gpiolib: Refactor gpio_export
[pandora-kernel.git] / drivers / spi / spi-rspi.c
1 /*
2  * SH RSPI driver
3  *
4  * Copyright (C) 2012  Renesas Solutions Corp.
5  *
6  * Based on spi-sh.c:
7  * Copyright (C) 2011 Renesas Solutions Corp.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/errno.h>
28 #include <linux/list.h>
29 #include <linux/workqueue.h>
30 #include <linux/interrupt.h>
31 #include <linux/platform_device.h>
32 #include <linux/io.h>
33 #include <linux/clk.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/sh_dma.h>
37 #include <linux/spi/spi.h>
38 #include <linux/spi/rspi.h>
39
40 #define RSPI_SPCR               0x00
41 #define RSPI_SSLP               0x01
42 #define RSPI_SPPCR              0x02
43 #define RSPI_SPSR               0x03
44 #define RSPI_SPDR               0x04
45 #define RSPI_SPSCR              0x08
46 #define RSPI_SPSSR              0x09
47 #define RSPI_SPBR               0x0a
48 #define RSPI_SPDCR              0x0b
49 #define RSPI_SPCKD              0x0c
50 #define RSPI_SSLND              0x0d
51 #define RSPI_SPND               0x0e
52 #define RSPI_SPCR2              0x0f
53 #define RSPI_SPCMD0             0x10
54 #define RSPI_SPCMD1             0x12
55 #define RSPI_SPCMD2             0x14
56 #define RSPI_SPCMD3             0x16
57 #define RSPI_SPCMD4             0x18
58 #define RSPI_SPCMD5             0x1a
59 #define RSPI_SPCMD6             0x1c
60 #define RSPI_SPCMD7             0x1e
61
62 /* SPCR */
63 #define SPCR_SPRIE              0x80
64 #define SPCR_SPE                0x40
65 #define SPCR_SPTIE              0x20
66 #define SPCR_SPEIE              0x10
67 #define SPCR_MSTR               0x08
68 #define SPCR_MODFEN             0x04
69 #define SPCR_TXMD               0x02
70 #define SPCR_SPMS               0x01
71
72 /* SSLP */
73 #define SSLP_SSL1P              0x02
74 #define SSLP_SSL0P              0x01
75
76 /* SPPCR */
77 #define SPPCR_MOIFE             0x20
78 #define SPPCR_MOIFV             0x10
79 #define SPPCR_SPOM              0x04
80 #define SPPCR_SPLP2             0x02
81 #define SPPCR_SPLP              0x01
82
83 /* SPSR */
84 #define SPSR_SPRF               0x80
85 #define SPSR_SPTEF              0x20
86 #define SPSR_PERF               0x08
87 #define SPSR_MODF               0x04
88 #define SPSR_IDLNF              0x02
89 #define SPSR_OVRF               0x01
90
91 /* SPSCR */
92 #define SPSCR_SPSLN_MASK        0x07
93
94 /* SPSSR */
95 #define SPSSR_SPECM_MASK        0x70
96 #define SPSSR_SPCP_MASK         0x07
97
98 /* SPDCR */
99 #define SPDCR_SPLW              0x20
100 #define SPDCR_SPRDTD            0x10
101 #define SPDCR_SLSEL1            0x08
102 #define SPDCR_SLSEL0            0x04
103 #define SPDCR_SLSEL_MASK        0x0c
104 #define SPDCR_SPFC1             0x02
105 #define SPDCR_SPFC0             0x01
106
107 /* SPCKD */
108 #define SPCKD_SCKDL_MASK        0x07
109
110 /* SSLND */
111 #define SSLND_SLNDL_MASK        0x07
112
113 /* SPND */
114 #define SPND_SPNDL_MASK         0x07
115
116 /* SPCR2 */
117 #define SPCR2_PTE               0x08
118 #define SPCR2_SPIE              0x04
119 #define SPCR2_SPOE              0x02
120 #define SPCR2_SPPE              0x01
121
122 /* SPCMDn */
123 #define SPCMD_SCKDEN            0x8000
124 #define SPCMD_SLNDEN            0x4000
125 #define SPCMD_SPNDEN            0x2000
126 #define SPCMD_LSBF              0x1000
127 #define SPCMD_SPB_MASK          0x0f00
128 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
129 #define SPCMD_SPB_20BIT         0x0000
130 #define SPCMD_SPB_24BIT         0x0100
131 #define SPCMD_SPB_32BIT         0x0200
132 #define SPCMD_SSLKP             0x0080
133 #define SPCMD_SSLA_MASK         0x0030
134 #define SPCMD_BRDV_MASK         0x000c
135 #define SPCMD_CPOL              0x0002
136 #define SPCMD_CPHA              0x0001
137
138 struct rspi_data {
139         void __iomem *addr;
140         u32 max_speed_hz;
141         struct spi_master *master;
142         struct list_head queue;
143         struct work_struct ws;
144         wait_queue_head_t wait;
145         spinlock_t lock;
146         struct clk *clk;
147         unsigned char spsr;
148
149         /* for dmaengine */
150         struct sh_dmae_slave dma_tx;
151         struct sh_dmae_slave dma_rx;
152         struct dma_chan *chan_tx;
153         struct dma_chan *chan_rx;
154         int irq;
155
156         unsigned dma_width_16bit:1;
157         unsigned dma_callbacked:1;
158 };
159
160 static void rspi_write8(struct rspi_data *rspi, u8 data, u16 offset)
161 {
162         iowrite8(data, rspi->addr + offset);
163 }
164
165 static void rspi_write16(struct rspi_data *rspi, u16 data, u16 offset)
166 {
167         iowrite16(data, rspi->addr + offset);
168 }
169
170 static u8 rspi_read8(struct rspi_data *rspi, u16 offset)
171 {
172         return ioread8(rspi->addr + offset);
173 }
174
175 static u16 rspi_read16(struct rspi_data *rspi, u16 offset)
176 {
177         return ioread16(rspi->addr + offset);
178 }
179
180 static unsigned char rspi_calc_spbr(struct rspi_data *rspi)
181 {
182         int tmp;
183         unsigned char spbr;
184
185         tmp = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
186         spbr = clamp(tmp, 0, 255);
187
188         return spbr;
189 }
190
191 static void rspi_enable_irq(struct rspi_data *rspi, u8 enable)
192 {
193         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
194 }
195
196 static void rspi_disable_irq(struct rspi_data *rspi, u8 disable)
197 {
198         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
199 }
200
201 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
202                                    u8 enable_bit)
203 {
204         int ret;
205
206         rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
207         rspi_enable_irq(rspi, enable_bit);
208         ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
209         if (ret == 0 && !(rspi->spsr & wait_mask))
210                 return -ETIMEDOUT;
211
212         return 0;
213 }
214
215 static void rspi_assert_ssl(struct rspi_data *rspi)
216 {
217         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
218 }
219
220 static void rspi_negate_ssl(struct rspi_data *rspi)
221 {
222         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
223 }
224
225 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
226 {
227         /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
228         rspi_write8(rspi, 0x00, RSPI_SPPCR);
229
230         /* Sets transfer bit rate */
231         rspi_write8(rspi, rspi_calc_spbr(rspi), RSPI_SPBR);
232
233         /* Sets number of frames to be used: 1 frame */
234         rspi_write8(rspi, 0x00, RSPI_SPDCR);
235
236         /* Sets RSPCK, SSL, next-access delay value */
237         rspi_write8(rspi, 0x00, RSPI_SPCKD);
238         rspi_write8(rspi, 0x00, RSPI_SSLND);
239         rspi_write8(rspi, 0x00, RSPI_SPND);
240
241         /* Sets parity, interrupt mask */
242         rspi_write8(rspi, 0x00, RSPI_SPCR2);
243
244         /* Sets SPCMD */
245         rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | SPCMD_SSLKP,
246                      RSPI_SPCMD0);
247
248         /* Sets RSPI mode */
249         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
250
251         return 0;
252 }
253
254 static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
255                          struct spi_transfer *t)
256 {
257         int remain = t->len;
258         u8 *data;
259
260         data = (u8 *)t->tx_buf;
261         while (remain > 0) {
262                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
263                             RSPI_SPCR);
264
265                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
266                         dev_err(&rspi->master->dev,
267                                 "%s: tx empty timeout\n", __func__);
268                         return -ETIMEDOUT;
269                 }
270
271                 rspi_write16(rspi, *data, RSPI_SPDR);
272                 data++;
273                 remain--;
274         }
275
276         /* Waiting for the last transmition */
277         rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
278
279         return 0;
280 }
281
282 static void rspi_dma_complete(void *arg)
283 {
284         struct rspi_data *rspi = arg;
285
286         rspi->dma_callbacked = 1;
287         wake_up_interruptible(&rspi->wait);
288 }
289
290 static int rspi_dma_map_sg(struct scatterlist *sg, void *buf, unsigned len,
291                            struct dma_chan *chan,
292                            enum dma_transfer_direction dir)
293 {
294         sg_init_table(sg, 1);
295         sg_set_buf(sg, buf, len);
296         sg_dma_len(sg) = len;
297         return dma_map_sg(chan->device->dev, sg, 1, dir);
298 }
299
300 static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
301                               enum dma_transfer_direction dir)
302 {
303         dma_unmap_sg(chan->device->dev, sg, 1, dir);
304 }
305
306 static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
307 {
308         u16 *dst = buf;
309         const u8 *src = data;
310
311         while (len) {
312                 *dst++ = (u16)(*src++);
313                 len--;
314         }
315 }
316
317 static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
318 {
319         u8 *dst = buf;
320         const u16 *src = data;
321
322         while (len) {
323                 *dst++ = (u8)*src++;
324                 len--;
325         }
326 }
327
328 static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
329 {
330         struct scatterlist sg;
331         void *buf = NULL;
332         struct dma_async_tx_descriptor *desc;
333         unsigned len;
334         int ret = 0;
335
336         if (rspi->dma_width_16bit) {
337                 /*
338                  * If DMAC bus width is 16-bit, the driver allocates a dummy
339                  * buffer. And, the driver converts original data into the
340                  * DMAC data as the following format:
341                  *  original data: 1st byte, 2nd byte ...
342                  *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
343                  */
344                 len = t->len * 2;
345                 buf = kmalloc(len, GFP_KERNEL);
346                 if (!buf)
347                         return -ENOMEM;
348                 rspi_memory_to_8bit(buf, t->tx_buf, t->len);
349         } else {
350                 len = t->len;
351                 buf = (void *)t->tx_buf;
352         }
353
354         if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
355                 ret = -EFAULT;
356                 goto end_nomap;
357         }
358         desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
359                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
360         if (!desc) {
361                 ret = -EIO;
362                 goto end;
363         }
364
365         /*
366          * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
367          * called. So, this driver disables the IRQ while DMA transfer.
368          */
369         disable_irq(rspi->irq);
370
371         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
372         rspi_enable_irq(rspi, SPCR_SPTIE);
373         rspi->dma_callbacked = 0;
374
375         desc->callback = rspi_dma_complete;
376         desc->callback_param = rspi;
377         dmaengine_submit(desc);
378         dma_async_issue_pending(rspi->chan_tx);
379
380         ret = wait_event_interruptible_timeout(rspi->wait,
381                                                rspi->dma_callbacked, HZ);
382         if (ret > 0 && rspi->dma_callbacked)
383                 ret = 0;
384         else if (!ret)
385                 ret = -ETIMEDOUT;
386         rspi_disable_irq(rspi, SPCR_SPTIE);
387
388         enable_irq(rspi->irq);
389
390 end:
391         rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
392 end_nomap:
393         if (rspi->dma_width_16bit)
394                 kfree(buf);
395
396         return ret;
397 }
398
399 static void rspi_receive_init(struct rspi_data *rspi)
400 {
401         unsigned char spsr;
402
403         spsr = rspi_read8(rspi, RSPI_SPSR);
404         if (spsr & SPSR_SPRF)
405                 rspi_read16(rspi, RSPI_SPDR);   /* dummy read */
406         if (spsr & SPSR_OVRF)
407                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
408                             RSPI_SPCR);
409 }
410
411 static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
412                             struct spi_transfer *t)
413 {
414         int remain = t->len;
415         u8 *data;
416
417         rspi_receive_init(rspi);
418
419         data = (u8 *)t->rx_buf;
420         while (remain > 0) {
421                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
422                             RSPI_SPCR);
423
424                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
425                         dev_err(&rspi->master->dev,
426                                 "%s: tx empty timeout\n", __func__);
427                         return -ETIMEDOUT;
428                 }
429                 /* dummy write for generate clock */
430                 rspi_write16(rspi, 0x00, RSPI_SPDR);
431
432                 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
433                         dev_err(&rspi->master->dev,
434                                 "%s: receive timeout\n", __func__);
435                         return -ETIMEDOUT;
436                 }
437                 /* SPDR allows 16 or 32-bit access only */
438                 *data = (u8)rspi_read16(rspi, RSPI_SPDR);
439
440                 data++;
441                 remain--;
442         }
443
444         return 0;
445 }
446
447 static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
448 {
449         struct scatterlist sg, sg_dummy;
450         void *dummy = NULL, *rx_buf = NULL;
451         struct dma_async_tx_descriptor *desc, *desc_dummy;
452         unsigned len;
453         int ret = 0;
454
455         if (rspi->dma_width_16bit) {
456                 /*
457                  * If DMAC bus width is 16-bit, the driver allocates a dummy
458                  * buffer. And, finally the driver converts the DMAC data into
459                  * actual data as the following format:
460                  *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
461                  *  actual data: 1st byte, 2nd byte ...
462                  */
463                 len = t->len * 2;
464                 rx_buf = kmalloc(len, GFP_KERNEL);
465                 if (!rx_buf)
466                         return -ENOMEM;
467          } else {
468                 len = t->len;
469                 rx_buf = t->rx_buf;
470         }
471
472         /* prepare dummy transfer to generate SPI clocks */
473         dummy = kzalloc(len, GFP_KERNEL);
474         if (!dummy) {
475                 ret = -ENOMEM;
476                 goto end_nomap;
477         }
478         if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
479                              DMA_TO_DEVICE)) {
480                 ret = -EFAULT;
481                 goto end_nomap;
482         }
483         desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
484                         DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
485         if (!desc_dummy) {
486                 ret = -EIO;
487                 goto end_dummy_mapped;
488         }
489
490         /* prepare receive transfer */
491         if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
492                              DMA_FROM_DEVICE)) {
493                 ret = -EFAULT;
494                 goto end_dummy_mapped;
495
496         }
497         desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
498                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
499         if (!desc) {
500                 ret = -EIO;
501                 goto end;
502         }
503
504         rspi_receive_init(rspi);
505
506         /*
507          * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
508          * called. So, this driver disables the IRQ while DMA transfer.
509          */
510         disable_irq(rspi->irq);
511
512         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
513         rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
514         rspi->dma_callbacked = 0;
515
516         desc->callback = rspi_dma_complete;
517         desc->callback_param = rspi;
518         dmaengine_submit(desc);
519         dma_async_issue_pending(rspi->chan_rx);
520
521         desc_dummy->callback = NULL;    /* No callback */
522         dmaengine_submit(desc_dummy);
523         dma_async_issue_pending(rspi->chan_tx);
524
525         ret = wait_event_interruptible_timeout(rspi->wait,
526                                                rspi->dma_callbacked, HZ);
527         if (ret > 0 && rspi->dma_callbacked)
528                 ret = 0;
529         else if (!ret)
530                 ret = -ETIMEDOUT;
531         rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
532
533         enable_irq(rspi->irq);
534
535 end:
536         rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
537 end_dummy_mapped:
538         rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
539 end_nomap:
540         if (rspi->dma_width_16bit) {
541                 if (!ret)
542                         rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
543                 kfree(rx_buf);
544         }
545         kfree(dummy);
546
547         return ret;
548 }
549
550 static int rspi_is_dma(struct rspi_data *rspi, struct spi_transfer *t)
551 {
552         if (t->tx_buf && rspi->chan_tx)
553                 return 1;
554         /* If the module receives data by DMAC, it also needs TX DMAC */
555         if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
556                 return 1;
557
558         return 0;
559 }
560
561 static void rspi_work(struct work_struct *work)
562 {
563         struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
564         struct spi_message *mesg;
565         struct spi_transfer *t;
566         unsigned long flags;
567         int ret;
568
569         spin_lock_irqsave(&rspi->lock, flags);
570         while (!list_empty(&rspi->queue)) {
571                 mesg = list_entry(rspi->queue.next, struct spi_message, queue);
572                 list_del_init(&mesg->queue);
573                 spin_unlock_irqrestore(&rspi->lock, flags);
574
575                 rspi_assert_ssl(rspi);
576
577                 list_for_each_entry(t, &mesg->transfers, transfer_list) {
578                         if (t->tx_buf) {
579                                 if (rspi_is_dma(rspi, t))
580                                         ret = rspi_send_dma(rspi, t);
581                                 else
582                                         ret = rspi_send_pio(rspi, mesg, t);
583                                 if (ret < 0)
584                                         goto error;
585                         }
586                         if (t->rx_buf) {
587                                 if (rspi_is_dma(rspi, t))
588                                         ret = rspi_receive_dma(rspi, t);
589                                 else
590                                         ret = rspi_receive_pio(rspi, mesg, t);
591                                 if (ret < 0)
592                                         goto error;
593                         }
594                         mesg->actual_length += t->len;
595                 }
596                 rspi_negate_ssl(rspi);
597
598                 mesg->status = 0;
599                 mesg->complete(mesg->context);
600
601                 spin_lock_irqsave(&rspi->lock, flags);
602         }
603
604         return;
605
606 error:
607         mesg->status = ret;
608         mesg->complete(mesg->context);
609 }
610
611 static int rspi_setup(struct spi_device *spi)
612 {
613         struct rspi_data *rspi = spi_master_get_devdata(spi->master);
614
615         if (!spi->bits_per_word)
616                 spi->bits_per_word = 8;
617         rspi->max_speed_hz = spi->max_speed_hz;
618
619         rspi_set_config_register(rspi, 8);
620
621         return 0;
622 }
623
624 static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
625 {
626         struct rspi_data *rspi = spi_master_get_devdata(spi->master);
627         unsigned long flags;
628
629         mesg->actual_length = 0;
630         mesg->status = -EINPROGRESS;
631
632         spin_lock_irqsave(&rspi->lock, flags);
633         list_add_tail(&mesg->queue, &rspi->queue);
634         schedule_work(&rspi->ws);
635         spin_unlock_irqrestore(&rspi->lock, flags);
636
637         return 0;
638 }
639
640 static void rspi_cleanup(struct spi_device *spi)
641 {
642 }
643
644 static irqreturn_t rspi_irq(int irq, void *_sr)
645 {
646         struct rspi_data *rspi = (struct rspi_data *)_sr;
647         unsigned long spsr;
648         irqreturn_t ret = IRQ_NONE;
649         unsigned char disable_irq = 0;
650
651         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
652         if (spsr & SPSR_SPRF)
653                 disable_irq |= SPCR_SPRIE;
654         if (spsr & SPSR_SPTEF)
655                 disable_irq |= SPCR_SPTIE;
656
657         if (disable_irq) {
658                 ret = IRQ_HANDLED;
659                 rspi_disable_irq(rspi, disable_irq);
660                 wake_up(&rspi->wait);
661         }
662
663         return ret;
664 }
665
666 static bool rspi_filter(struct dma_chan *chan, void *filter_param)
667 {
668         chan->private = filter_param;
669         return true;
670 }
671
672 static void __devinit rspi_request_dma(struct rspi_data *rspi,
673                                        struct platform_device *pdev)
674 {
675         struct rspi_plat_data *rspi_pd = pdev->dev.platform_data;
676         dma_cap_mask_t mask;
677
678         if (!rspi_pd)
679                 return;
680
681         rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
682
683         /* If the module receives data by DMAC, it also needs TX DMAC */
684         if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
685                 dma_cap_zero(mask);
686                 dma_cap_set(DMA_SLAVE, mask);
687                 rspi->dma_rx.slave_id = rspi_pd->dma_rx_id;
688                 rspi->chan_rx = dma_request_channel(mask, rspi_filter,
689                                                     &rspi->dma_rx);
690                 if (rspi->chan_rx)
691                         dev_info(&pdev->dev, "Use DMA when rx.\n");
692         }
693         if (rspi_pd->dma_tx_id) {
694                 dma_cap_zero(mask);
695                 dma_cap_set(DMA_SLAVE, mask);
696                 rspi->dma_tx.slave_id = rspi_pd->dma_tx_id;
697                 rspi->chan_tx = dma_request_channel(mask, rspi_filter,
698                                                     &rspi->dma_tx);
699                 if (rspi->chan_tx)
700                         dev_info(&pdev->dev, "Use DMA when tx\n");
701         }
702 }
703
704 static void __devexit rspi_release_dma(struct rspi_data *rspi)
705 {
706         if (rspi->chan_tx)
707                 dma_release_channel(rspi->chan_tx);
708         if (rspi->chan_rx)
709                 dma_release_channel(rspi->chan_rx);
710 }
711
712 static int __devexit rspi_remove(struct platform_device *pdev)
713 {
714         struct rspi_data *rspi = dev_get_drvdata(&pdev->dev);
715
716         spi_unregister_master(rspi->master);
717         rspi_release_dma(rspi);
718         free_irq(platform_get_irq(pdev, 0), rspi);
719         clk_put(rspi->clk);
720         iounmap(rspi->addr);
721         spi_master_put(rspi->master);
722
723         return 0;
724 }
725
726 static int __devinit rspi_probe(struct platform_device *pdev)
727 {
728         struct resource *res;
729         struct spi_master *master;
730         struct rspi_data *rspi;
731         int ret, irq;
732         char clk_name[16];
733
734         /* get base addr */
735         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
736         if (unlikely(res == NULL)) {
737                 dev_err(&pdev->dev, "invalid resource\n");
738                 return -EINVAL;
739         }
740
741         irq = platform_get_irq(pdev, 0);
742         if (irq < 0) {
743                 dev_err(&pdev->dev, "platform_get_irq error\n");
744                 return -ENODEV;
745         }
746
747         master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
748         if (master == NULL) {
749                 dev_err(&pdev->dev, "spi_alloc_master error.\n");
750                 return -ENOMEM;
751         }
752
753         rspi = spi_master_get_devdata(master);
754         dev_set_drvdata(&pdev->dev, rspi);
755
756         rspi->master = master;
757         rspi->addr = ioremap(res->start, resource_size(res));
758         if (rspi->addr == NULL) {
759                 dev_err(&pdev->dev, "ioremap error.\n");
760                 ret = -ENOMEM;
761                 goto error1;
762         }
763
764         snprintf(clk_name, sizeof(clk_name), "rspi%d", pdev->id);
765         rspi->clk = clk_get(&pdev->dev, clk_name);
766         if (IS_ERR(rspi->clk)) {
767                 dev_err(&pdev->dev, "cannot get clock\n");
768                 ret = PTR_ERR(rspi->clk);
769                 goto error2;
770         }
771         clk_enable(rspi->clk);
772
773         INIT_LIST_HEAD(&rspi->queue);
774         spin_lock_init(&rspi->lock);
775         INIT_WORK(&rspi->ws, rspi_work);
776         init_waitqueue_head(&rspi->wait);
777
778         master->num_chipselect = 2;
779         master->bus_num = pdev->id;
780         master->setup = rspi_setup;
781         master->transfer = rspi_transfer;
782         master->cleanup = rspi_cleanup;
783
784         ret = request_irq(irq, rspi_irq, 0, dev_name(&pdev->dev), rspi);
785         if (ret < 0) {
786                 dev_err(&pdev->dev, "request_irq error\n");
787                 goto error3;
788         }
789
790         rspi->irq = irq;
791         rspi_request_dma(rspi, pdev);
792
793         ret = spi_register_master(master);
794         if (ret < 0) {
795                 dev_err(&pdev->dev, "spi_register_master error.\n");
796                 goto error4;
797         }
798
799         dev_info(&pdev->dev, "probed\n");
800
801         return 0;
802
803 error4:
804         rspi_release_dma(rspi);
805         free_irq(irq, rspi);
806 error3:
807         clk_put(rspi->clk);
808 error2:
809         iounmap(rspi->addr);
810 error1:
811         spi_master_put(master);
812
813         return ret;
814 }
815
816 static struct platform_driver rspi_driver = {
817         .probe =        rspi_probe,
818         .remove =       __devexit_p(rspi_remove),
819         .driver         = {
820                 .name = "rspi",
821                 .owner  = THIS_MODULE,
822         },
823 };
824 module_platform_driver(rspi_driver);
825
826 MODULE_DESCRIPTION("Renesas RSPI bus driver");
827 MODULE_LICENSE("GPL v2");
828 MODULE_AUTHOR("Yoshihiro Shimoda");
829 MODULE_ALIAS("platform:rspi");