isci: convert scic_timeout_timer to sci_timer
[pandora-kernel.git] / drivers / scsi / isci / host.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/device.h>
56 #include <scsi/sas.h>
57 #include "host.h"
58 #include "isci.h"
59 #include "port.h"
60 #include "host.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69 #include "scu_unsolicited_frame.h"
70 #include "timers.h"
71
72 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
73
74 /**
75  * smu_dcc_get_max_ports() -
76  *
77  * This macro returns the maximum number of logical ports supported by the
78  * hardware. The caller passes in the value read from the device context
79  * capacity register and this macro will mash and shift the value appropriately.
80  */
81 #define smu_dcc_get_max_ports(dcc_value) \
82         (\
83                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
84                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
85         )
86
87 /**
88  * smu_dcc_get_max_task_context() -
89  *
90  * This macro returns the maximum number of task contexts supported by the
91  * hardware. The caller passes in the value read from the device context
92  * capacity register and this macro will mash and shift the value appropriately.
93  */
94 #define smu_dcc_get_max_task_context(dcc_value) \
95         (\
96                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
97                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
98         )
99
100 /**
101  * smu_dcc_get_max_remote_node_context() -
102  *
103  * This macro returns the maximum number of remote node contexts supported by
104  * the hardware. The caller passes in the value read from the device context
105  * capacity register and this macro will mash and shift the value appropriately.
106  */
107 #define smu_dcc_get_max_remote_node_context(dcc_value) \
108         (\
109                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
110                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
111         )
112
113
114 #define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT  3
115 #define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT  3
116
117 /**
118  *
119  *
120  * The number of milliseconds to wait for a phy to start.
121  */
122 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
123
124 /**
125  *
126  *
127  * The number of milliseconds to wait while a given phy is consuming power
128  * before allowing another set of phys to consume power. Ultimately, this will
129  * be specified by OEM parameter.
130  */
131 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
132
133 /**
134  * NORMALIZE_PUT_POINTER() -
135  *
136  * This macro will normalize the completion queue put pointer so its value can
137  * be used as an array inde
138  */
139 #define NORMALIZE_PUT_POINTER(x) \
140         ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
141
142
143 /**
144  * NORMALIZE_EVENT_POINTER() -
145  *
146  * This macro will normalize the completion queue event entry so its value can
147  * be used as an index.
148  */
149 #define NORMALIZE_EVENT_POINTER(x) \
150         (\
151                 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
152                 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
153         )
154
155 /**
156  * INCREMENT_COMPLETION_QUEUE_GET() -
157  *
158  * This macro will increment the controllers completion queue index value and
159  * possibly toggle the cycle bit if the completion queue index wraps back to 0.
160  */
161 #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
162         INCREMENT_QUEUE_GET(\
163                 (index), \
164                 (cycle), \
165                 (controller)->completion_queue_entries, \
166                 SMU_CQGR_CYCLE_BIT \
167                 )
168
169 /**
170  * INCREMENT_EVENT_QUEUE_GET() -
171  *
172  * This macro will increment the controllers event queue index value and
173  * possibly toggle the event cycle bit if the event queue index wraps back to 0.
174  */
175 #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
176         INCREMENT_QUEUE_GET(\
177                 (index), \
178                 (cycle), \
179                 (controller)->completion_event_entries, \
180                 SMU_CQGR_EVENT_CYCLE_BIT \
181                 )
182
183
184 /**
185  * NORMALIZE_GET_POINTER() -
186  *
187  * This macro will normalize the completion queue get pointer so its value can
188  * be used as an index into an array
189  */
190 #define NORMALIZE_GET_POINTER(x) \
191         ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
192
193 /**
194  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
195  *
196  * This macro will normalize the completion queue cycle pointer so it matches
197  * the completion queue cycle bit
198  */
199 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
200         ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
201
202 /**
203  * COMPLETION_QUEUE_CYCLE_BIT() -
204  *
205  * This macro will return the cycle bit of the completion queue entry
206  */
207 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
208
209 static bool scic_sds_controller_completion_queue_has_entries(
210         struct scic_sds_controller *scic)
211 {
212         u32 get_value = scic->completion_queue_get;
213         u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
214
215         if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
216             COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
217                 return true;
218
219         return false;
220 }
221
222 static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
223 {
224         if (scic_sds_controller_completion_queue_has_entries(scic)) {
225                 return true;
226         } else {
227                 /*
228                  * we have a spurious interrupt it could be that we have already
229                  * emptied the completion queue from a previous interrupt */
230                 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
231
232                 /*
233                  * There is a race in the hardware that could cause us not to be notified
234                  * of an interrupt completion if we do not take this step.  We will mask
235                  * then unmask the interrupts so if there is another interrupt pending
236                  * the clearing of the interrupt source we get the next interrupt message. */
237                 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
238                 writel(0, &scic->smu_registers->interrupt_mask);
239         }
240
241         return false;
242 }
243
244 irqreturn_t isci_msix_isr(int vec, void *data)
245 {
246         struct isci_host *ihost = data;
247
248         if (scic_sds_controller_isr(&ihost->sci))
249                 tasklet_schedule(&ihost->completion_tasklet);
250
251         return IRQ_HANDLED;
252 }
253
254 static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
255 {
256         u32 interrupt_status;
257
258         interrupt_status =
259                 readl(&scic->smu_registers->interrupt_status);
260         interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
261
262         if (interrupt_status != 0) {
263                 /*
264                  * There is an error interrupt pending so let it through and handle
265                  * in the callback */
266                 return true;
267         }
268
269         /*
270          * There is a race in the hardware that could cause us not to be notified
271          * of an interrupt completion if we do not take this step.  We will mask
272          * then unmask the error interrupts so if there was another interrupt
273          * pending we will be notified.
274          * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
275         writel(0xff, &scic->smu_registers->interrupt_mask);
276         writel(0, &scic->smu_registers->interrupt_mask);
277
278         return false;
279 }
280
281 static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
282                                                 u32 completion_entry)
283 {
284         u32 index;
285         struct scic_sds_request *io_request;
286
287         index = SCU_GET_COMPLETION_INDEX(completion_entry);
288         io_request = scic->io_request_table[index];
289
290         /* Make sure that we really want to process this IO request */
291         if (
292                 (io_request != NULL)
293                 && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
294                 && (
295                         scic_sds_io_tag_get_sequence(io_request->io_tag)
296                         == scic->io_request_sequence[index]
297                         )
298                 ) {
299                 /* Yep this is a valid io request pass it along to the io request handler */
300                 scic_sds_io_request_tc_completion(io_request, completion_entry);
301         }
302 }
303
304 static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
305                                                 u32 completion_entry)
306 {
307         u32 index;
308         struct scic_sds_request *io_request;
309         struct scic_sds_remote_device *device;
310
311         index = SCU_GET_COMPLETION_INDEX(completion_entry);
312
313         switch (scu_get_command_request_type(completion_entry)) {
314         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
315         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
316                 io_request = scic->io_request_table[index];
317                 dev_warn(scic_to_dev(scic),
318                          "%s: SCIC SDS Completion type SDMA %x for io request "
319                          "%p\n",
320                          __func__,
321                          completion_entry,
322                          io_request);
323                 /* @todo For a post TC operation we need to fail the IO
324                  * request
325                  */
326                 break;
327
328         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
329         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
330         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
331                 device = scic->device_table[index];
332                 dev_warn(scic_to_dev(scic),
333                          "%s: SCIC SDS Completion type SDMA %x for remote "
334                          "device %p\n",
335                          __func__,
336                          completion_entry,
337                          device);
338                 /* @todo For a port RNC operation we need to fail the
339                  * device
340                  */
341                 break;
342
343         default:
344                 dev_warn(scic_to_dev(scic),
345                          "%s: SCIC SDS Completion unknown SDMA completion "
346                          "type %x\n",
347                          __func__,
348                          completion_entry);
349                 break;
350
351         }
352 }
353
354 static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
355                                                   u32 completion_entry)
356 {
357         u32 index;
358         u32 frame_index;
359
360         struct isci_host *ihost = scic_to_ihost(scic);
361         struct scu_unsolicited_frame_header *frame_header;
362         struct scic_sds_phy *phy;
363         struct scic_sds_remote_device *device;
364
365         enum sci_status result = SCI_FAILURE;
366
367         frame_index = SCU_GET_FRAME_INDEX(completion_entry);
368
369         frame_header = scic->uf_control.buffers.array[frame_index].header;
370         scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
371
372         if (SCU_GET_FRAME_ERROR(completion_entry)) {
373                 /*
374                  * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
375                  * /       this cause a problem? We expect the phy initialization will
376                  * /       fail if there is an error in the frame. */
377                 scic_sds_controller_release_frame(scic, frame_index);
378                 return;
379         }
380
381         if (frame_header->is_address_frame) {
382                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
383                 phy = &ihost->phys[index].sci;
384                 result = scic_sds_phy_frame_handler(phy, frame_index);
385         } else {
386
387                 index = SCU_GET_COMPLETION_INDEX(completion_entry);
388
389                 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
390                         /*
391                          * This is a signature fis or a frame from a direct attached SATA
392                          * device that has not yet been created.  In either case forwared
393                          * the frame to the PE and let it take care of the frame data. */
394                         index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
395                         phy = &ihost->phys[index].sci;
396                         result = scic_sds_phy_frame_handler(phy, frame_index);
397                 } else {
398                         if (index < scic->remote_node_entries)
399                                 device = scic->device_table[index];
400                         else
401                                 device = NULL;
402
403                         if (device != NULL)
404                                 result = scic_sds_remote_device_frame_handler(device, frame_index);
405                         else
406                                 scic_sds_controller_release_frame(scic, frame_index);
407                 }
408         }
409
410         if (result != SCI_SUCCESS) {
411                 /*
412                  * / @todo Is there any reason to report some additional error message
413                  * /       when we get this failure notifiction? */
414         }
415 }
416
417 static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
418                                                  u32 completion_entry)
419 {
420         struct isci_host *ihost = scic_to_ihost(scic);
421         struct scic_sds_request *io_request;
422         struct scic_sds_remote_device *device;
423         struct scic_sds_phy *phy;
424         u32 index;
425
426         index = SCU_GET_COMPLETION_INDEX(completion_entry);
427
428         switch (scu_get_event_type(completion_entry)) {
429         case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
430                 /* / @todo The driver did something wrong and we need to fix the condtion. */
431                 dev_err(scic_to_dev(scic),
432                         "%s: SCIC Controller 0x%p received SMU command error "
433                         "0x%x\n",
434                         __func__,
435                         scic,
436                         completion_entry);
437                 break;
438
439         case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
440         case SCU_EVENT_TYPE_SMU_ERROR:
441         case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
442                 /*
443                  * / @todo This is a hardware failure and its likely that we want to
444                  * /       reset the controller. */
445                 dev_err(scic_to_dev(scic),
446                         "%s: SCIC Controller 0x%p received fatal controller "
447                         "event  0x%x\n",
448                         __func__,
449                         scic,
450                         completion_entry);
451                 break;
452
453         case SCU_EVENT_TYPE_TRANSPORT_ERROR:
454                 io_request = scic->io_request_table[index];
455                 scic_sds_io_request_event_handler(io_request, completion_entry);
456                 break;
457
458         case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
459                 switch (scu_get_event_specifier(completion_entry)) {
460                 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
461                 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
462                         io_request = scic->io_request_table[index];
463                         if (io_request != NULL)
464                                 scic_sds_io_request_event_handler(io_request, completion_entry);
465                         else
466                                 dev_warn(scic_to_dev(scic),
467                                          "%s: SCIC Controller 0x%p received "
468                                          "event 0x%x for io request object "
469                                          "that doesnt exist.\n",
470                                          __func__,
471                                          scic,
472                                          completion_entry);
473
474                         break;
475
476                 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
477                         device = scic->device_table[index];
478                         if (device != NULL)
479                                 scic_sds_remote_device_event_handler(device, completion_entry);
480                         else
481                                 dev_warn(scic_to_dev(scic),
482                                          "%s: SCIC Controller 0x%p received "
483                                          "event 0x%x for remote device object "
484                                          "that doesnt exist.\n",
485                                          __func__,
486                                          scic,
487                                          completion_entry);
488
489                         break;
490                 }
491                 break;
492
493         case SCU_EVENT_TYPE_BROADCAST_CHANGE:
494         /*
495          * direct the broadcast change event to the phy first and then let
496          * the phy redirect the broadcast change to the port object */
497         case SCU_EVENT_TYPE_ERR_CNT_EVENT:
498         /*
499          * direct error counter event to the phy object since that is where
500          * we get the event notification.  This is a type 4 event. */
501         case SCU_EVENT_TYPE_OSSP_EVENT:
502                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
503                 phy = &ihost->phys[index].sci;
504                 scic_sds_phy_event_handler(phy, completion_entry);
505                 break;
506
507         case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
508         case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
509         case SCU_EVENT_TYPE_RNC_OPS_MISC:
510                 if (index < scic->remote_node_entries) {
511                         device = scic->device_table[index];
512
513                         if (device != NULL)
514                                 scic_sds_remote_device_event_handler(device, completion_entry);
515                 } else
516                         dev_err(scic_to_dev(scic),
517                                 "%s: SCIC Controller 0x%p received event 0x%x "
518                                 "for remote device object 0x%0x that doesnt "
519                                 "exist.\n",
520                                 __func__,
521                                 scic,
522                                 completion_entry,
523                                 index);
524
525                 break;
526
527         default:
528                 dev_warn(scic_to_dev(scic),
529                          "%s: SCIC Controller received unknown event code %x\n",
530                          __func__,
531                          completion_entry);
532                 break;
533         }
534 }
535
536
537
538 static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
539 {
540         u32 completion_count = 0;
541         u32 completion_entry;
542         u32 get_index;
543         u32 get_cycle;
544         u32 event_index;
545         u32 event_cycle;
546
547         dev_dbg(scic_to_dev(scic),
548                 "%s: completion queue begining get:0x%08x\n",
549                 __func__,
550                 scic->completion_queue_get);
551
552         /* Get the component parts of the completion queue */
553         get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
554         get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
555
556         event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
557         event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
558
559         while (
560                 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
561                 == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
562                 ) {
563                 completion_count++;
564
565                 completion_entry = scic->completion_queue[get_index];
566                 INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
567
568                 dev_dbg(scic_to_dev(scic),
569                         "%s: completion queue entry:0x%08x\n",
570                         __func__,
571                         completion_entry);
572
573                 switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
574                 case SCU_COMPLETION_TYPE_TASK:
575                         scic_sds_controller_task_completion(scic, completion_entry);
576                         break;
577
578                 case SCU_COMPLETION_TYPE_SDMA:
579                         scic_sds_controller_sdma_completion(scic, completion_entry);
580                         break;
581
582                 case SCU_COMPLETION_TYPE_UFI:
583                         scic_sds_controller_unsolicited_frame(scic, completion_entry);
584                         break;
585
586                 case SCU_COMPLETION_TYPE_EVENT:
587                         INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
588                         scic_sds_controller_event_completion(scic, completion_entry);
589                         break;
590
591                 case SCU_COMPLETION_TYPE_NOTIFY:
592                         /*
593                          * Presently we do the same thing with a notify event that we do with the
594                          * other event codes. */
595                         INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
596                         scic_sds_controller_event_completion(scic, completion_entry);
597                         break;
598
599                 default:
600                         dev_warn(scic_to_dev(scic),
601                                  "%s: SCIC Controller received unknown "
602                                  "completion type %x\n",
603                                  __func__,
604                                  completion_entry);
605                         break;
606                 }
607         }
608
609         /* Update the get register if we completed one or more entries */
610         if (completion_count > 0) {
611                 scic->completion_queue_get =
612                         SMU_CQGR_GEN_BIT(ENABLE) |
613                         SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
614                         event_cycle |
615                         SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
616                         get_cycle |
617                         SMU_CQGR_GEN_VAL(POINTER, get_index);
618
619                 writel(scic->completion_queue_get,
620                        &scic->smu_registers->completion_queue_get);
621
622         }
623
624         dev_dbg(scic_to_dev(scic),
625                 "%s: completion queue ending get:0x%08x\n",
626                 __func__,
627                 scic->completion_queue_get);
628
629 }
630
631 static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
632 {
633         u32 interrupt_status;
634
635         interrupt_status =
636                 readl(&scic->smu_registers->interrupt_status);
637
638         if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
639             scic_sds_controller_completion_queue_has_entries(scic)) {
640
641                 scic_sds_controller_process_completions(scic);
642                 writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
643         } else {
644                 dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
645                         interrupt_status);
646
647                 sci_base_state_machine_change_state(&scic->state_machine,
648                                                     SCI_BASE_CONTROLLER_STATE_FAILED);
649
650                 return;
651         }
652
653         /* If we dont process any completions I am not sure that we want to do this.
654          * We are in the middle of a hardware fault and should probably be reset.
655          */
656         writel(0, &scic->smu_registers->interrupt_mask);
657 }
658
659 irqreturn_t isci_intx_isr(int vec, void *data)
660 {
661         irqreturn_t ret = IRQ_NONE;
662         struct isci_host *ihost = data;
663         struct scic_sds_controller *scic = &ihost->sci;
664
665         if (scic_sds_controller_isr(scic)) {
666                 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
667                 tasklet_schedule(&ihost->completion_tasklet);
668                 ret = IRQ_HANDLED;
669         } else if (scic_sds_controller_error_isr(scic)) {
670                 spin_lock(&ihost->scic_lock);
671                 scic_sds_controller_error_handler(scic);
672                 spin_unlock(&ihost->scic_lock);
673                 ret = IRQ_HANDLED;
674         }
675
676         return ret;
677 }
678
679 irqreturn_t isci_error_isr(int vec, void *data)
680 {
681         struct isci_host *ihost = data;
682
683         if (scic_sds_controller_error_isr(&ihost->sci))
684                 scic_sds_controller_error_handler(&ihost->sci);
685
686         return IRQ_HANDLED;
687 }
688
689 /**
690  * isci_host_start_complete() - This function is called by the core library,
691  *    through the ISCI Module, to indicate controller start status.
692  * @isci_host: This parameter specifies the ISCI host object
693  * @completion_status: This parameter specifies the completion status from the
694  *    core library.
695  *
696  */
697 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
698 {
699         if (completion_status != SCI_SUCCESS)
700                 dev_info(&ihost->pdev->dev,
701                         "controller start timed out, continuing...\n");
702         isci_host_change_state(ihost, isci_ready);
703         clear_bit(IHOST_START_PENDING, &ihost->flags);
704         wake_up(&ihost->eventq);
705 }
706
707 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
708 {
709         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
710
711         if (test_bit(IHOST_START_PENDING, &ihost->flags))
712                 return 0;
713
714         /* todo: use sas_flush_discovery once it is upstream */
715         scsi_flush_work(shost);
716
717         scsi_flush_work(shost);
718
719         dev_dbg(&ihost->pdev->dev,
720                 "%s: ihost->status = %d, time = %ld\n",
721                  __func__, isci_host_get_state(ihost), time);
722
723         return 1;
724
725 }
726
727 /**
728  * scic_controller_get_suggested_start_timeout() - This method returns the
729  *    suggested scic_controller_start() timeout amount.  The user is free to
730  *    use any timeout value, but this method provides the suggested minimum
731  *    start timeout value.  The returned value is based upon empirical
732  *    information determined as a result of interoperability testing.
733  * @controller: the handle to the controller object for which to return the
734  *    suggested start timeout.
735  *
736  * This method returns the number of milliseconds for the suggested start
737  * operation timeout.
738  */
739 static u32 scic_controller_get_suggested_start_timeout(
740         struct scic_sds_controller *sc)
741 {
742         /* Validate the user supplied parameters. */
743         if (sc == NULL)
744                 return 0;
745
746         /*
747          * The suggested minimum timeout value for a controller start operation:
748          *
749          *     Signature FIS Timeout
750          *   + Phy Start Timeout
751          *   + Number of Phy Spin Up Intervals
752          *   ---------------------------------
753          *   Number of milliseconds for the controller start operation.
754          *
755          * NOTE: The number of phy spin up intervals will be equivalent
756          *       to the number of phys divided by the number phys allowed
757          *       per interval - 1 (once OEM parameters are supported).
758          *       Currently we assume only 1 phy per interval. */
759
760         return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
761                 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
762                 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
763 }
764
765 static void scic_controller_enable_interrupts(
766         struct scic_sds_controller *scic)
767 {
768         BUG_ON(scic->smu_registers == NULL);
769         writel(0, &scic->smu_registers->interrupt_mask);
770 }
771
772 void scic_controller_disable_interrupts(
773         struct scic_sds_controller *scic)
774 {
775         BUG_ON(scic->smu_registers == NULL);
776         writel(0xffffffff, &scic->smu_registers->interrupt_mask);
777 }
778
779 static void scic_sds_controller_enable_port_task_scheduler(
780         struct scic_sds_controller *scic)
781 {
782         u32 port_task_scheduler_value;
783
784         port_task_scheduler_value =
785                 readl(&scic->scu_registers->peg0.ptsg.control);
786         port_task_scheduler_value |=
787                 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
788                  SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
789         writel(port_task_scheduler_value,
790                &scic->scu_registers->peg0.ptsg.control);
791 }
792
793 static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
794 {
795         u32 task_assignment;
796
797         /*
798          * Assign all the TCs to function 0
799          * TODO: Do we actually need to read this register to write it back?
800          */
801
802         task_assignment =
803                 readl(&scic->smu_registers->task_context_assignment[0]);
804
805         task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
806                 (SMU_TCA_GEN_VAL(ENDING,  scic->task_context_entries - 1)) |
807                 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
808
809         writel(task_assignment,
810                 &scic->smu_registers->task_context_assignment[0]);
811
812 }
813
814 static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
815 {
816         u32 index;
817         u32 completion_queue_control_value;
818         u32 completion_queue_get_value;
819         u32 completion_queue_put_value;
820
821         scic->completion_queue_get = 0;
822
823         completion_queue_control_value = (
824                 SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1)
825                 | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1)
826                 );
827
828         writel(completion_queue_control_value,
829                &scic->smu_registers->completion_queue_control);
830
831
832         /* Set the completion queue get pointer and enable the queue */
833         completion_queue_get_value = (
834                 (SMU_CQGR_GEN_VAL(POINTER, 0))
835                 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
836                 | (SMU_CQGR_GEN_BIT(ENABLE))
837                 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
838                 );
839
840         writel(completion_queue_get_value,
841                &scic->smu_registers->completion_queue_get);
842
843         /* Set the completion queue put pointer */
844         completion_queue_put_value = (
845                 (SMU_CQPR_GEN_VAL(POINTER, 0))
846                 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
847                 );
848
849         writel(completion_queue_put_value,
850                &scic->smu_registers->completion_queue_put);
851
852         /* Initialize the cycle bit of the completion queue entries */
853         for (index = 0; index < scic->completion_queue_entries; index++) {
854                 /*
855                  * If get.cycle_bit != completion_queue.cycle_bit
856                  * its not a valid completion queue entry
857                  * so at system start all entries are invalid */
858                 scic->completion_queue[index] = 0x80000000;
859         }
860 }
861
862 static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
863 {
864         u32 frame_queue_control_value;
865         u32 frame_queue_get_value;
866         u32 frame_queue_put_value;
867
868         /* Write the queue size */
869         frame_queue_control_value =
870                 SCU_UFQC_GEN_VAL(QUEUE_SIZE,
871                                  scic->uf_control.address_table.count);
872
873         writel(frame_queue_control_value,
874                &scic->scu_registers->sdma.unsolicited_frame_queue_control);
875
876         /* Setup the get pointer for the unsolicited frame queue */
877         frame_queue_get_value = (
878                 SCU_UFQGP_GEN_VAL(POINTER, 0)
879                 |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
880                 );
881
882         writel(frame_queue_get_value,
883                &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
884         /* Setup the put pointer for the unsolicited frame queue */
885         frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
886         writel(frame_queue_put_value,
887                &scic->scu_registers->sdma.unsolicited_frame_put_pointer);
888 }
889
890 /**
891  * This method will attempt to transition into the ready state for the
892  *    controller and indicate that the controller start operation has completed
893  *    if all criteria are met.
894  * @scic: This parameter indicates the controller object for which
895  *    to transition to ready.
896  * @status: This parameter indicates the status value to be pass into the call
897  *    to scic_cb_controller_start_complete().
898  *
899  * none.
900  */
901 static void scic_sds_controller_transition_to_ready(
902         struct scic_sds_controller *scic,
903         enum sci_status status)
904 {
905         struct isci_host *ihost = scic_to_ihost(scic);
906
907         if (scic->state_machine.current_state_id ==
908             SCI_BASE_CONTROLLER_STATE_STARTING) {
909                 /*
910                  * We move into the ready state, because some of the phys/ports
911                  * may be up and operational.
912                  */
913                 sci_base_state_machine_change_state(&scic->state_machine,
914                                                     SCI_BASE_CONTROLLER_STATE_READY);
915
916                 isci_host_start_complete(ihost, status);
917         }
918 }
919
920 static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic)
921 {
922         isci_timer_stop(scic->phy_startup_timer);
923
924         scic->phy_startup_timer_pending = false;
925 }
926
927 static void scic_sds_controller_phy_timer_start(struct scic_sds_controller *scic)
928 {
929         isci_timer_start(scic->phy_startup_timer,
930                          SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
931
932         scic->phy_startup_timer_pending = true;
933 }
934
935 static bool is_phy_starting(struct scic_sds_phy *sci_phy)
936 {
937         enum scic_sds_phy_states state;
938
939         state = sci_phy->state_machine.current_state_id;
940         switch (state) {
941         case SCI_BASE_PHY_STATE_STARTING:
942         case SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL:
943         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN:
944         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF:
945         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER:
946         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER:
947         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN:
948         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN:
949         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF:
950         case SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL:
951                 return true;
952         default:
953                 return false;
954         }
955 }
956
957 /**
958  * scic_sds_controller_start_next_phy - start phy
959  * @scic: controller
960  *
961  * If all the phys have been started, then attempt to transition the
962  * controller to the READY state and inform the user
963  * (scic_cb_controller_start_complete()).
964  */
965 static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
966 {
967         struct isci_host *ihost = scic_to_ihost(scic);
968         struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
969         struct scic_sds_phy *sci_phy;
970         enum sci_status status;
971
972         status = SCI_SUCCESS;
973
974         if (scic->phy_startup_timer_pending)
975                 return status;
976
977         if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
978                 bool is_controller_start_complete = true;
979                 u32 state;
980                 u8 index;
981
982                 for (index = 0; index < SCI_MAX_PHYS; index++) {
983                         sci_phy = &ihost->phys[index].sci;
984                         state = sci_phy->state_machine.current_state_id;
985
986                         if (!phy_get_non_dummy_port(sci_phy))
987                                 continue;
988
989                         /* The controller start operation is complete iff:
990                          * - all links have been given an opportunity to start
991                          * - have no indication of a connected device
992                          * - have an indication of a connected device and it has
993                          *   finished the link training process.
994                          */
995                         if ((sci_phy->is_in_link_training == false &&
996                              state == SCI_BASE_PHY_STATE_INITIAL) ||
997                             (sci_phy->is_in_link_training == false &&
998                              state == SCI_BASE_PHY_STATE_STOPPED) ||
999                             (sci_phy->is_in_link_training == true &&
1000                              is_phy_starting(sci_phy))) {
1001                                 is_controller_start_complete = false;
1002                                 break;
1003                         }
1004                 }
1005
1006                 /*
1007                  * The controller has successfully finished the start process.
1008                  * Inform the SCI Core user and transition to the READY state. */
1009                 if (is_controller_start_complete == true) {
1010                         scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
1011                         scic_sds_controller_phy_timer_stop(scic);
1012                 }
1013         } else {
1014                 sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
1015
1016                 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1017                         if (phy_get_non_dummy_port(sci_phy) == NULL) {
1018                                 scic->next_phy_to_start++;
1019
1020                                 /* Caution recursion ahead be forwarned
1021                                  *
1022                                  * The PHY was never added to a PORT in MPC mode
1023                                  * so start the next phy in sequence This phy
1024                                  * will never go link up and will not draw power
1025                                  * the OEM parameters either configured the phy
1026                                  * incorrectly for the PORT or it was never
1027                                  * assigned to a PORT
1028                                  */
1029                                 return scic_sds_controller_start_next_phy(scic);
1030                         }
1031                 }
1032
1033                 status = scic_sds_phy_start(sci_phy);
1034
1035                 if (status == SCI_SUCCESS) {
1036                         scic_sds_controller_phy_timer_start(scic);
1037                 } else {
1038                         dev_warn(scic_to_dev(scic),
1039                                  "%s: Controller stop operation failed "
1040                                  "to stop phy %d because of status "
1041                                  "%d.\n",
1042                                  __func__,
1043                                  ihost->phys[scic->next_phy_to_start].sci.phy_index,
1044                                  status);
1045                 }
1046
1047                 scic->next_phy_to_start++;
1048         }
1049
1050         return status;
1051 }
1052
1053 static void scic_sds_controller_phy_startup_timeout_handler(void *_scic)
1054 {
1055         struct scic_sds_controller *scic = _scic;
1056         enum sci_status status;
1057
1058         scic->phy_startup_timer_pending = false;
1059         status = SCI_FAILURE;
1060         while (status != SCI_SUCCESS)
1061                 status = scic_sds_controller_start_next_phy(scic);
1062 }
1063
1064 static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
1065                                              u32 timeout)
1066 {
1067         struct isci_host *ihost = scic_to_ihost(scic);
1068         enum sci_status result;
1069         u16 index;
1070
1071         if (scic->state_machine.current_state_id !=
1072             SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1073                 dev_warn(scic_to_dev(scic),
1074                          "SCIC Controller start operation requested in "
1075                          "invalid state\n");
1076                 return SCI_FAILURE_INVALID_STATE;
1077         }
1078
1079         /* Build the TCi free pool */
1080         sci_pool_initialize(scic->tci_pool);
1081         for (index = 0; index < scic->task_context_entries; index++)
1082                 sci_pool_put(scic->tci_pool, index);
1083
1084         /* Build the RNi free pool */
1085         scic_sds_remote_node_table_initialize(
1086                         &scic->available_remote_nodes,
1087                         scic->remote_node_entries);
1088
1089         /*
1090          * Before anything else lets make sure we will not be
1091          * interrupted by the hardware.
1092          */
1093         scic_controller_disable_interrupts(scic);
1094
1095         /* Enable the port task scheduler */
1096         scic_sds_controller_enable_port_task_scheduler(scic);
1097
1098         /* Assign all the task entries to scic physical function */
1099         scic_sds_controller_assign_task_entries(scic);
1100
1101         /* Now initialize the completion queue */
1102         scic_sds_controller_initialize_completion_queue(scic);
1103
1104         /* Initialize the unsolicited frame queue for use */
1105         scic_sds_controller_initialize_unsolicited_frame_queue(scic);
1106
1107         /* Start all of the ports on this controller */
1108         for (index = 0; index < scic->logical_port_entries; index++) {
1109                 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1110
1111                 result = scic_sds_port_start(sci_port);
1112                 if (result)
1113                         return result;
1114         }
1115
1116         scic_sds_controller_start_next_phy(scic);
1117
1118         sci_mod_timer(&scic->timer, timeout);
1119
1120         sci_base_state_machine_change_state(&scic->state_machine,
1121                                             SCI_BASE_CONTROLLER_STATE_STARTING);
1122
1123         return SCI_SUCCESS;
1124 }
1125
1126 void isci_host_scan_start(struct Scsi_Host *shost)
1127 {
1128         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1129         unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
1130
1131         set_bit(IHOST_START_PENDING, &ihost->flags);
1132
1133         spin_lock_irq(&ihost->scic_lock);
1134         scic_controller_start(&ihost->sci, tmo);
1135         scic_controller_enable_interrupts(&ihost->sci);
1136         spin_unlock_irq(&ihost->scic_lock);
1137 }
1138
1139 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1140 {
1141         isci_host_change_state(ihost, isci_stopped);
1142         scic_controller_disable_interrupts(&ihost->sci);
1143         clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1144         wake_up(&ihost->eventq);
1145 }
1146
1147 static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
1148 {
1149         /* Empty out the completion queue */
1150         if (scic_sds_controller_completion_queue_has_entries(scic))
1151                 scic_sds_controller_process_completions(scic);
1152
1153         /* Clear the interrupt and enable all interrupts again */
1154         writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
1155         /* Could we write the value of SMU_ISR_COMPLETION? */
1156         writel(0xFF000000, &scic->smu_registers->interrupt_mask);
1157         writel(0, &scic->smu_registers->interrupt_mask);
1158 }
1159
1160 /**
1161  * isci_host_completion_routine() - This function is the delayed service
1162  *    routine that calls the sci core library's completion handler. It's
1163  *    scheduled as a tasklet from the interrupt service routine when interrupts
1164  *    in use, or set as the timeout function in polled mode.
1165  * @data: This parameter specifies the ISCI host object
1166  *
1167  */
1168 static void isci_host_completion_routine(unsigned long data)
1169 {
1170         struct isci_host *isci_host = (struct isci_host *)data;
1171         struct list_head    completed_request_list;
1172         struct list_head    errored_request_list;
1173         struct list_head    *current_position;
1174         struct list_head    *next_position;
1175         struct isci_request *request;
1176         struct isci_request *next_request;
1177         struct sas_task     *task;
1178
1179         INIT_LIST_HEAD(&completed_request_list);
1180         INIT_LIST_HEAD(&errored_request_list);
1181
1182         spin_lock_irq(&isci_host->scic_lock);
1183
1184         scic_sds_controller_completion_handler(&isci_host->sci);
1185
1186         /* Take the lists of completed I/Os from the host. */
1187
1188         list_splice_init(&isci_host->requests_to_complete,
1189                          &completed_request_list);
1190
1191         /* Take the list of errored I/Os from the host. */
1192         list_splice_init(&isci_host->requests_to_errorback,
1193                          &errored_request_list);
1194
1195         spin_unlock_irq(&isci_host->scic_lock);
1196
1197         /* Process any completions in the lists. */
1198         list_for_each_safe(current_position, next_position,
1199                            &completed_request_list) {
1200
1201                 request = list_entry(current_position, struct isci_request,
1202                                      completed_node);
1203                 task = isci_request_access_task(request);
1204
1205                 /* Normal notification (task_done) */
1206                 dev_dbg(&isci_host->pdev->dev,
1207                         "%s: Normal - request/task = %p/%p\n",
1208                         __func__,
1209                         request,
1210                         task);
1211
1212                 /* Return the task to libsas */
1213                 if (task != NULL) {
1214
1215                         task->lldd_task = NULL;
1216                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1217
1218                                 /* If the task is already in the abort path,
1219                                 * the task_done callback cannot be called.
1220                                 */
1221                                 task->task_done(task);
1222                         }
1223                 }
1224                 /* Free the request object. */
1225                 isci_request_free(isci_host, request);
1226         }
1227         list_for_each_entry_safe(request, next_request, &errored_request_list,
1228                                  completed_node) {
1229
1230                 task = isci_request_access_task(request);
1231
1232                 /* Use sas_task_abort */
1233                 dev_warn(&isci_host->pdev->dev,
1234                          "%s: Error - request/task = %p/%p\n",
1235                          __func__,
1236                          request,
1237                          task);
1238
1239                 if (task != NULL) {
1240
1241                         /* Put the task into the abort path if it's not there
1242                          * already.
1243                          */
1244                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1245                                 sas_task_abort(task);
1246
1247                 } else {
1248                         /* This is a case where the request has completed with a
1249                          * status such that it needed further target servicing,
1250                          * but the sas_task reference has already been removed
1251                          * from the request.  Since it was errored, it was not
1252                          * being aborted, so there is nothing to do except free
1253                          * it.
1254                          */
1255
1256                         spin_lock_irq(&isci_host->scic_lock);
1257                         /* Remove the request from the remote device's list
1258                         * of pending requests.
1259                         */
1260                         list_del_init(&request->dev_node);
1261                         spin_unlock_irq(&isci_host->scic_lock);
1262
1263                         /* Free the request object. */
1264                         isci_request_free(isci_host, request);
1265                 }
1266         }
1267
1268 }
1269
1270 /**
1271  * scic_controller_stop() - This method will stop an individual controller
1272  *    object.This method will invoke the associated user callback upon
1273  *    completion.  The completion callback is called when the following
1274  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1275  *    controller has been quiesced. This method will ensure that all IO
1276  *    requests are quiesced, phys are stopped, and all additional operation by
1277  *    the hardware is halted.
1278  * @controller: the handle to the controller object to stop.
1279  * @timeout: This parameter specifies the number of milliseconds in which the
1280  *    stop operation should complete.
1281  *
1282  * The controller must be in the STARTED or STOPPED state. Indicate if the
1283  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1284  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1285  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1286  * controller is not either in the STARTED or STOPPED states.
1287  */
1288 static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
1289                                             u32 timeout)
1290 {
1291         if (scic->state_machine.current_state_id !=
1292             SCI_BASE_CONTROLLER_STATE_READY) {
1293                 dev_warn(scic_to_dev(scic),
1294                          "SCIC Controller stop operation requested in "
1295                          "invalid state\n");
1296                 return SCI_FAILURE_INVALID_STATE;
1297         }
1298
1299         sci_mod_timer(&scic->timer, timeout);
1300         sci_base_state_machine_change_state(&scic->state_machine,
1301                                             SCI_BASE_CONTROLLER_STATE_STOPPING);
1302         return SCI_SUCCESS;
1303 }
1304
1305 /**
1306  * scic_controller_reset() - This method will reset the supplied core
1307  *    controller regardless of the state of said controller.  This operation is
1308  *    considered destructive.  In other words, all current operations are wiped
1309  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1310  *    requests are not aborted or completed at the actual remote device.
1311  * @controller: the handle to the controller object to reset.
1312  *
1313  * Indicate if the controller reset method succeeded or failed in some way.
1314  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1315  * the controller reset operation is unable to complete.
1316  */
1317 static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
1318 {
1319         switch (scic->state_machine.current_state_id) {
1320         case SCI_BASE_CONTROLLER_STATE_RESET:
1321         case SCI_BASE_CONTROLLER_STATE_READY:
1322         case SCI_BASE_CONTROLLER_STATE_STOPPED:
1323         case SCI_BASE_CONTROLLER_STATE_FAILED:
1324                 /*
1325                  * The reset operation is not a graceful cleanup, just
1326                  * perform the state transition.
1327                  */
1328                 sci_base_state_machine_change_state(&scic->state_machine,
1329                                 SCI_BASE_CONTROLLER_STATE_RESETTING);
1330                 return SCI_SUCCESS;
1331         default:
1332                 dev_warn(scic_to_dev(scic),
1333                          "SCIC Controller reset operation requested in "
1334                          "invalid state\n");
1335                 return SCI_FAILURE_INVALID_STATE;
1336         }
1337 }
1338
1339 void isci_host_deinit(struct isci_host *ihost)
1340 {
1341         int i;
1342
1343         isci_host_change_state(ihost, isci_stopping);
1344         for (i = 0; i < SCI_MAX_PORTS; i++) {
1345                 struct isci_port *iport = &ihost->ports[i];
1346                 struct isci_remote_device *idev, *d;
1347
1348                 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1349                         isci_remote_device_change_state(idev, isci_stopping);
1350                         isci_remote_device_stop(ihost, idev);
1351                 }
1352         }
1353
1354         set_bit(IHOST_STOP_PENDING, &ihost->flags);
1355
1356         spin_lock_irq(&ihost->scic_lock);
1357         scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
1358         spin_unlock_irq(&ihost->scic_lock);
1359
1360         wait_for_stop(ihost);
1361         scic_controller_reset(&ihost->sci);
1362
1363         /* Cancel any/all outstanding port timers */
1364         for (i = 0; i < ihost->sci.logical_port_entries; i++) {
1365                 struct scic_sds_port *sci_port = &ihost->ports[i].sci;
1366                 del_timer_sync(&sci_port->timer.timer);
1367         }
1368
1369         /* Cancel any/all outstanding phy timers */
1370         for (i = 0; i < SCI_MAX_PHYS; i++) {
1371                 struct scic_sds_phy *sci_phy = &ihost->phys[i].sci;
1372                 del_timer_sync(&sci_phy->sata_timer.timer);
1373         }
1374
1375         del_timer_sync(&ihost->sci.port_agent.timer.timer);
1376
1377         del_timer_sync(&ihost->sci.power_control.timer.timer);
1378
1379         del_timer_sync(&ihost->sci.timer.timer);
1380
1381         isci_timer_list_destroy(ihost);
1382 }
1383
1384 static void __iomem *scu_base(struct isci_host *isci_host)
1385 {
1386         struct pci_dev *pdev = isci_host->pdev;
1387         int id = isci_host->id;
1388
1389         return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1390 }
1391
1392 static void __iomem *smu_base(struct isci_host *isci_host)
1393 {
1394         struct pci_dev *pdev = isci_host->pdev;
1395         int id = isci_host->id;
1396
1397         return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1398 }
1399
1400 static void isci_user_parameters_get(
1401                 struct isci_host *isci_host,
1402                 union scic_user_parameters *scic_user_params)
1403 {
1404         struct scic_sds_user_parameters *u = &scic_user_params->sds1;
1405         int i;
1406
1407         for (i = 0; i < SCI_MAX_PHYS; i++) {
1408                 struct sci_phy_user_params *u_phy = &u->phys[i];
1409
1410                 u_phy->max_speed_generation = phy_gen;
1411
1412                 /* we are not exporting these for now */
1413                 u_phy->align_insertion_frequency = 0x7f;
1414                 u_phy->in_connection_align_insertion_frequency = 0xff;
1415                 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1416         }
1417
1418         u->stp_inactivity_timeout = stp_inactive_to;
1419         u->ssp_inactivity_timeout = ssp_inactive_to;
1420         u->stp_max_occupancy_timeout = stp_max_occ_to;
1421         u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1422         u->no_outbound_task_timeout = no_outbound_task_to;
1423         u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1424 }
1425
1426 static void scic_sds_controller_initial_state_enter(struct sci_base_state_machine *sm)
1427 {
1428         struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1429
1430         sci_base_state_machine_change_state(&scic->state_machine,
1431                         SCI_BASE_CONTROLLER_STATE_RESET);
1432 }
1433
1434 static inline void scic_sds_controller_starting_state_exit(struct sci_base_state_machine *sm)
1435 {
1436         struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1437
1438         sci_del_timer(&scic->timer);
1439 }
1440
1441 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1442 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1443 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1444 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1445 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1446 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1447
1448 /**
1449  * scic_controller_set_interrupt_coalescence() - This method allows the user to
1450  *    configure the interrupt coalescence.
1451  * @controller: This parameter represents the handle to the controller object
1452  *    for which its interrupt coalesce register is overridden.
1453  * @coalesce_number: Used to control the number of entries in the Completion
1454  *    Queue before an interrupt is generated. If the number of entries exceed
1455  *    this number, an interrupt will be generated. The valid range of the input
1456  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1457  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1458  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1459  *    interrupt coalescing timeout.
1460  *
1461  * Indicate if the user successfully set the interrupt coalesce parameters.
1462  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1463  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1464  */
1465 static enum sci_status scic_controller_set_interrupt_coalescence(
1466         struct scic_sds_controller *scic_controller,
1467         u32 coalesce_number,
1468         u32 coalesce_timeout)
1469 {
1470         u8 timeout_encode = 0;
1471         u32 min = 0;
1472         u32 max = 0;
1473
1474         /* Check if the input parameters fall in the range. */
1475         if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1476                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1477
1478         /*
1479          *  Defined encoding for interrupt coalescing timeout:
1480          *              Value   Min      Max     Units
1481          *              -----   ---      ---     -----
1482          *              0       -        -       Disabled
1483          *              1       13.3     20.0    ns
1484          *              2       26.7     40.0
1485          *              3       53.3     80.0
1486          *              4       106.7    160.0
1487          *              5       213.3    320.0
1488          *              6       426.7    640.0
1489          *              7       853.3    1280.0
1490          *              8       1.7      2.6     us
1491          *              9       3.4      5.1
1492          *              10      6.8      10.2
1493          *              11      13.7     20.5
1494          *              12      27.3     41.0
1495          *              13      54.6     81.9
1496          *              14      109.2    163.8
1497          *              15      218.5    327.7
1498          *              16      436.9    655.4
1499          *              17      873.8    1310.7
1500          *              18      1.7      2.6     ms
1501          *              19      3.5      5.2
1502          *              20      7.0      10.5
1503          *              21      14.0     21.0
1504          *              22      28.0     41.9
1505          *              23      55.9     83.9
1506          *              24      111.8    167.8
1507          *              25      223.7    335.5
1508          *              26      447.4    671.1
1509          *              27      894.8    1342.2
1510          *              28      1.8      2.7     s
1511          *              Others Undefined */
1512
1513         /*
1514          * Use the table above to decide the encode of interrupt coalescing timeout
1515          * value for register writing. */
1516         if (coalesce_timeout == 0)
1517                 timeout_encode = 0;
1518         else{
1519                 /* make the timeout value in unit of (10 ns). */
1520                 coalesce_timeout = coalesce_timeout * 100;
1521                 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1522                 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1523
1524                 /* get the encode of timeout for register writing. */
1525                 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1526                       timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1527                       timeout_encode++) {
1528                         if (min <= coalesce_timeout &&  max > coalesce_timeout)
1529                                 break;
1530                         else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1531                                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1532                                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1533                                         break;
1534                                 else{
1535                                         timeout_encode++;
1536                                         break;
1537                                 }
1538                         } else {
1539                                 max = max * 2;
1540                                 min = min * 2;
1541                         }
1542                 }
1543
1544                 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1545                         /* the value is out of range. */
1546                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1547         }
1548
1549         writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1550                SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1551                &scic_controller->smu_registers->interrupt_coalesce_control);
1552
1553
1554         scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
1555         scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
1556
1557         return SCI_SUCCESS;
1558 }
1559
1560
1561 static void scic_sds_controller_ready_state_enter(struct sci_base_state_machine *sm)
1562 {
1563         struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1564
1565         /* set the default interrupt coalescence number and timeout value. */
1566         scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
1567 }
1568
1569 static void scic_sds_controller_ready_state_exit(struct sci_base_state_machine *sm)
1570 {
1571         struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1572
1573         /* disable interrupt coalescence. */
1574         scic_controller_set_interrupt_coalescence(scic, 0, 0);
1575 }
1576
1577 static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
1578 {
1579         u32 index;
1580         enum sci_status status;
1581         enum sci_status phy_status;
1582         struct isci_host *ihost = scic_to_ihost(scic);
1583
1584         status = SCI_SUCCESS;
1585
1586         for (index = 0; index < SCI_MAX_PHYS; index++) {
1587                 phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
1588
1589                 if (phy_status != SCI_SUCCESS &&
1590                     phy_status != SCI_FAILURE_INVALID_STATE) {
1591                         status = SCI_FAILURE;
1592
1593                         dev_warn(scic_to_dev(scic),
1594                                  "%s: Controller stop operation failed to stop "
1595                                  "phy %d because of status %d.\n",
1596                                  __func__,
1597                                  ihost->phys[index].sci.phy_index, phy_status);
1598                 }
1599         }
1600
1601         return status;
1602 }
1603
1604 static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
1605 {
1606         u32 index;
1607         enum sci_status port_status;
1608         enum sci_status status = SCI_SUCCESS;
1609         struct isci_host *ihost = scic_to_ihost(scic);
1610
1611         for (index = 0; index < scic->logical_port_entries; index++) {
1612                 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1613
1614                 port_status = scic_sds_port_stop(sci_port);
1615
1616                 if ((port_status != SCI_SUCCESS) &&
1617                     (port_status != SCI_FAILURE_INVALID_STATE)) {
1618                         status = SCI_FAILURE;
1619
1620                         dev_warn(scic_to_dev(scic),
1621                                  "%s: Controller stop operation failed to "
1622                                  "stop port %d because of status %d.\n",
1623                                  __func__,
1624                                  sci_port->logical_port_index,
1625                                  port_status);
1626                 }
1627         }
1628
1629         return status;
1630 }
1631
1632 static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
1633 {
1634         u32 index;
1635         enum sci_status status;
1636         enum sci_status device_status;
1637
1638         status = SCI_SUCCESS;
1639
1640         for (index = 0; index < scic->remote_node_entries; index++) {
1641                 if (scic->device_table[index] != NULL) {
1642                         /* / @todo What timeout value do we want to provide to this request? */
1643                         device_status = scic_remote_device_stop(scic->device_table[index], 0);
1644
1645                         if ((device_status != SCI_SUCCESS) &&
1646                             (device_status != SCI_FAILURE_INVALID_STATE)) {
1647                                 dev_warn(scic_to_dev(scic),
1648                                          "%s: Controller stop operation failed "
1649                                          "to stop device 0x%p because of "
1650                                          "status %d.\n",
1651                                          __func__,
1652                                          scic->device_table[index], device_status);
1653                         }
1654                 }
1655         }
1656
1657         return status;
1658 }
1659
1660 static void scic_sds_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1661 {
1662         struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1663
1664         /* Stop all of the components for this controller */
1665         scic_sds_controller_stop_phys(scic);
1666         scic_sds_controller_stop_ports(scic);
1667         scic_sds_controller_stop_devices(scic);
1668 }
1669
1670 static void scic_sds_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1671 {
1672         struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1673
1674         sci_del_timer(&scic->timer);
1675 }
1676
1677
1678 /**
1679  * scic_sds_controller_reset_hardware() -
1680  *
1681  * This method will reset the controller hardware.
1682  */
1683 static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
1684 {
1685         /* Disable interrupts so we dont take any spurious interrupts */
1686         scic_controller_disable_interrupts(scic);
1687
1688         /* Reset the SCU */
1689         writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
1690
1691         /* Delay for 1ms to before clearing the CQP and UFQPR. */
1692         udelay(1000);
1693
1694         /* The write to the CQGR clears the CQP */
1695         writel(0x00000000, &scic->smu_registers->completion_queue_get);
1696
1697         /* The write to the UFQGP clears the UFQPR */
1698         writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
1699 }
1700
1701 static void scic_sds_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1702 {
1703         struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1704
1705         scic_sds_controller_reset_hardware(scic);
1706         sci_base_state_machine_change_state(&scic->state_machine,
1707                                             SCI_BASE_CONTROLLER_STATE_RESET);
1708 }
1709
1710 static const struct sci_base_state scic_sds_controller_state_table[] = {
1711         [SCI_BASE_CONTROLLER_STATE_INITIAL] = {
1712                 .enter_state = scic_sds_controller_initial_state_enter,
1713         },
1714         [SCI_BASE_CONTROLLER_STATE_RESET] = {},
1715         [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {},
1716         [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {},
1717         [SCI_BASE_CONTROLLER_STATE_STARTING] = {
1718                 .exit_state  = scic_sds_controller_starting_state_exit,
1719         },
1720         [SCI_BASE_CONTROLLER_STATE_READY] = {
1721                 .enter_state = scic_sds_controller_ready_state_enter,
1722                 .exit_state  = scic_sds_controller_ready_state_exit,
1723         },
1724         [SCI_BASE_CONTROLLER_STATE_RESETTING] = {
1725                 .enter_state = scic_sds_controller_resetting_state_enter,
1726         },
1727         [SCI_BASE_CONTROLLER_STATE_STOPPING] = {
1728                 .enter_state = scic_sds_controller_stopping_state_enter,
1729                 .exit_state = scic_sds_controller_stopping_state_exit,
1730         },
1731         [SCI_BASE_CONTROLLER_STATE_STOPPED] = {},
1732         [SCI_BASE_CONTROLLER_STATE_FAILED] = {}
1733 };
1734
1735 static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
1736 {
1737         /* these defaults are overridden by the platform / firmware */
1738         struct isci_host *ihost = scic_to_ihost(scic);
1739         u16 index;
1740
1741         /* Default to APC mode. */
1742         scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1743
1744         /* Default to APC mode. */
1745         scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
1746
1747         /* Default to no SSC operation. */
1748         scic->oem_parameters.sds1.controller.do_enable_ssc = false;
1749
1750         /* Initialize all of the port parameter information to narrow ports. */
1751         for (index = 0; index < SCI_MAX_PORTS; index++) {
1752                 scic->oem_parameters.sds1.ports[index].phy_mask = 0;
1753         }
1754
1755         /* Initialize all of the phy parameter information. */
1756         for (index = 0; index < SCI_MAX_PHYS; index++) {
1757                 /* Default to 6G (i.e. Gen 3) for now. */
1758                 scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
1759
1760                 /* the frequencies cannot be 0 */
1761                 scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
1762                 scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
1763                 scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1764
1765                 /*
1766                  * Previous Vitesse based expanders had a arbitration issue that
1767                  * is worked around by having the upper 32-bits of SAS address
1768                  * with a value greater then the Vitesse company identifier.
1769                  * Hence, usage of 0x5FCFFFFF. */
1770                 scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
1771                 scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
1772         }
1773
1774         scic->user_parameters.sds1.stp_inactivity_timeout = 5;
1775         scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
1776         scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
1777         scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
1778         scic->user_parameters.sds1.no_outbound_task_timeout = 20;
1779 }
1780
1781 static void controller_timeout(unsigned long data)
1782 {
1783         struct sci_timer *tmr = (struct sci_timer *)data;
1784         struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), timer);
1785         struct isci_host *ihost = scic_to_ihost(scic);
1786         struct sci_base_state_machine *sm = &scic->state_machine;
1787         unsigned long flags;
1788
1789         spin_lock_irqsave(&ihost->scic_lock, flags);
1790
1791         if (tmr->cancel)
1792                 goto done;
1793
1794         if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING)
1795                 scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
1796         else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) {
1797                 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED);
1798                 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1799         } else  /* / @todo Now what do we want to do in this case? */
1800                 dev_err(scic_to_dev(scic),
1801                         "%s: Controller timer fired when controller was not "
1802                         "in a state being timed.\n",
1803                         __func__);
1804
1805 done:
1806         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1807 }
1808
1809 /**
1810  * scic_controller_construct() - This method will attempt to construct a
1811  *    controller object utilizing the supplied parameter information.
1812  * @c: This parameter specifies the controller to be constructed.
1813  * @scu_base: mapped base address of the scu registers
1814  * @smu_base: mapped base address of the smu registers
1815  *
1816  * Indicate if the controller was successfully constructed or if it failed in
1817  * some way. SCI_SUCCESS This value is returned if the controller was
1818  * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
1819  * if the interrupt coalescence timer may cause SAS compliance issues for SMP
1820  * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
1821  * This value is returned if the controller does not support the supplied type.
1822  * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
1823  * controller does not support the supplied initialization data version.
1824  */
1825 static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
1826                                           void __iomem *scu_base,
1827                                           void __iomem *smu_base)
1828 {
1829         struct isci_host *ihost = scic_to_ihost(scic);
1830         u8 i;
1831
1832         sci_base_state_machine_construct(&scic->state_machine,
1833                                          scic_sds_controller_state_table,
1834                                          SCI_BASE_CONTROLLER_STATE_INITIAL);
1835
1836         sci_base_state_machine_start(&scic->state_machine);
1837
1838         scic->scu_registers = scu_base;
1839         scic->smu_registers = smu_base;
1840
1841         scic_sds_port_configuration_agent_construct(&scic->port_agent);
1842
1843         /* Construct the ports for this controller */
1844         for (i = 0; i < SCI_MAX_PORTS; i++)
1845                 scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
1846         scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
1847
1848         /* Construct the phys for this controller */
1849         for (i = 0; i < SCI_MAX_PHYS; i++) {
1850                 /* Add all the PHYs to the dummy port */
1851                 scic_sds_phy_construct(&ihost->phys[i].sci,
1852                                        &ihost->ports[SCI_MAX_PORTS].sci, i);
1853         }
1854
1855         scic->invalid_phy_mask = 0;
1856
1857         sci_init_timer(&scic->timer, controller_timeout);
1858
1859         /* Set the default maximum values */
1860         scic->completion_event_entries      = SCU_EVENT_COUNT;
1861         scic->completion_queue_entries      = SCU_COMPLETION_QUEUE_COUNT;
1862         scic->remote_node_entries           = SCI_MAX_REMOTE_DEVICES;
1863         scic->logical_port_entries          = SCI_MAX_PORTS;
1864         scic->task_context_entries          = SCU_IO_REQUEST_COUNT;
1865         scic->uf_control.buffers.count      = SCU_UNSOLICITED_FRAME_COUNT;
1866         scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
1867
1868         /* Initialize the User and OEM parameters to default values. */
1869         scic_sds_controller_set_default_config_parameters(scic);
1870
1871         return scic_controller_reset(scic);
1872 }
1873
1874 int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
1875 {
1876         int i;
1877
1878         for (i = 0; i < SCI_MAX_PORTS; i++)
1879                 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1880                         return -EINVAL;
1881
1882         for (i = 0; i < SCI_MAX_PHYS; i++)
1883                 if (oem->phys[i].sas_address.high == 0 &&
1884                     oem->phys[i].sas_address.low == 0)
1885                         return -EINVAL;
1886
1887         if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1888                 for (i = 0; i < SCI_MAX_PHYS; i++)
1889                         if (oem->ports[i].phy_mask != 0)
1890                                 return -EINVAL;
1891         } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1892                 u8 phy_mask = 0;
1893
1894                 for (i = 0; i < SCI_MAX_PHYS; i++)
1895                         phy_mask |= oem->ports[i].phy_mask;
1896
1897                 if (phy_mask == 0)
1898                         return -EINVAL;
1899         } else
1900                 return -EINVAL;
1901
1902         if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1903                 return -EINVAL;
1904
1905         return 0;
1906 }
1907
1908 static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
1909                                         union scic_oem_parameters *scic_parms)
1910 {
1911         u32 state = scic->state_machine.current_state_id;
1912
1913         if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
1914             state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
1915             state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1916
1917                 if (scic_oem_parameters_validate(&scic_parms->sds1))
1918                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1919                 scic->oem_parameters.sds1 = scic_parms->sds1;
1920
1921                 return SCI_SUCCESS;
1922         }
1923
1924         return SCI_FAILURE_INVALID_STATE;
1925 }
1926
1927 void scic_oem_parameters_get(
1928         struct scic_sds_controller *scic,
1929         union scic_oem_parameters *scic_parms)
1930 {
1931         memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
1932 }
1933
1934 static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic)
1935 {
1936         struct isci_host *ihost = scic_to_ihost(scic);
1937
1938         scic->phy_startup_timer = isci_timer_create(ihost,
1939                                                     scic,
1940                                                     scic_sds_controller_phy_startup_timeout_handler);
1941
1942         if (scic->phy_startup_timer == NULL)
1943                 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
1944         else {
1945                 scic->next_phy_to_start = 0;
1946                 scic->phy_startup_timer_pending = false;
1947         }
1948
1949         return SCI_SUCCESS;
1950 }
1951
1952 static void power_control_timeout(unsigned long data)
1953 {
1954         struct sci_timer *tmr = (struct sci_timer *)data;
1955         struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), power_control.timer);
1956         struct isci_host *ihost = scic_to_ihost(scic);
1957         struct scic_sds_phy *sci_phy;
1958         unsigned long flags;
1959         u8 i;
1960
1961         spin_lock_irqsave(&ihost->scic_lock, flags);
1962
1963         if (tmr->cancel)
1964                 goto done;
1965
1966         scic->power_control.phys_granted_power = 0;
1967
1968         if (scic->power_control.phys_waiting == 0) {
1969                 scic->power_control.timer_started = false;
1970                 goto done;
1971         }
1972
1973         for (i = 0; i < SCI_MAX_PHYS; i++) {
1974
1975                 if (scic->power_control.phys_waiting == 0)
1976                         break;
1977
1978                 sci_phy = scic->power_control.requesters[i];
1979                 if (sci_phy == NULL)
1980                         continue;
1981
1982                 if (scic->power_control.phys_granted_power >=
1983                     scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up)
1984                         break;
1985
1986                 scic->power_control.requesters[i] = NULL;
1987                 scic->power_control.phys_waiting--;
1988                 scic->power_control.phys_granted_power++;
1989                 scic_sds_phy_consume_power_handler(sci_phy);
1990         }
1991
1992         /*
1993          * It doesn't matter if the power list is empty, we need to start the
1994          * timer in case another phy becomes ready.
1995          */
1996         sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1997         scic->power_control.timer_started = true;
1998
1999 done:
2000         spin_unlock_irqrestore(&ihost->scic_lock, flags);
2001 }
2002
2003 /**
2004  * This method inserts the phy in the stagger spinup control queue.
2005  * @scic:
2006  *
2007  *
2008  */
2009 void scic_sds_controller_power_control_queue_insert(
2010         struct scic_sds_controller *scic,
2011         struct scic_sds_phy *sci_phy)
2012 {
2013         BUG_ON(sci_phy == NULL);
2014
2015         if (scic->power_control.phys_granted_power <
2016             scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
2017                 scic->power_control.phys_granted_power++;
2018                 scic_sds_phy_consume_power_handler(sci_phy);
2019
2020                 /*
2021                  * stop and start the power_control timer. When the timer fires, the
2022                  * no_of_phys_granted_power will be set to 0
2023                  */
2024                 if (scic->power_control.timer_started)
2025                         sci_del_timer(&scic->power_control.timer);
2026
2027                 sci_mod_timer(&scic->power_control.timer,
2028                                  SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
2029                 scic->power_control.timer_started = true;
2030
2031         } else {
2032                 /* Add the phy in the waiting list */
2033                 scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
2034                 scic->power_control.phys_waiting++;
2035         }
2036 }
2037
2038 /**
2039  * This method removes the phy from the stagger spinup control queue.
2040  * @scic:
2041  *
2042  *
2043  */
2044 void scic_sds_controller_power_control_queue_remove(
2045         struct scic_sds_controller *scic,
2046         struct scic_sds_phy *sci_phy)
2047 {
2048         BUG_ON(sci_phy == NULL);
2049
2050         if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
2051                 scic->power_control.phys_waiting--;
2052         }
2053
2054         scic->power_control.requesters[sci_phy->phy_index] = NULL;
2055 }
2056
2057 #define AFE_REGISTER_WRITE_DELAY 10
2058
2059 /* Initialize the AFE for this phy index. We need to read the AFE setup from
2060  * the OEM parameters
2061  */
2062 static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
2063 {
2064         const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
2065         u32 afe_status;
2066         u32 phy_id;
2067
2068         /* Clear DFX Status registers */
2069         writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
2070         udelay(AFE_REGISTER_WRITE_DELAY);
2071
2072         if (is_b0()) {
2073                 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2074                  * Timer, PM Stagger Timer */
2075                 writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
2076                 udelay(AFE_REGISTER_WRITE_DELAY);
2077         }
2078
2079         /* Configure bias currents to normal */
2080         if (is_a0())
2081                 writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
2082         else if (is_a2())
2083                 writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
2084         else if (is_b0())
2085                 writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
2086
2087         udelay(AFE_REGISTER_WRITE_DELAY);
2088
2089         /* Enable PLL */
2090         if (is_b0())
2091                 writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
2092         else
2093                 writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
2094
2095         udelay(AFE_REGISTER_WRITE_DELAY);
2096
2097         /* Wait for the PLL to lock */
2098         do {
2099                 afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
2100                 udelay(AFE_REGISTER_WRITE_DELAY);
2101         } while ((afe_status & 0x00001000) == 0);
2102
2103         if (is_a0() || is_a2()) {
2104                 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
2105                 writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
2106                 udelay(AFE_REGISTER_WRITE_DELAY);
2107         }
2108
2109         for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2110                 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2111
2112                 if (is_b0()) {
2113                          /* Configure transmitter SSC parameters */
2114                         writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
2115                         udelay(AFE_REGISTER_WRITE_DELAY);
2116                 } else {
2117                         /*
2118                          * All defaults, except the Receive Word Alignament/Comma Detect
2119                          * Enable....(0xe800) */
2120                         writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2121                         udelay(AFE_REGISTER_WRITE_DELAY);
2122
2123                         writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
2124                         udelay(AFE_REGISTER_WRITE_DELAY);
2125                 }
2126
2127                 /*
2128                  * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2129                  * & increase TX int & ext bias 20%....(0xe85c) */
2130                 if (is_a0())
2131                         writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2132                 else if (is_a2())
2133                         writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2134                 else {
2135                          /* Power down TX and RX (PWRDNTX and PWRDNRX) */
2136                         writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2137                         udelay(AFE_REGISTER_WRITE_DELAY);
2138
2139                         /*
2140                          * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2141                          * & increase TX int & ext bias 20%....(0xe85c) */
2142                         writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2143                 }
2144                 udelay(AFE_REGISTER_WRITE_DELAY);
2145
2146                 if (is_a0() || is_a2()) {
2147                         /* Enable TX equalization (0xe824) */
2148                         writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2149                         udelay(AFE_REGISTER_WRITE_DELAY);
2150                 }
2151
2152                 /*
2153                  * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2154                  * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2155                 writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2156                 udelay(AFE_REGISTER_WRITE_DELAY);
2157
2158                 /* Leave DFE/FFE on */
2159                 if (is_a0())
2160                         writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2161                 else if (is_a2())
2162                         writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2163                 else {
2164                         writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2165                         udelay(AFE_REGISTER_WRITE_DELAY);
2166                         /* Enable TX equalization (0xe824) */
2167                         writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2168                 }
2169                 udelay(AFE_REGISTER_WRITE_DELAY);
2170
2171                 writel(oem_phy->afe_tx_amp_control0,
2172                         &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2173                 udelay(AFE_REGISTER_WRITE_DELAY);
2174
2175                 writel(oem_phy->afe_tx_amp_control1,
2176                         &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2177                 udelay(AFE_REGISTER_WRITE_DELAY);
2178
2179                 writel(oem_phy->afe_tx_amp_control2,
2180                         &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2181                 udelay(AFE_REGISTER_WRITE_DELAY);
2182
2183                 writel(oem_phy->afe_tx_amp_control3,
2184                         &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2185                 udelay(AFE_REGISTER_WRITE_DELAY);
2186         }
2187
2188         /* Transfer control to the PEs */
2189         writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
2190         udelay(AFE_REGISTER_WRITE_DELAY);
2191 }
2192
2193 static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic,
2194                                                 enum sci_controller_mode operating_mode)
2195 {
2196         enum sci_status status          = SCI_SUCCESS;
2197
2198         if ((scic->state_machine.current_state_id ==
2199                                 SCI_BASE_CONTROLLER_STATE_INITIALIZING) ||
2200             (scic->state_machine.current_state_id ==
2201                                 SCI_BASE_CONTROLLER_STATE_INITIALIZED)) {
2202                 switch (operating_mode) {
2203                 case SCI_MODE_SPEED:
2204                         scic->remote_node_entries      = SCI_MAX_REMOTE_DEVICES;
2205                         scic->task_context_entries     = SCU_IO_REQUEST_COUNT;
2206                         scic->uf_control.buffers.count =
2207                                 SCU_UNSOLICITED_FRAME_COUNT;
2208                         scic->completion_event_entries = SCU_EVENT_COUNT;
2209                         scic->completion_queue_entries =
2210                                 SCU_COMPLETION_QUEUE_COUNT;
2211                         break;
2212
2213                 case SCI_MODE_SIZE:
2214                         scic->remote_node_entries      = SCI_MIN_REMOTE_DEVICES;
2215                         scic->task_context_entries     = SCI_MIN_IO_REQUESTS;
2216                         scic->uf_control.buffers.count =
2217                                 SCU_MIN_UNSOLICITED_FRAMES;
2218                         scic->completion_event_entries = SCU_MIN_EVENTS;
2219                         scic->completion_queue_entries =
2220                                 SCU_MIN_COMPLETION_QUEUE_ENTRIES;
2221                         break;
2222
2223                 default:
2224                         status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
2225                         break;
2226                 }
2227         } else
2228                 status = SCI_FAILURE_INVALID_STATE;
2229
2230         return status;
2231 }
2232
2233 static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
2234 {
2235         sci_init_timer(&scic->power_control.timer, power_control_timeout);
2236
2237         memset(scic->power_control.requesters, 0,
2238                sizeof(scic->power_control.requesters));
2239
2240         scic->power_control.phys_waiting = 0;
2241         scic->power_control.phys_granted_power = 0;
2242 }
2243
2244 static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
2245 {
2246         struct sci_base_state_machine *sm = &scic->state_machine;
2247         enum sci_status result = SCI_SUCCESS;
2248         struct isci_host *ihost = scic_to_ihost(scic);
2249         u32 index, state;
2250
2251         if (scic->state_machine.current_state_id !=
2252             SCI_BASE_CONTROLLER_STATE_RESET) {
2253                 dev_warn(scic_to_dev(scic),
2254                          "SCIC Controller initialize operation requested "
2255                          "in invalid state\n");
2256                 return SCI_FAILURE_INVALID_STATE;
2257         }
2258
2259         sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING);
2260
2261         scic_sds_controller_initialize_phy_startup(scic);
2262
2263         scic_sds_controller_initialize_power_control(scic);
2264
2265         /*
2266          * There is nothing to do here for B0 since we do not have to
2267          * program the AFE registers.
2268          * / @todo The AFE settings are supposed to be correct for the B0 but
2269          * /       presently they seem to be wrong. */
2270         scic_sds_controller_afe_initialization(scic);
2271
2272         if (result == SCI_SUCCESS) {
2273                 u32 status;
2274                 u32 terminate_loop;
2275
2276                 /* Take the hardware out of reset */
2277                 writel(0, &scic->smu_registers->soft_reset_control);
2278
2279                 /*
2280                  * / @todo Provide meaningfull error code for hardware failure
2281                  * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2282                 result = SCI_FAILURE;
2283                 terminate_loop = 100;
2284
2285                 while (terminate_loop-- && (result != SCI_SUCCESS)) {
2286                         /* Loop until the hardware reports success */
2287                         udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2288                         status = readl(&scic->smu_registers->control_status);
2289
2290                         if ((status & SCU_RAM_INIT_COMPLETED) ==
2291                                         SCU_RAM_INIT_COMPLETED)
2292                                 result = SCI_SUCCESS;
2293                 }
2294         }
2295
2296         if (result == SCI_SUCCESS) {
2297                 u32 max_supported_ports;
2298                 u32 max_supported_devices;
2299                 u32 max_supported_io_requests;
2300                 u32 device_context_capacity;
2301
2302                 /*
2303                  * Determine what are the actaul device capacities that the
2304                  * hardware will support */
2305                 device_context_capacity =
2306                         readl(&scic->smu_registers->device_context_capacity);
2307
2308
2309                 max_supported_ports = smu_dcc_get_max_ports(device_context_capacity);
2310                 max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity);
2311                 max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity);
2312
2313                 /*
2314                  * Make all PEs that are unassigned match up with the
2315                  * logical ports
2316                  */
2317                 for (index = 0; index < max_supported_ports; index++) {
2318                         struct scu_port_task_scheduler_group_registers __iomem
2319                                 *ptsg = &scic->scu_registers->peg0.ptsg;
2320
2321                         writel(index, &ptsg->protocol_engine[index]);
2322                 }
2323
2324                 /* Record the smaller of the two capacity values */
2325                 scic->logical_port_entries =
2326                         min(max_supported_ports, scic->logical_port_entries);
2327
2328                 scic->task_context_entries =
2329                         min(max_supported_io_requests,
2330                             scic->task_context_entries);
2331
2332                 scic->remote_node_entries =
2333                         min(max_supported_devices, scic->remote_node_entries);
2334
2335                 /*
2336                  * Now that we have the correct hardware reported minimum values
2337                  * build the MDL for the controller.  Default to a performance
2338                  * configuration.
2339                  */
2340                 scic_controller_set_mode(scic, SCI_MODE_SPEED);
2341         }
2342
2343         /* Initialize hardware PCI Relaxed ordering in DMA engines */
2344         if (result == SCI_SUCCESS) {
2345                 u32 dma_configuration;
2346
2347                 /* Configure the payload DMA */
2348                 dma_configuration =
2349                         readl(&scic->scu_registers->sdma.pdma_configuration);
2350                 dma_configuration |=
2351                         SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2352                 writel(dma_configuration,
2353                         &scic->scu_registers->sdma.pdma_configuration);
2354
2355                 /* Configure the control DMA */
2356                 dma_configuration =
2357                         readl(&scic->scu_registers->sdma.cdma_configuration);
2358                 dma_configuration |=
2359                         SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2360                 writel(dma_configuration,
2361                         &scic->scu_registers->sdma.cdma_configuration);
2362         }
2363
2364         /*
2365          * Initialize the PHYs before the PORTs because the PHY registers
2366          * are accessed during the port initialization.
2367          */
2368         if (result == SCI_SUCCESS) {
2369                 /* Initialize the phys */
2370                 for (index = 0;
2371                      (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
2372                      index++) {
2373                         result = scic_sds_phy_initialize(
2374                                 &ihost->phys[index].sci,
2375                                 &scic->scu_registers->peg0.pe[index].tl,
2376                                 &scic->scu_registers->peg0.pe[index].ll);
2377                 }
2378         }
2379
2380         if (result == SCI_SUCCESS) {
2381                 /* Initialize the logical ports */
2382                 for (index = 0;
2383                      (index < scic->logical_port_entries) &&
2384                      (result == SCI_SUCCESS);
2385                      index++) {
2386                         result = scic_sds_port_initialize(
2387                                 &ihost->ports[index].sci,
2388                                 &scic->scu_registers->peg0.ptsg.port[index],
2389                                 &scic->scu_registers->peg0.ptsg.protocol_engine,
2390                                 &scic->scu_registers->peg0.viit[index]);
2391                 }
2392         }
2393
2394         if (result == SCI_SUCCESS)
2395                 result = scic_sds_port_configuration_agent_initialize(
2396                                 scic,
2397                                 &scic->port_agent);
2398
2399         /* Advance the controller state machine */
2400         if (result == SCI_SUCCESS)
2401                 state = SCI_BASE_CONTROLLER_STATE_INITIALIZED;
2402         else
2403                 state = SCI_BASE_CONTROLLER_STATE_FAILED;
2404         sci_base_state_machine_change_state(sm, state);
2405
2406         return result;
2407 }
2408
2409 static enum sci_status scic_user_parameters_set(
2410         struct scic_sds_controller *scic,
2411         union scic_user_parameters *scic_parms)
2412 {
2413         u32 state = scic->state_machine.current_state_id;
2414
2415         if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
2416             state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
2417             state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
2418                 u16 index;
2419
2420                 /*
2421                  * Validate the user parameters.  If they are not legal, then
2422                  * return a failure.
2423                  */
2424                 for (index = 0; index < SCI_MAX_PHYS; index++) {
2425                         struct sci_phy_user_params *user_phy;
2426
2427                         user_phy = &scic_parms->sds1.phys[index];
2428
2429                         if (!((user_phy->max_speed_generation <=
2430                                                 SCIC_SDS_PARM_MAX_SPEED) &&
2431                               (user_phy->max_speed_generation >
2432                                                 SCIC_SDS_PARM_NO_SPEED)))
2433                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2434
2435                         if (user_phy->in_connection_align_insertion_frequency <
2436                                         3)
2437                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2438
2439                         if ((user_phy->in_connection_align_insertion_frequency <
2440                                                 3) ||
2441                             (user_phy->align_insertion_frequency == 0) ||
2442                             (user_phy->
2443                                 notify_enable_spin_up_insertion_frequency ==
2444                                                 0))
2445                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2446                 }
2447
2448                 if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
2449                     (scic_parms->sds1.ssp_inactivity_timeout == 0) ||
2450                     (scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
2451                     (scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
2452                     (scic_parms->sds1.no_outbound_task_timeout == 0))
2453                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2454
2455                 memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
2456
2457                 return SCI_SUCCESS;
2458         }
2459
2460         return SCI_FAILURE_INVALID_STATE;
2461 }
2462
2463 static int scic_controller_mem_init(struct scic_sds_controller *scic)
2464 {
2465         struct device *dev = scic_to_dev(scic);
2466         dma_addr_t dma_handle;
2467         enum sci_status result;
2468
2469         scic->completion_queue = dmam_alloc_coherent(dev,
2470                         scic->completion_queue_entries * sizeof(u32),
2471                         &dma_handle, GFP_KERNEL);
2472         if (!scic->completion_queue)
2473                 return -ENOMEM;
2474
2475         writel(lower_32_bits(dma_handle),
2476                 &scic->smu_registers->completion_queue_lower);
2477         writel(upper_32_bits(dma_handle),
2478                 &scic->smu_registers->completion_queue_upper);
2479
2480         scic->remote_node_context_table = dmam_alloc_coherent(dev,
2481                         scic->remote_node_entries *
2482                                 sizeof(union scu_remote_node_context),
2483                         &dma_handle, GFP_KERNEL);
2484         if (!scic->remote_node_context_table)
2485                 return -ENOMEM;
2486
2487         writel(lower_32_bits(dma_handle),
2488                 &scic->smu_registers->remote_node_context_lower);
2489         writel(upper_32_bits(dma_handle),
2490                 &scic->smu_registers->remote_node_context_upper);
2491
2492         scic->task_context_table = dmam_alloc_coherent(dev,
2493                         scic->task_context_entries *
2494                                 sizeof(struct scu_task_context),
2495                         &dma_handle, GFP_KERNEL);
2496         if (!scic->task_context_table)
2497                 return -ENOMEM;
2498
2499         writel(lower_32_bits(dma_handle),
2500                 &scic->smu_registers->host_task_table_lower);
2501         writel(upper_32_bits(dma_handle),
2502                 &scic->smu_registers->host_task_table_upper);
2503
2504         result = scic_sds_unsolicited_frame_control_construct(scic);
2505         if (result)
2506                 return result;
2507
2508         /*
2509          * Inform the silicon as to the location of the UF headers and
2510          * address table.
2511          */
2512         writel(lower_32_bits(scic->uf_control.headers.physical_address),
2513                 &scic->scu_registers->sdma.uf_header_base_address_lower);
2514         writel(upper_32_bits(scic->uf_control.headers.physical_address),
2515                 &scic->scu_registers->sdma.uf_header_base_address_upper);
2516
2517         writel(lower_32_bits(scic->uf_control.address_table.physical_address),
2518                 &scic->scu_registers->sdma.uf_address_table_lower);
2519         writel(upper_32_bits(scic->uf_control.address_table.physical_address),
2520                 &scic->scu_registers->sdma.uf_address_table_upper);
2521
2522         return 0;
2523 }
2524
2525 int isci_host_init(struct isci_host *isci_host)
2526 {
2527         int err = 0, i;
2528         enum sci_status status;
2529         union scic_oem_parameters oem;
2530         union scic_user_parameters scic_user_params;
2531         struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
2532
2533         isci_timer_list_construct(isci_host);
2534
2535         spin_lock_init(&isci_host->state_lock);
2536         spin_lock_init(&isci_host->scic_lock);
2537         spin_lock_init(&isci_host->queue_lock);
2538         init_waitqueue_head(&isci_host->eventq);
2539
2540         isci_host_change_state(isci_host, isci_starting);
2541         isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
2542
2543         status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
2544                                            smu_base(isci_host));
2545
2546         if (status != SCI_SUCCESS) {
2547                 dev_err(&isci_host->pdev->dev,
2548                         "%s: scic_controller_construct failed - status = %x\n",
2549                         __func__,
2550                         status);
2551                 return -ENODEV;
2552         }
2553
2554         isci_host->sas_ha.dev = &isci_host->pdev->dev;
2555         isci_host->sas_ha.lldd_ha = isci_host;
2556
2557         /*
2558          * grab initial values stored in the controller object for OEM and USER
2559          * parameters
2560          */
2561         isci_user_parameters_get(isci_host, &scic_user_params);
2562         status = scic_user_parameters_set(&isci_host->sci,
2563                                           &scic_user_params);
2564         if (status != SCI_SUCCESS) {
2565                 dev_warn(&isci_host->pdev->dev,
2566                          "%s: scic_user_parameters_set failed\n",
2567                          __func__);
2568                 return -ENODEV;
2569         }
2570
2571         scic_oem_parameters_get(&isci_host->sci, &oem);
2572
2573         /* grab any OEM parameters specified in orom */
2574         if (pci_info->orom) {
2575                 status = isci_parse_oem_parameters(&oem,
2576                                                    pci_info->orom,
2577                                                    isci_host->id);
2578                 if (status != SCI_SUCCESS) {
2579                         dev_warn(&isci_host->pdev->dev,
2580                                  "parsing firmware oem parameters failed\n");
2581                         return -EINVAL;
2582                 }
2583         }
2584
2585         status = scic_oem_parameters_set(&isci_host->sci, &oem);
2586         if (status != SCI_SUCCESS) {
2587                 dev_warn(&isci_host->pdev->dev,
2588                                 "%s: scic_oem_parameters_set failed\n",
2589                                 __func__);
2590                 return -ENODEV;
2591         }
2592
2593         tasklet_init(&isci_host->completion_tasklet,
2594                      isci_host_completion_routine, (unsigned long)isci_host);
2595
2596         INIT_LIST_HEAD(&isci_host->requests_to_complete);
2597         INIT_LIST_HEAD(&isci_host->requests_to_errorback);
2598
2599         spin_lock_irq(&isci_host->scic_lock);
2600         status = scic_controller_initialize(&isci_host->sci);
2601         spin_unlock_irq(&isci_host->scic_lock);
2602         if (status != SCI_SUCCESS) {
2603                 dev_warn(&isci_host->pdev->dev,
2604                          "%s: scic_controller_initialize failed -"
2605                          " status = 0x%x\n",
2606                          __func__, status);
2607                 return -ENODEV;
2608         }
2609
2610         err = scic_controller_mem_init(&isci_host->sci);
2611         if (err)
2612                 return err;
2613
2614         isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
2615                                                sizeof(struct isci_request),
2616                                                SLAB_HWCACHE_ALIGN, 0);
2617
2618         if (!isci_host->dma_pool)
2619                 return -ENOMEM;
2620
2621         for (i = 0; i < SCI_MAX_PORTS; i++)
2622                 isci_port_init(&isci_host->ports[i], isci_host, i);
2623
2624         for (i = 0; i < SCI_MAX_PHYS; i++)
2625                 isci_phy_init(&isci_host->phys[i], isci_host, i);
2626
2627         for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2628                 struct isci_remote_device *idev = &isci_host->devices[i];
2629
2630                 INIT_LIST_HEAD(&idev->reqs_in_process);
2631                 INIT_LIST_HEAD(&idev->node);
2632                 spin_lock_init(&idev->state_lock);
2633         }
2634
2635         return 0;
2636 }
2637
2638 void scic_sds_controller_link_up(struct scic_sds_controller *scic,
2639                 struct scic_sds_port *port, struct scic_sds_phy *phy)
2640 {
2641         switch (scic->state_machine.current_state_id) {
2642         case SCI_BASE_CONTROLLER_STATE_STARTING:
2643                 scic_sds_controller_phy_timer_stop(scic);
2644                 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2645                                                  port, phy);
2646                 scic_sds_controller_start_next_phy(scic);
2647                 break;
2648         case SCI_BASE_CONTROLLER_STATE_READY:
2649                 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2650                                                  port, phy);
2651                 break;
2652         default:
2653                 dev_dbg(scic_to_dev(scic),
2654                         "%s: SCIC Controller linkup event from phy %d in "
2655                         "unexpected state %d\n", __func__, phy->phy_index,
2656                         scic->state_machine.current_state_id);
2657         }
2658 }
2659
2660 void scic_sds_controller_link_down(struct scic_sds_controller *scic,
2661                 struct scic_sds_port *port, struct scic_sds_phy *phy)
2662 {
2663         switch (scic->state_machine.current_state_id) {
2664         case SCI_BASE_CONTROLLER_STATE_STARTING:
2665         case SCI_BASE_CONTROLLER_STATE_READY:
2666                 scic->port_agent.link_down_handler(scic, &scic->port_agent,
2667                                                    port, phy);
2668                 break;
2669         default:
2670                 dev_dbg(scic_to_dev(scic),
2671                         "%s: SCIC Controller linkdown event from phy %d in "
2672                         "unexpected state %d\n",
2673                         __func__,
2674                         phy->phy_index,
2675                         scic->state_machine.current_state_id);
2676         }
2677 }
2678
2679 /**
2680  * This is a helper method to determine if any remote devices on this
2681  * controller are still in the stopping state.
2682  *
2683  */
2684 static bool scic_sds_controller_has_remote_devices_stopping(
2685         struct scic_sds_controller *controller)
2686 {
2687         u32 index;
2688
2689         for (index = 0; index < controller->remote_node_entries; index++) {
2690                 if ((controller->device_table[index] != NULL) &&
2691                    (controller->device_table[index]->state_machine.current_state_id
2692                     == SCI_BASE_REMOTE_DEVICE_STATE_STOPPING))
2693                         return true;
2694         }
2695
2696         return false;
2697 }
2698
2699 /**
2700  * This method is called by the remote device to inform the controller
2701  * object that the remote device has stopped.
2702  */
2703 void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
2704                                                struct scic_sds_remote_device *sci_dev)
2705 {
2706         if (scic->state_machine.current_state_id !=
2707             SCI_BASE_CONTROLLER_STATE_STOPPING) {
2708                 dev_dbg(scic_to_dev(scic),
2709                         "SCIC Controller 0x%p remote device stopped event "
2710                         "from device 0x%p in unexpected state %d\n",
2711                         scic, sci_dev,
2712                         scic->state_machine.current_state_id);
2713                 return;
2714         }
2715
2716         if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
2717                 sci_base_state_machine_change_state(&scic->state_machine,
2718                                 SCI_BASE_CONTROLLER_STATE_STOPPED);
2719         }
2720 }
2721
2722 /**
2723  * This method will write to the SCU PCP register the request value. The method
2724  *    is used to suspend/resume ports, devices, and phys.
2725  * @scic:
2726  *
2727  *
2728  */
2729 void scic_sds_controller_post_request(
2730         struct scic_sds_controller *scic,
2731         u32 request)
2732 {
2733         dev_dbg(scic_to_dev(scic),
2734                 "%s: SCIC Controller 0x%p post request 0x%08x\n",
2735                 __func__,
2736                 scic,
2737                 request);
2738
2739         writel(request, &scic->smu_registers->post_context_port);
2740 }
2741
2742 /**
2743  * This method will copy the soft copy of the task context into the physical
2744  *    memory accessible by the controller.
2745  * @scic: This parameter specifies the controller for which to copy
2746  *    the task context.
2747  * @sci_req: This parameter specifies the request for which the task
2748  *    context is being copied.
2749  *
2750  * After this call is made the SCIC_SDS_IO_REQUEST object will always point to
2751  * the physical memory version of the task context. Thus, all subsequent
2752  * updates to the task context are performed in the TC table (i.e. DMAable
2753  * memory). none
2754  */
2755 void scic_sds_controller_copy_task_context(
2756         struct scic_sds_controller *scic,
2757         struct scic_sds_request *sci_req)
2758 {
2759         struct scu_task_context *task_context_buffer;
2760
2761         task_context_buffer = scic_sds_controller_get_task_context_buffer(
2762                 scic, sci_req->io_tag);
2763
2764         memcpy(task_context_buffer,
2765                sci_req->task_context_buffer,
2766                offsetof(struct scu_task_context, sgl_snapshot_ac));
2767
2768         /*
2769          * Now that the soft copy of the TC has been copied into the TC
2770          * table accessible by the silicon.  Thus, any further changes to
2771          * the TC (e.g. TC termination) occur in the appropriate location. */
2772         sci_req->task_context_buffer = task_context_buffer;
2773 }
2774
2775 /**
2776  * This method returns the task context buffer for the given io tag.
2777  * @scic:
2778  * @io_tag:
2779  *
2780  * struct scu_task_context*
2781  */
2782 struct scu_task_context *scic_sds_controller_get_task_context_buffer(
2783         struct scic_sds_controller *scic,
2784         u16 io_tag
2785         ) {
2786         u16 task_index = scic_sds_io_tag_get_index(io_tag);
2787
2788         if (task_index < scic->task_context_entries) {
2789                 return &scic->task_context_table[task_index];
2790         }
2791
2792         return NULL;
2793 }
2794
2795 struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
2796                                              u16 io_tag)
2797 {
2798         u16 task_index;
2799         u16 task_sequence;
2800
2801         task_index = scic_sds_io_tag_get_index(io_tag);
2802
2803         if (task_index  < scic->task_context_entries) {
2804                 if (scic->io_request_table[task_index] != NULL) {
2805                         task_sequence = scic_sds_io_tag_get_sequence(io_tag);
2806
2807                         if (task_sequence == scic->io_request_sequence[task_index]) {
2808                                 return scic->io_request_table[task_index];
2809                         }
2810                 }
2811         }
2812
2813         return NULL;
2814 }
2815
2816 /**
2817  * This method allocates remote node index and the reserves the remote node
2818  *    context space for use. This method can fail if there are no more remote
2819  *    node index available.
2820  * @scic: This is the controller object which contains the set of
2821  *    free remote node ids
2822  * @sci_dev: This is the device object which is requesting the a remote node
2823  *    id
2824  * @node_id: This is the remote node id that is assinged to the device if one
2825  *    is available
2826  *
2827  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2828  * node index available.
2829  */
2830 enum sci_status scic_sds_controller_allocate_remote_node_context(
2831         struct scic_sds_controller *scic,
2832         struct scic_sds_remote_device *sci_dev,
2833         u16 *node_id)
2834 {
2835         u16 node_index;
2836         u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2837
2838         node_index = scic_sds_remote_node_table_allocate_remote_node(
2839                 &scic->available_remote_nodes, remote_node_count
2840                 );
2841
2842         if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2843                 scic->device_table[node_index] = sci_dev;
2844
2845                 *node_id = node_index;
2846
2847                 return SCI_SUCCESS;
2848         }
2849
2850         return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2851 }
2852
2853 /**
2854  * This method frees the remote node index back to the available pool.  Once
2855  *    this is done the remote node context buffer is no longer valid and can
2856  *    not be used.
2857  * @scic:
2858  * @sci_dev:
2859  * @node_id:
2860  *
2861  */
2862 void scic_sds_controller_free_remote_node_context(
2863         struct scic_sds_controller *scic,
2864         struct scic_sds_remote_device *sci_dev,
2865         u16 node_id)
2866 {
2867         u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2868
2869         if (scic->device_table[node_id] == sci_dev) {
2870                 scic->device_table[node_id] = NULL;
2871
2872                 scic_sds_remote_node_table_release_remote_node_index(
2873                         &scic->available_remote_nodes, remote_node_count, node_id
2874                         );
2875         }
2876 }
2877
2878 /**
2879  * This method returns the union scu_remote_node_context for the specified remote
2880  *    node id.
2881  * @scic:
2882  * @node_id:
2883  *
2884  * union scu_remote_node_context*
2885  */
2886 union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
2887         struct scic_sds_controller *scic,
2888         u16 node_id
2889         ) {
2890         if (
2891                 (node_id < scic->remote_node_entries)
2892                 && (scic->device_table[node_id] != NULL)
2893                 ) {
2894                 return &scic->remote_node_context_table[node_id];
2895         }
2896
2897         return NULL;
2898 }
2899
2900 /**
2901  *
2902  * @resposne_buffer: This is the buffer into which the D2H register FIS will be
2903  *    constructed.
2904  * @frame_header: This is the frame header returned by the hardware.
2905  * @frame_buffer: This is the frame buffer returned by the hardware.
2906  *
2907  * This method will combind the frame header and frame buffer to create a SATA
2908  * D2H register FIS none
2909  */
2910 void scic_sds_controller_copy_sata_response(
2911         void *response_buffer,
2912         void *frame_header,
2913         void *frame_buffer)
2914 {
2915         memcpy(response_buffer, frame_header, sizeof(u32));
2916
2917         memcpy(response_buffer + sizeof(u32),
2918                frame_buffer,
2919                sizeof(struct dev_to_host_fis) - sizeof(u32));
2920 }
2921
2922 /**
2923  * This method releases the frame once this is done the frame is available for
2924  *    re-use by the hardware.  The data contained in the frame header and frame
2925  *    buffer is no longer valid. The UF queue get pointer is only updated if UF
2926  *    control indicates this is appropriate.
2927  * @scic:
2928  * @frame_index:
2929  *
2930  */
2931 void scic_sds_controller_release_frame(
2932         struct scic_sds_controller *scic,
2933         u32 frame_index)
2934 {
2935         if (scic_sds_unsolicited_frame_control_release_frame(
2936                     &scic->uf_control, frame_index) == true)
2937                 writel(scic->uf_control.get,
2938                         &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
2939 }
2940
2941 /**
2942  * scic_controller_start_io() - This method is called by the SCI user to
2943  *    send/start an IO request. If the method invocation is successful, then
2944  *    the IO request has been queued to the hardware for processing.
2945  * @controller: the handle to the controller object for which to start an IO
2946  *    request.
2947  * @remote_device: the handle to the remote device object for which to start an
2948  *    IO request.
2949  * @io_request: the handle to the io request object to start.
2950  * @io_tag: This parameter specifies a previously allocated IO tag that the
2951  *    user desires to be utilized for this request. This parameter is optional.
2952  *     The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
2953  *    for this parameter.
2954  *
2955  * - IO tags are a protected resource.  It is incumbent upon the SCI Core user
2956  * to ensure that each of the methods that may allocate or free available IO
2957  * tags are handled in a mutually exclusive manner.  This method is one of said
2958  * methods requiring proper critical code section protection (e.g. semaphore,
2959  * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags.  As a
2960  * result, it is expected the user will have set the NCQ tag field in the host
2961  * to device register FIS prior to calling this method.  There is also a
2962  * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
2963  * the scic_controller_start_io() method. scic_controller_allocate_tag() for
2964  * more information on allocating a tag. Indicate if the controller
2965  * successfully started the IO request. SCI_SUCCESS if the IO request was
2966  * successfully started. Determine the failure situations and return values.
2967  */
2968 enum sci_status scic_controller_start_io(
2969         struct scic_sds_controller *scic,
2970         struct scic_sds_remote_device *rdev,
2971         struct scic_sds_request *req,
2972         u16 io_tag)
2973 {
2974         enum sci_status status;
2975
2976         if (scic->state_machine.current_state_id !=
2977             SCI_BASE_CONTROLLER_STATE_READY) {
2978                 dev_warn(scic_to_dev(scic), "invalid state to start I/O");
2979                 return SCI_FAILURE_INVALID_STATE;
2980         }
2981
2982         status = scic_sds_remote_device_start_io(scic, rdev, req);
2983         if (status != SCI_SUCCESS)
2984                 return status;
2985
2986         scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
2987         scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
2988         return SCI_SUCCESS;
2989 }
2990
2991 /**
2992  * scic_controller_terminate_request() - This method is called by the SCI Core
2993  *    user to terminate an ongoing (i.e. started) core IO request.  This does
2994  *    not abort the IO request at the target, but rather removes the IO request
2995  *    from the host controller.
2996  * @controller: the handle to the controller object for which to terminate a
2997  *    request.
2998  * @remote_device: the handle to the remote device object for which to
2999  *    terminate a request.
3000  * @request: the handle to the io or task management request object to
3001  *    terminate.
3002  *
3003  * Indicate if the controller successfully began the terminate process for the
3004  * IO request. SCI_SUCCESS if the terminate process was successfully started
3005  * for the request. Determine the failure situations and return values.
3006  */
3007 enum sci_status scic_controller_terminate_request(
3008         struct scic_sds_controller *scic,
3009         struct scic_sds_remote_device *rdev,
3010         struct scic_sds_request *req)
3011 {
3012         enum sci_status status;
3013
3014         if (scic->state_machine.current_state_id !=
3015             SCI_BASE_CONTROLLER_STATE_READY) {
3016                 dev_warn(scic_to_dev(scic),
3017                          "invalid state to terminate request\n");
3018                 return SCI_FAILURE_INVALID_STATE;
3019         }
3020
3021         status = scic_sds_io_request_terminate(req);
3022         if (status != SCI_SUCCESS)
3023                 return status;
3024
3025         /*
3026          * Utilize the original post context command and or in the POST_TC_ABORT
3027          * request sub-type.
3028          */
3029         scic_sds_controller_post_request(scic,
3030                 scic_sds_request_get_post_context(req) |
3031                 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
3032         return SCI_SUCCESS;
3033 }
3034
3035 /**
3036  * scic_controller_complete_io() - This method will perform core specific
3037  *    completion operations for an IO request.  After this method is invoked,
3038  *    the user should consider the IO request as invalid until it is properly
3039  *    reused (i.e. re-constructed).
3040  * @controller: The handle to the controller object for which to complete the
3041  *    IO request.
3042  * @remote_device: The handle to the remote device object for which to complete
3043  *    the IO request.
3044  * @io_request: the handle to the io request object to complete.
3045  *
3046  * - IO tags are a protected resource.  It is incumbent upon the SCI Core user
3047  * to ensure that each of the methods that may allocate or free available IO
3048  * tags are handled in a mutually exclusive manner.  This method is one of said
3049  * methods requiring proper critical code section protection (e.g. semaphore,
3050  * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3051  * Core user, using the scic_controller_allocate_io_tag() method, then it is
3052  * the responsibility of the caller to invoke the scic_controller_free_io_tag()
3053  * method to free the tag (i.e. this method will not free the IO tag). Indicate
3054  * if the controller successfully completed the IO request. SCI_SUCCESS if the
3055  * completion process was successful.
3056  */
3057 enum sci_status scic_controller_complete_io(
3058         struct scic_sds_controller *scic,
3059         struct scic_sds_remote_device *rdev,
3060         struct scic_sds_request *request)
3061 {
3062         enum sci_status status;
3063         u16 index;
3064
3065         switch (scic->state_machine.current_state_id) {
3066         case SCI_BASE_CONTROLLER_STATE_STOPPING:
3067                 /* XXX: Implement this function */
3068                 return SCI_FAILURE;
3069         case SCI_BASE_CONTROLLER_STATE_READY:
3070                 status = scic_sds_remote_device_complete_io(scic, rdev, request);
3071                 if (status != SCI_SUCCESS)
3072                         return status;
3073
3074                 index = scic_sds_io_tag_get_index(request->io_tag);
3075                 scic->io_request_table[index] = NULL;
3076                 return SCI_SUCCESS;
3077         default:
3078                 dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
3079                 return SCI_FAILURE_INVALID_STATE;
3080         }
3081
3082 }
3083
3084 enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
3085 {
3086         struct scic_sds_controller *scic = sci_req->owning_controller;
3087
3088         if (scic->state_machine.current_state_id !=
3089             SCI_BASE_CONTROLLER_STATE_READY) {
3090                 dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
3091                 return SCI_FAILURE_INVALID_STATE;
3092         }
3093
3094         scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
3095         scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
3096         return SCI_SUCCESS;
3097 }
3098
3099 /**
3100  * scic_controller_start_task() - This method is called by the SCIC user to
3101  *    send/start a framework task management request.
3102  * @controller: the handle to the controller object for which to start the task
3103  *    management request.
3104  * @remote_device: the handle to the remote device object for which to start
3105  *    the task management request.
3106  * @task_request: the handle to the task request object to start.
3107  * @io_tag: This parameter specifies a previously allocated IO tag that the
3108  *    user desires to be utilized for this request.  Note this not the io_tag
3109  *    of the request being managed.  It is to be utilized for the task request
3110  *    itself. This parameter is optional.  The user is allowed to supply
3111  *    SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
3112  *
3113  * - IO tags are a protected resource.  It is incumbent upon the SCI Core user
3114  * to ensure that each of the methods that may allocate or free available IO
3115  * tags are handled in a mutually exclusive manner.  This method is one of said
3116  * methods requiring proper critical code section protection (e.g. semaphore,
3117  * spin-lock, etc.). - The user must synchronize this task with completion
3118  * queue processing.  If they are not synchronized then it is possible for the
3119  * io requests that are being managed by the task request can complete before
3120  * starting the task request. scic_controller_allocate_tag() for more
3121  * information on allocating a tag. Indicate if the controller successfully
3122  * started the IO request. SCI_TASK_SUCCESS if the task request was
3123  * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
3124  * returned if there is/are task(s) outstanding that require termination or
3125  * completion before this request can succeed.
3126  */
3127 enum sci_task_status scic_controller_start_task(
3128         struct scic_sds_controller *scic,
3129         struct scic_sds_remote_device *rdev,
3130         struct scic_sds_request *req,
3131         u16 task_tag)
3132 {
3133         enum sci_status status;
3134
3135         if (scic->state_machine.current_state_id !=
3136             SCI_BASE_CONTROLLER_STATE_READY) {
3137                 dev_warn(scic_to_dev(scic),
3138                          "%s: SCIC Controller starting task from invalid "
3139                          "state\n",
3140                          __func__);
3141                 return SCI_TASK_FAILURE_INVALID_STATE;
3142         }
3143
3144         status = scic_sds_remote_device_start_task(scic, rdev, req);
3145         switch (status) {
3146         case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
3147                 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3148
3149                 /*
3150                  * We will let framework know this task request started successfully,
3151                  * although core is still woring on starting the request (to post tc when
3152                  * RNC is resumed.)
3153                  */
3154                 return SCI_SUCCESS;
3155         case SCI_SUCCESS:
3156                 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3157
3158                 scic_sds_controller_post_request(scic,
3159                         scic_sds_request_get_post_context(req));
3160                 break;
3161         default:
3162                 break;
3163         }
3164
3165         return status;
3166 }
3167
3168 /**
3169  * scic_controller_allocate_io_tag() - This method will allocate a tag from the
3170  *    pool of free IO tags. Direct allocation of IO tags by the SCI Core user
3171  *    is optional. The scic_controller_start_io() method will allocate an IO
3172  *    tag if this method is not utilized and the tag is not supplied to the IO
3173  *    construct routine.  Direct allocation of IO tags may provide additional
3174  *    performance improvements in environments capable of supporting this usage
3175  *    model.  Additionally, direct allocation of IO tags also provides
3176  *    additional flexibility to the SCI Core user.  Specifically, the user may
3177  *    retain IO tags across the lives of multiple IO requests.
3178  * @controller: the handle to the controller object for which to allocate the
3179  *    tag.
3180  *
3181  * IO tags are a protected resource.  It is incumbent upon the SCI Core user to
3182  * ensure that each of the methods that may allocate or free available IO tags
3183  * are handled in a mutually exclusive manner.  This method is one of said
3184  * methods requiring proper critical code section protection (e.g. semaphore,
3185  * spin-lock, etc.). An unsigned integer representing an available IO tag.
3186  * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
3187  * currently available tags to be allocated. All return other values indicate a
3188  * legitimate tag.
3189  */
3190 u16 scic_controller_allocate_io_tag(
3191         struct scic_sds_controller *scic)
3192 {
3193         u16 task_context;
3194         u16 sequence_count;
3195
3196         if (!sci_pool_empty(scic->tci_pool)) {
3197                 sci_pool_get(scic->tci_pool, task_context);
3198
3199                 sequence_count = scic->io_request_sequence[task_context];
3200
3201                 return scic_sds_io_tag_construct(sequence_count, task_context);
3202         }
3203
3204         return SCI_CONTROLLER_INVALID_IO_TAG;
3205 }
3206
3207 /**
3208  * scic_controller_free_io_tag() - This method will free an IO tag to the pool
3209  *    of free IO tags. This method provides the SCI Core user more flexibility
3210  *    with regards to IO tags.  The user may desire to keep an IO tag after an
3211  *    IO request has completed, because they plan on re-using the tag for a
3212  *    subsequent IO request.  This method is only legal if the tag was
3213  *    allocated via scic_controller_allocate_io_tag().
3214  * @controller: This parameter specifies the handle to the controller object
3215  *    for which to free/return the tag.
3216  * @io_tag: This parameter represents the tag to be freed to the pool of
3217  *    available tags.
3218  *
3219  * - IO tags are a protected resource.  It is incumbent upon the SCI Core user
3220  * to ensure that each of the methods that may allocate or free available IO
3221  * tags are handled in a mutually exclusive manner.  This method is one of said
3222  * methods requiring proper critical code section protection (e.g. semaphore,
3223  * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3224  * Core user, using the scic_controller_allocate_io_tag() method, then it is
3225  * the responsibility of the caller to invoke this method to free the tag. This
3226  * method returns an indication of whether the tag was successfully put back
3227  * (freed) to the pool of available tags. SCI_SUCCESS This return value
3228  * indicates the tag was successfully placed into the pool of available IO
3229  * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
3230  * is not a valid IO tag value.
3231  */
3232 enum sci_status scic_controller_free_io_tag(
3233         struct scic_sds_controller *scic,
3234         u16 io_tag)
3235 {
3236         u16 sequence;
3237         u16 index;
3238
3239         BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
3240
3241         sequence = scic_sds_io_tag_get_sequence(io_tag);
3242         index    = scic_sds_io_tag_get_index(io_tag);
3243
3244         if (!sci_pool_full(scic->tci_pool)) {
3245                 if (sequence == scic->io_request_sequence[index]) {
3246                         scic_sds_io_sequence_increment(
3247                                 scic->io_request_sequence[index]);
3248
3249                         sci_pool_put(scic->tci_pool, index);
3250
3251                         return SCI_SUCCESS;
3252                 }
3253         }
3254
3255         return SCI_FAILURE_INVALID_IO_TAG;
3256 }
3257
3258