Merge branch 'fixes-2.6.24' of master.kernel.org:/pub/scm/linux/kernel/git/galak...
[pandora-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE         2
36
37 /*
38  * The maximum number of SG segments that we will put inside a scatterlist
39  * (unless chaining is used). Should ideally fit inside a single page, to
40  * avoid a higher order allocation.
41  */
42 #define SCSI_MAX_SG_SEGMENTS    128
43
44 struct scsi_host_sg_pool {
45         size_t          size;
46         char            *name;
47         struct kmem_cache       *slab;
48         mempool_t       *pool;
49 };
50
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53         SP(8),
54         SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56         SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(128),
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static struct kmem_cache *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         return blk_rq_append_bio(q, rq, bio);
267 }
268
269 static void scsi_bi_endio(struct bio *bio, int error)
270 {
271         bio_put(bio);
272 }
273
274 /**
275  * scsi_req_map_sg - map a scatterlist into a request
276  * @rq:         request to fill
277  * @sg:         scatterlist
278  * @nsegs:      number of elements
279  * @bufflen:    len of buffer
280  * @gfp:        memory allocation flags
281  *
282  * scsi_req_map_sg maps a scatterlist into a request so that the
283  * request can be sent to the block layer. We do not trust the scatterlist
284  * sent to use, as some ULDs use that struct to only organize the pages.
285  */
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287                            int nsegs, unsigned bufflen, gfp_t gfp)
288 {
289         struct request_queue *q = rq->q;
290         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291         unsigned int data_len = bufflen, len, bytes, off;
292         struct scatterlist *sg;
293         struct page *page;
294         struct bio *bio = NULL;
295         int i, err, nr_vecs = 0;
296
297         for_each_sg(sgl, sg, nsegs, i) {
298                 page = sg->page;
299                 off = sg->offset;
300                 len = sg->length;
301                 data_len += len;
302
303                 while (len > 0 && data_len > 0) {
304                         /*
305                          * sg sends a scatterlist that is larger than
306                          * the data_len it wants transferred for certain
307                          * IO sizes
308                          */
309                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310                         bytes = min(bytes, data_len);
311
312                         if (!bio) {
313                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314                                 nr_pages -= nr_vecs;
315
316                                 bio = bio_alloc(gfp, nr_vecs);
317                                 if (!bio) {
318                                         err = -ENOMEM;
319                                         goto free_bios;
320                                 }
321                                 bio->bi_end_io = scsi_bi_endio;
322                         }
323
324                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
325                             bytes) {
326                                 bio_put(bio);
327                                 err = -EINVAL;
328                                 goto free_bios;
329                         }
330
331                         if (bio->bi_vcnt >= nr_vecs) {
332                                 err = scsi_merge_bio(rq, bio);
333                                 if (err) {
334                                         bio_endio(bio, 0);
335                                         goto free_bios;
336                                 }
337                                 bio = NULL;
338                         }
339
340                         page++;
341                         len -= bytes;
342                         data_len -=bytes;
343                         off = 0;
344                 }
345         }
346
347         rq->buffer = rq->data = NULL;
348         rq->data_len = bufflen;
349         return 0;
350
351 free_bios:
352         while ((bio = rq->bio) != NULL) {
353                 rq->bio = bio->bi_next;
354                 /*
355                  * call endio instead of bio_put incase it was bounced
356                  */
357                 bio_endio(bio, 0);
358         }
359
360         return err;
361 }
362
363 /**
364  * scsi_execute_async - insert request
365  * @sdev:       scsi device
366  * @cmd:        scsi command
367  * @cmd_len:    length of scsi cdb
368  * @data_direction: data direction
369  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
370  * @bufflen:    len of buffer
371  * @use_sg:     if buffer is a scatterlist this is the number of elements
372  * @timeout:    request timeout in seconds
373  * @retries:    number of times to retry request
374  * @flags:      or into request flags
375  **/
376 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
377                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
378                        int use_sg, int timeout, int retries, void *privdata,
379                        void (*done)(void *, char *, int, int), gfp_t gfp)
380 {
381         struct request *req;
382         struct scsi_io_context *sioc;
383         int err = 0;
384         int write = (data_direction == DMA_TO_DEVICE);
385
386         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
387         if (!sioc)
388                 return DRIVER_ERROR << 24;
389
390         req = blk_get_request(sdev->request_queue, write, gfp);
391         if (!req)
392                 goto free_sense;
393         req->cmd_type = REQ_TYPE_BLOCK_PC;
394         req->cmd_flags |= REQ_QUIET;
395
396         if (use_sg)
397                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
398         else if (bufflen)
399                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
400
401         if (err)
402                 goto free_req;
403
404         req->cmd_len = cmd_len;
405         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
406         memcpy(req->cmd, cmd, req->cmd_len);
407         req->sense = sioc->sense;
408         req->sense_len = 0;
409         req->timeout = timeout;
410         req->retries = retries;
411         req->end_io_data = sioc;
412
413         sioc->data = privdata;
414         sioc->done = done;
415
416         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
417         return 0;
418
419 free_req:
420         blk_put_request(req);
421 free_sense:
422         kmem_cache_free(scsi_io_context_cache, sioc);
423         return DRIVER_ERROR << 24;
424 }
425 EXPORT_SYMBOL_GPL(scsi_execute_async);
426
427 /*
428  * Function:    scsi_init_cmd_errh()
429  *
430  * Purpose:     Initialize cmd fields related to error handling.
431  *
432  * Arguments:   cmd     - command that is ready to be queued.
433  *
434  * Notes:       This function has the job of initializing a number of
435  *              fields related to error handling.   Typically this will
436  *              be called once for each command, as required.
437  */
438 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
439 {
440         cmd->serial_number = 0;
441         cmd->resid = 0;
442         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
443         if (cmd->cmd_len == 0)
444                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
445 }
446
447 void scsi_device_unbusy(struct scsi_device *sdev)
448 {
449         struct Scsi_Host *shost = sdev->host;
450         unsigned long flags;
451
452         spin_lock_irqsave(shost->host_lock, flags);
453         shost->host_busy--;
454         if (unlikely(scsi_host_in_recovery(shost) &&
455                      (shost->host_failed || shost->host_eh_scheduled)))
456                 scsi_eh_wakeup(shost);
457         spin_unlock(shost->host_lock);
458         spin_lock(sdev->request_queue->queue_lock);
459         sdev->device_busy--;
460         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
461 }
462
463 /*
464  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465  * and call blk_run_queue for all the scsi_devices on the target -
466  * including current_sdev first.
467  *
468  * Called with *no* scsi locks held.
469  */
470 static void scsi_single_lun_run(struct scsi_device *current_sdev)
471 {
472         struct Scsi_Host *shost = current_sdev->host;
473         struct scsi_device *sdev, *tmp;
474         struct scsi_target *starget = scsi_target(current_sdev);
475         unsigned long flags;
476
477         spin_lock_irqsave(shost->host_lock, flags);
478         starget->starget_sdev_user = NULL;
479         spin_unlock_irqrestore(shost->host_lock, flags);
480
481         /*
482          * Call blk_run_queue for all LUNs on the target, starting with
483          * current_sdev. We race with others (to set starget_sdev_user),
484          * but in most cases, we will be first. Ideally, each LU on the
485          * target would get some limited time or requests on the target.
486          */
487         blk_run_queue(current_sdev->request_queue);
488
489         spin_lock_irqsave(shost->host_lock, flags);
490         if (starget->starget_sdev_user)
491                 goto out;
492         list_for_each_entry_safe(sdev, tmp, &starget->devices,
493                         same_target_siblings) {
494                 if (sdev == current_sdev)
495                         continue;
496                 if (scsi_device_get(sdev))
497                         continue;
498
499                 spin_unlock_irqrestore(shost->host_lock, flags);
500                 blk_run_queue(sdev->request_queue);
501                 spin_lock_irqsave(shost->host_lock, flags);
502         
503                 scsi_device_put(sdev);
504         }
505  out:
506         spin_unlock_irqrestore(shost->host_lock, flags);
507 }
508
509 /*
510  * Function:    scsi_run_queue()
511  *
512  * Purpose:     Select a proper request queue to serve next
513  *
514  * Arguments:   q       - last request's queue
515  *
516  * Returns:     Nothing
517  *
518  * Notes:       The previous command was completely finished, start
519  *              a new one if possible.
520  */
521 static void scsi_run_queue(struct request_queue *q)
522 {
523         struct scsi_device *sdev = q->queuedata;
524         struct Scsi_Host *shost = sdev->host;
525         unsigned long flags;
526
527         if (sdev->single_lun)
528                 scsi_single_lun_run(sdev);
529
530         spin_lock_irqsave(shost->host_lock, flags);
531         while (!list_empty(&shost->starved_list) &&
532                !shost->host_blocked && !shost->host_self_blocked &&
533                 !((shost->can_queue > 0) &&
534                   (shost->host_busy >= shost->can_queue))) {
535                 /*
536                  * As long as shost is accepting commands and we have
537                  * starved queues, call blk_run_queue. scsi_request_fn
538                  * drops the queue_lock and can add us back to the
539                  * starved_list.
540                  *
541                  * host_lock protects the starved_list and starved_entry.
542                  * scsi_request_fn must get the host_lock before checking
543                  * or modifying starved_list or starved_entry.
544                  */
545                 sdev = list_entry(shost->starved_list.next,
546                                           struct scsi_device, starved_entry);
547                 list_del_init(&sdev->starved_entry);
548                 spin_unlock_irqrestore(shost->host_lock, flags);
549
550
551                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
552                     !test_and_set_bit(QUEUE_FLAG_REENTER,
553                                       &sdev->request_queue->queue_flags)) {
554                         blk_run_queue(sdev->request_queue);
555                         clear_bit(QUEUE_FLAG_REENTER,
556                                   &sdev->request_queue->queue_flags);
557                 } else
558                         blk_run_queue(sdev->request_queue);
559
560                 spin_lock_irqsave(shost->host_lock, flags);
561                 if (unlikely(!list_empty(&sdev->starved_entry)))
562                         /*
563                          * sdev lost a race, and was put back on the
564                          * starved list. This is unlikely but without this
565                          * in theory we could loop forever.
566                          */
567                         break;
568         }
569         spin_unlock_irqrestore(shost->host_lock, flags);
570
571         blk_run_queue(q);
572 }
573
574 /*
575  * Function:    scsi_requeue_command()
576  *
577  * Purpose:     Handle post-processing of completed commands.
578  *
579  * Arguments:   q       - queue to operate on
580  *              cmd     - command that may need to be requeued.
581  *
582  * Returns:     Nothing
583  *
584  * Notes:       After command completion, there may be blocks left
585  *              over which weren't finished by the previous command
586  *              this can be for a number of reasons - the main one is
587  *              I/O errors in the middle of the request, in which case
588  *              we need to request the blocks that come after the bad
589  *              sector.
590  * Notes:       Upon return, cmd is a stale pointer.
591  */
592 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
593 {
594         struct request *req = cmd->request;
595         unsigned long flags;
596
597         scsi_unprep_request(req);
598         spin_lock_irqsave(q->queue_lock, flags);
599         blk_requeue_request(q, req);
600         spin_unlock_irqrestore(q->queue_lock, flags);
601
602         scsi_run_queue(q);
603 }
604
605 void scsi_next_command(struct scsi_cmnd *cmd)
606 {
607         struct scsi_device *sdev = cmd->device;
608         struct request_queue *q = sdev->request_queue;
609
610         /* need to hold a reference on the device before we let go of the cmd */
611         get_device(&sdev->sdev_gendev);
612
613         scsi_put_command(cmd);
614         scsi_run_queue(q);
615
616         /* ok to remove device now */
617         put_device(&sdev->sdev_gendev);
618 }
619
620 void scsi_run_host_queues(struct Scsi_Host *shost)
621 {
622         struct scsi_device *sdev;
623
624         shost_for_each_device(sdev, shost)
625                 scsi_run_queue(sdev->request_queue);
626 }
627
628 /*
629  * Function:    scsi_end_request()
630  *
631  * Purpose:     Post-processing of completed commands (usually invoked at end
632  *              of upper level post-processing and scsi_io_completion).
633  *
634  * Arguments:   cmd      - command that is complete.
635  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636  *              bytes    - number of bytes of completed I/O
637  *              requeue  - indicates whether we should requeue leftovers.
638  *
639  * Lock status: Assumed that lock is not held upon entry.
640  *
641  * Returns:     cmd if requeue required, NULL otherwise.
642  *
643  * Notes:       This is called for block device requests in order to
644  *              mark some number of sectors as complete.
645  * 
646  *              We are guaranteeing that the request queue will be goosed
647  *              at some point during this call.
648  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
649  */
650 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
651                                           int bytes, int requeue)
652 {
653         struct request_queue *q = cmd->device->request_queue;
654         struct request *req = cmd->request;
655         unsigned long flags;
656
657         /*
658          * If there are blocks left over at the end, set up the command
659          * to queue the remainder of them.
660          */
661         if (end_that_request_chunk(req, uptodate, bytes)) {
662                 int leftover = (req->hard_nr_sectors << 9);
663
664                 if (blk_pc_request(req))
665                         leftover = req->data_len;
666
667                 /* kill remainder if no retrys */
668                 if (!uptodate && blk_noretry_request(req))
669                         end_that_request_chunk(req, 0, leftover);
670                 else {
671                         if (requeue) {
672                                 /*
673                                  * Bleah.  Leftovers again.  Stick the
674                                  * leftovers in the front of the
675                                  * queue, and goose the queue again.
676                                  */
677                                 scsi_requeue_command(q, cmd);
678                                 cmd = NULL;
679                         }
680                         return cmd;
681                 }
682         }
683
684         add_disk_randomness(req->rq_disk);
685
686         spin_lock_irqsave(q->queue_lock, flags);
687         if (blk_rq_tagged(req))
688                 blk_queue_end_tag(q, req);
689         end_that_request_last(req, uptodate);
690         spin_unlock_irqrestore(q->queue_lock, flags);
691
692         /*
693          * This will goose the queue request function at the end, so we don't
694          * need to worry about launching another command.
695          */
696         scsi_next_command(cmd);
697         return NULL;
698 }
699
700 /*
701  * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702  * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
703  */
704 #define SCSI_MAX_SG_CHAIN_SEGMENTS      2048
705
706 static inline unsigned int scsi_sgtable_index(unsigned short nents)
707 {
708         unsigned int index;
709
710         switch (nents) {
711         case 1 ... 8:
712                 index = 0;
713                 break;
714         case 9 ... 16:
715                 index = 1;
716                 break;
717 #if (SCSI_MAX_SG_SEGMENTS > 16)
718         case 17 ... 32:
719                 index = 2;
720                 break;
721 #if (SCSI_MAX_SG_SEGMENTS > 32)
722         case 33 ... 64:
723                 index = 3;
724                 break;
725 #if (SCSI_MAX_SG_SEGMENTS > 64)
726         case 65 ... 128:
727                 index = 4;
728                 break;
729 #endif
730 #endif
731 #endif
732         default:
733                 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
734                 BUG();
735         }
736
737         return index;
738 }
739
740 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741 {
742         struct scsi_host_sg_pool *sgp;
743         struct scatterlist *sgl, *prev, *ret;
744         unsigned int index;
745         int this, left;
746
747         BUG_ON(!cmd->use_sg);
748
749         left = cmd->use_sg;
750         ret = prev = NULL;
751         do {
752                 this = left;
753                 if (this > SCSI_MAX_SG_SEGMENTS) {
754                         this = SCSI_MAX_SG_SEGMENTS - 1;
755                         index = SG_MEMPOOL_NR - 1;
756                 } else
757                         index = scsi_sgtable_index(this);
758
759                 left -= this;
760
761                 sgp = scsi_sg_pools + index;
762
763                 sgl = mempool_alloc(sgp->pool, gfp_mask);
764                 if (unlikely(!sgl))
765                         goto enomem;
766
767                 memset(sgl, 0, sizeof(*sgl) * sgp->size);
768
769                 /*
770                  * first loop through, set initial index and return value
771                  */
772                 if (!ret)
773                         ret = sgl;
774
775                 /*
776                  * chain previous sglist, if any. we know the previous
777                  * sglist must be the biggest one, or we would not have
778                  * ended up doing another loop.
779                  */
780                 if (prev)
781                         sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
782
783                 /*
784                  * don't allow subsequent mempool allocs to sleep, it would
785                  * violate the mempool principle.
786                  */
787                 gfp_mask &= ~__GFP_WAIT;
788                 gfp_mask |= __GFP_HIGH;
789                 prev = sgl;
790         } while (left);
791
792         /*
793          * ->use_sg may get modified after dma mapping has potentially
794          * shrunk the number of segments, so keep a copy of it for free.
795          */
796         cmd->__use_sg = cmd->use_sg;
797         return ret;
798 enomem:
799         if (ret) {
800                 /*
801                  * Free entries chained off ret. Since we were trying to
802                  * allocate another sglist, we know that all entries are of
803                  * the max size.
804                  */
805                 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
806                 prev = ret;
807                 ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
808
809                 while ((sgl = sg_chain_ptr(ret)) != NULL) {
810                         ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
811                         mempool_free(sgl, sgp->pool);
812                 }
813
814                 mempool_free(prev, sgp->pool);
815         }
816         return NULL;
817 }
818
819 EXPORT_SYMBOL(scsi_alloc_sgtable);
820
821 void scsi_free_sgtable(struct scsi_cmnd *cmd)
822 {
823         struct scatterlist *sgl = cmd->request_buffer;
824         struct scsi_host_sg_pool *sgp;
825
826         /*
827          * if this is the biggest size sglist, check if we have
828          * chained parts we need to free
829          */
830         if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
831                 unsigned short this, left;
832                 struct scatterlist *next;
833                 unsigned int index;
834
835                 left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
836                 next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
837                 while (left && next) {
838                         sgl = next;
839                         this = left;
840                         if (this > SCSI_MAX_SG_SEGMENTS) {
841                                 this = SCSI_MAX_SG_SEGMENTS - 1;
842                                 index = SG_MEMPOOL_NR - 1;
843                         } else
844                                 index = scsi_sgtable_index(this);
845
846                         left -= this;
847
848                         sgp = scsi_sg_pools + index;
849
850                         if (left)
851                                 next = sg_chain_ptr(&sgl[sgp->size - 1]);
852
853                         mempool_free(sgl, sgp->pool);
854                 }
855
856                 /*
857                  * Restore original, will be freed below
858                  */
859                 sgl = cmd->request_buffer;
860                 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
861         } else
862                 sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
863
864         mempool_free(sgl, sgp->pool);
865 }
866
867 EXPORT_SYMBOL(scsi_free_sgtable);
868
869 /*
870  * Function:    scsi_release_buffers()
871  *
872  * Purpose:     Completion processing for block device I/O requests.
873  *
874  * Arguments:   cmd     - command that we are bailing.
875  *
876  * Lock status: Assumed that no lock is held upon entry.
877  *
878  * Returns:     Nothing
879  *
880  * Notes:       In the event that an upper level driver rejects a
881  *              command, we must release resources allocated during
882  *              the __init_io() function.  Primarily this would involve
883  *              the scatter-gather table, and potentially any bounce
884  *              buffers.
885  */
886 static void scsi_release_buffers(struct scsi_cmnd *cmd)
887 {
888         if (cmd->use_sg)
889                 scsi_free_sgtable(cmd);
890
891         /*
892          * Zero these out.  They now point to freed memory, and it is
893          * dangerous to hang onto the pointers.
894          */
895         cmd->request_buffer = NULL;
896         cmd->request_bufflen = 0;
897 }
898
899 /*
900  * Function:    scsi_io_completion()
901  *
902  * Purpose:     Completion processing for block device I/O requests.
903  *
904  * Arguments:   cmd   - command that is finished.
905  *
906  * Lock status: Assumed that no lock is held upon entry.
907  *
908  * Returns:     Nothing
909  *
910  * Notes:       This function is matched in terms of capabilities to
911  *              the function that created the scatter-gather list.
912  *              In other words, if there are no bounce buffers
913  *              (the normal case for most drivers), we don't need
914  *              the logic to deal with cleaning up afterwards.
915  *
916  *              We must do one of several things here:
917  *
918  *              a) Call scsi_end_request.  This will finish off the
919  *                 specified number of sectors.  If we are done, the
920  *                 command block will be released, and the queue
921  *                 function will be goosed.  If we are not done, then
922  *                 scsi_end_request will directly goose the queue.
923  *
924  *              b) We can just use scsi_requeue_command() here.  This would
925  *                 be used if we just wanted to retry, for example.
926  */
927 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
928 {
929         int result = cmd->result;
930         int this_count = cmd->request_bufflen;
931         struct request_queue *q = cmd->device->request_queue;
932         struct request *req = cmd->request;
933         int clear_errors = 1;
934         struct scsi_sense_hdr sshdr;
935         int sense_valid = 0;
936         int sense_deferred = 0;
937
938         scsi_release_buffers(cmd);
939
940         if (result) {
941                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
942                 if (sense_valid)
943                         sense_deferred = scsi_sense_is_deferred(&sshdr);
944         }
945
946         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
947                 req->errors = result;
948                 if (result) {
949                         clear_errors = 0;
950                         if (sense_valid && req->sense) {
951                                 /*
952                                  * SG_IO wants current and deferred errors
953                                  */
954                                 int len = 8 + cmd->sense_buffer[7];
955
956                                 if (len > SCSI_SENSE_BUFFERSIZE)
957                                         len = SCSI_SENSE_BUFFERSIZE;
958                                 memcpy(req->sense, cmd->sense_buffer,  len);
959                                 req->sense_len = len;
960                         }
961                 }
962                 req->data_len = cmd->resid;
963         }
964
965         /*
966          * Next deal with any sectors which we were able to correctly
967          * handle.
968          */
969         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
970                                       "%d bytes done.\n",
971                                       req->nr_sectors, good_bytes));
972         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
973
974         if (clear_errors)
975                 req->errors = 0;
976
977         /* A number of bytes were successfully read.  If there
978          * are leftovers and there is some kind of error
979          * (result != 0), retry the rest.
980          */
981         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
982                 return;
983
984         /* good_bytes = 0, or (inclusive) there were leftovers and
985          * result = 0, so scsi_end_request couldn't retry.
986          */
987         if (sense_valid && !sense_deferred) {
988                 switch (sshdr.sense_key) {
989                 case UNIT_ATTENTION:
990                         if (cmd->device->removable) {
991                                 /* Detected disc change.  Set a bit
992                                  * and quietly refuse further access.
993                                  */
994                                 cmd->device->changed = 1;
995                                 scsi_end_request(cmd, 0, this_count, 1);
996                                 return;
997                         } else {
998                                 /* Must have been a power glitch, or a
999                                  * bus reset.  Could not have been a
1000                                  * media change, so we just retry the
1001                                  * request and see what happens.
1002                                  */
1003                                 scsi_requeue_command(q, cmd);
1004                                 return;
1005                         }
1006                         break;
1007                 case ILLEGAL_REQUEST:
1008                         /* If we had an ILLEGAL REQUEST returned, then
1009                          * we may have performed an unsupported
1010                          * command.  The only thing this should be
1011                          * would be a ten byte read where only a six
1012                          * byte read was supported.  Also, on a system
1013                          * where READ CAPACITY failed, we may have
1014                          * read past the end of the disk.
1015                          */
1016                         if ((cmd->device->use_10_for_rw &&
1017                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1018                             (cmd->cmnd[0] == READ_10 ||
1019                              cmd->cmnd[0] == WRITE_10)) {
1020                                 cmd->device->use_10_for_rw = 0;
1021                                 /* This will cause a retry with a
1022                                  * 6-byte command.
1023                                  */
1024                                 scsi_requeue_command(q, cmd);
1025                                 return;
1026                         } else {
1027                                 scsi_end_request(cmd, 0, this_count, 1);
1028                                 return;
1029                         }
1030                         break;
1031                 case NOT_READY:
1032                         /* If the device is in the process of becoming
1033                          * ready, or has a temporary blockage, retry.
1034                          */
1035                         if (sshdr.asc == 0x04) {
1036                                 switch (sshdr.ascq) {
1037                                 case 0x01: /* becoming ready */
1038                                 case 0x04: /* format in progress */
1039                                 case 0x05: /* rebuild in progress */
1040                                 case 0x06: /* recalculation in progress */
1041                                 case 0x07: /* operation in progress */
1042                                 case 0x08: /* Long write in progress */
1043                                 case 0x09: /* self test in progress */
1044                                         scsi_requeue_command(q, cmd);
1045                                         return;
1046                                 default:
1047                                         break;
1048                                 }
1049                         }
1050                         if (!(req->cmd_flags & REQ_QUIET))
1051                                 scsi_cmd_print_sense_hdr(cmd,
1052                                                          "Device not ready",
1053                                                          &sshdr);
1054
1055                         scsi_end_request(cmd, 0, this_count, 1);
1056                         return;
1057                 case VOLUME_OVERFLOW:
1058                         if (!(req->cmd_flags & REQ_QUIET)) {
1059                                 scmd_printk(KERN_INFO, cmd,
1060                                             "Volume overflow, CDB: ");
1061                                 __scsi_print_command(cmd->cmnd);
1062                                 scsi_print_sense("", cmd);
1063                         }
1064                         /* See SSC3rXX or current. */
1065                         scsi_end_request(cmd, 0, this_count, 1);
1066                         return;
1067                 default:
1068                         break;
1069                 }
1070         }
1071         if (host_byte(result) == DID_RESET) {
1072                 /* Third party bus reset or reset for error recovery
1073                  * reasons.  Just retry the request and see what
1074                  * happens.
1075                  */
1076                 scsi_requeue_command(q, cmd);
1077                 return;
1078         }
1079         if (result) {
1080                 if (!(req->cmd_flags & REQ_QUIET)) {
1081                         scsi_print_result(cmd);
1082                         if (driver_byte(result) & DRIVER_SENSE)
1083                                 scsi_print_sense("", cmd);
1084                 }
1085         }
1086         scsi_end_request(cmd, 0, this_count, !result);
1087 }
1088
1089 /*
1090  * Function:    scsi_init_io()
1091  *
1092  * Purpose:     SCSI I/O initialize function.
1093  *
1094  * Arguments:   cmd   - Command descriptor we wish to initialize
1095  *
1096  * Returns:     0 on success
1097  *              BLKPREP_DEFER if the failure is retryable
1098  *              BLKPREP_KILL if the failure is fatal
1099  */
1100 static int scsi_init_io(struct scsi_cmnd *cmd)
1101 {
1102         struct request     *req = cmd->request;
1103         int                count;
1104
1105         /*
1106          * We used to not use scatter-gather for single segment request,
1107          * but now we do (it makes highmem I/O easier to support without
1108          * kmapping pages)
1109          */
1110         cmd->use_sg = req->nr_phys_segments;
1111
1112         /*
1113          * If sg table allocation fails, requeue request later.
1114          */
1115         cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1116         if (unlikely(!cmd->request_buffer)) {
1117                 scsi_unprep_request(req);
1118                 return BLKPREP_DEFER;
1119         }
1120
1121         req->buffer = NULL;
1122         if (blk_pc_request(req))
1123                 cmd->request_bufflen = req->data_len;
1124         else
1125                 cmd->request_bufflen = req->nr_sectors << 9;
1126
1127         /* 
1128          * Next, walk the list, and fill in the addresses and sizes of
1129          * each segment.
1130          */
1131         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1132         if (likely(count <= cmd->use_sg)) {
1133                 cmd->use_sg = count;
1134                 return BLKPREP_OK;
1135         }
1136
1137         printk(KERN_ERR "Incorrect number of segments after building list\n");
1138         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1139         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1140                         req->current_nr_sectors);
1141
1142         return BLKPREP_KILL;
1143 }
1144
1145 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1146                 struct request *req)
1147 {
1148         struct scsi_cmnd *cmd;
1149
1150         if (!req->special) {
1151                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1152                 if (unlikely(!cmd))
1153                         return NULL;
1154                 req->special = cmd;
1155         } else {
1156                 cmd = req->special;
1157         }
1158
1159         /* pull a tag out of the request if we have one */
1160         cmd->tag = req->tag;
1161         cmd->request = req;
1162
1163         return cmd;
1164 }
1165
1166 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1167 {
1168         struct scsi_cmnd *cmd;
1169         int ret = scsi_prep_state_check(sdev, req);
1170
1171         if (ret != BLKPREP_OK)
1172                 return ret;
1173
1174         cmd = scsi_get_cmd_from_req(sdev, req);
1175         if (unlikely(!cmd))
1176                 return BLKPREP_DEFER;
1177
1178         /*
1179          * BLOCK_PC requests may transfer data, in which case they must
1180          * a bio attached to them.  Or they might contain a SCSI command
1181          * that does not transfer data, in which case they may optionally
1182          * submit a request without an attached bio.
1183          */
1184         if (req->bio) {
1185                 int ret;
1186
1187                 BUG_ON(!req->nr_phys_segments);
1188
1189                 ret = scsi_init_io(cmd);
1190                 if (unlikely(ret))
1191                         return ret;
1192         } else {
1193                 BUG_ON(req->data_len);
1194                 BUG_ON(req->data);
1195
1196                 cmd->request_bufflen = 0;
1197                 cmd->request_buffer = NULL;
1198                 cmd->use_sg = 0;
1199                 req->buffer = NULL;
1200         }
1201
1202         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1203         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1204         cmd->cmd_len = req->cmd_len;
1205         if (!req->data_len)
1206                 cmd->sc_data_direction = DMA_NONE;
1207         else if (rq_data_dir(req) == WRITE)
1208                 cmd->sc_data_direction = DMA_TO_DEVICE;
1209         else
1210                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1211         
1212         cmd->transfersize = req->data_len;
1213         cmd->allowed = req->retries;
1214         cmd->timeout_per_command = req->timeout;
1215         return BLKPREP_OK;
1216 }
1217 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1218
1219 /*
1220  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1221  * from filesystems that still need to be translated to SCSI CDBs from
1222  * the ULD.
1223  */
1224 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1225 {
1226         struct scsi_cmnd *cmd;
1227         int ret = scsi_prep_state_check(sdev, req);
1228
1229         if (ret != BLKPREP_OK)
1230                 return ret;
1231         /*
1232          * Filesystem requests must transfer data.
1233          */
1234         BUG_ON(!req->nr_phys_segments);
1235
1236         cmd = scsi_get_cmd_from_req(sdev, req);
1237         if (unlikely(!cmd))
1238                 return BLKPREP_DEFER;
1239
1240         return scsi_init_io(cmd);
1241 }
1242 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1243
1244 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1245 {
1246         int ret = BLKPREP_OK;
1247
1248         /*
1249          * If the device is not in running state we will reject some
1250          * or all commands.
1251          */
1252         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1253                 switch (sdev->sdev_state) {
1254                 case SDEV_OFFLINE:
1255                         /*
1256                          * If the device is offline we refuse to process any
1257                          * commands.  The device must be brought online
1258                          * before trying any recovery commands.
1259                          */
1260                         sdev_printk(KERN_ERR, sdev,
1261                                     "rejecting I/O to offline device\n");
1262                         ret = BLKPREP_KILL;
1263                         break;
1264                 case SDEV_DEL:
1265                         /*
1266                          * If the device is fully deleted, we refuse to
1267                          * process any commands as well.
1268                          */
1269                         sdev_printk(KERN_ERR, sdev,
1270                                     "rejecting I/O to dead device\n");
1271                         ret = BLKPREP_KILL;
1272                         break;
1273                 case SDEV_QUIESCE:
1274                 case SDEV_BLOCK:
1275                         /*
1276                          * If the devices is blocked we defer normal commands.
1277                          */
1278                         if (!(req->cmd_flags & REQ_PREEMPT))
1279                                 ret = BLKPREP_DEFER;
1280                         break;
1281                 default:
1282                         /*
1283                          * For any other not fully online state we only allow
1284                          * special commands.  In particular any user initiated
1285                          * command is not allowed.
1286                          */
1287                         if (!(req->cmd_flags & REQ_PREEMPT))
1288                                 ret = BLKPREP_KILL;
1289                         break;
1290                 }
1291         }
1292         return ret;
1293 }
1294 EXPORT_SYMBOL(scsi_prep_state_check);
1295
1296 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1297 {
1298         struct scsi_device *sdev = q->queuedata;
1299
1300         switch (ret) {
1301         case BLKPREP_KILL:
1302                 req->errors = DID_NO_CONNECT << 16;
1303                 /* release the command and kill it */
1304                 if (req->special) {
1305                         struct scsi_cmnd *cmd = req->special;
1306                         scsi_release_buffers(cmd);
1307                         scsi_put_command(cmd);
1308                         req->special = NULL;
1309                 }
1310                 break;
1311         case BLKPREP_DEFER:
1312                 /*
1313                  * If we defer, the elv_next_request() returns NULL, but the
1314                  * queue must be restarted, so we plug here if no returning
1315                  * command will automatically do that.
1316                  */
1317                 if (sdev->device_busy == 0)
1318                         blk_plug_device(q);
1319                 break;
1320         default:
1321                 req->cmd_flags |= REQ_DONTPREP;
1322         }
1323
1324         return ret;
1325 }
1326 EXPORT_SYMBOL(scsi_prep_return);
1327
1328 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1329 {
1330         struct scsi_device *sdev = q->queuedata;
1331         int ret = BLKPREP_KILL;
1332
1333         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1334                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1335         return scsi_prep_return(q, req, ret);
1336 }
1337
1338 /*
1339  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1340  * return 0.
1341  *
1342  * Called with the queue_lock held.
1343  */
1344 static inline int scsi_dev_queue_ready(struct request_queue *q,
1345                                   struct scsi_device *sdev)
1346 {
1347         if (sdev->device_busy >= sdev->queue_depth)
1348                 return 0;
1349         if (sdev->device_busy == 0 && sdev->device_blocked) {
1350                 /*
1351                  * unblock after device_blocked iterates to zero
1352                  */
1353                 if (--sdev->device_blocked == 0) {
1354                         SCSI_LOG_MLQUEUE(3,
1355                                    sdev_printk(KERN_INFO, sdev,
1356                                    "unblocking device at zero depth\n"));
1357                 } else {
1358                         blk_plug_device(q);
1359                         return 0;
1360                 }
1361         }
1362         if (sdev->device_blocked)
1363                 return 0;
1364
1365         return 1;
1366 }
1367
1368 /*
1369  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1370  * return 0. We must end up running the queue again whenever 0 is
1371  * returned, else IO can hang.
1372  *
1373  * Called with host_lock held.
1374  */
1375 static inline int scsi_host_queue_ready(struct request_queue *q,
1376                                    struct Scsi_Host *shost,
1377                                    struct scsi_device *sdev)
1378 {
1379         if (scsi_host_in_recovery(shost))
1380                 return 0;
1381         if (shost->host_busy == 0 && shost->host_blocked) {
1382                 /*
1383                  * unblock after host_blocked iterates to zero
1384                  */
1385                 if (--shost->host_blocked == 0) {
1386                         SCSI_LOG_MLQUEUE(3,
1387                                 printk("scsi%d unblocking host at zero depth\n",
1388                                         shost->host_no));
1389                 } else {
1390                         blk_plug_device(q);
1391                         return 0;
1392                 }
1393         }
1394         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1395             shost->host_blocked || shost->host_self_blocked) {
1396                 if (list_empty(&sdev->starved_entry))
1397                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1398                 return 0;
1399         }
1400
1401         /* We're OK to process the command, so we can't be starved */
1402         if (!list_empty(&sdev->starved_entry))
1403                 list_del_init(&sdev->starved_entry);
1404
1405         return 1;
1406 }
1407
1408 /*
1409  * Kill a request for a dead device
1410  */
1411 static void scsi_kill_request(struct request *req, struct request_queue *q)
1412 {
1413         struct scsi_cmnd *cmd = req->special;
1414         struct scsi_device *sdev = cmd->device;
1415         struct Scsi_Host *shost = sdev->host;
1416
1417         blkdev_dequeue_request(req);
1418
1419         if (unlikely(cmd == NULL)) {
1420                 printk(KERN_CRIT "impossible request in %s.\n",
1421                                  __FUNCTION__);
1422                 BUG();
1423         }
1424
1425         scsi_init_cmd_errh(cmd);
1426         cmd->result = DID_NO_CONNECT << 16;
1427         atomic_inc(&cmd->device->iorequest_cnt);
1428
1429         /*
1430          * SCSI request completion path will do scsi_device_unbusy(),
1431          * bump busy counts.  To bump the counters, we need to dance
1432          * with the locks as normal issue path does.
1433          */
1434         sdev->device_busy++;
1435         spin_unlock(sdev->request_queue->queue_lock);
1436         spin_lock(shost->host_lock);
1437         shost->host_busy++;
1438         spin_unlock(shost->host_lock);
1439         spin_lock(sdev->request_queue->queue_lock);
1440
1441         __scsi_done(cmd);
1442 }
1443
1444 static void scsi_softirq_done(struct request *rq)
1445 {
1446         struct scsi_cmnd *cmd = rq->completion_data;
1447         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1448         int disposition;
1449
1450         INIT_LIST_HEAD(&cmd->eh_entry);
1451
1452         disposition = scsi_decide_disposition(cmd);
1453         if (disposition != SUCCESS &&
1454             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1455                 sdev_printk(KERN_ERR, cmd->device,
1456                             "timing out command, waited %lus\n",
1457                             wait_for/HZ);
1458                 disposition = SUCCESS;
1459         }
1460                         
1461         scsi_log_completion(cmd, disposition);
1462
1463         switch (disposition) {
1464                 case SUCCESS:
1465                         scsi_finish_command(cmd);
1466                         break;
1467                 case NEEDS_RETRY:
1468                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1469                         break;
1470                 case ADD_TO_MLQUEUE:
1471                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1472                         break;
1473                 default:
1474                         if (!scsi_eh_scmd_add(cmd, 0))
1475                                 scsi_finish_command(cmd);
1476         }
1477 }
1478
1479 /*
1480  * Function:    scsi_request_fn()
1481  *
1482  * Purpose:     Main strategy routine for SCSI.
1483  *
1484  * Arguments:   q       - Pointer to actual queue.
1485  *
1486  * Returns:     Nothing
1487  *
1488  * Lock status: IO request lock assumed to be held when called.
1489  */
1490 static void scsi_request_fn(struct request_queue *q)
1491 {
1492         struct scsi_device *sdev = q->queuedata;
1493         struct Scsi_Host *shost;
1494         struct scsi_cmnd *cmd;
1495         struct request *req;
1496
1497         if (!sdev) {
1498                 printk("scsi: killing requests for dead queue\n");
1499                 while ((req = elv_next_request(q)) != NULL)
1500                         scsi_kill_request(req, q);
1501                 return;
1502         }
1503
1504         if(!get_device(&sdev->sdev_gendev))
1505                 /* We must be tearing the block queue down already */
1506                 return;
1507
1508         /*
1509          * To start with, we keep looping until the queue is empty, or until
1510          * the host is no longer able to accept any more requests.
1511          */
1512         shost = sdev->host;
1513         while (!blk_queue_plugged(q)) {
1514                 int rtn;
1515                 /*
1516                  * get next queueable request.  We do this early to make sure
1517                  * that the request is fully prepared even if we cannot 
1518                  * accept it.
1519                  */
1520                 req = elv_next_request(q);
1521                 if (!req || !scsi_dev_queue_ready(q, sdev))
1522                         break;
1523
1524                 if (unlikely(!scsi_device_online(sdev))) {
1525                         sdev_printk(KERN_ERR, sdev,
1526                                     "rejecting I/O to offline device\n");
1527                         scsi_kill_request(req, q);
1528                         continue;
1529                 }
1530
1531
1532                 /*
1533                  * Remove the request from the request list.
1534                  */
1535                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1536                         blkdev_dequeue_request(req);
1537                 sdev->device_busy++;
1538
1539                 spin_unlock(q->queue_lock);
1540                 cmd = req->special;
1541                 if (unlikely(cmd == NULL)) {
1542                         printk(KERN_CRIT "impossible request in %s.\n"
1543                                          "please mail a stack trace to "
1544                                          "linux-scsi@vger.kernel.org\n",
1545                                          __FUNCTION__);
1546                         blk_dump_rq_flags(req, "foo");
1547                         BUG();
1548                 }
1549                 spin_lock(shost->host_lock);
1550
1551                 if (!scsi_host_queue_ready(q, shost, sdev))
1552                         goto not_ready;
1553                 if (sdev->single_lun) {
1554                         if (scsi_target(sdev)->starget_sdev_user &&
1555                             scsi_target(sdev)->starget_sdev_user != sdev)
1556                                 goto not_ready;
1557                         scsi_target(sdev)->starget_sdev_user = sdev;
1558                 }
1559                 shost->host_busy++;
1560
1561                 /*
1562                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1563                  *              take the lock again.
1564                  */
1565                 spin_unlock_irq(shost->host_lock);
1566
1567                 /*
1568                  * Finally, initialize any error handling parameters, and set up
1569                  * the timers for timeouts.
1570                  */
1571                 scsi_init_cmd_errh(cmd);
1572
1573                 /*
1574                  * Dispatch the command to the low-level driver.
1575                  */
1576                 rtn = scsi_dispatch_cmd(cmd);
1577                 spin_lock_irq(q->queue_lock);
1578                 if(rtn) {
1579                         /* we're refusing the command; because of
1580                          * the way locks get dropped, we need to 
1581                          * check here if plugging is required */
1582                         if(sdev->device_busy == 0)
1583                                 blk_plug_device(q);
1584
1585                         break;
1586                 }
1587         }
1588
1589         goto out;
1590
1591  not_ready:
1592         spin_unlock_irq(shost->host_lock);
1593
1594         /*
1595          * lock q, handle tag, requeue req, and decrement device_busy. We
1596          * must return with queue_lock held.
1597          *
1598          * Decrementing device_busy without checking it is OK, as all such
1599          * cases (host limits or settings) should run the queue at some
1600          * later time.
1601          */
1602         spin_lock_irq(q->queue_lock);
1603         blk_requeue_request(q, req);
1604         sdev->device_busy--;
1605         if(sdev->device_busy == 0)
1606                 blk_plug_device(q);
1607  out:
1608         /* must be careful here...if we trigger the ->remove() function
1609          * we cannot be holding the q lock */
1610         spin_unlock_irq(q->queue_lock);
1611         put_device(&sdev->sdev_gendev);
1612         spin_lock_irq(q->queue_lock);
1613 }
1614
1615 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1616 {
1617         struct device *host_dev;
1618         u64 bounce_limit = 0xffffffff;
1619
1620         if (shost->unchecked_isa_dma)
1621                 return BLK_BOUNCE_ISA;
1622         /*
1623          * Platforms with virtual-DMA translation
1624          * hardware have no practical limit.
1625          */
1626         if (!PCI_DMA_BUS_IS_PHYS)
1627                 return BLK_BOUNCE_ANY;
1628
1629         host_dev = scsi_get_device(shost);
1630         if (host_dev && host_dev->dma_mask)
1631                 bounce_limit = *host_dev->dma_mask;
1632
1633         return bounce_limit;
1634 }
1635 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1636
1637 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1638                                          request_fn_proc *request_fn)
1639 {
1640         struct request_queue *q;
1641
1642         q = blk_init_queue(request_fn, NULL);
1643         if (!q)
1644                 return NULL;
1645
1646         /*
1647          * this limit is imposed by hardware restrictions
1648          */
1649         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1650
1651         /*
1652          * In the future, sg chaining support will be mandatory and this
1653          * ifdef can then go away. Right now we don't have all archs
1654          * converted, so better keep it safe.
1655          */
1656 #ifdef ARCH_HAS_SG_CHAIN
1657         if (shost->use_sg_chaining)
1658                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1659         else
1660                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1661 #else
1662         blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1663 #endif
1664
1665         blk_queue_max_sectors(q, shost->max_sectors);
1666         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1667         blk_queue_segment_boundary(q, shost->dma_boundary);
1668
1669         if (!shost->use_clustering)
1670                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1671         return q;
1672 }
1673 EXPORT_SYMBOL(__scsi_alloc_queue);
1674
1675 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1676 {
1677         struct request_queue *q;
1678
1679         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1680         if (!q)
1681                 return NULL;
1682
1683         blk_queue_prep_rq(q, scsi_prep_fn);
1684         blk_queue_softirq_done(q, scsi_softirq_done);
1685         return q;
1686 }
1687
1688 void scsi_free_queue(struct request_queue *q)
1689 {
1690         blk_cleanup_queue(q);
1691 }
1692
1693 /*
1694  * Function:    scsi_block_requests()
1695  *
1696  * Purpose:     Utility function used by low-level drivers to prevent further
1697  *              commands from being queued to the device.
1698  *
1699  * Arguments:   shost       - Host in question
1700  *
1701  * Returns:     Nothing
1702  *
1703  * Lock status: No locks are assumed held.
1704  *
1705  * Notes:       There is no timer nor any other means by which the requests
1706  *              get unblocked other than the low-level driver calling
1707  *              scsi_unblock_requests().
1708  */
1709 void scsi_block_requests(struct Scsi_Host *shost)
1710 {
1711         shost->host_self_blocked = 1;
1712 }
1713 EXPORT_SYMBOL(scsi_block_requests);
1714
1715 /*
1716  * Function:    scsi_unblock_requests()
1717  *
1718  * Purpose:     Utility function used by low-level drivers to allow further
1719  *              commands from being queued to the device.
1720  *
1721  * Arguments:   shost       - Host in question
1722  *
1723  * Returns:     Nothing
1724  *
1725  * Lock status: No locks are assumed held.
1726  *
1727  * Notes:       There is no timer nor any other means by which the requests
1728  *              get unblocked other than the low-level driver calling
1729  *              scsi_unblock_requests().
1730  *
1731  *              This is done as an API function so that changes to the
1732  *              internals of the scsi mid-layer won't require wholesale
1733  *              changes to drivers that use this feature.
1734  */
1735 void scsi_unblock_requests(struct Scsi_Host *shost)
1736 {
1737         shost->host_self_blocked = 0;
1738         scsi_run_host_queues(shost);
1739 }
1740 EXPORT_SYMBOL(scsi_unblock_requests);
1741
1742 int __init scsi_init_queue(void)
1743 {
1744         int i;
1745
1746         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1747                                         sizeof(struct scsi_io_context),
1748                                         0, 0, NULL);
1749         if (!scsi_io_context_cache) {
1750                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1751                 return -ENOMEM;
1752         }
1753
1754         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1755                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1756                 int size = sgp->size * sizeof(struct scatterlist);
1757
1758                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1759                                 SLAB_HWCACHE_ALIGN, NULL);
1760                 if (!sgp->slab) {
1761                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1762                                         sgp->name);
1763                 }
1764
1765                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1766                                                      sgp->slab);
1767                 if (!sgp->pool) {
1768                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1769                                         sgp->name);
1770                 }
1771         }
1772
1773         return 0;
1774 }
1775
1776 void scsi_exit_queue(void)
1777 {
1778         int i;
1779
1780         kmem_cache_destroy(scsi_io_context_cache);
1781
1782         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784                 mempool_destroy(sgp->pool);
1785                 kmem_cache_destroy(sgp->slab);
1786         }
1787 }
1788
1789 /**
1790  *      scsi_mode_select - issue a mode select
1791  *      @sdev:  SCSI device to be queried
1792  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1793  *      @sp:    Save page bit (0 == don't save, 1 == save)
1794  *      @modepage: mode page being requested
1795  *      @buffer: request buffer (may not be smaller than eight bytes)
1796  *      @len:   length of request buffer.
1797  *      @timeout: command timeout
1798  *      @retries: number of retries before failing
1799  *      @data: returns a structure abstracting the mode header data
1800  *      @sense: place to put sense data (or NULL if no sense to be collected).
1801  *              must be SCSI_SENSE_BUFFERSIZE big.
1802  *
1803  *      Returns zero if successful; negative error number or scsi
1804  *      status on error
1805  *
1806  */
1807 int
1808 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1809                  unsigned char *buffer, int len, int timeout, int retries,
1810                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1811 {
1812         unsigned char cmd[10];
1813         unsigned char *real_buffer;
1814         int ret;
1815
1816         memset(cmd, 0, sizeof(cmd));
1817         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1818
1819         if (sdev->use_10_for_ms) {
1820                 if (len > 65535)
1821                         return -EINVAL;
1822                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1823                 if (!real_buffer)
1824                         return -ENOMEM;
1825                 memcpy(real_buffer + 8, buffer, len);
1826                 len += 8;
1827                 real_buffer[0] = 0;
1828                 real_buffer[1] = 0;
1829                 real_buffer[2] = data->medium_type;
1830                 real_buffer[3] = data->device_specific;
1831                 real_buffer[4] = data->longlba ? 0x01 : 0;
1832                 real_buffer[5] = 0;
1833                 real_buffer[6] = data->block_descriptor_length >> 8;
1834                 real_buffer[7] = data->block_descriptor_length;
1835
1836                 cmd[0] = MODE_SELECT_10;
1837                 cmd[7] = len >> 8;
1838                 cmd[8] = len;
1839         } else {
1840                 if (len > 255 || data->block_descriptor_length > 255 ||
1841                     data->longlba)
1842                         return -EINVAL;
1843
1844                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1845                 if (!real_buffer)
1846                         return -ENOMEM;
1847                 memcpy(real_buffer + 4, buffer, len);
1848                 len += 4;
1849                 real_buffer[0] = 0;
1850                 real_buffer[1] = data->medium_type;
1851                 real_buffer[2] = data->device_specific;
1852                 real_buffer[3] = data->block_descriptor_length;
1853                 
1854
1855                 cmd[0] = MODE_SELECT;
1856                 cmd[4] = len;
1857         }
1858
1859         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1860                                sshdr, timeout, retries);
1861         kfree(real_buffer);
1862         return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(scsi_mode_select);
1865
1866 /**
1867  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1868  *              six bytes if necessary.
1869  *      @sdev:  SCSI device to be queried
1870  *      @dbd:   set if mode sense will allow block descriptors to be returned
1871  *      @modepage: mode page being requested
1872  *      @buffer: request buffer (may not be smaller than eight bytes)
1873  *      @len:   length of request buffer.
1874  *      @timeout: command timeout
1875  *      @retries: number of retries before failing
1876  *      @data: returns a structure abstracting the mode header data
1877  *      @sense: place to put sense data (or NULL if no sense to be collected).
1878  *              must be SCSI_SENSE_BUFFERSIZE big.
1879  *
1880  *      Returns zero if unsuccessful, or the header offset (either 4
1881  *      or 8 depending on whether a six or ten byte command was
1882  *      issued) if successful.
1883  **/
1884 int
1885 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1886                   unsigned char *buffer, int len, int timeout, int retries,
1887                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1888 {
1889         unsigned char cmd[12];
1890         int use_10_for_ms;
1891         int header_length;
1892         int result;
1893         struct scsi_sense_hdr my_sshdr;
1894
1895         memset(data, 0, sizeof(*data));
1896         memset(&cmd[0], 0, 12);
1897         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1898         cmd[2] = modepage;
1899
1900         /* caller might not be interested in sense, but we need it */
1901         if (!sshdr)
1902                 sshdr = &my_sshdr;
1903
1904  retry:
1905         use_10_for_ms = sdev->use_10_for_ms;
1906
1907         if (use_10_for_ms) {
1908                 if (len < 8)
1909                         len = 8;
1910
1911                 cmd[0] = MODE_SENSE_10;
1912                 cmd[8] = len;
1913                 header_length = 8;
1914         } else {
1915                 if (len < 4)
1916                         len = 4;
1917
1918                 cmd[0] = MODE_SENSE;
1919                 cmd[4] = len;
1920                 header_length = 4;
1921         }
1922
1923         memset(buffer, 0, len);
1924
1925         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1926                                   sshdr, timeout, retries);
1927
1928         /* This code looks awful: what it's doing is making sure an
1929          * ILLEGAL REQUEST sense return identifies the actual command
1930          * byte as the problem.  MODE_SENSE commands can return
1931          * ILLEGAL REQUEST if the code page isn't supported */
1932
1933         if (use_10_for_ms && !scsi_status_is_good(result) &&
1934             (driver_byte(result) & DRIVER_SENSE)) {
1935                 if (scsi_sense_valid(sshdr)) {
1936                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1937                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1938                                 /* 
1939                                  * Invalid command operation code
1940                                  */
1941                                 sdev->use_10_for_ms = 0;
1942                                 goto retry;
1943                         }
1944                 }
1945         }
1946
1947         if(scsi_status_is_good(result)) {
1948                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1949                              (modepage == 6 || modepage == 8))) {
1950                         /* Initio breakage? */
1951                         header_length = 0;
1952                         data->length = 13;
1953                         data->medium_type = 0;
1954                         data->device_specific = 0;
1955                         data->longlba = 0;
1956                         data->block_descriptor_length = 0;
1957                 } else if(use_10_for_ms) {
1958                         data->length = buffer[0]*256 + buffer[1] + 2;
1959                         data->medium_type = buffer[2];
1960                         data->device_specific = buffer[3];
1961                         data->longlba = buffer[4] & 0x01;
1962                         data->block_descriptor_length = buffer[6]*256
1963                                 + buffer[7];
1964                 } else {
1965                         data->length = buffer[0] + 1;
1966                         data->medium_type = buffer[1];
1967                         data->device_specific = buffer[2];
1968                         data->block_descriptor_length = buffer[3];
1969                 }
1970                 data->header_length = header_length;
1971         }
1972
1973         return result;
1974 }
1975 EXPORT_SYMBOL(scsi_mode_sense);
1976
1977 int
1978 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1979 {
1980         char cmd[] = {
1981                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1982         };
1983         struct scsi_sense_hdr sshdr;
1984         int result;
1985         
1986         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1987                                   timeout, retries);
1988
1989         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1990
1991                 if ((scsi_sense_valid(&sshdr)) &&
1992                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1993                      (sshdr.sense_key == NOT_READY))) {
1994                         sdev->changed = 1;
1995                         result = 0;
1996                 }
1997         }
1998         return result;
1999 }
2000 EXPORT_SYMBOL(scsi_test_unit_ready);
2001
2002 /**
2003  *      scsi_device_set_state - Take the given device through the device
2004  *              state model.
2005  *      @sdev:  scsi device to change the state of.
2006  *      @state: state to change to.
2007  *
2008  *      Returns zero if unsuccessful or an error if the requested 
2009  *      transition is illegal.
2010  **/
2011 int
2012 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2013 {
2014         enum scsi_device_state oldstate = sdev->sdev_state;
2015
2016         if (state == oldstate)
2017                 return 0;
2018
2019         switch (state) {
2020         case SDEV_CREATED:
2021                 /* There are no legal states that come back to
2022                  * created.  This is the manually initialised start
2023                  * state */
2024                 goto illegal;
2025                         
2026         case SDEV_RUNNING:
2027                 switch (oldstate) {
2028                 case SDEV_CREATED:
2029                 case SDEV_OFFLINE:
2030                 case SDEV_QUIESCE:
2031                 case SDEV_BLOCK:
2032                         break;
2033                 default:
2034                         goto illegal;
2035                 }
2036                 break;
2037
2038         case SDEV_QUIESCE:
2039                 switch (oldstate) {
2040                 case SDEV_RUNNING:
2041                 case SDEV_OFFLINE:
2042                         break;
2043                 default:
2044                         goto illegal;
2045                 }
2046                 break;
2047
2048         case SDEV_OFFLINE:
2049                 switch (oldstate) {
2050                 case SDEV_CREATED:
2051                 case SDEV_RUNNING:
2052                 case SDEV_QUIESCE:
2053                 case SDEV_BLOCK:
2054                         break;
2055                 default:
2056                         goto illegal;
2057                 }
2058                 break;
2059
2060         case SDEV_BLOCK:
2061                 switch (oldstate) {
2062                 case SDEV_CREATED:
2063                 case SDEV_RUNNING:
2064                         break;
2065                 default:
2066                         goto illegal;
2067                 }
2068                 break;
2069
2070         case SDEV_CANCEL:
2071                 switch (oldstate) {
2072                 case SDEV_CREATED:
2073                 case SDEV_RUNNING:
2074                 case SDEV_QUIESCE:
2075                 case SDEV_OFFLINE:
2076                 case SDEV_BLOCK:
2077                         break;
2078                 default:
2079                         goto illegal;
2080                 }
2081                 break;
2082
2083         case SDEV_DEL:
2084                 switch (oldstate) {
2085                 case SDEV_CREATED:
2086                 case SDEV_RUNNING:
2087                 case SDEV_OFFLINE:
2088                 case SDEV_CANCEL:
2089                         break;
2090                 default:
2091                         goto illegal;
2092                 }
2093                 break;
2094
2095         }
2096         sdev->sdev_state = state;
2097         return 0;
2098
2099  illegal:
2100         SCSI_LOG_ERROR_RECOVERY(1, 
2101                                 sdev_printk(KERN_ERR, sdev,
2102                                             "Illegal state transition %s->%s\n",
2103                                             scsi_device_state_name(oldstate),
2104                                             scsi_device_state_name(state))
2105                                 );
2106         return -EINVAL;
2107 }
2108 EXPORT_SYMBOL(scsi_device_set_state);
2109
2110 /**
2111  *      scsi_device_quiesce - Block user issued commands.
2112  *      @sdev:  scsi device to quiesce.
2113  *
2114  *      This works by trying to transition to the SDEV_QUIESCE state
2115  *      (which must be a legal transition).  When the device is in this
2116  *      state, only special requests will be accepted, all others will
2117  *      be deferred.  Since special requests may also be requeued requests,
2118  *      a successful return doesn't guarantee the device will be 
2119  *      totally quiescent.
2120  *
2121  *      Must be called with user context, may sleep.
2122  *
2123  *      Returns zero if unsuccessful or an error if not.
2124  **/
2125 int
2126 scsi_device_quiesce(struct scsi_device *sdev)
2127 {
2128         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2129         if (err)
2130                 return err;
2131
2132         scsi_run_queue(sdev->request_queue);
2133         while (sdev->device_busy) {
2134                 msleep_interruptible(200);
2135                 scsi_run_queue(sdev->request_queue);
2136         }
2137         return 0;
2138 }
2139 EXPORT_SYMBOL(scsi_device_quiesce);
2140
2141 /**
2142  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2143  *      @sdev:  scsi device to resume.
2144  *
2145  *      Moves the device from quiesced back to running and restarts the
2146  *      queues.
2147  *
2148  *      Must be called with user context, may sleep.
2149  **/
2150 void
2151 scsi_device_resume(struct scsi_device *sdev)
2152 {
2153         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2154                 return;
2155         scsi_run_queue(sdev->request_queue);
2156 }
2157 EXPORT_SYMBOL(scsi_device_resume);
2158
2159 static void
2160 device_quiesce_fn(struct scsi_device *sdev, void *data)
2161 {
2162         scsi_device_quiesce(sdev);
2163 }
2164
2165 void
2166 scsi_target_quiesce(struct scsi_target *starget)
2167 {
2168         starget_for_each_device(starget, NULL, device_quiesce_fn);
2169 }
2170 EXPORT_SYMBOL(scsi_target_quiesce);
2171
2172 static void
2173 device_resume_fn(struct scsi_device *sdev, void *data)
2174 {
2175         scsi_device_resume(sdev);
2176 }
2177
2178 void
2179 scsi_target_resume(struct scsi_target *starget)
2180 {
2181         starget_for_each_device(starget, NULL, device_resume_fn);
2182 }
2183 EXPORT_SYMBOL(scsi_target_resume);
2184
2185 /**
2186  * scsi_internal_device_block - internal function to put a device
2187  *                              temporarily into the SDEV_BLOCK state
2188  * @sdev:       device to block
2189  *
2190  * Block request made by scsi lld's to temporarily stop all
2191  * scsi commands on the specified device.  Called from interrupt
2192  * or normal process context.
2193  *
2194  * Returns zero if successful or error if not
2195  *
2196  * Notes:       
2197  *      This routine transitions the device to the SDEV_BLOCK state
2198  *      (which must be a legal transition).  When the device is in this
2199  *      state, all commands are deferred until the scsi lld reenables
2200  *      the device with scsi_device_unblock or device_block_tmo fires.
2201  *      This routine assumes the host_lock is held on entry.
2202  **/
2203 int
2204 scsi_internal_device_block(struct scsi_device *sdev)
2205 {
2206         struct request_queue *q = sdev->request_queue;
2207         unsigned long flags;
2208         int err = 0;
2209
2210         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2211         if (err)
2212                 return err;
2213
2214         /* 
2215          * The device has transitioned to SDEV_BLOCK.  Stop the
2216          * block layer from calling the midlayer with this device's
2217          * request queue. 
2218          */
2219         spin_lock_irqsave(q->queue_lock, flags);
2220         blk_stop_queue(q);
2221         spin_unlock_irqrestore(q->queue_lock, flags);
2222
2223         return 0;
2224 }
2225 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2226  
2227 /**
2228  * scsi_internal_device_unblock - resume a device after a block request
2229  * @sdev:       device to resume
2230  *
2231  * Called by scsi lld's or the midlayer to restart the device queue
2232  * for the previously suspended scsi device.  Called from interrupt or
2233  * normal process context.
2234  *
2235  * Returns zero if successful or error if not.
2236  *
2237  * Notes:       
2238  *      This routine transitions the device to the SDEV_RUNNING state
2239  *      (which must be a legal transition) allowing the midlayer to
2240  *      goose the queue for this device.  This routine assumes the 
2241  *      host_lock is held upon entry.
2242  **/
2243 int
2244 scsi_internal_device_unblock(struct scsi_device *sdev)
2245 {
2246         struct request_queue *q = sdev->request_queue; 
2247         int err;
2248         unsigned long flags;
2249         
2250         /* 
2251          * Try to transition the scsi device to SDEV_RUNNING
2252          * and goose the device queue if successful.  
2253          */
2254         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2255         if (err)
2256                 return err;
2257
2258         spin_lock_irqsave(q->queue_lock, flags);
2259         blk_start_queue(q);
2260         spin_unlock_irqrestore(q->queue_lock, flags);
2261
2262         return 0;
2263 }
2264 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2265
2266 static void
2267 device_block(struct scsi_device *sdev, void *data)
2268 {
2269         scsi_internal_device_block(sdev);
2270 }
2271
2272 static int
2273 target_block(struct device *dev, void *data)
2274 {
2275         if (scsi_is_target_device(dev))
2276                 starget_for_each_device(to_scsi_target(dev), NULL,
2277                                         device_block);
2278         return 0;
2279 }
2280
2281 void
2282 scsi_target_block(struct device *dev)
2283 {
2284         if (scsi_is_target_device(dev))
2285                 starget_for_each_device(to_scsi_target(dev), NULL,
2286                                         device_block);
2287         else
2288                 device_for_each_child(dev, NULL, target_block);
2289 }
2290 EXPORT_SYMBOL_GPL(scsi_target_block);
2291
2292 static void
2293 device_unblock(struct scsi_device *sdev, void *data)
2294 {
2295         scsi_internal_device_unblock(sdev);
2296 }
2297
2298 static int
2299 target_unblock(struct device *dev, void *data)
2300 {
2301         if (scsi_is_target_device(dev))
2302                 starget_for_each_device(to_scsi_target(dev), NULL,
2303                                         device_unblock);
2304         return 0;
2305 }
2306
2307 void
2308 scsi_target_unblock(struct device *dev)
2309 {
2310         if (scsi_is_target_device(dev))
2311                 starget_for_each_device(to_scsi_target(dev), NULL,
2312                                         device_unblock);
2313         else
2314                 device_for_each_child(dev, NULL, target_unblock);
2315 }
2316 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2317
2318 /**
2319  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2320  * @sg:         scatter-gather list
2321  * @sg_count:   number of segments in sg
2322  * @offset:     offset in bytes into sg, on return offset into the mapped area
2323  * @len:        bytes to map, on return number of bytes mapped
2324  *
2325  * Returns virtual address of the start of the mapped page
2326  */
2327 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2328                           size_t *offset, size_t *len)
2329 {
2330         int i;
2331         size_t sg_len = 0, len_complete = 0;
2332         struct scatterlist *sg;
2333         struct page *page;
2334
2335         WARN_ON(!irqs_disabled());
2336
2337         for_each_sg(sgl, sg, sg_count, i) {
2338                 len_complete = sg_len; /* Complete sg-entries */
2339                 sg_len += sg->length;
2340                 if (sg_len > *offset)
2341                         break;
2342         }
2343
2344         if (unlikely(i == sg_count)) {
2345                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2346                         "elements %d\n",
2347                        __FUNCTION__, sg_len, *offset, sg_count);
2348                 WARN_ON(1);
2349                 return NULL;
2350         }
2351
2352         /* Offset starting from the beginning of first page in this sg-entry */
2353         *offset = *offset - len_complete + sg->offset;
2354
2355         /* Assumption: contiguous pages can be accessed as "page + i" */
2356         page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2357         *offset &= ~PAGE_MASK;
2358
2359         /* Bytes in this sg-entry from *offset to the end of the page */
2360         sg_len = PAGE_SIZE - *offset;
2361         if (*len > sg_len)
2362                 *len = sg_len;
2363
2364         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2365 }
2366 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2367
2368 /**
2369  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2370  *                         mapped with scsi_kmap_atomic_sg
2371  * @virt:       virtual address to be unmapped
2372  */
2373 void scsi_kunmap_atomic_sg(void *virt)
2374 {
2375         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2376 }
2377 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);