1142         struct device_node *np = dev->of_node;
1143         struct fsl_spi_platform_data *pdata = dev->platform_data;
1144         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1145         unsigned int ngpios;
1146         int i = 0;
1147         int ret;
1148
1149         ngpios = of_gpio_count(np);
1150         if (!ngpios) {
1151                 /*
1152                  * SPI w/o chip-select line. One SPI device is still permitted
1153                  * though.
1154                  */
1155                 pdata->max_chipselect = 1;
1156                 return 0;
1157         }
1158
1159         pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL);
1160         if (!pinfo->gpios)
1161                 return -ENOMEM;
1162         memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios));
1163
1164         pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags),
1165                                     GFP_KERNEL);
1166         if (!pinfo->alow_flags) {
1167                 ret = -ENOMEM;
1168                 goto err_alloc_flags;
1169         }
1170
1171         for (; i < ngpios; i++) {
1172                 int gpio;
1173                 enum of_gpio_flags flags;
1174
1175                 gpio = of_get_gpio_flags(np, i, &flags);
1176                 if (!gpio_is_valid(gpio)) {
1177                         dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
1178                         ret = gpio;
1179                         goto err_loop;
1180                 }
1181
1182                 ret = gpio_request(gpio, dev_name(dev));
1183                 if (ret) {
1184                         dev_err(dev, "can't request gpio #%d: %d\n", i, ret);
1185                         goto err_loop;
1186                 }
1187
1188                 pinfo->gpios[i] = gpio;
1189                 pinfo->alow_flags[i] = flags & OF_GPIO_ACTIVE_LOW;
1190
1191                 ret = gpio_direction_output(pinfo->gpios[i],
1192                                             pinfo->alow_flags[i]);
1193                 if (ret) {
1194                         dev_err(dev, "can't set output direction for gpio "
1195                                 "#%d: %d\n", i, ret);
1196                         goto err_loop;
1197                 }
1198         }
1199
1200         pdata->max_chipselect = ngpios;
1201         pdata->cs_control = mpc8xxx_spi_cs_control;
1202
1203         return 0;
1204
1205 err_loop:
1206         while (i >= 0) {
1207                 if (gpio_is_valid(pinfo->gpios[i]))
1208                         gpio_free(pinfo->gpios[i]);
1209                 i--;
1210         }
1211
1212         kfree(pinfo->alow_flags);
1213         pinfo->alow_flags = NULL;
1214 err_alloc_flags:
1215         kfree(pinfo->gpios);
1216         pinfo->gpios = NULL;
1217         return ret;
1218 }
1219
1220 static int of_mpc8xxx_spi_free_chipselects(struct device *dev)
1221 {
1222         struct fsl_spi_platform_data *pdata = dev->platform_data;
1223         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1224         int i;
1225
1226         if (!pinfo->gpios)
1227                 return 0;
1228
1229         for (i = 0; i < pdata->max_chipselect; i++) {
1230                 if (gpio_is_valid(pinfo->gpios[i]))
1231                         gpio_free(pinfo->gpios[i]);
1232         }
1233
1234         kfree(pinfo->gpios);
1235         kfree(pinfo->alow_flags);
1236         return 0;
1237 }
1238
1239 static int __devinit of_mpc8xxx_spi_probe(struct platform_device *ofdev,
1240                                           const struct of_device_id *ofid)
1241 {
1242         struct device *dev = &ofdev->dev;
1243         struct device_node *np = ofdev->dev.of_node;
1244         struct mpc8xxx_spi_probe_info *pinfo;
1245         struct fsl_spi_platform_data *pdata;
1246         struct spi_master *master;
1247         struct resource mem;
1248         struct resource irq;
1249         const void *prop;
1250         int ret = -ENOMEM;
1251
1252         pinfo = kzalloc(sizeof(*pinfo), GFP_KERNEL);
1253         if (!pinfo)
1254                 return -ENOMEM;
1255
1256         pdata = &pinfo->pdata;
1257         dev->platform_data = pdata;
1258
1259         /* Allocate bus num dynamically. */
1260         pdata->bus_num = -1;
1261
1262         /* SPI controller is either clocked from QE or SoC clock. */
1263         pdata->sysclk = get_brgfreq();
1264         if (pdata->sysclk == -1) {
1265                 pdata->sysclk = fsl_get_sys_freq();
1266                 if (pdata->sysclk == -1) {
1267                         ret = -ENODEV;
1268                         goto err_clk;
1269                 }
1270         }
1271
1272         prop = of_get_property(np, "mode", NULL);
1273         if (prop && !strcmp(prop, "cpu-qe"))
1274                 pdata->flags = SPI_QE_CPU_MODE;
1275         else if (prop && !strcmp(prop, "qe"))
1276                 pdata->flags = SPI_CPM_MODE | SPI_QE;
1277         else if (of_device_is_compatible(np, "fsl,cpm2-spi"))
1278                 pdata->flags = SPI_CPM_MODE | SPI_CPM2;
1279         else if (of_device_is_compatible(np, "fsl,cpm1-spi"))
1280                 pdata->flags = SPI_CPM_MODE | SPI_CPM1;
1281
1282         ret = of_mpc8xxx_spi_get_chipselects(dev);
1283         if (ret)
1284                 goto err;
1285
1286         ret = of_address_to_resource(np, 0, &mem);
1287         if (ret)
1288                 goto err;
1289
1290         ret = of_irq_to_resource(np, 0, &irq);
1291         if (!ret) {
1292                 ret = -EINVAL;
1293                 goto err;
1294         }
1295
1296         master = mpc8xxx_spi_probe(dev, &mem, irq.start);
1297         if (IS_ERR(master)) {
1298                 ret = PTR_ERR(master);
1299                 goto err;
1300         }
1301
1302         return 0;
1303
1304 err:
1305         of_mpc8xxx_spi_free_chipselects(dev);
1306 err_clk:
1307         kfree(pinfo);
1308         return ret;
1309 }
1310
1311 static int __devexit of_mpc8xxx_spi_remove(struct platform_device *ofdev)
1312 {
1313         int ret;
1314
1315         ret = mpc8xxx_spi_remove(&ofdev->dev);
1316         if (ret)
1317                 return ret;
1318         of_mpc8xxx_spi_free_chipselects(&ofdev->dev);
1319         return 0;
1320 }
1321
1322 static const struct of_device_id of_mpc8xxx_spi_match[] = {
1323         { .compatible = "fsl,spi" },
1324         {},
1325 };
1326 MODULE_DEVICE_TABLE(of, of_mpc8xxx_spi_match);
1327
1328 static struct of_platform_driver of_mpc8xxx_spi_driver = {
1329         .driver = {
1330                 .name = "mpc8xxx_spi",
1331                 .owner = THIS_MODULE,
1332                 .of_match_table = of_mpc8xxx_spi_match,
1333         },
1334         .probe          = of_mpc8xxx_spi_probe,
1335         .remove         = __devexit_p(of_mpc8xxx_spi_remove),
1336 };
1337
1338 #ifdef CONFIG_MPC832x_RDB
1339 /*
1340  *                              XXX XXX XXX
1341  * This is "legacy" platform driver, was used by the MPC8323E-RDB boards
1342  * only. The driver should go away soon, since newer MPC8323E-RDB's device
1343  * tree can work with OpenFirmware driver. But for now we support old trees
1344  * as well.
1345  */
1346 static int __devinit plat_mpc8xxx_spi_probe(struct platform_device *pdev)
1347 {
1348         struct resource *mem;
1349         int irq;
1350         struct spi_master *master;
1351
1352         if (!pdev->dev.platform_data)
1353                 return -EINVAL;
1354
1355         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1356         if (!mem)
1357                 return -EINVAL;
1358
1359         irq = platform_get_irq(pdev, 0);
1360         if (irq <= 0)
1361                 return -EINVAL;
1362
1363         master = mpc8xxx_spi_probe(&pdev->dev, mem, irq);
1364         if (IS_ERR(master))
1365                 return PTR_ERR(master);
1366         return 0;
1367 }
1368
1369 static int __devexit plat_mpc8xxx_spi_remove(struct platform_device *pdev)
1370 {
1371         return mpc8xxx_spi_remove(&pdev->dev);
1372 }
1373
1374 MODULE_ALIAS("platform:mpc8xxx_spi");
1375 static struct platform_driver mpc8xxx_spi_driver = {
1376         .probe = plat_mpc8xxx_spi_probe,
1377         .remove = __devexit_p(plat_mpc8xxx_spi_remove),
1378         .driver = {
1379                 .name = "mpc8xxx_spi",
1380                 .owner = THIS_MODULE,
1381         },
1382 };
1383
1384 static bool legacy_driver_failed;
1385
1386 static void __init legacy_driver_register(void)
1387 {
1388         legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver);
1389 }
1390
1391 static void __exit legacy_driver_unregister(void)
1392 {
1393         if (legacy_driver_failed)
1394                 return;
1395         platform_driver_unregister(&mpc8xxx_spi_driver);
1396 }
1397 #else
1398 static void __init legacy_driver_register(void) {}
1399 static void __exit legacy_driver_unregister(void) {}
1400 #endif /* CONFIG_MPC832x_RDB */
1401
1402 static int __init mpc8xxx_spi_init(void)
1403 {
1404         legacy_driver_register();
1405         return of_register_platform_driver(&of_mpc8xxx_spi_driver);
1406 }
1407
1408 static void __exit mpc8xxx_spi_exit(void)
1409 {
1410         of_unregister_platform_driver(&of_mpc8xxx_spi_driver);
1411         legacy_driver_unregister();
1412 }
1413
1414 module_init(mpc8xxx_spi_init);
1415 module_exit(mpc8xxx_spi_exit);
1416
1417 MODULE_AUTHOR("Kumar Gala");
1418 MODULE_DESCRIPTION("Simple MPC8xxx SPI Driver");
1419 MODULE_LICENSE("GPL");