Merge master.kernel.org:/pub/scm/linux/kernel/git/dtor/input
[pandora-kernel.git] / drivers / serial / jsm / jsm_tty.c
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE.  See the GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19  * MA  02111-1307, USA.
20  *
21  * Contact Information:
22  * Scott H Kilau <Scott_Kilau@digi.com>
23  * Ananda Venkatarman <mansarov@us.ibm.com>
24  * Modifications:
25  * 01/19/06:    changed jsm_input routine to use the dynamically allocated
26  *              tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27  ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h>        /* For udelay */
32 #include <linux/pci.h>
33
34 #include "jsm.h"
35
36 static void jsm_carrier(struct jsm_channel *ch);
37
38 static inline int jsm_get_mstat(struct jsm_channel *ch)
39 {
40         unsigned char mstat;
41         unsigned result;
42
43         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
44
45         mstat = (ch->ch_mostat | ch->ch_mistat);
46
47         result = 0;
48
49         if (mstat & UART_MCR_DTR)
50                 result |= TIOCM_DTR;
51         if (mstat & UART_MCR_RTS)
52                 result |= TIOCM_RTS;
53         if (mstat & UART_MSR_CTS)
54                 result |= TIOCM_CTS;
55         if (mstat & UART_MSR_DSR)
56                 result |= TIOCM_DSR;
57         if (mstat & UART_MSR_RI)
58                 result |= TIOCM_RI;
59         if (mstat & UART_MSR_DCD)
60                 result |= TIOCM_CD;
61
62         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
63         return result;
64 }
65
66 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
67 {
68         return TIOCSER_TEMT;
69 }
70
71 /*
72  * Return modem signals to ld.
73  */
74 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
75 {
76         int result;
77         struct jsm_channel *channel = (struct jsm_channel *)port;
78
79         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
80
81         result = jsm_get_mstat(channel);
82
83         if (result < 0)
84                 return -ENXIO;
85
86         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
87
88         return result;
89 }
90
91 /*
92  * jsm_set_modem_info()
93  *
94  * Set modem signals, called by ld.
95  */
96 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
97 {
98         struct jsm_channel *channel = (struct jsm_channel *)port;
99
100         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
101
102         if (mctrl & TIOCM_RTS)
103                 channel->ch_mostat |= UART_MCR_RTS;
104         else
105                 channel->ch_mostat &= ~UART_MCR_RTS;
106
107         if (mctrl & TIOCM_DTR)
108                 channel->ch_mostat |= UART_MCR_DTR;
109         else
110                 channel->ch_mostat &= ~UART_MCR_DTR;
111
112         channel->ch_bd->bd_ops->assert_modem_signals(channel);
113
114         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
115         udelay(10);
116 }
117
118 static void jsm_tty_start_tx(struct uart_port *port)
119 {
120         struct jsm_channel *channel = (struct jsm_channel *)port;
121
122         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
123
124         channel->ch_flags &= ~(CH_STOP);
125         jsm_tty_write(port);
126
127         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
128 }
129
130 static void jsm_tty_stop_tx(struct uart_port *port)
131 {
132         struct jsm_channel *channel = (struct jsm_channel *)port;
133
134         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
135
136         channel->ch_flags |= (CH_STOP);
137
138         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
139 }
140
141 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
142 {
143         unsigned long lock_flags;
144         struct jsm_channel *channel = (struct jsm_channel *)port;
145         struct ktermios *termios;
146
147         spin_lock_irqsave(&port->lock, lock_flags);
148         termios = port->info->tty->termios;
149         if (ch == termios->c_cc[VSTART])
150                 channel->ch_bd->bd_ops->send_start_character(channel);
151
152         if (ch == termios->c_cc[VSTOP])
153                 channel->ch_bd->bd_ops->send_stop_character(channel);
154         spin_unlock_irqrestore(&port->lock, lock_flags);
155 }
156
157 static void jsm_tty_stop_rx(struct uart_port *port)
158 {
159         struct jsm_channel *channel = (struct jsm_channel *)port;
160
161         channel->ch_bd->bd_ops->disable_receiver(channel);
162 }
163
164 static void jsm_tty_break(struct uart_port *port, int break_state)
165 {
166         unsigned long lock_flags;
167         struct jsm_channel *channel = (struct jsm_channel *)port;
168
169         spin_lock_irqsave(&port->lock, lock_flags);
170         if (break_state == -1)
171                 channel->ch_bd->bd_ops->send_break(channel);
172         else
173                 channel->ch_bd->bd_ops->clear_break(channel, 0);
174
175         spin_unlock_irqrestore(&port->lock, lock_flags);
176 }
177
178 static int jsm_tty_open(struct uart_port *port)
179 {
180         struct jsm_board *brd;
181         int rc = 0;
182         struct jsm_channel *channel = (struct jsm_channel *)port;
183         struct ktermios *termios;
184
185         /* Get board pointer from our array of majors we have allocated */
186         brd = channel->ch_bd;
187
188         /*
189          * Allocate channel buffers for read/write/error.
190          * Set flag, so we don't get trounced on.
191          */
192         channel->ch_flags |= (CH_OPENING);
193
194         /* Drop locks, as malloc with GFP_KERNEL can sleep */
195
196         if (!channel->ch_rqueue) {
197                 channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
198                 if (!channel->ch_rqueue) {
199                         jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
200                                 "unable to allocate read queue buf");
201                         return -ENOMEM;
202                 }
203         }
204         if (!channel->ch_equeue) {
205                 channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
206                 if (!channel->ch_equeue) {
207                         jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
208                                 "unable to allocate error queue buf");
209                         return -ENOMEM;
210                 }
211         }
212         if (!channel->ch_wqueue) {
213                 channel->ch_wqueue = kzalloc(WQUEUESIZE, GFP_KERNEL);
214                 if (!channel->ch_wqueue) {
215                         jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
216                                 "unable to allocate write queue buf");
217                         return -ENOMEM;
218                 }
219         }
220
221         channel->ch_flags &= ~(CH_OPENING);
222         /*
223          * Initialize if neither terminal is open.
224          */
225         jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
226                 "jsm_open: initializing channel in open...\n");
227
228         /*
229          * Flush input queues.
230          */
231         channel->ch_r_head = channel->ch_r_tail = 0;
232         channel->ch_e_head = channel->ch_e_tail = 0;
233         channel->ch_w_head = channel->ch_w_tail = 0;
234
235         brd->bd_ops->flush_uart_write(channel);
236         brd->bd_ops->flush_uart_read(channel);
237
238         channel->ch_flags = 0;
239         channel->ch_cached_lsr = 0;
240         channel->ch_stops_sent = 0;
241
242         termios = port->info->tty->termios;
243         channel->ch_c_cflag     = termios->c_cflag;
244         channel->ch_c_iflag     = termios->c_iflag;
245         channel->ch_c_oflag     = termios->c_oflag;
246         channel->ch_c_lflag     = termios->c_lflag;
247         channel->ch_startc      = termios->c_cc[VSTART];
248         channel->ch_stopc       = termios->c_cc[VSTOP];
249
250         /* Tell UART to init itself */
251         brd->bd_ops->uart_init(channel);
252
253         /*
254          * Run param in case we changed anything
255          */
256         brd->bd_ops->param(channel);
257
258         jsm_carrier(channel);
259
260         channel->ch_open_count++;
261
262         jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
263         return rc;
264 }
265
266 static void jsm_tty_close(struct uart_port *port)
267 {
268         struct jsm_board *bd;
269         struct ktermios *ts;
270         struct jsm_channel *channel = (struct jsm_channel *)port;
271
272         jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
273
274         bd = channel->ch_bd;
275         ts = channel->uart_port.info->tty->termios;
276
277         channel->ch_flags &= ~(CH_STOPI);
278
279         channel->ch_open_count--;
280
281         /*
282          * If we have HUPCL set, lower DTR and RTS
283          */
284         if (channel->ch_c_cflag & HUPCL) {
285                 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
286                         "Close. HUPCL set, dropping DTR/RTS\n");
287
288                 /* Drop RTS/DTR */
289                 channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
290                 bd->bd_ops->assert_modem_signals(channel);
291         }
292
293         channel->ch_old_baud = 0;
294
295         /* Turn off UART interrupts for this port */
296         channel->ch_bd->bd_ops->uart_off(channel);
297
298         jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
299 }
300
301 static void jsm_tty_set_termios(struct uart_port *port,
302                                  struct ktermios *termios,
303                                  struct ktermios *old_termios)
304 {
305         unsigned long lock_flags;
306         struct jsm_channel *channel = (struct jsm_channel *)port;
307
308         spin_lock_irqsave(&port->lock, lock_flags);
309         channel->ch_c_cflag     = termios->c_cflag;
310         channel->ch_c_iflag     = termios->c_iflag;
311         channel->ch_c_oflag     = termios->c_oflag;
312         channel->ch_c_lflag     = termios->c_lflag;
313         channel->ch_startc      = termios->c_cc[VSTART];
314         channel->ch_stopc       = termios->c_cc[VSTOP];
315
316         channel->ch_bd->bd_ops->param(channel);
317         jsm_carrier(channel);
318         spin_unlock_irqrestore(&port->lock, lock_flags);
319 }
320
321 static const char *jsm_tty_type(struct uart_port *port)
322 {
323         return "jsm";
324 }
325
326 static void jsm_tty_release_port(struct uart_port *port)
327 {
328 }
329
330 static int jsm_tty_request_port(struct uart_port *port)
331 {
332         return 0;
333 }
334
335 static void jsm_config_port(struct uart_port *port, int flags)
336 {
337         port->type = PORT_JSM;
338 }
339
340 static struct uart_ops jsm_ops = {
341         .tx_empty       = jsm_tty_tx_empty,
342         .set_mctrl      = jsm_tty_set_mctrl,
343         .get_mctrl      = jsm_tty_get_mctrl,
344         .stop_tx        = jsm_tty_stop_tx,
345         .start_tx       = jsm_tty_start_tx,
346         .send_xchar     = jsm_tty_send_xchar,
347         .stop_rx        = jsm_tty_stop_rx,
348         .break_ctl      = jsm_tty_break,
349         .startup        = jsm_tty_open,
350         .shutdown       = jsm_tty_close,
351         .set_termios    = jsm_tty_set_termios,
352         .type           = jsm_tty_type,
353         .release_port   = jsm_tty_release_port,
354         .request_port   = jsm_tty_request_port,
355         .config_port    = jsm_config_port,
356 };
357
358 /*
359  * jsm_tty_init()
360  *
361  * Init the tty subsystem.  Called once per board after board has been
362  * downloaded and init'ed.
363  */
364 int jsm_tty_init(struct jsm_board *brd)
365 {
366         int i;
367         void __iomem *vaddr;
368         struct jsm_channel *ch;
369
370         if (!brd)
371                 return -ENXIO;
372
373         jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
374
375         /*
376          * Initialize board structure elements.
377          */
378
379         brd->nasync = brd->maxports;
380
381         /*
382          * Allocate channel memory that might not have been allocated
383          * when the driver was first loaded.
384          */
385         for (i = 0; i < brd->nasync; i++) {
386                 if (!brd->channels[i]) {
387
388                         /*
389                          * Okay to malloc with GFP_KERNEL, we are not at
390                          * interrupt context, and there are no locks held.
391                          */
392                         brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL);
393                         if (!brd->channels[i]) {
394                                 jsm_printk(CORE, ERR, &brd->pci_dev,
395                                         "%s:%d Unable to allocate memory for channel struct\n",
396                                                          __FILE__, __LINE__);
397                         }
398                 }
399         }
400
401         ch = brd->channels[0];
402         vaddr = brd->re_map_membase;
403
404         /* Set up channel variables */
405         for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
406
407                 if (!brd->channels[i])
408                         continue;
409
410                 spin_lock_init(&ch->ch_lock);
411
412                 if (brd->bd_uart_offset == 0x200)
413                         ch->ch_neo_uart =  vaddr + (brd->bd_uart_offset * i);
414
415                 ch->ch_bd = brd;
416                 ch->ch_portnum = i;
417
418                 /* .25 second delay */
419                 ch->ch_close_delay = 250;
420
421                 init_waitqueue_head(&ch->ch_flags_wait);
422         }
423
424         jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
425         return 0;
426 }
427
428 int jsm_uart_port_init(struct jsm_board *brd)
429 {
430         int i;
431         struct jsm_channel *ch;
432
433         if (!brd)
434                 return -ENXIO;
435
436         jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
437
438         /*
439          * Initialize board structure elements.
440          */
441
442         brd->nasync = brd->maxports;
443
444         /* Set up channel variables */
445         for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
446
447                 if (!brd->channels[i])
448                         continue;
449
450                 brd->channels[i]->uart_port.irq = brd->irq;
451                 brd->channels[i]->uart_port.uartclk = 14745600;
452                 brd->channels[i]->uart_port.type = PORT_JSM;
453                 brd->channels[i]->uart_port.iotype = UPIO_MEM;
454                 brd->channels[i]->uart_port.membase = brd->re_map_membase;
455                 brd->channels[i]->uart_port.fifosize = 16;
456                 brd->channels[i]->uart_port.ops = &jsm_ops;
457                 brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2;
458                 if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port))
459                         printk(KERN_INFO "Added device failed\n");
460                 else
461                         printk(KERN_INFO "Added device \n");
462         }
463
464         jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
465         return 0;
466 }
467
468 int jsm_remove_uart_port(struct jsm_board *brd)
469 {
470         int i;
471         struct jsm_channel *ch;
472
473         if (!brd)
474                 return -ENXIO;
475
476         jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
477
478         /*
479          * Initialize board structure elements.
480          */
481
482         brd->nasync = brd->maxports;
483
484         /* Set up channel variables */
485         for (i = 0; i < brd->nasync; i++) {
486
487                 if (!brd->channels[i])
488                         continue;
489
490                 ch = brd->channels[i];
491
492                 uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
493         }
494
495         jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
496         return 0;
497 }
498
499 void jsm_input(struct jsm_channel *ch)
500 {
501         struct jsm_board *bd;
502         struct tty_struct *tp;
503         struct tty_ldisc *ld;
504         u32 rmask;
505         u16 head;
506         u16 tail;
507         int data_len;
508         unsigned long lock_flags;
509         int flip_len = 0;
510         int len = 0;
511         int n = 0;
512         int s = 0;
513         int i = 0;
514
515         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
516
517         if (!ch)
518                 return;
519
520         tp = ch->uart_port.info->tty;
521
522         bd = ch->ch_bd;
523         if(!bd)
524                 return;
525
526         spin_lock_irqsave(&ch->ch_lock, lock_flags);
527
528         /*
529          *Figure the number of characters in the buffer.
530          *Exit immediately if none.
531          */
532
533         rmask = RQUEUEMASK;
534
535         head = ch->ch_r_head & rmask;
536         tail = ch->ch_r_tail & rmask;
537
538         data_len = (head - tail) & rmask;
539         if (data_len == 0) {
540                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
541                 return;
542         }
543
544         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
545
546         /*
547          *If the device is not open, or CREAD is off, flush
548          *input data and return immediately.
549          */
550         if (!tp ||
551                 !(tp->termios->c_cflag & CREAD) ) {
552
553                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
554                         "input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
555                 ch->ch_r_head = tail;
556
557                 /* Force queue flow control to be released, if needed */
558                 jsm_check_queue_flow_control(ch);
559
560                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
561                 return;
562         }
563
564         /*
565          * If we are throttled, simply don't read any data.
566          */
567         if (ch->ch_flags & CH_STOPI) {
568                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
569                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
570                         "Port %d throttled, not reading any data. head: %x tail: %x\n",
571                         ch->ch_portnum, head, tail);
572                 return;
573         }
574
575         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
576
577         /*
578          * If the rxbuf is empty and we are not throttled, put as much
579          * as we can directly into the linux TTY buffer.
580          *
581          */
582         flip_len = TTY_FLIPBUF_SIZE;
583
584         len = min(data_len, flip_len);
585         len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt);
586         ld = tty_ldisc_ref(tp);
587
588         /*
589          * If we were unable to get a reference to the ld,
590          * don't flush our buffer, and act like the ld doesn't
591          * have any space to put the data right now.
592          */
593         if (!ld) {
594                 len = 0;
595         } else {
596                 /*
597                  * If ld doesn't have a pointer to a receive_buf function,
598                  * flush the data, then act like the ld doesn't have any
599                  * space to put the data right now.
600                  */
601                 if (!ld->receive_buf) {
602                                 ch->ch_r_head = ch->ch_r_tail;
603                                 len = 0;
604                 }
605         }
606
607         if (len <= 0) {
608                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
609                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
610                 if (ld)
611                         tty_ldisc_deref(ld);
612                 return;
613         }
614
615         len = tty_buffer_request_room(tp, len);
616         n = len;
617
618         /*
619          * n now contains the most amount of data we can copy,
620          * bounded either by the flip buffer size or the amount
621          * of data the card actually has pending...
622          */
623         while (n) {
624                 s = ((head >= tail) ? head : RQUEUESIZE) - tail;
625                 s = min(s, n);
626
627                 if (s <= 0)
628                         break;
629
630                         /*
631                          * If conditions are such that ld needs to see all
632                          * UART errors, we will have to walk each character
633                          * and error byte and send them to the buffer one at
634                          * a time.
635                          */
636
637                 if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
638                         for (i = 0; i < s; i++) {
639                                 /*
640                                  * Give the Linux ld the flags in the
641                                  * format it likes.
642                                  */
643                                 if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
644                                         tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i),  TTY_BREAK);
645                                 else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
646                                         tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_PARITY);
647                                 else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
648                                         tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_FRAME);
649                                 else
650                                 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
651                         }
652                 } else {
653                         tty_insert_flip_string(tp, ch->ch_rqueue + tail, s) ;
654                 }
655                 tail += s;
656                 n -= s;
657                 /* Flip queue if needed */
658                 tail &= rmask;
659         }
660
661         ch->ch_r_tail = tail & rmask;
662         ch->ch_e_tail = tail & rmask;
663         jsm_check_queue_flow_control(ch);
664         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
665
666         /* Tell the tty layer its okay to "eat" the data now */
667         tty_flip_buffer_push(tp);
668
669         if (ld)
670                 tty_ldisc_deref(ld);
671
672         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
673 }
674
675 static void jsm_carrier(struct jsm_channel *ch)
676 {
677         struct jsm_board *bd;
678
679         int virt_carrier = 0;
680         int phys_carrier = 0;
681
682         jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
683         if (!ch)
684                 return;
685
686         bd = ch->ch_bd;
687
688         if (!bd)
689                 return;
690
691         if (ch->ch_mistat & UART_MSR_DCD) {
692                 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
693                         "mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
694                 phys_carrier = 1;
695         }
696
697         if (ch->ch_c_cflag & CLOCAL)
698                 virt_carrier = 1;
699
700         jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
701                 "DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
702
703         /*
704          * Test for a VIRTUAL carrier transition to HIGH.
705          */
706         if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
707
708                 /*
709                  * When carrier rises, wake any threads waiting
710                  * for carrier in the open routine.
711                  */
712
713                 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
714                         "carrier: virt DCD rose\n");
715
716                 if (waitqueue_active(&(ch->ch_flags_wait)))
717                         wake_up_interruptible(&ch->ch_flags_wait);
718         }
719
720         /*
721          * Test for a PHYSICAL carrier transition to HIGH.
722          */
723         if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
724
725                 /*
726                  * When carrier rises, wake any threads waiting
727                  * for carrier in the open routine.
728                  */
729
730                 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
731                         "carrier: physical DCD rose\n");
732
733                 if (waitqueue_active(&(ch->ch_flags_wait)))
734                         wake_up_interruptible(&ch->ch_flags_wait);
735         }
736
737         /*
738          *  Test for a PHYSICAL transition to low, so long as we aren't
739          *  currently ignoring physical transitions (which is what "virtual
740          *  carrier" indicates).
741          *
742          *  The transition of the virtual carrier to low really doesn't
743          *  matter... it really only means "ignore carrier state", not
744          *  "make pretend that carrier is there".
745          */
746         if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
747                         && (phys_carrier == 0)) {
748                 /*
749                  *      When carrier drops:
750                  *
751                  *      Drop carrier on all open units.
752                  *
753                  *      Flush queues, waking up any task waiting in the
754                  *      line discipline.
755                  *
756                  *      Send a hangup to the control terminal.
757                  *
758                  *      Enable all select calls.
759                  */
760                 if (waitqueue_active(&(ch->ch_flags_wait)))
761                         wake_up_interruptible(&ch->ch_flags_wait);
762         }
763
764         /*
765          *  Make sure that our cached values reflect the current reality.
766          */
767         if (virt_carrier == 1)
768                 ch->ch_flags |= CH_FCAR;
769         else
770                 ch->ch_flags &= ~CH_FCAR;
771
772         if (phys_carrier == 1)
773                 ch->ch_flags |= CH_CD;
774         else
775                 ch->ch_flags &= ~CH_CD;
776 }
777
778
779 void jsm_check_queue_flow_control(struct jsm_channel *ch)
780 {
781         struct board_ops *bd_ops = ch->ch_bd->bd_ops;
782         int qleft = 0;
783
784         /* Store how much space we have left in the queue */
785         if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
786                 qleft += RQUEUEMASK + 1;
787
788         /*
789          * Check to see if we should enforce flow control on our queue because
790          * the ld (or user) isn't reading data out of our queue fast enuf.
791          *
792          * NOTE: This is done based on what the current flow control of the
793          * port is set for.
794          *
795          * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
796          *      This will cause the UART's FIFO to back up, and force
797          *      the RTS signal to be dropped.
798          * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
799          *      the other side, in hopes it will stop sending data to us.
800          * 3) NONE - Nothing we can do.  We will simply drop any extra data
801          *      that gets sent into us when the queue fills up.
802          */
803         if (qleft < 256) {
804                 /* HWFLOW */
805                 if (ch->ch_c_cflag & CRTSCTS) {
806                         if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
807                                 bd_ops->disable_receiver(ch);
808                                 ch->ch_flags |= (CH_RECEIVER_OFF);
809                                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
810                                         "Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
811                                         qleft);
812                         }
813                 }
814                 /* SWFLOW */
815                 else if (ch->ch_c_iflag & IXOFF) {
816                         if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
817                                 bd_ops->send_stop_character(ch);
818                                 ch->ch_stops_sent++;
819                                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
820                                         "Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
821                         }
822                 }
823         }
824
825         /*
826          * Check to see if we should unenforce flow control because
827          * ld (or user) finally read enuf data out of our queue.
828          *
829          * NOTE: This is done based on what the current flow control of the
830          * port is set for.
831          *
832          * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
833          *      This will cause the UART's FIFO to raise RTS back up,
834          *      which will allow the other side to start sending data again.
835          * 2) SWFLOW (IXOFF) - Send a start character to
836          *      the other side, so it will start sending data to us again.
837          * 3) NONE - Do nothing. Since we didn't do anything to turn off the
838          *      other side, we don't need to do anything now.
839          */
840         if (qleft > (RQUEUESIZE / 2)) {
841                 /* HWFLOW */
842                 if (ch->ch_c_cflag & CRTSCTS) {
843                         if (ch->ch_flags & CH_RECEIVER_OFF) {
844                                 bd_ops->enable_receiver(ch);
845                                 ch->ch_flags &= ~(CH_RECEIVER_OFF);
846                                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
847                                         "Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
848                                         qleft);
849                         }
850                 }
851                 /* SWFLOW */
852                 else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
853                         ch->ch_stops_sent = 0;
854                         bd_ops->send_start_character(ch);
855                         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
856                 }
857         }
858 }
859
860 /*
861  * jsm_tty_write()
862  *
863  * Take data from the user or kernel and send it out to the FEP.
864  * In here exists all the Transparent Print magic as well.
865  */
866 int jsm_tty_write(struct uart_port *port)
867 {
868         int bufcount = 0, n = 0;
869         int data_count = 0,data_count1 =0;
870         u16 head;
871         u16 tail;
872         u16 tmask;
873         u32 remain;
874         int temp_tail = port->info->xmit.tail;
875         struct jsm_channel *channel = (struct jsm_channel *)port;
876
877         tmask = WQUEUEMASK;
878         head = (channel->ch_w_head) & tmask;
879         tail = (channel->ch_w_tail) & tmask;
880
881         if ((bufcount = tail - head - 1) < 0)
882                 bufcount += WQUEUESIZE;
883
884         n = bufcount;
885
886         n = min(n, 56);
887         remain = WQUEUESIZE - head;
888
889         data_count = 0;
890         if (n >= remain) {
891                 n -= remain;
892                 while ((port->info->xmit.head != temp_tail) &&
893                 (data_count < remain)) {
894                         channel->ch_wqueue[head++] =
895                         port->info->xmit.buf[temp_tail];
896
897                         temp_tail++;
898                         temp_tail &= (UART_XMIT_SIZE - 1);
899                         data_count++;
900                 }
901                 if (data_count == remain) head = 0;
902         }
903
904         data_count1 = 0;
905         if (n > 0) {
906                 remain = n;
907                 while ((port->info->xmit.head != temp_tail) &&
908                         (data_count1 < remain)) {
909                         channel->ch_wqueue[head++] =
910                                 port->info->xmit.buf[temp_tail];
911
912                         temp_tail++;
913                         temp_tail &= (UART_XMIT_SIZE - 1);
914                         data_count1++;
915
916                 }
917         }
918
919         port->info->xmit.tail = temp_tail;
920
921         data_count += data_count1;
922         if (data_count) {
923                 head &= tmask;
924                 channel->ch_w_head = head;
925         }
926
927         if (data_count) {
928                 channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
929         }
930
931         return data_count;
932 }