Merge branch 'writeback-plugging'
[pandora-kernel.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62
63
64 #include "mpt3sas_base.h"
65
66 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
67
68
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70
71  /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH     30000
73 #define MAX_CHAIN_DEPTH         100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85
86 static int max_msix_vectors = -1;
87 module_param(max_msix_vectors, int, 0);
88 MODULE_PARM_DESC(max_msix_vectors,
89         " max msix vectors");
90
91 static int mpt3sas_fwfault_debug;
92 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93         " enable detection of firmware fault and halt firmware - (default=0)");
94
95 static int
96 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
97
98 /**
99  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
100  *
101  */
102 static int
103 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
104 {
105         int ret = param_set_int(val, kp);
106         struct MPT3SAS_ADAPTER *ioc;
107
108         if (ret)
109                 return ret;
110
111         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
112         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
113                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
114         return 0;
115 }
116 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
117         param_get_int, &mpt3sas_fwfault_debug, 0644);
118
119 /**
120  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
121  * @arg: input argument, used to derive ioc
122  *
123  * Return 0 if controller is removed from pci subsystem.
124  * Return -1 for other case.
125  */
126 static int mpt3sas_remove_dead_ioc_func(void *arg)
127 {
128         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
129         struct pci_dev *pdev;
130
131         if ((ioc == NULL))
132                 return -1;
133
134         pdev = ioc->pdev;
135         if ((pdev == NULL))
136                 return -1;
137         pci_stop_and_remove_bus_device_locked(pdev);
138         return 0;
139 }
140
141 /**
142  * _base_fault_reset_work - workq handling ioc fault conditions
143  * @work: input argument, used to derive ioc
144  * Context: sleep.
145  *
146  * Return nothing.
147  */
148 static void
149 _base_fault_reset_work(struct work_struct *work)
150 {
151         struct MPT3SAS_ADAPTER *ioc =
152             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
153         unsigned long    flags;
154         u32 doorbell;
155         int rc;
156         struct task_struct *p;
157
158
159         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
160         if (ioc->shost_recovery)
161                 goto rearm_timer;
162         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
163
164         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
165         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
166                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
167                     ioc->name);
168
169                 /*
170                  * Call _scsih_flush_pending_cmds callback so that we flush all
171                  * pending commands back to OS. This call is required to aovid
172                  * deadlock at block layer. Dead IOC will fail to do diag reset,
173                  * and this call is safe since dead ioc will never return any
174                  * command back from HW.
175                  */
176                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
177                 /*
178                  * Set remove_host flag early since kernel thread will
179                  * take some time to execute.
180                  */
181                 ioc->remove_host = 1;
182                 /*Remove the Dead Host */
183                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
184                     "mpt3sas_dead_ioc_%d", ioc->id);
185                 if (IS_ERR(p))
186                         pr_err(MPT3SAS_FMT
187                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
188                         ioc->name, __func__);
189                 else
190                         pr_err(MPT3SAS_FMT
191                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
192                         ioc->name, __func__);
193                 return; /* don't rearm timer */
194         }
195
196         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
197                 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
198                     FORCE_BIG_HAMMER);
199                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
200                     __func__, (rc == 0) ? "success" : "failed");
201                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
202                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
203                         mpt3sas_base_fault_info(ioc, doorbell &
204                             MPI2_DOORBELL_DATA_MASK);
205                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
206                     MPI2_IOC_STATE_OPERATIONAL)
207                         return; /* don't rearm timer */
208         }
209
210         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
211  rearm_timer:
212         if (ioc->fault_reset_work_q)
213                 queue_delayed_work(ioc->fault_reset_work_q,
214                     &ioc->fault_reset_work,
215                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
216         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
217 }
218
219 /**
220  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
221  * @ioc: per adapter object
222  * Context: sleep.
223  *
224  * Return nothing.
225  */
226 void
227 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
228 {
229         unsigned long    flags;
230
231         if (ioc->fault_reset_work_q)
232                 return;
233
234         /* initialize fault polling */
235
236         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
237         snprintf(ioc->fault_reset_work_q_name,
238             sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
239         ioc->fault_reset_work_q =
240                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
241         if (!ioc->fault_reset_work_q) {
242                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
243                     ioc->name, __func__, __LINE__);
244                         return;
245         }
246         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
247         if (ioc->fault_reset_work_q)
248                 queue_delayed_work(ioc->fault_reset_work_q,
249                     &ioc->fault_reset_work,
250                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
251         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
252 }
253
254 /**
255  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
256  * @ioc: per adapter object
257  * Context: sleep.
258  *
259  * Return nothing.
260  */
261 void
262 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
263 {
264         unsigned long flags;
265         struct workqueue_struct *wq;
266
267         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
268         wq = ioc->fault_reset_work_q;
269         ioc->fault_reset_work_q = NULL;
270         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
271         if (wq) {
272                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
273                         flush_workqueue(wq);
274                 destroy_workqueue(wq);
275         }
276 }
277
278 /**
279  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
280  * @ioc: per adapter object
281  * @fault_code: fault code
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
287 {
288         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
289             ioc->name, fault_code);
290 }
291
292 /**
293  * mpt3sas_halt_firmware - halt's mpt controller firmware
294  * @ioc: per adapter object
295  *
296  * For debugging timeout related issues.  Writing 0xCOFFEE00
297  * to the doorbell register will halt controller firmware. With
298  * the purpose to stop both driver and firmware, the enduser can
299  * obtain a ring buffer from controller UART.
300  */
301 void
302 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
303 {
304         u32 doorbell;
305
306         if (!ioc->fwfault_debug)
307                 return;
308
309         dump_stack();
310
311         doorbell = readl(&ioc->chip->Doorbell);
312         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
313                 mpt3sas_base_fault_info(ioc , doorbell);
314         else {
315                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
316                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
317                         ioc->name);
318         }
319
320         if (ioc->fwfault_debug == 2)
321                 for (;;)
322                         ;
323         else
324                 panic("panic in %s\n", __func__);
325 }
326
327 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
328 /**
329  * _base_sas_ioc_info - verbose translation of the ioc status
330  * @ioc: per adapter object
331  * @mpi_reply: reply mf payload returned from firmware
332  * @request_hdr: request mf
333  *
334  * Return nothing.
335  */
336 static void
337 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
338         MPI2RequestHeader_t *request_hdr)
339 {
340         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
341             MPI2_IOCSTATUS_MASK;
342         char *desc = NULL;
343         u16 frame_sz;
344         char *func_str = NULL;
345
346         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
347         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
348             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
349             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
350                 return;
351
352         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
353                 return;
354
355         switch (ioc_status) {
356
357 /****************************************************************************
358 *  Common IOCStatus values for all replies
359 ****************************************************************************/
360
361         case MPI2_IOCSTATUS_INVALID_FUNCTION:
362                 desc = "invalid function";
363                 break;
364         case MPI2_IOCSTATUS_BUSY:
365                 desc = "busy";
366                 break;
367         case MPI2_IOCSTATUS_INVALID_SGL:
368                 desc = "invalid sgl";
369                 break;
370         case MPI2_IOCSTATUS_INTERNAL_ERROR:
371                 desc = "internal error";
372                 break;
373         case MPI2_IOCSTATUS_INVALID_VPID:
374                 desc = "invalid vpid";
375                 break;
376         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
377                 desc = "insufficient resources";
378                 break;
379         case MPI2_IOCSTATUS_INVALID_FIELD:
380                 desc = "invalid field";
381                 break;
382         case MPI2_IOCSTATUS_INVALID_STATE:
383                 desc = "invalid state";
384                 break;
385         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
386                 desc = "op state not supported";
387                 break;
388
389 /****************************************************************************
390 *  Config IOCStatus values
391 ****************************************************************************/
392
393         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
394                 desc = "config invalid action";
395                 break;
396         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
397                 desc = "config invalid type";
398                 break;
399         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
400                 desc = "config invalid page";
401                 break;
402         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
403                 desc = "config invalid data";
404                 break;
405         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
406                 desc = "config no defaults";
407                 break;
408         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
409                 desc = "config cant commit";
410                 break;
411
412 /****************************************************************************
413 *  SCSI IO Reply
414 ****************************************************************************/
415
416         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
417         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
418         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
419         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
420         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
421         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
422         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
423         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
424         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
425         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
426         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
427         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
428                 break;
429
430 /****************************************************************************
431 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
432 ****************************************************************************/
433
434         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
435                 desc = "eedp guard error";
436                 break;
437         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
438                 desc = "eedp ref tag error";
439                 break;
440         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
441                 desc = "eedp app tag error";
442                 break;
443
444 /****************************************************************************
445 *  SCSI Target values
446 ****************************************************************************/
447
448         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
449                 desc = "target invalid io index";
450                 break;
451         case MPI2_IOCSTATUS_TARGET_ABORTED:
452                 desc = "target aborted";
453                 break;
454         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
455                 desc = "target no conn retryable";
456                 break;
457         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
458                 desc = "target no connection";
459                 break;
460         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
461                 desc = "target xfer count mismatch";
462                 break;
463         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
464                 desc = "target data offset error";
465                 break;
466         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
467                 desc = "target too much write data";
468                 break;
469         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
470                 desc = "target iu too short";
471                 break;
472         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
473                 desc = "target ack nak timeout";
474                 break;
475         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
476                 desc = "target nak received";
477                 break;
478
479 /****************************************************************************
480 *  Serial Attached SCSI values
481 ****************************************************************************/
482
483         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
484                 desc = "smp request failed";
485                 break;
486         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
487                 desc = "smp data overrun";
488                 break;
489
490 /****************************************************************************
491 *  Diagnostic Buffer Post / Diagnostic Release values
492 ****************************************************************************/
493
494         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
495                 desc = "diagnostic released";
496                 break;
497         default:
498                 break;
499         }
500
501         if (!desc)
502                 return;
503
504         switch (request_hdr->Function) {
505         case MPI2_FUNCTION_CONFIG:
506                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
507                 func_str = "config_page";
508                 break;
509         case MPI2_FUNCTION_SCSI_TASK_MGMT:
510                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
511                 func_str = "task_mgmt";
512                 break;
513         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
514                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
515                 func_str = "sas_iounit_ctl";
516                 break;
517         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
518                 frame_sz = sizeof(Mpi2SepRequest_t);
519                 func_str = "enclosure";
520                 break;
521         case MPI2_FUNCTION_IOC_INIT:
522                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
523                 func_str = "ioc_init";
524                 break;
525         case MPI2_FUNCTION_PORT_ENABLE:
526                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
527                 func_str = "port_enable";
528                 break;
529         case MPI2_FUNCTION_SMP_PASSTHROUGH:
530                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
531                 func_str = "smp_passthru";
532                 break;
533         default:
534                 frame_sz = 32;
535                 func_str = "unknown";
536                 break;
537         }
538
539         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
540                 ioc->name, desc, ioc_status, request_hdr, func_str);
541
542         _debug_dump_mf(request_hdr, frame_sz/4);
543 }
544
545 /**
546  * _base_display_event_data - verbose translation of firmware asyn events
547  * @ioc: per adapter object
548  * @mpi_reply: reply mf payload returned from firmware
549  *
550  * Return nothing.
551  */
552 static void
553 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
554         Mpi2EventNotificationReply_t *mpi_reply)
555 {
556         char *desc = NULL;
557         u16 event;
558
559         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
560                 return;
561
562         event = le16_to_cpu(mpi_reply->Event);
563
564         switch (event) {
565         case MPI2_EVENT_LOG_DATA:
566                 desc = "Log Data";
567                 break;
568         case MPI2_EVENT_STATE_CHANGE:
569                 desc = "Status Change";
570                 break;
571         case MPI2_EVENT_HARD_RESET_RECEIVED:
572                 desc = "Hard Reset Received";
573                 break;
574         case MPI2_EVENT_EVENT_CHANGE:
575                 desc = "Event Change";
576                 break;
577         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
578                 desc = "Device Status Change";
579                 break;
580         case MPI2_EVENT_IR_OPERATION_STATUS:
581                 desc = "IR Operation Status";
582                 break;
583         case MPI2_EVENT_SAS_DISCOVERY:
584         {
585                 Mpi2EventDataSasDiscovery_t *event_data =
586                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
587                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
588                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
589                     "start" : "stop");
590                 if (event_data->DiscoveryStatus)
591                         pr_info("discovery_status(0x%08x)",
592                             le32_to_cpu(event_data->DiscoveryStatus));
593                         pr_info("\n");
594                 return;
595         }
596         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
597                 desc = "SAS Broadcast Primitive";
598                 break;
599         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
600                 desc = "SAS Init Device Status Change";
601                 break;
602         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
603                 desc = "SAS Init Table Overflow";
604                 break;
605         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
606                 desc = "SAS Topology Change List";
607                 break;
608         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
609                 desc = "SAS Enclosure Device Status Change";
610                 break;
611         case MPI2_EVENT_IR_VOLUME:
612                 desc = "IR Volume";
613                 break;
614         case MPI2_EVENT_IR_PHYSICAL_DISK:
615                 desc = "IR Physical Disk";
616                 break;
617         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
618                 desc = "IR Configuration Change List";
619                 break;
620         case MPI2_EVENT_LOG_ENTRY_ADDED:
621                 desc = "Log Entry Added";
622                 break;
623         case MPI2_EVENT_TEMP_THRESHOLD:
624                 desc = "Temperature Threshold";
625                 break;
626         }
627
628         if (!desc)
629                 return;
630
631         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
632 }
633 #endif
634
635 /**
636  * _base_sas_log_info - verbose translation of firmware log info
637  * @ioc: per adapter object
638  * @log_info: log info
639  *
640  * Return nothing.
641  */
642 static void
643 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
644 {
645         union loginfo_type {
646                 u32     loginfo;
647                 struct {
648                         u32     subcode:16;
649                         u32     code:8;
650                         u32     originator:4;
651                         u32     bus_type:4;
652                 } dw;
653         };
654         union loginfo_type sas_loginfo;
655         char *originator_str = NULL;
656
657         sas_loginfo.loginfo = log_info;
658         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
659                 return;
660
661         /* each nexus loss loginfo */
662         if (log_info == 0x31170000)
663                 return;
664
665         /* eat the loginfos associated with task aborts */
666         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
667             0x31140000 || log_info == 0x31130000))
668                 return;
669
670         switch (sas_loginfo.dw.originator) {
671         case 0:
672                 originator_str = "IOP";
673                 break;
674         case 1:
675                 originator_str = "PL";
676                 break;
677         case 2:
678                 originator_str = "IR";
679                 break;
680         }
681
682         pr_warn(MPT3SAS_FMT
683                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
684                 ioc->name, log_info,
685              originator_str, sas_loginfo.dw.code,
686              sas_loginfo.dw.subcode);
687 }
688
689 /**
690  * _base_display_reply_info -
691  * @ioc: per adapter object
692  * @smid: system request message index
693  * @msix_index: MSIX table index supplied by the OS
694  * @reply: reply message frame(lower 32bit addr)
695  *
696  * Return nothing.
697  */
698 static void
699 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
700         u32 reply)
701 {
702         MPI2DefaultReply_t *mpi_reply;
703         u16 ioc_status;
704         u32 loginfo = 0;
705
706         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
707         if (unlikely(!mpi_reply)) {
708                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
709                     ioc->name, __FILE__, __LINE__, __func__);
710                 return;
711         }
712         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
713 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
714         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
715             (ioc->logging_level & MPT_DEBUG_REPLY)) {
716                 _base_sas_ioc_info(ioc , mpi_reply,
717                    mpt3sas_base_get_msg_frame(ioc, smid));
718         }
719 #endif
720         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
721                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
722                 _base_sas_log_info(ioc, loginfo);
723         }
724
725         if (ioc_status || loginfo) {
726                 ioc_status &= MPI2_IOCSTATUS_MASK;
727                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
728         }
729 }
730
731 /**
732  * mpt3sas_base_done - base internal command completion routine
733  * @ioc: per adapter object
734  * @smid: system request message index
735  * @msix_index: MSIX table index supplied by the OS
736  * @reply: reply message frame(lower 32bit addr)
737  *
738  * Return 1 meaning mf should be freed from _base_interrupt
739  *        0 means the mf is freed from this function.
740  */
741 u8
742 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
743         u32 reply)
744 {
745         MPI2DefaultReply_t *mpi_reply;
746
747         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
748         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
749                 return 1;
750
751         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
752                 return 1;
753
754         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
755         if (mpi_reply) {
756                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
757                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
758         }
759         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
760
761         complete(&ioc->base_cmds.done);
762         return 1;
763 }
764
765 /**
766  * _base_async_event - main callback handler for firmware asyn events
767  * @ioc: per adapter object
768  * @msix_index: MSIX table index supplied by the OS
769  * @reply: reply message frame(lower 32bit addr)
770  *
771  * Return 1 meaning mf should be freed from _base_interrupt
772  *        0 means the mf is freed from this function.
773  */
774 static u8
775 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
776 {
777         Mpi2EventNotificationReply_t *mpi_reply;
778         Mpi2EventAckRequest_t *ack_request;
779         u16 smid;
780
781         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
782         if (!mpi_reply)
783                 return 1;
784         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
785                 return 1;
786 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
787         _base_display_event_data(ioc, mpi_reply);
788 #endif
789         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
790                 goto out;
791         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
792         if (!smid) {
793                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
794                     ioc->name, __func__);
795                 goto out;
796         }
797
798         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
799         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
800         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
801         ack_request->Event = mpi_reply->Event;
802         ack_request->EventContext = mpi_reply->EventContext;
803         ack_request->VF_ID = 0;  /* TODO */
804         ack_request->VP_ID = 0;
805         mpt3sas_base_put_smid_default(ioc, smid);
806
807  out:
808
809         /* scsih callback handler */
810         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
811
812         /* ctl callback handler */
813         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
814
815         return 1;
816 }
817
818 /**
819  * _base_get_cb_idx - obtain the callback index
820  * @ioc: per adapter object
821  * @smid: system request message index
822  *
823  * Return callback index.
824  */
825 static u8
826 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
827 {
828         int i;
829         u8 cb_idx;
830
831         if (smid < ioc->hi_priority_smid) {
832                 i = smid - 1;
833                 cb_idx = ioc->scsi_lookup[i].cb_idx;
834         } else if (smid < ioc->internal_smid) {
835                 i = smid - ioc->hi_priority_smid;
836                 cb_idx = ioc->hpr_lookup[i].cb_idx;
837         } else if (smid <= ioc->hba_queue_depth) {
838                 i = smid - ioc->internal_smid;
839                 cb_idx = ioc->internal_lookup[i].cb_idx;
840         } else
841                 cb_idx = 0xFF;
842         return cb_idx;
843 }
844
845 /**
846  * _base_mask_interrupts - disable interrupts
847  * @ioc: per adapter object
848  *
849  * Disabling ResetIRQ, Reply and Doorbell Interrupts
850  *
851  * Return nothing.
852  */
853 static void
854 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
855 {
856         u32 him_register;
857
858         ioc->mask_interrupts = 1;
859         him_register = readl(&ioc->chip->HostInterruptMask);
860         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
861         writel(him_register, &ioc->chip->HostInterruptMask);
862         readl(&ioc->chip->HostInterruptMask);
863 }
864
865 /**
866  * _base_unmask_interrupts - enable interrupts
867  * @ioc: per adapter object
868  *
869  * Enabling only Reply Interrupts
870  *
871  * Return nothing.
872  */
873 static void
874 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
875 {
876         u32 him_register;
877
878         him_register = readl(&ioc->chip->HostInterruptMask);
879         him_register &= ~MPI2_HIM_RIM;
880         writel(him_register, &ioc->chip->HostInterruptMask);
881         ioc->mask_interrupts = 0;
882 }
883
884 union reply_descriptor {
885         u64 word;
886         struct {
887                 u32 low;
888                 u32 high;
889         } u;
890 };
891
892 /**
893  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
894  * @irq: irq number (not used)
895  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
896  * @r: pt_regs pointer (not used)
897  *
898  * Return IRQ_HANDLE if processed, else IRQ_NONE.
899  */
900 static irqreturn_t
901 _base_interrupt(int irq, void *bus_id)
902 {
903         struct adapter_reply_queue *reply_q = bus_id;
904         union reply_descriptor rd;
905         u32 completed_cmds;
906         u8 request_desript_type;
907         u16 smid;
908         u8 cb_idx;
909         u32 reply;
910         u8 msix_index = reply_q->msix_index;
911         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
912         Mpi2ReplyDescriptorsUnion_t *rpf;
913         u8 rc;
914
915         if (ioc->mask_interrupts)
916                 return IRQ_NONE;
917
918         if (!atomic_add_unless(&reply_q->busy, 1, 1))
919                 return IRQ_NONE;
920
921         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
922         request_desript_type = rpf->Default.ReplyFlags
923              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
924         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
925                 atomic_dec(&reply_q->busy);
926                 return IRQ_NONE;
927         }
928
929         completed_cmds = 0;
930         cb_idx = 0xFF;
931         do {
932                 rd.word = le64_to_cpu(rpf->Words);
933                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
934                         goto out;
935                 reply = 0;
936                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
937                 if (request_desript_type ==
938                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
939                     request_desript_type ==
940                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
941                         cb_idx = _base_get_cb_idx(ioc, smid);
942                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
943                             (likely(mpt_callbacks[cb_idx] != NULL))) {
944                                 rc = mpt_callbacks[cb_idx](ioc, smid,
945                                     msix_index, 0);
946                                 if (rc)
947                                         mpt3sas_base_free_smid(ioc, smid);
948                         }
949                 } else if (request_desript_type ==
950                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
951                         reply = le32_to_cpu(
952                             rpf->AddressReply.ReplyFrameAddress);
953                         if (reply > ioc->reply_dma_max_address ||
954                             reply < ioc->reply_dma_min_address)
955                                 reply = 0;
956                         if (smid) {
957                                 cb_idx = _base_get_cb_idx(ioc, smid);
958                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
959                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
960                                         rc = mpt_callbacks[cb_idx](ioc, smid,
961                                             msix_index, reply);
962                                         if (reply)
963                                                 _base_display_reply_info(ioc,
964                                                     smid, msix_index, reply);
965                                         if (rc)
966                                                 mpt3sas_base_free_smid(ioc,
967                                                     smid);
968                                 }
969                         } else {
970                                 _base_async_event(ioc, msix_index, reply);
971                         }
972
973                         /* reply free queue handling */
974                         if (reply) {
975                                 ioc->reply_free_host_index =
976                                     (ioc->reply_free_host_index ==
977                                     (ioc->reply_free_queue_depth - 1)) ?
978                                     0 : ioc->reply_free_host_index + 1;
979                                 ioc->reply_free[ioc->reply_free_host_index] =
980                                     cpu_to_le32(reply);
981                                 wmb();
982                                 writel(ioc->reply_free_host_index,
983                                     &ioc->chip->ReplyFreeHostIndex);
984                         }
985                 }
986
987                 rpf->Words = cpu_to_le64(ULLONG_MAX);
988                 reply_q->reply_post_host_index =
989                     (reply_q->reply_post_host_index ==
990                     (ioc->reply_post_queue_depth - 1)) ? 0 :
991                     reply_q->reply_post_host_index + 1;
992                 request_desript_type =
993                     reply_q->reply_post_free[reply_q->reply_post_host_index].
994                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
995                 completed_cmds++;
996                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
997                         goto out;
998                 if (!reply_q->reply_post_host_index)
999                         rpf = reply_q->reply_post_free;
1000                 else
1001                         rpf++;
1002         } while (1);
1003
1004  out:
1005
1006         if (!completed_cmds) {
1007                 atomic_dec(&reply_q->busy);
1008                 return IRQ_NONE;
1009         }
1010
1011         wmb();
1012
1013         /* Update Reply Post Host Index.
1014          * For those HBA's which support combined reply queue feature
1015          * 1. Get the correct Supplemental Reply Post Host Index Register.
1016          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1017          *    Index Register address bank i.e replyPostRegisterIndex[],
1018          * 2. Then update this register with new reply host index value
1019          *    in ReplyPostIndex field and the MSIxIndex field with
1020          *    msix_index value reduced to a value between 0 and 7,
1021          *    using a modulo 8 operation. Since each Supplemental Reply Post
1022          *    Host Index Register supports 8 MSI-X vectors.
1023          *
1024          * For other HBA's just update the Reply Post Host Index register with
1025          * new reply host index value in ReplyPostIndex Field and msix_index
1026          * value in MSIxIndex field.
1027          */
1028         if (ioc->msix96_vector)
1029                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1030                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1031                         ioc->replyPostRegisterIndex[msix_index/8]);
1032         else
1033                 writel(reply_q->reply_post_host_index | (msix_index <<
1034                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1035                         &ioc->chip->ReplyPostHostIndex);
1036         atomic_dec(&reply_q->busy);
1037         return IRQ_HANDLED;
1038 }
1039
1040 /**
1041  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1042  * @ioc: per adapter object
1043  *
1044  */
1045 static inline int
1046 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1047 {
1048         return (ioc->facts.IOCCapabilities &
1049             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1050 }
1051
1052 /**
1053  * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1054  * @ioc: per adapter object
1055  * Context: ISR conext
1056  *
1057  * Called when a Task Management request has completed. We want
1058  * to flush the other reply queues so all the outstanding IO has been
1059  * completed back to OS before we process the TM completetion.
1060  *
1061  * Return nothing.
1062  */
1063 void
1064 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1065 {
1066         struct adapter_reply_queue *reply_q;
1067
1068         /* If MSIX capability is turned off
1069          * then multi-queues are not enabled
1070          */
1071         if (!_base_is_controller_msix_enabled(ioc))
1072                 return;
1073
1074         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1075                 if (ioc->shost_recovery)
1076                         return;
1077                 /* TMs are on msix_index == 0 */
1078                 if (reply_q->msix_index == 0)
1079                         continue;
1080                 _base_interrupt(reply_q->vector, (void *)reply_q);
1081         }
1082 }
1083
1084 /**
1085  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1086  * @cb_idx: callback index
1087  *
1088  * Return nothing.
1089  */
1090 void
1091 mpt3sas_base_release_callback_handler(u8 cb_idx)
1092 {
1093         mpt_callbacks[cb_idx] = NULL;
1094 }
1095
1096 /**
1097  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1098  * @cb_func: callback function
1099  *
1100  * Returns cb_func.
1101  */
1102 u8
1103 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1104 {
1105         u8 cb_idx;
1106
1107         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1108                 if (mpt_callbacks[cb_idx] == NULL)
1109                         break;
1110
1111         mpt_callbacks[cb_idx] = cb_func;
1112         return cb_idx;
1113 }
1114
1115 /**
1116  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1117  *
1118  * Return nothing.
1119  */
1120 void
1121 mpt3sas_base_initialize_callback_handler(void)
1122 {
1123         u8 cb_idx;
1124
1125         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1126                 mpt3sas_base_release_callback_handler(cb_idx);
1127 }
1128
1129
1130 /**
1131  * _base_build_zero_len_sge - build zero length sg entry
1132  * @ioc: per adapter object
1133  * @paddr: virtual address for SGE
1134  *
1135  * Create a zero length scatter gather entry to insure the IOCs hardware has
1136  * something to use if the target device goes brain dead and tries
1137  * to send data even when none is asked for.
1138  *
1139  * Return nothing.
1140  */
1141 static void
1142 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1143 {
1144         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1145             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1146             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1147             MPI2_SGE_FLAGS_SHIFT);
1148         ioc->base_add_sg_single(paddr, flags_length, -1);
1149 }
1150
1151 /**
1152  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1153  * @paddr: virtual address for SGE
1154  * @flags_length: SGE flags and data transfer length
1155  * @dma_addr: Physical address
1156  *
1157  * Return nothing.
1158  */
1159 static void
1160 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1161 {
1162         Mpi2SGESimple32_t *sgel = paddr;
1163
1164         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1165             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1166         sgel->FlagsLength = cpu_to_le32(flags_length);
1167         sgel->Address = cpu_to_le32(dma_addr);
1168 }
1169
1170
1171 /**
1172  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1173  * @paddr: virtual address for SGE
1174  * @flags_length: SGE flags and data transfer length
1175  * @dma_addr: Physical address
1176  *
1177  * Return nothing.
1178  */
1179 static void
1180 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1181 {
1182         Mpi2SGESimple64_t *sgel = paddr;
1183
1184         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1185             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1186         sgel->FlagsLength = cpu_to_le32(flags_length);
1187         sgel->Address = cpu_to_le64(dma_addr);
1188 }
1189
1190 /**
1191  * _base_get_chain_buffer_tracker - obtain chain tracker
1192  * @ioc: per adapter object
1193  * @smid: smid associated to an IO request
1194  *
1195  * Returns chain tracker(from ioc->free_chain_list)
1196  */
1197 static struct chain_tracker *
1198 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1199 {
1200         struct chain_tracker *chain_req;
1201         unsigned long flags;
1202
1203         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1204         if (list_empty(&ioc->free_chain_list)) {
1205                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1206                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1207                         "chain buffers not available\n", ioc->name));
1208                 return NULL;
1209         }
1210         chain_req = list_entry(ioc->free_chain_list.next,
1211             struct chain_tracker, tracker_list);
1212         list_del_init(&chain_req->tracker_list);
1213         list_add_tail(&chain_req->tracker_list,
1214             &ioc->scsi_lookup[smid - 1].chain_list);
1215         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1216         return chain_req;
1217 }
1218
1219
1220 /**
1221  * _base_build_sg - build generic sg
1222  * @ioc: per adapter object
1223  * @psge: virtual address for SGE
1224  * @data_out_dma: physical address for WRITES
1225  * @data_out_sz: data xfer size for WRITES
1226  * @data_in_dma: physical address for READS
1227  * @data_in_sz: data xfer size for READS
1228  *
1229  * Return nothing.
1230  */
1231 static void
1232 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1233         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1234         size_t data_in_sz)
1235 {
1236         u32 sgl_flags;
1237
1238         if (!data_out_sz && !data_in_sz) {
1239                 _base_build_zero_len_sge(ioc, psge);
1240                 return;
1241         }
1242
1243         if (data_out_sz && data_in_sz) {
1244                 /* WRITE sgel first */
1245                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1246                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1247                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1248                 ioc->base_add_sg_single(psge, sgl_flags |
1249                     data_out_sz, data_out_dma);
1250
1251                 /* incr sgel */
1252                 psge += ioc->sge_size;
1253
1254                 /* READ sgel last */
1255                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1256                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1257                     MPI2_SGE_FLAGS_END_OF_LIST);
1258                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1259                 ioc->base_add_sg_single(psge, sgl_flags |
1260                     data_in_sz, data_in_dma);
1261         } else if (data_out_sz) /* WRITE */ {
1262                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1263                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1264                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1265                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1266                 ioc->base_add_sg_single(psge, sgl_flags |
1267                     data_out_sz, data_out_dma);
1268         } else if (data_in_sz) /* READ */ {
1269                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1270                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1271                     MPI2_SGE_FLAGS_END_OF_LIST);
1272                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1273                 ioc->base_add_sg_single(psge, sgl_flags |
1274                     data_in_sz, data_in_dma);
1275         }
1276 }
1277
1278 /* IEEE format sgls */
1279
1280 /**
1281  * _base_add_sg_single_ieee - add sg element for IEEE format
1282  * @paddr: virtual address for SGE
1283  * @flags: SGE flags
1284  * @chain_offset: number of 128 byte elements from start of segment
1285  * @length: data transfer length
1286  * @dma_addr: Physical address
1287  *
1288  * Return nothing.
1289  */
1290 static void
1291 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1292         dma_addr_t dma_addr)
1293 {
1294         Mpi25IeeeSgeChain64_t *sgel = paddr;
1295
1296         sgel->Flags = flags;
1297         sgel->NextChainOffset = chain_offset;
1298         sgel->Length = cpu_to_le32(length);
1299         sgel->Address = cpu_to_le64(dma_addr);
1300 }
1301
1302 /**
1303  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1304  * @ioc: per adapter object
1305  * @paddr: virtual address for SGE
1306  *
1307  * Create a zero length scatter gather entry to insure the IOCs hardware has
1308  * something to use if the target device goes brain dead and tries
1309  * to send data even when none is asked for.
1310  *
1311  * Return nothing.
1312  */
1313 static void
1314 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1315 {
1316         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1317                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1318                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1319         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1320 }
1321
1322 /**
1323  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1324  * @ioc: per adapter object
1325  * @scmd: scsi command
1326  * @smid: system request message index
1327  * Context: none.
1328  *
1329  * The main routine that builds scatter gather table from a given
1330  * scsi request sent via the .queuecommand main handler.
1331  *
1332  * Returns 0 success, anything else error
1333  */
1334 static int
1335 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1336         struct scsi_cmnd *scmd, u16 smid)
1337 {
1338         Mpi2SCSIIORequest_t *mpi_request;
1339         dma_addr_t chain_dma;
1340         struct scatterlist *sg_scmd;
1341         void *sg_local, *chain;
1342         u32 chain_offset;
1343         u32 chain_length;
1344         int sges_left;
1345         u32 sges_in_segment;
1346         u8 simple_sgl_flags;
1347         u8 simple_sgl_flags_last;
1348         u8 chain_sgl_flags;
1349         struct chain_tracker *chain_req;
1350
1351         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1352
1353         /* init scatter gather flags */
1354         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1355             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1356         simple_sgl_flags_last = simple_sgl_flags |
1357             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1358         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1359             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1360
1361         sg_scmd = scsi_sglist(scmd);
1362         sges_left = scsi_dma_map(scmd);
1363         if (sges_left < 0) {
1364                 sdev_printk(KERN_ERR, scmd->device,
1365                         "pci_map_sg failed: request for %d bytes!\n",
1366                         scsi_bufflen(scmd));
1367                 return -ENOMEM;
1368         }
1369
1370         sg_local = &mpi_request->SGL;
1371         sges_in_segment = (ioc->request_sz -
1372             offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1373         if (sges_left <= sges_in_segment)
1374                 goto fill_in_last_segment;
1375
1376         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1377             (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1378
1379         /* fill in main message segment when there is a chain following */
1380         while (sges_in_segment > 1) {
1381                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1382                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1383                 sg_scmd = sg_next(sg_scmd);
1384                 sg_local += ioc->sge_size_ieee;
1385                 sges_left--;
1386                 sges_in_segment--;
1387         }
1388
1389         /* initializing the pointers */
1390         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1391         if (!chain_req)
1392                 return -1;
1393         chain = chain_req->chain_buffer;
1394         chain_dma = chain_req->chain_buffer_dma;
1395         do {
1396                 sges_in_segment = (sges_left <=
1397                     ioc->max_sges_in_chain_message) ? sges_left :
1398                     ioc->max_sges_in_chain_message;
1399                 chain_offset = (sges_left == sges_in_segment) ?
1400                     0 : sges_in_segment;
1401                 chain_length = sges_in_segment * ioc->sge_size_ieee;
1402                 if (chain_offset)
1403                         chain_length += ioc->sge_size_ieee;
1404                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1405                     chain_offset, chain_length, chain_dma);
1406
1407                 sg_local = chain;
1408                 if (!chain_offset)
1409                         goto fill_in_last_segment;
1410
1411                 /* fill in chain segments */
1412                 while (sges_in_segment) {
1413                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1414                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1415                         sg_scmd = sg_next(sg_scmd);
1416                         sg_local += ioc->sge_size_ieee;
1417                         sges_left--;
1418                         sges_in_segment--;
1419                 }
1420
1421                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1422                 if (!chain_req)
1423                         return -1;
1424                 chain = chain_req->chain_buffer;
1425                 chain_dma = chain_req->chain_buffer_dma;
1426         } while (1);
1427
1428
1429  fill_in_last_segment:
1430
1431         /* fill the last segment */
1432         while (sges_left > 0) {
1433                 if (sges_left == 1)
1434                         _base_add_sg_single_ieee(sg_local,
1435                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1436                             sg_dma_address(sg_scmd));
1437                 else
1438                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1439                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1440                 sg_scmd = sg_next(sg_scmd);
1441                 sg_local += ioc->sge_size_ieee;
1442                 sges_left--;
1443         }
1444
1445         return 0;
1446 }
1447
1448 /**
1449  * _base_build_sg_ieee - build generic sg for IEEE format
1450  * @ioc: per adapter object
1451  * @psge: virtual address for SGE
1452  * @data_out_dma: physical address for WRITES
1453  * @data_out_sz: data xfer size for WRITES
1454  * @data_in_dma: physical address for READS
1455  * @data_in_sz: data xfer size for READS
1456  *
1457  * Return nothing.
1458  */
1459 static void
1460 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1461         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1462         size_t data_in_sz)
1463 {
1464         u8 sgl_flags;
1465
1466         if (!data_out_sz && !data_in_sz) {
1467                 _base_build_zero_len_sge_ieee(ioc, psge);
1468                 return;
1469         }
1470
1471         if (data_out_sz && data_in_sz) {
1472                 /* WRITE sgel first */
1473                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1474                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1475                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1476                     data_out_dma);
1477
1478                 /* incr sgel */
1479                 psge += ioc->sge_size_ieee;
1480
1481                 /* READ sgel last */
1482                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1483                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1484                     data_in_dma);
1485         } else if (data_out_sz) /* WRITE */ {
1486                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1487                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1488                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1489                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1490                     data_out_dma);
1491         } else if (data_in_sz) /* READ */ {
1492                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1493                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1494                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1495                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1496                     data_in_dma);
1497         }
1498 }
1499
1500 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1501
1502 /**
1503  * _base_config_dma_addressing - set dma addressing
1504  * @ioc: per adapter object
1505  * @pdev: PCI device struct
1506  *
1507  * Returns 0 for success, non-zero for failure.
1508  */
1509 static int
1510 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1511 {
1512         struct sysinfo s;
1513         u64 consistent_dma_mask;
1514
1515         if (ioc->dma_mask)
1516                 consistent_dma_mask = DMA_BIT_MASK(64);
1517         else
1518                 consistent_dma_mask = DMA_BIT_MASK(32);
1519
1520         if (sizeof(dma_addr_t) > 4) {
1521                 const uint64_t required_mask =
1522                     dma_get_required_mask(&pdev->dev);
1523                 if ((required_mask > DMA_BIT_MASK(32)) &&
1524                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1525                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1526                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1527                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1528                         ioc->dma_mask = 64;
1529                         goto out;
1530                 }
1531         }
1532
1533         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1534             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1535                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1536                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1537                 ioc->dma_mask = 32;
1538         } else
1539                 return -ENODEV;
1540
1541  out:
1542         si_meminfo(&s);
1543         pr_info(MPT3SAS_FMT
1544                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1545                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1546
1547         return 0;
1548 }
1549
1550 static int
1551 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1552                                       struct pci_dev *pdev)
1553 {
1554         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1555                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1556                         return -ENODEV;
1557         }
1558         return 0;
1559 }
1560
1561 /**
1562  * _base_check_enable_msix - checks MSIX capabable.
1563  * @ioc: per adapter object
1564  *
1565  * Check to see if card is capable of MSIX, and set number
1566  * of available msix vectors
1567  */
1568 static int
1569 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1570 {
1571         int base;
1572         u16 message_control;
1573
1574         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1575         if (!base) {
1576                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1577                         ioc->name));
1578                 return -EINVAL;
1579         }
1580
1581         /* get msix vector count */
1582
1583         pci_read_config_word(ioc->pdev, base + 2, &message_control);
1584         ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1585         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1586                 "msix is supported, vector_count(%d)\n",
1587                 ioc->name, ioc->msix_vector_count));
1588         return 0;
1589 }
1590
1591 /**
1592  * _base_free_irq - free irq
1593  * @ioc: per adapter object
1594  *
1595  * Freeing respective reply_queue from the list.
1596  */
1597 static void
1598 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1599 {
1600         struct adapter_reply_queue *reply_q, *next;
1601
1602         if (list_empty(&ioc->reply_queue_list))
1603                 return;
1604
1605         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1606                 list_del(&reply_q->list);
1607                 irq_set_affinity_hint(reply_q->vector, NULL);
1608                 free_cpumask_var(reply_q->affinity_hint);
1609                 synchronize_irq(reply_q->vector);
1610                 free_irq(reply_q->vector, reply_q);
1611                 kfree(reply_q);
1612         }
1613 }
1614
1615 /**
1616  * _base_request_irq - request irq
1617  * @ioc: per adapter object
1618  * @index: msix index into vector table
1619  * @vector: irq vector
1620  *
1621  * Inserting respective reply_queue into the list.
1622  */
1623 static int
1624 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1625 {
1626         struct adapter_reply_queue *reply_q;
1627         int r;
1628
1629         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1630         if (!reply_q) {
1631                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1632                     ioc->name, (int)sizeof(struct adapter_reply_queue));
1633                 return -ENOMEM;
1634         }
1635         reply_q->ioc = ioc;
1636         reply_q->msix_index = index;
1637         reply_q->vector = vector;
1638
1639         if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1640                 return -ENOMEM;
1641         cpumask_clear(reply_q->affinity_hint);
1642
1643         atomic_set(&reply_q->busy, 0);
1644         if (ioc->msix_enable)
1645                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1646                     MPT3SAS_DRIVER_NAME, ioc->id, index);
1647         else
1648                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1649                     MPT3SAS_DRIVER_NAME, ioc->id);
1650         r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1651             reply_q);
1652         if (r) {
1653                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1654                     reply_q->name, vector);
1655                 kfree(reply_q);
1656                 return -EBUSY;
1657         }
1658
1659         INIT_LIST_HEAD(&reply_q->list);
1660         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1661         return 0;
1662 }
1663
1664 /**
1665  * _base_assign_reply_queues - assigning msix index for each cpu
1666  * @ioc: per adapter object
1667  *
1668  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1669  *
1670  * It would nice if we could call irq_set_affinity, however it is not
1671  * an exported symbol
1672  */
1673 static void
1674 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1675 {
1676         unsigned int cpu, nr_cpus, nr_msix, index = 0;
1677         struct adapter_reply_queue *reply_q;
1678
1679         if (!_base_is_controller_msix_enabled(ioc))
1680                 return;
1681
1682         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1683
1684         nr_cpus = num_online_cpus();
1685         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1686                                                ioc->facts.MaxMSIxVectors);
1687         if (!nr_msix)
1688                 return;
1689
1690         cpu = cpumask_first(cpu_online_mask);
1691
1692         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1693
1694                 unsigned int i, group = nr_cpus / nr_msix;
1695
1696                 if (cpu >= nr_cpus)
1697                         break;
1698
1699                 if (index < nr_cpus % nr_msix)
1700                         group++;
1701
1702                 for (i = 0 ; i < group ; i++) {
1703                         ioc->cpu_msix_table[cpu] = index;
1704                         cpumask_or(reply_q->affinity_hint,
1705                                    reply_q->affinity_hint, get_cpu_mask(cpu));
1706                         cpu = cpumask_next(cpu, cpu_online_mask);
1707                 }
1708
1709                 if (irq_set_affinity_hint(reply_q->vector,
1710                                            reply_q->affinity_hint))
1711                         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1712                             "error setting affinity hint for irq vector %d\n",
1713                             ioc->name, reply_q->vector));
1714                 index++;
1715         }
1716 }
1717
1718 /**
1719  * _base_disable_msix - disables msix
1720  * @ioc: per adapter object
1721  *
1722  */
1723 static void
1724 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1725 {
1726         if (!ioc->msix_enable)
1727                 return;
1728         pci_disable_msix(ioc->pdev);
1729         ioc->msix_enable = 0;
1730 }
1731
1732 /**
1733  * _base_enable_msix - enables msix, failback to io_apic
1734  * @ioc: per adapter object
1735  *
1736  */
1737 static int
1738 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1739 {
1740         struct msix_entry *entries, *a;
1741         int r;
1742         int i;
1743         u8 try_msix = 0;
1744
1745         if (msix_disable == -1 || msix_disable == 0)
1746                 try_msix = 1;
1747
1748         if (!try_msix)
1749                 goto try_ioapic;
1750
1751         if (_base_check_enable_msix(ioc) != 0)
1752                 goto try_ioapic;
1753
1754         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1755             ioc->msix_vector_count);
1756
1757         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1758           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1759           ioc->cpu_count, max_msix_vectors);
1760
1761         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1762                 max_msix_vectors = 8;
1763
1764         if (max_msix_vectors > 0) {
1765                 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1766                         ioc->reply_queue_count);
1767                 ioc->msix_vector_count = ioc->reply_queue_count;
1768         } else if (max_msix_vectors == 0)
1769                 goto try_ioapic;
1770
1771         entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1772             GFP_KERNEL);
1773         if (!entries) {
1774                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1775                         "kcalloc failed @ at %s:%d/%s() !!!\n",
1776                         ioc->name, __FILE__, __LINE__, __func__));
1777                 goto try_ioapic;
1778         }
1779
1780         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1781                 a->entry = i;
1782
1783         r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1784         if (r) {
1785                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1786                         "pci_enable_msix_exact failed (r=%d) !!!\n",
1787                         ioc->name, r));
1788                 kfree(entries);
1789                 goto try_ioapic;
1790         }
1791
1792         ioc->msix_enable = 1;
1793         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1794                 r = _base_request_irq(ioc, i, a->vector);
1795                 if (r) {
1796                         _base_free_irq(ioc);
1797                         _base_disable_msix(ioc);
1798                         kfree(entries);
1799                         goto try_ioapic;
1800                 }
1801         }
1802
1803         kfree(entries);
1804         return 0;
1805
1806 /* failback to io_apic interrupt routing */
1807  try_ioapic:
1808
1809         ioc->reply_queue_count = 1;
1810         r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1811
1812         return r;
1813 }
1814
1815 /**
1816  * mpt3sas_base_unmap_resources - free controller resources
1817  * @ioc: per adapter object
1818  */
1819 void
1820 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
1821 {
1822         struct pci_dev *pdev = ioc->pdev;
1823
1824         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
1825                 ioc->name, __func__));
1826
1827         _base_free_irq(ioc);
1828         _base_disable_msix(ioc);
1829
1830         if (ioc->msix96_vector)
1831                 kfree(ioc->replyPostRegisterIndex);
1832
1833         if (ioc->chip_phys) {
1834                 iounmap(ioc->chip);
1835                 ioc->chip_phys = 0;
1836         }
1837
1838         if (pci_is_enabled(pdev)) {
1839                 pci_release_selected_regions(ioc->pdev, ioc->bars);
1840                 pci_disable_pcie_error_reporting(pdev);
1841                 pci_disable_device(pdev);
1842         }
1843 }
1844
1845 /**
1846  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1847  * @ioc: per adapter object
1848  *
1849  * Returns 0 for success, non-zero for failure.
1850  */
1851 int
1852 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1853 {
1854         struct pci_dev *pdev = ioc->pdev;
1855         u32 memap_sz;
1856         u32 pio_sz;
1857         int i, r = 0;
1858         u64 pio_chip = 0;
1859         u64 chip_phys = 0;
1860         struct adapter_reply_queue *reply_q;
1861
1862         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
1863             ioc->name, __func__));
1864
1865         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1866         if (pci_enable_device_mem(pdev)) {
1867                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
1868                         ioc->name);
1869                 ioc->bars = 0;
1870                 return -ENODEV;
1871         }
1872
1873
1874         if (pci_request_selected_regions(pdev, ioc->bars,
1875             MPT3SAS_DRIVER_NAME)) {
1876                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
1877                         ioc->name);
1878                 ioc->bars = 0;
1879                 r = -ENODEV;
1880                 goto out_fail;
1881         }
1882
1883 /* AER (Advanced Error Reporting) hooks */
1884         pci_enable_pcie_error_reporting(pdev);
1885
1886         pci_set_master(pdev);
1887
1888
1889         if (_base_config_dma_addressing(ioc, pdev) != 0) {
1890                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
1891                     ioc->name, pci_name(pdev));
1892                 r = -ENODEV;
1893                 goto out_fail;
1894         }
1895
1896         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
1897              (!memap_sz || !pio_sz); i++) {
1898                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1899                         if (pio_sz)
1900                                 continue;
1901                         pio_chip = (u64)pci_resource_start(pdev, i);
1902                         pio_sz = pci_resource_len(pdev, i);
1903                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1904                         if (memap_sz)
1905                                 continue;
1906                         ioc->chip_phys = pci_resource_start(pdev, i);
1907                         chip_phys = (u64)ioc->chip_phys;
1908                         memap_sz = pci_resource_len(pdev, i);
1909                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1910                 }
1911         }
1912
1913         if (ioc->chip == NULL) {
1914                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
1915                         " or resource not found\n", ioc->name);
1916                 r = -EINVAL;
1917                 goto out_fail;
1918         }
1919
1920         _base_mask_interrupts(ioc);
1921
1922         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
1923         if (r)
1924                 goto out_fail;
1925
1926         if (!ioc->rdpq_array_enable_assigned) {
1927                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
1928                 ioc->rdpq_array_enable_assigned = 1;
1929         }
1930
1931         r = _base_enable_msix(ioc);
1932         if (r)
1933                 goto out_fail;
1934
1935         /* Use the Combined reply queue feature only for SAS3 C0 & higher
1936          * revision HBAs and also only when reply queue count is greater than 8
1937          */
1938         if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
1939                 /* Determine the Supplemental Reply Post Host Index Registers
1940                  * Addresse. Supplemental Reply Post Host Index Registers
1941                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
1942                  * each register is at offset bytes of
1943                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
1944                  */
1945                 ioc->replyPostRegisterIndex = kcalloc(
1946                      MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
1947                      sizeof(resource_size_t *), GFP_KERNEL);
1948                 if (!ioc->replyPostRegisterIndex) {
1949                         dfailprintk(ioc, printk(MPT3SAS_FMT
1950                         "allocation for reply Post Register Index failed!!!\n",
1951                                                                    ioc->name));
1952                         r = -ENOMEM;
1953                         goto out_fail;
1954                 }
1955
1956                 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
1957                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
1958                              ((u8 *)&ioc->chip->Doorbell +
1959                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
1960                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
1961                 }
1962         } else
1963                 ioc->msix96_vector = 0;
1964
1965         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1966                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
1967                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1968                     "IO-APIC enabled"), reply_q->vector);
1969
1970         pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1971             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1972         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
1973             ioc->name, (unsigned long long)pio_chip, pio_sz);
1974
1975         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1976         pci_save_state(pdev);
1977         return 0;
1978
1979  out_fail:
1980         mpt3sas_base_unmap_resources(ioc);
1981         return r;
1982 }
1983
1984 /**
1985  * mpt3sas_base_get_msg_frame - obtain request mf pointer
1986  * @ioc: per adapter object
1987  * @smid: system request message index(smid zero is invalid)
1988  *
1989  * Returns virt pointer to message frame.
1990  */
1991 void *
1992 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1993 {
1994         return (void *)(ioc->request + (smid * ioc->request_sz));
1995 }
1996
1997 /**
1998  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
1999  * @ioc: per adapter object
2000  * @smid: system request message index
2001  *
2002  * Returns virt pointer to sense buffer.
2003  */
2004 void *
2005 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2006 {
2007         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2008 }
2009
2010 /**
2011  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2012  * @ioc: per adapter object
2013  * @smid: system request message index
2014  *
2015  * Returns phys pointer to the low 32bit address of the sense buffer.
2016  */
2017 __le32
2018 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2019 {
2020         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2021             SCSI_SENSE_BUFFERSIZE));
2022 }
2023
2024 /**
2025  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2026  * @ioc: per adapter object
2027  * @phys_addr: lower 32 physical addr of the reply
2028  *
2029  * Converts 32bit lower physical addr into a virt address.
2030  */
2031 void *
2032 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2033 {
2034         if (!phys_addr)
2035                 return NULL;
2036         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2037 }
2038
2039 /**
2040  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2041  * @ioc: per adapter object
2042  * @cb_idx: callback index
2043  *
2044  * Returns smid (zero is invalid)
2045  */
2046 u16
2047 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2048 {
2049         unsigned long flags;
2050         struct request_tracker *request;
2051         u16 smid;
2052
2053         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2054         if (list_empty(&ioc->internal_free_list)) {
2055                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2056                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2057                     ioc->name, __func__);
2058                 return 0;
2059         }
2060
2061         request = list_entry(ioc->internal_free_list.next,
2062             struct request_tracker, tracker_list);
2063         request->cb_idx = cb_idx;
2064         smid = request->smid;
2065         list_del(&request->tracker_list);
2066         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2067         return smid;
2068 }
2069
2070 /**
2071  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2072  * @ioc: per adapter object
2073  * @cb_idx: callback index
2074  * @scmd: pointer to scsi command object
2075  *
2076  * Returns smid (zero is invalid)
2077  */
2078 u16
2079 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2080         struct scsi_cmnd *scmd)
2081 {
2082         unsigned long flags;
2083         struct scsiio_tracker *request;
2084         u16 smid;
2085
2086         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2087         if (list_empty(&ioc->free_list)) {
2088                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2089                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2090                     ioc->name, __func__);
2091                 return 0;
2092         }
2093
2094         request = list_entry(ioc->free_list.next,
2095             struct scsiio_tracker, tracker_list);
2096         request->scmd = scmd;
2097         request->cb_idx = cb_idx;
2098         smid = request->smid;
2099         list_del(&request->tracker_list);
2100         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2101         return smid;
2102 }
2103
2104 /**
2105  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2106  * @ioc: per adapter object
2107  * @cb_idx: callback index
2108  *
2109  * Returns smid (zero is invalid)
2110  */
2111 u16
2112 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2113 {
2114         unsigned long flags;
2115         struct request_tracker *request;
2116         u16 smid;
2117
2118         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2119         if (list_empty(&ioc->hpr_free_list)) {
2120                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2121                 return 0;
2122         }
2123
2124         request = list_entry(ioc->hpr_free_list.next,
2125             struct request_tracker, tracker_list);
2126         request->cb_idx = cb_idx;
2127         smid = request->smid;
2128         list_del(&request->tracker_list);
2129         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2130         return smid;
2131 }
2132
2133 /**
2134  * mpt3sas_base_free_smid - put smid back on free_list
2135  * @ioc: per adapter object
2136  * @smid: system request message index
2137  *
2138  * Return nothing.
2139  */
2140 void
2141 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2142 {
2143         unsigned long flags;
2144         int i;
2145         struct chain_tracker *chain_req, *next;
2146
2147         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2148         if (smid < ioc->hi_priority_smid) {
2149                 /* scsiio queue */
2150                 i = smid - 1;
2151                 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2152                         list_for_each_entry_safe(chain_req, next,
2153                             &ioc->scsi_lookup[i].chain_list, tracker_list) {
2154                                 list_del_init(&chain_req->tracker_list);
2155                                 list_add(&chain_req->tracker_list,
2156                                     &ioc->free_chain_list);
2157                         }
2158                 }
2159                 ioc->scsi_lookup[i].cb_idx = 0xFF;
2160                 ioc->scsi_lookup[i].scmd = NULL;
2161                 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2162                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2163
2164                 /*
2165                  * See _wait_for_commands_to_complete() call with regards
2166                  * to this code.
2167                  */
2168                 if (ioc->shost_recovery && ioc->pending_io_count) {
2169                         if (ioc->pending_io_count == 1)
2170                                 wake_up(&ioc->reset_wq);
2171                         ioc->pending_io_count--;
2172                 }
2173                 return;
2174         } else if (smid < ioc->internal_smid) {
2175                 /* hi-priority */
2176                 i = smid - ioc->hi_priority_smid;
2177                 ioc->hpr_lookup[i].cb_idx = 0xFF;
2178                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2179         } else if (smid <= ioc->hba_queue_depth) {
2180                 /* internal queue */
2181                 i = smid - ioc->internal_smid;
2182                 ioc->internal_lookup[i].cb_idx = 0xFF;
2183                 list_add(&ioc->internal_lookup[i].tracker_list,
2184                     &ioc->internal_free_list);
2185         }
2186         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2187 }
2188
2189 /**
2190  * _base_writeq - 64 bit write to MMIO
2191  * @ioc: per adapter object
2192  * @b: data payload
2193  * @addr: address in MMIO space
2194  * @writeq_lock: spin lock
2195  *
2196  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2197  * care of 32 bit environment where its not quarenteed to send the entire word
2198  * in one transfer.
2199  */
2200 #if defined(writeq) && defined(CONFIG_64BIT)
2201 static inline void
2202 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2203 {
2204         writeq(cpu_to_le64(b), addr);
2205 }
2206 #else
2207 static inline void
2208 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2209 {
2210         unsigned long flags;
2211         __u64 data_out = cpu_to_le64(b);
2212
2213         spin_lock_irqsave(writeq_lock, flags);
2214         writel((u32)(data_out), addr);
2215         writel((u32)(data_out >> 32), (addr + 4));
2216         spin_unlock_irqrestore(writeq_lock, flags);
2217 }
2218 #endif
2219
2220 static inline u8
2221 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2222 {
2223         return ioc->cpu_msix_table[raw_smp_processor_id()];
2224 }
2225
2226 /**
2227  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2228  * @ioc: per adapter object
2229  * @smid: system request message index
2230  * @handle: device handle
2231  *
2232  * Return nothing.
2233  */
2234 void
2235 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2236 {
2237         Mpi2RequestDescriptorUnion_t descriptor;
2238         u64 *request = (u64 *)&descriptor;
2239
2240
2241         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2242         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2243         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2244         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2245         descriptor.SCSIIO.LMID = 0;
2246         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2247             &ioc->scsi_lookup_lock);
2248 }
2249
2250 /**
2251  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2252  * @ioc: per adapter object
2253  * @smid: system request message index
2254  * @handle: device handle
2255  *
2256  * Return nothing.
2257  */
2258 void
2259 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2260         u16 handle)
2261 {
2262         Mpi2RequestDescriptorUnion_t descriptor;
2263         u64 *request = (u64 *)&descriptor;
2264
2265         descriptor.SCSIIO.RequestFlags =
2266             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2267         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2268         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2269         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2270         descriptor.SCSIIO.LMID = 0;
2271         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2272             &ioc->scsi_lookup_lock);
2273 }
2274
2275 /**
2276  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2277  * @ioc: per adapter object
2278  * @smid: system request message index
2279  *
2280  * Return nothing.
2281  */
2282 void
2283 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2284 {
2285         Mpi2RequestDescriptorUnion_t descriptor;
2286         u64 *request = (u64 *)&descriptor;
2287
2288         descriptor.HighPriority.RequestFlags =
2289             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2290         descriptor.HighPriority.MSIxIndex =  0;
2291         descriptor.HighPriority.SMID = cpu_to_le16(smid);
2292         descriptor.HighPriority.LMID = 0;
2293         descriptor.HighPriority.Reserved1 = 0;
2294         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2295             &ioc->scsi_lookup_lock);
2296 }
2297
2298 /**
2299  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2300  * @ioc: per adapter object
2301  * @smid: system request message index
2302  *
2303  * Return nothing.
2304  */
2305 void
2306 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2307 {
2308         Mpi2RequestDescriptorUnion_t descriptor;
2309         u64 *request = (u64 *)&descriptor;
2310
2311         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2312         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2313         descriptor.Default.SMID = cpu_to_le16(smid);
2314         descriptor.Default.LMID = 0;
2315         descriptor.Default.DescriptorTypeDependent = 0;
2316         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2317             &ioc->scsi_lookup_lock);
2318 }
2319
2320 /**
2321  * _base_display_intel_branding - Display branding string
2322  * @ioc: per adapter object
2323  *
2324  * Return nothing.
2325  */
2326 static void
2327 _base_display_intel_branding(struct MPT3SAS_ADAPTER *ioc)
2328 {
2329         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2330                 return;
2331
2332         switch (ioc->pdev->device) {
2333         case MPI25_MFGPAGE_DEVID_SAS3008:
2334                 switch (ioc->pdev->subsystem_device) {
2335                 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2336                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2337                                 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2338                         break;
2339
2340                 case MPT3SAS_INTEL_RS3GC008_SSDID:
2341                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2342                                 MPT3SAS_INTEL_RS3GC008_BRANDING);
2343                         break;
2344                 case MPT3SAS_INTEL_RS3FC044_SSDID:
2345                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2346                                 MPT3SAS_INTEL_RS3FC044_BRANDING);
2347                         break;
2348                 case MPT3SAS_INTEL_RS3UC080_SSDID:
2349                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2350                                 MPT3SAS_INTEL_RS3UC080_BRANDING);
2351                         break;
2352                 default:
2353                         pr_info(MPT3SAS_FMT
2354                                 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2355                                 ioc->name, ioc->pdev->subsystem_device);
2356                         break;
2357                 }
2358                 break;
2359         default:
2360                 pr_info(MPT3SAS_FMT
2361                         "Intel(R) Controller: Subsystem ID: 0x%X\n",
2362                         ioc->name, ioc->pdev->subsystem_device);
2363                 break;
2364         }
2365 }
2366
2367
2368
2369 /**
2370  * _base_display_dell_branding - Display branding string
2371  * @ioc: per adapter object
2372  *
2373  * Return nothing.
2374  */
2375 static void
2376 _base_display_dell_branding(struct MPT3SAS_ADAPTER *ioc)
2377 {
2378         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_DELL)
2379                 return;
2380
2381         switch (ioc->pdev->device) {
2382         case MPI25_MFGPAGE_DEVID_SAS3008:
2383                 switch (ioc->pdev->subsystem_device) {
2384                 case MPT3SAS_DELL_12G_HBA_SSDID:
2385                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2386                                 MPT3SAS_DELL_12G_HBA_BRANDING);
2387                         break;
2388                 default:
2389                         pr_info(MPT3SAS_FMT
2390                            "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", ioc->name,
2391                            ioc->pdev->subsystem_device);
2392                         break;
2393                 }
2394                 break;
2395         default:
2396                 pr_info(MPT3SAS_FMT
2397                         "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", ioc->name,
2398                         ioc->pdev->subsystem_device);
2399                 break;
2400         }
2401 }
2402
2403 /**
2404  * _base_display_cisco_branding - Display branding string
2405  * @ioc: per adapter object
2406  *
2407  * Return nothing.
2408  */
2409 static void
2410 _base_display_cisco_branding(struct MPT3SAS_ADAPTER *ioc)
2411 {
2412         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_CISCO)
2413                 return;
2414
2415         switch (ioc->pdev->device) {
2416         case MPI25_MFGPAGE_DEVID_SAS3008:
2417                 switch (ioc->pdev->subsystem_device) {
2418                 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2419                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2420                                 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2421                         break;
2422                 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2423                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2424                                 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2425                         break;
2426                 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2427                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2428                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2429                         break;
2430                 default:
2431                         pr_info(MPT3SAS_FMT
2432                           "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2433                           ioc->name, ioc->pdev->subsystem_device);
2434                         break;
2435                 }
2436                 break;
2437         case MPI25_MFGPAGE_DEVID_SAS3108_1:
2438                 switch (ioc->pdev->subsystem_device) {
2439                 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2440                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2441                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2442                         break;
2443                 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2444                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2445                         MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
2446                         break;
2447                 default:
2448                         pr_info(MPT3SAS_FMT
2449                          "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2450                          ioc->name, ioc->pdev->subsystem_device);
2451                         break;
2452                 }
2453                 break;
2454         default:
2455                  pr_info(MPT3SAS_FMT
2456                         "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2457                         ioc->name, ioc->pdev->subsystem_device);
2458                 break;
2459         }
2460 }
2461
2462 /**
2463  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2464  * @ioc: per adapter object
2465  *
2466  * Return nothing.
2467  */
2468 static void
2469 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2470 {
2471         int i = 0;
2472         char desc[16];
2473         u32 iounit_pg1_flags;
2474         u32 bios_version;
2475
2476         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2477         strncpy(desc, ioc->manu_pg0.ChipName, 16);
2478         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2479            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2480             ioc->name, desc,
2481            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2482            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2483            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2484            ioc->facts.FWVersion.Word & 0x000000FF,
2485            ioc->pdev->revision,
2486            (bios_version & 0xFF000000) >> 24,
2487            (bios_version & 0x00FF0000) >> 16,
2488            (bios_version & 0x0000FF00) >> 8,
2489             bios_version & 0x000000FF);
2490
2491         _base_display_intel_branding(ioc);
2492         _base_display_dell_branding(ioc);
2493         _base_display_cisco_branding(ioc);
2494
2495         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2496
2497         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2498                 pr_info("Initiator");
2499                 i++;
2500         }
2501
2502         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2503                 pr_info("%sTarget", i ? "," : "");
2504                 i++;
2505         }
2506
2507         i = 0;
2508         pr_info("), ");
2509         pr_info("Capabilities=(");
2510
2511         if (ioc->facts.IOCCapabilities &
2512                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2513                         pr_info("Raid");
2514                         i++;
2515         }
2516
2517         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2518                 pr_info("%sTLR", i ? "," : "");
2519                 i++;
2520         }
2521
2522         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2523                 pr_info("%sMulticast", i ? "," : "");
2524                 i++;
2525         }
2526
2527         if (ioc->facts.IOCCapabilities &
2528             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2529                 pr_info("%sBIDI Target", i ? "," : "");
2530                 i++;
2531         }
2532
2533         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2534                 pr_info("%sEEDP", i ? "," : "");
2535                 i++;
2536         }
2537
2538         if (ioc->facts.IOCCapabilities &
2539             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2540                 pr_info("%sSnapshot Buffer", i ? "," : "");
2541                 i++;
2542         }
2543
2544         if (ioc->facts.IOCCapabilities &
2545             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2546                 pr_info("%sDiag Trace Buffer", i ? "," : "");
2547                 i++;
2548         }
2549
2550         if (ioc->facts.IOCCapabilities &
2551             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2552                 pr_info("%sDiag Extended Buffer", i ? "," : "");
2553                 i++;
2554         }
2555
2556         if (ioc->facts.IOCCapabilities &
2557             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2558                 pr_info("%sTask Set Full", i ? "," : "");
2559                 i++;
2560         }
2561
2562         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2563         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2564                 pr_info("%sNCQ", i ? "," : "");
2565                 i++;
2566         }
2567
2568         pr_info(")\n");
2569 }
2570
2571 /**
2572  * mpt3sas_base_update_missing_delay - change the missing delay timers
2573  * @ioc: per adapter object
2574  * @device_missing_delay: amount of time till device is reported missing
2575  * @io_missing_delay: interval IO is returned when there is a missing device
2576  *
2577  * Return nothing.
2578  *
2579  * Passed on the command line, this function will modify the device missing
2580  * delay, as well as the io missing delay. This should be called at driver
2581  * load time.
2582  */
2583 void
2584 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2585         u16 device_missing_delay, u8 io_missing_delay)
2586 {
2587         u16 dmd, dmd_new, dmd_orignal;
2588         u8 io_missing_delay_original;
2589         u16 sz;
2590         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2591         Mpi2ConfigReply_t mpi_reply;
2592         u8 num_phys = 0;
2593         u16 ioc_status;
2594
2595         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2596         if (!num_phys)
2597                 return;
2598
2599         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2600             sizeof(Mpi2SasIOUnit1PhyData_t));
2601         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2602         if (!sas_iounit_pg1) {
2603                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2604                     ioc->name, __FILE__, __LINE__, __func__);
2605                 goto out;
2606         }
2607         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2608             sas_iounit_pg1, sz))) {
2609                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2610                     ioc->name, __FILE__, __LINE__, __func__);
2611                 goto out;
2612         }
2613         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2614             MPI2_IOCSTATUS_MASK;
2615         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2616                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2617                     ioc->name, __FILE__, __LINE__, __func__);
2618                 goto out;
2619         }
2620
2621         /* device missing delay */
2622         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2623         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2624                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2625         else
2626                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2627         dmd_orignal = dmd;
2628         if (device_missing_delay > 0x7F) {
2629                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2630                     device_missing_delay;
2631                 dmd = dmd / 16;
2632                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2633         } else
2634                 dmd = device_missing_delay;
2635         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2636
2637         /* io missing delay */
2638         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2639         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2640
2641         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2642             sz)) {
2643                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2644                         dmd_new = (dmd &
2645                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2646                 else
2647                         dmd_new =
2648                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2649                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2650                         ioc->name, dmd_orignal, dmd_new);
2651                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2652                         ioc->name, io_missing_delay_original,
2653                     io_missing_delay);
2654                 ioc->device_missing_delay = dmd_new;
2655                 ioc->io_missing_delay = io_missing_delay;
2656         }
2657
2658 out:
2659         kfree(sas_iounit_pg1);
2660 }
2661 /**
2662  * _base_static_config_pages - static start of day config pages
2663  * @ioc: per adapter object
2664  *
2665  * Return nothing.
2666  */
2667 static void
2668 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2669 {
2670         Mpi2ConfigReply_t mpi_reply;
2671         u32 iounit_pg1_flags;
2672
2673         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2674         if (ioc->ir_firmware)
2675                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2676                     &ioc->manu_pg10);
2677
2678         /*
2679          * Ensure correct T10 PI operation if vendor left EEDPTagMode
2680          * flag unset in NVDATA.
2681          */
2682         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2683         if (ioc->manu_pg11.EEDPTagMode == 0) {
2684                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2685                     ioc->name);
2686                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
2687                 ioc->manu_pg11.EEDPTagMode |= 0x1;
2688                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2689                     &ioc->manu_pg11);
2690         }
2691
2692         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2693         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2694         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2695         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2696         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2697         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
2698         _base_display_ioc_capabilities(ioc);
2699
2700         /*
2701          * Enable task_set_full handling in iounit_pg1 when the
2702          * facts capabilities indicate that its supported.
2703          */
2704         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2705         if ((ioc->facts.IOCCapabilities &
2706             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2707                 iounit_pg1_flags &=
2708                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2709         else
2710                 iounit_pg1_flags |=
2711                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2712         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2713         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2714
2715         if (ioc->iounit_pg8.NumSensors)
2716                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
2717 }
2718
2719 /**
2720  * _base_release_memory_pools - release memory
2721  * @ioc: per adapter object
2722  *
2723  * Free memory allocated from _base_allocate_memory_pools.
2724  *
2725  * Return nothing.
2726  */
2727 static void
2728 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2729 {
2730         int i = 0;
2731         struct reply_post_struct *rps;
2732
2733         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2734             __func__));
2735
2736         if (ioc->request) {
2737                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2738                     ioc->request,  ioc->request_dma);
2739                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2740                         "request_pool(0x%p): free\n",
2741                         ioc->name, ioc->request));
2742                 ioc->request = NULL;
2743         }
2744
2745         if (ioc->sense) {
2746                 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2747                 if (ioc->sense_dma_pool)
2748                         pci_pool_destroy(ioc->sense_dma_pool);
2749                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2750                         "sense_pool(0x%p): free\n",
2751                         ioc->name, ioc->sense));
2752                 ioc->sense = NULL;
2753         }
2754
2755         if (ioc->reply) {
2756                 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2757                 if (ioc->reply_dma_pool)
2758                         pci_pool_destroy(ioc->reply_dma_pool);
2759                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2760                         "reply_pool(0x%p): free\n",
2761                         ioc->name, ioc->reply));
2762                 ioc->reply = NULL;
2763         }
2764
2765         if (ioc->reply_free) {
2766                 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2767                     ioc->reply_free_dma);
2768                 if (ioc->reply_free_dma_pool)
2769                         pci_pool_destroy(ioc->reply_free_dma_pool);
2770                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2771                         "reply_free_pool(0x%p): free\n",
2772                         ioc->name, ioc->reply_free));
2773                 ioc->reply_free = NULL;
2774         }
2775
2776         if (ioc->reply_post) {
2777                 do {
2778                         rps = &ioc->reply_post[i];
2779                         if (rps->reply_post_free) {
2780                                 pci_pool_free(
2781                                     ioc->reply_post_free_dma_pool,
2782                                     rps->reply_post_free,
2783                                     rps->reply_post_free_dma);
2784                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2785                                     "reply_post_free_pool(0x%p): free\n",
2786                                     ioc->name, rps->reply_post_free));
2787                                 rps->reply_post_free = NULL;
2788                         }
2789                 } while (ioc->rdpq_array_enable &&
2790                            (++i < ioc->reply_queue_count));
2791
2792                 if (ioc->reply_post_free_dma_pool)
2793                         pci_pool_destroy(ioc->reply_post_free_dma_pool);
2794                 kfree(ioc->reply_post);
2795         }
2796
2797         if (ioc->config_page) {
2798                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2799                     "config_page(0x%p): free\n", ioc->name,
2800                     ioc->config_page));
2801                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2802                     ioc->config_page, ioc->config_page_dma);
2803         }
2804
2805         if (ioc->scsi_lookup) {
2806                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2807                 ioc->scsi_lookup = NULL;
2808         }
2809         kfree(ioc->hpr_lookup);
2810         kfree(ioc->internal_lookup);
2811         if (ioc->chain_lookup) {
2812                 for (i = 0; i < ioc->chain_depth; i++) {
2813                         if (ioc->chain_lookup[i].chain_buffer)
2814                                 pci_pool_free(ioc->chain_dma_pool,
2815                                     ioc->chain_lookup[i].chain_buffer,
2816                                     ioc->chain_lookup[i].chain_buffer_dma);
2817                 }
2818                 if (ioc->chain_dma_pool)
2819                         pci_pool_destroy(ioc->chain_dma_pool);
2820                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2821                 ioc->chain_lookup = NULL;
2822         }
2823 }
2824
2825 /**
2826  * _base_allocate_memory_pools - allocate start of day memory pools
2827  * @ioc: per adapter object
2828  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2829  *
2830  * Returns 0 success, anything else error
2831  */
2832 static int
2833 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
2834 {
2835         struct mpt3sas_facts *facts;
2836         u16 max_sge_elements;
2837         u16 chains_needed_per_io;
2838         u32 sz, total_sz, reply_post_free_sz;
2839         u32 retry_sz;
2840         u16 max_request_credit;
2841         unsigned short sg_tablesize;
2842         u16 sge_size;
2843         int i;
2844
2845         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2846             __func__));
2847
2848
2849         retry_sz = 0;
2850         facts = &ioc->facts;
2851
2852         /* command line tunables for max sgl entries */
2853         if (max_sgl_entries != -1)
2854                 sg_tablesize = max_sgl_entries;
2855         else
2856                 sg_tablesize = MPT3SAS_SG_DEPTH;
2857
2858         if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
2859                 sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
2860         else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS) {
2861                 sg_tablesize = min_t(unsigned short, sg_tablesize,
2862                                       SCSI_MAX_SG_CHAIN_SEGMENTS);
2863                 pr_warn(MPT3SAS_FMT
2864                  "sg_tablesize(%u) is bigger than kernel"
2865                  " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
2866                  sg_tablesize, MPT3SAS_MAX_PHYS_SEGMENTS);
2867         }
2868         ioc->shost->sg_tablesize = sg_tablesize;
2869
2870         ioc->hi_priority_depth = facts->HighPriorityCredit;
2871         ioc->internal_depth = ioc->hi_priority_depth + (5);
2872         /* command line tunables  for max controller queue depth */
2873         if (max_queue_depth != -1 && max_queue_depth != 0) {
2874                 max_request_credit = min_t(u16, max_queue_depth +
2875                     ioc->hi_priority_depth + ioc->internal_depth,
2876                     facts->RequestCredit);
2877                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2878                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
2879         } else
2880                 max_request_credit = min_t(u16, facts->RequestCredit,
2881                     MAX_HBA_QUEUE_DEPTH);
2882
2883         ioc->hba_queue_depth = max_request_credit;
2884
2885         /* request frame size */
2886         ioc->request_sz = facts->IOCRequestFrameSize * 4;
2887
2888         /* reply frame size */
2889         ioc->reply_sz = facts->ReplyFrameSize * 4;
2890
2891         /* calculate the max scatter element size */
2892         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
2893
2894  retry_allocation:
2895         total_sz = 0;
2896         /* calculate number of sg elements left over in the 1st frame */
2897         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2898             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
2899         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
2900
2901         /* now do the same for a chain buffer */
2902         max_sge_elements = ioc->request_sz - sge_size;
2903         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
2904
2905         /*
2906          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2907          */
2908         chains_needed_per_io = ((ioc->shost->sg_tablesize -
2909            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2910             + 1;
2911         if (chains_needed_per_io > facts->MaxChainDepth) {
2912                 chains_needed_per_io = facts->MaxChainDepth;
2913                 ioc->shost->sg_tablesize = min_t(u16,
2914                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2915                 * chains_needed_per_io), ioc->shost->sg_tablesize);
2916         }
2917         ioc->chains_needed_per_io = chains_needed_per_io;
2918
2919         /* reply free queue sizing - taking into account for 64 FW events */
2920         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2921
2922         /* calculate reply descriptor post queue depth */
2923         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2924                                 ioc->reply_free_queue_depth +  1 ;
2925         /* align the reply post queue on the next 16 count boundary */
2926         if (ioc->reply_post_queue_depth % 16)
2927                 ioc->reply_post_queue_depth += 16 -
2928                 (ioc->reply_post_queue_depth % 16);
2929
2930
2931         if (ioc->reply_post_queue_depth >
2932             facts->MaxReplyDescriptorPostQueueDepth) {
2933                 ioc->reply_post_queue_depth =
2934                                 facts->MaxReplyDescriptorPostQueueDepth -
2935                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
2936                 ioc->hba_queue_depth =
2937                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
2938                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2939         }
2940
2941         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
2942             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2943             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2944             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2945             ioc->chains_needed_per_io));
2946
2947         /* reply post queue, 16 byte align */
2948         reply_post_free_sz = ioc->reply_post_queue_depth *
2949             sizeof(Mpi2DefaultReplyDescriptor_t);
2950
2951         sz = reply_post_free_sz;
2952         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
2953                 sz *= ioc->reply_queue_count;
2954
2955         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
2956             (ioc->reply_queue_count):1,
2957             sizeof(struct reply_post_struct), GFP_KERNEL);
2958
2959         if (!ioc->reply_post) {
2960                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
2961                         ioc->name);
2962                 goto out;
2963         }
2964         ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2965             ioc->pdev, sz, 16, 0);
2966         if (!ioc->reply_post_free_dma_pool) {
2967                 pr_err(MPT3SAS_FMT
2968                  "reply_post_free pool: pci_pool_create failed\n",
2969                  ioc->name);
2970                 goto out;
2971         }
2972         i = 0;
2973         do {
2974                 ioc->reply_post[i].reply_post_free =
2975                     pci_pool_alloc(ioc->reply_post_free_dma_pool,
2976                     GFP_KERNEL,
2977                     &ioc->reply_post[i].reply_post_free_dma);
2978                 if (!ioc->reply_post[i].reply_post_free) {
2979                         pr_err(MPT3SAS_FMT
2980                         "reply_post_free pool: pci_pool_alloc failed\n",
2981                         ioc->name);
2982                         goto out;
2983                 }
2984                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
2985                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2986                     "reply post free pool (0x%p): depth(%d),"
2987                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
2988                     ioc->reply_post[i].reply_post_free,
2989                     ioc->reply_post_queue_depth, 8, sz/1024));
2990                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2991                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
2992                     (unsigned long long)
2993                     ioc->reply_post[i].reply_post_free_dma));
2994                 total_sz += sz;
2995         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
2996
2997         if (ioc->dma_mask == 64) {
2998                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
2999                         pr_warn(MPT3SAS_FMT
3000                             "no suitable consistent DMA mask for %s\n",
3001                             ioc->name, pci_name(ioc->pdev));
3002                         goto out;
3003                 }
3004         }
3005
3006         ioc->scsiio_depth = ioc->hba_queue_depth -
3007             ioc->hi_priority_depth - ioc->internal_depth;
3008
3009         /* set the scsi host can_queue depth
3010          * with some internal commands that could be outstanding
3011          */
3012         ioc->shost->can_queue = ioc->scsiio_depth;
3013         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3014                 "scsi host: can_queue depth (%d)\n",
3015                 ioc->name, ioc->shost->can_queue));
3016
3017
3018         /* contiguous pool for request and chains, 16 byte align, one extra "
3019          * "frame for smid=0
3020          */
3021         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3022         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3023
3024         /* hi-priority queue */
3025         sz += (ioc->hi_priority_depth * ioc->request_sz);
3026
3027         /* internal queue */
3028         sz += (ioc->internal_depth * ioc->request_sz);
3029
3030         ioc->request_dma_sz = sz;
3031         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3032         if (!ioc->request) {
3033                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3034                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3035                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3036                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3037                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3038                         goto out;
3039                 retry_sz += 64;
3040                 ioc->hba_queue_depth = max_request_credit - retry_sz;
3041                 goto retry_allocation;
3042         }
3043
3044         if (retry_sz)
3045                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3046                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3047                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3048                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3049
3050         /* hi-priority queue */
3051         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3052             ioc->request_sz);
3053         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3054             ioc->request_sz);
3055
3056         /* internal queue */
3057         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3058             ioc->request_sz);
3059         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3060             ioc->request_sz);
3061
3062         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3063                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3064                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3065             (ioc->hba_queue_depth * ioc->request_sz)/1024));
3066
3067         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3068             ioc->name, (unsigned long long) ioc->request_dma));
3069         total_sz += sz;
3070
3071         sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3072         ioc->scsi_lookup_pages = get_order(sz);
3073         ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3074             GFP_KERNEL, ioc->scsi_lookup_pages);
3075         if (!ioc->scsi_lookup) {
3076                 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3077                         ioc->name, (int)sz);
3078                 goto out;
3079         }
3080
3081         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3082                 ioc->name, ioc->request, ioc->scsiio_depth));
3083
3084         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3085         sz = ioc->chain_depth * sizeof(struct chain_tracker);
3086         ioc->chain_pages = get_order(sz);
3087         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3088             GFP_KERNEL, ioc->chain_pages);
3089         if (!ioc->chain_lookup) {
3090                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3091                         ioc->name);
3092                 goto out;
3093         }
3094         ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3095             ioc->request_sz, 16, 0);
3096         if (!ioc->chain_dma_pool) {
3097                 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3098                         ioc->name);
3099                 goto out;
3100         }
3101         for (i = 0; i < ioc->chain_depth; i++) {
3102                 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3103                     ioc->chain_dma_pool , GFP_KERNEL,
3104                     &ioc->chain_lookup[i].chain_buffer_dma);
3105                 if (!ioc->chain_lookup[i].chain_buffer) {
3106                         ioc->chain_depth = i;
3107                         goto chain_done;
3108                 }
3109                 total_sz += ioc->request_sz;
3110         }
3111  chain_done:
3112         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3113                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3114                 ioc->name, ioc->chain_depth, ioc->request_sz,
3115                 ((ioc->chain_depth *  ioc->request_sz))/1024));
3116
3117         /* initialize hi-priority queue smid's */
3118         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3119             sizeof(struct request_tracker), GFP_KERNEL);
3120         if (!ioc->hpr_lookup) {
3121                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3122                     ioc->name);
3123                 goto out;
3124         }
3125         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3126         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3127                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3128                 ioc->name, ioc->hi_priority,
3129             ioc->hi_priority_depth, ioc->hi_priority_smid));
3130
3131         /* initialize internal queue smid's */
3132         ioc->internal_lookup = kcalloc(ioc->internal_depth,
3133             sizeof(struct request_tracker), GFP_KERNEL);
3134         if (!ioc->internal_lookup) {
3135                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3136                     ioc->name);
3137                 goto out;
3138         }
3139         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3140         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3141                 "internal(0x%p): depth(%d), start smid(%d)\n",
3142                 ioc->name, ioc->internal,
3143             ioc->internal_depth, ioc->internal_smid));
3144
3145         /* sense buffers, 4 byte align */
3146         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3147         ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3148             0);
3149         if (!ioc->sense_dma_pool) {
3150                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3151                     ioc->name);
3152                 goto out;
3153         }
3154         ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3155             &ioc->sense_dma);
3156         if (!ioc->sense) {
3157                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3158                     ioc->name);
3159                 goto out;
3160         }
3161         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3162             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3163             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3164             SCSI_SENSE_BUFFERSIZE, sz/1024));
3165         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3166             ioc->name, (unsigned long long)ioc->sense_dma));
3167         total_sz += sz;
3168
3169         /* reply pool, 4 byte align */
3170         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3171         ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3172             0);
3173         if (!ioc->reply_dma_pool) {
3174                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3175                     ioc->name);
3176                 goto out;
3177         }
3178         ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3179             &ioc->reply_dma);
3180         if (!ioc->reply) {
3181                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3182                     ioc->name);
3183                 goto out;
3184         }
3185         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3186         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3187         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3188                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3189                 ioc->name, ioc->reply,
3190             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3191         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3192             ioc->name, (unsigned long long)ioc->reply_dma));
3193         total_sz += sz;
3194
3195         /* reply free queue, 16 byte align */
3196         sz = ioc->reply_free_queue_depth * 4;
3197         ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3198             ioc->pdev, sz, 16, 0);
3199         if (!ioc->reply_free_dma_pool) {
3200                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3201                         ioc->name);
3202                 goto out;
3203         }
3204         ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3205             &ioc->reply_free_dma);
3206         if (!ioc->reply_free) {
3207                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3208                         ioc->name);
3209                 goto out;
3210         }
3211         memset(ioc->reply_free, 0, sz);
3212         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3213             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3214             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3215         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3216                 "reply_free_dma (0x%llx)\n",
3217                 ioc->name, (unsigned long long)ioc->reply_free_dma));
3218         total_sz += sz;
3219
3220         ioc->config_page_sz = 512;
3221         ioc->config_page = pci_alloc_consistent(ioc->pdev,
3222             ioc->config_page_sz, &ioc->config_page_dma);
3223         if (!ioc->config_page) {
3224                 pr_err(MPT3SAS_FMT
3225                         "config page: pci_pool_alloc failed\n",
3226                         ioc->name);
3227                 goto out;
3228         }
3229         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3230                 "config page(0x%p): size(%d)\n",
3231                 ioc->name, ioc->config_page, ioc->config_page_sz));
3232         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3233                 ioc->name, (unsigned long long)ioc->config_page_dma));
3234         total_sz += ioc->config_page_sz;
3235
3236         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3237             ioc->name, total_sz/1024);
3238         pr_info(MPT3SAS_FMT
3239                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3240             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3241         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3242             ioc->name, ioc->shost->sg_tablesize);
3243         return 0;
3244
3245  out:
3246         return -ENOMEM;
3247 }
3248
3249 /**
3250  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3251  * @ioc: Pointer to MPT_ADAPTER structure
3252  * @cooked: Request raw or cooked IOC state
3253  *
3254  * Returns all IOC Doorbell register bits if cooked==0, else just the
3255  * Doorbell bits in MPI_IOC_STATE_MASK.
3256  */
3257 u32
3258 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3259 {
3260         u32 s, sc;
3261
3262         s = readl(&ioc->chip->Doorbell);
3263         sc = s & MPI2_IOC_STATE_MASK;
3264         return cooked ? sc : s;
3265 }
3266
3267 /**
3268  * _base_wait_on_iocstate - waiting on a particular ioc state
3269  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3270  * @timeout: timeout in second
3271  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3272  *
3273  * Returns 0 for success, non-zero for failure.
3274  */
3275 static int
3276 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3277         int sleep_flag)
3278 {
3279         u32 count, cntdn;
3280         u32 current_state;
3281
3282         count = 0;
3283         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3284         do {
3285                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3286                 if (current_state == ioc_state)
3287                         return 0;
3288                 if (count && current_state == MPI2_IOC_STATE_FAULT)
3289                         break;
3290                 if (sleep_flag == CAN_SLEEP)
3291                         usleep_range(1000, 1500);
3292                 else
3293                         udelay(500);
3294                 count++;
3295         } while (--cntdn);
3296
3297         return current_state;
3298 }
3299
3300 /**
3301  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3302  * a write to the doorbell)
3303  * @ioc: per adapter object
3304  * @timeout: timeout in second
3305  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3306  *
3307  * Returns 0 for success, non-zero for failure.
3308  *
3309  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3310  */
3311 static int
3312 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3313
3314 static int
3315 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3316         int sleep_flag)
3317 {
3318         u32 cntdn, count;
3319         u32 int_status;
3320
3321         count = 0;
3322         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3323         do {
3324                 int_status = readl(&ioc->chip->HostInterruptStatus);
3325                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3326                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3327                                 "%s: successful count(%d), timeout(%d)\n",
3328                                 ioc->name, __func__, count, timeout));
3329                         return 0;
3330                 }
3331                 if (sleep_flag == CAN_SLEEP)
3332                         usleep_range(1000, 1500);
3333                 else
3334                         udelay(500);
3335                 count++;
3336         } while (--cntdn);
3337
3338         pr_err(MPT3SAS_FMT
3339                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3340                 ioc->name, __func__, count, int_status);
3341         return -EFAULT;
3342 }
3343
3344 /**
3345  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3346  * @ioc: per adapter object
3347  * @timeout: timeout in second
3348  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3349  *
3350  * Returns 0 for success, non-zero for failure.
3351  *
3352  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3353  * doorbell.
3354  */
3355 static int
3356 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3357         int sleep_flag)
3358 {
3359         u32 cntdn, count;
3360         u32 int_status;
3361         u32 doorbell;
3362
3363         count = 0;
3364         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3365         do {
3366                 int_status = readl(&ioc->chip->HostInterruptStatus);
3367                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3368                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3369                                 "%s: successful count(%d), timeout(%d)\n",
3370                                 ioc->name, __func__, count, timeout));
3371                         return 0;
3372                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3373                         doorbell = readl(&ioc->chip->Doorbell);
3374                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
3375                             MPI2_IOC_STATE_FAULT) {
3376                                 mpt3sas_base_fault_info(ioc , doorbell);
3377                                 return -EFAULT;
3378                         }
3379                 } else if (int_status == 0xFFFFFFFF)
3380                         goto out;
3381
3382                 if (sleep_flag == CAN_SLEEP)
3383                         usleep_range(1000, 1500);
3384                 else
3385                         udelay(500);
3386                 count++;
3387         } while (--cntdn);
3388
3389  out:
3390         pr_err(MPT3SAS_FMT
3391          "%s: failed due to timeout count(%d), int_status(%x)!\n",
3392          ioc->name, __func__, count, int_status);
3393         return -EFAULT;
3394 }
3395
3396 /**
3397  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3398  * @ioc: per adapter object
3399  * @timeout: timeout in second
3400  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3401  *
3402  * Returns 0 for success, non-zero for failure.
3403  *
3404  */
3405 static int
3406 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3407         int sleep_flag)
3408 {
3409         u32 cntdn, count;
3410         u32 doorbell_reg;
3411
3412         count = 0;
3413         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3414         do {
3415                 doorbell_reg = readl(&ioc->chip->Doorbell);
3416                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3417                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3418                                 "%s: successful count(%d), timeout(%d)\n",
3419                                 ioc->name, __func__, count, timeout));
3420                         return 0;
3421                 }
3422                 if (sleep_flag == CAN_SLEEP)
3423                         usleep_range(1000, 1500);
3424                 else
3425                         udelay(500);
3426                 count++;
3427         } while (--cntdn);
3428
3429         pr_err(MPT3SAS_FMT
3430                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3431                 ioc->name, __func__, count, doorbell_reg);
3432         return -EFAULT;
3433 }
3434
3435 /**
3436  * _base_send_ioc_reset - send doorbell reset
3437  * @ioc: per adapter object
3438  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3439  * @timeout: timeout in second
3440  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3441  *
3442  * Returns 0 for success, non-zero for failure.
3443  */
3444 static int
3445 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3446         int sleep_flag)
3447 {
3448         u32 ioc_state;
3449         int r = 0;
3450
3451         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3452                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3453                     ioc->name, __func__);
3454                 return -EFAULT;
3455         }
3456
3457         if (!(ioc->facts.IOCCapabilities &
3458            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3459                 return -EFAULT;
3460
3461         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3462
3463         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3464             &ioc->chip->Doorbell);
3465         if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3466                 r = -EFAULT;
3467                 goto out;
3468         }
3469         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3470             timeout, sleep_flag);
3471         if (ioc_state) {
3472                 pr_err(MPT3SAS_FMT
3473                         "%s: failed going to ready state (ioc_state=0x%x)\n",
3474                         ioc->name, __func__, ioc_state);
3475                 r = -EFAULT;
3476                 goto out;
3477         }
3478  out:
3479         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3480             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3481         return r;
3482 }
3483
3484 /**
3485  * _base_handshake_req_reply_wait - send request thru doorbell interface
3486  * @ioc: per adapter object
3487  * @request_bytes: request length
3488  * @request: pointer having request payload
3489  * @reply_bytes: reply length
3490  * @reply: pointer to reply payload
3491  * @timeout: timeout in second
3492  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3493  *
3494  * Returns 0 for success, non-zero for failure.
3495  */
3496 static int
3497 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3498         u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3499 {
3500         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3501         int i;
3502         u8 failed;
3503         u16 dummy;
3504         __le32 *mfp;
3505
3506         /* make sure doorbell is not in use */
3507         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3508                 pr_err(MPT3SAS_FMT
3509                         "doorbell is in use (line=%d)\n",
3510                         ioc->name, __LINE__);
3511                 return -EFAULT;
3512         }
3513
3514         /* clear pending doorbell interrupts from previous state changes */
3515         if (readl(&ioc->chip->HostInterruptStatus) &
3516             MPI2_HIS_IOC2SYS_DB_STATUS)
3517                 writel(0, &ioc->chip->HostInterruptStatus);
3518
3519         /* send message to ioc */
3520         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3521             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3522             &ioc->chip->Doorbell);
3523
3524         if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3525                 pr_err(MPT3SAS_FMT
3526                         "doorbell handshake int failed (line=%d)\n",
3527                         ioc->name, __LINE__);
3528                 return -EFAULT;
3529         }
3530         writel(0, &ioc->chip->HostInterruptStatus);
3531
3532         if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3533                 pr_err(MPT3SAS_FMT
3534                         "doorbell handshake ack failed (line=%d)\n",
3535                         ioc->name, __LINE__);
3536                 return -EFAULT;
3537         }
3538
3539         /* send message 32-bits at a time */
3540         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3541                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3542                 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3543                         failed = 1;
3544         }
3545
3546         if (failed) {
3547                 pr_err(MPT3SAS_FMT
3548                         "doorbell handshake sending request failed (line=%d)\n",
3549                         ioc->name, __LINE__);
3550                 return -EFAULT;
3551         }
3552
3553         /* now wait for the reply */
3554         if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3555                 pr_err(MPT3SAS_FMT
3556                         "doorbell handshake int failed (line=%d)\n",
3557                         ioc->name, __LINE__);
3558                 return -EFAULT;
3559         }
3560
3561         /* read the first two 16-bits, it gives the total length of the reply */
3562         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3563             & MPI2_DOORBELL_DATA_MASK);
3564         writel(0, &ioc->chip->HostInterruptStatus);
3565         if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3566                 pr_err(MPT3SAS_FMT
3567                         "doorbell handshake int failed (line=%d)\n",
3568                         ioc->name, __LINE__);
3569                 return -EFAULT;
3570         }
3571         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3572             & MPI2_DOORBELL_DATA_MASK);
3573         writel(0, &ioc->chip->HostInterruptStatus);
3574
3575         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3576                 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3577                         pr_err(MPT3SAS_FMT
3578                                 "doorbell handshake int failed (line=%d)\n",
3579                                 ioc->name, __LINE__);
3580                         return -EFAULT;
3581                 }
3582                 if (i >=  reply_bytes/2) /* overflow case */
3583                         dummy = readl(&ioc->chip->Doorbell);
3584                 else
3585                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3586                             & MPI2_DOORBELL_DATA_MASK);
3587                 writel(0, &ioc->chip->HostInterruptStatus);
3588         }
3589
3590         _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3591         if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3592                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3593                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3594         }
3595         writel(0, &ioc->chip->HostInterruptStatus);
3596
3597         if (ioc->logging_level & MPT_DEBUG_INIT) {
3598                 mfp = (__le32 *)reply;
3599                 pr_info("\toffset:data\n");
3600                 for (i = 0; i < reply_bytes/4; i++)
3601                         pr_info("\t[0x%02x]:%08x\n", i*4,
3602                             le32_to_cpu(mfp[i]));
3603         }
3604         return 0;
3605 }
3606
3607 /**
3608  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3609  * @ioc: per adapter object
3610  * @mpi_reply: the reply payload from FW
3611  * @mpi_request: the request payload sent to FW
3612  *
3613  * The SAS IO Unit Control Request message allows the host to perform low-level
3614  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3615  * to obtain the IOC assigned device handles for a device if it has other
3616  * identifying information about the device, in addition allows the host to
3617  * remove IOC resources associated with the device.
3618  *
3619  * Returns 0 for success, non-zero for failure.
3620  */
3621 int
3622 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3623         Mpi2SasIoUnitControlReply_t *mpi_reply,
3624         Mpi2SasIoUnitControlRequest_t *mpi_request)
3625 {
3626         u16 smid;
3627         u32 ioc_state;
3628         unsigned long timeleft;
3629         bool issue_reset = false;
3630         int rc;
3631         void *request;
3632         u16 wait_state_count;
3633
3634         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3635             __func__));
3636
3637         mutex_lock(&ioc->base_cmds.mutex);
3638
3639         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3640                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3641                     ioc->name, __func__);
3642                 rc = -EAGAIN;
3643                 goto out;
3644         }
3645
3646         wait_state_count = 0;
3647         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3648         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3649                 if (wait_state_count++ == 10) {
3650                         pr_err(MPT3SAS_FMT
3651                             "%s: failed due to ioc not operational\n",
3652                             ioc->name, __func__);
3653                         rc = -EFAULT;
3654                         goto out;
3655                 }
3656                 ssleep(1);
3657                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3658                 pr_info(MPT3SAS_FMT
3659                         "%s: waiting for operational state(count=%d)\n",
3660                         ioc->name, __func__, wait_state_count);
3661         }
3662
3663         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3664         if (!smid) {
3665                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3666                     ioc->name, __func__);
3667                 rc = -EAGAIN;
3668                 goto out;
3669         }
3670
3671         rc = 0;
3672         ioc->base_cmds.status = MPT3_CMD_PENDING;
3673         request = mpt3sas_base_get_msg_frame(ioc, smid);
3674         ioc->base_cmds.smid = smid;
3675         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3676         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3677             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3678                 ioc->ioc_link_reset_in_progress = 1;
3679         init_completion(&ioc->base_cmds.done);
3680         mpt3sas_base_put_smid_default(ioc, smid);
3681         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3682             msecs_to_jiffies(10000));
3683         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3684             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3685             ioc->ioc_link_reset_in_progress)
3686                 ioc->ioc_link_reset_in_progress = 0;
3687         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3688                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3689                     ioc->name, __func__);
3690                 _debug_dump_mf(mpi_request,
3691                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3692                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3693                         issue_reset = true;
3694                 goto issue_host_reset;
3695         }
3696         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3697                 memcpy(mpi_reply, ioc->base_cmds.reply,
3698                     sizeof(Mpi2SasIoUnitControlReply_t));
3699         else
3700                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3701         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3702         goto out;
3703
3704  issue_host_reset:
3705         if (issue_reset)
3706                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3707                     FORCE_BIG_HAMMER);
3708         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3709         rc = -EFAULT;
3710  out:
3711         mutex_unlock(&ioc->base_cmds.mutex);
3712         return rc;
3713 }
3714
3715 /**
3716  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3717  * @ioc: per adapter object
3718  * @mpi_reply: the reply payload from FW
3719  * @mpi_request: the request payload sent to FW
3720  *
3721  * The SCSI Enclosure Processor request message causes the IOC to
3722  * communicate with SES devices to control LED status signals.
3723  *
3724  * Returns 0 for success, non-zero for failure.
3725  */
3726 int
3727 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3728         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3729 {
3730         u16 smid;
3731         u32 ioc_state;
3732         unsigned long timeleft;
3733         bool issue_reset = false;
3734         int rc;
3735         void *request;
3736         u16 wait_state_count;
3737
3738         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3739             __func__));
3740
3741         mutex_lock(&ioc->base_cmds.mutex);
3742
3743         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3744                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3745                     ioc->name, __func__);
3746                 rc = -EAGAIN;
3747                 goto out;
3748         }
3749
3750         wait_state_count = 0;
3751         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3752         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3753                 if (wait_state_count++ == 10) {
3754                         pr_err(MPT3SAS_FMT
3755                             "%s: failed due to ioc not operational\n",
3756                             ioc->name, __func__);
3757                         rc = -EFAULT;
3758                         goto out;
3759                 }
3760                 ssleep(1);
3761                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3762                 pr_info(MPT3SAS_FMT
3763                         "%s: waiting for operational state(count=%d)\n",
3764                         ioc->name,
3765                     __func__, wait_state_count);
3766         }
3767
3768         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3769         if (!smid) {
3770                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3771                     ioc->name, __func__);
3772                 rc = -EAGAIN;
3773                 goto out;
3774         }
3775
3776         rc = 0;
3777         ioc->base_cmds.status = MPT3_CMD_PENDING;
3778         request = mpt3sas_base_get_msg_frame(ioc, smid);
3779         ioc->base_cmds.smid = smid;
3780         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3781         init_completion(&ioc->base_cmds.done);
3782         mpt3sas_base_put_smid_default(ioc, smid);
3783         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3784             msecs_to_jiffies(10000));
3785         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3786                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3787                     ioc->name, __func__);
3788                 _debug_dump_mf(mpi_request,
3789                     sizeof(Mpi2SepRequest_t)/4);
3790                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3791                         issue_reset = false;
3792                 goto issue_host_reset;
3793         }
3794         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3795                 memcpy(mpi_reply, ioc->base_cmds.reply,
3796                     sizeof(Mpi2SepReply_t));
3797         else
3798                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3799         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3800         goto out;
3801
3802  issue_host_reset:
3803         if (issue_reset)
3804                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3805                     FORCE_BIG_HAMMER);
3806         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3807         rc = -EFAULT;
3808  out:
3809         mutex_unlock(&ioc->base_cmds.mutex);
3810         return rc;
3811 }
3812
3813 /**
3814  * _base_get_port_facts - obtain port facts reply and save in ioc
3815  * @ioc: per adapter object
3816  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3817  *
3818  * Returns 0 for success, non-zero for failure.
3819  */
3820 static int
3821 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3822 {
3823         Mpi2PortFactsRequest_t mpi_request;
3824         Mpi2PortFactsReply_t mpi_reply;
3825         struct mpt3sas_port_facts *pfacts;
3826         int mpi_reply_sz, mpi_request_sz, r;
3827
3828         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3829             __func__));
3830
3831         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3832         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3833         memset(&mpi_request, 0, mpi_request_sz);
3834         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3835         mpi_request.PortNumber = port;
3836         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3837             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3838
3839         if (r != 0) {
3840                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3841                     ioc->name, __func__, r);
3842                 return r;
3843         }
3844
3845         pfacts = &ioc->pfacts[port];
3846         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3847         pfacts->PortNumber = mpi_reply.PortNumber;
3848         pfacts->VP_ID = mpi_reply.VP_ID;
3849         pfacts->VF_ID = mpi_reply.VF_ID;
3850         pfacts->MaxPostedCmdBuffers =
3851             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3852
3853         return 0;
3854 }
3855
3856 /**
3857  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
3858  * @ioc: per adapter object
3859  * @timeout:
3860  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3861  *
3862  * Returns 0 for success, non-zero for failure.
3863  */
3864 static int
3865 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
3866         int sleep_flag)
3867 {
3868         u32 ioc_state;
3869         int rc;
3870
3871         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
3872             __func__));
3873
3874         if (ioc->pci_error_recovery) {
3875                 dfailprintk(ioc, printk(MPT3SAS_FMT
3876                     "%s: host in pci error recovery\n", ioc->name, __func__));
3877                 return -EFAULT;
3878         }
3879
3880         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3881         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
3882             ioc->name, __func__, ioc_state));
3883
3884         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
3885             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
3886                 return 0;
3887
3888         if (ioc_state & MPI2_DOORBELL_USED) {
3889                 dhsprintk(ioc, printk(MPT3SAS_FMT
3890                     "unexpected doorbell active!\n", ioc->name));
3891                 goto issue_diag_reset;
3892         }
3893
3894         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3895                 mpt3sas_base_fault_info(ioc, ioc_state &
3896                     MPI2_DOORBELL_DATA_MASK);
3897                 goto issue_diag_reset;
3898         }
3899
3900         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3901             timeout, sleep_flag);
3902         if (ioc_state) {
3903                 dfailprintk(ioc, printk(MPT3SAS_FMT
3904                     "%s: failed going to ready state (ioc_state=0x%x)\n",
3905                     ioc->name, __func__, ioc_state));
3906                 return -EFAULT;
3907         }
3908
3909  issue_diag_reset:
3910         rc = _base_diag_reset(ioc, sleep_flag);
3911         return rc;
3912 }
3913
3914 /**
3915  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3916  * @ioc: per adapter object
3917  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3918  *
3919  * Returns 0 for success, non-zero for failure.
3920  */
3921 static int
3922 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3923 {
3924         Mpi2IOCFactsRequest_t mpi_request;
3925         Mpi2IOCFactsReply_t mpi_reply;
3926         struct mpt3sas_facts *facts;
3927         int mpi_reply_sz, mpi_request_sz, r;
3928
3929         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3930             __func__));
3931
3932         r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
3933         if (r) {
3934                 dfailprintk(ioc, printk(MPT3SAS_FMT
3935                     "%s: failed getting to correct state\n",
3936                     ioc->name, __func__));
3937                 return r;
3938         }
3939         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3940         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3941         memset(&mpi_request, 0, mpi_request_sz);
3942         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3943         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3944             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3945
3946         if (r != 0) {
3947                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3948                     ioc->name, __func__, r);
3949                 return r;
3950         }
3951
3952         facts = &ioc->facts;
3953         memset(facts, 0, sizeof(struct mpt3sas_facts));
3954         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3955         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3956         facts->VP_ID = mpi_reply.VP_ID;
3957         facts->VF_ID = mpi_reply.VF_ID;
3958         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3959         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3960         facts->WhoInit = mpi_reply.WhoInit;
3961         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3962         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3963         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3964         facts->MaxReplyDescriptorPostQueueDepth =
3965             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3966         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3967         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3968         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3969                 ioc->ir_firmware = 1;
3970         if ((facts->IOCCapabilities &
3971               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
3972                 ioc->rdpq_array_capable = 1;
3973         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3974         facts->IOCRequestFrameSize =
3975             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3976         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3977         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3978         ioc->shost->max_id = -1;
3979         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3980         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3981         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3982         facts->HighPriorityCredit =
3983             le16_to_cpu(mpi_reply.HighPriorityCredit);
3984         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3985         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3986
3987         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3988                 "hba queue depth(%d), max chains per io(%d)\n",
3989                 ioc->name, facts->RequestCredit,
3990             facts->MaxChainDepth));
3991         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3992                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
3993             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3994         return 0;
3995 }
3996
3997 /**
3998  * _base_send_ioc_init - send ioc_init to firmware
3999  * @ioc: per adapter object
4000  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4001  *
4002  * Returns 0 for success, non-zero for failure.
4003  */
4004 static int
4005 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4006 {
4007         Mpi2IOCInitRequest_t mpi_request;
4008         Mpi2IOCInitReply_t mpi_reply;
4009         int i, r = 0;
4010         struct timeval current_time;
4011         u16 ioc_status;
4012         u32 reply_post_free_array_sz = 0;
4013         Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4014         dma_addr_t reply_post_free_array_dma;
4015
4016         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4017             __func__));
4018
4019         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4020         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4021         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4022         mpi_request.VF_ID = 0; /* TODO */
4023         mpi_request.VP_ID = 0;
4024         mpi_request.MsgVersion = cpu_to_le16(MPI25_VERSION);
4025         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4026
4027         if (_base_is_controller_msix_enabled(ioc))
4028                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4029         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4030         mpi_request.ReplyDescriptorPostQueueDepth =
4031             cpu_to_le16(ioc->reply_post_queue_depth);
4032         mpi_request.ReplyFreeQueueDepth =
4033             cpu_to_le16(ioc->reply_free_queue_depth);
4034
4035         mpi_request.SenseBufferAddressHigh =
4036             cpu_to_le32((u64)ioc->sense_dma >> 32);
4037         mpi_request.SystemReplyAddressHigh =
4038             cpu_to_le32((u64)ioc->reply_dma >> 32);
4039         mpi_request.SystemRequestFrameBaseAddress =
4040             cpu_to_le64((u64)ioc->request_dma);
4041         mpi_request.ReplyFreeQueueAddress =
4042             cpu_to_le64((u64)ioc->reply_free_dma);
4043
4044         if (ioc->rdpq_array_enable) {
4045                 reply_post_free_array_sz = ioc->reply_queue_count *
4046                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4047                 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4048                         reply_post_free_array_sz, &reply_post_free_array_dma);
4049                 if (!reply_post_free_array) {
4050                         pr_err(MPT3SAS_FMT
4051                         "reply_post_free_array: pci_alloc_consistent failed\n",
4052                         ioc->name);
4053                         r = -ENOMEM;
4054                         goto out;
4055                 }
4056                 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4057                 for (i = 0; i < ioc->reply_queue_count; i++)
4058                         reply_post_free_array[i].RDPQBaseAddress =
4059                             cpu_to_le64(
4060                                 (u64)ioc->reply_post[i].reply_post_free_dma);
4061                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4062                 mpi_request.ReplyDescriptorPostQueueAddress =
4063                     cpu_to_le64((u64)reply_post_free_array_dma);
4064         } else {
4065                 mpi_request.ReplyDescriptorPostQueueAddress =
4066                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4067         }
4068
4069         /* This time stamp specifies number of milliseconds
4070          * since epoch ~ midnight January 1, 1970.
4071          */
4072         do_gettimeofday(&current_time);
4073         mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4074             (current_time.tv_usec / 1000));
4075
4076         if (ioc->logging_level & MPT_DEBUG_INIT) {
4077                 __le32 *mfp;
4078                 int i;
4079
4080                 mfp = (__le32 *)&mpi_request;
4081                 pr_info("\toffset:data\n");
4082                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4083                         pr_info("\t[0x%02x]:%08x\n", i*4,
4084                             le32_to_cpu(mfp[i]));
4085         }
4086
4087         r = _base_handshake_req_reply_wait(ioc,
4088             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4089             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4090             sleep_flag);
4091
4092         if (r != 0) {
4093                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4094                     ioc->name, __func__, r);
4095                 goto out;
4096         }
4097
4098         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4099         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4100             mpi_reply.IOCLogInfo) {
4101                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4102                 r = -EIO;
4103         }
4104
4105 out:
4106         if (reply_post_free_array)
4107                 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4108                                     reply_post_free_array,
4109                                     reply_post_free_array_dma);
4110         return r;
4111 }
4112
4113 /**
4114  * mpt3sas_port_enable_done - command completion routine for port enable
4115  * @ioc: per adapter object
4116  * @smid: system request message index
4117  * @msix_index: MSIX table index supplied by the OS
4118  * @reply: reply message frame(lower 32bit addr)
4119  *
4120  * Return 1 meaning mf should be freed from _base_interrupt
4121  *        0 means the mf is freed from this function.
4122  */
4123 u8
4124 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4125         u32 reply)
4126 {
4127         MPI2DefaultReply_t *mpi_reply;
4128         u16 ioc_status;
4129
4130         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4131                 return 1;
4132
4133         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4134         if (!mpi_reply)
4135                 return 1;
4136
4137         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4138                 return 1;
4139
4140         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4141         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4142         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4143         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4144         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4145         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4146                 ioc->port_enable_failed = 1;
4147
4148         if (ioc->is_driver_loading) {
4149                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4150                         mpt3sas_port_enable_complete(ioc);
4151                         return 1;
4152                 } else {
4153                         ioc->start_scan_failed = ioc_status;
4154                         ioc->start_scan = 0;
4155                         return 1;
4156                 }
4157         }
4158         complete(&ioc->port_enable_cmds.done);
4159         return 1;
4160 }
4161
4162 /**
4163  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4164  * @ioc: per adapter object
4165  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4166  *
4167  * Returns 0 for success, non-zero for failure.
4168  */
4169 static int
4170 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4171 {
4172         Mpi2PortEnableRequest_t *mpi_request;
4173         Mpi2PortEnableReply_t *mpi_reply;
4174         unsigned long timeleft;
4175         int r = 0;
4176         u16 smid;
4177         u16 ioc_status;
4178
4179         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4180
4181         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4182                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4183                     ioc->name, __func__);
4184                 return -EAGAIN;
4185         }
4186
4187         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4188         if (!smid) {
4189                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4190                     ioc->name, __func__);
4191                 return -EAGAIN;
4192         }
4193
4194         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4195         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4196         ioc->port_enable_cmds.smid = smid;
4197         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4198         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4199
4200         init_completion(&ioc->port_enable_cmds.done);
4201         mpt3sas_base_put_smid_default(ioc, smid);
4202         timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4203             300*HZ);
4204         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4205                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4206                     ioc->name, __func__);
4207                 _debug_dump_mf(mpi_request,
4208                     sizeof(Mpi2PortEnableRequest_t)/4);
4209                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4210                         r = -EFAULT;
4211                 else
4212                         r = -ETIME;
4213                 goto out;
4214         }
4215
4216         mpi_reply = ioc->port_enable_cmds.reply;
4217         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4218         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4219                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4220                     ioc->name, __func__, ioc_status);
4221                 r = -EFAULT;
4222                 goto out;
4223         }
4224
4225  out:
4226         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4227         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4228             "SUCCESS" : "FAILED"));
4229         return r;
4230 }
4231
4232 /**
4233  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4234  * @ioc: per adapter object
4235  *
4236  * Returns 0 for success, non-zero for failure.
4237  */
4238 int
4239 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4240 {
4241         Mpi2PortEnableRequest_t *mpi_request;
4242         u16 smid;
4243
4244         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4245
4246         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4247                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4248                     ioc->name, __func__);
4249                 return -EAGAIN;
4250         }
4251
4252         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4253         if (!smid) {
4254                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4255                     ioc->name, __func__);
4256                 return -EAGAIN;
4257         }
4258
4259         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4260         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4261         ioc->port_enable_cmds.smid = smid;
4262         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4263         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4264
4265         mpt3sas_base_put_smid_default(ioc, smid);
4266         return 0;
4267 }
4268
4269 /**
4270  * _base_determine_wait_on_discovery - desposition
4271  * @ioc: per adapter object
4272  *
4273  * Decide whether to wait on discovery to complete. Used to either
4274  * locate boot device, or report volumes ahead of physical devices.
4275  *
4276  * Returns 1 for wait, 0 for don't wait
4277  */
4278 static int
4279 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4280 {
4281         /* We wait for discovery to complete if IR firmware is loaded.
4282          * The sas topology events arrive before PD events, so we need time to
4283          * turn on the bit in ioc->pd_handles to indicate PD
4284          * Also, it maybe required to report Volumes ahead of physical
4285          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4286          */
4287         if (ioc->ir_firmware)
4288                 return 1;
4289
4290         /* if no Bios, then we don't need to wait */
4291         if (!ioc->bios_pg3.BiosVersion)
4292                 return 0;
4293
4294         /* Bios is present, then we drop down here.
4295          *
4296          * If there any entries in the Bios Page 2, then we wait
4297          * for discovery to complete.
4298          */
4299
4300         /* Current Boot Device */
4301         if ((ioc->bios_pg2.CurrentBootDeviceForm &
4302             MPI2_BIOSPAGE2_FORM_MASK) ==
4303             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4304         /* Request Boot Device */
4305            (ioc->bios_pg2.ReqBootDeviceForm &
4306             MPI2_BIOSPAGE2_FORM_MASK) ==
4307             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4308         /* Alternate Request Boot Device */
4309            (ioc->bios_pg2.ReqAltBootDeviceForm &
4310             MPI2_BIOSPAGE2_FORM_MASK) ==
4311             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4312                 return 0;
4313
4314         return 1;
4315 }
4316
4317 /**
4318  * _base_unmask_events - turn on notification for this event
4319  * @ioc: per adapter object
4320  * @event: firmware event
4321  *
4322  * The mask is stored in ioc->event_masks.
4323  */
4324 static void
4325 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4326 {
4327         u32 desired_event;
4328
4329         if (event >= 128)
4330                 return;
4331
4332         desired_event = (1 << (event % 32));
4333
4334         if (event < 32)
4335                 ioc->event_masks[0] &= ~desired_event;
4336         else if (event < 64)
4337                 ioc->event_masks[1] &= ~desired_event;
4338         else if (event < 96)
4339                 ioc->event_masks[2] &= ~desired_event;
4340         else if (event < 128)
4341                 ioc->event_masks[3] &= ~desired_event;
4342 }
4343
4344 /**
4345  * _base_event_notification - send event notification
4346  * @ioc: per adapter object
4347  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4348  *
4349  * Returns 0 for success, non-zero for failure.
4350  */
4351 static int
4352 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4353 {
4354         Mpi2EventNotificationRequest_t *mpi_request;
4355         unsigned long timeleft;
4356         u16 smid;
4357         int r = 0;
4358         int i;
4359
4360         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4361             __func__));
4362
4363         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4364                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4365                     ioc->name, __func__);
4366                 return -EAGAIN;
4367         }
4368
4369         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4370         if (!smid) {
4371                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4372                     ioc->name, __func__);
4373                 return -EAGAIN;
4374         }
4375         ioc->base_cmds.status = MPT3_CMD_PENDING;
4376         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4377         ioc->base_cmds.smid = smid;
4378         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4379         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4380         mpi_request->VF_ID = 0; /* TODO */
4381         mpi_request->VP_ID = 0;
4382         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4383                 mpi_request->EventMasks[i] =
4384                     cpu_to_le32(ioc->event_masks[i]);
4385         init_completion(&ioc->base_cmds.done);
4386         mpt3sas_base_put_smid_default(ioc, smid);
4387         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4388         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4389                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4390                     ioc->name, __func__);
4391                 _debug_dump_mf(mpi_request,
4392                     sizeof(Mpi2EventNotificationRequest_t)/4);
4393                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4394                         r = -EFAULT;
4395                 else
4396                         r = -ETIME;
4397         } else
4398                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4399                     ioc->name, __func__));
4400         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4401         return r;
4402 }
4403
4404 /**
4405  * mpt3sas_base_validate_event_type - validating event types
4406  * @ioc: per adapter object
4407  * @event: firmware event
4408  *
4409  * This will turn on firmware event notification when application
4410  * ask for that event. We don't mask events that are already enabled.
4411  */
4412 void
4413 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4414 {
4415         int i, j;
4416         u32 event_mask, desired_event;
4417         u8 send_update_to_fw;
4418
4419         for (i = 0, send_update_to_fw = 0; i <
4420             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4421                 event_mask = ~event_type[i];
4422                 desired_event = 1;
4423                 for (j = 0; j < 32; j++) {
4424                         if (!(event_mask & desired_event) &&
4425                             (ioc->event_masks[i] & desired_event)) {
4426                                 ioc->event_masks[i] &= ~desired_event;
4427                                 send_update_to_fw = 1;
4428                         }
4429                         desired_event = (desired_event << 1);
4430                 }
4431         }
4432
4433         if (!send_update_to_fw)
4434                 return;
4435
4436         mutex_lock(&ioc->base_cmds.mutex);
4437         _base_event_notification(ioc, CAN_SLEEP);
4438         mutex_unlock(&ioc->base_cmds.mutex);
4439 }
4440
4441 /**
4442  * _base_diag_reset - the "big hammer" start of day reset
4443  * @ioc: per adapter object
4444  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4445  *
4446  * Returns 0 for success, non-zero for failure.
4447  */
4448 static int
4449 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4450 {
4451         u32 host_diagnostic;
4452         u32 ioc_state;
4453         u32 count;
4454         u32 hcb_size;
4455
4456         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4457
4458         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4459             ioc->name));
4460
4461         count = 0;
4462         do {
4463                 /* Write magic sequence to WriteSequence register
4464                  * Loop until in diagnostic mode
4465                  */
4466                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4467                         "write magic sequence\n", ioc->name));
4468                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4469                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4470                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4471                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4472                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4473                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4474                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4475
4476                 /* wait 100 msec */
4477                 if (sleep_flag == CAN_SLEEP)
4478                         msleep(100);
4479                 else
4480                         mdelay(100);
4481
4482                 if (count++ > 20)
4483                         goto out;
4484
4485                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4486                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4487                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4488                     ioc->name, count, host_diagnostic));
4489
4490         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4491
4492         hcb_size = readl(&ioc->chip->HCBSize);
4493
4494         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4495             ioc->name));
4496         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4497              &ioc->chip->HostDiagnostic);
4498
4499         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4500         if (sleep_flag == CAN_SLEEP)
4501                 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4502         else
4503                 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4504
4505         /* Approximately 300 second max wait */
4506         for (count = 0; count < (300000000 /
4507                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4508
4509                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4510
4511                 if (host_diagnostic == 0xFFFFFFFF)
4512                         goto out;
4513                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4514                         break;
4515
4516                 /* Wait to pass the second read delay window */
4517                 if (sleep_flag == CAN_SLEEP)
4518                         msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4519                                                                 / 1000);
4520                 else
4521                         mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4522                                                                 / 1000);
4523         }
4524
4525         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4526
4527                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4528                 "restart the adapter assuming the HCB Address points to good F/W\n",
4529                     ioc->name));
4530                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4531                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4532                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4533
4534                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4535                     "re-enable the HCDW\n", ioc->name));
4536                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4537                     &ioc->chip->HCBSize);
4538         }
4539
4540         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4541             ioc->name));
4542         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4543             &ioc->chip->HostDiagnostic);
4544
4545         drsprintk(ioc, pr_info(MPT3SAS_FMT
4546                 "disable writes to the diagnostic register\n", ioc->name));
4547         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4548
4549         drsprintk(ioc, pr_info(MPT3SAS_FMT
4550                 "Wait for FW to go to the READY state\n", ioc->name));
4551         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4552             sleep_flag);
4553         if (ioc_state) {
4554                 pr_err(MPT3SAS_FMT
4555                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4556                         ioc->name, __func__, ioc_state);
4557                 goto out;
4558         }
4559
4560         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4561         return 0;
4562
4563  out:
4564         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4565         return -EFAULT;
4566 }
4567
4568 /**
4569  * _base_make_ioc_ready - put controller in READY state
4570  * @ioc: per adapter object
4571  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4572  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4573  *
4574  * Returns 0 for success, non-zero for failure.
4575  */
4576 static int
4577 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4578         enum reset_type type)
4579 {
4580         u32 ioc_state;
4581         int rc;
4582         int count;
4583
4584         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4585             __func__));
4586
4587         if (ioc->pci_error_recovery)
4588                 return 0;
4589
4590         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4591         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4592             ioc->name, __func__, ioc_state));
4593
4594         /* if in RESET state, it should move to READY state shortly */
4595         count = 0;
4596         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4597                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4598                     MPI2_IOC_STATE_READY) {
4599                         if (count++ == 10) {
4600                                 pr_err(MPT3SAS_FMT
4601                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4602                                     ioc->name, __func__, ioc_state);
4603                                 return -EFAULT;
4604                         }
4605                         if (sleep_flag == CAN_SLEEP)
4606                                 ssleep(1);
4607                         else
4608                                 mdelay(1000);
4609                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4610                 }
4611         }
4612
4613         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4614                 return 0;
4615
4616         if (ioc_state & MPI2_DOORBELL_USED) {
4617                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4618                         "unexpected doorbell active!\n",
4619                         ioc->name));
4620                 goto issue_diag_reset;
4621         }
4622
4623         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4624                 mpt3sas_base_fault_info(ioc, ioc_state &
4625                     MPI2_DOORBELL_DATA_MASK);
4626                 goto issue_diag_reset;
4627         }
4628
4629         if (type == FORCE_BIG_HAMMER)
4630                 goto issue_diag_reset;
4631
4632         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4633                 if (!(_base_send_ioc_reset(ioc,
4634                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4635                         return 0;
4636         }
4637
4638  issue_diag_reset:
4639         rc = _base_diag_reset(ioc, CAN_SLEEP);
4640         return rc;
4641 }
4642
4643 /**
4644  * _base_make_ioc_operational - put controller in OPERATIONAL state
4645  * @ioc: per adapter object
4646  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4647  *
4648  * Returns 0 for success, non-zero for failure.
4649  */
4650 static int
4651 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4652 {
4653         int r, i;
4654         unsigned long   flags;
4655         u32 reply_address;
4656         u16 smid;
4657         struct _tr_list *delayed_tr, *delayed_tr_next;
4658         struct adapter_reply_queue *reply_q;
4659         long reply_post_free;
4660         u32 reply_post_free_sz, index = 0;
4661
4662         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4663             __func__));
4664
4665         /* clean the delayed target reset list */
4666         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4667             &ioc->delayed_tr_list, list) {
4668                 list_del(&delayed_tr->list);
4669                 kfree(delayed_tr);
4670         }
4671
4672
4673         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4674             &ioc->delayed_tr_volume_list, list) {
4675                 list_del(&delayed_tr->list);
4676                 kfree(delayed_tr);
4677         }
4678
4679         /* initialize the scsi lookup free list */
4680         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4681         INIT_LIST_HEAD(&ioc->free_list);
4682         smid = 1;
4683         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4684                 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4685                 ioc->scsi_lookup[i].cb_idx = 0xFF;
4686                 ioc->scsi_lookup[i].smid = smid;
4687                 ioc->scsi_lookup[i].scmd = NULL;
4688                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4689                     &ioc->free_list);
4690         }
4691
4692         /* hi-priority queue */
4693         INIT_LIST_HEAD(&ioc->hpr_free_list);
4694         smid = ioc->hi_priority_smid;
4695         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4696                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4697                 ioc->hpr_lookup[i].smid = smid;
4698                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4699                     &ioc->hpr_free_list);
4700         }
4701
4702         /* internal queue */
4703         INIT_LIST_HEAD(&ioc->internal_free_list);
4704         smid = ioc->internal_smid;
4705         for (i = 0; i < ioc->internal_depth; i++, smid++) {
4706                 ioc->internal_lookup[i].cb_idx = 0xFF;
4707                 ioc->internal_lookup[i].smid = smid;
4708                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
4709                     &ioc->internal_free_list);
4710         }
4711
4712         /* chain pool */
4713         INIT_LIST_HEAD(&ioc->free_chain_list);
4714         for (i = 0; i < ioc->chain_depth; i++)
4715                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
4716                     &ioc->free_chain_list);
4717
4718         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4719
4720         /* initialize Reply Free Queue */
4721         for (i = 0, reply_address = (u32)ioc->reply_dma ;
4722             i < ioc->reply_free_queue_depth ; i++, reply_address +=
4723             ioc->reply_sz)
4724                 ioc->reply_free[i] = cpu_to_le32(reply_address);
4725
4726         /* initialize reply queues */
4727         if (ioc->is_driver_loading)
4728                 _base_assign_reply_queues(ioc);
4729
4730         /* initialize Reply Post Free Queue */
4731         reply_post_free_sz = ioc->reply_post_queue_depth *
4732             sizeof(Mpi2DefaultReplyDescriptor_t);
4733         reply_post_free = (long)ioc->reply_post[index].reply_post_free;
4734         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4735                 reply_q->reply_post_host_index = 0;
4736                 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4737                     reply_post_free;
4738                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
4739                         reply_q->reply_post_free[i].Words =
4740                             cpu_to_le64(ULLONG_MAX);
4741                 if (!_base_is_controller_msix_enabled(ioc))
4742                         goto skip_init_reply_post_free_queue;
4743                 /*
4744                  * If RDPQ is enabled, switch to the next allocation.
4745                  * Otherwise advance within the contiguous region.
4746                  */
4747                 if (ioc->rdpq_array_enable)
4748                         reply_post_free = (long)
4749                             ioc->reply_post[++index].reply_post_free;
4750                 else
4751                         reply_post_free += reply_post_free_sz;
4752         }
4753  skip_init_reply_post_free_queue:
4754
4755         r = _base_send_ioc_init(ioc, sleep_flag);
4756         if (r)
4757                 return r;
4758
4759         /* initialize reply free host index */
4760         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4761         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4762
4763         /* initialize reply post host index */
4764         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4765                 if (ioc->msix96_vector)
4766                         writel((reply_q->msix_index & 7)<<
4767                            MPI2_RPHI_MSIX_INDEX_SHIFT,
4768                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
4769                 else
4770                         writel(reply_q->msix_index <<
4771                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
4772                                 &ioc->chip->ReplyPostHostIndex);
4773
4774                 if (!_base_is_controller_msix_enabled(ioc))
4775                         goto skip_init_reply_post_host_index;
4776         }
4777
4778  skip_init_reply_post_host_index:
4779
4780         _base_unmask_interrupts(ioc);
4781         r = _base_event_notification(ioc, sleep_flag);
4782         if (r)
4783                 return r;
4784
4785         if (sleep_flag == CAN_SLEEP)
4786                 _base_static_config_pages(ioc);
4787
4788
4789         if (ioc->is_driver_loading) {
4790                 ioc->wait_for_discovery_to_complete =
4791                     _base_determine_wait_on_discovery(ioc);
4792
4793                 return r; /* scan_start and scan_finished support */
4794         }
4795
4796         r = _base_send_port_enable(ioc, sleep_flag);
4797         if (r)
4798                 return r;
4799
4800         return r;
4801 }
4802
4803 /**
4804  * mpt3sas_base_free_resources - free resources controller resources
4805  * @ioc: per adapter object
4806  *
4807  * Return nothing.
4808  */
4809 void
4810 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4811 {
4812         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4813             __func__));
4814
4815         if (ioc->chip_phys && ioc->chip) {
4816                 _base_mask_interrupts(ioc);
4817                 ioc->shost_recovery = 1;
4818                 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4819                 ioc->shost_recovery = 0;
4820         }
4821
4822         mpt3sas_base_unmap_resources(ioc);
4823         return;
4824 }
4825
4826 /**
4827  * mpt3sas_base_attach - attach controller instance
4828  * @ioc: per adapter object
4829  *
4830  * Returns 0 for success, non-zero for failure.
4831  */
4832 int
4833 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4834 {
4835         int r, i;
4836         int cpu_id, last_cpu_id = 0;
4837         u8 revision;
4838
4839         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4840             __func__));
4841
4842         /* setup cpu_msix_table */
4843         ioc->cpu_count = num_online_cpus();
4844         for_each_online_cpu(cpu_id)
4845                 last_cpu_id = cpu_id;
4846         ioc->cpu_msix_table_sz = last_cpu_id + 1;
4847         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4848         ioc->reply_queue_count = 1;
4849         if (!ioc->cpu_msix_table) {
4850                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
4851                         "allocation for cpu_msix_table failed!!!\n",
4852                         ioc->name));
4853                 r = -ENOMEM;
4854                 goto out_free_resources;
4855         }
4856
4857         /* Check whether the controller revision is C0 or above.
4858          * only C0 and above revision controllers support 96 MSI-X vectors.
4859          */
4860         revision = ioc->pdev->revision;
4861
4862         if ((ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3004 ||
4863              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3008 ||
4864              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_1 ||
4865              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_2 ||
4866              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_5 ||
4867              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_6) &&
4868              (revision >= 0x02))
4869                 ioc->msix96_vector = 1;
4870
4871         ioc->rdpq_array_enable_assigned = 0;
4872         ioc->dma_mask = 0;
4873         r = mpt3sas_base_map_resources(ioc);
4874         if (r)
4875                 goto out_free_resources;
4876
4877
4878         pci_set_drvdata(ioc->pdev, ioc->shost);
4879         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4880         if (r)
4881                 goto out_free_resources;
4882
4883         /*
4884          * In SAS3.0,
4885          * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
4886          * Target Status - all require the IEEE formated scatter gather
4887          * elements.
4888          */
4889
4890         ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
4891         ioc->build_sg = &_base_build_sg_ieee;
4892         ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
4893         ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
4894
4895         /*
4896          * These function pointers for other requests that don't
4897          * the require IEEE scatter gather elements.
4898          *
4899          * For example Configuration Pages and SAS IOUNIT Control don't.
4900          */
4901         ioc->build_sg_mpi = &_base_build_sg;
4902         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
4903
4904         r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4905         if (r)
4906                 goto out_free_resources;
4907
4908         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4909             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
4910         if (!ioc->pfacts) {
4911                 r = -ENOMEM;
4912                 goto out_free_resources;
4913         }
4914
4915         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4916                 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4917                 if (r)
4918                         goto out_free_resources;
4919         }
4920
4921         r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4922         if (r)
4923                 goto out_free_resources;
4924
4925         init_waitqueue_head(&ioc->reset_wq);
4926
4927         /* allocate memory pd handle bitmask list */
4928         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4929         if (ioc->facts.MaxDevHandle % 8)
4930                 ioc->pd_handles_sz++;
4931         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4932             GFP_KERNEL);
4933         if (!ioc->pd_handles) {
4934                 r = -ENOMEM;
4935                 goto out_free_resources;
4936         }
4937         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4938             GFP_KERNEL);
4939         if (!ioc->blocking_handles) {
4940                 r = -ENOMEM;
4941                 goto out_free_resources;
4942         }
4943
4944         ioc->fwfault_debug = mpt3sas_fwfault_debug;
4945
4946         /* base internal command bits */
4947         mutex_init(&ioc->base_cmds.mutex);
4948         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4949         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4950
4951         /* port_enable command bits */
4952         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4953         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4954
4955         /* transport internal command bits */
4956         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4957         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
4958         mutex_init(&ioc->transport_cmds.mutex);
4959
4960         /* scsih internal command bits */
4961         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4962         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
4963         mutex_init(&ioc->scsih_cmds.mutex);
4964
4965         /* task management internal command bits */
4966         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4967         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
4968         mutex_init(&ioc->tm_cmds.mutex);
4969
4970         /* config page internal command bits */
4971         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4972         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
4973         mutex_init(&ioc->config_cmds.mutex);
4974
4975         /* ctl module internal command bits */
4976         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4977         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4978         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
4979         mutex_init(&ioc->ctl_cmds.mutex);
4980
4981         if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4982             !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4983             !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4984             !ioc->ctl_cmds.sense) {
4985                 r = -ENOMEM;
4986                 goto out_free_resources;
4987         }
4988
4989         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4990                 ioc->event_masks[i] = -1;
4991
4992         /* here we enable the events we care about */
4993         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4994         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4995         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4996         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4997         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4998         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4999         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5000         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5001         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5002         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5003         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5004
5005         r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5006         if (r)
5007                 goto out_free_resources;
5008
5009         return 0;
5010
5011  out_free_resources:
5012
5013         ioc->remove_host = 1;
5014
5015         mpt3sas_base_free_resources(ioc);
5016         _base_release_memory_pools(ioc);
5017         pci_set_drvdata(ioc->pdev, NULL);
5018         kfree(ioc->cpu_msix_table);
5019         kfree(ioc->pd_handles);
5020         kfree(ioc->blocking_handles);
5021         kfree(ioc->tm_cmds.reply);
5022         kfree(ioc->transport_cmds.reply);
5023         kfree(ioc->scsih_cmds.reply);
5024         kfree(ioc->config_cmds.reply);
5025         kfree(ioc->base_cmds.reply);
5026         kfree(ioc->port_enable_cmds.reply);
5027         kfree(ioc->ctl_cmds.reply);
5028         kfree(ioc->ctl_cmds.sense);
5029         kfree(ioc->pfacts);
5030         ioc->ctl_cmds.reply = NULL;
5031         ioc->base_cmds.reply = NULL;
5032         ioc->tm_cmds.reply = NULL;
5033         ioc->scsih_cmds.reply = NULL;
5034         ioc->transport_cmds.reply = NULL;
5035         ioc->config_cmds.reply = NULL;
5036         ioc->pfacts = NULL;
5037         return r;
5038 }
5039
5040
5041 /**
5042  * mpt3sas_base_detach - remove controller instance
5043  * @ioc: per adapter object
5044  *
5045  * Return nothing.
5046  */
5047 void
5048 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5049 {
5050         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5051             __func__));
5052
5053         mpt3sas_base_stop_watchdog(ioc);
5054         mpt3sas_base_free_resources(ioc);
5055         _base_release_memory_pools(ioc);
5056         pci_set_drvdata(ioc->pdev, NULL);
5057         kfree(ioc->cpu_msix_table);
5058         kfree(ioc->pd_handles);
5059         kfree(ioc->blocking_handles);
5060         kfree(ioc->pfacts);
5061         kfree(ioc->ctl_cmds.reply);
5062         kfree(ioc->ctl_cmds.sense);
5063         kfree(ioc->base_cmds.reply);
5064         kfree(ioc->port_enable_cmds.reply);
5065         kfree(ioc->tm_cmds.reply);
5066         kfree(ioc->transport_cmds.reply);
5067         kfree(ioc->scsih_cmds.reply);
5068         kfree(ioc->config_cmds.reply);
5069 }
5070
5071 /**
5072  * _base_reset_handler - reset callback handler (for base)
5073  * @ioc: per adapter object
5074  * @reset_phase: phase
5075  *
5076  * The handler for doing any required cleanup or initialization.
5077  *
5078  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5079  * MPT3_IOC_DONE_RESET
5080  *
5081  * Return nothing.
5082  */
5083 static void
5084 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5085 {
5086         mpt3sas_scsih_reset_handler(ioc, reset_phase);
5087         mpt3sas_ctl_reset_handler(ioc, reset_phase);
5088         switch (reset_phase) {
5089         case MPT3_IOC_PRE_RESET:
5090                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5091                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5092                 break;
5093         case MPT3_IOC_AFTER_RESET:
5094                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5095                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5096                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5097                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
5098                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5099                         complete(&ioc->transport_cmds.done);
5100                 }
5101                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5102                         ioc->base_cmds.status |= MPT3_CMD_RESET;
5103                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5104                         complete(&ioc->base_cmds.done);
5105                 }
5106                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5107                         ioc->port_enable_failed = 1;
5108                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5109                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5110                         if (ioc->is_driver_loading) {
5111                                 ioc->start_scan_failed =
5112                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
5113                                 ioc->start_scan = 0;
5114                                 ioc->port_enable_cmds.status =
5115                                     MPT3_CMD_NOT_USED;
5116                         } else
5117                                 complete(&ioc->port_enable_cmds.done);
5118                 }
5119                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5120                         ioc->config_cmds.status |= MPT3_CMD_RESET;
5121                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5122                         ioc->config_cmds.smid = USHRT_MAX;
5123                         complete(&ioc->config_cmds.done);
5124                 }
5125                 break;
5126         case MPT3_IOC_DONE_RESET:
5127                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5128                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5129                 break;
5130         }
5131 }
5132
5133 /**
5134  * _wait_for_commands_to_complete - reset controller
5135  * @ioc: Pointer to MPT_ADAPTER structure
5136  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5137  *
5138  * This function waiting(3s) for all pending commands to complete
5139  * prior to putting controller in reset.
5140  */
5141 static void
5142 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5143 {
5144         u32 ioc_state;
5145         unsigned long flags;
5146         u16 i;
5147
5148         ioc->pending_io_count = 0;
5149         if (sleep_flag != CAN_SLEEP)
5150                 return;
5151
5152         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5153         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5154                 return;
5155
5156         /* pending command count */
5157         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5158         for (i = 0; i < ioc->scsiio_depth; i++)
5159                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5160                         ioc->pending_io_count++;
5161         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5162
5163         if (!ioc->pending_io_count)
5164                 return;
5165
5166         /* wait for pending commands to complete */
5167         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5168 }
5169
5170 /**
5171  * mpt3sas_base_hard_reset_handler - reset controller
5172  * @ioc: Pointer to MPT_ADAPTER structure
5173  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5174  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5175  *
5176  * Returns 0 for success, non-zero for failure.
5177  */
5178 int
5179 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5180         enum reset_type type)
5181 {
5182         int r;
5183         unsigned long flags;
5184         u32 ioc_state;
5185         u8 is_fault = 0, is_trigger = 0;
5186
5187         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5188             __func__));
5189
5190         if (ioc->pci_error_recovery) {
5191                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5192                     ioc->name, __func__);
5193                 r = 0;
5194                 goto out_unlocked;
5195         }
5196
5197         if (mpt3sas_fwfault_debug)
5198                 mpt3sas_halt_firmware(ioc);
5199
5200         /* TODO - What we really should be doing is pulling
5201          * out all the code associated with NO_SLEEP; its never used.
5202          * That is legacy code from mpt fusion driver, ported over.
5203          * I will leave this BUG_ON here for now till its been resolved.
5204          */
5205         BUG_ON(sleep_flag == NO_SLEEP);
5206
5207         /* wait for an active reset in progress to complete */
5208         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5209                 do {
5210                         ssleep(1);
5211                 } while (ioc->shost_recovery == 1);
5212                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5213                     __func__));
5214                 return ioc->ioc_reset_in_progress_status;
5215         }
5216
5217         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5218         ioc->shost_recovery = 1;
5219         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5220
5221         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5222             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5223             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5224             MPT3_DIAG_BUFFER_IS_RELEASED))) {
5225                 is_trigger = 1;
5226                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5227                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5228                         is_fault = 1;
5229         }
5230         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5231         _wait_for_commands_to_complete(ioc, sleep_flag);
5232         _base_mask_interrupts(ioc);
5233         r = _base_make_ioc_ready(ioc, sleep_flag, type);
5234         if (r)
5235                 goto out;
5236         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5237
5238         /* If this hard reset is called while port enable is active, then
5239          * there is no reason to call make_ioc_operational
5240          */
5241         if (ioc->is_driver_loading && ioc->port_enable_failed) {
5242                 ioc->remove_host = 1;
5243                 r = -EFAULT;
5244                 goto out;
5245         }
5246         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5247         if (r)
5248                 goto out;
5249
5250         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5251                 panic("%s: Issue occurred with flashing controller firmware."
5252                       "Please reboot the system and ensure that the correct"
5253                       " firmware version is running\n", ioc->name);
5254
5255         r = _base_make_ioc_operational(ioc, sleep_flag);
5256         if (!r)
5257                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5258
5259  out:
5260         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5261             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5262
5263         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5264         ioc->ioc_reset_in_progress_status = r;
5265         ioc->shost_recovery = 0;
5266         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5267         ioc->ioc_reset_count++;
5268         mutex_unlock(&ioc->reset_in_progress_mutex);
5269
5270  out_unlocked:
5271         if ((r == 0) && is_trigger) {
5272                 if (is_fault)
5273                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5274                 else
5275                         mpt3sas_trigger_master(ioc,
5276                             MASTER_TRIGGER_ADAPTER_RESET);
5277         }
5278         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5279             __func__));
5280         return r;
5281 }