HID: roccat: potential out of bounds in pyra_sysfs_write_settings()
[pandora-kernel.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR                0x00    /* SPI control register */
36 #define PCH_SPBRR               0x04    /* SPI baud rate register */
37 #define PCH_SPSR                0x08    /* SPI status register */
38 #define PCH_SPDWR               0x0C    /* SPI write data register */
39 #define PCH_SPDRR               0x10    /* SPI read data register */
40 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
41 #define PCH_SRST                0x1C    /* SPI reset register */
42 #define PCH_ADDRESS_SIZE        0x20
43
44 #define PCH_SPSR_TFD            0x000007C0
45 #define PCH_SPSR_RFD            0x0000F800
46
47 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD            7
51 #define PCH_RX_THOLD_MAX        15
52
53 #define PCH_TX_THOLD            2
54
55 #define PCH_MAX_BAUDRATE        5000000
56 #define PCH_MAX_FIFO_DEPTH      16
57
58 #define STATUS_RUNNING          1
59 #define STATUS_EXITING          2
60 #define PCH_SLEEP_TIME          10
61
62 #define SSN_LOW                 0x02U
63 #define SSN_HIGH                0x03U
64 #define SSN_NO_CONTROL          0x00U
65 #define PCH_MAX_CS              0xFF
66 #define PCI_DEVICE_ID_GE_SPI    0x8816
67
68 #define SPCR_SPE_BIT            (1 << 0)
69 #define SPCR_MSTR_BIT           (1 << 1)
70 #define SPCR_LSBF_BIT           (1 << 4)
71 #define SPCR_CPHA_BIT           (1 << 5)
72 #define SPCR_CPOL_BIT           (1 << 6)
73 #define SPCR_TFIE_BIT           (1 << 8)
74 #define SPCR_RFIE_BIT           (1 << 9)
75 #define SPCR_FIE_BIT            (1 << 10)
76 #define SPCR_ORIE_BIT           (1 << 11)
77 #define SPCR_MDFIE_BIT          (1 << 12)
78 #define SPCR_FICLR_BIT          (1 << 24)
79 #define SPSR_TFI_BIT            (1 << 0)
80 #define SPSR_RFI_BIT            (1 << 1)
81 #define SPSR_FI_BIT             (1 << 2)
82 #define SPSR_ORF_BIT            (1 << 3)
83 #define SPBRR_SIZE_BIT          (1 << 10)
84
85 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87
88 #define SPCR_RFIC_FIELD         20
89 #define SPCR_TFIC_FIELD         16
90
91 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
94
95 #define PCH_CLOCK_HZ            50000000
96 #define PCH_MAX_SPBR            1023
97
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM              0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
103
104 /*
105  * Set the number of SPI instance max
106  * Intel EG20T PCH :            1ch
107  * LAPIS Semiconductor ML7213 IOH :     2ch
108  * LAPIS Semiconductor ML7223 IOH :     1ch
109  * LAPIS Semiconductor ML7831 IOH :     1ch
110 */
111 #define PCH_SPI_MAX_DEV                 2
112
113 #define PCH_BUF_SIZE            4096
114 #define PCH_DMA_TRANS_SIZE      12
115
116 static int use_dma = 1;
117
118 struct pch_spi_dma_ctrl {
119         struct dma_async_tx_descriptor  *desc_tx;
120         struct dma_async_tx_descriptor  *desc_rx;
121         struct pch_dma_slave            param_tx;
122         struct pch_dma_slave            param_rx;
123         struct dma_chan         *chan_tx;
124         struct dma_chan         *chan_rx;
125         struct scatterlist              *sg_tx_p;
126         struct scatterlist              *sg_rx_p;
127         struct scatterlist              sg_tx;
128         struct scatterlist              sg_rx;
129         int                             nent;
130         void                            *tx_buf_virt;
131         void                            *rx_buf_virt;
132         dma_addr_t                      tx_buf_dma;
133         dma_addr_t                      rx_buf_dma;
134 };
135 /**
136  * struct pch_spi_data - Holds the SPI channel specific details
137  * @io_remap_addr:              The remapped PCI base address
138  * @master:                     Pointer to the SPI master structure
139  * @work:                       Reference to work queue handler
140  * @wk:                         Workqueue for carrying out execution of the
141  *                              requests
142  * @wait:                       Wait queue for waking up upon receiving an
143  *                              interrupt.
144  * @transfer_complete:          Status of SPI Transfer
145  * @bcurrent_msg_processing:    Status flag for message processing
146  * @lock:                       Lock for protecting this structure
147  * @queue:                      SPI Message queue
148  * @status:                     Status of the SPI driver
149  * @bpw_len:                    Length of data to be transferred in bits per
150  *                              word
151  * @transfer_active:            Flag showing active transfer
152  * @tx_index:                   Transmit data count; for bookkeeping during
153  *                              transfer
154  * @rx_index:                   Receive data count; for bookkeeping during
155  *                              transfer
156  * @tx_buff:                    Buffer for data to be transmitted
157  * @rx_index:                   Buffer for Received data
158  * @n_curnt_chip:               The chip number that this SPI driver currently
159  *                              operates on
160  * @current_chip:               Reference to the current chip that this SPI
161  *                              driver currently operates on
162  * @current_msg:                The current message that this SPI driver is
163  *                              handling
164  * @cur_trans:                  The current transfer that this SPI driver is
165  *                              handling
166  * @board_dat:                  Reference to the SPI device data structure
167  * @plat_dev:                   platform_device structure
168  * @ch:                         SPI channel number
169  * @irq_reg_sts:                Status of IRQ registration
170  */
171 struct pch_spi_data {
172         void __iomem *io_remap_addr;
173         unsigned long io_base_addr;
174         struct spi_master *master;
175         struct work_struct work;
176         struct workqueue_struct *wk;
177         wait_queue_head_t wait;
178         u8 transfer_complete;
179         u8 bcurrent_msg_processing;
180         spinlock_t lock;
181         struct list_head queue;
182         u8 status;
183         u32 bpw_len;
184         u8 transfer_active;
185         u32 tx_index;
186         u32 rx_index;
187         u16 *pkt_tx_buff;
188         u16 *pkt_rx_buff;
189         u8 n_curnt_chip;
190         struct spi_device *current_chip;
191         struct spi_message *current_msg;
192         struct spi_transfer *cur_trans;
193         struct pch_spi_board_data *board_dat;
194         struct platform_device  *plat_dev;
195         int ch;
196         struct pch_spi_dma_ctrl dma;
197         int use_dma;
198         u8 irq_reg_sts;
199         int save_total_len;
200 };
201
202 /**
203  * struct pch_spi_board_data - Holds the SPI device specific details
204  * @pdev:               Pointer to the PCI device
205  * @suspend_sts:        Status of suspend
206  * @num:                The number of SPI device instance
207  */
208 struct pch_spi_board_data {
209         struct pci_dev *pdev;
210         u8 suspend_sts;
211         int num;
212 };
213
214 struct pch_pd_dev_save {
215         int num;
216         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217         struct pch_spi_board_data *board_dat;
218 };
219
220 static const struct pci_device_id pch_spi_pcidev_id[] = {
221         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
222         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
225         { }
226 };
227
228 /**
229  * pch_spi_writereg() - Performs  register writes
230  * @master:     Pointer to struct spi_master.
231  * @idx:        Register offset.
232  * @val:        Value to be written to register.
233  */
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 {
236         struct pch_spi_data *data = spi_master_get_devdata(master);
237         iowrite32(val, (data->io_remap_addr + idx));
238 }
239
240 /**
241  * pch_spi_readreg() - Performs register reads
242  * @master:     Pointer to struct spi_master.
243  * @idx:        Register offset.
244  */
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 {
247         struct pch_spi_data *data = spi_master_get_devdata(master);
248         return ioread32(data->io_remap_addr + idx);
249 }
250
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252                                       u32 set, u32 clr)
253 {
254         u32 tmp = pch_spi_readreg(master, idx);
255         tmp = (tmp & ~clr) | set;
256         pch_spi_writereg(master, idx, tmp);
257 }
258
259 static void pch_spi_set_master_mode(struct spi_master *master)
260 {
261         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
262 }
263
264 /**
265  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266  * @master:     Pointer to struct spi_master.
267  */
268 static void pch_spi_clear_fifo(struct spi_master *master)
269 {
270         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
272 }
273
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275                                 void __iomem *io_remap_addr)
276 {
277         u32 n_read, tx_index, rx_index, bpw_len;
278         u16 *pkt_rx_buffer, *pkt_tx_buff;
279         int read_cnt;
280         u32 reg_spcr_val;
281         void __iomem *spsr;
282         void __iomem *spdrr;
283         void __iomem *spdwr;
284
285         spsr = io_remap_addr + PCH_SPSR;
286         iowrite32(reg_spsr_val, spsr);
287
288         if (data->transfer_active) {
289                 rx_index = data->rx_index;
290                 tx_index = data->tx_index;
291                 bpw_len = data->bpw_len;
292                 pkt_rx_buffer = data->pkt_rx_buff;
293                 pkt_tx_buff = data->pkt_tx_buff;
294
295                 spdrr = io_remap_addr + PCH_SPDRR;
296                 spdwr = io_remap_addr + PCH_SPDWR;
297
298                 n_read = PCH_READABLE(reg_spsr_val);
299
300                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302                         if (tx_index < bpw_len)
303                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
304                 }
305
306                 /* disable RFI if not needed */
307                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310
311                         /* reset rx threshold */
312                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314
315                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
316                 }
317
318                 /* update counts */
319                 data->tx_index = tx_index;
320                 data->rx_index = rx_index;
321
322                 /* if transfer complete interrupt */
323                 if (reg_spsr_val & SPSR_FI_BIT) {
324                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325                                 /* disable interrupts */
326                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327                                                    PCH_ALL);
328
329                                 /* transfer is completed;
330                                    inform pch_spi_process_messages */
331                                 data->transfer_complete = true;
332                                 data->transfer_active = false;
333                                 wake_up(&data->wait);
334                         } else {
335                                 dev_vdbg(&data->master->dev,
336                                         "%s : Transfer is not completed",
337                                         __func__);
338                         }
339                 }
340         }
341 }
342
343 /**
344  * pch_spi_handler() - Interrupt handler
345  * @irq:        The interrupt number.
346  * @dev_id:     Pointer to struct pch_spi_board_data.
347  */
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
349 {
350         u32 reg_spsr_val;
351         void __iomem *spsr;
352         void __iomem *io_remap_addr;
353         irqreturn_t ret = IRQ_NONE;
354         struct pch_spi_data *data = dev_id;
355         struct pch_spi_board_data *board_dat = data->board_dat;
356
357         if (board_dat->suspend_sts) {
358                 dev_dbg(&board_dat->pdev->dev,
359                         "%s returning due to suspend\n", __func__);
360                 return IRQ_NONE;
361         }
362
363         io_remap_addr = data->io_remap_addr;
364         spsr = io_remap_addr + PCH_SPSR;
365
366         reg_spsr_val = ioread32(spsr);
367
368         if (reg_spsr_val & SPSR_ORF_BIT) {
369                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370                 if (data->current_msg->complete) {
371                         data->transfer_complete = true;
372                         data->current_msg->status = -EIO;
373                         data->current_msg->complete(data->current_msg->context);
374                         data->bcurrent_msg_processing = false;
375                         data->current_msg = NULL;
376                         data->cur_trans = NULL;
377                 }
378         }
379
380         if (data->use_dma)
381                 return IRQ_NONE;
382
383         /* Check if the interrupt is for SPI device */
384         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386                 ret = IRQ_HANDLED;
387         }
388
389         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390                 __func__, ret);
391
392         return ret;
393 }
394
395 /**
396  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397  * @master:     Pointer to struct spi_master.
398  * @speed_hz:   Baud rate.
399  */
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
401 {
402         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
403
404         /* if baud rate is less than we can support limit it */
405         if (n_spbr > PCH_MAX_SPBR)
406                 n_spbr = PCH_MAX_SPBR;
407
408         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
409 }
410
411 /**
412  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413  * @master:             Pointer to struct spi_master.
414  * @bits_per_word:      Bits per word for SPI transfer.
415  */
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417                                       u8 bits_per_word)
418 {
419         if (bits_per_word == 8)
420                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421         else
422                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
423 }
424
425 /**
426  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427  * @spi:        Pointer to struct spi_device.
428  */
429 static void pch_spi_setup_transfer(struct spi_device *spi)
430 {
431         u32 flags = 0;
432
433         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435                 spi->max_speed_hz);
436         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
437
438         /* set bits per word */
439         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
440
441         if (!(spi->mode & SPI_LSB_FIRST))
442                 flags |= SPCR_LSBF_BIT;
443         if (spi->mode & SPI_CPOL)
444                 flags |= SPCR_CPOL_BIT;
445         if (spi->mode & SPI_CPHA)
446                 flags |= SPCR_CPHA_BIT;
447         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
449
450         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
451         pch_spi_clear_fifo(spi->master);
452 }
453
454 /**
455  * pch_spi_reset() - Clears SPI registers
456  * @master:     Pointer to struct spi_master.
457  */
458 static void pch_spi_reset(struct spi_master *master)
459 {
460         /* write 1 to reset SPI */
461         pch_spi_writereg(master, PCH_SRST, 0x1);
462
463         /* clear reset */
464         pch_spi_writereg(master, PCH_SRST, 0x0);
465 }
466
467 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
468 {
469
470         struct spi_transfer *transfer;
471         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
472         int retval;
473         unsigned long flags;
474
475         spin_lock_irqsave(&data->lock, flags);
476         /* validate Tx/Rx buffers and Transfer length */
477         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
478                 if (!transfer->tx_buf && !transfer->rx_buf) {
479                         dev_err(&pspi->dev,
480                                 "%s Tx and Rx buffer NULL\n", __func__);
481                         retval = -EINVAL;
482                         goto err_return_spinlock;
483                 }
484
485                 if (!transfer->len) {
486                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
487                                 __func__);
488                         retval = -EINVAL;
489                         goto err_return_spinlock;
490                 }
491
492                 dev_dbg(&pspi->dev,
493                         "%s Tx/Rx buffer valid. Transfer length valid\n",
494                         __func__);
495         }
496         spin_unlock_irqrestore(&data->lock, flags);
497
498         /* We won't process any messages if we have been asked to terminate */
499         if (data->status == STATUS_EXITING) {
500                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
501                 retval = -ESHUTDOWN;
502                 goto err_out;
503         }
504
505         /* If suspended ,return -EINVAL */
506         if (data->board_dat->suspend_sts) {
507                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
508                 retval = -EINVAL;
509                 goto err_out;
510         }
511
512         /* set status of message */
513         pmsg->actual_length = 0;
514         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
515
516         pmsg->status = -EINPROGRESS;
517         spin_lock_irqsave(&data->lock, flags);
518         /* add message to queue */
519         list_add_tail(&pmsg->queue, &data->queue);
520         spin_unlock_irqrestore(&data->lock, flags);
521
522         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
523
524         /* schedule work queue to run */
525         queue_work(data->wk, &data->work);
526         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
527
528         retval = 0;
529
530 err_out:
531         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
532         return retval;
533 err_return_spinlock:
534         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
535         spin_unlock_irqrestore(&data->lock, flags);
536         return retval;
537 }
538
539 static inline void pch_spi_select_chip(struct pch_spi_data *data,
540                                        struct spi_device *pspi)
541 {
542         if (data->current_chip != NULL) {
543                 if (pspi->chip_select != data->n_curnt_chip) {
544                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
545                         data->current_chip = NULL;
546                 }
547         }
548
549         data->current_chip = pspi;
550
551         data->n_curnt_chip = data->current_chip->chip_select;
552
553         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
554         pch_spi_setup_transfer(pspi);
555 }
556
557 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
558 {
559         int size;
560         u32 n_writes;
561         int j;
562         struct spi_message *pmsg, *tmp;
563         const u8 *tx_buf;
564         const u16 *tx_sbuf;
565
566         /* set baud rate if needed */
567         if (data->cur_trans->speed_hz) {
568                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
569                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
570         }
571
572         /* set bits per word if needed */
573         if (data->cur_trans->bits_per_word &&
574             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
575                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
576                 pch_spi_set_bits_per_word(data->master,
577                                           data->cur_trans->bits_per_word);
578                 *bpw = data->cur_trans->bits_per_word;
579         } else {
580                 *bpw = data->current_msg->spi->bits_per_word;
581         }
582
583         /* reset Tx/Rx index */
584         data->tx_index = 0;
585         data->rx_index = 0;
586
587         data->bpw_len = data->cur_trans->len / (*bpw / 8);
588
589         /* find alloc size */
590         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
591
592         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
593         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
594         if (data->pkt_tx_buff != NULL) {
595                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
596                 if (!data->pkt_rx_buff)
597                         kfree(data->pkt_tx_buff);
598         }
599
600         if (!data->pkt_rx_buff) {
601                 /* flush queue and set status of all transfers to -ENOMEM */
602                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
603                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
604                         pmsg->status = -ENOMEM;
605
606                         if (pmsg->complete)
607                                 pmsg->complete(pmsg->context);
608
609                         /* delete from queue */
610                         list_del_init(&pmsg->queue);
611                 }
612                 return;
613         }
614
615         /* copy Tx Data */
616         if (data->cur_trans->tx_buf != NULL) {
617                 if (*bpw == 8) {
618                         tx_buf = data->cur_trans->tx_buf;
619                         for (j = 0; j < data->bpw_len; j++)
620                                 data->pkt_tx_buff[j] = *tx_buf++;
621                 } else {
622                         tx_sbuf = data->cur_trans->tx_buf;
623                         for (j = 0; j < data->bpw_len; j++)
624                                 data->pkt_tx_buff[j] = *tx_sbuf++;
625                 }
626         }
627
628         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
629         n_writes = data->bpw_len;
630         if (n_writes > PCH_MAX_FIFO_DEPTH)
631                 n_writes = PCH_MAX_FIFO_DEPTH;
632
633         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
634                 "0x2 to SSNXCR\n", __func__);
635         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
636
637         for (j = 0; j < n_writes; j++)
638                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
639
640         /* update tx_index */
641         data->tx_index = j;
642
643         /* reset transfer complete flag */
644         data->transfer_complete = false;
645         data->transfer_active = true;
646 }
647
648 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
649 {
650         struct spi_message *pmsg, *tmp;
651         dev_dbg(&data->master->dev, "%s called\n", __func__);
652         /* Invoke complete callback
653          * [To the spi core..indicating end of transfer] */
654         data->current_msg->status = 0;
655
656         if (data->current_msg->complete) {
657                 dev_dbg(&data->master->dev,
658                         "%s:Invoking callback of SPI core\n", __func__);
659                 data->current_msg->complete(data->current_msg->context);
660         }
661
662         /* update status in global variable */
663         data->bcurrent_msg_processing = false;
664
665         dev_dbg(&data->master->dev,
666                 "%s:data->bcurrent_msg_processing = false\n", __func__);
667
668         data->current_msg = NULL;
669         data->cur_trans = NULL;
670
671         /* check if we have items in list and not suspending
672          * return 1 if list empty */
673         if ((list_empty(&data->queue) == 0) &&
674             (!data->board_dat->suspend_sts) &&
675             (data->status != STATUS_EXITING)) {
676                 /* We have some more work to do (either there is more tranint
677                  * bpw;sfer requests in the current message or there are
678                  *more messages)
679                  */
680                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
681                 queue_work(data->wk, &data->work);
682         } else if (data->board_dat->suspend_sts ||
683                    data->status == STATUS_EXITING) {
684                 dev_dbg(&data->master->dev,
685                         "%s suspend/remove initiated, flushing queue\n",
686                         __func__);
687                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
688                         pmsg->status = -EIO;
689
690                         if (pmsg->complete)
691                                 pmsg->complete(pmsg->context);
692
693                         /* delete from queue */
694                         list_del_init(&pmsg->queue);
695                 }
696         }
697 }
698
699 static void pch_spi_set_ir(struct pch_spi_data *data)
700 {
701         /* enable interrupts, set threshold, enable SPI */
702         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
703                 /* set receive threshold to PCH_RX_THOLD */
704                 pch_spi_setclr_reg(data->master, PCH_SPCR,
705                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
706                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
707                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
708                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
709         else
710                 /* set receive threshold to maximum */
711                 pch_spi_setclr_reg(data->master, PCH_SPCR,
712                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
713                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
714                                    SPCR_SPE_BIT,
715                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
716
717         /* Wait until the transfer completes; go to sleep after
718                                  initiating the transfer. */
719         dev_dbg(&data->master->dev,
720                 "%s:waiting for transfer to get over\n", __func__);
721
722         wait_event_interruptible(data->wait, data->transfer_complete);
723
724         /* clear all interrupts */
725         pch_spi_writereg(data->master, PCH_SPSR,
726                          pch_spi_readreg(data->master, PCH_SPSR));
727         /* Disable interrupts and SPI transfer */
728         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
729         /* clear FIFO */
730         pch_spi_clear_fifo(data->master);
731 }
732
733 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
734 {
735         int j;
736         u8 *rx_buf;
737         u16 *rx_sbuf;
738
739         /* copy Rx Data */
740         if (!data->cur_trans->rx_buf)
741                 return;
742
743         if (bpw == 8) {
744                 rx_buf = data->cur_trans->rx_buf;
745                 for (j = 0; j < data->bpw_len; j++)
746                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
747         } else {
748                 rx_sbuf = data->cur_trans->rx_buf;
749                 for (j = 0; j < data->bpw_len; j++)
750                         *rx_sbuf++ = data->pkt_rx_buff[j];
751         }
752 }
753
754 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
755 {
756         int j;
757         u8 *rx_buf;
758         u16 *rx_sbuf;
759         const u8 *rx_dma_buf;
760         const u16 *rx_dma_sbuf;
761
762         /* copy Rx Data */
763         if (!data->cur_trans->rx_buf)
764                 return;
765
766         if (bpw == 8) {
767                 rx_buf = data->cur_trans->rx_buf;
768                 rx_dma_buf = data->dma.rx_buf_virt;
769                 for (j = 0; j < data->bpw_len; j++)
770                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
771                 data->cur_trans->rx_buf = rx_buf;
772         } else {
773                 rx_sbuf = data->cur_trans->rx_buf;
774                 rx_dma_sbuf = data->dma.rx_buf_virt;
775                 for (j = 0; j < data->bpw_len; j++)
776                         *rx_sbuf++ = *rx_dma_sbuf++;
777                 data->cur_trans->rx_buf = rx_sbuf;
778         }
779 }
780
781 static int pch_spi_start_transfer(struct pch_spi_data *data)
782 {
783         struct pch_spi_dma_ctrl *dma;
784         unsigned long flags;
785         int rtn;
786
787         dma = &data->dma;
788
789         spin_lock_irqsave(&data->lock, flags);
790
791         /* disable interrupts, SPI set enable */
792         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
793
794         spin_unlock_irqrestore(&data->lock, flags);
795
796         /* Wait until the transfer completes; go to sleep after
797                                  initiating the transfer. */
798         dev_dbg(&data->master->dev,
799                 "%s:waiting for transfer to get over\n", __func__);
800         rtn = wait_event_interruptible_timeout(data->wait,
801                                                data->transfer_complete,
802                                                msecs_to_jiffies(2 * HZ));
803         if (!rtn)
804                 dev_err(&data->master->dev,
805                         "%s wait-event timeout\n", __func__);
806
807         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
808                             DMA_FROM_DEVICE);
809
810         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
811                             DMA_FROM_DEVICE);
812         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
813
814         async_tx_ack(dma->desc_rx);
815         async_tx_ack(dma->desc_tx);
816         kfree(dma->sg_tx_p);
817         kfree(dma->sg_rx_p);
818
819         spin_lock_irqsave(&data->lock, flags);
820
821         /* clear fifo threshold, disable interrupts, disable SPI transfer */
822         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
823                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
824                            SPCR_SPE_BIT);
825         /* clear all interrupts */
826         pch_spi_writereg(data->master, PCH_SPSR,
827                          pch_spi_readreg(data->master, PCH_SPSR));
828         /* clear FIFO */
829         pch_spi_clear_fifo(data->master);
830
831         spin_unlock_irqrestore(&data->lock, flags);
832
833         return rtn;
834 }
835
836 static void pch_dma_rx_complete(void *arg)
837 {
838         struct pch_spi_data *data = arg;
839
840         /* transfer is completed;inform pch_spi_process_messages_dma */
841         data->transfer_complete = true;
842         wake_up_interruptible(&data->wait);
843 }
844
845 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
846 {
847         struct pch_dma_slave *param = slave;
848
849         if ((chan->chan_id == param->chan_id) &&
850             (param->dma_dev == chan->device->dev)) {
851                 chan->private = param;
852                 return true;
853         } else {
854                 return false;
855         }
856 }
857
858 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
859 {
860         dma_cap_mask_t mask;
861         struct dma_chan *chan;
862         struct pci_dev *dma_dev;
863         struct pch_dma_slave *param;
864         struct pch_spi_dma_ctrl *dma;
865         unsigned int width;
866
867         if (bpw == 8)
868                 width = PCH_DMA_WIDTH_1_BYTE;
869         else
870                 width = PCH_DMA_WIDTH_2_BYTES;
871
872         dma = &data->dma;
873         dma_cap_zero(mask);
874         dma_cap_set(DMA_SLAVE, mask);
875
876         /* Get DMA's dev information */
877         dma_dev = pci_get_slot(data->board_dat->pdev->bus,
878                         PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
879
880         /* Set Tx DMA */
881         param = &dma->param_tx;
882         param->dma_dev = &dma_dev->dev;
883         param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
884         param->tx_reg = data->io_base_addr + PCH_SPDWR;
885         param->width = width;
886         chan = dma_request_channel(mask, pch_spi_filter, param);
887         if (!chan) {
888                 dev_err(&data->master->dev,
889                         "ERROR: dma_request_channel FAILS(Tx)\n");
890                 data->use_dma = 0;
891                 return;
892         }
893         dma->chan_tx = chan;
894
895         /* Set Rx DMA */
896         param = &dma->param_rx;
897         param->dma_dev = &dma_dev->dev;
898         param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
899         param->rx_reg = data->io_base_addr + PCH_SPDRR;
900         param->width = width;
901         chan = dma_request_channel(mask, pch_spi_filter, param);
902         if (!chan) {
903                 dev_err(&data->master->dev,
904                         "ERROR: dma_request_channel FAILS(Rx)\n");
905                 dma_release_channel(dma->chan_tx);
906                 dma->chan_tx = NULL;
907                 data->use_dma = 0;
908                 return;
909         }
910         dma->chan_rx = chan;
911 }
912
913 static void pch_spi_release_dma(struct pch_spi_data *data)
914 {
915         struct pch_spi_dma_ctrl *dma;
916
917         dma = &data->dma;
918         if (dma->chan_tx) {
919                 dma_release_channel(dma->chan_tx);
920                 dma->chan_tx = NULL;
921         }
922         if (dma->chan_rx) {
923                 dma_release_channel(dma->chan_rx);
924                 dma->chan_rx = NULL;
925         }
926         return;
927 }
928
929 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
930 {
931         const u8 *tx_buf;
932         const u16 *tx_sbuf;
933         u8 *tx_dma_buf;
934         u16 *tx_dma_sbuf;
935         struct scatterlist *sg;
936         struct dma_async_tx_descriptor *desc_tx;
937         struct dma_async_tx_descriptor *desc_rx;
938         int num;
939         int i;
940         int size;
941         int rem;
942         int head;
943         unsigned long flags;
944         struct pch_spi_dma_ctrl *dma;
945
946         dma = &data->dma;
947
948         /* set baud rate if needed */
949         if (data->cur_trans->speed_hz) {
950                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
951                 spin_lock_irqsave(&data->lock, flags);
952                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
953                 spin_unlock_irqrestore(&data->lock, flags);
954         }
955
956         /* set bits per word if needed */
957         if (data->cur_trans->bits_per_word &&
958             (data->current_msg->spi->bits_per_word !=
959              data->cur_trans->bits_per_word)) {
960                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
961                 spin_lock_irqsave(&data->lock, flags);
962                 pch_spi_set_bits_per_word(data->master,
963                                           data->cur_trans->bits_per_word);
964                 spin_unlock_irqrestore(&data->lock, flags);
965                 *bpw = data->cur_trans->bits_per_word;
966         } else {
967                 *bpw = data->current_msg->spi->bits_per_word;
968         }
969         data->bpw_len = data->cur_trans->len / (*bpw / 8);
970
971         if (data->bpw_len > PCH_BUF_SIZE) {
972                 data->bpw_len = PCH_BUF_SIZE;
973                 data->cur_trans->len -= PCH_BUF_SIZE;
974         }
975
976         /* copy Tx Data */
977         if (data->cur_trans->tx_buf != NULL) {
978                 if (*bpw == 8) {
979                         tx_buf = data->cur_trans->tx_buf;
980                         tx_dma_buf = dma->tx_buf_virt;
981                         for (i = 0; i < data->bpw_len; i++)
982                                 *tx_dma_buf++ = *tx_buf++;
983                 } else {
984                         tx_sbuf = data->cur_trans->tx_buf;
985                         tx_dma_sbuf = dma->tx_buf_virt;
986                         for (i = 0; i < data->bpw_len; i++)
987                                 *tx_dma_sbuf++ = *tx_sbuf++;
988                 }
989         }
990
991         /* Calculate Rx parameter for DMA transmitting */
992         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
993                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
994                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
995                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
996                 } else {
997                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
998                         rem = PCH_DMA_TRANS_SIZE;
999                 }
1000                 size = PCH_DMA_TRANS_SIZE;
1001         } else {
1002                 num = 1;
1003                 size = data->bpw_len;
1004                 rem = data->bpw_len;
1005         }
1006         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1007                 __func__, num, size, rem);
1008         spin_lock_irqsave(&data->lock, flags);
1009
1010         /* set receive fifo threshold and transmit fifo threshold */
1011         pch_spi_setclr_reg(data->master, PCH_SPCR,
1012                            ((size - 1) << SPCR_RFIC_FIELD) |
1013                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1014                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1015
1016         spin_unlock_irqrestore(&data->lock, flags);
1017
1018         /* RX */
1019         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1020         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1021         /* offset, length setting */
1022         sg = dma->sg_rx_p;
1023         for (i = 0; i < num; i++, sg++) {
1024                 if (i == (num - 2)) {
1025                         sg->offset = size * i;
1026                         sg->offset = sg->offset * (*bpw / 8);
1027                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1028                                     sg->offset);
1029                         sg_dma_len(sg) = rem;
1030                 } else if (i == (num - 1)) {
1031                         sg->offset = size * (i - 1) + rem;
1032                         sg->offset = sg->offset * (*bpw / 8);
1033                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1034                                     sg->offset);
1035                         sg_dma_len(sg) = size;
1036                 } else {
1037                         sg->offset = size * i;
1038                         sg->offset = sg->offset * (*bpw / 8);
1039                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1040                                     sg->offset);
1041                         sg_dma_len(sg) = size;
1042                 }
1043                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1044         }
1045         sg = dma->sg_rx_p;
1046         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1047                                         num, DMA_DEV_TO_MEM,
1048                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1049         if (!desc_rx) {
1050                 dev_err(&data->master->dev,
1051                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1052                 return;
1053         }
1054         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1055         desc_rx->callback = pch_dma_rx_complete;
1056         desc_rx->callback_param = data;
1057         dma->nent = num;
1058         dma->desc_rx = desc_rx;
1059
1060         /* Calculate Tx parameter for DMA transmitting */
1061         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1062                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1063                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1064                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1065                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1066                 } else {
1067                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1068                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1069                               PCH_DMA_TRANS_SIZE - head;
1070                 }
1071                 size = PCH_DMA_TRANS_SIZE;
1072         } else {
1073                 num = 1;
1074                 size = data->bpw_len;
1075                 rem = data->bpw_len;
1076                 head = 0;
1077         }
1078
1079         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1080         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1081         /* offset, length setting */
1082         sg = dma->sg_tx_p;
1083         for (i = 0; i < num; i++, sg++) {
1084                 if (i == 0) {
1085                         sg->offset = 0;
1086                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1087                                     sg->offset);
1088                         sg_dma_len(sg) = size + head;
1089                 } else if (i == (num - 1)) {
1090                         sg->offset = head + size * i;
1091                         sg->offset = sg->offset * (*bpw / 8);
1092                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1093                                     sg->offset);
1094                         sg_dma_len(sg) = rem;
1095                 } else {
1096                         sg->offset = head + size * i;
1097                         sg->offset = sg->offset * (*bpw / 8);
1098                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1099                                     sg->offset);
1100                         sg_dma_len(sg) = size;
1101                 }
1102                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1103         }
1104         sg = dma->sg_tx_p;
1105         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1106                                         sg, num, DMA_MEM_TO_DEV,
1107                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1108         if (!desc_tx) {
1109                 dev_err(&data->master->dev,
1110                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1111                 return;
1112         }
1113         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1114         desc_tx->callback = NULL;
1115         desc_tx->callback_param = data;
1116         dma->nent = num;
1117         dma->desc_tx = desc_tx;
1118
1119         dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1120
1121         spin_lock_irqsave(&data->lock, flags);
1122         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1123         desc_rx->tx_submit(desc_rx);
1124         desc_tx->tx_submit(desc_tx);
1125         spin_unlock_irqrestore(&data->lock, flags);
1126
1127         /* reset transfer complete flag */
1128         data->transfer_complete = false;
1129 }
1130
1131 static void pch_spi_process_messages(struct work_struct *pwork)
1132 {
1133         struct spi_message *pmsg, *tmp;
1134         struct pch_spi_data *data;
1135         int bpw;
1136
1137         data = container_of(pwork, struct pch_spi_data, work);
1138         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1139
1140         spin_lock(&data->lock);
1141         /* check if suspend has been initiated;if yes flush queue */
1142         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1143                 dev_dbg(&data->master->dev,
1144                         "%s suspend/remove initiated, flushing queue\n", __func__);
1145                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1146                         pmsg->status = -EIO;
1147
1148                         if (pmsg->complete) {
1149                                 spin_unlock(&data->lock);
1150                                 pmsg->complete(pmsg->context);
1151                                 spin_lock(&data->lock);
1152                         }
1153
1154                         /* delete from queue */
1155                         list_del_init(&pmsg->queue);
1156                 }
1157
1158                 spin_unlock(&data->lock);
1159                 return;
1160         }
1161
1162         data->bcurrent_msg_processing = true;
1163         dev_dbg(&data->master->dev,
1164                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1165
1166         /* Get the message from the queue and delete it from there. */
1167         data->current_msg = list_entry(data->queue.next, struct spi_message,
1168                                         queue);
1169
1170         list_del_init(&data->current_msg->queue);
1171
1172         data->current_msg->status = 0;
1173
1174         pch_spi_select_chip(data, data->current_msg->spi);
1175
1176         spin_unlock(&data->lock);
1177
1178         if (data->use_dma)
1179                 pch_spi_request_dma(data,
1180                                     data->current_msg->spi->bits_per_word);
1181         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1182         do {
1183                 int cnt;
1184                 /* If we are already processing a message get the next
1185                 transfer structure from the message otherwise retrieve
1186                 the 1st transfer request from the message. */
1187                 spin_lock(&data->lock);
1188                 if (data->cur_trans == NULL) {
1189                         data->cur_trans =
1190                                 list_entry(data->current_msg->transfers.next,
1191                                            struct spi_transfer, transfer_list);
1192                         dev_dbg(&data->master->dev, "%s "
1193                                 ":Getting 1st transfer message\n", __func__);
1194                 } else {
1195                         data->cur_trans =
1196                                 list_entry(data->cur_trans->transfer_list.next,
1197                                            struct spi_transfer, transfer_list);
1198                         dev_dbg(&data->master->dev, "%s "
1199                                 ":Getting next transfer message\n", __func__);
1200                 }
1201                 spin_unlock(&data->lock);
1202
1203                 if (!data->cur_trans->len)
1204                         goto out;
1205                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1206                 data->save_total_len = data->cur_trans->len;
1207                 if (data->use_dma) {
1208                         int i;
1209                         char *save_rx_buf = data->cur_trans->rx_buf;
1210                         for (i = 0; i < cnt; i ++) {
1211                                 pch_spi_handle_dma(data, &bpw);
1212                                 if (!pch_spi_start_transfer(data)) {
1213                                         data->transfer_complete = true;
1214                                         data->current_msg->status = -EIO;
1215                                         data->current_msg->complete
1216                                                    (data->current_msg->context);
1217                                         data->bcurrent_msg_processing = false;
1218                                         data->current_msg = NULL;
1219                                         data->cur_trans = NULL;
1220                                         goto out;
1221                                 }
1222                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1223                         }
1224                         data->cur_trans->rx_buf = save_rx_buf;
1225                 } else {
1226                         pch_spi_set_tx(data, &bpw);
1227                         pch_spi_set_ir(data);
1228                         pch_spi_copy_rx_data(data, bpw);
1229                         kfree(data->pkt_rx_buff);
1230                         data->pkt_rx_buff = NULL;
1231                         kfree(data->pkt_tx_buff);
1232                         data->pkt_tx_buff = NULL;
1233                 }
1234                 /* increment message count */
1235                 data->cur_trans->len = data->save_total_len;
1236                 data->current_msg->actual_length += data->cur_trans->len;
1237
1238                 dev_dbg(&data->master->dev,
1239                         "%s:data->current_msg->actual_length=%d\n",
1240                         __func__, data->current_msg->actual_length);
1241
1242                 /* check for delay */
1243                 if (data->cur_trans->delay_usecs) {
1244                         dev_dbg(&data->master->dev, "%s:"
1245                                 "delay in usec=%d\n", __func__,
1246                                 data->cur_trans->delay_usecs);
1247                         udelay(data->cur_trans->delay_usecs);
1248                 }
1249
1250                 spin_lock(&data->lock);
1251
1252                 /* No more transfer in this message. */
1253                 if ((data->cur_trans->transfer_list.next) ==
1254                     &(data->current_msg->transfers)) {
1255                         pch_spi_nomore_transfer(data);
1256                 }
1257
1258                 spin_unlock(&data->lock);
1259
1260         } while (data->cur_trans != NULL);
1261
1262 out:
1263         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1264         if (data->use_dma)
1265                 pch_spi_release_dma(data);
1266 }
1267
1268 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1269                                    struct pch_spi_data *data)
1270 {
1271         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1272
1273         /* free workqueue */
1274         if (data->wk != NULL) {
1275                 destroy_workqueue(data->wk);
1276                 data->wk = NULL;
1277                 dev_dbg(&board_dat->pdev->dev,
1278                         "%s destroy_workqueue invoked successfully\n",
1279                         __func__);
1280         }
1281 }
1282
1283 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1284                                  struct pch_spi_data *data)
1285 {
1286         int retval = 0;
1287
1288         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1289
1290         /* create workqueue */
1291         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1292         if (!data->wk) {
1293                 dev_err(&board_dat->pdev->dev,
1294                         "%s create_singlet hread_workqueue failed\n", __func__);
1295                 retval = -EBUSY;
1296                 goto err_return;
1297         }
1298
1299         /* reset PCH SPI h/w */
1300         pch_spi_reset(data->master);
1301         dev_dbg(&board_dat->pdev->dev,
1302                 "%s pch_spi_reset invoked successfully\n", __func__);
1303
1304         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1305
1306 err_return:
1307         if (retval != 0) {
1308                 dev_err(&board_dat->pdev->dev,
1309                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1310                 pch_spi_free_resources(board_dat, data);
1311         }
1312
1313         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1314
1315         return retval;
1316 }
1317
1318 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1319                              struct pch_spi_data *data)
1320 {
1321         struct pch_spi_dma_ctrl *dma;
1322
1323         dma = &data->dma;
1324         if (dma->tx_buf_dma)
1325                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1326                                   dma->tx_buf_virt, dma->tx_buf_dma);
1327         if (dma->rx_buf_dma)
1328                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1329                                   dma->rx_buf_virt, dma->rx_buf_dma);
1330         return;
1331 }
1332
1333 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1334                               struct pch_spi_data *data)
1335 {
1336         struct pch_spi_dma_ctrl *dma;
1337
1338         dma = &data->dma;
1339         /* Get Consistent memory for Tx DMA */
1340         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1341                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1342         /* Get Consistent memory for Rx DMA */
1343         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1344                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1345 }
1346
1347 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1348 {
1349         int ret;
1350         struct spi_master *master;
1351         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1352         struct pch_spi_data *data;
1353
1354         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1355
1356         master = spi_alloc_master(&board_dat->pdev->dev,
1357                                   sizeof(struct pch_spi_data));
1358         if (!master) {
1359                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1360                         plat_dev->id);
1361                 return -ENOMEM;
1362         }
1363
1364         data = spi_master_get_devdata(master);
1365         data->master = master;
1366
1367         platform_set_drvdata(plat_dev, data);
1368
1369         /* baseaddress + address offset) */
1370         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1371                                          PCH_ADDRESS_SIZE * plat_dev->id;
1372         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1373         if (!data->io_remap_addr) {
1374                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1375                 ret = -ENOMEM;
1376                 goto err_pci_iomap;
1377         }
1378         data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1379
1380         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1381                 plat_dev->id, data->io_remap_addr);
1382
1383         /* initialize members of SPI master */
1384         master->num_chipselect = PCH_MAX_CS;
1385         master->transfer = pch_spi_transfer;
1386         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1387         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1388         master->max_speed_hz = PCH_MAX_BAUDRATE;
1389
1390         data->board_dat = board_dat;
1391         data->plat_dev = plat_dev;
1392         data->n_curnt_chip = 255;
1393         data->status = STATUS_RUNNING;
1394         data->ch = plat_dev->id;
1395         data->use_dma = use_dma;
1396
1397         INIT_LIST_HEAD(&data->queue);
1398         spin_lock_init(&data->lock);
1399         INIT_WORK(&data->work, pch_spi_process_messages);
1400         init_waitqueue_head(&data->wait);
1401
1402         ret = pch_spi_get_resources(board_dat, data);
1403         if (ret) {
1404                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1405                 goto err_spi_get_resources;
1406         }
1407
1408         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1409                           IRQF_SHARED, KBUILD_MODNAME, data);
1410         if (ret) {
1411                 dev_err(&plat_dev->dev,
1412                         "%s request_irq failed\n", __func__);
1413                 goto err_request_irq;
1414         }
1415         data->irq_reg_sts = true;
1416
1417         pch_spi_set_master_mode(master);
1418
1419         if (use_dma) {
1420                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1421                 pch_alloc_dma_buf(board_dat, data);
1422         }
1423
1424         ret = spi_register_master(master);
1425         if (ret != 0) {
1426                 dev_err(&plat_dev->dev,
1427                         "%s spi_register_master FAILED\n", __func__);
1428                 goto err_spi_register_master;
1429         }
1430
1431         return 0;
1432
1433 err_spi_register_master:
1434         pch_free_dma_buf(board_dat, data);
1435         free_irq(board_dat->pdev->irq, data);
1436 err_request_irq:
1437         pch_spi_free_resources(board_dat, data);
1438 err_spi_get_resources:
1439         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1440 err_pci_iomap:
1441         spi_master_put(master);
1442
1443         return ret;
1444 }
1445
1446 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1447 {
1448         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1449         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1450         int count;
1451         unsigned long flags;
1452
1453         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1454                 __func__, plat_dev->id, board_dat->pdev->irq);
1455
1456         if (use_dma)
1457                 pch_free_dma_buf(board_dat, data);
1458
1459         /* check for any pending messages; no action is taken if the queue
1460          * is still full; but at least we tried.  Unload anyway */
1461         count = 500;
1462         spin_lock_irqsave(&data->lock, flags);
1463         data->status = STATUS_EXITING;
1464         while ((list_empty(&data->queue) == 0) && --count) {
1465                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1466                         __func__);
1467                 spin_unlock_irqrestore(&data->lock, flags);
1468                 msleep(PCH_SLEEP_TIME);
1469                 spin_lock_irqsave(&data->lock, flags);
1470         }
1471         spin_unlock_irqrestore(&data->lock, flags);
1472
1473         pch_spi_free_resources(board_dat, data);
1474         /* disable interrupts & free IRQ */
1475         if (data->irq_reg_sts) {
1476                 /* disable interrupts */
1477                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1478                 data->irq_reg_sts = false;
1479                 free_irq(board_dat->pdev->irq, data);
1480         }
1481
1482         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1483         spi_unregister_master(data->master);
1484
1485         return 0;
1486 }
1487 #ifdef CONFIG_PM
1488 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1489                               pm_message_t state)
1490 {
1491         u8 count;
1492         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1493         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1494
1495         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1496
1497         if (!board_dat) {
1498                 dev_err(&pd_dev->dev,
1499                         "%s pci_get_drvdata returned NULL\n", __func__);
1500                 return -EFAULT;
1501         }
1502
1503         /* check if the current message is processed:
1504            Only after thats done the transfer will be suspended */
1505         count = 255;
1506         while ((--count) > 0) {
1507                 if (!(data->bcurrent_msg_processing))
1508                         break;
1509                 msleep(PCH_SLEEP_TIME);
1510         }
1511
1512         /* Free IRQ */
1513         if (data->irq_reg_sts) {
1514                 /* disable all interrupts */
1515                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1516                 pch_spi_reset(data->master);
1517                 free_irq(board_dat->pdev->irq, data);
1518
1519                 data->irq_reg_sts = false;
1520                 dev_dbg(&pd_dev->dev,
1521                         "%s free_irq invoked successfully.\n", __func__);
1522         }
1523
1524         return 0;
1525 }
1526
1527 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1528 {
1529         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1530         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1531         int retval;
1532
1533         if (!board_dat) {
1534                 dev_err(&pd_dev->dev,
1535                         "%s pci_get_drvdata returned NULL\n", __func__);
1536                 return -EFAULT;
1537         }
1538
1539         if (!data->irq_reg_sts) {
1540                 /* register IRQ */
1541                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1542                                      IRQF_SHARED, KBUILD_MODNAME, data);
1543                 if (retval < 0) {
1544                         dev_err(&pd_dev->dev,
1545                                 "%s request_irq failed\n", __func__);
1546                         return retval;
1547                 }
1548
1549                 /* reset PCH SPI h/w */
1550                 pch_spi_reset(data->master);
1551                 pch_spi_set_master_mode(data->master);
1552                 data->irq_reg_sts = true;
1553         }
1554         return 0;
1555 }
1556 #else
1557 #define pch_spi_pd_suspend NULL
1558 #define pch_spi_pd_resume NULL
1559 #endif
1560
1561 static struct platform_driver pch_spi_pd_driver = {
1562         .driver = {
1563                 .name = "pch-spi",
1564                 .owner = THIS_MODULE,
1565         },
1566         .probe = pch_spi_pd_probe,
1567         .remove = pch_spi_pd_remove,
1568         .suspend = pch_spi_pd_suspend,
1569         .resume = pch_spi_pd_resume
1570 };
1571
1572 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1573 {
1574         struct pch_spi_board_data *board_dat;
1575         struct platform_device *pd_dev = NULL;
1576         int retval;
1577         int i;
1578         struct pch_pd_dev_save *pd_dev_save;
1579
1580         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1581         if (!pd_dev_save)
1582                 return -ENOMEM;
1583
1584         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1585         if (!board_dat) {
1586                 retval = -ENOMEM;
1587                 goto err_no_mem;
1588         }
1589
1590         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1591         if (retval) {
1592                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1593                 goto pci_request_regions;
1594         }
1595
1596         board_dat->pdev = pdev;
1597         board_dat->num = id->driver_data;
1598         pd_dev_save->num = id->driver_data;
1599         pd_dev_save->board_dat = board_dat;
1600
1601         retval = pci_enable_device(pdev);
1602         if (retval) {
1603                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1604                 goto pci_enable_device;
1605         }
1606
1607         for (i = 0; i < board_dat->num; i++) {
1608                 pd_dev = platform_device_alloc("pch-spi", i);
1609                 if (!pd_dev) {
1610                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1611                         retval = -ENOMEM;
1612                         goto err_platform_device;
1613                 }
1614                 pd_dev_save->pd_save[i] = pd_dev;
1615                 pd_dev->dev.parent = &pdev->dev;
1616
1617                 retval = platform_device_add_data(pd_dev, board_dat,
1618                                                   sizeof(*board_dat));
1619                 if (retval) {
1620                         dev_err(&pdev->dev,
1621                                 "platform_device_add_data failed\n");
1622                         platform_device_put(pd_dev);
1623                         goto err_platform_device;
1624                 }
1625
1626                 retval = platform_device_add(pd_dev);
1627                 if (retval) {
1628                         dev_err(&pdev->dev, "platform_device_add failed\n");
1629                         platform_device_put(pd_dev);
1630                         goto err_platform_device;
1631                 }
1632         }
1633
1634         pci_set_drvdata(pdev, pd_dev_save);
1635
1636         return 0;
1637
1638 err_platform_device:
1639         while (--i >= 0)
1640                 platform_device_unregister(pd_dev_save->pd_save[i]);
1641         pci_disable_device(pdev);
1642 pci_enable_device:
1643         pci_release_regions(pdev);
1644 pci_request_regions:
1645         kfree(board_dat);
1646 err_no_mem:
1647         kfree(pd_dev_save);
1648
1649         return retval;
1650 }
1651
1652 static void pch_spi_remove(struct pci_dev *pdev)
1653 {
1654         int i;
1655         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1656
1657         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1658
1659         for (i = 0; i < pd_dev_save->num; i++)
1660                 platform_device_unregister(pd_dev_save->pd_save[i]);
1661
1662         pci_disable_device(pdev);
1663         pci_release_regions(pdev);
1664         kfree(pd_dev_save->board_dat);
1665         kfree(pd_dev_save);
1666 }
1667
1668 #ifdef CONFIG_PM
1669 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1670 {
1671         int retval;
1672         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1673
1674         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1675
1676         pd_dev_save->board_dat->suspend_sts = true;
1677
1678         /* save config space */
1679         retval = pci_save_state(pdev);
1680         if (retval == 0) {
1681                 pci_enable_wake(pdev, PCI_D3hot, 0);
1682                 pci_disable_device(pdev);
1683                 pci_set_power_state(pdev, PCI_D3hot);
1684         } else {
1685                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1686         }
1687
1688         return retval;
1689 }
1690
1691 static int pch_spi_resume(struct pci_dev *pdev)
1692 {
1693         int retval;
1694         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1695         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1696
1697         pci_set_power_state(pdev, PCI_D0);
1698         pci_restore_state(pdev);
1699
1700         retval = pci_enable_device(pdev);
1701         if (retval < 0) {
1702                 dev_err(&pdev->dev,
1703                         "%s pci_enable_device failed\n", __func__);
1704         } else {
1705                 pci_enable_wake(pdev, PCI_D3hot, 0);
1706
1707                 /* set suspend status to false */
1708                 pd_dev_save->board_dat->suspend_sts = false;
1709         }
1710
1711         return retval;
1712 }
1713 #else
1714 #define pch_spi_suspend NULL
1715 #define pch_spi_resume NULL
1716
1717 #endif
1718
1719 static struct pci_driver pch_spi_pcidev_driver = {
1720         .name = "pch_spi",
1721         .id_table = pch_spi_pcidev_id,
1722         .probe = pch_spi_probe,
1723         .remove = pch_spi_remove,
1724         .suspend = pch_spi_suspend,
1725         .resume = pch_spi_resume,
1726 };
1727
1728 static int __init pch_spi_init(void)
1729 {
1730         int ret;
1731         ret = platform_driver_register(&pch_spi_pd_driver);
1732         if (ret)
1733                 return ret;
1734
1735         ret = pci_register_driver(&pch_spi_pcidev_driver);
1736         if (ret) {
1737                 platform_driver_unregister(&pch_spi_pd_driver);
1738                 return ret;
1739         }
1740
1741         return 0;
1742 }
1743 module_init(pch_spi_init);
1744
1745 static void __exit pch_spi_exit(void)
1746 {
1747         pci_unregister_driver(&pch_spi_pcidev_driver);
1748         platform_driver_unregister(&pch_spi_pd_driver);
1749 }
1750 module_exit(pch_spi_exit);
1751
1752 module_param(use_dma, int, 0644);
1753 MODULE_PARM_DESC(use_dma,
1754                  "to use DMA for data transfers pass 1 else 0; default 1");
1755
1756 MODULE_LICENSE("GPL");
1757 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1758 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1759