Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include <linux/jiffies.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "2.0.2-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58
59 /* How long to wait (in milliseconds) for board to go into simple mode */
60 #define MAX_CONFIG_WAIT 30000
61 #define MAX_IOCTL_CONFIG_WAIT 1000
62
63 /*define how many times we will try a command because of bus resets */
64 #define MAX_CMD_RETRIES 3
65
66 /* Embedded module documentation macros - see modules.h */
67 MODULE_AUTHOR("Hewlett-Packard Company");
68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69         HPSA_DRIVER_VERSION);
70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71 MODULE_VERSION(HPSA_DRIVER_VERSION);
72 MODULE_LICENSE("GPL");
73
74 static int hpsa_allow_any;
75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(hpsa_allow_any,
77                 "Allow hpsa driver to access unknown HP Smart Array hardware");
78 static int hpsa_simple_mode;
79 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_simple_mode,
81         "Use 'simple mode' rather than 'performant mode'");
82
83 /* define the PCI info for the cards we can control */
84 static const struct pci_device_id hpsa_pci_device_id[] = {
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
100         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
101                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
102         {0,}
103 };
104
105 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
106
107 /*  board_id = Subsystem Device ID & Vendor ID
108  *  product = Marketing Name for the board
109  *  access = Address of the struct of function pointers
110  */
111 static struct board_type products[] = {
112         {0x3241103C, "Smart Array P212", &SA5_access},
113         {0x3243103C, "Smart Array P410", &SA5_access},
114         {0x3245103C, "Smart Array P410i", &SA5_access},
115         {0x3247103C, "Smart Array P411", &SA5_access},
116         {0x3249103C, "Smart Array P812", &SA5_access},
117         {0x324a103C, "Smart Array P712m", &SA5_access},
118         {0x324b103C, "Smart Array P711m", &SA5_access},
119         {0x3350103C, "Smart Array", &SA5_access},
120         {0x3351103C, "Smart Array", &SA5_access},
121         {0x3352103C, "Smart Array", &SA5_access},
122         {0x3353103C, "Smart Array", &SA5_access},
123         {0x3354103C, "Smart Array", &SA5_access},
124         {0x3355103C, "Smart Array", &SA5_access},
125         {0x3356103C, "Smart Array", &SA5_access},
126         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
127 };
128
129 static int number_of_controllers;
130
131 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
132 static spinlock_t lockup_detector_lock;
133 static struct task_struct *hpsa_lockup_detector;
134
135 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
136 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
137 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
138 static void start_io(struct ctlr_info *h);
139
140 #ifdef CONFIG_COMPAT
141 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
142 #endif
143
144 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
145 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
146 static struct CommandList *cmd_alloc(struct ctlr_info *h);
147 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
148 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
149         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
150         int cmd_type);
151
152 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
153 static void hpsa_scan_start(struct Scsi_Host *);
154 static int hpsa_scan_finished(struct Scsi_Host *sh,
155         unsigned long elapsed_time);
156 static int hpsa_change_queue_depth(struct scsi_device *sdev,
157         int qdepth, int reason);
158
159 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
160 static int hpsa_slave_alloc(struct scsi_device *sdev);
161 static void hpsa_slave_destroy(struct scsi_device *sdev);
162
163 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
164 static int check_for_unit_attention(struct ctlr_info *h,
165         struct CommandList *c);
166 static void check_ioctl_unit_attention(struct ctlr_info *h,
167         struct CommandList *c);
168 /* performant mode helper functions */
169 static void calc_bucket_map(int *bucket, int num_buckets,
170         int nsgs, int *bucket_map);
171 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
172 static inline u32 next_command(struct ctlr_info *h);
173 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
174         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
175         u64 *cfg_offset);
176 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
177         unsigned long *memory_bar);
178 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
179 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
180         void __iomem *vaddr, int wait_for_ready);
181 #define BOARD_NOT_READY 0
182 #define BOARD_READY 1
183
184 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
185 {
186         unsigned long *priv = shost_priv(sdev->host);
187         return (struct ctlr_info *) *priv;
188 }
189
190 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
191 {
192         unsigned long *priv = shost_priv(sh);
193         return (struct ctlr_info *) *priv;
194 }
195
196 static int check_for_unit_attention(struct ctlr_info *h,
197         struct CommandList *c)
198 {
199         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
200                 return 0;
201
202         switch (c->err_info->SenseInfo[12]) {
203         case STATE_CHANGED:
204                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
205                         "detected, command retried\n", h->ctlr);
206                 break;
207         case LUN_FAILED:
208                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
209                         "detected, action required\n", h->ctlr);
210                 break;
211         case REPORT_LUNS_CHANGED:
212                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
213                         "changed, action required\n", h->ctlr);
214         /*
215          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
216          */
217                 break;
218         case POWER_OR_RESET:
219                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
220                         "or device reset detected\n", h->ctlr);
221                 break;
222         case UNIT_ATTENTION_CLEARED:
223                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
224                     "cleared by another initiator\n", h->ctlr);
225                 break;
226         default:
227                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
228                         "unit attention detected\n", h->ctlr);
229                 break;
230         }
231         return 1;
232 }
233
234 static ssize_t host_store_rescan(struct device *dev,
235                                  struct device_attribute *attr,
236                                  const char *buf, size_t count)
237 {
238         struct ctlr_info *h;
239         struct Scsi_Host *shost = class_to_shost(dev);
240         h = shost_to_hba(shost);
241         hpsa_scan_start(h->scsi_host);
242         return count;
243 }
244
245 static ssize_t host_show_firmware_revision(struct device *dev,
246              struct device_attribute *attr, char *buf)
247 {
248         struct ctlr_info *h;
249         struct Scsi_Host *shost = class_to_shost(dev);
250         unsigned char *fwrev;
251
252         h = shost_to_hba(shost);
253         if (!h->hba_inquiry_data)
254                 return 0;
255         fwrev = &h->hba_inquiry_data[32];
256         return snprintf(buf, 20, "%c%c%c%c\n",
257                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
258 }
259
260 static ssize_t host_show_commands_outstanding(struct device *dev,
261              struct device_attribute *attr, char *buf)
262 {
263         struct Scsi_Host *shost = class_to_shost(dev);
264         struct ctlr_info *h = shost_to_hba(shost);
265
266         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
267 }
268
269 static ssize_t host_show_transport_mode(struct device *dev,
270         struct device_attribute *attr, char *buf)
271 {
272         struct ctlr_info *h;
273         struct Scsi_Host *shost = class_to_shost(dev);
274
275         h = shost_to_hba(shost);
276         return snprintf(buf, 20, "%s\n",
277                 h->transMethod & CFGTBL_Trans_Performant ?
278                         "performant" : "simple");
279 }
280
281 /* List of controllers which cannot be hard reset on kexec with reset_devices */
282 static u32 unresettable_controller[] = {
283         0x324a103C, /* Smart Array P712m */
284         0x324b103C, /* SmartArray P711m */
285         0x3223103C, /* Smart Array P800 */
286         0x3234103C, /* Smart Array P400 */
287         0x3235103C, /* Smart Array P400i */
288         0x3211103C, /* Smart Array E200i */
289         0x3212103C, /* Smart Array E200 */
290         0x3213103C, /* Smart Array E200i */
291         0x3214103C, /* Smart Array E200i */
292         0x3215103C, /* Smart Array E200i */
293         0x3237103C, /* Smart Array E500 */
294         0x323D103C, /* Smart Array P700m */
295         0x409C0E11, /* Smart Array 6400 */
296         0x409D0E11, /* Smart Array 6400 EM */
297 };
298
299 /* List of controllers which cannot even be soft reset */
300 static u32 soft_unresettable_controller[] = {
301         /* Exclude 640x boards.  These are two pci devices in one slot
302          * which share a battery backed cache module.  One controls the
303          * cache, the other accesses the cache through the one that controls
304          * it.  If we reset the one controlling the cache, the other will
305          * likely not be happy.  Just forbid resetting this conjoined mess.
306          * The 640x isn't really supported by hpsa anyway.
307          */
308         0x409C0E11, /* Smart Array 6400 */
309         0x409D0E11, /* Smart Array 6400 EM */
310 };
311
312 static int ctlr_is_hard_resettable(u32 board_id)
313 {
314         int i;
315
316         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
317                 if (unresettable_controller[i] == board_id)
318                         return 0;
319         return 1;
320 }
321
322 static int ctlr_is_soft_resettable(u32 board_id)
323 {
324         int i;
325
326         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
327                 if (soft_unresettable_controller[i] == board_id)
328                         return 0;
329         return 1;
330 }
331
332 static int ctlr_is_resettable(u32 board_id)
333 {
334         return ctlr_is_hard_resettable(board_id) ||
335                 ctlr_is_soft_resettable(board_id);
336 }
337
338 static ssize_t host_show_resettable(struct device *dev,
339         struct device_attribute *attr, char *buf)
340 {
341         struct ctlr_info *h;
342         struct Scsi_Host *shost = class_to_shost(dev);
343
344         h = shost_to_hba(shost);
345         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
346 }
347
348 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
349 {
350         return (scsi3addr[3] & 0xC0) == 0x40;
351 }
352
353 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
354         "UNKNOWN"
355 };
356 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
357
358 static ssize_t raid_level_show(struct device *dev,
359              struct device_attribute *attr, char *buf)
360 {
361         ssize_t l = 0;
362         unsigned char rlevel;
363         struct ctlr_info *h;
364         struct scsi_device *sdev;
365         struct hpsa_scsi_dev_t *hdev;
366         unsigned long flags;
367
368         sdev = to_scsi_device(dev);
369         h = sdev_to_hba(sdev);
370         spin_lock_irqsave(&h->lock, flags);
371         hdev = sdev->hostdata;
372         if (!hdev) {
373                 spin_unlock_irqrestore(&h->lock, flags);
374                 return -ENODEV;
375         }
376
377         /* Is this even a logical drive? */
378         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
379                 spin_unlock_irqrestore(&h->lock, flags);
380                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
381                 return l;
382         }
383
384         rlevel = hdev->raid_level;
385         spin_unlock_irqrestore(&h->lock, flags);
386         if (rlevel > RAID_UNKNOWN)
387                 rlevel = RAID_UNKNOWN;
388         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
389         return l;
390 }
391
392 static ssize_t lunid_show(struct device *dev,
393              struct device_attribute *attr, char *buf)
394 {
395         struct ctlr_info *h;
396         struct scsi_device *sdev;
397         struct hpsa_scsi_dev_t *hdev;
398         unsigned long flags;
399         unsigned char lunid[8];
400
401         sdev = to_scsi_device(dev);
402         h = sdev_to_hba(sdev);
403         spin_lock_irqsave(&h->lock, flags);
404         hdev = sdev->hostdata;
405         if (!hdev) {
406                 spin_unlock_irqrestore(&h->lock, flags);
407                 return -ENODEV;
408         }
409         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
410         spin_unlock_irqrestore(&h->lock, flags);
411         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
412                 lunid[0], lunid[1], lunid[2], lunid[3],
413                 lunid[4], lunid[5], lunid[6], lunid[7]);
414 }
415
416 static ssize_t unique_id_show(struct device *dev,
417              struct device_attribute *attr, char *buf)
418 {
419         struct ctlr_info *h;
420         struct scsi_device *sdev;
421         struct hpsa_scsi_dev_t *hdev;
422         unsigned long flags;
423         unsigned char sn[16];
424
425         sdev = to_scsi_device(dev);
426         h = sdev_to_hba(sdev);
427         spin_lock_irqsave(&h->lock, flags);
428         hdev = sdev->hostdata;
429         if (!hdev) {
430                 spin_unlock_irqrestore(&h->lock, flags);
431                 return -ENODEV;
432         }
433         memcpy(sn, hdev->device_id, sizeof(sn));
434         spin_unlock_irqrestore(&h->lock, flags);
435         return snprintf(buf, 16 * 2 + 2,
436                         "%02X%02X%02X%02X%02X%02X%02X%02X"
437                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
438                         sn[0], sn[1], sn[2], sn[3],
439                         sn[4], sn[5], sn[6], sn[7],
440                         sn[8], sn[9], sn[10], sn[11],
441                         sn[12], sn[13], sn[14], sn[15]);
442 }
443
444 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
445 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
446 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
447 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
448 static DEVICE_ATTR(firmware_revision, S_IRUGO,
449         host_show_firmware_revision, NULL);
450 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
451         host_show_commands_outstanding, NULL);
452 static DEVICE_ATTR(transport_mode, S_IRUGO,
453         host_show_transport_mode, NULL);
454 static DEVICE_ATTR(resettable, S_IRUGO,
455         host_show_resettable, NULL);
456
457 static struct device_attribute *hpsa_sdev_attrs[] = {
458         &dev_attr_raid_level,
459         &dev_attr_lunid,
460         &dev_attr_unique_id,
461         NULL,
462 };
463
464 static struct device_attribute *hpsa_shost_attrs[] = {
465         &dev_attr_rescan,
466         &dev_attr_firmware_revision,
467         &dev_attr_commands_outstanding,
468         &dev_attr_transport_mode,
469         &dev_attr_resettable,
470         NULL,
471 };
472
473 static struct scsi_host_template hpsa_driver_template = {
474         .module                 = THIS_MODULE,
475         .name                   = "hpsa",
476         .proc_name              = "hpsa",
477         .queuecommand           = hpsa_scsi_queue_command,
478         .scan_start             = hpsa_scan_start,
479         .scan_finished          = hpsa_scan_finished,
480         .change_queue_depth     = hpsa_change_queue_depth,
481         .this_id                = -1,
482         .use_clustering         = ENABLE_CLUSTERING,
483         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
484         .ioctl                  = hpsa_ioctl,
485         .slave_alloc            = hpsa_slave_alloc,
486         .slave_destroy          = hpsa_slave_destroy,
487 #ifdef CONFIG_COMPAT
488         .compat_ioctl           = hpsa_compat_ioctl,
489 #endif
490         .sdev_attrs = hpsa_sdev_attrs,
491         .shost_attrs = hpsa_shost_attrs,
492         .max_sectors = 8192,
493 };
494
495
496 /* Enqueuing and dequeuing functions for cmdlists. */
497 static inline void addQ(struct list_head *list, struct CommandList *c)
498 {
499         list_add_tail(&c->list, list);
500 }
501
502 static inline u32 next_command(struct ctlr_info *h)
503 {
504         u32 a;
505
506         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
507                 return h->access.command_completed(h);
508
509         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
510                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
511                 (h->reply_pool_head)++;
512                 h->commands_outstanding--;
513         } else {
514                 a = FIFO_EMPTY;
515         }
516         /* Check for wraparound */
517         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
518                 h->reply_pool_head = h->reply_pool;
519                 h->reply_pool_wraparound ^= 1;
520         }
521         return a;
522 }
523
524 /* set_performant_mode: Modify the tag for cciss performant
525  * set bit 0 for pull model, bits 3-1 for block fetch
526  * register number
527  */
528 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
529 {
530         if (likely(h->transMethod & CFGTBL_Trans_Performant))
531                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
532 }
533
534 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
535         struct CommandList *c)
536 {
537         unsigned long flags;
538
539         set_performant_mode(h, c);
540         spin_lock_irqsave(&h->lock, flags);
541         addQ(&h->reqQ, c);
542         h->Qdepth++;
543         start_io(h);
544         spin_unlock_irqrestore(&h->lock, flags);
545 }
546
547 static inline void removeQ(struct CommandList *c)
548 {
549         if (WARN_ON(list_empty(&c->list)))
550                 return;
551         list_del_init(&c->list);
552 }
553
554 static inline int is_hba_lunid(unsigned char scsi3addr[])
555 {
556         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
557 }
558
559 static inline int is_scsi_rev_5(struct ctlr_info *h)
560 {
561         if (!h->hba_inquiry_data)
562                 return 0;
563         if ((h->hba_inquiry_data[2] & 0x07) == 5)
564                 return 1;
565         return 0;
566 }
567
568 static int hpsa_find_target_lun(struct ctlr_info *h,
569         unsigned char scsi3addr[], int bus, int *target, int *lun)
570 {
571         /* finds an unused bus, target, lun for a new physical device
572          * assumes h->devlock is held
573          */
574         int i, found = 0;
575         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
576
577         memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
578
579         for (i = 0; i < h->ndevices; i++) {
580                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
581                         set_bit(h->dev[i]->target, lun_taken);
582         }
583
584         for (i = 0; i < HPSA_MAX_DEVICES; i++) {
585                 if (!test_bit(i, lun_taken)) {
586                         /* *bus = 1; */
587                         *target = i;
588                         *lun = 0;
589                         found = 1;
590                         break;
591                 }
592         }
593         return !found;
594 }
595
596 /* Add an entry into h->dev[] array. */
597 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
598                 struct hpsa_scsi_dev_t *device,
599                 struct hpsa_scsi_dev_t *added[], int *nadded)
600 {
601         /* assumes h->devlock is held */
602         int n = h->ndevices;
603         int i;
604         unsigned char addr1[8], addr2[8];
605         struct hpsa_scsi_dev_t *sd;
606
607         if (n >= HPSA_MAX_DEVICES) {
608                 dev_err(&h->pdev->dev, "too many devices, some will be "
609                         "inaccessible.\n");
610                 return -1;
611         }
612
613         /* physical devices do not have lun or target assigned until now. */
614         if (device->lun != -1)
615                 /* Logical device, lun is already assigned. */
616                 goto lun_assigned;
617
618         /* If this device a non-zero lun of a multi-lun device
619          * byte 4 of the 8-byte LUN addr will contain the logical
620          * unit no, zero otherise.
621          */
622         if (device->scsi3addr[4] == 0) {
623                 /* This is not a non-zero lun of a multi-lun device */
624                 if (hpsa_find_target_lun(h, device->scsi3addr,
625                         device->bus, &device->target, &device->lun) != 0)
626                         return -1;
627                 goto lun_assigned;
628         }
629
630         /* This is a non-zero lun of a multi-lun device.
631          * Search through our list and find the device which
632          * has the same 8 byte LUN address, excepting byte 4.
633          * Assign the same bus and target for this new LUN.
634          * Use the logical unit number from the firmware.
635          */
636         memcpy(addr1, device->scsi3addr, 8);
637         addr1[4] = 0;
638         for (i = 0; i < n; i++) {
639                 sd = h->dev[i];
640                 memcpy(addr2, sd->scsi3addr, 8);
641                 addr2[4] = 0;
642                 /* differ only in byte 4? */
643                 if (memcmp(addr1, addr2, 8) == 0) {
644                         device->bus = sd->bus;
645                         device->target = sd->target;
646                         device->lun = device->scsi3addr[4];
647                         break;
648                 }
649         }
650         if (device->lun == -1) {
651                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
652                         " suspect firmware bug or unsupported hardware "
653                         "configuration.\n");
654                         return -1;
655         }
656
657 lun_assigned:
658
659         h->dev[n] = device;
660         h->ndevices++;
661         added[*nadded] = device;
662         (*nadded)++;
663
664         /* initially, (before registering with scsi layer) we don't
665          * know our hostno and we don't want to print anything first
666          * time anyway (the scsi layer's inquiries will show that info)
667          */
668         /* if (hostno != -1) */
669                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
670                         scsi_device_type(device->devtype), hostno,
671                         device->bus, device->target, device->lun);
672         return 0;
673 }
674
675 /* Replace an entry from h->dev[] array. */
676 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
677         int entry, struct hpsa_scsi_dev_t *new_entry,
678         struct hpsa_scsi_dev_t *added[], int *nadded,
679         struct hpsa_scsi_dev_t *removed[], int *nremoved)
680 {
681         /* assumes h->devlock is held */
682         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
683         removed[*nremoved] = h->dev[entry];
684         (*nremoved)++;
685
686         /*
687          * New physical devices won't have target/lun assigned yet
688          * so we need to preserve the values in the slot we are replacing.
689          */
690         if (new_entry->target == -1) {
691                 new_entry->target = h->dev[entry]->target;
692                 new_entry->lun = h->dev[entry]->lun;
693         }
694
695         h->dev[entry] = new_entry;
696         added[*nadded] = new_entry;
697         (*nadded)++;
698         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
699                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
700                         new_entry->target, new_entry->lun);
701 }
702
703 /* Remove an entry from h->dev[] array. */
704 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
705         struct hpsa_scsi_dev_t *removed[], int *nremoved)
706 {
707         /* assumes h->devlock is held */
708         int i;
709         struct hpsa_scsi_dev_t *sd;
710
711         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
712
713         sd = h->dev[entry];
714         removed[*nremoved] = h->dev[entry];
715         (*nremoved)++;
716
717         for (i = entry; i < h->ndevices-1; i++)
718                 h->dev[i] = h->dev[i+1];
719         h->ndevices--;
720         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
721                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
722                 sd->lun);
723 }
724
725 #define SCSI3ADDR_EQ(a, b) ( \
726         (a)[7] == (b)[7] && \
727         (a)[6] == (b)[6] && \
728         (a)[5] == (b)[5] && \
729         (a)[4] == (b)[4] && \
730         (a)[3] == (b)[3] && \
731         (a)[2] == (b)[2] && \
732         (a)[1] == (b)[1] && \
733         (a)[0] == (b)[0])
734
735 static void fixup_botched_add(struct ctlr_info *h,
736         struct hpsa_scsi_dev_t *added)
737 {
738         /* called when scsi_add_device fails in order to re-adjust
739          * h->dev[] to match the mid layer's view.
740          */
741         unsigned long flags;
742         int i, j;
743
744         spin_lock_irqsave(&h->lock, flags);
745         for (i = 0; i < h->ndevices; i++) {
746                 if (h->dev[i] == added) {
747                         for (j = i; j < h->ndevices-1; j++)
748                                 h->dev[j] = h->dev[j+1];
749                         h->ndevices--;
750                         break;
751                 }
752         }
753         spin_unlock_irqrestore(&h->lock, flags);
754         kfree(added);
755 }
756
757 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
758         struct hpsa_scsi_dev_t *dev2)
759 {
760         /* we compare everything except lun and target as these
761          * are not yet assigned.  Compare parts likely
762          * to differ first
763          */
764         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
765                 sizeof(dev1->scsi3addr)) != 0)
766                 return 0;
767         if (memcmp(dev1->device_id, dev2->device_id,
768                 sizeof(dev1->device_id)) != 0)
769                 return 0;
770         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
771                 return 0;
772         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
773                 return 0;
774         if (dev1->devtype != dev2->devtype)
775                 return 0;
776         if (dev1->bus != dev2->bus)
777                 return 0;
778         return 1;
779 }
780
781 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
782  * and return needle location in *index.  If scsi3addr matches, but not
783  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
784  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
785  */
786 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
787         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
788         int *index)
789 {
790         int i;
791 #define DEVICE_NOT_FOUND 0
792 #define DEVICE_CHANGED 1
793 #define DEVICE_SAME 2
794         for (i = 0; i < haystack_size; i++) {
795                 if (haystack[i] == NULL) /* previously removed. */
796                         continue;
797                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
798                         *index = i;
799                         if (device_is_the_same(needle, haystack[i]))
800                                 return DEVICE_SAME;
801                         else
802                                 return DEVICE_CHANGED;
803                 }
804         }
805         *index = -1;
806         return DEVICE_NOT_FOUND;
807 }
808
809 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
810         struct hpsa_scsi_dev_t *sd[], int nsds)
811 {
812         /* sd contains scsi3 addresses and devtypes, and inquiry
813          * data.  This function takes what's in sd to be the current
814          * reality and updates h->dev[] to reflect that reality.
815          */
816         int i, entry, device_change, changes = 0;
817         struct hpsa_scsi_dev_t *csd;
818         unsigned long flags;
819         struct hpsa_scsi_dev_t **added, **removed;
820         int nadded, nremoved;
821         struct Scsi_Host *sh = NULL;
822
823         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
824         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
825
826         if (!added || !removed) {
827                 dev_warn(&h->pdev->dev, "out of memory in "
828                         "adjust_hpsa_scsi_table\n");
829                 goto free_and_out;
830         }
831
832         spin_lock_irqsave(&h->devlock, flags);
833
834         /* find any devices in h->dev[] that are not in
835          * sd[] and remove them from h->dev[], and for any
836          * devices which have changed, remove the old device
837          * info and add the new device info.
838          */
839         i = 0;
840         nremoved = 0;
841         nadded = 0;
842         while (i < h->ndevices) {
843                 csd = h->dev[i];
844                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
845                 if (device_change == DEVICE_NOT_FOUND) {
846                         changes++;
847                         hpsa_scsi_remove_entry(h, hostno, i,
848                                 removed, &nremoved);
849                         continue; /* remove ^^^, hence i not incremented */
850                 } else if (device_change == DEVICE_CHANGED) {
851                         changes++;
852                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
853                                 added, &nadded, removed, &nremoved);
854                         /* Set it to NULL to prevent it from being freed
855                          * at the bottom of hpsa_update_scsi_devices()
856                          */
857                         sd[entry] = NULL;
858                 }
859                 i++;
860         }
861
862         /* Now, make sure every device listed in sd[] is also
863          * listed in h->dev[], adding them if they aren't found
864          */
865
866         for (i = 0; i < nsds; i++) {
867                 if (!sd[i]) /* if already added above. */
868                         continue;
869                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
870                                         h->ndevices, &entry);
871                 if (device_change == DEVICE_NOT_FOUND) {
872                         changes++;
873                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
874                                 added, &nadded) != 0)
875                                 break;
876                         sd[i] = NULL; /* prevent from being freed later. */
877                 } else if (device_change == DEVICE_CHANGED) {
878                         /* should never happen... */
879                         changes++;
880                         dev_warn(&h->pdev->dev,
881                                 "device unexpectedly changed.\n");
882                         /* but if it does happen, we just ignore that device */
883                 }
884         }
885         spin_unlock_irqrestore(&h->devlock, flags);
886
887         /* Don't notify scsi mid layer of any changes the first time through
888          * (or if there are no changes) scsi_scan_host will do it later the
889          * first time through.
890          */
891         if (hostno == -1 || !changes)
892                 goto free_and_out;
893
894         sh = h->scsi_host;
895         /* Notify scsi mid layer of any removed devices */
896         for (i = 0; i < nremoved; i++) {
897                 struct scsi_device *sdev =
898                         scsi_device_lookup(sh, removed[i]->bus,
899                                 removed[i]->target, removed[i]->lun);
900                 if (sdev != NULL) {
901                         scsi_remove_device(sdev);
902                         scsi_device_put(sdev);
903                 } else {
904                         /* We don't expect to get here.
905                          * future cmds to this device will get selection
906                          * timeout as if the device was gone.
907                          */
908                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
909                                 " for removal.", hostno, removed[i]->bus,
910                                 removed[i]->target, removed[i]->lun);
911                 }
912                 kfree(removed[i]);
913                 removed[i] = NULL;
914         }
915
916         /* Notify scsi mid layer of any added devices */
917         for (i = 0; i < nadded; i++) {
918                 if (scsi_add_device(sh, added[i]->bus,
919                         added[i]->target, added[i]->lun) == 0)
920                         continue;
921                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
922                         "device not added.\n", hostno, added[i]->bus,
923                         added[i]->target, added[i]->lun);
924                 /* now we have to remove it from h->dev,
925                  * since it didn't get added to scsi mid layer
926                  */
927                 fixup_botched_add(h, added[i]);
928         }
929
930 free_and_out:
931         kfree(added);
932         kfree(removed);
933 }
934
935 /*
936  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
937  * Assume's h->devlock is held.
938  */
939 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
940         int bus, int target, int lun)
941 {
942         int i;
943         struct hpsa_scsi_dev_t *sd;
944
945         for (i = 0; i < h->ndevices; i++) {
946                 sd = h->dev[i];
947                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
948                         return sd;
949         }
950         return NULL;
951 }
952
953 /* link sdev->hostdata to our per-device structure. */
954 static int hpsa_slave_alloc(struct scsi_device *sdev)
955 {
956         struct hpsa_scsi_dev_t *sd;
957         unsigned long flags;
958         struct ctlr_info *h;
959
960         h = sdev_to_hba(sdev);
961         spin_lock_irqsave(&h->devlock, flags);
962         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
963                 sdev_id(sdev), sdev->lun);
964         if (sd != NULL)
965                 sdev->hostdata = sd;
966         spin_unlock_irqrestore(&h->devlock, flags);
967         return 0;
968 }
969
970 static void hpsa_slave_destroy(struct scsi_device *sdev)
971 {
972         /* nothing to do. */
973 }
974
975 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
976 {
977         int i;
978
979         if (!h->cmd_sg_list)
980                 return;
981         for (i = 0; i < h->nr_cmds; i++) {
982                 kfree(h->cmd_sg_list[i]);
983                 h->cmd_sg_list[i] = NULL;
984         }
985         kfree(h->cmd_sg_list);
986         h->cmd_sg_list = NULL;
987 }
988
989 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
990 {
991         int i;
992
993         if (h->chainsize <= 0)
994                 return 0;
995
996         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
997                                 GFP_KERNEL);
998         if (!h->cmd_sg_list)
999                 return -ENOMEM;
1000         for (i = 0; i < h->nr_cmds; i++) {
1001                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1002                                                 h->chainsize, GFP_KERNEL);
1003                 if (!h->cmd_sg_list[i])
1004                         goto clean;
1005         }
1006         return 0;
1007
1008 clean:
1009         hpsa_free_sg_chain_blocks(h);
1010         return -ENOMEM;
1011 }
1012
1013 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1014         struct CommandList *c)
1015 {
1016         struct SGDescriptor *chain_sg, *chain_block;
1017         u64 temp64;
1018
1019         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1020         chain_block = h->cmd_sg_list[c->cmdindex];
1021         chain_sg->Ext = HPSA_SG_CHAIN;
1022         chain_sg->Len = sizeof(*chain_sg) *
1023                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1024         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1025                                 PCI_DMA_TODEVICE);
1026         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1027         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1028 }
1029
1030 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1031         struct CommandList *c)
1032 {
1033         struct SGDescriptor *chain_sg;
1034         union u64bit temp64;
1035
1036         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1037                 return;
1038
1039         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1040         temp64.val32.lower = chain_sg->Addr.lower;
1041         temp64.val32.upper = chain_sg->Addr.upper;
1042         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1043 }
1044
1045 static void complete_scsi_command(struct CommandList *cp)
1046 {
1047         struct scsi_cmnd *cmd;
1048         struct ctlr_info *h;
1049         struct ErrorInfo *ei;
1050
1051         unsigned char sense_key;
1052         unsigned char asc;      /* additional sense code */
1053         unsigned char ascq;     /* additional sense code qualifier */
1054         unsigned long sense_data_size;
1055
1056         ei = cp->err_info;
1057         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1058         h = cp->h;
1059
1060         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1061         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1062                 hpsa_unmap_sg_chain_block(h, cp);
1063
1064         cmd->result = (DID_OK << 16);           /* host byte */
1065         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1066         cmd->result |= ei->ScsiStatus;
1067
1068         /* copy the sense data whether we need to or not. */
1069         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1070                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1071         else
1072                 sense_data_size = sizeof(ei->SenseInfo);
1073         if (ei->SenseLen < sense_data_size)
1074                 sense_data_size = ei->SenseLen;
1075
1076         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1077         scsi_set_resid(cmd, ei->ResidualCnt);
1078
1079         if (ei->CommandStatus == 0) {
1080                 cmd->scsi_done(cmd);
1081                 cmd_free(h, cp);
1082                 return;
1083         }
1084
1085         /* an error has occurred */
1086         switch (ei->CommandStatus) {
1087
1088         case CMD_TARGET_STATUS:
1089                 if (ei->ScsiStatus) {
1090                         /* Get sense key */
1091                         sense_key = 0xf & ei->SenseInfo[2];
1092                         /* Get additional sense code */
1093                         asc = ei->SenseInfo[12];
1094                         /* Get addition sense code qualifier */
1095                         ascq = ei->SenseInfo[13];
1096                 }
1097
1098                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1099                         if (check_for_unit_attention(h, cp)) {
1100                                 cmd->result = DID_SOFT_ERROR << 16;
1101                                 break;
1102                         }
1103                         if (sense_key == ILLEGAL_REQUEST) {
1104                                 /*
1105                                  * SCSI REPORT_LUNS is commonly unsupported on
1106                                  * Smart Array.  Suppress noisy complaint.
1107                                  */
1108                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1109                                         break;
1110
1111                                 /* If ASC/ASCQ indicate Logical Unit
1112                                  * Not Supported condition,
1113                                  */
1114                                 if ((asc == 0x25) && (ascq == 0x0)) {
1115                                         dev_warn(&h->pdev->dev, "cp %p "
1116                                                 "has check condition\n", cp);
1117                                         break;
1118                                 }
1119                         }
1120
1121                         if (sense_key == NOT_READY) {
1122                                 /* If Sense is Not Ready, Logical Unit
1123                                  * Not ready, Manual Intervention
1124                                  * required
1125                                  */
1126                                 if ((asc == 0x04) && (ascq == 0x03)) {
1127                                         dev_warn(&h->pdev->dev, "cp %p "
1128                                                 "has check condition: unit "
1129                                                 "not ready, manual "
1130                                                 "intervention required\n", cp);
1131                                         break;
1132                                 }
1133                         }
1134                         if (sense_key == ABORTED_COMMAND) {
1135                                 /* Aborted command is retryable */
1136                                 dev_warn(&h->pdev->dev, "cp %p "
1137                                         "has check condition: aborted command: "
1138                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1139                                         cp, asc, ascq);
1140                                 cmd->result = DID_SOFT_ERROR << 16;
1141                                 break;
1142                         }
1143                         /* Must be some other type of check condition */
1144                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1145                                         "unknown type: "
1146                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1147                                         "Returning result: 0x%x, "
1148                                         "cmd=[%02x %02x %02x %02x %02x "
1149                                         "%02x %02x %02x %02x %02x %02x "
1150                                         "%02x %02x %02x %02x %02x]\n",
1151                                         cp, sense_key, asc, ascq,
1152                                         cmd->result,
1153                                         cmd->cmnd[0], cmd->cmnd[1],
1154                                         cmd->cmnd[2], cmd->cmnd[3],
1155                                         cmd->cmnd[4], cmd->cmnd[5],
1156                                         cmd->cmnd[6], cmd->cmnd[7],
1157                                         cmd->cmnd[8], cmd->cmnd[9],
1158                                         cmd->cmnd[10], cmd->cmnd[11],
1159                                         cmd->cmnd[12], cmd->cmnd[13],
1160                                         cmd->cmnd[14], cmd->cmnd[15]);
1161                         break;
1162                 }
1163
1164
1165                 /* Problem was not a check condition
1166                  * Pass it up to the upper layers...
1167                  */
1168                 if (ei->ScsiStatus) {
1169                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1170                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1171                                 "Returning result: 0x%x\n",
1172                                 cp, ei->ScsiStatus,
1173                                 sense_key, asc, ascq,
1174                                 cmd->result);
1175                 } else {  /* scsi status is zero??? How??? */
1176                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1177                                 "Returning no connection.\n", cp),
1178
1179                         /* Ordinarily, this case should never happen,
1180                          * but there is a bug in some released firmware
1181                          * revisions that allows it to happen if, for
1182                          * example, a 4100 backplane loses power and
1183                          * the tape drive is in it.  We assume that
1184                          * it's a fatal error of some kind because we
1185                          * can't show that it wasn't. We will make it
1186                          * look like selection timeout since that is
1187                          * the most common reason for this to occur,
1188                          * and it's severe enough.
1189                          */
1190
1191                         cmd->result = DID_NO_CONNECT << 16;
1192                 }
1193                 break;
1194
1195         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1196                 break;
1197         case CMD_DATA_OVERRUN:
1198                 dev_warn(&h->pdev->dev, "cp %p has"
1199                         " completed with data overrun "
1200                         "reported\n", cp);
1201                 break;
1202         case CMD_INVALID: {
1203                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1204                 print_cmd(cp); */
1205                 /* We get CMD_INVALID if you address a non-existent device
1206                  * instead of a selection timeout (no response).  You will
1207                  * see this if you yank out a drive, then try to access it.
1208                  * This is kind of a shame because it means that any other
1209                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1210                  * missing target. */
1211                 cmd->result = DID_NO_CONNECT << 16;
1212         }
1213                 break;
1214         case CMD_PROTOCOL_ERR:
1215                 dev_warn(&h->pdev->dev, "cp %p has "
1216                         "protocol error \n", cp);
1217                 break;
1218         case CMD_HARDWARE_ERR:
1219                 cmd->result = DID_ERROR << 16;
1220                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1221                 break;
1222         case CMD_CONNECTION_LOST:
1223                 cmd->result = DID_ERROR << 16;
1224                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1225                 break;
1226         case CMD_ABORTED:
1227                 cmd->result = DID_ABORT << 16;
1228                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1229                                 cp, ei->ScsiStatus);
1230                 break;
1231         case CMD_ABORT_FAILED:
1232                 cmd->result = DID_ERROR << 16;
1233                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1234                 break;
1235         case CMD_UNSOLICITED_ABORT:
1236                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1237                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1238                         "abort\n", cp);
1239                 break;
1240         case CMD_TIMEOUT:
1241                 cmd->result = DID_TIME_OUT << 16;
1242                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1243                 break;
1244         case CMD_UNABORTABLE:
1245                 cmd->result = DID_ERROR << 16;
1246                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1247                 break;
1248         default:
1249                 cmd->result = DID_ERROR << 16;
1250                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1251                                 cp, ei->CommandStatus);
1252         }
1253         cmd->scsi_done(cmd);
1254         cmd_free(h, cp);
1255 }
1256
1257 static int hpsa_scsi_detect(struct ctlr_info *h)
1258 {
1259         struct Scsi_Host *sh;
1260         int error;
1261
1262         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1263         if (sh == NULL)
1264                 goto fail;
1265
1266         sh->io_port = 0;
1267         sh->n_io_port = 0;
1268         sh->this_id = -1;
1269         sh->max_channel = 3;
1270         sh->max_cmd_len = MAX_COMMAND_SIZE;
1271         sh->max_lun = HPSA_MAX_LUN;
1272         sh->max_id = HPSA_MAX_LUN;
1273         sh->can_queue = h->nr_cmds;
1274         sh->cmd_per_lun = h->nr_cmds;
1275         sh->sg_tablesize = h->maxsgentries;
1276         h->scsi_host = sh;
1277         sh->hostdata[0] = (unsigned long) h;
1278         sh->irq = h->intr[h->intr_mode];
1279         sh->unique_id = sh->irq;
1280         error = scsi_add_host(sh, &h->pdev->dev);
1281         if (error)
1282                 goto fail_host_put;
1283         scsi_scan_host(sh);
1284         return 0;
1285
1286  fail_host_put:
1287         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1288                 " failed for controller %d\n", h->ctlr);
1289         scsi_host_put(sh);
1290         return error;
1291  fail:
1292         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1293                 " failed for controller %d\n", h->ctlr);
1294         return -ENOMEM;
1295 }
1296
1297 static void hpsa_pci_unmap(struct pci_dev *pdev,
1298         struct CommandList *c, int sg_used, int data_direction)
1299 {
1300         int i;
1301         union u64bit addr64;
1302
1303         for (i = 0; i < sg_used; i++) {
1304                 addr64.val32.lower = c->SG[i].Addr.lower;
1305                 addr64.val32.upper = c->SG[i].Addr.upper;
1306                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1307                         data_direction);
1308         }
1309 }
1310
1311 static void hpsa_map_one(struct pci_dev *pdev,
1312                 struct CommandList *cp,
1313                 unsigned char *buf,
1314                 size_t buflen,
1315                 int data_direction)
1316 {
1317         u64 addr64;
1318
1319         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1320                 cp->Header.SGList = 0;
1321                 cp->Header.SGTotal = 0;
1322                 return;
1323         }
1324
1325         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1326         cp->SG[0].Addr.lower =
1327           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1328         cp->SG[0].Addr.upper =
1329           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1330         cp->SG[0].Len = buflen;
1331         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1332         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1333 }
1334
1335 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1336         struct CommandList *c)
1337 {
1338         DECLARE_COMPLETION_ONSTACK(wait);
1339
1340         c->waiting = &wait;
1341         enqueue_cmd_and_start_io(h, c);
1342         wait_for_completion(&wait);
1343 }
1344
1345 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1346         struct CommandList *c)
1347 {
1348         unsigned long flags;
1349
1350         /* If controller lockup detected, fake a hardware error. */
1351         spin_lock_irqsave(&h->lock, flags);
1352         if (unlikely(h->lockup_detected)) {
1353                 spin_unlock_irqrestore(&h->lock, flags);
1354                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1355         } else {
1356                 spin_unlock_irqrestore(&h->lock, flags);
1357                 hpsa_scsi_do_simple_cmd_core(h, c);
1358         }
1359 }
1360
1361 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1362         struct CommandList *c, int data_direction)
1363 {
1364         int retry_count = 0;
1365
1366         do {
1367                 memset(c->err_info, 0, sizeof(*c->err_info));
1368                 hpsa_scsi_do_simple_cmd_core(h, c);
1369                 retry_count++;
1370         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1371         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1372 }
1373
1374 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1375 {
1376         struct ErrorInfo *ei;
1377         struct device *d = &cp->h->pdev->dev;
1378
1379         ei = cp->err_info;
1380         switch (ei->CommandStatus) {
1381         case CMD_TARGET_STATUS:
1382                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1383                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1384                                 ei->ScsiStatus);
1385                 if (ei->ScsiStatus == 0)
1386                         dev_warn(d, "SCSI status is abnormally zero.  "
1387                         "(probably indicates selection timeout "
1388                         "reported incorrectly due to a known "
1389                         "firmware bug, circa July, 2001.)\n");
1390                 break;
1391         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1392                         dev_info(d, "UNDERRUN\n");
1393                 break;
1394         case CMD_DATA_OVERRUN:
1395                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1396                 break;
1397         case CMD_INVALID: {
1398                 /* controller unfortunately reports SCSI passthru's
1399                  * to non-existent targets as invalid commands.
1400                  */
1401                 dev_warn(d, "cp %p is reported invalid (probably means "
1402                         "target device no longer present)\n", cp);
1403                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1404                 print_cmd(cp);  */
1405                 }
1406                 break;
1407         case CMD_PROTOCOL_ERR:
1408                 dev_warn(d, "cp %p has protocol error \n", cp);
1409                 break;
1410         case CMD_HARDWARE_ERR:
1411                 /* cmd->result = DID_ERROR << 16; */
1412                 dev_warn(d, "cp %p had hardware error\n", cp);
1413                 break;
1414         case CMD_CONNECTION_LOST:
1415                 dev_warn(d, "cp %p had connection lost\n", cp);
1416                 break;
1417         case CMD_ABORTED:
1418                 dev_warn(d, "cp %p was aborted\n", cp);
1419                 break;
1420         case CMD_ABORT_FAILED:
1421                 dev_warn(d, "cp %p reports abort failed\n", cp);
1422                 break;
1423         case CMD_UNSOLICITED_ABORT:
1424                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1425                 break;
1426         case CMD_TIMEOUT:
1427                 dev_warn(d, "cp %p timed out\n", cp);
1428                 break;
1429         case CMD_UNABORTABLE:
1430                 dev_warn(d, "Command unabortable\n");
1431                 break;
1432         default:
1433                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1434                                 ei->CommandStatus);
1435         }
1436 }
1437
1438 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1439                         unsigned char page, unsigned char *buf,
1440                         unsigned char bufsize)
1441 {
1442         int rc = IO_OK;
1443         struct CommandList *c;
1444         struct ErrorInfo *ei;
1445
1446         c = cmd_special_alloc(h);
1447
1448         if (c == NULL) {                        /* trouble... */
1449                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1450                 return -ENOMEM;
1451         }
1452
1453         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1454         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1455         ei = c->err_info;
1456         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1457                 hpsa_scsi_interpret_error(c);
1458                 rc = -1;
1459         }
1460         cmd_special_free(h, c);
1461         return rc;
1462 }
1463
1464 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1465 {
1466         int rc = IO_OK;
1467         struct CommandList *c;
1468         struct ErrorInfo *ei;
1469
1470         c = cmd_special_alloc(h);
1471
1472         if (c == NULL) {                        /* trouble... */
1473                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1474                 return -ENOMEM;
1475         }
1476
1477         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1478         hpsa_scsi_do_simple_cmd_core(h, c);
1479         /* no unmap needed here because no data xfer. */
1480
1481         ei = c->err_info;
1482         if (ei->CommandStatus != 0) {
1483                 hpsa_scsi_interpret_error(c);
1484                 rc = -1;
1485         }
1486         cmd_special_free(h, c);
1487         return rc;
1488 }
1489
1490 static void hpsa_get_raid_level(struct ctlr_info *h,
1491         unsigned char *scsi3addr, unsigned char *raid_level)
1492 {
1493         int rc;
1494         unsigned char *buf;
1495
1496         *raid_level = RAID_UNKNOWN;
1497         buf = kzalloc(64, GFP_KERNEL);
1498         if (!buf)
1499                 return;
1500         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1501         if (rc == 0)
1502                 *raid_level = buf[8];
1503         if (*raid_level > RAID_UNKNOWN)
1504                 *raid_level = RAID_UNKNOWN;
1505         kfree(buf);
1506         return;
1507 }
1508
1509 /* Get the device id from inquiry page 0x83 */
1510 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1511         unsigned char *device_id, int buflen)
1512 {
1513         int rc;
1514         unsigned char *buf;
1515
1516         if (buflen > 16)
1517                 buflen = 16;
1518         buf = kzalloc(64, GFP_KERNEL);
1519         if (!buf)
1520                 return -1;
1521         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1522         if (rc == 0)
1523                 memcpy(device_id, &buf[8], buflen);
1524         kfree(buf);
1525         return rc != 0;
1526 }
1527
1528 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1529                 struct ReportLUNdata *buf, int bufsize,
1530                 int extended_response)
1531 {
1532         int rc = IO_OK;
1533         struct CommandList *c;
1534         unsigned char scsi3addr[8];
1535         struct ErrorInfo *ei;
1536
1537         c = cmd_special_alloc(h);
1538         if (c == NULL) {                        /* trouble... */
1539                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1540                 return -1;
1541         }
1542         /* address the controller */
1543         memset(scsi3addr, 0, sizeof(scsi3addr));
1544         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1545                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1546         if (extended_response)
1547                 c->Request.CDB[1] = extended_response;
1548         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1549         ei = c->err_info;
1550         if (ei->CommandStatus != 0 &&
1551             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1552                 hpsa_scsi_interpret_error(c);
1553                 rc = -1;
1554         }
1555         cmd_special_free(h, c);
1556         return rc;
1557 }
1558
1559 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1560                 struct ReportLUNdata *buf,
1561                 int bufsize, int extended_response)
1562 {
1563         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1564 }
1565
1566 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1567                 struct ReportLUNdata *buf, int bufsize)
1568 {
1569         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1570 }
1571
1572 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1573         int bus, int target, int lun)
1574 {
1575         device->bus = bus;
1576         device->target = target;
1577         device->lun = lun;
1578 }
1579
1580 static int hpsa_update_device_info(struct ctlr_info *h,
1581         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1582         unsigned char *is_OBDR_device)
1583 {
1584
1585 #define OBDR_SIG_OFFSET 43
1586 #define OBDR_TAPE_SIG "$DR-10"
1587 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1588 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1589
1590         unsigned char *inq_buff;
1591         unsigned char *obdr_sig;
1592
1593         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1594         if (!inq_buff)
1595                 goto bail_out;
1596
1597         /* Do an inquiry to the device to see what it is. */
1598         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1599                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1600                 /* Inquiry failed (msg printed already) */
1601                 dev_err(&h->pdev->dev,
1602                         "hpsa_update_device_info: inquiry failed\n");
1603                 goto bail_out;
1604         }
1605
1606         this_device->devtype = (inq_buff[0] & 0x1f);
1607         memcpy(this_device->scsi3addr, scsi3addr, 8);
1608         memcpy(this_device->vendor, &inq_buff[8],
1609                 sizeof(this_device->vendor));
1610         memcpy(this_device->model, &inq_buff[16],
1611                 sizeof(this_device->model));
1612         memset(this_device->device_id, 0,
1613                 sizeof(this_device->device_id));
1614         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1615                 sizeof(this_device->device_id));
1616
1617         if (this_device->devtype == TYPE_DISK &&
1618                 is_logical_dev_addr_mode(scsi3addr))
1619                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1620         else
1621                 this_device->raid_level = RAID_UNKNOWN;
1622
1623         if (is_OBDR_device) {
1624                 /* See if this is a One-Button-Disaster-Recovery device
1625                  * by looking for "$DR-10" at offset 43 in inquiry data.
1626                  */
1627                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1628                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1629                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1630                                                 OBDR_SIG_LEN) == 0);
1631         }
1632
1633         kfree(inq_buff);
1634         return 0;
1635
1636 bail_out:
1637         kfree(inq_buff);
1638         return 1;
1639 }
1640
1641 static unsigned char *msa2xxx_model[] = {
1642         "MSA2012",
1643         "MSA2024",
1644         "MSA2312",
1645         "MSA2324",
1646         "P2000 G3 SAS",
1647         NULL,
1648 };
1649
1650 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1651 {
1652         int i;
1653
1654         for (i = 0; msa2xxx_model[i]; i++)
1655                 if (strncmp(device->model, msa2xxx_model[i],
1656                         strlen(msa2xxx_model[i])) == 0)
1657                         return 1;
1658         return 0;
1659 }
1660
1661 /* Helper function to assign bus, target, lun mapping of devices.
1662  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1663  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1664  * Logical drive target and lun are assigned at this time, but
1665  * physical device lun and target assignment are deferred (assigned
1666  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1667  */
1668 static void figure_bus_target_lun(struct ctlr_info *h,
1669         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1670         struct hpsa_scsi_dev_t *device)
1671 {
1672         u32 lunid;
1673
1674         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1675                 /* logical device */
1676                 if (unlikely(is_scsi_rev_5(h))) {
1677                         /* p1210m, logical drives lun assignments
1678                          * match SCSI REPORT LUNS data.
1679                          */
1680                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1681                         *bus = 0;
1682                         *target = 0;
1683                         *lun = (lunid & 0x3fff) + 1;
1684                 } else {
1685                         /* not p1210m... */
1686                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1687                         if (is_msa2xxx(h, device)) {
1688                                 /* msa2xxx way, put logicals on bus 1
1689                                  * and match target/lun numbers box
1690                                  * reports.
1691                                  */
1692                                 *bus = 1;
1693                                 *target = (lunid >> 16) & 0x3fff;
1694                                 *lun = lunid & 0x00ff;
1695                         } else {
1696                                 /* Traditional smart array way. */
1697                                 *bus = 0;
1698                                 *lun = 0;
1699                                 *target = lunid & 0x3fff;
1700                         }
1701                 }
1702         } else {
1703                 /* physical device */
1704                 if (is_hba_lunid(lunaddrbytes))
1705                         if (unlikely(is_scsi_rev_5(h))) {
1706                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1707                                 *target = 0;
1708                                 *lun = 0;
1709                                 return;
1710                         } else
1711                                 *bus = 3; /* traditional smartarray */
1712                 else
1713                         *bus = 2; /* physical disk */
1714                 *target = -1;
1715                 *lun = -1; /* we will fill these in later. */
1716         }
1717 }
1718
1719 /*
1720  * If there is no lun 0 on a target, linux won't find any devices.
1721  * For the MSA2xxx boxes, we have to manually detect the enclosure
1722  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1723  * it for some reason.  *tmpdevice is the target we're adding,
1724  * this_device is a pointer into the current element of currentsd[]
1725  * that we're building up in update_scsi_devices(), below.
1726  * lunzerobits is a bitmap that tracks which targets already have a
1727  * lun 0 assigned.
1728  * Returns 1 if an enclosure was added, 0 if not.
1729  */
1730 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1731         struct hpsa_scsi_dev_t *tmpdevice,
1732         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1733         int bus, int target, int lun, unsigned long lunzerobits[],
1734         int *nmsa2xxx_enclosures)
1735 {
1736         unsigned char scsi3addr[8];
1737
1738         if (test_bit(target, lunzerobits))
1739                 return 0; /* There is already a lun 0 on this target. */
1740
1741         if (!is_logical_dev_addr_mode(lunaddrbytes))
1742                 return 0; /* It's the logical targets that may lack lun 0. */
1743
1744         if (!is_msa2xxx(h, tmpdevice))
1745                 return 0; /* It's only the MSA2xxx that have this problem. */
1746
1747         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1748                 return 0;
1749
1750         memset(scsi3addr, 0, 8);
1751         scsi3addr[3] = target;
1752         if (is_hba_lunid(scsi3addr))
1753                 return 0; /* Don't add the RAID controller here. */
1754
1755         if (is_scsi_rev_5(h))
1756                 return 0; /* p1210m doesn't need to do this. */
1757
1758         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1759                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1760                         "enclosures exceeded.  Check your hardware "
1761                         "configuration.");
1762                 return 0;
1763         }
1764
1765         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1766                 return 0;
1767         (*nmsa2xxx_enclosures)++;
1768         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1769         set_bit(target, lunzerobits);
1770         return 1;
1771 }
1772
1773 /*
1774  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1775  * logdev.  The number of luns in physdev and logdev are returned in
1776  * *nphysicals and *nlogicals, respectively.
1777  * Returns 0 on success, -1 otherwise.
1778  */
1779 static int hpsa_gather_lun_info(struct ctlr_info *h,
1780         int reportlunsize,
1781         struct ReportLUNdata *physdev, u32 *nphysicals,
1782         struct ReportLUNdata *logdev, u32 *nlogicals)
1783 {
1784         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1785                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1786                 return -1;
1787         }
1788         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1789         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1790                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1791                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1792                         *nphysicals - HPSA_MAX_PHYS_LUN);
1793                 *nphysicals = HPSA_MAX_PHYS_LUN;
1794         }
1795         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1796                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1797                 return -1;
1798         }
1799         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1800         /* Reject Logicals in excess of our max capability. */
1801         if (*nlogicals > HPSA_MAX_LUN) {
1802                 dev_warn(&h->pdev->dev,
1803                         "maximum logical LUNs (%d) exceeded.  "
1804                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1805                         *nlogicals - HPSA_MAX_LUN);
1806                         *nlogicals = HPSA_MAX_LUN;
1807         }
1808         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1809                 dev_warn(&h->pdev->dev,
1810                         "maximum logical + physical LUNs (%d) exceeded. "
1811                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1812                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1813                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1814         }
1815         return 0;
1816 }
1817
1818 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1819         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1820         struct ReportLUNdata *logdev_list)
1821 {
1822         /* Helper function, figure out where the LUN ID info is coming from
1823          * given index i, lists of physical and logical devices, where in
1824          * the list the raid controller is supposed to appear (first or last)
1825          */
1826
1827         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1828         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1829
1830         if (i == raid_ctlr_position)
1831                 return RAID_CTLR_LUNID;
1832
1833         if (i < logicals_start)
1834                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1835
1836         if (i < last_device)
1837                 return &logdev_list->LUN[i - nphysicals -
1838                         (raid_ctlr_position == 0)][0];
1839         BUG();
1840         return NULL;
1841 }
1842
1843 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1844 {
1845         /* the idea here is we could get notified
1846          * that some devices have changed, so we do a report
1847          * physical luns and report logical luns cmd, and adjust
1848          * our list of devices accordingly.
1849          *
1850          * The scsi3addr's of devices won't change so long as the
1851          * adapter is not reset.  That means we can rescan and
1852          * tell which devices we already know about, vs. new
1853          * devices, vs.  disappearing devices.
1854          */
1855         struct ReportLUNdata *physdev_list = NULL;
1856         struct ReportLUNdata *logdev_list = NULL;
1857         u32 nphysicals = 0;
1858         u32 nlogicals = 0;
1859         u32 ndev_allocated = 0;
1860         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1861         int ncurrent = 0;
1862         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1863         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1864         int bus, target, lun;
1865         int raid_ctlr_position;
1866         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1867
1868         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1869         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1870         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1871         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1872
1873         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1874                 dev_err(&h->pdev->dev, "out of memory\n");
1875                 goto out;
1876         }
1877         memset(lunzerobits, 0, sizeof(lunzerobits));
1878
1879         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1880                         logdev_list, &nlogicals))
1881                 goto out;
1882
1883         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1884          * but each of them 4 times through different paths.  The plus 1
1885          * is for the RAID controller.
1886          */
1887         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1888
1889         /* Allocate the per device structures */
1890         for (i = 0; i < ndevs_to_allocate; i++) {
1891                 if (i >= HPSA_MAX_DEVICES) {
1892                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1893                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1894                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1895                         break;
1896                 }
1897
1898                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1899                 if (!currentsd[i]) {
1900                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1901                                 __FILE__, __LINE__);
1902                         goto out;
1903                 }
1904                 ndev_allocated++;
1905         }
1906
1907         if (unlikely(is_scsi_rev_5(h)))
1908                 raid_ctlr_position = 0;
1909         else
1910                 raid_ctlr_position = nphysicals + nlogicals;
1911
1912         /* adjust our table of devices */
1913         nmsa2xxx_enclosures = 0;
1914         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1915                 u8 *lunaddrbytes, is_OBDR = 0;
1916
1917                 /* Figure out where the LUN ID info is coming from */
1918                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1919                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1920                 /* skip masked physical devices. */
1921                 if (lunaddrbytes[3] & 0xC0 &&
1922                         i < nphysicals + (raid_ctlr_position == 0))
1923                         continue;
1924
1925                 /* Get device type, vendor, model, device id */
1926                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1927                                                         &is_OBDR))
1928                         continue; /* skip it if we can't talk to it. */
1929                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1930                         tmpdevice);
1931                 this_device = currentsd[ncurrent];
1932
1933                 /*
1934                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1935                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1936                  * is nonetheless an enclosure device there.  We have to
1937                  * present that otherwise linux won't find anything if
1938                  * there is no lun 0.
1939                  */
1940                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1941                                 lunaddrbytes, bus, target, lun, lunzerobits,
1942                                 &nmsa2xxx_enclosures)) {
1943                         ncurrent++;
1944                         this_device = currentsd[ncurrent];
1945                 }
1946
1947                 *this_device = *tmpdevice;
1948                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1949
1950                 switch (this_device->devtype) {
1951                 case TYPE_ROM:
1952                         /* We don't *really* support actual CD-ROM devices,
1953                          * just "One Button Disaster Recovery" tape drive
1954                          * which temporarily pretends to be a CD-ROM drive.
1955                          * So we check that the device is really an OBDR tape
1956                          * device by checking for "$DR-10" in bytes 43-48 of
1957                          * the inquiry data.
1958                          */
1959                         if (is_OBDR)
1960                                 ncurrent++;
1961                         break;
1962                 case TYPE_DISK:
1963                         if (i < nphysicals)
1964                                 break;
1965                         ncurrent++;
1966                         break;
1967                 case TYPE_TAPE:
1968                 case TYPE_MEDIUM_CHANGER:
1969                         ncurrent++;
1970                         break;
1971                 case TYPE_RAID:
1972                         /* Only present the Smartarray HBA as a RAID controller.
1973                          * If it's a RAID controller other than the HBA itself
1974                          * (an external RAID controller, MSA500 or similar)
1975                          * don't present it.
1976                          */
1977                         if (!is_hba_lunid(lunaddrbytes))
1978                                 break;
1979                         ncurrent++;
1980                         break;
1981                 default:
1982                         break;
1983                 }
1984                 if (ncurrent >= HPSA_MAX_DEVICES)
1985                         break;
1986         }
1987         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1988 out:
1989         kfree(tmpdevice);
1990         for (i = 0; i < ndev_allocated; i++)
1991                 kfree(currentsd[i]);
1992         kfree(currentsd);
1993         kfree(physdev_list);
1994         kfree(logdev_list);
1995 }
1996
1997 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1998  * dma mapping  and fills in the scatter gather entries of the
1999  * hpsa command, cp.
2000  */
2001 static int hpsa_scatter_gather(struct ctlr_info *h,
2002                 struct CommandList *cp,
2003                 struct scsi_cmnd *cmd)
2004 {
2005         unsigned int len;
2006         struct scatterlist *sg;
2007         u64 addr64;
2008         int use_sg, i, sg_index, chained;
2009         struct SGDescriptor *curr_sg;
2010
2011         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2012
2013         use_sg = scsi_dma_map(cmd);
2014         if (use_sg < 0)
2015                 return use_sg;
2016
2017         if (!use_sg)
2018                 goto sglist_finished;
2019
2020         curr_sg = cp->SG;
2021         chained = 0;
2022         sg_index = 0;
2023         scsi_for_each_sg(cmd, sg, use_sg, i) {
2024                 if (i == h->max_cmd_sg_entries - 1 &&
2025                         use_sg > h->max_cmd_sg_entries) {
2026                         chained = 1;
2027                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2028                         sg_index = 0;
2029                 }
2030                 addr64 = (u64) sg_dma_address(sg);
2031                 len  = sg_dma_len(sg);
2032                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2033                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2034                 curr_sg->Len = len;
2035                 curr_sg->Ext = 0;  /* we are not chaining */
2036                 curr_sg++;
2037         }
2038
2039         if (use_sg + chained > h->maxSG)
2040                 h->maxSG = use_sg + chained;
2041
2042         if (chained) {
2043                 cp->Header.SGList = h->max_cmd_sg_entries;
2044                 cp->Header.SGTotal = (u16) (use_sg + 1);
2045                 hpsa_map_sg_chain_block(h, cp);
2046                 return 0;
2047         }
2048
2049 sglist_finished:
2050
2051         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2052         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2053         return 0;
2054 }
2055
2056
2057 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2058         void (*done)(struct scsi_cmnd *))
2059 {
2060         struct ctlr_info *h;
2061         struct hpsa_scsi_dev_t *dev;
2062         unsigned char scsi3addr[8];
2063         struct CommandList *c;
2064         unsigned long flags;
2065
2066         /* Get the ptr to our adapter structure out of cmd->host. */
2067         h = sdev_to_hba(cmd->device);
2068         dev = cmd->device->hostdata;
2069         if (!dev) {
2070                 cmd->result = DID_NO_CONNECT << 16;
2071                 done(cmd);
2072                 return 0;
2073         }
2074         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2075
2076         spin_lock_irqsave(&h->lock, flags);
2077         if (unlikely(h->lockup_detected)) {
2078                 spin_unlock_irqrestore(&h->lock, flags);
2079                 cmd->result = DID_ERROR << 16;
2080                 done(cmd);
2081                 return 0;
2082         }
2083         /* Need a lock as this is being allocated from the pool */
2084         c = cmd_alloc(h);
2085         spin_unlock_irqrestore(&h->lock, flags);
2086         if (c == NULL) {                        /* trouble... */
2087                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2088                 return SCSI_MLQUEUE_HOST_BUSY;
2089         }
2090
2091         /* Fill in the command list header */
2092
2093         cmd->scsi_done = done;    /* save this for use by completion code */
2094
2095         /* save c in case we have to abort it  */
2096         cmd->host_scribble = (unsigned char *) c;
2097
2098         c->cmd_type = CMD_SCSI;
2099         c->scsi_cmd = cmd;
2100         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2101         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2102         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2103         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2104
2105         /* Fill in the request block... */
2106
2107         c->Request.Timeout = 0;
2108         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2109         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2110         c->Request.CDBLen = cmd->cmd_len;
2111         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2112         c->Request.Type.Type = TYPE_CMD;
2113         c->Request.Type.Attribute = ATTR_SIMPLE;
2114         switch (cmd->sc_data_direction) {
2115         case DMA_TO_DEVICE:
2116                 c->Request.Type.Direction = XFER_WRITE;
2117                 break;
2118         case DMA_FROM_DEVICE:
2119                 c->Request.Type.Direction = XFER_READ;
2120                 break;
2121         case DMA_NONE:
2122                 c->Request.Type.Direction = XFER_NONE;
2123                 break;
2124         case DMA_BIDIRECTIONAL:
2125                 /* This can happen if a buggy application does a scsi passthru
2126                  * and sets both inlen and outlen to non-zero. ( see
2127                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2128                  */
2129
2130                 c->Request.Type.Direction = XFER_RSVD;
2131                 /* This is technically wrong, and hpsa controllers should
2132                  * reject it with CMD_INVALID, which is the most correct
2133                  * response, but non-fibre backends appear to let it
2134                  * slide by, and give the same results as if this field
2135                  * were set correctly.  Either way is acceptable for
2136                  * our purposes here.
2137                  */
2138
2139                 break;
2140
2141         default:
2142                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2143                         cmd->sc_data_direction);
2144                 BUG();
2145                 break;
2146         }
2147
2148         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2149                 cmd_free(h, c);
2150                 return SCSI_MLQUEUE_HOST_BUSY;
2151         }
2152         enqueue_cmd_and_start_io(h, c);
2153         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2154         return 0;
2155 }
2156
2157 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2158
2159 static void hpsa_scan_start(struct Scsi_Host *sh)
2160 {
2161         struct ctlr_info *h = shost_to_hba(sh);
2162         unsigned long flags;
2163
2164         /* wait until any scan already in progress is finished. */
2165         while (1) {
2166                 spin_lock_irqsave(&h->scan_lock, flags);
2167                 if (h->scan_finished)
2168                         break;
2169                 spin_unlock_irqrestore(&h->scan_lock, flags);
2170                 wait_event(h->scan_wait_queue, h->scan_finished);
2171                 /* Note: We don't need to worry about a race between this
2172                  * thread and driver unload because the midlayer will
2173                  * have incremented the reference count, so unload won't
2174                  * happen if we're in here.
2175                  */
2176         }
2177         h->scan_finished = 0; /* mark scan as in progress */
2178         spin_unlock_irqrestore(&h->scan_lock, flags);
2179
2180         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2181
2182         spin_lock_irqsave(&h->scan_lock, flags);
2183         h->scan_finished = 1; /* mark scan as finished. */
2184         wake_up_all(&h->scan_wait_queue);
2185         spin_unlock_irqrestore(&h->scan_lock, flags);
2186 }
2187
2188 static int hpsa_scan_finished(struct Scsi_Host *sh,
2189         unsigned long elapsed_time)
2190 {
2191         struct ctlr_info *h = shost_to_hba(sh);
2192         unsigned long flags;
2193         int finished;
2194
2195         spin_lock_irqsave(&h->scan_lock, flags);
2196         finished = h->scan_finished;
2197         spin_unlock_irqrestore(&h->scan_lock, flags);
2198         return finished;
2199 }
2200
2201 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2202         int qdepth, int reason)
2203 {
2204         struct ctlr_info *h = sdev_to_hba(sdev);
2205
2206         if (reason != SCSI_QDEPTH_DEFAULT)
2207                 return -ENOTSUPP;
2208
2209         if (qdepth < 1)
2210                 qdepth = 1;
2211         else
2212                 if (qdepth > h->nr_cmds)
2213                         qdepth = h->nr_cmds;
2214         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2215         return sdev->queue_depth;
2216 }
2217
2218 static void hpsa_unregister_scsi(struct ctlr_info *h)
2219 {
2220         /* we are being forcibly unloaded, and may not refuse. */
2221         scsi_remove_host(h->scsi_host);
2222         scsi_host_put(h->scsi_host);
2223         h->scsi_host = NULL;
2224 }
2225
2226 static int hpsa_register_scsi(struct ctlr_info *h)
2227 {
2228         int rc;
2229
2230         rc = hpsa_scsi_detect(h);
2231         if (rc != 0)
2232                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2233                         " hpsa_scsi_detect(), rc is %d\n", rc);
2234         return rc;
2235 }
2236
2237 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2238         unsigned char lunaddr[])
2239 {
2240         int rc = 0;
2241         int count = 0;
2242         int waittime = 1; /* seconds */
2243         struct CommandList *c;
2244
2245         c = cmd_special_alloc(h);
2246         if (!c) {
2247                 dev_warn(&h->pdev->dev, "out of memory in "
2248                         "wait_for_device_to_become_ready.\n");
2249                 return IO_ERROR;
2250         }
2251
2252         /* Send test unit ready until device ready, or give up. */
2253         while (count < HPSA_TUR_RETRY_LIMIT) {
2254
2255                 /* Wait for a bit.  do this first, because if we send
2256                  * the TUR right away, the reset will just abort it.
2257                  */
2258                 msleep(1000 * waittime);
2259                 count++;
2260
2261                 /* Increase wait time with each try, up to a point. */
2262                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2263                         waittime = waittime * 2;
2264
2265                 /* Send the Test Unit Ready */
2266                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2267                 hpsa_scsi_do_simple_cmd_core(h, c);
2268                 /* no unmap needed here because no data xfer. */
2269
2270                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2271                         break;
2272
2273                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2274                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2275                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2276                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2277                         break;
2278
2279                 dev_warn(&h->pdev->dev, "waiting %d secs "
2280                         "for device to become ready.\n", waittime);
2281                 rc = 1; /* device not ready. */
2282         }
2283
2284         if (rc)
2285                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2286         else
2287                 dev_warn(&h->pdev->dev, "device is ready.\n");
2288
2289         cmd_special_free(h, c);
2290         return rc;
2291 }
2292
2293 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2294  * complaining.  Doing a host- or bus-reset can't do anything good here.
2295  */
2296 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2297 {
2298         int rc;
2299         struct ctlr_info *h;
2300         struct hpsa_scsi_dev_t *dev;
2301
2302         /* find the controller to which the command to be aborted was sent */
2303         h = sdev_to_hba(scsicmd->device);
2304         if (h == NULL) /* paranoia */
2305                 return FAILED;
2306         dev = scsicmd->device->hostdata;
2307         if (!dev) {
2308                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2309                         "device lookup failed.\n");
2310                 return FAILED;
2311         }
2312         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2313                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2314         /* send a reset to the SCSI LUN which the command was sent to */
2315         rc = hpsa_send_reset(h, dev->scsi3addr);
2316         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2317                 return SUCCESS;
2318
2319         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2320         return FAILED;
2321 }
2322
2323 /*
2324  * For operations that cannot sleep, a command block is allocated at init,
2325  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2326  * which ones are free or in use.  Lock must be held when calling this.
2327  * cmd_free() is the complement.
2328  */
2329 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2330 {
2331         struct CommandList *c;
2332         int i;
2333         union u64bit temp64;
2334         dma_addr_t cmd_dma_handle, err_dma_handle;
2335
2336         do {
2337                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2338                 if (i == h->nr_cmds)
2339                         return NULL;
2340         } while (test_and_set_bit
2341                  (i & (BITS_PER_LONG - 1),
2342                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2343         c = h->cmd_pool + i;
2344         memset(c, 0, sizeof(*c));
2345         cmd_dma_handle = h->cmd_pool_dhandle
2346             + i * sizeof(*c);
2347         c->err_info = h->errinfo_pool + i;
2348         memset(c->err_info, 0, sizeof(*c->err_info));
2349         err_dma_handle = h->errinfo_pool_dhandle
2350             + i * sizeof(*c->err_info);
2351         h->nr_allocs++;
2352
2353         c->cmdindex = i;
2354
2355         INIT_LIST_HEAD(&c->list);
2356         c->busaddr = (u32) cmd_dma_handle;
2357         temp64.val = (u64) err_dma_handle;
2358         c->ErrDesc.Addr.lower = temp64.val32.lower;
2359         c->ErrDesc.Addr.upper = temp64.val32.upper;
2360         c->ErrDesc.Len = sizeof(*c->err_info);
2361
2362         c->h = h;
2363         return c;
2364 }
2365
2366 /* For operations that can wait for kmalloc to possibly sleep,
2367  * this routine can be called. Lock need not be held to call
2368  * cmd_special_alloc. cmd_special_free() is the complement.
2369  */
2370 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2371 {
2372         struct CommandList *c;
2373         union u64bit temp64;
2374         dma_addr_t cmd_dma_handle, err_dma_handle;
2375
2376         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2377         if (c == NULL)
2378                 return NULL;
2379         memset(c, 0, sizeof(*c));
2380
2381         c->cmdindex = -1;
2382
2383         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2384                     &err_dma_handle);
2385
2386         if (c->err_info == NULL) {
2387                 pci_free_consistent(h->pdev,
2388                         sizeof(*c), c, cmd_dma_handle);
2389                 return NULL;
2390         }
2391         memset(c->err_info, 0, sizeof(*c->err_info));
2392
2393         INIT_LIST_HEAD(&c->list);
2394         c->busaddr = (u32) cmd_dma_handle;
2395         temp64.val = (u64) err_dma_handle;
2396         c->ErrDesc.Addr.lower = temp64.val32.lower;
2397         c->ErrDesc.Addr.upper = temp64.val32.upper;
2398         c->ErrDesc.Len = sizeof(*c->err_info);
2399
2400         c->h = h;
2401         return c;
2402 }
2403
2404 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2405 {
2406         int i;
2407
2408         i = c - h->cmd_pool;
2409         clear_bit(i & (BITS_PER_LONG - 1),
2410                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2411         h->nr_frees++;
2412 }
2413
2414 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2415 {
2416         union u64bit temp64;
2417
2418         temp64.val32.lower = c->ErrDesc.Addr.lower;
2419         temp64.val32.upper = c->ErrDesc.Addr.upper;
2420         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2421                             c->err_info, (dma_addr_t) temp64.val);
2422         pci_free_consistent(h->pdev, sizeof(*c),
2423                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2424 }
2425
2426 #ifdef CONFIG_COMPAT
2427
2428 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2429 {
2430         IOCTL32_Command_struct __user *arg32 =
2431             (IOCTL32_Command_struct __user *) arg;
2432         IOCTL_Command_struct arg64;
2433         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2434         int err;
2435         u32 cp;
2436
2437         memset(&arg64, 0, sizeof(arg64));
2438         err = 0;
2439         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2440                            sizeof(arg64.LUN_info));
2441         err |= copy_from_user(&arg64.Request, &arg32->Request,
2442                            sizeof(arg64.Request));
2443         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2444                            sizeof(arg64.error_info));
2445         err |= get_user(arg64.buf_size, &arg32->buf_size);
2446         err |= get_user(cp, &arg32->buf);
2447         arg64.buf = compat_ptr(cp);
2448         err |= copy_to_user(p, &arg64, sizeof(arg64));
2449
2450         if (err)
2451                 return -EFAULT;
2452
2453         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2454         if (err)
2455                 return err;
2456         err |= copy_in_user(&arg32->error_info, &p->error_info,
2457                          sizeof(arg32->error_info));
2458         if (err)
2459                 return -EFAULT;
2460         return err;
2461 }
2462
2463 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2464         int cmd, void *arg)
2465 {
2466         BIG_IOCTL32_Command_struct __user *arg32 =
2467             (BIG_IOCTL32_Command_struct __user *) arg;
2468         BIG_IOCTL_Command_struct arg64;
2469         BIG_IOCTL_Command_struct __user *p =
2470             compat_alloc_user_space(sizeof(arg64));
2471         int err;
2472         u32 cp;
2473
2474         memset(&arg64, 0, sizeof(arg64));
2475         err = 0;
2476         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2477                            sizeof(arg64.LUN_info));
2478         err |= copy_from_user(&arg64.Request, &arg32->Request,
2479                            sizeof(arg64.Request));
2480         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2481                            sizeof(arg64.error_info));
2482         err |= get_user(arg64.buf_size, &arg32->buf_size);
2483         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2484         err |= get_user(cp, &arg32->buf);
2485         arg64.buf = compat_ptr(cp);
2486         err |= copy_to_user(p, &arg64, sizeof(arg64));
2487
2488         if (err)
2489                 return -EFAULT;
2490
2491         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2492         if (err)
2493                 return err;
2494         err |= copy_in_user(&arg32->error_info, &p->error_info,
2495                          sizeof(arg32->error_info));
2496         if (err)
2497                 return -EFAULT;
2498         return err;
2499 }
2500
2501 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2502 {
2503         switch (cmd) {
2504         case CCISS_GETPCIINFO:
2505         case CCISS_GETINTINFO:
2506         case CCISS_SETINTINFO:
2507         case CCISS_GETNODENAME:
2508         case CCISS_SETNODENAME:
2509         case CCISS_GETHEARTBEAT:
2510         case CCISS_GETBUSTYPES:
2511         case CCISS_GETFIRMVER:
2512         case CCISS_GETDRIVVER:
2513         case CCISS_REVALIDVOLS:
2514         case CCISS_DEREGDISK:
2515         case CCISS_REGNEWDISK:
2516         case CCISS_REGNEWD:
2517         case CCISS_RESCANDISK:
2518         case CCISS_GETLUNINFO:
2519                 return hpsa_ioctl(dev, cmd, arg);
2520
2521         case CCISS_PASSTHRU32:
2522                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2523         case CCISS_BIG_PASSTHRU32:
2524                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2525
2526         default:
2527                 return -ENOIOCTLCMD;
2528         }
2529 }
2530 #endif
2531
2532 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2533 {
2534         struct hpsa_pci_info pciinfo;
2535
2536         if (!argp)
2537                 return -EINVAL;
2538         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2539         pciinfo.bus = h->pdev->bus->number;
2540         pciinfo.dev_fn = h->pdev->devfn;
2541         pciinfo.board_id = h->board_id;
2542         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2543                 return -EFAULT;
2544         return 0;
2545 }
2546
2547 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2548 {
2549         DriverVer_type DriverVer;
2550         unsigned char vmaj, vmin, vsubmin;
2551         int rc;
2552
2553         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2554                 &vmaj, &vmin, &vsubmin);
2555         if (rc != 3) {
2556                 dev_info(&h->pdev->dev, "driver version string '%s' "
2557                         "unrecognized.", HPSA_DRIVER_VERSION);
2558                 vmaj = 0;
2559                 vmin = 0;
2560                 vsubmin = 0;
2561         }
2562         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2563         if (!argp)
2564                 return -EINVAL;
2565         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2566                 return -EFAULT;
2567         return 0;
2568 }
2569
2570 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2571 {
2572         IOCTL_Command_struct iocommand;
2573         struct CommandList *c;
2574         char *buff = NULL;
2575         union u64bit temp64;
2576
2577         if (!argp)
2578                 return -EINVAL;
2579         if (!capable(CAP_SYS_RAWIO))
2580                 return -EPERM;
2581         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2582                 return -EFAULT;
2583         if ((iocommand.buf_size < 1) &&
2584             (iocommand.Request.Type.Direction != XFER_NONE)) {
2585                 return -EINVAL;
2586         }
2587         if (iocommand.buf_size > 0) {
2588                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2589                 if (buff == NULL)
2590                         return -EFAULT;
2591                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2592                         /* Copy the data into the buffer we created */
2593                         if (copy_from_user(buff, iocommand.buf,
2594                                 iocommand.buf_size)) {
2595                                 kfree(buff);
2596                                 return -EFAULT;
2597                         }
2598                 } else {
2599                         memset(buff, 0, iocommand.buf_size);
2600                 }
2601         }
2602         c = cmd_special_alloc(h);
2603         if (c == NULL) {
2604                 kfree(buff);
2605                 return -ENOMEM;
2606         }
2607         /* Fill in the command type */
2608         c->cmd_type = CMD_IOCTL_PEND;
2609         /* Fill in Command Header */
2610         c->Header.ReplyQueue = 0; /* unused in simple mode */
2611         if (iocommand.buf_size > 0) {   /* buffer to fill */
2612                 c->Header.SGList = 1;
2613                 c->Header.SGTotal = 1;
2614         } else  { /* no buffers to fill */
2615                 c->Header.SGList = 0;
2616                 c->Header.SGTotal = 0;
2617         }
2618         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2619         /* use the kernel address the cmd block for tag */
2620         c->Header.Tag.lower = c->busaddr;
2621
2622         /* Fill in Request block */
2623         memcpy(&c->Request, &iocommand.Request,
2624                 sizeof(c->Request));
2625
2626         /* Fill in the scatter gather information */
2627         if (iocommand.buf_size > 0) {
2628                 temp64.val = pci_map_single(h->pdev, buff,
2629                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2630                 c->SG[0].Addr.lower = temp64.val32.lower;
2631                 c->SG[0].Addr.upper = temp64.val32.upper;
2632                 c->SG[0].Len = iocommand.buf_size;
2633                 c->SG[0].Ext = 0; /* we are not chaining*/
2634         }
2635         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2636         if (iocommand.buf_size > 0)
2637                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2638         check_ioctl_unit_attention(h, c);
2639
2640         /* Copy the error information out */
2641         memcpy(&iocommand.error_info, c->err_info,
2642                 sizeof(iocommand.error_info));
2643         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2644                 kfree(buff);
2645                 cmd_special_free(h, c);
2646                 return -EFAULT;
2647         }
2648         if (iocommand.Request.Type.Direction == XFER_READ &&
2649                 iocommand.buf_size > 0) {
2650                 /* Copy the data out of the buffer we created */
2651                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2652                         kfree(buff);
2653                         cmd_special_free(h, c);
2654                         return -EFAULT;
2655                 }
2656         }
2657         kfree(buff);
2658         cmd_special_free(h, c);
2659         return 0;
2660 }
2661
2662 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2663 {
2664         BIG_IOCTL_Command_struct *ioc;
2665         struct CommandList *c;
2666         unsigned char **buff = NULL;
2667         int *buff_size = NULL;
2668         union u64bit temp64;
2669         BYTE sg_used = 0;
2670         int status = 0;
2671         int i;
2672         u32 left;
2673         u32 sz;
2674         BYTE __user *data_ptr;
2675
2676         if (!argp)
2677                 return -EINVAL;
2678         if (!capable(CAP_SYS_RAWIO))
2679                 return -EPERM;
2680         ioc = (BIG_IOCTL_Command_struct *)
2681             kmalloc(sizeof(*ioc), GFP_KERNEL);
2682         if (!ioc) {
2683                 status = -ENOMEM;
2684                 goto cleanup1;
2685         }
2686         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2687                 status = -EFAULT;
2688                 goto cleanup1;
2689         }
2690         if ((ioc->buf_size < 1) &&
2691             (ioc->Request.Type.Direction != XFER_NONE)) {
2692                 status = -EINVAL;
2693                 goto cleanup1;
2694         }
2695         /* Check kmalloc limits  using all SGs */
2696         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2697                 status = -EINVAL;
2698                 goto cleanup1;
2699         }
2700         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2701                 status = -EINVAL;
2702                 goto cleanup1;
2703         }
2704         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2705         if (!buff) {
2706                 status = -ENOMEM;
2707                 goto cleanup1;
2708         }
2709         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2710         if (!buff_size) {
2711                 status = -ENOMEM;
2712                 goto cleanup1;
2713         }
2714         left = ioc->buf_size;
2715         data_ptr = ioc->buf;
2716         while (left) {
2717                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2718                 buff_size[sg_used] = sz;
2719                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2720                 if (buff[sg_used] == NULL) {
2721                         status = -ENOMEM;
2722                         goto cleanup1;
2723                 }
2724                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2725                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2726                                 status = -ENOMEM;
2727                                 goto cleanup1;
2728                         }
2729                 } else
2730                         memset(buff[sg_used], 0, sz);
2731                 left -= sz;
2732                 data_ptr += sz;
2733                 sg_used++;
2734         }
2735         c = cmd_special_alloc(h);
2736         if (c == NULL) {
2737                 status = -ENOMEM;
2738                 goto cleanup1;
2739         }
2740         c->cmd_type = CMD_IOCTL_PEND;
2741         c->Header.ReplyQueue = 0;
2742         c->Header.SGList = c->Header.SGTotal = sg_used;
2743         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2744         c->Header.Tag.lower = c->busaddr;
2745         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2746         if (ioc->buf_size > 0) {
2747                 int i;
2748                 for (i = 0; i < sg_used; i++) {
2749                         temp64.val = pci_map_single(h->pdev, buff[i],
2750                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2751                         c->SG[i].Addr.lower = temp64.val32.lower;
2752                         c->SG[i].Addr.upper = temp64.val32.upper;
2753                         c->SG[i].Len = buff_size[i];
2754                         /* we are not chaining */
2755                         c->SG[i].Ext = 0;
2756                 }
2757         }
2758         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2759         if (sg_used)
2760                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2761         check_ioctl_unit_attention(h, c);
2762         /* Copy the error information out */
2763         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2764         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2765                 cmd_special_free(h, c);
2766                 status = -EFAULT;
2767                 goto cleanup1;
2768         }
2769         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2770                 /* Copy the data out of the buffer we created */
2771                 BYTE __user *ptr = ioc->buf;
2772                 for (i = 0; i < sg_used; i++) {
2773                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2774                                 cmd_special_free(h, c);
2775                                 status = -EFAULT;
2776                                 goto cleanup1;
2777                         }
2778                         ptr += buff_size[i];
2779                 }
2780         }
2781         cmd_special_free(h, c);
2782         status = 0;
2783 cleanup1:
2784         if (buff) {
2785                 for (i = 0; i < sg_used; i++)
2786                         kfree(buff[i]);
2787                 kfree(buff);
2788         }
2789         kfree(buff_size);
2790         kfree(ioc);
2791         return status;
2792 }
2793
2794 static void check_ioctl_unit_attention(struct ctlr_info *h,
2795         struct CommandList *c)
2796 {
2797         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2798                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2799                 (void) check_for_unit_attention(h, c);
2800 }
2801 /*
2802  * ioctl
2803  */
2804 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2805 {
2806         struct ctlr_info *h;
2807         void __user *argp = (void __user *)arg;
2808
2809         h = sdev_to_hba(dev);
2810
2811         switch (cmd) {
2812         case CCISS_DEREGDISK:
2813         case CCISS_REGNEWDISK:
2814         case CCISS_REGNEWD:
2815                 hpsa_scan_start(h->scsi_host);
2816                 return 0;
2817         case CCISS_GETPCIINFO:
2818                 return hpsa_getpciinfo_ioctl(h, argp);
2819         case CCISS_GETDRIVVER:
2820                 return hpsa_getdrivver_ioctl(h, argp);
2821         case CCISS_PASSTHRU:
2822                 return hpsa_passthru_ioctl(h, argp);
2823         case CCISS_BIG_PASSTHRU:
2824                 return hpsa_big_passthru_ioctl(h, argp);
2825         default:
2826                 return -ENOTTY;
2827         }
2828 }
2829
2830 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2831         unsigned char *scsi3addr, u8 reset_type)
2832 {
2833         struct CommandList *c;
2834
2835         c = cmd_alloc(h);
2836         if (!c)
2837                 return -ENOMEM;
2838         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2839                 RAID_CTLR_LUNID, TYPE_MSG);
2840         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2841         c->waiting = NULL;
2842         enqueue_cmd_and_start_io(h, c);
2843         /* Don't wait for completion, the reset won't complete.  Don't free
2844          * the command either.  This is the last command we will send before
2845          * re-initializing everything, so it doesn't matter and won't leak.
2846          */
2847         return 0;
2848 }
2849
2850 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2851         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2852         int cmd_type)
2853 {
2854         int pci_dir = XFER_NONE;
2855
2856         c->cmd_type = CMD_IOCTL_PEND;
2857         c->Header.ReplyQueue = 0;
2858         if (buff != NULL && size > 0) {
2859                 c->Header.SGList = 1;
2860                 c->Header.SGTotal = 1;
2861         } else {
2862                 c->Header.SGList = 0;
2863                 c->Header.SGTotal = 0;
2864         }
2865         c->Header.Tag.lower = c->busaddr;
2866         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2867
2868         c->Request.Type.Type = cmd_type;
2869         if (cmd_type == TYPE_CMD) {
2870                 switch (cmd) {
2871                 case HPSA_INQUIRY:
2872                         /* are we trying to read a vital product page */
2873                         if (page_code != 0) {
2874                                 c->Request.CDB[1] = 0x01;
2875                                 c->Request.CDB[2] = page_code;
2876                         }
2877                         c->Request.CDBLen = 6;
2878                         c->Request.Type.Attribute = ATTR_SIMPLE;
2879                         c->Request.Type.Direction = XFER_READ;
2880                         c->Request.Timeout = 0;
2881                         c->Request.CDB[0] = HPSA_INQUIRY;
2882                         c->Request.CDB[4] = size & 0xFF;
2883                         break;
2884                 case HPSA_REPORT_LOG:
2885                 case HPSA_REPORT_PHYS:
2886                         /* Talking to controller so It's a physical command
2887                            mode = 00 target = 0.  Nothing to write.
2888                          */
2889                         c->Request.CDBLen = 12;
2890                         c->Request.Type.Attribute = ATTR_SIMPLE;
2891                         c->Request.Type.Direction = XFER_READ;
2892                         c->Request.Timeout = 0;
2893                         c->Request.CDB[0] = cmd;
2894                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2895                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2896                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2897                         c->Request.CDB[9] = size & 0xFF;
2898                         break;
2899                 case HPSA_CACHE_FLUSH:
2900                         c->Request.CDBLen = 12;
2901                         c->Request.Type.Attribute = ATTR_SIMPLE;
2902                         c->Request.Type.Direction = XFER_WRITE;
2903                         c->Request.Timeout = 0;
2904                         c->Request.CDB[0] = BMIC_WRITE;
2905                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2906                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2907                         c->Request.CDB[8] = size & 0xFF;
2908                         break;
2909                 case TEST_UNIT_READY:
2910                         c->Request.CDBLen = 6;
2911                         c->Request.Type.Attribute = ATTR_SIMPLE;
2912                         c->Request.Type.Direction = XFER_NONE;
2913                         c->Request.Timeout = 0;
2914                         break;
2915                 default:
2916                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2917                         BUG();
2918                         return;
2919                 }
2920         } else if (cmd_type == TYPE_MSG) {
2921                 switch (cmd) {
2922
2923                 case  HPSA_DEVICE_RESET_MSG:
2924                         c->Request.CDBLen = 16;
2925                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2926                         c->Request.Type.Attribute = ATTR_SIMPLE;
2927                         c->Request.Type.Direction = XFER_NONE;
2928                         c->Request.Timeout = 0; /* Don't time out */
2929                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2930                         c->Request.CDB[0] =  cmd;
2931                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2932                         /* If bytes 4-7 are zero, it means reset the */
2933                         /* LunID device */
2934                         c->Request.CDB[4] = 0x00;
2935                         c->Request.CDB[5] = 0x00;
2936                         c->Request.CDB[6] = 0x00;
2937                         c->Request.CDB[7] = 0x00;
2938                 break;
2939
2940                 default:
2941                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2942                                 cmd);
2943                         BUG();
2944                 }
2945         } else {
2946                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2947                 BUG();
2948         }
2949
2950         switch (c->Request.Type.Direction) {
2951         case XFER_READ:
2952                 pci_dir = PCI_DMA_FROMDEVICE;
2953                 break;
2954         case XFER_WRITE:
2955                 pci_dir = PCI_DMA_TODEVICE;
2956                 break;
2957         case XFER_NONE:
2958                 pci_dir = PCI_DMA_NONE;
2959                 break;
2960         default:
2961                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2962         }
2963
2964         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2965
2966         return;
2967 }
2968
2969 /*
2970  * Map (physical) PCI mem into (virtual) kernel space
2971  */
2972 static void __iomem *remap_pci_mem(ulong base, ulong size)
2973 {
2974         ulong page_base = ((ulong) base) & PAGE_MASK;
2975         ulong page_offs = ((ulong) base) - page_base;
2976         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2977
2978         return page_remapped ? (page_remapped + page_offs) : NULL;
2979 }
2980
2981 /* Takes cmds off the submission queue and sends them to the hardware,
2982  * then puts them on the queue of cmds waiting for completion.
2983  */
2984 static void start_io(struct ctlr_info *h)
2985 {
2986         struct CommandList *c;
2987
2988         while (!list_empty(&h->reqQ)) {
2989                 c = list_entry(h->reqQ.next, struct CommandList, list);
2990                 /* can't do anything if fifo is full */
2991                 if ((h->access.fifo_full(h))) {
2992                         dev_warn(&h->pdev->dev, "fifo full\n");
2993                         break;
2994                 }
2995
2996                 /* Get the first entry from the Request Q */
2997                 removeQ(c);
2998                 h->Qdepth--;
2999
3000                 /* Tell the controller execute command */
3001                 h->access.submit_command(h, c);
3002
3003                 /* Put job onto the completed Q */
3004                 addQ(&h->cmpQ, c);
3005         }
3006 }
3007
3008 static inline unsigned long get_next_completion(struct ctlr_info *h)
3009 {
3010         return h->access.command_completed(h);
3011 }
3012
3013 static inline bool interrupt_pending(struct ctlr_info *h)
3014 {
3015         return h->access.intr_pending(h);
3016 }
3017
3018 static inline long interrupt_not_for_us(struct ctlr_info *h)
3019 {
3020         return (h->access.intr_pending(h) == 0) ||
3021                 (h->interrupts_enabled == 0);
3022 }
3023
3024 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3025         u32 raw_tag)
3026 {
3027         if (unlikely(tag_index >= h->nr_cmds)) {
3028                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3029                 return 1;
3030         }
3031         return 0;
3032 }
3033
3034 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3035 {
3036         removeQ(c);
3037         if (likely(c->cmd_type == CMD_SCSI))
3038                 complete_scsi_command(c);
3039         else if (c->cmd_type == CMD_IOCTL_PEND)
3040                 complete(c->waiting);
3041 }
3042
3043 static inline u32 hpsa_tag_contains_index(u32 tag)
3044 {
3045         return tag & DIRECT_LOOKUP_BIT;
3046 }
3047
3048 static inline u32 hpsa_tag_to_index(u32 tag)
3049 {
3050         return tag >> DIRECT_LOOKUP_SHIFT;
3051 }
3052
3053
3054 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3055 {
3056 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3057 #define HPSA_SIMPLE_ERROR_BITS 0x03
3058         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3059                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3060         return tag & ~HPSA_PERF_ERROR_BITS;
3061 }
3062
3063 /* process completion of an indexed ("direct lookup") command */
3064 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3065         u32 raw_tag)
3066 {
3067         u32 tag_index;
3068         struct CommandList *c;
3069
3070         tag_index = hpsa_tag_to_index(raw_tag);
3071         if (bad_tag(h, tag_index, raw_tag))
3072                 return next_command(h);
3073         c = h->cmd_pool + tag_index;
3074         finish_cmd(c, raw_tag);
3075         return next_command(h);
3076 }
3077
3078 /* process completion of a non-indexed command */
3079 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3080         u32 raw_tag)
3081 {
3082         u32 tag;
3083         struct CommandList *c = NULL;
3084
3085         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3086         list_for_each_entry(c, &h->cmpQ, list) {
3087                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3088                         finish_cmd(c, raw_tag);
3089                         return next_command(h);
3090                 }
3091         }
3092         bad_tag(h, h->nr_cmds + 1, raw_tag);
3093         return next_command(h);
3094 }
3095
3096 /* Some controllers, like p400, will give us one interrupt
3097  * after a soft reset, even if we turned interrupts off.
3098  * Only need to check for this in the hpsa_xxx_discard_completions
3099  * functions.
3100  */
3101 static int ignore_bogus_interrupt(struct ctlr_info *h)
3102 {
3103         if (likely(!reset_devices))
3104                 return 0;
3105
3106         if (likely(h->interrupts_enabled))
3107                 return 0;
3108
3109         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3110                 "(known firmware bug.)  Ignoring.\n");
3111
3112         return 1;
3113 }
3114
3115 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3116 {
3117         struct ctlr_info *h = dev_id;
3118         unsigned long flags;
3119         u32 raw_tag;
3120
3121         if (ignore_bogus_interrupt(h))
3122                 return IRQ_NONE;
3123
3124         if (interrupt_not_for_us(h))
3125                 return IRQ_NONE;
3126         spin_lock_irqsave(&h->lock, flags);
3127         h->last_intr_timestamp = get_jiffies_64();
3128         while (interrupt_pending(h)) {
3129                 raw_tag = get_next_completion(h);
3130                 while (raw_tag != FIFO_EMPTY)
3131                         raw_tag = next_command(h);
3132         }
3133         spin_unlock_irqrestore(&h->lock, flags);
3134         return IRQ_HANDLED;
3135 }
3136
3137 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3138 {
3139         struct ctlr_info *h = dev_id;
3140         unsigned long flags;
3141         u32 raw_tag;
3142
3143         if (ignore_bogus_interrupt(h))
3144                 return IRQ_NONE;
3145
3146         spin_lock_irqsave(&h->lock, flags);
3147         h->last_intr_timestamp = get_jiffies_64();
3148         raw_tag = get_next_completion(h);
3149         while (raw_tag != FIFO_EMPTY)
3150                 raw_tag = next_command(h);
3151         spin_unlock_irqrestore(&h->lock, flags);
3152         return IRQ_HANDLED;
3153 }
3154
3155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3156 {
3157         struct ctlr_info *h = dev_id;
3158         unsigned long flags;
3159         u32 raw_tag;
3160
3161         if (interrupt_not_for_us(h))
3162                 return IRQ_NONE;
3163         spin_lock_irqsave(&h->lock, flags);
3164         h->last_intr_timestamp = get_jiffies_64();
3165         while (interrupt_pending(h)) {
3166                 raw_tag = get_next_completion(h);
3167                 while (raw_tag != FIFO_EMPTY) {
3168                         if (hpsa_tag_contains_index(raw_tag))
3169                                 raw_tag = process_indexed_cmd(h, raw_tag);
3170                         else
3171                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3172                 }
3173         }
3174         spin_unlock_irqrestore(&h->lock, flags);
3175         return IRQ_HANDLED;
3176 }
3177
3178 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3179 {
3180         struct ctlr_info *h = dev_id;
3181         unsigned long flags;
3182         u32 raw_tag;
3183
3184         spin_lock_irqsave(&h->lock, flags);
3185         h->last_intr_timestamp = get_jiffies_64();
3186         raw_tag = get_next_completion(h);
3187         while (raw_tag != FIFO_EMPTY) {
3188                 if (hpsa_tag_contains_index(raw_tag))
3189                         raw_tag = process_indexed_cmd(h, raw_tag);
3190                 else
3191                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3192         }
3193         spin_unlock_irqrestore(&h->lock, flags);
3194         return IRQ_HANDLED;
3195 }
3196
3197 /* Send a message CDB to the firmware. Careful, this only works
3198  * in simple mode, not performant mode due to the tag lookup.
3199  * We only ever use this immediately after a controller reset.
3200  */
3201 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3202                                                 unsigned char type)
3203 {
3204         struct Command {
3205                 struct CommandListHeader CommandHeader;
3206                 struct RequestBlock Request;
3207                 struct ErrDescriptor ErrorDescriptor;
3208         };
3209         struct Command *cmd;
3210         static const size_t cmd_sz = sizeof(*cmd) +
3211                                         sizeof(cmd->ErrorDescriptor);
3212         dma_addr_t paddr64;
3213         uint32_t paddr32, tag;
3214         void __iomem *vaddr;
3215         int i, err;
3216
3217         vaddr = pci_ioremap_bar(pdev, 0);
3218         if (vaddr == NULL)
3219                 return -ENOMEM;
3220
3221         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3222          * CCISS commands, so they must be allocated from the lower 4GiB of
3223          * memory.
3224          */
3225         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3226         if (err) {
3227                 iounmap(vaddr);
3228                 return -ENOMEM;
3229         }
3230
3231         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3232         if (cmd == NULL) {
3233                 iounmap(vaddr);
3234                 return -ENOMEM;
3235         }
3236
3237         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3238          * although there's no guarantee, we assume that the address is at
3239          * least 4-byte aligned (most likely, it's page-aligned).
3240          */
3241         paddr32 = paddr64;
3242
3243         cmd->CommandHeader.ReplyQueue = 0;
3244         cmd->CommandHeader.SGList = 0;
3245         cmd->CommandHeader.SGTotal = 0;
3246         cmd->CommandHeader.Tag.lower = paddr32;
3247         cmd->CommandHeader.Tag.upper = 0;
3248         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3249
3250         cmd->Request.CDBLen = 16;
3251         cmd->Request.Type.Type = TYPE_MSG;
3252         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3253         cmd->Request.Type.Direction = XFER_NONE;
3254         cmd->Request.Timeout = 0; /* Don't time out */
3255         cmd->Request.CDB[0] = opcode;
3256         cmd->Request.CDB[1] = type;
3257         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3258         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3259         cmd->ErrorDescriptor.Addr.upper = 0;
3260         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3261
3262         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3263
3264         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3265                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3266                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3267                         break;
3268                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3269         }
3270
3271         iounmap(vaddr);
3272
3273         /* we leak the DMA buffer here ... no choice since the controller could
3274          *  still complete the command.
3275          */
3276         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3277                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3278                         opcode, type);
3279                 return -ETIMEDOUT;
3280         }
3281
3282         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3283
3284         if (tag & HPSA_ERROR_BIT) {
3285                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3286                         opcode, type);
3287                 return -EIO;
3288         }
3289
3290         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3291                 opcode, type);
3292         return 0;
3293 }
3294
3295 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3296
3297 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3298         void * __iomem vaddr, u32 use_doorbell)
3299 {
3300         u16 pmcsr;
3301         int pos;
3302
3303         if (use_doorbell) {
3304                 /* For everything after the P600, the PCI power state method
3305                  * of resetting the controller doesn't work, so we have this
3306                  * other way using the doorbell register.
3307                  */
3308                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3309                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3310         } else { /* Try to do it the PCI power state way */
3311
3312                 /* Quoting from the Open CISS Specification: "The Power
3313                  * Management Control/Status Register (CSR) controls the power
3314                  * state of the device.  The normal operating state is D0,
3315                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3316                  * the controller, place the interface device in D3 then to D0,
3317                  * this causes a secondary PCI reset which will reset the
3318                  * controller." */
3319
3320                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3321                 if (pos == 0) {
3322                         dev_err(&pdev->dev,
3323                                 "hpsa_reset_controller: "
3324                                 "PCI PM not supported\n");
3325                         return -ENODEV;
3326                 }
3327                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3328                 /* enter the D3hot power management state */
3329                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3330                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3331                 pmcsr |= PCI_D3hot;
3332                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3333
3334                 msleep(500);
3335
3336                 /* enter the D0 power management state */
3337                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3338                 pmcsr |= PCI_D0;
3339                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3340
3341                 /*
3342                  * The P600 requires a small delay when changing states.
3343                  * Otherwise we may think the board did not reset and we bail.
3344                  * This for kdump only and is particular to the P600.
3345                  */
3346                 msleep(500);
3347         }
3348         return 0;
3349 }
3350
3351 static __devinit void init_driver_version(char *driver_version, int len)
3352 {
3353         memset(driver_version, 0, len);
3354         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3355 }
3356
3357 static __devinit int write_driver_ver_to_cfgtable(
3358         struct CfgTable __iomem *cfgtable)
3359 {
3360         char *driver_version;
3361         int i, size = sizeof(cfgtable->driver_version);
3362
3363         driver_version = kmalloc(size, GFP_KERNEL);
3364         if (!driver_version)
3365                 return -ENOMEM;
3366
3367         init_driver_version(driver_version, size);
3368         for (i = 0; i < size; i++)
3369                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3370         kfree(driver_version);
3371         return 0;
3372 }
3373
3374 static __devinit void read_driver_ver_from_cfgtable(
3375         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3376 {
3377         int i;
3378
3379         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3380                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3381 }
3382
3383 static __devinit int controller_reset_failed(
3384         struct CfgTable __iomem *cfgtable)
3385 {
3386
3387         char *driver_ver, *old_driver_ver;
3388         int rc, size = sizeof(cfgtable->driver_version);
3389
3390         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3391         if (!old_driver_ver)
3392                 return -ENOMEM;
3393         driver_ver = old_driver_ver + size;
3394
3395         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3396          * should have been changed, otherwise we know the reset failed.
3397          */
3398         init_driver_version(old_driver_ver, size);
3399         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3400         rc = !memcmp(driver_ver, old_driver_ver, size);
3401         kfree(old_driver_ver);
3402         return rc;
3403 }
3404 /* This does a hard reset of the controller using PCI power management
3405  * states or the using the doorbell register.
3406  */
3407 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3408 {
3409         u64 cfg_offset;
3410         u32 cfg_base_addr;
3411         u64 cfg_base_addr_index;
3412         void __iomem *vaddr;
3413         unsigned long paddr;
3414         u32 misc_fw_support;
3415         int rc;
3416         struct CfgTable __iomem *cfgtable;
3417         u32 use_doorbell;
3418         u32 board_id;
3419         u16 command_register;
3420
3421         /* For controllers as old as the P600, this is very nearly
3422          * the same thing as
3423          *
3424          * pci_save_state(pci_dev);
3425          * pci_set_power_state(pci_dev, PCI_D3hot);
3426          * pci_set_power_state(pci_dev, PCI_D0);
3427          * pci_restore_state(pci_dev);
3428          *
3429          * For controllers newer than the P600, the pci power state
3430          * method of resetting doesn't work so we have another way
3431          * using the doorbell register.
3432          */
3433
3434         rc = hpsa_lookup_board_id(pdev, &board_id);
3435         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3436                 dev_warn(&pdev->dev, "Not resetting device.\n");
3437                 return -ENODEV;
3438         }
3439
3440         /* if controller is soft- but not hard resettable... */
3441         if (!ctlr_is_hard_resettable(board_id))
3442                 return -ENOTSUPP; /* try soft reset later. */
3443
3444         /* Save the PCI command register */
3445         pci_read_config_word(pdev, 4, &command_register);
3446         /* Turn the board off.  This is so that later pci_restore_state()
3447          * won't turn the board on before the rest of config space is ready.
3448          */
3449         pci_disable_device(pdev);
3450         pci_save_state(pdev);
3451
3452         /* find the first memory BAR, so we can find the cfg table */
3453         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3454         if (rc)
3455                 return rc;
3456         vaddr = remap_pci_mem(paddr, 0x250);
3457         if (!vaddr)
3458                 return -ENOMEM;
3459
3460         /* find cfgtable in order to check if reset via doorbell is supported */
3461         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3462                                         &cfg_base_addr_index, &cfg_offset);
3463         if (rc)
3464                 goto unmap_vaddr;
3465         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3466                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3467         if (!cfgtable) {
3468                 rc = -ENOMEM;
3469                 goto unmap_vaddr;
3470         }
3471         rc = write_driver_ver_to_cfgtable(cfgtable);
3472         if (rc)
3473                 goto unmap_vaddr;
3474
3475         /* If reset via doorbell register is supported, use that.
3476          * There are two such methods.  Favor the newest method.
3477          */
3478         misc_fw_support = readl(&cfgtable->misc_fw_support);
3479         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3480         if (use_doorbell) {
3481                 use_doorbell = DOORBELL_CTLR_RESET2;
3482         } else {
3483                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3484                 if (use_doorbell) {
3485                         dev_warn(&pdev->dev, "Soft reset not supported. "
3486                                 "Firmware update is required.\n");
3487                         rc = -ENOTSUPP; /* try soft reset */
3488                         goto unmap_cfgtable;
3489                 }
3490         }
3491
3492         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3493         if (rc)
3494                 goto unmap_cfgtable;
3495
3496         pci_restore_state(pdev);
3497         rc = pci_enable_device(pdev);
3498         if (rc) {
3499                 dev_warn(&pdev->dev, "failed to enable device.\n");
3500                 goto unmap_cfgtable;
3501         }
3502         pci_write_config_word(pdev, 4, command_register);
3503
3504         /* Some devices (notably the HP Smart Array 5i Controller)
3505            need a little pause here */
3506         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3507
3508         /* Wait for board to become not ready, then ready. */
3509         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3510         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3511         if (rc) {
3512                 dev_warn(&pdev->dev,
3513                         "failed waiting for board to reset."
3514                         " Will try soft reset.\n");
3515                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3516                 goto unmap_cfgtable;
3517         }
3518         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3519         if (rc) {
3520                 dev_warn(&pdev->dev,
3521                         "failed waiting for board to become ready "
3522                         "after hard reset\n");
3523                 goto unmap_cfgtable;
3524         }
3525
3526         rc = controller_reset_failed(vaddr);
3527         if (rc < 0)
3528                 goto unmap_cfgtable;
3529         if (rc) {
3530                 dev_warn(&pdev->dev, "Unable to successfully reset "
3531                         "controller. Will try soft reset.\n");
3532                 rc = -ENOTSUPP;
3533         } else {
3534                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3535         }
3536
3537 unmap_cfgtable:
3538         iounmap(cfgtable);
3539
3540 unmap_vaddr:
3541         iounmap(vaddr);
3542         return rc;
3543 }
3544
3545 /*
3546  *  We cannot read the structure directly, for portability we must use
3547  *   the io functions.
3548  *   This is for debug only.
3549  */
3550 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3551 {
3552 #ifdef HPSA_DEBUG
3553         int i;
3554         char temp_name[17];
3555
3556         dev_info(dev, "Controller Configuration information\n");
3557         dev_info(dev, "------------------------------------\n");
3558         for (i = 0; i < 4; i++)
3559                 temp_name[i] = readb(&(tb->Signature[i]));
3560         temp_name[4] = '\0';
3561         dev_info(dev, "   Signature = %s\n", temp_name);
3562         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3563         dev_info(dev, "   Transport methods supported = 0x%x\n",
3564                readl(&(tb->TransportSupport)));
3565         dev_info(dev, "   Transport methods active = 0x%x\n",
3566                readl(&(tb->TransportActive)));
3567         dev_info(dev, "   Requested transport Method = 0x%x\n",
3568                readl(&(tb->HostWrite.TransportRequest)));
3569         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3570                readl(&(tb->HostWrite.CoalIntDelay)));
3571         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3572                readl(&(tb->HostWrite.CoalIntCount)));
3573         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3574                readl(&(tb->CmdsOutMax)));
3575         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3576         for (i = 0; i < 16; i++)
3577                 temp_name[i] = readb(&(tb->ServerName[i]));
3578         temp_name[16] = '\0';
3579         dev_info(dev, "   Server Name = %s\n", temp_name);
3580         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3581                 readl(&(tb->HeartBeat)));
3582 #endif                          /* HPSA_DEBUG */
3583 }
3584
3585 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3586 {
3587         int i, offset, mem_type, bar_type;
3588
3589         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3590                 return 0;
3591         offset = 0;
3592         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3593                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3594                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3595                         offset += 4;
3596                 else {
3597                         mem_type = pci_resource_flags(pdev, i) &
3598                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3599                         switch (mem_type) {
3600                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3601                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3602                                 offset += 4;    /* 32 bit */
3603                                 break;
3604                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3605                                 offset += 8;
3606                                 break;
3607                         default:        /* reserved in PCI 2.2 */
3608                                 dev_warn(&pdev->dev,
3609                                        "base address is invalid\n");
3610                                 return -1;
3611                                 break;
3612                         }
3613                 }
3614                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3615                         return i + 1;
3616         }
3617         return -1;
3618 }
3619
3620 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3621  * controllers that are capable. If not, we use IO-APIC mode.
3622  */
3623
3624 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3625 {
3626 #ifdef CONFIG_PCI_MSI
3627         int err;
3628         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3629         {0, 2}, {0, 3}
3630         };
3631
3632         /* Some boards advertise MSI but don't really support it */
3633         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3634             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3635                 goto default_int_mode;
3636         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3637                 dev_info(&h->pdev->dev, "MSIX\n");
3638                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3639                 if (!err) {
3640                         h->intr[0] = hpsa_msix_entries[0].vector;
3641                         h->intr[1] = hpsa_msix_entries[1].vector;
3642                         h->intr[2] = hpsa_msix_entries[2].vector;
3643                         h->intr[3] = hpsa_msix_entries[3].vector;
3644                         h->msix_vector = 1;
3645                         return;
3646                 }
3647                 if (err > 0) {
3648                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3649                                "available\n", err);
3650                         goto default_int_mode;
3651                 } else {
3652                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3653                                err);
3654                         goto default_int_mode;
3655                 }
3656         }
3657         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3658                 dev_info(&h->pdev->dev, "MSI\n");
3659                 if (!pci_enable_msi(h->pdev))
3660                         h->msi_vector = 1;
3661                 else
3662                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3663         }
3664 default_int_mode:
3665 #endif                          /* CONFIG_PCI_MSI */
3666         /* if we get here we're going to use the default interrupt mode */
3667         h->intr[h->intr_mode] = h->pdev->irq;
3668 }
3669
3670 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3671 {
3672         int i;
3673         u32 subsystem_vendor_id, subsystem_device_id;
3674
3675         subsystem_vendor_id = pdev->subsystem_vendor;
3676         subsystem_device_id = pdev->subsystem_device;
3677         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3678                     subsystem_vendor_id;
3679
3680         for (i = 0; i < ARRAY_SIZE(products); i++)
3681                 if (*board_id == products[i].board_id)
3682                         return i;
3683
3684         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3685                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3686                 !hpsa_allow_any) {
3687                 dev_warn(&pdev->dev, "unrecognized board ID: "
3688                         "0x%08x, ignoring.\n", *board_id);
3689                         return -ENODEV;
3690         }
3691         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3692 }
3693
3694 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3695 {
3696         u16 command;
3697
3698         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3699         return ((command & PCI_COMMAND_MEMORY) == 0);
3700 }
3701
3702 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3703         unsigned long *memory_bar)
3704 {
3705         int i;
3706
3707         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3708                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3709                         /* addressing mode bits already removed */
3710                         *memory_bar = pci_resource_start(pdev, i);
3711                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3712                                 *memory_bar);
3713                         return 0;
3714                 }
3715         dev_warn(&pdev->dev, "no memory BAR found\n");
3716         return -ENODEV;
3717 }
3718
3719 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3720         void __iomem *vaddr, int wait_for_ready)
3721 {
3722         int i, iterations;
3723         u32 scratchpad;
3724         if (wait_for_ready)
3725                 iterations = HPSA_BOARD_READY_ITERATIONS;
3726         else
3727                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3728
3729         for (i = 0; i < iterations; i++) {
3730                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3731                 if (wait_for_ready) {
3732                         if (scratchpad == HPSA_FIRMWARE_READY)
3733                                 return 0;
3734                 } else {
3735                         if (scratchpad != HPSA_FIRMWARE_READY)
3736                                 return 0;
3737                 }
3738                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3739         }
3740         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3741         return -ENODEV;
3742 }
3743
3744 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3745         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3746         u64 *cfg_offset)
3747 {
3748         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3749         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3750         *cfg_base_addr &= (u32) 0x0000ffff;
3751         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3752         if (*cfg_base_addr_index == -1) {
3753                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3754                 return -ENODEV;
3755         }
3756         return 0;
3757 }
3758
3759 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3760 {
3761         u64 cfg_offset;
3762         u32 cfg_base_addr;
3763         u64 cfg_base_addr_index;
3764         u32 trans_offset;
3765         int rc;
3766
3767         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3768                 &cfg_base_addr_index, &cfg_offset);
3769         if (rc)
3770                 return rc;
3771         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3772                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3773         if (!h->cfgtable)
3774                 return -ENOMEM;
3775         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3776         if (rc)
3777                 return rc;
3778         /* Find performant mode table. */
3779         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3780         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3781                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3782                                 sizeof(*h->transtable));
3783         if (!h->transtable)
3784                 return -ENOMEM;
3785         return 0;
3786 }
3787
3788 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3789 {
3790         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3791
3792         /* Limit commands in memory limited kdump scenario. */
3793         if (reset_devices && h->max_commands > 32)
3794                 h->max_commands = 32;
3795
3796         if (h->max_commands < 16) {
3797                 dev_warn(&h->pdev->dev, "Controller reports "
3798                         "max supported commands of %d, an obvious lie. "
3799                         "Using 16.  Ensure that firmware is up to date.\n",
3800                         h->max_commands);
3801                 h->max_commands = 16;
3802         }
3803 }
3804
3805 /* Interrogate the hardware for some limits:
3806  * max commands, max SG elements without chaining, and with chaining,
3807  * SG chain block size, etc.
3808  */
3809 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3810 {
3811         hpsa_get_max_perf_mode_cmds(h);
3812         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3813         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3814         /*
3815          * Limit in-command s/g elements to 32 save dma'able memory.
3816          * Howvever spec says if 0, use 31
3817          */
3818         h->max_cmd_sg_entries = 31;
3819         if (h->maxsgentries > 512) {
3820                 h->max_cmd_sg_entries = 32;
3821                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3822                 h->maxsgentries--; /* save one for chain pointer */
3823         } else {
3824                 h->maxsgentries = 31; /* default to traditional values */
3825                 h->chainsize = 0;
3826         }
3827 }
3828
3829 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3830 {
3831         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3832             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3833             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3834             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3835                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3836                 return false;
3837         }
3838         return true;
3839 }
3840
3841 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3842 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3843 {
3844 #ifdef CONFIG_X86
3845         u32 prefetch;
3846
3847         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3848         prefetch |= 0x100;
3849         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3850 #endif
3851 }
3852
3853 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3854  * in a prefetch beyond physical memory.
3855  */
3856 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3857 {
3858         u32 dma_prefetch;
3859
3860         if (h->board_id != 0x3225103C)
3861                 return;
3862         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3863         dma_prefetch |= 0x8000;
3864         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3865 }
3866
3867 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3868 {
3869         int i;
3870         u32 doorbell_value;
3871         unsigned long flags;
3872
3873         /* under certain very rare conditions, this can take awhile.
3874          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3875          * as we enter this code.)
3876          */
3877         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3878                 spin_lock_irqsave(&h->lock, flags);
3879                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3880                 spin_unlock_irqrestore(&h->lock, flags);
3881                 if (!(doorbell_value & CFGTBL_ChangeReq))
3882                         break;
3883                 /* delay and try again */
3884                 usleep_range(10000, 20000);
3885         }
3886 }
3887
3888 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3889 {
3890         u32 trans_support;
3891
3892         trans_support = readl(&(h->cfgtable->TransportSupport));
3893         if (!(trans_support & SIMPLE_MODE))
3894                 return -ENOTSUPP;
3895
3896         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3897         /* Update the field, and then ring the doorbell */
3898         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3899         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3900         hpsa_wait_for_mode_change_ack(h);
3901         print_cfg_table(&h->pdev->dev, h->cfgtable);
3902         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3903                 dev_warn(&h->pdev->dev,
3904                         "unable to get board into simple mode\n");
3905                 return -ENODEV;
3906         }
3907         h->transMethod = CFGTBL_Trans_Simple;
3908         return 0;
3909 }
3910
3911 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3912 {
3913         int prod_index, err;
3914
3915         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3916         if (prod_index < 0)
3917                 return -ENODEV;
3918         h->product_name = products[prod_index].product_name;
3919         h->access = *(products[prod_index].access);
3920
3921         if (hpsa_board_disabled(h->pdev)) {
3922                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3923                 return -ENODEV;
3924         }
3925         err = pci_enable_device(h->pdev);
3926         if (err) {
3927                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3928                 return err;
3929         }
3930
3931         err = pci_request_regions(h->pdev, "hpsa");
3932         if (err) {
3933                 dev_err(&h->pdev->dev,
3934                         "cannot obtain PCI resources, aborting\n");
3935                 return err;
3936         }
3937         hpsa_interrupt_mode(h);
3938         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3939         if (err)
3940                 goto err_out_free_res;
3941         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3942         if (!h->vaddr) {
3943                 err = -ENOMEM;
3944                 goto err_out_free_res;
3945         }
3946         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3947         if (err)
3948                 goto err_out_free_res;
3949         err = hpsa_find_cfgtables(h);
3950         if (err)
3951                 goto err_out_free_res;
3952         hpsa_find_board_params(h);
3953
3954         if (!hpsa_CISS_signature_present(h)) {
3955                 err = -ENODEV;
3956                 goto err_out_free_res;
3957         }
3958         hpsa_enable_scsi_prefetch(h);
3959         hpsa_p600_dma_prefetch_quirk(h);
3960         err = hpsa_enter_simple_mode(h);
3961         if (err)
3962                 goto err_out_free_res;
3963         return 0;
3964
3965 err_out_free_res:
3966         if (h->transtable)
3967                 iounmap(h->transtable);
3968         if (h->cfgtable)
3969                 iounmap(h->cfgtable);
3970         if (h->vaddr)
3971                 iounmap(h->vaddr);
3972         /*
3973          * Deliberately omit pci_disable_device(): it does something nasty to
3974          * Smart Array controllers that pci_enable_device does not undo
3975          */
3976         pci_release_regions(h->pdev);
3977         return err;
3978 }
3979
3980 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3981 {
3982         int rc;
3983
3984 #define HBA_INQUIRY_BYTE_COUNT 64
3985         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3986         if (!h->hba_inquiry_data)
3987                 return;
3988         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3989                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3990         if (rc != 0) {
3991                 kfree(h->hba_inquiry_data);
3992                 h->hba_inquiry_data = NULL;
3993         }
3994 }
3995
3996 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3997 {
3998         int rc, i;
3999
4000         if (!reset_devices)
4001                 return 0;
4002
4003         /* Reset the controller with a PCI power-cycle or via doorbell */
4004         rc = hpsa_kdump_hard_reset_controller(pdev);
4005
4006         /* -ENOTSUPP here means we cannot reset the controller
4007          * but it's already (and still) up and running in
4008          * "performant mode".  Or, it might be 640x, which can't reset
4009          * due to concerns about shared bbwc between 6402/6404 pair.
4010          */
4011         if (rc == -ENOTSUPP)
4012                 return rc; /* just try to do the kdump anyhow. */
4013         if (rc)
4014                 return -ENODEV;
4015
4016         /* Now try to get the controller to respond to a no-op */
4017         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4018         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4019                 if (hpsa_noop(pdev) == 0)
4020                         break;
4021                 else
4022                         dev_warn(&pdev->dev, "no-op failed%s\n",
4023                                         (i < 11 ? "; re-trying" : ""));
4024         }
4025         return 0;
4026 }
4027
4028 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4029 {
4030         h->cmd_pool_bits = kzalloc(
4031                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4032                 sizeof(unsigned long), GFP_KERNEL);
4033         h->cmd_pool = pci_alloc_consistent(h->pdev,
4034                     h->nr_cmds * sizeof(*h->cmd_pool),
4035                     &(h->cmd_pool_dhandle));
4036         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4037                     h->nr_cmds * sizeof(*h->errinfo_pool),
4038                     &(h->errinfo_pool_dhandle));
4039         if ((h->cmd_pool_bits == NULL)
4040             || (h->cmd_pool == NULL)
4041             || (h->errinfo_pool == NULL)) {
4042                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4043                 return -ENOMEM;
4044         }
4045         return 0;
4046 }
4047
4048 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4049 {
4050         kfree(h->cmd_pool_bits);
4051         if (h->cmd_pool)
4052                 pci_free_consistent(h->pdev,
4053                             h->nr_cmds * sizeof(struct CommandList),
4054                             h->cmd_pool, h->cmd_pool_dhandle);
4055         if (h->errinfo_pool)
4056                 pci_free_consistent(h->pdev,
4057                             h->nr_cmds * sizeof(struct ErrorInfo),
4058                             h->errinfo_pool,
4059                             h->errinfo_pool_dhandle);
4060 }
4061
4062 static int hpsa_request_irq(struct ctlr_info *h,
4063         irqreturn_t (*msixhandler)(int, void *),
4064         irqreturn_t (*intxhandler)(int, void *))
4065 {
4066         int rc;
4067
4068         if (h->msix_vector || h->msi_vector)
4069                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4070                                 IRQF_DISABLED, h->devname, h);
4071         else
4072                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4073                                 IRQF_DISABLED, h->devname, h);
4074         if (rc) {
4075                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4076                        h->intr[h->intr_mode], h->devname);
4077                 return -ENODEV;
4078         }
4079         return 0;
4080 }
4081
4082 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4083 {
4084         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4085                 HPSA_RESET_TYPE_CONTROLLER)) {
4086                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4087                 return -EIO;
4088         }
4089
4090         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4091         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4092                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4093                 return -1;
4094         }
4095
4096         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4097         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4098                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4099                         "after soft reset.\n");
4100                 return -1;
4101         }
4102
4103         return 0;
4104 }
4105
4106 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4107 {
4108         free_irq(h->intr[h->intr_mode], h);
4109 #ifdef CONFIG_PCI_MSI
4110         if (h->msix_vector)
4111                 pci_disable_msix(h->pdev);
4112         else if (h->msi_vector)
4113                 pci_disable_msi(h->pdev);
4114 #endif /* CONFIG_PCI_MSI */
4115         hpsa_free_sg_chain_blocks(h);
4116         hpsa_free_cmd_pool(h);
4117         kfree(h->blockFetchTable);
4118         pci_free_consistent(h->pdev, h->reply_pool_size,
4119                 h->reply_pool, h->reply_pool_dhandle);
4120         if (h->vaddr)
4121                 iounmap(h->vaddr);
4122         if (h->transtable)
4123                 iounmap(h->transtable);
4124         if (h->cfgtable)
4125                 iounmap(h->cfgtable);
4126         pci_release_regions(h->pdev);
4127         kfree(h);
4128 }
4129
4130 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4131 {
4132         assert_spin_locked(&lockup_detector_lock);
4133         if (!hpsa_lockup_detector)
4134                 return;
4135         if (h->lockup_detected)
4136                 return; /* already stopped the lockup detector */
4137         list_del(&h->lockup_list);
4138 }
4139
4140 /* Called when controller lockup detected. */
4141 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4142 {
4143         struct CommandList *c = NULL;
4144
4145         assert_spin_locked(&h->lock);
4146         /* Mark all outstanding commands as failed and complete them. */
4147         while (!list_empty(list)) {
4148                 c = list_entry(list->next, struct CommandList, list);
4149                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4150                 finish_cmd(c, c->Header.Tag.lower);
4151         }
4152 }
4153
4154 static void controller_lockup_detected(struct ctlr_info *h)
4155 {
4156         unsigned long flags;
4157
4158         assert_spin_locked(&lockup_detector_lock);
4159         remove_ctlr_from_lockup_detector_list(h);
4160         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4161         spin_lock_irqsave(&h->lock, flags);
4162         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4163         spin_unlock_irqrestore(&h->lock, flags);
4164         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4165                         h->lockup_detected);
4166         pci_disable_device(h->pdev);
4167         spin_lock_irqsave(&h->lock, flags);
4168         fail_all_cmds_on_list(h, &h->cmpQ);
4169         fail_all_cmds_on_list(h, &h->reqQ);
4170         spin_unlock_irqrestore(&h->lock, flags);
4171 }
4172
4173 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4174 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4175
4176 static void detect_controller_lockup(struct ctlr_info *h)
4177 {
4178         u64 now;
4179         u32 heartbeat;
4180         unsigned long flags;
4181
4182         assert_spin_locked(&lockup_detector_lock);
4183         now = get_jiffies_64();
4184         /* If we've received an interrupt recently, we're ok. */
4185         if (time_after64(h->last_intr_timestamp +
4186                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4187                 return;
4188
4189         /*
4190          * If we've already checked the heartbeat recently, we're ok.
4191          * This could happen if someone sends us a signal. We
4192          * otherwise don't care about signals in this thread.
4193          */
4194         if (time_after64(h->last_heartbeat_timestamp +
4195                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4196                 return;
4197
4198         /* If heartbeat has not changed since we last looked, we're not ok. */
4199         spin_lock_irqsave(&h->lock, flags);
4200         heartbeat = readl(&h->cfgtable->HeartBeat);
4201         spin_unlock_irqrestore(&h->lock, flags);
4202         if (h->last_heartbeat == heartbeat) {
4203                 controller_lockup_detected(h);
4204                 return;
4205         }
4206
4207         /* We're ok. */
4208         h->last_heartbeat = heartbeat;
4209         h->last_heartbeat_timestamp = now;
4210 }
4211
4212 static int detect_controller_lockup_thread(void *notused)
4213 {
4214         struct ctlr_info *h;
4215         unsigned long flags;
4216
4217         while (1) {
4218                 struct list_head *this, *tmp;
4219
4220                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4221                 if (kthread_should_stop())
4222                         break;
4223                 spin_lock_irqsave(&lockup_detector_lock, flags);
4224                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4225                         h = list_entry(this, struct ctlr_info, lockup_list);
4226                         detect_controller_lockup(h);
4227                 }
4228                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4229         }
4230         return 0;
4231 }
4232
4233 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4234 {
4235         unsigned long flags;
4236
4237         spin_lock_irqsave(&lockup_detector_lock, flags);
4238         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4239         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4240 }
4241
4242 static void start_controller_lockup_detector(struct ctlr_info *h)
4243 {
4244         /* Start the lockup detector thread if not already started */
4245         if (!hpsa_lockup_detector) {
4246                 spin_lock_init(&lockup_detector_lock);
4247                 hpsa_lockup_detector =
4248                         kthread_run(detect_controller_lockup_thread,
4249                                                 NULL, "hpsa");
4250         }
4251         if (!hpsa_lockup_detector) {
4252                 dev_warn(&h->pdev->dev,
4253                         "Could not start lockup detector thread\n");
4254                 return;
4255         }
4256         add_ctlr_to_lockup_detector_list(h);
4257 }
4258
4259 static void stop_controller_lockup_detector(struct ctlr_info *h)
4260 {
4261         unsigned long flags;
4262
4263         spin_lock_irqsave(&lockup_detector_lock, flags);
4264         remove_ctlr_from_lockup_detector_list(h);
4265         /* If the list of ctlr's to monitor is empty, stop the thread */
4266         if (list_empty(&hpsa_ctlr_list)) {
4267                 kthread_stop(hpsa_lockup_detector);
4268                 hpsa_lockup_detector = NULL;
4269         }
4270         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4271 }
4272
4273 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4274                                     const struct pci_device_id *ent)
4275 {
4276         int dac, rc;
4277         struct ctlr_info *h;
4278         int try_soft_reset = 0;
4279         unsigned long flags;
4280
4281         if (number_of_controllers == 0)
4282                 printk(KERN_INFO DRIVER_NAME "\n");
4283
4284         rc = hpsa_init_reset_devices(pdev);
4285         if (rc) {
4286                 if (rc != -ENOTSUPP)
4287                         return rc;
4288                 /* If the reset fails in a particular way (it has no way to do
4289                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4290                  * a soft reset once we get the controller configured up to the
4291                  * point that it can accept a command.
4292                  */
4293                 try_soft_reset = 1;
4294                 rc = 0;
4295         }
4296
4297 reinit_after_soft_reset:
4298
4299         /* Command structures must be aligned on a 32-byte boundary because
4300          * the 5 lower bits of the address are used by the hardware. and by
4301          * the driver.  See comments in hpsa.h for more info.
4302          */
4303 #define COMMANDLIST_ALIGNMENT 32
4304         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4305         h = kzalloc(sizeof(*h), GFP_KERNEL);
4306         if (!h)
4307                 return -ENOMEM;
4308
4309         h->pdev = pdev;
4310         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4311         INIT_LIST_HEAD(&h->cmpQ);
4312         INIT_LIST_HEAD(&h->reqQ);
4313         spin_lock_init(&h->lock);
4314         spin_lock_init(&h->scan_lock);
4315         rc = hpsa_pci_init(h);
4316         if (rc != 0)
4317                 goto clean1;
4318
4319         sprintf(h->devname, "hpsa%d", number_of_controllers);
4320         h->ctlr = number_of_controllers;
4321         number_of_controllers++;
4322
4323         /* configure PCI DMA stuff */
4324         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4325         if (rc == 0) {
4326                 dac = 1;
4327         } else {
4328                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4329                 if (rc == 0) {
4330                         dac = 0;
4331                 } else {
4332                         dev_err(&pdev->dev, "no suitable DMA available\n");
4333                         goto clean1;
4334                 }
4335         }
4336
4337         /* make sure the board interrupts are off */
4338         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4339
4340         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4341                 goto clean2;
4342         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4343                h->devname, pdev->device,
4344                h->intr[h->intr_mode], dac ? "" : " not");
4345         if (hpsa_allocate_cmd_pool(h))
4346                 goto clean4;
4347         if (hpsa_allocate_sg_chain_blocks(h))
4348                 goto clean4;
4349         init_waitqueue_head(&h->scan_wait_queue);
4350         h->scan_finished = 1; /* no scan currently in progress */
4351
4352         pci_set_drvdata(pdev, h);
4353         h->ndevices = 0;
4354         h->scsi_host = NULL;
4355         spin_lock_init(&h->devlock);
4356         hpsa_put_ctlr_into_performant_mode(h);
4357
4358         /* At this point, the controller is ready to take commands.
4359          * Now, if reset_devices and the hard reset didn't work, try
4360          * the soft reset and see if that works.
4361          */
4362         if (try_soft_reset) {
4363
4364                 /* This is kind of gross.  We may or may not get a completion
4365                  * from the soft reset command, and if we do, then the value
4366                  * from the fifo may or may not be valid.  So, we wait 10 secs
4367                  * after the reset throwing away any completions we get during
4368                  * that time.  Unregister the interrupt handler and register
4369                  * fake ones to scoop up any residual completions.
4370                  */
4371                 spin_lock_irqsave(&h->lock, flags);
4372                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4373                 spin_unlock_irqrestore(&h->lock, flags);
4374                 free_irq(h->intr[h->intr_mode], h);
4375                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4376                                         hpsa_intx_discard_completions);
4377                 if (rc) {
4378                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4379                                 "soft reset.\n");
4380                         goto clean4;
4381                 }
4382
4383                 rc = hpsa_kdump_soft_reset(h);
4384                 if (rc)
4385                         /* Neither hard nor soft reset worked, we're hosed. */
4386                         goto clean4;
4387
4388                 dev_info(&h->pdev->dev, "Board READY.\n");
4389                 dev_info(&h->pdev->dev,
4390                         "Waiting for stale completions to drain.\n");
4391                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4392                 msleep(10000);
4393                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4394
4395                 rc = controller_reset_failed(h->cfgtable);
4396                 if (rc)
4397                         dev_info(&h->pdev->dev,
4398                                 "Soft reset appears to have failed.\n");
4399
4400                 /* since the controller's reset, we have to go back and re-init
4401                  * everything.  Easiest to just forget what we've done and do it
4402                  * all over again.
4403                  */
4404                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4405                 try_soft_reset = 0;
4406                 if (rc)
4407                         /* don't go to clean4, we already unallocated */
4408                         return -ENODEV;
4409
4410                 goto reinit_after_soft_reset;
4411         }
4412
4413         /* Turn the interrupts on so we can service requests */
4414         h->access.set_intr_mask(h, HPSA_INTR_ON);
4415
4416         hpsa_hba_inquiry(h);
4417         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4418         start_controller_lockup_detector(h);
4419         return 1;
4420
4421 clean4:
4422         hpsa_free_sg_chain_blocks(h);
4423         hpsa_free_cmd_pool(h);
4424         free_irq(h->intr[h->intr_mode], h);
4425 clean2:
4426 clean1:
4427         kfree(h);
4428         return rc;
4429 }
4430
4431 static void hpsa_flush_cache(struct ctlr_info *h)
4432 {
4433         char *flush_buf;
4434         struct CommandList *c;
4435
4436         flush_buf = kzalloc(4, GFP_KERNEL);
4437         if (!flush_buf)
4438                 return;
4439
4440         c = cmd_special_alloc(h);
4441         if (!c) {
4442                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4443                 goto out_of_memory;
4444         }
4445         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4446                 RAID_CTLR_LUNID, TYPE_CMD);
4447         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4448         if (c->err_info->CommandStatus != 0)
4449                 dev_warn(&h->pdev->dev,
4450                         "error flushing cache on controller\n");
4451         cmd_special_free(h, c);
4452 out_of_memory:
4453         kfree(flush_buf);
4454 }
4455
4456 static void hpsa_shutdown(struct pci_dev *pdev)
4457 {
4458         struct ctlr_info *h;
4459
4460         h = pci_get_drvdata(pdev);
4461         /* Turn board interrupts off  and send the flush cache command
4462          * sendcmd will turn off interrupt, and send the flush...
4463          * To write all data in the battery backed cache to disks
4464          */
4465         hpsa_flush_cache(h);
4466         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4467         free_irq(h->intr[h->intr_mode], h);
4468 #ifdef CONFIG_PCI_MSI
4469         if (h->msix_vector)
4470                 pci_disable_msix(h->pdev);
4471         else if (h->msi_vector)
4472                 pci_disable_msi(h->pdev);
4473 #endif                          /* CONFIG_PCI_MSI */
4474 }
4475
4476 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4477 {
4478         struct ctlr_info *h;
4479
4480         if (pci_get_drvdata(pdev) == NULL) {
4481                 dev_err(&pdev->dev, "unable to remove device\n");
4482                 return;
4483         }
4484         h = pci_get_drvdata(pdev);
4485         stop_controller_lockup_detector(h);
4486         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4487         hpsa_shutdown(pdev);
4488         iounmap(h->vaddr);
4489         iounmap(h->transtable);
4490         iounmap(h->cfgtable);
4491         hpsa_free_sg_chain_blocks(h);
4492         pci_free_consistent(h->pdev,
4493                 h->nr_cmds * sizeof(struct CommandList),
4494                 h->cmd_pool, h->cmd_pool_dhandle);
4495         pci_free_consistent(h->pdev,
4496                 h->nr_cmds * sizeof(struct ErrorInfo),
4497                 h->errinfo_pool, h->errinfo_pool_dhandle);
4498         pci_free_consistent(h->pdev, h->reply_pool_size,
4499                 h->reply_pool, h->reply_pool_dhandle);
4500         kfree(h->cmd_pool_bits);
4501         kfree(h->blockFetchTable);
4502         kfree(h->hba_inquiry_data);
4503         /*
4504          * Deliberately omit pci_disable_device(): it does something nasty to
4505          * Smart Array controllers that pci_enable_device does not undo
4506          */
4507         pci_release_regions(pdev);
4508         pci_set_drvdata(pdev, NULL);
4509         kfree(h);
4510 }
4511
4512 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4513         __attribute__((unused)) pm_message_t state)
4514 {
4515         return -ENOSYS;
4516 }
4517
4518 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4519 {
4520         return -ENOSYS;
4521 }
4522
4523 static struct pci_driver hpsa_pci_driver = {
4524         .name = "hpsa",
4525         .probe = hpsa_init_one,
4526         .remove = __devexit_p(hpsa_remove_one),
4527         .id_table = hpsa_pci_device_id, /* id_table */
4528         .shutdown = hpsa_shutdown,
4529         .suspend = hpsa_suspend,
4530         .resume = hpsa_resume,
4531 };
4532
4533 /* Fill in bucket_map[], given nsgs (the max number of
4534  * scatter gather elements supported) and bucket[],
4535  * which is an array of 8 integers.  The bucket[] array
4536  * contains 8 different DMA transfer sizes (in 16
4537  * byte increments) which the controller uses to fetch
4538  * commands.  This function fills in bucket_map[], which
4539  * maps a given number of scatter gather elements to one of
4540  * the 8 DMA transfer sizes.  The point of it is to allow the
4541  * controller to only do as much DMA as needed to fetch the
4542  * command, with the DMA transfer size encoded in the lower
4543  * bits of the command address.
4544  */
4545 static void  calc_bucket_map(int bucket[], int num_buckets,
4546         int nsgs, int *bucket_map)
4547 {
4548         int i, j, b, size;
4549
4550         /* even a command with 0 SGs requires 4 blocks */
4551 #define MINIMUM_TRANSFER_BLOCKS 4
4552 #define NUM_BUCKETS 8
4553         /* Note, bucket_map must have nsgs+1 entries. */
4554         for (i = 0; i <= nsgs; i++) {
4555                 /* Compute size of a command with i SG entries */
4556                 size = i + MINIMUM_TRANSFER_BLOCKS;
4557                 b = num_buckets; /* Assume the biggest bucket */
4558                 /* Find the bucket that is just big enough */
4559                 for (j = 0; j < 8; j++) {
4560                         if (bucket[j] >= size) {
4561                                 b = j;
4562                                 break;
4563                         }
4564                 }
4565                 /* for a command with i SG entries, use bucket b. */
4566                 bucket_map[i] = b;
4567         }
4568 }
4569
4570 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4571         u32 use_short_tags)
4572 {
4573         int i;
4574         unsigned long register_value;
4575
4576         /* This is a bit complicated.  There are 8 registers on
4577          * the controller which we write to to tell it 8 different
4578          * sizes of commands which there may be.  It's a way of
4579          * reducing the DMA done to fetch each command.  Encoded into
4580          * each command's tag are 3 bits which communicate to the controller
4581          * which of the eight sizes that command fits within.  The size of
4582          * each command depends on how many scatter gather entries there are.
4583          * Each SG entry requires 16 bytes.  The eight registers are programmed
4584          * with the number of 16-byte blocks a command of that size requires.
4585          * The smallest command possible requires 5 such 16 byte blocks.
4586          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4587          * blocks.  Note, this only extends to the SG entries contained
4588          * within the command block, and does not extend to chained blocks
4589          * of SG elements.   bft[] contains the eight values we write to
4590          * the registers.  They are not evenly distributed, but have more
4591          * sizes for small commands, and fewer sizes for larger commands.
4592          */
4593         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4594         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4595         /*  5 = 1 s/g entry or 4k
4596          *  6 = 2 s/g entry or 8k
4597          *  8 = 4 s/g entry or 16k
4598          * 10 = 6 s/g entry or 24k
4599          */
4600
4601         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4602
4603         /* Controller spec: zero out this buffer. */
4604         memset(h->reply_pool, 0, h->reply_pool_size);
4605         h->reply_pool_head = h->reply_pool;
4606
4607         bft[7] = h->max_sg_entries + 4;
4608         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4609         for (i = 0; i < 8; i++)
4610                 writel(bft[i], &h->transtable->BlockFetch[i]);
4611
4612         /* size of controller ring buffer */
4613         writel(h->max_commands, &h->transtable->RepQSize);
4614         writel(1, &h->transtable->RepQCount);
4615         writel(0, &h->transtable->RepQCtrAddrLow32);
4616         writel(0, &h->transtable->RepQCtrAddrHigh32);
4617         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4618         writel(0, &h->transtable->RepQAddr0High32);
4619         writel(CFGTBL_Trans_Performant | use_short_tags,
4620                 &(h->cfgtable->HostWrite.TransportRequest));
4621         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4622         hpsa_wait_for_mode_change_ack(h);
4623         register_value = readl(&(h->cfgtable->TransportActive));
4624         if (!(register_value & CFGTBL_Trans_Performant)) {
4625                 dev_warn(&h->pdev->dev, "unable to get board into"
4626                                         " performant mode\n");
4627                 return;
4628         }
4629         /* Change the access methods to the performant access methods */
4630         h->access = SA5_performant_access;
4631         h->transMethod = CFGTBL_Trans_Performant;
4632 }
4633
4634 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4635 {
4636         u32 trans_support;
4637
4638         if (hpsa_simple_mode)
4639                 return;
4640
4641         trans_support = readl(&(h->cfgtable->TransportSupport));
4642         if (!(trans_support & PERFORMANT_MODE))
4643                 return;
4644
4645         hpsa_get_max_perf_mode_cmds(h);
4646         h->max_sg_entries = 32;
4647         /* Performant mode ring buffer and supporting data structures */
4648         h->reply_pool_size = h->max_commands * sizeof(u64);
4649         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4650                                 &(h->reply_pool_dhandle));
4651
4652         /* Need a block fetch table for performant mode */
4653         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4654                                 sizeof(u32)), GFP_KERNEL);
4655
4656         if ((h->reply_pool == NULL)
4657                 || (h->blockFetchTable == NULL))
4658                 goto clean_up;
4659
4660         hpsa_enter_performant_mode(h,
4661                 trans_support & CFGTBL_Trans_use_short_tags);
4662
4663         return;
4664
4665 clean_up:
4666         if (h->reply_pool)
4667                 pci_free_consistent(h->pdev, h->reply_pool_size,
4668                         h->reply_pool, h->reply_pool_dhandle);
4669         kfree(h->blockFetchTable);
4670 }
4671
4672 /*
4673  *  This is it.  Register the PCI driver information for the cards we control
4674  *  the OS will call our registered routines when it finds one of our cards.
4675  */
4676 static int __init hpsa_init(void)
4677 {
4678         return pci_register_driver(&hpsa_pci_driver);
4679 }
4680
4681 static void __exit hpsa_cleanup(void)
4682 {
4683         pci_unregister_driver(&hpsa_pci_driver);
4684 }
4685
4686 module_init(hpsa_init);
4687 module_exit(hpsa_cleanup);