[SCSI] libsas: fix false positive 'device attached' conditions
[pandora-kernel.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39                              u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(unsigned long _task)
45 {
46         struct sas_task *task = (void *) _task;
47         unsigned long flags;
48
49         spin_lock_irqsave(&task->task_state_lock, flags);
50         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52         spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54         complete(&task->completion);
55 }
56
57 static void smp_task_done(struct sas_task *task)
58 {
59         if (!del_timer(&task->timer))
60                 return;
61         complete(&task->completion);
62 }
63
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66
67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68                             void *resp, int resp_size)
69 {
70         int res, retry;
71         struct sas_task *task = NULL;
72         struct sas_internal *i =
73                 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75         mutex_lock(&dev->ex_dev.cmd_mutex);
76         for (retry = 0; retry < 3; retry++) {
77                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78                         res = -ECOMM;
79                         break;
80                 }
81
82                 task = sas_alloc_task(GFP_KERNEL);
83                 if (!task) {
84                         res = -ENOMEM;
85                         break;
86                 }
87                 task->dev = dev;
88                 task->task_proto = dev->tproto;
89                 sg_init_one(&task->smp_task.smp_req, req, req_size);
90                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92                 task->task_done = smp_task_done;
93
94                 task->timer.data = (unsigned long) task;
95                 task->timer.function = smp_task_timedout;
96                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97                 add_timer(&task->timer);
98
99                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
100
101                 if (res) {
102                         del_timer(&task->timer);
103                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
104                         break;
105                 }
106
107                 wait_for_completion(&task->completion);
108                 res = -ECOMM;
109                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110                         SAS_DPRINTK("smp task timed out or aborted\n");
111                         i->dft->lldd_abort_task(task);
112                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113                                 SAS_DPRINTK("SMP task aborted and not done\n");
114                                 break;
115                         }
116                 }
117                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118                     task->task_status.stat == SAM_STAT_GOOD) {
119                         res = 0;
120                         break;
121                 }
122                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123                     task->task_status.stat == SAS_DATA_UNDERRUN) {
124                         /* no error, but return the number of bytes of
125                          * underrun */
126                         res = task->task_status.residual;
127                         break;
128                 }
129                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130                     task->task_status.stat == SAS_DATA_OVERRUN) {
131                         res = -EMSGSIZE;
132                         break;
133                 }
134                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
136                         break;
137                 else {
138                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139                                     "status 0x%x\n", __func__,
140                                     SAS_ADDR(dev->sas_addr),
141                                     task->task_status.resp,
142                                     task->task_status.stat);
143                         sas_free_task(task);
144                         task = NULL;
145                 }
146         }
147         mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149         BUG_ON(retry == 3 && task != NULL);
150         sas_free_task(task);
151         return res;
152 }
153
154 /* ---------- Allocations ---------- */
155
156 static inline void *alloc_smp_req(int size)
157 {
158         u8 *p = kzalloc(size, GFP_KERNEL);
159         if (p)
160                 p[0] = SMP_REQUEST;
161         return p;
162 }
163
164 static inline void *alloc_smp_resp(int size)
165 {
166         return kzalloc(size, GFP_KERNEL);
167 }
168
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171         switch (phy->routing_attr) {
172         case TABLE_ROUTING:
173                 if (dev->ex_dev.t2t_supp)
174                         return 'U';
175                 else
176                         return 'T';
177         case DIRECT_ROUTING:
178                 return 'D';
179         case SUBTRACTIVE_ROUTING:
180                 return 'S';
181         default:
182                 return '?';
183         }
184 }
185
186 static enum sas_dev_type to_dev_type(struct discover_resp *dr)
187 {
188         /* This is detecting a failure to transmit initial dev to host
189          * FIS as described in section J.5 of sas-2 r16
190          */
191         if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
192             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193                 return SATA_PENDING;
194         else
195                 return dr->attached_dev_type;
196 }
197
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200         enum sas_dev_type dev_type;
201         enum sas_linkrate linkrate;
202         u8 sas_addr[SAS_ADDR_SIZE];
203         struct smp_resp *resp = rsp;
204         struct discover_resp *dr = &resp->disc;
205         struct sas_ha_struct *ha = dev->port->ha;
206         struct expander_device *ex = &dev->ex_dev;
207         struct ex_phy *phy = &ex->ex_phy[phy_id];
208         struct sas_rphy *rphy = dev->rphy;
209         bool new_phy = !phy->phy;
210         char *type;
211
212         if (new_phy) {
213                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214                         return;
215                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217                 /* FIXME: error_handling */
218                 BUG_ON(!phy->phy);
219         }
220
221         switch (resp->result) {
222         case SMP_RESP_PHY_VACANT:
223                 phy->phy_state = PHY_VACANT;
224                 break;
225         default:
226                 phy->phy_state = PHY_NOT_PRESENT;
227                 break;
228         case SMP_RESP_FUNC_ACC:
229                 phy->phy_state = PHY_EMPTY; /* do not know yet */
230                 break;
231         }
232
233         /* check if anything important changed to squelch debug */
234         dev_type = phy->attached_dev_type;
235         linkrate  = phy->linkrate;
236         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238         phy->attached_dev_type = to_dev_type(dr);
239         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
240                 goto out;
241         phy->phy_id = phy_id;
242         phy->linkrate = dr->linkrate;
243         phy->attached_sata_host = dr->attached_sata_host;
244         phy->attached_sata_dev  = dr->attached_sata_dev;
245         phy->attached_sata_ps   = dr->attached_sata_ps;
246         phy->attached_iproto = dr->iproto << 1;
247         phy->attached_tproto = dr->tproto << 1;
248         /* help some expanders that fail to zero sas_address in the 'no
249          * device' case
250          */
251         if (phy->attached_dev_type == NO_DEVICE ||
252             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
253                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
254         else
255                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
256         phy->attached_phy_id = dr->attached_phy_id;
257         phy->phy_change_count = dr->change_count;
258         phy->routing_attr = dr->routing_attr;
259         phy->virtual = dr->virtual;
260         phy->last_da_index = -1;
261
262         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
263         phy->phy->identify.device_type = dr->attached_dev_type;
264         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
265         phy->phy->identify.target_port_protocols = phy->attached_tproto;
266         if (!phy->attached_tproto && dr->attached_sata_dev)
267                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
268         phy->phy->identify.phy_identifier = phy_id;
269         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
270         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
271         phy->phy->minimum_linkrate = dr->pmin_linkrate;
272         phy->phy->maximum_linkrate = dr->pmax_linkrate;
273         phy->phy->negotiated_linkrate = phy->linkrate;
274
275         if (new_phy)
276                 if (sas_phy_add(phy->phy)) {
277                         sas_phy_free(phy->phy);
278                         return;
279                 }
280
281  out:
282         switch (phy->attached_dev_type) {
283         case SATA_PENDING:
284                 type = "stp pending";
285                 break;
286         case NO_DEVICE:
287                 type = "no device";
288                 break;
289         case SAS_END_DEV:
290                 if (phy->attached_iproto) {
291                         if (phy->attached_tproto)
292                                 type = "host+target";
293                         else
294                                 type = "host";
295                 } else {
296                         if (dr->attached_sata_dev)
297                                 type = "stp";
298                         else
299                                 type = "ssp";
300                 }
301                 break;
302         case EDGE_DEV:
303         case FANOUT_DEV:
304                 type = "smp";
305                 break;
306         default:
307                 type = "unknown";
308         }
309
310         /* this routine is polled by libata error recovery so filter
311          * unimportant messages
312          */
313         if (new_phy || phy->attached_dev_type != dev_type ||
314             phy->linkrate != linkrate ||
315             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
316                 /* pass */;
317         else
318                 return;
319
320         /* if the attached device type changed and ata_eh is active,
321          * make sure we run revalidation when eh completes (see:
322          * sas_enable_revalidation)
323          */
324         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
325                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
326
327         SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
328                     test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
329                     SAS_ADDR(dev->sas_addr), phy->phy_id,
330                     sas_route_char(dev, phy), phy->linkrate,
331                     SAS_ADDR(phy->attached_sas_addr), type);
332 }
333
334 /* check if we have an existing attached ata device on this expander phy */
335 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
336 {
337         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
338         struct domain_device *dev;
339         struct sas_rphy *rphy;
340
341         if (!ex_phy->port)
342                 return NULL;
343
344         rphy = ex_phy->port->rphy;
345         if (!rphy)
346                 return NULL;
347
348         dev = sas_find_dev_by_rphy(rphy);
349
350         if (dev && dev_is_sata(dev))
351                 return dev;
352
353         return NULL;
354 }
355
356 #define DISCOVER_REQ_SIZE  16
357 #define DISCOVER_RESP_SIZE 56
358
359 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
360                                       u8 *disc_resp, int single)
361 {
362         struct discover_resp *dr;
363         int res;
364
365         disc_req[9] = single;
366
367         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
368                                disc_resp, DISCOVER_RESP_SIZE);
369         if (res)
370                 return res;
371         dr = &((struct smp_resp *)disc_resp)->disc;
372         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
373                 sas_printk("Found loopback topology, just ignore it!\n");
374                 return 0;
375         }
376         sas_set_ex_phy(dev, single, disc_resp);
377         return 0;
378 }
379
380 int sas_ex_phy_discover(struct domain_device *dev, int single)
381 {
382         struct expander_device *ex = &dev->ex_dev;
383         int  res = 0;
384         u8   *disc_req;
385         u8   *disc_resp;
386
387         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
388         if (!disc_req)
389                 return -ENOMEM;
390
391         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
392         if (!disc_resp) {
393                 kfree(disc_req);
394                 return -ENOMEM;
395         }
396
397         disc_req[1] = SMP_DISCOVER;
398
399         if (0 <= single && single < ex->num_phys) {
400                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
401         } else {
402                 int i;
403
404                 for (i = 0; i < ex->num_phys; i++) {
405                         res = sas_ex_phy_discover_helper(dev, disc_req,
406                                                          disc_resp, i);
407                         if (res)
408                                 goto out_err;
409                 }
410         }
411 out_err:
412         kfree(disc_resp);
413         kfree(disc_req);
414         return res;
415 }
416
417 static int sas_expander_discover(struct domain_device *dev)
418 {
419         struct expander_device *ex = &dev->ex_dev;
420         int res = -ENOMEM;
421
422         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
423         if (!ex->ex_phy)
424                 return -ENOMEM;
425
426         res = sas_ex_phy_discover(dev, -1);
427         if (res)
428                 goto out_err;
429
430         return 0;
431  out_err:
432         kfree(ex->ex_phy);
433         ex->ex_phy = NULL;
434         return res;
435 }
436
437 #define MAX_EXPANDER_PHYS 128
438
439 static void ex_assign_report_general(struct domain_device *dev,
440                                             struct smp_resp *resp)
441 {
442         struct report_general_resp *rg = &resp->rg;
443
444         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
445         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
446         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
447         dev->ex_dev.t2t_supp = rg->t2t_supp;
448         dev->ex_dev.conf_route_table = rg->conf_route_table;
449         dev->ex_dev.configuring = rg->configuring;
450         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
451 }
452
453 #define RG_REQ_SIZE   8
454 #define RG_RESP_SIZE 32
455
456 static int sas_ex_general(struct domain_device *dev)
457 {
458         u8 *rg_req;
459         struct smp_resp *rg_resp;
460         int res;
461         int i;
462
463         rg_req = alloc_smp_req(RG_REQ_SIZE);
464         if (!rg_req)
465                 return -ENOMEM;
466
467         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
468         if (!rg_resp) {
469                 kfree(rg_req);
470                 return -ENOMEM;
471         }
472
473         rg_req[1] = SMP_REPORT_GENERAL;
474
475         for (i = 0; i < 5; i++) {
476                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
477                                        RG_RESP_SIZE);
478
479                 if (res) {
480                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
481                                     SAS_ADDR(dev->sas_addr), res);
482                         goto out;
483                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
484                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
485                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
486                         res = rg_resp->result;
487                         goto out;
488                 }
489
490                 ex_assign_report_general(dev, rg_resp);
491
492                 if (dev->ex_dev.configuring) {
493                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
494                                     SAS_ADDR(dev->sas_addr));
495                         schedule_timeout_interruptible(5*HZ);
496                 } else
497                         break;
498         }
499 out:
500         kfree(rg_req);
501         kfree(rg_resp);
502         return res;
503 }
504
505 static void ex_assign_manuf_info(struct domain_device *dev, void
506                                         *_mi_resp)
507 {
508         u8 *mi_resp = _mi_resp;
509         struct sas_rphy *rphy = dev->rphy;
510         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
511
512         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
513         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
514         memcpy(edev->product_rev, mi_resp + 36,
515                SAS_EXPANDER_PRODUCT_REV_LEN);
516
517         if (mi_resp[8] & 1) {
518                 memcpy(edev->component_vendor_id, mi_resp + 40,
519                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
520                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
521                 edev->component_revision_id = mi_resp[50];
522         }
523 }
524
525 #define MI_REQ_SIZE   8
526 #define MI_RESP_SIZE 64
527
528 static int sas_ex_manuf_info(struct domain_device *dev)
529 {
530         u8 *mi_req;
531         u8 *mi_resp;
532         int res;
533
534         mi_req = alloc_smp_req(MI_REQ_SIZE);
535         if (!mi_req)
536                 return -ENOMEM;
537
538         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
539         if (!mi_resp) {
540                 kfree(mi_req);
541                 return -ENOMEM;
542         }
543
544         mi_req[1] = SMP_REPORT_MANUF_INFO;
545
546         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
547         if (res) {
548                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
549                             SAS_ADDR(dev->sas_addr), res);
550                 goto out;
551         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
552                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
553                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
554                 goto out;
555         }
556
557         ex_assign_manuf_info(dev, mi_resp);
558 out:
559         kfree(mi_req);
560         kfree(mi_resp);
561         return res;
562 }
563
564 #define PC_REQ_SIZE  44
565 #define PC_RESP_SIZE 8
566
567 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
568                         enum phy_func phy_func,
569                         struct sas_phy_linkrates *rates)
570 {
571         u8 *pc_req;
572         u8 *pc_resp;
573         int res;
574
575         pc_req = alloc_smp_req(PC_REQ_SIZE);
576         if (!pc_req)
577                 return -ENOMEM;
578
579         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
580         if (!pc_resp) {
581                 kfree(pc_req);
582                 return -ENOMEM;
583         }
584
585         pc_req[1] = SMP_PHY_CONTROL;
586         pc_req[9] = phy_id;
587         pc_req[10]= phy_func;
588         if (rates) {
589                 pc_req[32] = rates->minimum_linkrate << 4;
590                 pc_req[33] = rates->maximum_linkrate << 4;
591         }
592
593         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
594
595         kfree(pc_resp);
596         kfree(pc_req);
597         return res;
598 }
599
600 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601 {
602         struct expander_device *ex = &dev->ex_dev;
603         struct ex_phy *phy = &ex->ex_phy[phy_id];
604
605         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606         phy->linkrate = SAS_PHY_DISABLED;
607 }
608
609 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610 {
611         struct expander_device *ex = &dev->ex_dev;
612         int i;
613
614         for (i = 0; i < ex->num_phys; i++) {
615                 struct ex_phy *phy = &ex->ex_phy[i];
616
617                 if (phy->phy_state == PHY_VACANT ||
618                     phy->phy_state == PHY_NOT_PRESENT)
619                         continue;
620
621                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622                         sas_ex_disable_phy(dev, i);
623         }
624 }
625
626 static int sas_dev_present_in_domain(struct asd_sas_port *port,
627                                             u8 *sas_addr)
628 {
629         struct domain_device *dev;
630
631         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632                 return 1;
633         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635                         return 1;
636         }
637         return 0;
638 }
639
640 #define RPEL_REQ_SIZE   16
641 #define RPEL_RESP_SIZE  32
642 int sas_smp_get_phy_events(struct sas_phy *phy)
643 {
644         int res;
645         u8 *req;
646         u8 *resp;
647         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649
650         req = alloc_smp_req(RPEL_REQ_SIZE);
651         if (!req)
652                 return -ENOMEM;
653
654         resp = alloc_smp_resp(RPEL_RESP_SIZE);
655         if (!resp) {
656                 kfree(req);
657                 return -ENOMEM;
658         }
659
660         req[1] = SMP_REPORT_PHY_ERR_LOG;
661         req[9] = phy->number;
662
663         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664                                     resp, RPEL_RESP_SIZE);
665
666         if (!res)
667                 goto out;
668
669         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
670         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
671         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
672         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
673
674  out:
675         kfree(resp);
676         return res;
677
678 }
679
680 #ifdef CONFIG_SCSI_SAS_ATA
681
682 #define RPS_REQ_SIZE  16
683 #define RPS_RESP_SIZE 60
684
685 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
686                             struct smp_resp *rps_resp)
687 {
688         int res;
689         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
690         u8 *resp = (u8 *)rps_resp;
691
692         if (!rps_req)
693                 return -ENOMEM;
694
695         rps_req[1] = SMP_REPORT_PHY_SATA;
696         rps_req[9] = phy_id;
697
698         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
699                                     rps_resp, RPS_RESP_SIZE);
700
701         /* 0x34 is the FIS type for the D2H fis.  There's a potential
702          * standards cockup here.  sas-2 explicitly specifies the FIS
703          * should be encoded so that FIS type is in resp[24].
704          * However, some expanders endian reverse this.  Undo the
705          * reversal here */
706         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
707                 int i;
708
709                 for (i = 0; i < 5; i++) {
710                         int j = 24 + (i*4);
711                         u8 a, b;
712                         a = resp[j + 0];
713                         b = resp[j + 1];
714                         resp[j + 0] = resp[j + 3];
715                         resp[j + 1] = resp[j + 2];
716                         resp[j + 2] = b;
717                         resp[j + 3] = a;
718                 }
719         }
720
721         kfree(rps_req);
722         return res;
723 }
724 #endif
725
726 static void sas_ex_get_linkrate(struct domain_device *parent,
727                                        struct domain_device *child,
728                                        struct ex_phy *parent_phy)
729 {
730         struct expander_device *parent_ex = &parent->ex_dev;
731         struct sas_port *port;
732         int i;
733
734         child->pathways = 0;
735
736         port = parent_phy->port;
737
738         for (i = 0; i < parent_ex->num_phys; i++) {
739                 struct ex_phy *phy = &parent_ex->ex_phy[i];
740
741                 if (phy->phy_state == PHY_VACANT ||
742                     phy->phy_state == PHY_NOT_PRESENT)
743                         continue;
744
745                 if (SAS_ADDR(phy->attached_sas_addr) ==
746                     SAS_ADDR(child->sas_addr)) {
747
748                         child->min_linkrate = min(parent->min_linkrate,
749                                                   phy->linkrate);
750                         child->max_linkrate = max(parent->max_linkrate,
751                                                   phy->linkrate);
752                         child->pathways++;
753                         sas_port_add_phy(port, phy->phy);
754                 }
755         }
756         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
757         child->pathways = min(child->pathways, parent->pathways);
758 }
759
760 static struct domain_device *sas_ex_discover_end_dev(
761         struct domain_device *parent, int phy_id)
762 {
763         struct expander_device *parent_ex = &parent->ex_dev;
764         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
765         struct domain_device *child = NULL;
766         struct sas_rphy *rphy;
767         int res;
768
769         if (phy->attached_sata_host || phy->attached_sata_ps)
770                 return NULL;
771
772         child = sas_alloc_device();
773         if (!child)
774                 return NULL;
775
776         kref_get(&parent->kref);
777         child->parent = parent;
778         child->port   = parent->port;
779         child->iproto = phy->attached_iproto;
780         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
781         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
782         if (!phy->port) {
783                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
784                 if (unlikely(!phy->port))
785                         goto out_err;
786                 if (unlikely(sas_port_add(phy->port) != 0)) {
787                         sas_port_free(phy->port);
788                         goto out_err;
789                 }
790         }
791         sas_ex_get_linkrate(parent, child, phy);
792         sas_device_set_phy(child, phy->port);
793
794 #ifdef CONFIG_SCSI_SAS_ATA
795         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
796                 res = sas_get_ata_info(child, phy);
797                 if (res)
798                         goto out_free;
799
800                 sas_init_dev(child);
801                 res = sas_ata_init(child);
802                 if (res)
803                         goto out_free;
804                 rphy = sas_end_device_alloc(phy->port);
805                 if (!rphy)
806                         goto out_free;
807
808                 child->rphy = rphy;
809                 get_device(&rphy->dev);
810
811                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
812
813                 res = sas_discover_sata(child);
814                 if (res) {
815                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
816                                     "%016llx:0x%x returned 0x%x\n",
817                                     SAS_ADDR(child->sas_addr),
818                                     SAS_ADDR(parent->sas_addr), phy_id, res);
819                         goto out_list_del;
820                 }
821         } else
822 #endif
823           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824                 child->dev_type = SAS_END_DEV;
825                 rphy = sas_end_device_alloc(phy->port);
826                 /* FIXME: error handling */
827                 if (unlikely(!rphy))
828                         goto out_free;
829                 child->tproto = phy->attached_tproto;
830                 sas_init_dev(child);
831
832                 child->rphy = rphy;
833                 get_device(&rphy->dev);
834                 sas_fill_in_rphy(child, rphy);
835
836                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837
838                 res = sas_discover_end_dev(child);
839                 if (res) {
840                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
841                                     "at %016llx:0x%x returned 0x%x\n",
842                                     SAS_ADDR(child->sas_addr),
843                                     SAS_ADDR(parent->sas_addr), phy_id, res);
844                         goto out_list_del;
845                 }
846         } else {
847                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
848                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
849                             phy_id);
850                 goto out_free;
851         }
852
853         list_add_tail(&child->siblings, &parent_ex->children);
854         return child;
855
856  out_list_del:
857         sas_rphy_free(child->rphy);
858         list_del(&child->disco_list_node);
859         spin_lock_irq(&parent->port->dev_list_lock);
860         list_del(&child->dev_list_node);
861         spin_unlock_irq(&parent->port->dev_list_lock);
862  out_free:
863         sas_port_delete(phy->port);
864  out_err:
865         phy->port = NULL;
866         sas_put_device(child);
867         return NULL;
868 }
869
870 /* See if this phy is part of a wide port */
871 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
872 {
873         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
874         int i;
875
876         for (i = 0; i < parent->ex_dev.num_phys; i++) {
877                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
878
879                 if (ephy == phy)
880                         continue;
881
882                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
883                             SAS_ADDR_SIZE) && ephy->port) {
884                         sas_port_add_phy(ephy->port, phy->phy);
885                         phy->port = ephy->port;
886                         phy->phy_state = PHY_DEVICE_DISCOVERED;
887                         return 0;
888                 }
889         }
890
891         return -ENODEV;
892 }
893
894 static struct domain_device *sas_ex_discover_expander(
895         struct domain_device *parent, int phy_id)
896 {
897         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
898         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899         struct domain_device *child = NULL;
900         struct sas_rphy *rphy;
901         struct sas_expander_device *edev;
902         struct asd_sas_port *port;
903         int res;
904
905         if (phy->routing_attr == DIRECT_ROUTING) {
906                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
907                             "allowed\n",
908                             SAS_ADDR(parent->sas_addr), phy_id,
909                             SAS_ADDR(phy->attached_sas_addr),
910                             phy->attached_phy_id);
911                 return NULL;
912         }
913         child = sas_alloc_device();
914         if (!child)
915                 return NULL;
916
917         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
918         /* FIXME: better error handling */
919         BUG_ON(sas_port_add(phy->port) != 0);
920
921
922         switch (phy->attached_dev_type) {
923         case EDGE_DEV:
924                 rphy = sas_expander_alloc(phy->port,
925                                           SAS_EDGE_EXPANDER_DEVICE);
926                 break;
927         case FANOUT_DEV:
928                 rphy = sas_expander_alloc(phy->port,
929                                           SAS_FANOUT_EXPANDER_DEVICE);
930                 break;
931         default:
932                 rphy = NULL;    /* shut gcc up */
933                 BUG();
934         }
935         port = parent->port;
936         child->rphy = rphy;
937         get_device(&rphy->dev);
938         edev = rphy_to_expander_device(rphy);
939         child->dev_type = phy->attached_dev_type;
940         kref_get(&parent->kref);
941         child->parent = parent;
942         child->port = port;
943         child->iproto = phy->attached_iproto;
944         child->tproto = phy->attached_tproto;
945         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
946         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
947         sas_ex_get_linkrate(parent, child, phy);
948         edev->level = parent_ex->level + 1;
949         parent->port->disc.max_level = max(parent->port->disc.max_level,
950                                            edev->level);
951         sas_init_dev(child);
952         sas_fill_in_rphy(child, rphy);
953         sas_rphy_add(rphy);
954
955         spin_lock_irq(&parent->port->dev_list_lock);
956         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
957         spin_unlock_irq(&parent->port->dev_list_lock);
958
959         res = sas_discover_expander(child);
960         if (res) {
961                 sas_rphy_delete(rphy);
962                 spin_lock_irq(&parent->port->dev_list_lock);
963                 list_del(&child->dev_list_node);
964                 spin_unlock_irq(&parent->port->dev_list_lock);
965                 sas_put_device(child);
966                 return NULL;
967         }
968         list_add_tail(&child->siblings, &parent->ex_dev.children);
969         return child;
970 }
971
972 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
973 {
974         struct expander_device *ex = &dev->ex_dev;
975         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
976         struct domain_device *child = NULL;
977         int res = 0;
978
979         /* Phy state */
980         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
981                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
982                         res = sas_ex_phy_discover(dev, phy_id);
983                 if (res)
984                         return res;
985         }
986
987         /* Parent and domain coherency */
988         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
989                              SAS_ADDR(dev->port->sas_addr))) {
990                 sas_add_parent_port(dev, phy_id);
991                 return 0;
992         }
993         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
994                             SAS_ADDR(dev->parent->sas_addr))) {
995                 sas_add_parent_port(dev, phy_id);
996                 if (ex_phy->routing_attr == TABLE_ROUTING)
997                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
998                 return 0;
999         }
1000
1001         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003
1004         if (ex_phy->attached_dev_type == NO_DEVICE) {
1005                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008                 }
1009                 return 0;
1010         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011                 return 0;
1012
1013         if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014             ex_phy->attached_dev_type != FANOUT_DEV &&
1015             ex_phy->attached_dev_type != EDGE_DEV &&
1016             ex_phy->attached_dev_type != SATA_PENDING) {
1017                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018                             "phy 0x%x\n", ex_phy->attached_dev_type,
1019                             SAS_ADDR(dev->sas_addr),
1020                             phy_id);
1021                 return 0;
1022         }
1023
1024         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025         if (res) {
1026                 SAS_DPRINTK("configure routing for dev %016llx "
1027                             "reported 0x%x. Forgotten\n",
1028                             SAS_ADDR(ex_phy->attached_sas_addr), res);
1029                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030                 return res;
1031         }
1032
1033         res = sas_ex_join_wide_port(dev, phy_id);
1034         if (!res) {
1035                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1036                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1037                 return res;
1038         }
1039
1040         switch (ex_phy->attached_dev_type) {
1041         case SAS_END_DEV:
1042         case SATA_PENDING:
1043                 child = sas_ex_discover_end_dev(dev, phy_id);
1044                 break;
1045         case FANOUT_DEV:
1046                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1047                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1048                                     "attached to ex %016llx phy 0x%x\n",
1049                                     SAS_ADDR(ex_phy->attached_sas_addr),
1050                                     ex_phy->attached_phy_id,
1051                                     SAS_ADDR(dev->sas_addr),
1052                                     phy_id);
1053                         sas_ex_disable_phy(dev, phy_id);
1054                         break;
1055                 } else
1056                         memcpy(dev->port->disc.fanout_sas_addr,
1057                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1058                 /* fallthrough */
1059         case EDGE_DEV:
1060                 child = sas_ex_discover_expander(dev, phy_id);
1061                 break;
1062         default:
1063                 break;
1064         }
1065
1066         if (child) {
1067                 int i;
1068
1069                 for (i = 0; i < ex->num_phys; i++) {
1070                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1071                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1072                                 continue;
1073                         /*
1074                          * Due to races, the phy might not get added to the
1075                          * wide port, so we add the phy to the wide port here.
1076                          */
1077                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1078                             SAS_ADDR(child->sas_addr)) {
1079                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1080                                 res = sas_ex_join_wide_port(dev, i);
1081                                 if (!res)
1082                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1083                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1084
1085                         }
1086                 }
1087         }
1088
1089         return res;
1090 }
1091
1092 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1093 {
1094         struct expander_device *ex = &dev->ex_dev;
1095         int i;
1096
1097         for (i = 0; i < ex->num_phys; i++) {
1098                 struct ex_phy *phy = &ex->ex_phy[i];
1099
1100                 if (phy->phy_state == PHY_VACANT ||
1101                     phy->phy_state == PHY_NOT_PRESENT)
1102                         continue;
1103
1104                 if ((phy->attached_dev_type == EDGE_DEV ||
1105                      phy->attached_dev_type == FANOUT_DEV) &&
1106                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1107
1108                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1109
1110                         return 1;
1111                 }
1112         }
1113         return 0;
1114 }
1115
1116 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1117 {
1118         struct expander_device *ex = &dev->ex_dev;
1119         struct domain_device *child;
1120         u8 sub_addr[8] = {0, };
1121
1122         list_for_each_entry(child, &ex->children, siblings) {
1123                 if (child->dev_type != EDGE_DEV &&
1124                     child->dev_type != FANOUT_DEV)
1125                         continue;
1126                 if (sub_addr[0] == 0) {
1127                         sas_find_sub_addr(child, sub_addr);
1128                         continue;
1129                 } else {
1130                         u8 s2[8];
1131
1132                         if (sas_find_sub_addr(child, s2) &&
1133                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1134
1135                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1136                                             "diverges from subtractive "
1137                                             "boundary %016llx\n",
1138                                             SAS_ADDR(dev->sas_addr),
1139                                             SAS_ADDR(child->sas_addr),
1140                                             SAS_ADDR(s2),
1141                                             SAS_ADDR(sub_addr));
1142
1143                                 sas_ex_disable_port(child, s2);
1144                         }
1145                 }
1146         }
1147         return 0;
1148 }
1149 /**
1150  * sas_ex_discover_devices -- discover devices attached to this expander
1151  * dev: pointer to the expander domain device
1152  * single: if you want to do a single phy, else set to -1;
1153  *
1154  * Configure this expander for use with its devices and register the
1155  * devices of this expander.
1156  */
1157 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1158 {
1159         struct expander_device *ex = &dev->ex_dev;
1160         int i = 0, end = ex->num_phys;
1161         int res = 0;
1162
1163         if (0 <= single && single < end) {
1164                 i = single;
1165                 end = i+1;
1166         }
1167
1168         for ( ; i < end; i++) {
1169                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1170
1171                 if (ex_phy->phy_state == PHY_VACANT ||
1172                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1173                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1174                         continue;
1175
1176                 switch (ex_phy->linkrate) {
1177                 case SAS_PHY_DISABLED:
1178                 case SAS_PHY_RESET_PROBLEM:
1179                 case SAS_SATA_PORT_SELECTOR:
1180                         continue;
1181                 default:
1182                         res = sas_ex_discover_dev(dev, i);
1183                         if (res)
1184                                 break;
1185                         continue;
1186                 }
1187         }
1188
1189         if (!res)
1190                 sas_check_level_subtractive_boundary(dev);
1191
1192         return res;
1193 }
1194
1195 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1196 {
1197         struct expander_device *ex = &dev->ex_dev;
1198         int i;
1199         u8  *sub_sas_addr = NULL;
1200
1201         if (dev->dev_type != EDGE_DEV)
1202                 return 0;
1203
1204         for (i = 0; i < ex->num_phys; i++) {
1205                 struct ex_phy *phy = &ex->ex_phy[i];
1206
1207                 if (phy->phy_state == PHY_VACANT ||
1208                     phy->phy_state == PHY_NOT_PRESENT)
1209                         continue;
1210
1211                 if ((phy->attached_dev_type == FANOUT_DEV ||
1212                      phy->attached_dev_type == EDGE_DEV) &&
1213                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1214
1215                         if (!sub_sas_addr)
1216                                 sub_sas_addr = &phy->attached_sas_addr[0];
1217                         else if (SAS_ADDR(sub_sas_addr) !=
1218                                  SAS_ADDR(phy->attached_sas_addr)) {
1219
1220                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1221                                             "diverges(%016llx) on subtractive "
1222                                             "boundary(%016llx). Disabled\n",
1223                                             SAS_ADDR(dev->sas_addr), i,
1224                                             SAS_ADDR(phy->attached_sas_addr),
1225                                             SAS_ADDR(sub_sas_addr));
1226                                 sas_ex_disable_phy(dev, i);
1227                         }
1228                 }
1229         }
1230         return 0;
1231 }
1232
1233 static void sas_print_parent_topology_bug(struct domain_device *child,
1234                                                  struct ex_phy *parent_phy,
1235                                                  struct ex_phy *child_phy)
1236 {
1237         static const char *ex_type[] = {
1238                 [EDGE_DEV] = "edge",
1239                 [FANOUT_DEV] = "fanout",
1240         };
1241         struct domain_device *parent = child->parent;
1242
1243         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1244                    "phy 0x%x has %c:%c routing link!\n",
1245
1246                    ex_type[parent->dev_type],
1247                    SAS_ADDR(parent->sas_addr),
1248                    parent_phy->phy_id,
1249
1250                    ex_type[child->dev_type],
1251                    SAS_ADDR(child->sas_addr),
1252                    child_phy->phy_id,
1253
1254                    sas_route_char(parent, parent_phy),
1255                    sas_route_char(child, child_phy));
1256 }
1257
1258 static int sas_check_eeds(struct domain_device *child,
1259                                  struct ex_phy *parent_phy,
1260                                  struct ex_phy *child_phy)
1261 {
1262         int res = 0;
1263         struct domain_device *parent = child->parent;
1264
1265         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1266                 res = -ENODEV;
1267                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1268                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1269                             SAS_ADDR(parent->sas_addr),
1270                             parent_phy->phy_id,
1271                             SAS_ADDR(child->sas_addr),
1272                             child_phy->phy_id,
1273                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1274         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1275                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1276                        SAS_ADDR_SIZE);
1277                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1278                        SAS_ADDR_SIZE);
1279         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1280                     SAS_ADDR(parent->sas_addr)) ||
1281                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1282                     SAS_ADDR(child->sas_addr)))
1283                    &&
1284                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1285                      SAS_ADDR(parent->sas_addr)) ||
1286                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1287                      SAS_ADDR(child->sas_addr))))
1288                 ;
1289         else {
1290                 res = -ENODEV;
1291                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1292                             "phy 0x%x link forms a third EEDS!\n",
1293                             SAS_ADDR(parent->sas_addr),
1294                             parent_phy->phy_id,
1295                             SAS_ADDR(child->sas_addr),
1296                             child_phy->phy_id);
1297         }
1298
1299         return res;
1300 }
1301
1302 /* Here we spill over 80 columns.  It is intentional.
1303  */
1304 static int sas_check_parent_topology(struct domain_device *child)
1305 {
1306         struct expander_device *child_ex = &child->ex_dev;
1307         struct expander_device *parent_ex;
1308         int i;
1309         int res = 0;
1310
1311         if (!child->parent)
1312                 return 0;
1313
1314         if (child->parent->dev_type != EDGE_DEV &&
1315             child->parent->dev_type != FANOUT_DEV)
1316                 return 0;
1317
1318         parent_ex = &child->parent->ex_dev;
1319
1320         for (i = 0; i < parent_ex->num_phys; i++) {
1321                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1322                 struct ex_phy *child_phy;
1323
1324                 if (parent_phy->phy_state == PHY_VACANT ||
1325                     parent_phy->phy_state == PHY_NOT_PRESENT)
1326                         continue;
1327
1328                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1329                         continue;
1330
1331                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1332
1333                 switch (child->parent->dev_type) {
1334                 case EDGE_DEV:
1335                         if (child->dev_type == FANOUT_DEV) {
1336                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1337                                     child_phy->routing_attr != TABLE_ROUTING) {
1338                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1339                                         res = -ENODEV;
1340                                 }
1341                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1342                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1343                                         res = sas_check_eeds(child, parent_phy, child_phy);
1344                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1345                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1346                                         res = -ENODEV;
1347                                 }
1348                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1349                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1350                                     (child_phy->routing_attr == TABLE_ROUTING &&
1351                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1352                                         /* All good */;
1353                                 } else {
1354                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355                                         res = -ENODEV;
1356                                 }
1357                         }
1358                         break;
1359                 case FANOUT_DEV:
1360                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1361                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1362                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1363                                 res = -ENODEV;
1364                         }
1365                         break;
1366                 default:
1367                         break;
1368                 }
1369         }
1370
1371         return res;
1372 }
1373
1374 #define RRI_REQ_SIZE  16
1375 #define RRI_RESP_SIZE 44
1376
1377 static int sas_configure_present(struct domain_device *dev, int phy_id,
1378                                  u8 *sas_addr, int *index, int *present)
1379 {
1380         int i, res = 0;
1381         struct expander_device *ex = &dev->ex_dev;
1382         struct ex_phy *phy = &ex->ex_phy[phy_id];
1383         u8 *rri_req;
1384         u8 *rri_resp;
1385
1386         *present = 0;
1387         *index = 0;
1388
1389         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1390         if (!rri_req)
1391                 return -ENOMEM;
1392
1393         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1394         if (!rri_resp) {
1395                 kfree(rri_req);
1396                 return -ENOMEM;
1397         }
1398
1399         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1400         rri_req[9] = phy_id;
1401
1402         for (i = 0; i < ex->max_route_indexes ; i++) {
1403                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1404                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1405                                        RRI_RESP_SIZE);
1406                 if (res)
1407                         goto out;
1408                 res = rri_resp[2];
1409                 if (res == SMP_RESP_NO_INDEX) {
1410                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1411                                     "phy 0x%x index 0x%x\n",
1412                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1413                         goto out;
1414                 } else if (res != SMP_RESP_FUNC_ACC) {
1415                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1416                                     "result 0x%x\n", __func__,
1417                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1418                         goto out;
1419                 }
1420                 if (SAS_ADDR(sas_addr) != 0) {
1421                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1422                                 *index = i;
1423                                 if ((rri_resp[12] & 0x80) == 0x80)
1424                                         *present = 0;
1425                                 else
1426                                         *present = 1;
1427                                 goto out;
1428                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1429                                 *index = i;
1430                                 *present = 0;
1431                                 goto out;
1432                         }
1433                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1434                            phy->last_da_index < i) {
1435                         phy->last_da_index = i;
1436                         *index = i;
1437                         *present = 0;
1438                         goto out;
1439                 }
1440         }
1441         res = -1;
1442 out:
1443         kfree(rri_req);
1444         kfree(rri_resp);
1445         return res;
1446 }
1447
1448 #define CRI_REQ_SIZE  44
1449 #define CRI_RESP_SIZE  8
1450
1451 static int sas_configure_set(struct domain_device *dev, int phy_id,
1452                              u8 *sas_addr, int index, int include)
1453 {
1454         int res;
1455         u8 *cri_req;
1456         u8 *cri_resp;
1457
1458         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1459         if (!cri_req)
1460                 return -ENOMEM;
1461
1462         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1463         if (!cri_resp) {
1464                 kfree(cri_req);
1465                 return -ENOMEM;
1466         }
1467
1468         cri_req[1] = SMP_CONF_ROUTE_INFO;
1469         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1470         cri_req[9] = phy_id;
1471         if (SAS_ADDR(sas_addr) == 0 || !include)
1472                 cri_req[12] |= 0x80;
1473         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1474
1475         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1476                                CRI_RESP_SIZE);
1477         if (res)
1478                 goto out;
1479         res = cri_resp[2];
1480         if (res == SMP_RESP_NO_INDEX) {
1481                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1482                             "index 0x%x\n",
1483                             SAS_ADDR(dev->sas_addr), phy_id, index);
1484         }
1485 out:
1486         kfree(cri_req);
1487         kfree(cri_resp);
1488         return res;
1489 }
1490
1491 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1492                                     u8 *sas_addr, int include)
1493 {
1494         int index;
1495         int present;
1496         int res;
1497
1498         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1499         if (res)
1500                 return res;
1501         if (include ^ present)
1502                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1503
1504         return res;
1505 }
1506
1507 /**
1508  * sas_configure_parent -- configure routing table of parent
1509  * parent: parent expander
1510  * child: child expander
1511  * sas_addr: SAS port identifier of device directly attached to child
1512  */
1513 static int sas_configure_parent(struct domain_device *parent,
1514                                 struct domain_device *child,
1515                                 u8 *sas_addr, int include)
1516 {
1517         struct expander_device *ex_parent = &parent->ex_dev;
1518         int res = 0;
1519         int i;
1520
1521         if (parent->parent) {
1522                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1523                                            include);
1524                 if (res)
1525                         return res;
1526         }
1527
1528         if (ex_parent->conf_route_table == 0) {
1529                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1530                             SAS_ADDR(parent->sas_addr));
1531                 return 0;
1532         }
1533
1534         for (i = 0; i < ex_parent->num_phys; i++) {
1535                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1536
1537                 if ((phy->routing_attr == TABLE_ROUTING) &&
1538                     (SAS_ADDR(phy->attached_sas_addr) ==
1539                      SAS_ADDR(child->sas_addr))) {
1540                         res = sas_configure_phy(parent, i, sas_addr, include);
1541                         if (res)
1542                                 return res;
1543                 }
1544         }
1545
1546         return res;
1547 }
1548
1549 /**
1550  * sas_configure_routing -- configure routing
1551  * dev: expander device
1552  * sas_addr: port identifier of device directly attached to the expander device
1553  */
1554 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1555 {
1556         if (dev->parent)
1557                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1558         return 0;
1559 }
1560
1561 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1562 {
1563         if (dev->parent)
1564                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1565         return 0;
1566 }
1567
1568 /**
1569  * sas_discover_expander -- expander discovery
1570  * @ex: pointer to expander domain device
1571  *
1572  * See comment in sas_discover_sata().
1573  */
1574 static int sas_discover_expander(struct domain_device *dev)
1575 {
1576         int res;
1577
1578         res = sas_notify_lldd_dev_found(dev);
1579         if (res)
1580                 return res;
1581
1582         res = sas_ex_general(dev);
1583         if (res)
1584                 goto out_err;
1585         res = sas_ex_manuf_info(dev);
1586         if (res)
1587                 goto out_err;
1588
1589         res = sas_expander_discover(dev);
1590         if (res) {
1591                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1592                             SAS_ADDR(dev->sas_addr), res);
1593                 goto out_err;
1594         }
1595
1596         sas_check_ex_subtractive_boundary(dev);
1597         res = sas_check_parent_topology(dev);
1598         if (res)
1599                 goto out_err;
1600         return 0;
1601 out_err:
1602         sas_notify_lldd_dev_gone(dev);
1603         return res;
1604 }
1605
1606 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1607 {
1608         int res = 0;
1609         struct domain_device *dev;
1610
1611         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1612                 if (dev->dev_type == EDGE_DEV ||
1613                     dev->dev_type == FANOUT_DEV) {
1614                         struct sas_expander_device *ex =
1615                                 rphy_to_expander_device(dev->rphy);
1616
1617                         if (level == ex->level)
1618                                 res = sas_ex_discover_devices(dev, -1);
1619                         else if (level > 0)
1620                                 res = sas_ex_discover_devices(port->port_dev, -1);
1621
1622                 }
1623         }
1624
1625         return res;
1626 }
1627
1628 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1629 {
1630         int res;
1631         int level;
1632
1633         do {
1634                 level = port->disc.max_level;
1635                 res = sas_ex_level_discovery(port, level);
1636                 mb();
1637         } while (level < port->disc.max_level);
1638
1639         return res;
1640 }
1641
1642 int sas_discover_root_expander(struct domain_device *dev)
1643 {
1644         int res;
1645         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1646
1647         res = sas_rphy_add(dev->rphy);
1648         if (res)
1649                 goto out_err;
1650
1651         ex->level = dev->port->disc.max_level; /* 0 */
1652         res = sas_discover_expander(dev);
1653         if (res)
1654                 goto out_err2;
1655
1656         sas_ex_bfs_disc(dev->port);
1657
1658         return res;
1659
1660 out_err2:
1661         sas_rphy_remove(dev->rphy);
1662 out_err:
1663         return res;
1664 }
1665
1666 /* ---------- Domain revalidation ---------- */
1667
1668 static int sas_get_phy_discover(struct domain_device *dev,
1669                                 int phy_id, struct smp_resp *disc_resp)
1670 {
1671         int res;
1672         u8 *disc_req;
1673
1674         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1675         if (!disc_req)
1676                 return -ENOMEM;
1677
1678         disc_req[1] = SMP_DISCOVER;
1679         disc_req[9] = phy_id;
1680
1681         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1682                                disc_resp, DISCOVER_RESP_SIZE);
1683         if (res)
1684                 goto out;
1685         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1686                 res = disc_resp->result;
1687                 goto out;
1688         }
1689 out:
1690         kfree(disc_req);
1691         return res;
1692 }
1693
1694 static int sas_get_phy_change_count(struct domain_device *dev,
1695                                     int phy_id, int *pcc)
1696 {
1697         int res;
1698         struct smp_resp *disc_resp;
1699
1700         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1701         if (!disc_resp)
1702                 return -ENOMEM;
1703
1704         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1705         if (!res)
1706                 *pcc = disc_resp->disc.change_count;
1707
1708         kfree(disc_resp);
1709         return res;
1710 }
1711
1712 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1713                                     u8 *sas_addr, enum sas_dev_type *type)
1714 {
1715         int res;
1716         struct smp_resp *disc_resp;
1717         struct discover_resp *dr;
1718
1719         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1720         if (!disc_resp)
1721                 return -ENOMEM;
1722         dr = &disc_resp->disc;
1723
1724         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1725         if (res == 0) {
1726                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1727                 *type = to_dev_type(dr);
1728                 if (*type == 0)
1729                         memset(sas_addr, 0, 8);
1730         }
1731         kfree(disc_resp);
1732         return res;
1733 }
1734
1735 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1736                               int from_phy, bool update)
1737 {
1738         struct expander_device *ex = &dev->ex_dev;
1739         int res = 0;
1740         int i;
1741
1742         for (i = from_phy; i < ex->num_phys; i++) {
1743                 int phy_change_count = 0;
1744
1745                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1746                 switch (res) {
1747                 case SMP_RESP_PHY_VACANT:
1748                 case SMP_RESP_NO_PHY:
1749                         continue;
1750                 case SMP_RESP_FUNC_ACC:
1751                         break;
1752                 default:
1753                         return res;
1754                 }
1755
1756                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1757                         if (update)
1758                                 ex->ex_phy[i].phy_change_count =
1759                                         phy_change_count;
1760                         *phy_id = i;
1761                         return 0;
1762                 }
1763         }
1764         return 0;
1765 }
1766
1767 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1768 {
1769         int res;
1770         u8  *rg_req;
1771         struct smp_resp  *rg_resp;
1772
1773         rg_req = alloc_smp_req(RG_REQ_SIZE);
1774         if (!rg_req)
1775                 return -ENOMEM;
1776
1777         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1778         if (!rg_resp) {
1779                 kfree(rg_req);
1780                 return -ENOMEM;
1781         }
1782
1783         rg_req[1] = SMP_REPORT_GENERAL;
1784
1785         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1786                                RG_RESP_SIZE);
1787         if (res)
1788                 goto out;
1789         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1790                 res = rg_resp->result;
1791                 goto out;
1792         }
1793
1794         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1795 out:
1796         kfree(rg_resp);
1797         kfree(rg_req);
1798         return res;
1799 }
1800 /**
1801  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1802  * @dev:domain device to be detect.
1803  * @src_dev: the device which originated BROADCAST(CHANGE).
1804  *
1805  * Add self-configuration expander suport. Suppose two expander cascading,
1806  * when the first level expander is self-configuring, hotplug the disks in
1807  * second level expander, BROADCAST(CHANGE) will not only be originated
1808  * in the second level expander, but also be originated in the first level
1809  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1810  * expander changed count in two level expanders will all increment at least
1811  * once, but the phy which chang count has changed is the source device which
1812  * we concerned.
1813  */
1814
1815 static int sas_find_bcast_dev(struct domain_device *dev,
1816                               struct domain_device **src_dev)
1817 {
1818         struct expander_device *ex = &dev->ex_dev;
1819         int ex_change_count = -1;
1820         int phy_id = -1;
1821         int res;
1822         struct domain_device *ch;
1823
1824         res = sas_get_ex_change_count(dev, &ex_change_count);
1825         if (res)
1826                 goto out;
1827         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1828                 /* Just detect if this expander phys phy change count changed,
1829                 * in order to determine if this expander originate BROADCAST,
1830                 * and do not update phy change count field in our structure.
1831                 */
1832                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1833                 if (phy_id != -1) {
1834                         *src_dev = dev;
1835                         ex->ex_change_count = ex_change_count;
1836                         SAS_DPRINTK("Expander phy change count has changed\n");
1837                         return res;
1838                 } else
1839                         SAS_DPRINTK("Expander phys DID NOT change\n");
1840         }
1841         list_for_each_entry(ch, &ex->children, siblings) {
1842                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1843                         res = sas_find_bcast_dev(ch, src_dev);
1844                         if (*src_dev)
1845                                 return res;
1846                 }
1847         }
1848 out:
1849         return res;
1850 }
1851
1852 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1853 {
1854         struct expander_device *ex = &dev->ex_dev;
1855         struct domain_device *child, *n;
1856
1857         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1858                 set_bit(SAS_DEV_GONE, &child->state);
1859                 if (child->dev_type == EDGE_DEV ||
1860                     child->dev_type == FANOUT_DEV)
1861                         sas_unregister_ex_tree(port, child);
1862                 else
1863                         sas_unregister_dev(port, child);
1864         }
1865         sas_unregister_dev(port, dev);
1866 }
1867
1868 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1869                                          int phy_id, bool last)
1870 {
1871         struct expander_device *ex_dev = &parent->ex_dev;
1872         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1873         struct domain_device *child, *n, *found = NULL;
1874         if (last) {
1875                 list_for_each_entry_safe(child, n,
1876                         &ex_dev->children, siblings) {
1877                         if (SAS_ADDR(child->sas_addr) ==
1878                             SAS_ADDR(phy->attached_sas_addr)) {
1879                                 set_bit(SAS_DEV_GONE, &child->state);
1880                                 if (child->dev_type == EDGE_DEV ||
1881                                     child->dev_type == FANOUT_DEV)
1882                                         sas_unregister_ex_tree(parent->port, child);
1883                                 else
1884                                         sas_unregister_dev(parent->port, child);
1885                                 found = child;
1886                                 break;
1887                         }
1888                 }
1889                 sas_disable_routing(parent, phy->attached_sas_addr);
1890         }
1891         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1892         if (phy->port) {
1893                 sas_port_delete_phy(phy->port, phy->phy);
1894                 sas_device_set_phy(found, phy->port);
1895                 if (phy->port->num_phys == 0)
1896                         sas_port_delete(phy->port);
1897                 phy->port = NULL;
1898         }
1899 }
1900
1901 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1902                                           const int level)
1903 {
1904         struct expander_device *ex_root = &root->ex_dev;
1905         struct domain_device *child;
1906         int res = 0;
1907
1908         list_for_each_entry(child, &ex_root->children, siblings) {
1909                 if (child->dev_type == EDGE_DEV ||
1910                     child->dev_type == FANOUT_DEV) {
1911                         struct sas_expander_device *ex =
1912                                 rphy_to_expander_device(child->rphy);
1913
1914                         if (level > ex->level)
1915                                 res = sas_discover_bfs_by_root_level(child,
1916                                                                      level);
1917                         else if (level == ex->level)
1918                                 res = sas_ex_discover_devices(child, -1);
1919                 }
1920         }
1921         return res;
1922 }
1923
1924 static int sas_discover_bfs_by_root(struct domain_device *dev)
1925 {
1926         int res;
1927         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1928         int level = ex->level+1;
1929
1930         res = sas_ex_discover_devices(dev, -1);
1931         if (res)
1932                 goto out;
1933         do {
1934                 res = sas_discover_bfs_by_root_level(dev, level);
1935                 mb();
1936                 level += 1;
1937         } while (level <= dev->port->disc.max_level);
1938 out:
1939         return res;
1940 }
1941
1942 static int sas_discover_new(struct domain_device *dev, int phy_id)
1943 {
1944         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1945         struct domain_device *child;
1946         bool found = false;
1947         int res, i;
1948
1949         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1950                     SAS_ADDR(dev->sas_addr), phy_id);
1951         res = sas_ex_phy_discover(dev, phy_id);
1952         if (res)
1953                 goto out;
1954         /* to support the wide port inserted */
1955         for (i = 0; i < dev->ex_dev.num_phys; i++) {
1956                 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1957                 if (i == phy_id)
1958                         continue;
1959                 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1960                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1961                         found = true;
1962                         break;
1963                 }
1964         }
1965         if (found) {
1966                 sas_ex_join_wide_port(dev, phy_id);
1967                 return 0;
1968         }
1969         res = sas_ex_discover_devices(dev, phy_id);
1970         if (!res)
1971                 goto out;
1972         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1973                 if (SAS_ADDR(child->sas_addr) ==
1974                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1975                         if (child->dev_type == EDGE_DEV ||
1976                             child->dev_type == FANOUT_DEV)
1977                                 res = sas_discover_bfs_by_root(child);
1978                         break;
1979                 }
1980         }
1981 out:
1982         return res;
1983 }
1984
1985 static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1986 {
1987         if (old == new)
1988                 return true;
1989
1990         /* treat device directed resets as flutter, if we went
1991          * SAS_END_DEV to SATA_PENDING the link needs recovery
1992          */
1993         if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1994             (old == SAS_END_DEV && new == SATA_PENDING))
1995                 return true;
1996
1997         return false;
1998 }
1999
2000 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2001 {
2002         struct expander_device *ex = &dev->ex_dev;
2003         struct ex_phy *phy = &ex->ex_phy[phy_id];
2004         enum sas_dev_type type = NO_DEVICE;
2005         u8 sas_addr[8];
2006         int res;
2007
2008         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2009         switch (res) {
2010         case SMP_RESP_NO_PHY:
2011                 phy->phy_state = PHY_NOT_PRESENT;
2012                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2013                 return res;
2014         case SMP_RESP_PHY_VACANT:
2015                 phy->phy_state = PHY_VACANT;
2016                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2017                 return res;
2018         case SMP_RESP_FUNC_ACC:
2019                 break;
2020         }
2021
2022         if (SAS_ADDR(sas_addr) == 0) {
2023                 phy->phy_state = PHY_EMPTY;
2024                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2025                 return res;
2026         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2027                    dev_type_flutter(type, phy->attached_dev_type)) {
2028                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2029                 char *action = "";
2030
2031                 sas_ex_phy_discover(dev, phy_id);
2032
2033                 if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2034                         action = ", needs recovery";
2035                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2036                             SAS_ADDR(dev->sas_addr), phy_id, action);
2037                 return res;
2038         }
2039
2040         /* delete the old link */
2041         if (SAS_ADDR(phy->attached_sas_addr) &&
2042             SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2043                 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2044                             SAS_ADDR(dev->sas_addr), phy_id,
2045                             SAS_ADDR(phy->attached_sas_addr));
2046                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2047         }
2048
2049         return sas_discover_new(dev, phy_id);
2050 }
2051
2052 /**
2053  * sas_rediscover - revalidate the domain.
2054  * @dev:domain device to be detect.
2055  * @phy_id: the phy id will be detected.
2056  *
2057  * NOTE: this process _must_ quit (return) as soon as any connection
2058  * errors are encountered.  Connection recovery is done elsewhere.
2059  * Discover process only interrogates devices in order to discover the
2060  * domain.For plugging out, we un-register the device only when it is
2061  * the last phy in the port, for other phys in this port, we just delete it
2062  * from the port.For inserting, we do discovery when it is the
2063  * first phy,for other phys in this port, we add it to the port to
2064  * forming the wide-port.
2065  */
2066 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2067 {
2068         struct expander_device *ex = &dev->ex_dev;
2069         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2070         int res = 0;
2071         int i;
2072         bool last = true;       /* is this the last phy of the port */
2073
2074         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2075                     SAS_ADDR(dev->sas_addr), phy_id);
2076
2077         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2078                 for (i = 0; i < ex->num_phys; i++) {
2079                         struct ex_phy *phy = &ex->ex_phy[i];
2080
2081                         if (i == phy_id)
2082                                 continue;
2083                         if (SAS_ADDR(phy->attached_sas_addr) ==
2084                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2085                                 SAS_DPRINTK("phy%d part of wide port with "
2086                                             "phy%d\n", phy_id, i);
2087                                 last = false;
2088                                 break;
2089                         }
2090                 }
2091                 res = sas_rediscover_dev(dev, phy_id, last);
2092         } else
2093                 res = sas_discover_new(dev, phy_id);
2094         return res;
2095 }
2096
2097 /**
2098  * sas_revalidate_domain -- revalidate the domain
2099  * @port: port to the domain of interest
2100  *
2101  * NOTE: this process _must_ quit (return) as soon as any connection
2102  * errors are encountered.  Connection recovery is done elsewhere.
2103  * Discover process only interrogates devices in order to discover the
2104  * domain.
2105  */
2106 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2107 {
2108         int res;
2109         struct domain_device *dev = NULL;
2110
2111         res = sas_find_bcast_dev(port_dev, &dev);
2112         if (res)
2113                 goto out;
2114         if (dev) {
2115                 struct expander_device *ex = &dev->ex_dev;
2116                 int i = 0, phy_id;
2117
2118                 do {
2119                         phy_id = -1;
2120                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121                         if (phy_id == -1)
2122                                 break;
2123                         res = sas_rediscover(dev, phy_id);
2124                         i = phy_id + 1;
2125                 } while (i < ex->num_phys);
2126         }
2127 out:
2128         return res;
2129 }
2130
2131 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2132                     struct request *req)
2133 {
2134         struct domain_device *dev;
2135         int ret, type;
2136         struct request *rsp = req->next_rq;
2137
2138         if (!rsp) {
2139                 printk("%s: space for a smp response is missing\n",
2140                        __func__);
2141                 return -EINVAL;
2142         }
2143
2144         /* no rphy means no smp target support (ie aic94xx host) */
2145         if (!rphy)
2146                 return sas_smp_host_handler(shost, req, rsp);
2147
2148         type = rphy->identify.device_type;
2149
2150         if (type != SAS_EDGE_EXPANDER_DEVICE &&
2151             type != SAS_FANOUT_EXPANDER_DEVICE) {
2152                 printk("%s: can we send a smp request to a device?\n",
2153                        __func__);
2154                 return -EINVAL;
2155         }
2156
2157         dev = sas_find_dev_by_rphy(rphy);
2158         if (!dev) {
2159                 printk("%s: fail to find a domain_device?\n", __func__);
2160                 return -EINVAL;
2161         }
2162
2163         /* do we need to support multiple segments? */
2164         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2165                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2166                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2167                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2168                 return -EINVAL;
2169         }
2170
2171         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2172                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2173         if (ret > 0) {
2174                 /* positive number is the untransferred residual */
2175                 rsp->resid_len = ret;
2176                 req->resid_len = 0;
2177                 ret = 0;
2178         } else if (ret == 0) {
2179                 rsp->resid_len = 0;
2180                 req->resid_len = 0;
2181         }
2182
2183         return ret;
2184 }