[SCSI] hpsa: do not consider firmware revision when looking for device changes.
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
93         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
94                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
95         {0,}
96 };
97
98 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
99
100 /*  board_id = Subsystem Device ID & Vendor ID
101  *  product = Marketing Name for the board
102  *  access = Address of the struct of function pointers
103  */
104 static struct board_type products[] = {
105         {0x3241103C, "Smart Array P212", &SA5_access},
106         {0x3243103C, "Smart Array P410", &SA5_access},
107         {0x3245103C, "Smart Array P410i", &SA5_access},
108         {0x3247103C, "Smart Array P411", &SA5_access},
109         {0x3249103C, "Smart Array P812", &SA5_access},
110         {0x324a103C, "Smart Array P712m", &SA5_access},
111         {0x324b103C, "Smart Array P711m", &SA5_access},
112         {0x3250103C, "Smart Array", &SA5_access},
113         {0x3250113C, "Smart Array", &SA5_access},
114         {0x3250123C, "Smart Array", &SA5_access},
115         {0x3250133C, "Smart Array", &SA5_access},
116         {0x3250143C, "Smart Array", &SA5_access},
117         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
118 };
119
120 static int number_of_controllers;
121
122 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
123 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
124 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
125 static void start_io(struct ctlr_info *h);
126
127 #ifdef CONFIG_COMPAT
128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
129 #endif
130
131 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
132 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
133 static struct CommandList *cmd_alloc(struct ctlr_info *h);
134 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
135 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
136         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
137         int cmd_type);
138
139 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
140 static void hpsa_scan_start(struct Scsi_Host *);
141 static int hpsa_scan_finished(struct Scsi_Host *sh,
142         unsigned long elapsed_time);
143 static int hpsa_change_queue_depth(struct scsi_device *sdev,
144         int qdepth, int reason);
145
146 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
147 static int hpsa_slave_alloc(struct scsi_device *sdev);
148 static void hpsa_slave_destroy(struct scsi_device *sdev);
149
150 static ssize_t raid_level_show(struct device *dev,
151         struct device_attribute *attr, char *buf);
152 static ssize_t lunid_show(struct device *dev,
153         struct device_attribute *attr, char *buf);
154 static ssize_t unique_id_show(struct device *dev,
155         struct device_attribute *attr, char *buf);
156 static ssize_t host_show_firmware_revision(struct device *dev,
157              struct device_attribute *attr, char *buf);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static ssize_t host_store_rescan(struct device *dev,
160          struct device_attribute *attr, const char *buf, size_t count);
161 static int check_for_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 static void check_ioctl_unit_attention(struct ctlr_info *h,
164         struct CommandList *c);
165 /* performant mode helper functions */
166 static void calc_bucket_map(int *bucket, int num_buckets,
167         int nsgs, int *bucket_map);
168 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
169 static inline u32 next_command(struct ctlr_info *h);
170 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
171         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
172         u64 *cfg_offset);
173 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
174         unsigned long *memory_bar);
175 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
176
177 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
178 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
179 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
180 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
181 static DEVICE_ATTR(firmware_revision, S_IRUGO,
182         host_show_firmware_revision, NULL);
183
184 static struct device_attribute *hpsa_sdev_attrs[] = {
185         &dev_attr_raid_level,
186         &dev_attr_lunid,
187         &dev_attr_unique_id,
188         NULL,
189 };
190
191 static struct device_attribute *hpsa_shost_attrs[] = {
192         &dev_attr_rescan,
193         &dev_attr_firmware_revision,
194         NULL,
195 };
196
197 static struct scsi_host_template hpsa_driver_template = {
198         .module                 = THIS_MODULE,
199         .name                   = "hpsa",
200         .proc_name              = "hpsa",
201         .queuecommand           = hpsa_scsi_queue_command,
202         .scan_start             = hpsa_scan_start,
203         .scan_finished          = hpsa_scan_finished,
204         .change_queue_depth     = hpsa_change_queue_depth,
205         .this_id                = -1,
206         .use_clustering         = ENABLE_CLUSTERING,
207         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
208         .ioctl                  = hpsa_ioctl,
209         .slave_alloc            = hpsa_slave_alloc,
210         .slave_destroy          = hpsa_slave_destroy,
211 #ifdef CONFIG_COMPAT
212         .compat_ioctl           = hpsa_compat_ioctl,
213 #endif
214         .sdev_attrs = hpsa_sdev_attrs,
215         .shost_attrs = hpsa_shost_attrs,
216 };
217
218 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
219 {
220         unsigned long *priv = shost_priv(sdev->host);
221         return (struct ctlr_info *) *priv;
222 }
223
224 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
225 {
226         unsigned long *priv = shost_priv(sh);
227         return (struct ctlr_info *) *priv;
228 }
229
230 static int check_for_unit_attention(struct ctlr_info *h,
231         struct CommandList *c)
232 {
233         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
234                 return 0;
235
236         switch (c->err_info->SenseInfo[12]) {
237         case STATE_CHANGED:
238                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
239                         "detected, command retried\n", h->ctlr);
240                 break;
241         case LUN_FAILED:
242                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
243                         "detected, action required\n", h->ctlr);
244                 break;
245         case REPORT_LUNS_CHANGED:
246                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
247                         "changed, action required\n", h->ctlr);
248         /*
249          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
250          */
251                 break;
252         case POWER_OR_RESET:
253                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
254                         "or device reset detected\n", h->ctlr);
255                 break;
256         case UNIT_ATTENTION_CLEARED:
257                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
258                     "cleared by another initiator\n", h->ctlr);
259                 break;
260         default:
261                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
262                         "unit attention detected\n", h->ctlr);
263                 break;
264         }
265         return 1;
266 }
267
268 static ssize_t host_store_rescan(struct device *dev,
269                                  struct device_attribute *attr,
270                                  const char *buf, size_t count)
271 {
272         struct ctlr_info *h;
273         struct Scsi_Host *shost = class_to_shost(dev);
274         h = shost_to_hba(shost);
275         hpsa_scan_start(h->scsi_host);
276         return count;
277 }
278
279 static ssize_t host_show_firmware_revision(struct device *dev,
280              struct device_attribute *attr, char *buf)
281 {
282         struct ctlr_info *h;
283         struct Scsi_Host *shost = class_to_shost(dev);
284         unsigned char *fwrev;
285
286         h = shost_to_hba(shost);
287         if (!h->hba_inquiry_data)
288                 return 0;
289         fwrev = &h->hba_inquiry_data[32];
290         return snprintf(buf, 20, "%c%c%c%c\n",
291                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
292 }
293
294 /* Enqueuing and dequeuing functions for cmdlists. */
295 static inline void addQ(struct hlist_head *list, struct CommandList *c)
296 {
297         hlist_add_head(&c->list, list);
298 }
299
300 static inline u32 next_command(struct ctlr_info *h)
301 {
302         u32 a;
303
304         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
305                 return h->access.command_completed(h);
306
307         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
308                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
309                 (h->reply_pool_head)++;
310                 h->commands_outstanding--;
311         } else {
312                 a = FIFO_EMPTY;
313         }
314         /* Check for wraparound */
315         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
316                 h->reply_pool_head = h->reply_pool;
317                 h->reply_pool_wraparound ^= 1;
318         }
319         return a;
320 }
321
322 /* set_performant_mode: Modify the tag for cciss performant
323  * set bit 0 for pull model, bits 3-1 for block fetch
324  * register number
325  */
326 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
327 {
328         if (likely(h->transMethod == CFGTBL_Trans_Performant))
329                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
330 }
331
332 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
333         struct CommandList *c)
334 {
335         unsigned long flags;
336
337         set_performant_mode(h, c);
338         spin_lock_irqsave(&h->lock, flags);
339         addQ(&h->reqQ, c);
340         h->Qdepth++;
341         start_io(h);
342         spin_unlock_irqrestore(&h->lock, flags);
343 }
344
345 static inline void removeQ(struct CommandList *c)
346 {
347         if (WARN_ON(hlist_unhashed(&c->list)))
348                 return;
349         hlist_del_init(&c->list);
350 }
351
352 static inline int is_hba_lunid(unsigned char scsi3addr[])
353 {
354         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
355 }
356
357 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
358 {
359         return (scsi3addr[3] & 0xC0) == 0x40;
360 }
361
362 static inline int is_scsi_rev_5(struct ctlr_info *h)
363 {
364         if (!h->hba_inquiry_data)
365                 return 0;
366         if ((h->hba_inquiry_data[2] & 0x07) == 5)
367                 return 1;
368         return 0;
369 }
370
371 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
372         "UNKNOWN"
373 };
374 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
375
376 static ssize_t raid_level_show(struct device *dev,
377              struct device_attribute *attr, char *buf)
378 {
379         ssize_t l = 0;
380         unsigned char rlevel;
381         struct ctlr_info *h;
382         struct scsi_device *sdev;
383         struct hpsa_scsi_dev_t *hdev;
384         unsigned long flags;
385
386         sdev = to_scsi_device(dev);
387         h = sdev_to_hba(sdev);
388         spin_lock_irqsave(&h->lock, flags);
389         hdev = sdev->hostdata;
390         if (!hdev) {
391                 spin_unlock_irqrestore(&h->lock, flags);
392                 return -ENODEV;
393         }
394
395         /* Is this even a logical drive? */
396         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
397                 spin_unlock_irqrestore(&h->lock, flags);
398                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
399                 return l;
400         }
401
402         rlevel = hdev->raid_level;
403         spin_unlock_irqrestore(&h->lock, flags);
404         if (rlevel > RAID_UNKNOWN)
405                 rlevel = RAID_UNKNOWN;
406         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
407         return l;
408 }
409
410 static ssize_t lunid_show(struct device *dev,
411              struct device_attribute *attr, char *buf)
412 {
413         struct ctlr_info *h;
414         struct scsi_device *sdev;
415         struct hpsa_scsi_dev_t *hdev;
416         unsigned long flags;
417         unsigned char lunid[8];
418
419         sdev = to_scsi_device(dev);
420         h = sdev_to_hba(sdev);
421         spin_lock_irqsave(&h->lock, flags);
422         hdev = sdev->hostdata;
423         if (!hdev) {
424                 spin_unlock_irqrestore(&h->lock, flags);
425                 return -ENODEV;
426         }
427         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
428         spin_unlock_irqrestore(&h->lock, flags);
429         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
430                 lunid[0], lunid[1], lunid[2], lunid[3],
431                 lunid[4], lunid[5], lunid[6], lunid[7]);
432 }
433
434 static ssize_t unique_id_show(struct device *dev,
435              struct device_attribute *attr, char *buf)
436 {
437         struct ctlr_info *h;
438         struct scsi_device *sdev;
439         struct hpsa_scsi_dev_t *hdev;
440         unsigned long flags;
441         unsigned char sn[16];
442
443         sdev = to_scsi_device(dev);
444         h = sdev_to_hba(sdev);
445         spin_lock_irqsave(&h->lock, flags);
446         hdev = sdev->hostdata;
447         if (!hdev) {
448                 spin_unlock_irqrestore(&h->lock, flags);
449                 return -ENODEV;
450         }
451         memcpy(sn, hdev->device_id, sizeof(sn));
452         spin_unlock_irqrestore(&h->lock, flags);
453         return snprintf(buf, 16 * 2 + 2,
454                         "%02X%02X%02X%02X%02X%02X%02X%02X"
455                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
456                         sn[0], sn[1], sn[2], sn[3],
457                         sn[4], sn[5], sn[6], sn[7],
458                         sn[8], sn[9], sn[10], sn[11],
459                         sn[12], sn[13], sn[14], sn[15]);
460 }
461
462 static int hpsa_find_target_lun(struct ctlr_info *h,
463         unsigned char scsi3addr[], int bus, int *target, int *lun)
464 {
465         /* finds an unused bus, target, lun for a new physical device
466          * assumes h->devlock is held
467          */
468         int i, found = 0;
469         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
470
471         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
472
473         for (i = 0; i < h->ndevices; i++) {
474                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
475                         set_bit(h->dev[i]->target, lun_taken);
476         }
477
478         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
479                 if (!test_bit(i, lun_taken)) {
480                         /* *bus = 1; */
481                         *target = i;
482                         *lun = 0;
483                         found = 1;
484                         break;
485                 }
486         }
487         return !found;
488 }
489
490 /* Add an entry into h->dev[] array. */
491 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
492                 struct hpsa_scsi_dev_t *device,
493                 struct hpsa_scsi_dev_t *added[], int *nadded)
494 {
495         /* assumes h->devlock is held */
496         int n = h->ndevices;
497         int i;
498         unsigned char addr1[8], addr2[8];
499         struct hpsa_scsi_dev_t *sd;
500
501         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
502                 dev_err(&h->pdev->dev, "too many devices, some will be "
503                         "inaccessible.\n");
504                 return -1;
505         }
506
507         /* physical devices do not have lun or target assigned until now. */
508         if (device->lun != -1)
509                 /* Logical device, lun is already assigned. */
510                 goto lun_assigned;
511
512         /* If this device a non-zero lun of a multi-lun device
513          * byte 4 of the 8-byte LUN addr will contain the logical
514          * unit no, zero otherise.
515          */
516         if (device->scsi3addr[4] == 0) {
517                 /* This is not a non-zero lun of a multi-lun device */
518                 if (hpsa_find_target_lun(h, device->scsi3addr,
519                         device->bus, &device->target, &device->lun) != 0)
520                         return -1;
521                 goto lun_assigned;
522         }
523
524         /* This is a non-zero lun of a multi-lun device.
525          * Search through our list and find the device which
526          * has the same 8 byte LUN address, excepting byte 4.
527          * Assign the same bus and target for this new LUN.
528          * Use the logical unit number from the firmware.
529          */
530         memcpy(addr1, device->scsi3addr, 8);
531         addr1[4] = 0;
532         for (i = 0; i < n; i++) {
533                 sd = h->dev[i];
534                 memcpy(addr2, sd->scsi3addr, 8);
535                 addr2[4] = 0;
536                 /* differ only in byte 4? */
537                 if (memcmp(addr1, addr2, 8) == 0) {
538                         device->bus = sd->bus;
539                         device->target = sd->target;
540                         device->lun = device->scsi3addr[4];
541                         break;
542                 }
543         }
544         if (device->lun == -1) {
545                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
546                         " suspect firmware bug or unsupported hardware "
547                         "configuration.\n");
548                         return -1;
549         }
550
551 lun_assigned:
552
553         h->dev[n] = device;
554         h->ndevices++;
555         added[*nadded] = device;
556         (*nadded)++;
557
558         /* initially, (before registering with scsi layer) we don't
559          * know our hostno and we don't want to print anything first
560          * time anyway (the scsi layer's inquiries will show that info)
561          */
562         /* if (hostno != -1) */
563                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
564                         scsi_device_type(device->devtype), hostno,
565                         device->bus, device->target, device->lun);
566         return 0;
567 }
568
569 /* Replace an entry from h->dev[] array. */
570 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
571         int entry, struct hpsa_scsi_dev_t *new_entry,
572         struct hpsa_scsi_dev_t *added[], int *nadded,
573         struct hpsa_scsi_dev_t *removed[], int *nremoved)
574 {
575         /* assumes h->devlock is held */
576         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
577         removed[*nremoved] = h->dev[entry];
578         (*nremoved)++;
579         h->dev[entry] = new_entry;
580         added[*nadded] = new_entry;
581         (*nadded)++;
582         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
583                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
584                         new_entry->target, new_entry->lun);
585 }
586
587 /* Remove an entry from h->dev[] array. */
588 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
589         struct hpsa_scsi_dev_t *removed[], int *nremoved)
590 {
591         /* assumes h->devlock is held */
592         int i;
593         struct hpsa_scsi_dev_t *sd;
594
595         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
596
597         sd = h->dev[entry];
598         removed[*nremoved] = h->dev[entry];
599         (*nremoved)++;
600
601         for (i = entry; i < h->ndevices-1; i++)
602                 h->dev[i] = h->dev[i+1];
603         h->ndevices--;
604         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
605                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
606                 sd->lun);
607 }
608
609 #define SCSI3ADDR_EQ(a, b) ( \
610         (a)[7] == (b)[7] && \
611         (a)[6] == (b)[6] && \
612         (a)[5] == (b)[5] && \
613         (a)[4] == (b)[4] && \
614         (a)[3] == (b)[3] && \
615         (a)[2] == (b)[2] && \
616         (a)[1] == (b)[1] && \
617         (a)[0] == (b)[0])
618
619 static void fixup_botched_add(struct ctlr_info *h,
620         struct hpsa_scsi_dev_t *added)
621 {
622         /* called when scsi_add_device fails in order to re-adjust
623          * h->dev[] to match the mid layer's view.
624          */
625         unsigned long flags;
626         int i, j;
627
628         spin_lock_irqsave(&h->lock, flags);
629         for (i = 0; i < h->ndevices; i++) {
630                 if (h->dev[i] == added) {
631                         for (j = i; j < h->ndevices-1; j++)
632                                 h->dev[j] = h->dev[j+1];
633                         h->ndevices--;
634                         break;
635                 }
636         }
637         spin_unlock_irqrestore(&h->lock, flags);
638         kfree(added);
639 }
640
641 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
642         struct hpsa_scsi_dev_t *dev2)
643 {
644         /* we compare everything except lun and target as these
645          * are not yet assigned.  Compare parts likely
646          * to differ first
647          */
648         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
649                 sizeof(dev1->scsi3addr)) != 0)
650                 return 0;
651         if (memcmp(dev1->device_id, dev2->device_id,
652                 sizeof(dev1->device_id)) != 0)
653                 return 0;
654         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
655                 return 0;
656         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
657                 return 0;
658         if (dev1->devtype != dev2->devtype)
659                 return 0;
660         if (dev1->raid_level != dev2->raid_level)
661                 return 0;
662         if (dev1->bus != dev2->bus)
663                 return 0;
664         return 1;
665 }
666
667 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
668  * and return needle location in *index.  If scsi3addr matches, but not
669  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
670  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
671  */
672 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
673         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
674         int *index)
675 {
676         int i;
677 #define DEVICE_NOT_FOUND 0
678 #define DEVICE_CHANGED 1
679 #define DEVICE_SAME 2
680         for (i = 0; i < haystack_size; i++) {
681                 if (haystack[i] == NULL) /* previously removed. */
682                         continue;
683                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
684                         *index = i;
685                         if (device_is_the_same(needle, haystack[i]))
686                                 return DEVICE_SAME;
687                         else
688                                 return DEVICE_CHANGED;
689                 }
690         }
691         *index = -1;
692         return DEVICE_NOT_FOUND;
693 }
694
695 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
696         struct hpsa_scsi_dev_t *sd[], int nsds)
697 {
698         /* sd contains scsi3 addresses and devtypes, and inquiry
699          * data.  This function takes what's in sd to be the current
700          * reality and updates h->dev[] to reflect that reality.
701          */
702         int i, entry, device_change, changes = 0;
703         struct hpsa_scsi_dev_t *csd;
704         unsigned long flags;
705         struct hpsa_scsi_dev_t **added, **removed;
706         int nadded, nremoved;
707         struct Scsi_Host *sh = NULL;
708
709         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
710                 GFP_KERNEL);
711         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
712                 GFP_KERNEL);
713
714         if (!added || !removed) {
715                 dev_warn(&h->pdev->dev, "out of memory in "
716                         "adjust_hpsa_scsi_table\n");
717                 goto free_and_out;
718         }
719
720         spin_lock_irqsave(&h->devlock, flags);
721
722         /* find any devices in h->dev[] that are not in
723          * sd[] and remove them from h->dev[], and for any
724          * devices which have changed, remove the old device
725          * info and add the new device info.
726          */
727         i = 0;
728         nremoved = 0;
729         nadded = 0;
730         while (i < h->ndevices) {
731                 csd = h->dev[i];
732                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
733                 if (device_change == DEVICE_NOT_FOUND) {
734                         changes++;
735                         hpsa_scsi_remove_entry(h, hostno, i,
736                                 removed, &nremoved);
737                         continue; /* remove ^^^, hence i not incremented */
738                 } else if (device_change == DEVICE_CHANGED) {
739                         changes++;
740                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
741                                 added, &nadded, removed, &nremoved);
742                         /* Set it to NULL to prevent it from being freed
743                          * at the bottom of hpsa_update_scsi_devices()
744                          */
745                         sd[entry] = NULL;
746                 }
747                 i++;
748         }
749
750         /* Now, make sure every device listed in sd[] is also
751          * listed in h->dev[], adding them if they aren't found
752          */
753
754         for (i = 0; i < nsds; i++) {
755                 if (!sd[i]) /* if already added above. */
756                         continue;
757                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
758                                         h->ndevices, &entry);
759                 if (device_change == DEVICE_NOT_FOUND) {
760                         changes++;
761                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
762                                 added, &nadded) != 0)
763                                 break;
764                         sd[i] = NULL; /* prevent from being freed later. */
765                 } else if (device_change == DEVICE_CHANGED) {
766                         /* should never happen... */
767                         changes++;
768                         dev_warn(&h->pdev->dev,
769                                 "device unexpectedly changed.\n");
770                         /* but if it does happen, we just ignore that device */
771                 }
772         }
773         spin_unlock_irqrestore(&h->devlock, flags);
774
775         /* Don't notify scsi mid layer of any changes the first time through
776          * (or if there are no changes) scsi_scan_host will do it later the
777          * first time through.
778          */
779         if (hostno == -1 || !changes)
780                 goto free_and_out;
781
782         sh = h->scsi_host;
783         /* Notify scsi mid layer of any removed devices */
784         for (i = 0; i < nremoved; i++) {
785                 struct scsi_device *sdev =
786                         scsi_device_lookup(sh, removed[i]->bus,
787                                 removed[i]->target, removed[i]->lun);
788                 if (sdev != NULL) {
789                         scsi_remove_device(sdev);
790                         scsi_device_put(sdev);
791                 } else {
792                         /* We don't expect to get here.
793                          * future cmds to this device will get selection
794                          * timeout as if the device was gone.
795                          */
796                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
797                                 " for removal.", hostno, removed[i]->bus,
798                                 removed[i]->target, removed[i]->lun);
799                 }
800                 kfree(removed[i]);
801                 removed[i] = NULL;
802         }
803
804         /* Notify scsi mid layer of any added devices */
805         for (i = 0; i < nadded; i++) {
806                 if (scsi_add_device(sh, added[i]->bus,
807                         added[i]->target, added[i]->lun) == 0)
808                         continue;
809                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
810                         "device not added.\n", hostno, added[i]->bus,
811                         added[i]->target, added[i]->lun);
812                 /* now we have to remove it from h->dev,
813                  * since it didn't get added to scsi mid layer
814                  */
815                 fixup_botched_add(h, added[i]);
816         }
817
818 free_and_out:
819         kfree(added);
820         kfree(removed);
821 }
822
823 /*
824  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
825  * Assume's h->devlock is held.
826  */
827 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
828         int bus, int target, int lun)
829 {
830         int i;
831         struct hpsa_scsi_dev_t *sd;
832
833         for (i = 0; i < h->ndevices; i++) {
834                 sd = h->dev[i];
835                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
836                         return sd;
837         }
838         return NULL;
839 }
840
841 /* link sdev->hostdata to our per-device structure. */
842 static int hpsa_slave_alloc(struct scsi_device *sdev)
843 {
844         struct hpsa_scsi_dev_t *sd;
845         unsigned long flags;
846         struct ctlr_info *h;
847
848         h = sdev_to_hba(sdev);
849         spin_lock_irqsave(&h->devlock, flags);
850         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
851                 sdev_id(sdev), sdev->lun);
852         if (sd != NULL)
853                 sdev->hostdata = sd;
854         spin_unlock_irqrestore(&h->devlock, flags);
855         return 0;
856 }
857
858 static void hpsa_slave_destroy(struct scsi_device *sdev)
859 {
860         /* nothing to do. */
861 }
862
863 static void hpsa_scsi_setup(struct ctlr_info *h)
864 {
865         h->ndevices = 0;
866         h->scsi_host = NULL;
867         spin_lock_init(&h->devlock);
868 }
869
870 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
871 {
872         int i;
873
874         if (!h->cmd_sg_list)
875                 return;
876         for (i = 0; i < h->nr_cmds; i++) {
877                 kfree(h->cmd_sg_list[i]);
878                 h->cmd_sg_list[i] = NULL;
879         }
880         kfree(h->cmd_sg_list);
881         h->cmd_sg_list = NULL;
882 }
883
884 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
885 {
886         int i;
887
888         if (h->chainsize <= 0)
889                 return 0;
890
891         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
892                                 GFP_KERNEL);
893         if (!h->cmd_sg_list)
894                 return -ENOMEM;
895         for (i = 0; i < h->nr_cmds; i++) {
896                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
897                                                 h->chainsize, GFP_KERNEL);
898                 if (!h->cmd_sg_list[i])
899                         goto clean;
900         }
901         return 0;
902
903 clean:
904         hpsa_free_sg_chain_blocks(h);
905         return -ENOMEM;
906 }
907
908 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
909         struct CommandList *c)
910 {
911         struct SGDescriptor *chain_sg, *chain_block;
912         u64 temp64;
913
914         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
915         chain_block = h->cmd_sg_list[c->cmdindex];
916         chain_sg->Ext = HPSA_SG_CHAIN;
917         chain_sg->Len = sizeof(*chain_sg) *
918                 (c->Header.SGTotal - h->max_cmd_sg_entries);
919         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
920                                 PCI_DMA_TODEVICE);
921         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
922         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
923 }
924
925 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
926         struct CommandList *c)
927 {
928         struct SGDescriptor *chain_sg;
929         union u64bit temp64;
930
931         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
932                 return;
933
934         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
935         temp64.val32.lower = chain_sg->Addr.lower;
936         temp64.val32.upper = chain_sg->Addr.upper;
937         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
938 }
939
940 static void complete_scsi_command(struct CommandList *cp,
941         int timeout, u32 tag)
942 {
943         struct scsi_cmnd *cmd;
944         struct ctlr_info *h;
945         struct ErrorInfo *ei;
946
947         unsigned char sense_key;
948         unsigned char asc;      /* additional sense code */
949         unsigned char ascq;     /* additional sense code qualifier */
950
951         ei = cp->err_info;
952         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
953         h = cp->h;
954
955         scsi_dma_unmap(cmd); /* undo the DMA mappings */
956         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
957                 hpsa_unmap_sg_chain_block(h, cp);
958
959         cmd->result = (DID_OK << 16);           /* host byte */
960         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
961         cmd->result |= ei->ScsiStatus;
962
963         /* copy the sense data whether we need to or not. */
964         memcpy(cmd->sense_buffer, ei->SenseInfo,
965                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
966                         SCSI_SENSE_BUFFERSIZE :
967                         ei->SenseLen);
968         scsi_set_resid(cmd, ei->ResidualCnt);
969
970         if (ei->CommandStatus == 0) {
971                 cmd->scsi_done(cmd);
972                 cmd_free(h, cp);
973                 return;
974         }
975
976         /* an error has occurred */
977         switch (ei->CommandStatus) {
978
979         case CMD_TARGET_STATUS:
980                 if (ei->ScsiStatus) {
981                         /* Get sense key */
982                         sense_key = 0xf & ei->SenseInfo[2];
983                         /* Get additional sense code */
984                         asc = ei->SenseInfo[12];
985                         /* Get addition sense code qualifier */
986                         ascq = ei->SenseInfo[13];
987                 }
988
989                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
990                         if (check_for_unit_attention(h, cp)) {
991                                 cmd->result = DID_SOFT_ERROR << 16;
992                                 break;
993                         }
994                         if (sense_key == ILLEGAL_REQUEST) {
995                                 /*
996                                  * SCSI REPORT_LUNS is commonly unsupported on
997                                  * Smart Array.  Suppress noisy complaint.
998                                  */
999                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1000                                         break;
1001
1002                                 /* If ASC/ASCQ indicate Logical Unit
1003                                  * Not Supported condition,
1004                                  */
1005                                 if ((asc == 0x25) && (ascq == 0x0)) {
1006                                         dev_warn(&h->pdev->dev, "cp %p "
1007                                                 "has check condition\n", cp);
1008                                         break;
1009                                 }
1010                         }
1011
1012                         if (sense_key == NOT_READY) {
1013                                 /* If Sense is Not Ready, Logical Unit
1014                                  * Not ready, Manual Intervention
1015                                  * required
1016                                  */
1017                                 if ((asc == 0x04) && (ascq == 0x03)) {
1018                                         dev_warn(&h->pdev->dev, "cp %p "
1019                                                 "has check condition: unit "
1020                                                 "not ready, manual "
1021                                                 "intervention required\n", cp);
1022                                         break;
1023                                 }
1024                         }
1025                         if (sense_key == ABORTED_COMMAND) {
1026                                 /* Aborted command is retryable */
1027                                 dev_warn(&h->pdev->dev, "cp %p "
1028                                         "has check condition: aborted command: "
1029                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1030                                         cp, asc, ascq);
1031                                 cmd->result = DID_SOFT_ERROR << 16;
1032                                 break;
1033                         }
1034                         /* Must be some other type of check condition */
1035                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1036                                         "unknown type: "
1037                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1038                                         "Returning result: 0x%x, "
1039                                         "cmd=[%02x %02x %02x %02x %02x "
1040                                         "%02x %02x %02x %02x %02x %02x "
1041                                         "%02x %02x %02x %02x %02x]\n",
1042                                         cp, sense_key, asc, ascq,
1043                                         cmd->result,
1044                                         cmd->cmnd[0], cmd->cmnd[1],
1045                                         cmd->cmnd[2], cmd->cmnd[3],
1046                                         cmd->cmnd[4], cmd->cmnd[5],
1047                                         cmd->cmnd[6], cmd->cmnd[7],
1048                                         cmd->cmnd[8], cmd->cmnd[9],
1049                                         cmd->cmnd[10], cmd->cmnd[11],
1050                                         cmd->cmnd[12], cmd->cmnd[13],
1051                                         cmd->cmnd[14], cmd->cmnd[15]);
1052                         break;
1053                 }
1054
1055
1056                 /* Problem was not a check condition
1057                  * Pass it up to the upper layers...
1058                  */
1059                 if (ei->ScsiStatus) {
1060                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1061                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1062                                 "Returning result: 0x%x\n",
1063                                 cp, ei->ScsiStatus,
1064                                 sense_key, asc, ascq,
1065                                 cmd->result);
1066                 } else {  /* scsi status is zero??? How??? */
1067                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1068                                 "Returning no connection.\n", cp),
1069
1070                         /* Ordinarily, this case should never happen,
1071                          * but there is a bug in some released firmware
1072                          * revisions that allows it to happen if, for
1073                          * example, a 4100 backplane loses power and
1074                          * the tape drive is in it.  We assume that
1075                          * it's a fatal error of some kind because we
1076                          * can't show that it wasn't. We will make it
1077                          * look like selection timeout since that is
1078                          * the most common reason for this to occur,
1079                          * and it's severe enough.
1080                          */
1081
1082                         cmd->result = DID_NO_CONNECT << 16;
1083                 }
1084                 break;
1085
1086         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1087                 break;
1088         case CMD_DATA_OVERRUN:
1089                 dev_warn(&h->pdev->dev, "cp %p has"
1090                         " completed with data overrun "
1091                         "reported\n", cp);
1092                 break;
1093         case CMD_INVALID: {
1094                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1095                 print_cmd(cp); */
1096                 /* We get CMD_INVALID if you address a non-existent device
1097                  * instead of a selection timeout (no response).  You will
1098                  * see this if you yank out a drive, then try to access it.
1099                  * This is kind of a shame because it means that any other
1100                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1101                  * missing target. */
1102                 cmd->result = DID_NO_CONNECT << 16;
1103         }
1104                 break;
1105         case CMD_PROTOCOL_ERR:
1106                 dev_warn(&h->pdev->dev, "cp %p has "
1107                         "protocol error \n", cp);
1108                 break;
1109         case CMD_HARDWARE_ERR:
1110                 cmd->result = DID_ERROR << 16;
1111                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1112                 break;
1113         case CMD_CONNECTION_LOST:
1114                 cmd->result = DID_ERROR << 16;
1115                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1116                 break;
1117         case CMD_ABORTED:
1118                 cmd->result = DID_ABORT << 16;
1119                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1120                                 cp, ei->ScsiStatus);
1121                 break;
1122         case CMD_ABORT_FAILED:
1123                 cmd->result = DID_ERROR << 16;
1124                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1125                 break;
1126         case CMD_UNSOLICITED_ABORT:
1127                 cmd->result = DID_RESET << 16;
1128                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1129                         "abort\n", cp);
1130                 break;
1131         case CMD_TIMEOUT:
1132                 cmd->result = DID_TIME_OUT << 16;
1133                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1134                 break;
1135         default:
1136                 cmd->result = DID_ERROR << 16;
1137                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1138                                 cp, ei->CommandStatus);
1139         }
1140         cmd->scsi_done(cmd);
1141         cmd_free(h, cp);
1142 }
1143
1144 static int hpsa_scsi_detect(struct ctlr_info *h)
1145 {
1146         struct Scsi_Host *sh;
1147         int error;
1148
1149         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1150         if (sh == NULL)
1151                 goto fail;
1152
1153         sh->io_port = 0;
1154         sh->n_io_port = 0;
1155         sh->this_id = -1;
1156         sh->max_channel = 3;
1157         sh->max_cmd_len = MAX_COMMAND_SIZE;
1158         sh->max_lun = HPSA_MAX_LUN;
1159         sh->max_id = HPSA_MAX_LUN;
1160         sh->can_queue = h->nr_cmds;
1161         sh->cmd_per_lun = h->nr_cmds;
1162         sh->sg_tablesize = h->maxsgentries;
1163         h->scsi_host = sh;
1164         sh->hostdata[0] = (unsigned long) h;
1165         sh->irq = h->intr[PERF_MODE_INT];
1166         sh->unique_id = sh->irq;
1167         error = scsi_add_host(sh, &h->pdev->dev);
1168         if (error)
1169                 goto fail_host_put;
1170         scsi_scan_host(sh);
1171         return 0;
1172
1173  fail_host_put:
1174         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1175                 " failed for controller %d\n", h->ctlr);
1176         scsi_host_put(sh);
1177         return error;
1178  fail:
1179         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1180                 " failed for controller %d\n", h->ctlr);
1181         return -ENOMEM;
1182 }
1183
1184 static void hpsa_pci_unmap(struct pci_dev *pdev,
1185         struct CommandList *c, int sg_used, int data_direction)
1186 {
1187         int i;
1188         union u64bit addr64;
1189
1190         for (i = 0; i < sg_used; i++) {
1191                 addr64.val32.lower = c->SG[i].Addr.lower;
1192                 addr64.val32.upper = c->SG[i].Addr.upper;
1193                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1194                         data_direction);
1195         }
1196 }
1197
1198 static void hpsa_map_one(struct pci_dev *pdev,
1199                 struct CommandList *cp,
1200                 unsigned char *buf,
1201                 size_t buflen,
1202                 int data_direction)
1203 {
1204         u64 addr64;
1205
1206         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1207                 cp->Header.SGList = 0;
1208                 cp->Header.SGTotal = 0;
1209                 return;
1210         }
1211
1212         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1213         cp->SG[0].Addr.lower =
1214           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1215         cp->SG[0].Addr.upper =
1216           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1217         cp->SG[0].Len = buflen;
1218         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1219         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1220 }
1221
1222 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1223         struct CommandList *c)
1224 {
1225         DECLARE_COMPLETION_ONSTACK(wait);
1226
1227         c->waiting = &wait;
1228         enqueue_cmd_and_start_io(h, c);
1229         wait_for_completion(&wait);
1230 }
1231
1232 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1233         struct CommandList *c, int data_direction)
1234 {
1235         int retry_count = 0;
1236
1237         do {
1238                 memset(c->err_info, 0, sizeof(c->err_info));
1239                 hpsa_scsi_do_simple_cmd_core(h, c);
1240                 retry_count++;
1241         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1242         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1243 }
1244
1245 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1246 {
1247         struct ErrorInfo *ei;
1248         struct device *d = &cp->h->pdev->dev;
1249
1250         ei = cp->err_info;
1251         switch (ei->CommandStatus) {
1252         case CMD_TARGET_STATUS:
1253                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1254                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1255                                 ei->ScsiStatus);
1256                 if (ei->ScsiStatus == 0)
1257                         dev_warn(d, "SCSI status is abnormally zero.  "
1258                         "(probably indicates selection timeout "
1259                         "reported incorrectly due to a known "
1260                         "firmware bug, circa July, 2001.)\n");
1261                 break;
1262         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1263                         dev_info(d, "UNDERRUN\n");
1264                 break;
1265         case CMD_DATA_OVERRUN:
1266                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1267                 break;
1268         case CMD_INVALID: {
1269                 /* controller unfortunately reports SCSI passthru's
1270                  * to non-existent targets as invalid commands.
1271                  */
1272                 dev_warn(d, "cp %p is reported invalid (probably means "
1273                         "target device no longer present)\n", cp);
1274                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1275                 print_cmd(cp);  */
1276                 }
1277                 break;
1278         case CMD_PROTOCOL_ERR:
1279                 dev_warn(d, "cp %p has protocol error \n", cp);
1280                 break;
1281         case CMD_HARDWARE_ERR:
1282                 /* cmd->result = DID_ERROR << 16; */
1283                 dev_warn(d, "cp %p had hardware error\n", cp);
1284                 break;
1285         case CMD_CONNECTION_LOST:
1286                 dev_warn(d, "cp %p had connection lost\n", cp);
1287                 break;
1288         case CMD_ABORTED:
1289                 dev_warn(d, "cp %p was aborted\n", cp);
1290                 break;
1291         case CMD_ABORT_FAILED:
1292                 dev_warn(d, "cp %p reports abort failed\n", cp);
1293                 break;
1294         case CMD_UNSOLICITED_ABORT:
1295                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1296                 break;
1297         case CMD_TIMEOUT:
1298                 dev_warn(d, "cp %p timed out\n", cp);
1299                 break;
1300         default:
1301                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1302                                 ei->CommandStatus);
1303         }
1304 }
1305
1306 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1307                         unsigned char page, unsigned char *buf,
1308                         unsigned char bufsize)
1309 {
1310         int rc = IO_OK;
1311         struct CommandList *c;
1312         struct ErrorInfo *ei;
1313
1314         c = cmd_special_alloc(h);
1315
1316         if (c == NULL) {                        /* trouble... */
1317                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1318                 return -ENOMEM;
1319         }
1320
1321         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1322         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1323         ei = c->err_info;
1324         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1325                 hpsa_scsi_interpret_error(c);
1326                 rc = -1;
1327         }
1328         cmd_special_free(h, c);
1329         return rc;
1330 }
1331
1332 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1333 {
1334         int rc = IO_OK;
1335         struct CommandList *c;
1336         struct ErrorInfo *ei;
1337
1338         c = cmd_special_alloc(h);
1339
1340         if (c == NULL) {                        /* trouble... */
1341                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1342                 return -ENOMEM;
1343         }
1344
1345         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1346         hpsa_scsi_do_simple_cmd_core(h, c);
1347         /* no unmap needed here because no data xfer. */
1348
1349         ei = c->err_info;
1350         if (ei->CommandStatus != 0) {
1351                 hpsa_scsi_interpret_error(c);
1352                 rc = -1;
1353         }
1354         cmd_special_free(h, c);
1355         return rc;
1356 }
1357
1358 static void hpsa_get_raid_level(struct ctlr_info *h,
1359         unsigned char *scsi3addr, unsigned char *raid_level)
1360 {
1361         int rc;
1362         unsigned char *buf;
1363
1364         *raid_level = RAID_UNKNOWN;
1365         buf = kzalloc(64, GFP_KERNEL);
1366         if (!buf)
1367                 return;
1368         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1369         if (rc == 0)
1370                 *raid_level = buf[8];
1371         if (*raid_level > RAID_UNKNOWN)
1372                 *raid_level = RAID_UNKNOWN;
1373         kfree(buf);
1374         return;
1375 }
1376
1377 /* Get the device id from inquiry page 0x83 */
1378 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1379         unsigned char *device_id, int buflen)
1380 {
1381         int rc;
1382         unsigned char *buf;
1383
1384         if (buflen > 16)
1385                 buflen = 16;
1386         buf = kzalloc(64, GFP_KERNEL);
1387         if (!buf)
1388                 return -1;
1389         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1390         if (rc == 0)
1391                 memcpy(device_id, &buf[8], buflen);
1392         kfree(buf);
1393         return rc != 0;
1394 }
1395
1396 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1397                 struct ReportLUNdata *buf, int bufsize,
1398                 int extended_response)
1399 {
1400         int rc = IO_OK;
1401         struct CommandList *c;
1402         unsigned char scsi3addr[8];
1403         struct ErrorInfo *ei;
1404
1405         c = cmd_special_alloc(h);
1406         if (c == NULL) {                        /* trouble... */
1407                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1408                 return -1;
1409         }
1410         /* address the controller */
1411         memset(scsi3addr, 0, sizeof(scsi3addr));
1412         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1413                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1414         if (extended_response)
1415                 c->Request.CDB[1] = extended_response;
1416         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1417         ei = c->err_info;
1418         if (ei->CommandStatus != 0 &&
1419             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1420                 hpsa_scsi_interpret_error(c);
1421                 rc = -1;
1422         }
1423         cmd_special_free(h, c);
1424         return rc;
1425 }
1426
1427 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1428                 struct ReportLUNdata *buf,
1429                 int bufsize, int extended_response)
1430 {
1431         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1432 }
1433
1434 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1435                 struct ReportLUNdata *buf, int bufsize)
1436 {
1437         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1438 }
1439
1440 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1441         int bus, int target, int lun)
1442 {
1443         device->bus = bus;
1444         device->target = target;
1445         device->lun = lun;
1446 }
1447
1448 static int hpsa_update_device_info(struct ctlr_info *h,
1449         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1450 {
1451 #define OBDR_TAPE_INQ_SIZE 49
1452         unsigned char *inq_buff;
1453
1454         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1455         if (!inq_buff)
1456                 goto bail_out;
1457
1458         /* Do an inquiry to the device to see what it is. */
1459         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1460                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1461                 /* Inquiry failed (msg printed already) */
1462                 dev_err(&h->pdev->dev,
1463                         "hpsa_update_device_info: inquiry failed\n");
1464                 goto bail_out;
1465         }
1466
1467         this_device->devtype = (inq_buff[0] & 0x1f);
1468         memcpy(this_device->scsi3addr, scsi3addr, 8);
1469         memcpy(this_device->vendor, &inq_buff[8],
1470                 sizeof(this_device->vendor));
1471         memcpy(this_device->model, &inq_buff[16],
1472                 sizeof(this_device->model));
1473         memset(this_device->device_id, 0,
1474                 sizeof(this_device->device_id));
1475         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1476                 sizeof(this_device->device_id));
1477
1478         if (this_device->devtype == TYPE_DISK &&
1479                 is_logical_dev_addr_mode(scsi3addr))
1480                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1481         else
1482                 this_device->raid_level = RAID_UNKNOWN;
1483
1484         kfree(inq_buff);
1485         return 0;
1486
1487 bail_out:
1488         kfree(inq_buff);
1489         return 1;
1490 }
1491
1492 static unsigned char *msa2xxx_model[] = {
1493         "MSA2012",
1494         "MSA2024",
1495         "MSA2312",
1496         "MSA2324",
1497         NULL,
1498 };
1499
1500 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1501 {
1502         int i;
1503
1504         for (i = 0; msa2xxx_model[i]; i++)
1505                 if (strncmp(device->model, msa2xxx_model[i],
1506                         strlen(msa2xxx_model[i])) == 0)
1507                         return 1;
1508         return 0;
1509 }
1510
1511 /* Helper function to assign bus, target, lun mapping of devices.
1512  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1513  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1514  * Logical drive target and lun are assigned at this time, but
1515  * physical device lun and target assignment are deferred (assigned
1516  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1517  */
1518 static void figure_bus_target_lun(struct ctlr_info *h,
1519         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1520         struct hpsa_scsi_dev_t *device)
1521 {
1522         u32 lunid;
1523
1524         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1525                 /* logical device */
1526                 if (unlikely(is_scsi_rev_5(h))) {
1527                         /* p1210m, logical drives lun assignments
1528                          * match SCSI REPORT LUNS data.
1529                          */
1530                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1531                         *bus = 0;
1532                         *target = 0;
1533                         *lun = (lunid & 0x3fff) + 1;
1534                 } else {
1535                         /* not p1210m... */
1536                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1537                         if (is_msa2xxx(h, device)) {
1538                                 /* msa2xxx way, put logicals on bus 1
1539                                  * and match target/lun numbers box
1540                                  * reports.
1541                                  */
1542                                 *bus = 1;
1543                                 *target = (lunid >> 16) & 0x3fff;
1544                                 *lun = lunid & 0x00ff;
1545                         } else {
1546                                 /* Traditional smart array way. */
1547                                 *bus = 0;
1548                                 *lun = 0;
1549                                 *target = lunid & 0x3fff;
1550                         }
1551                 }
1552         } else {
1553                 /* physical device */
1554                 if (is_hba_lunid(lunaddrbytes))
1555                         if (unlikely(is_scsi_rev_5(h))) {
1556                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1557                                 *target = 0;
1558                                 *lun = 0;
1559                                 return;
1560                         } else
1561                                 *bus = 3; /* traditional smartarray */
1562                 else
1563                         *bus = 2; /* physical disk */
1564                 *target = -1;
1565                 *lun = -1; /* we will fill these in later. */
1566         }
1567 }
1568
1569 /*
1570  * If there is no lun 0 on a target, linux won't find any devices.
1571  * For the MSA2xxx boxes, we have to manually detect the enclosure
1572  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1573  * it for some reason.  *tmpdevice is the target we're adding,
1574  * this_device is a pointer into the current element of currentsd[]
1575  * that we're building up in update_scsi_devices(), below.
1576  * lunzerobits is a bitmap that tracks which targets already have a
1577  * lun 0 assigned.
1578  * Returns 1 if an enclosure was added, 0 if not.
1579  */
1580 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1581         struct hpsa_scsi_dev_t *tmpdevice,
1582         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1583         int bus, int target, int lun, unsigned long lunzerobits[],
1584         int *nmsa2xxx_enclosures)
1585 {
1586         unsigned char scsi3addr[8];
1587
1588         if (test_bit(target, lunzerobits))
1589                 return 0; /* There is already a lun 0 on this target. */
1590
1591         if (!is_logical_dev_addr_mode(lunaddrbytes))
1592                 return 0; /* It's the logical targets that may lack lun 0. */
1593
1594         if (!is_msa2xxx(h, tmpdevice))
1595                 return 0; /* It's only the MSA2xxx that have this problem. */
1596
1597         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1598                 return 0;
1599
1600         if (is_hba_lunid(scsi3addr))
1601                 return 0; /* Don't add the RAID controller here. */
1602
1603         if (is_scsi_rev_5(h))
1604                 return 0; /* p1210m doesn't need to do this. */
1605
1606 #define MAX_MSA2XXX_ENCLOSURES 32
1607         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1608                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1609                         "enclosures exceeded.  Check your hardware "
1610                         "configuration.");
1611                 return 0;
1612         }
1613
1614         memset(scsi3addr, 0, 8);
1615         scsi3addr[3] = target;
1616         if (hpsa_update_device_info(h, scsi3addr, this_device))
1617                 return 0;
1618         (*nmsa2xxx_enclosures)++;
1619         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1620         set_bit(target, lunzerobits);
1621         return 1;
1622 }
1623
1624 /*
1625  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1626  * logdev.  The number of luns in physdev and logdev are returned in
1627  * *nphysicals and *nlogicals, respectively.
1628  * Returns 0 on success, -1 otherwise.
1629  */
1630 static int hpsa_gather_lun_info(struct ctlr_info *h,
1631         int reportlunsize,
1632         struct ReportLUNdata *physdev, u32 *nphysicals,
1633         struct ReportLUNdata *logdev, u32 *nlogicals)
1634 {
1635         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1636                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1637                 return -1;
1638         }
1639         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1640         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1641                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1642                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1643                         *nphysicals - HPSA_MAX_PHYS_LUN);
1644                 *nphysicals = HPSA_MAX_PHYS_LUN;
1645         }
1646         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1647                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1648                 return -1;
1649         }
1650         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1651         /* Reject Logicals in excess of our max capability. */
1652         if (*nlogicals > HPSA_MAX_LUN) {
1653                 dev_warn(&h->pdev->dev,
1654                         "maximum logical LUNs (%d) exceeded.  "
1655                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1656                         *nlogicals - HPSA_MAX_LUN);
1657                         *nlogicals = HPSA_MAX_LUN;
1658         }
1659         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1660                 dev_warn(&h->pdev->dev,
1661                         "maximum logical + physical LUNs (%d) exceeded. "
1662                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1663                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1664                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1665         }
1666         return 0;
1667 }
1668
1669 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1670         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1671         struct ReportLUNdata *logdev_list)
1672 {
1673         /* Helper function, figure out where the LUN ID info is coming from
1674          * given index i, lists of physical and logical devices, where in
1675          * the list the raid controller is supposed to appear (first or last)
1676          */
1677
1678         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1679         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1680
1681         if (i == raid_ctlr_position)
1682                 return RAID_CTLR_LUNID;
1683
1684         if (i < logicals_start)
1685                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1686
1687         if (i < last_device)
1688                 return &logdev_list->LUN[i - nphysicals -
1689                         (raid_ctlr_position == 0)][0];
1690         BUG();
1691         return NULL;
1692 }
1693
1694 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1695 {
1696         /* the idea here is we could get notified
1697          * that some devices have changed, so we do a report
1698          * physical luns and report logical luns cmd, and adjust
1699          * our list of devices accordingly.
1700          *
1701          * The scsi3addr's of devices won't change so long as the
1702          * adapter is not reset.  That means we can rescan and
1703          * tell which devices we already know about, vs. new
1704          * devices, vs.  disappearing devices.
1705          */
1706         struct ReportLUNdata *physdev_list = NULL;
1707         struct ReportLUNdata *logdev_list = NULL;
1708         unsigned char *inq_buff = NULL;
1709         u32 nphysicals = 0;
1710         u32 nlogicals = 0;
1711         u32 ndev_allocated = 0;
1712         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1713         int ncurrent = 0;
1714         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1715         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1716         int bus, target, lun;
1717         int raid_ctlr_position;
1718         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1719
1720         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1721                 GFP_KERNEL);
1722         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1723         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1724         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1725         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1726
1727         if (!currentsd || !physdev_list || !logdev_list ||
1728                 !inq_buff || !tmpdevice) {
1729                 dev_err(&h->pdev->dev, "out of memory\n");
1730                 goto out;
1731         }
1732         memset(lunzerobits, 0, sizeof(lunzerobits));
1733
1734         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1735                         logdev_list, &nlogicals))
1736                 goto out;
1737
1738         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1739          * but each of them 4 times through different paths.  The plus 1
1740          * is for the RAID controller.
1741          */
1742         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1743
1744         /* Allocate the per device structures */
1745         for (i = 0; i < ndevs_to_allocate; i++) {
1746                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1747                 if (!currentsd[i]) {
1748                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1749                                 __FILE__, __LINE__);
1750                         goto out;
1751                 }
1752                 ndev_allocated++;
1753         }
1754
1755         if (unlikely(is_scsi_rev_5(h)))
1756                 raid_ctlr_position = 0;
1757         else
1758                 raid_ctlr_position = nphysicals + nlogicals;
1759
1760         /* adjust our table of devices */
1761         nmsa2xxx_enclosures = 0;
1762         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1763                 u8 *lunaddrbytes;
1764
1765                 /* Figure out where the LUN ID info is coming from */
1766                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1767                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1768                 /* skip masked physical devices. */
1769                 if (lunaddrbytes[3] & 0xC0 &&
1770                         i < nphysicals + (raid_ctlr_position == 0))
1771                         continue;
1772
1773                 /* Get device type, vendor, model, device id */
1774                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1775                         continue; /* skip it if we can't talk to it. */
1776                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1777                         tmpdevice);
1778                 this_device = currentsd[ncurrent];
1779
1780                 /*
1781                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1782                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1783                  * is nonetheless an enclosure device there.  We have to
1784                  * present that otherwise linux won't find anything if
1785                  * there is no lun 0.
1786                  */
1787                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1788                                 lunaddrbytes, bus, target, lun, lunzerobits,
1789                                 &nmsa2xxx_enclosures)) {
1790                         ncurrent++;
1791                         this_device = currentsd[ncurrent];
1792                 }
1793
1794                 *this_device = *tmpdevice;
1795                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1796
1797                 switch (this_device->devtype) {
1798                 case TYPE_ROM: {
1799                         /* We don't *really* support actual CD-ROM devices,
1800                          * just "One Button Disaster Recovery" tape drive
1801                          * which temporarily pretends to be a CD-ROM drive.
1802                          * So we check that the device is really an OBDR tape
1803                          * device by checking for "$DR-10" in bytes 43-48 of
1804                          * the inquiry data.
1805                          */
1806                                 char obdr_sig[7];
1807 #define OBDR_TAPE_SIG "$DR-10"
1808                                 strncpy(obdr_sig, &inq_buff[43], 6);
1809                                 obdr_sig[6] = '\0';
1810                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1811                                         /* Not OBDR device, ignore it. */
1812                                         break;
1813                         }
1814                         ncurrent++;
1815                         break;
1816                 case TYPE_DISK:
1817                         if (i < nphysicals)
1818                                 break;
1819                         ncurrent++;
1820                         break;
1821                 case TYPE_TAPE:
1822                 case TYPE_MEDIUM_CHANGER:
1823                         ncurrent++;
1824                         break;
1825                 case TYPE_RAID:
1826                         /* Only present the Smartarray HBA as a RAID controller.
1827                          * If it's a RAID controller other than the HBA itself
1828                          * (an external RAID controller, MSA500 or similar)
1829                          * don't present it.
1830                          */
1831                         if (!is_hba_lunid(lunaddrbytes))
1832                                 break;
1833                         ncurrent++;
1834                         break;
1835                 default:
1836                         break;
1837                 }
1838                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1839                         break;
1840         }
1841         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1842 out:
1843         kfree(tmpdevice);
1844         for (i = 0; i < ndev_allocated; i++)
1845                 kfree(currentsd[i]);
1846         kfree(currentsd);
1847         kfree(inq_buff);
1848         kfree(physdev_list);
1849         kfree(logdev_list);
1850 }
1851
1852 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1853  * dma mapping  and fills in the scatter gather entries of the
1854  * hpsa command, cp.
1855  */
1856 static int hpsa_scatter_gather(struct ctlr_info *h,
1857                 struct CommandList *cp,
1858                 struct scsi_cmnd *cmd)
1859 {
1860         unsigned int len;
1861         struct scatterlist *sg;
1862         u64 addr64;
1863         int use_sg, i, sg_index, chained;
1864         struct SGDescriptor *curr_sg;
1865
1866         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1867
1868         use_sg = scsi_dma_map(cmd);
1869         if (use_sg < 0)
1870                 return use_sg;
1871
1872         if (!use_sg)
1873                 goto sglist_finished;
1874
1875         curr_sg = cp->SG;
1876         chained = 0;
1877         sg_index = 0;
1878         scsi_for_each_sg(cmd, sg, use_sg, i) {
1879                 if (i == h->max_cmd_sg_entries - 1 &&
1880                         use_sg > h->max_cmd_sg_entries) {
1881                         chained = 1;
1882                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1883                         sg_index = 0;
1884                 }
1885                 addr64 = (u64) sg_dma_address(sg);
1886                 len  = sg_dma_len(sg);
1887                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1888                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1889                 curr_sg->Len = len;
1890                 curr_sg->Ext = 0;  /* we are not chaining */
1891                 curr_sg++;
1892         }
1893
1894         if (use_sg + chained > h->maxSG)
1895                 h->maxSG = use_sg + chained;
1896
1897         if (chained) {
1898                 cp->Header.SGList = h->max_cmd_sg_entries;
1899                 cp->Header.SGTotal = (u16) (use_sg + 1);
1900                 hpsa_map_sg_chain_block(h, cp);
1901                 return 0;
1902         }
1903
1904 sglist_finished:
1905
1906         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1907         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1908         return 0;
1909 }
1910
1911
1912 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1913         void (*done)(struct scsi_cmnd *))
1914 {
1915         struct ctlr_info *h;
1916         struct hpsa_scsi_dev_t *dev;
1917         unsigned char scsi3addr[8];
1918         struct CommandList *c;
1919         unsigned long flags;
1920
1921         /* Get the ptr to our adapter structure out of cmd->host. */
1922         h = sdev_to_hba(cmd->device);
1923         dev = cmd->device->hostdata;
1924         if (!dev) {
1925                 cmd->result = DID_NO_CONNECT << 16;
1926                 done(cmd);
1927                 return 0;
1928         }
1929         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1930
1931         /* Need a lock as this is being allocated from the pool */
1932         spin_lock_irqsave(&h->lock, flags);
1933         c = cmd_alloc(h);
1934         spin_unlock_irqrestore(&h->lock, flags);
1935         if (c == NULL) {                        /* trouble... */
1936                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1937                 return SCSI_MLQUEUE_HOST_BUSY;
1938         }
1939
1940         /* Fill in the command list header */
1941
1942         cmd->scsi_done = done;    /* save this for use by completion code */
1943
1944         /* save c in case we have to abort it  */
1945         cmd->host_scribble = (unsigned char *) c;
1946
1947         c->cmd_type = CMD_SCSI;
1948         c->scsi_cmd = cmd;
1949         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1950         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1951         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1952         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1953
1954         /* Fill in the request block... */
1955
1956         c->Request.Timeout = 0;
1957         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1958         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1959         c->Request.CDBLen = cmd->cmd_len;
1960         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1961         c->Request.Type.Type = TYPE_CMD;
1962         c->Request.Type.Attribute = ATTR_SIMPLE;
1963         switch (cmd->sc_data_direction) {
1964         case DMA_TO_DEVICE:
1965                 c->Request.Type.Direction = XFER_WRITE;
1966                 break;
1967         case DMA_FROM_DEVICE:
1968                 c->Request.Type.Direction = XFER_READ;
1969                 break;
1970         case DMA_NONE:
1971                 c->Request.Type.Direction = XFER_NONE;
1972                 break;
1973         case DMA_BIDIRECTIONAL:
1974                 /* This can happen if a buggy application does a scsi passthru
1975                  * and sets both inlen and outlen to non-zero. ( see
1976                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1977                  */
1978
1979                 c->Request.Type.Direction = XFER_RSVD;
1980                 /* This is technically wrong, and hpsa controllers should
1981                  * reject it with CMD_INVALID, which is the most correct
1982                  * response, but non-fibre backends appear to let it
1983                  * slide by, and give the same results as if this field
1984                  * were set correctly.  Either way is acceptable for
1985                  * our purposes here.
1986                  */
1987
1988                 break;
1989
1990         default:
1991                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1992                         cmd->sc_data_direction);
1993                 BUG();
1994                 break;
1995         }
1996
1997         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
1998                 cmd_free(h, c);
1999                 return SCSI_MLQUEUE_HOST_BUSY;
2000         }
2001         enqueue_cmd_and_start_io(h, c);
2002         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2003         return 0;
2004 }
2005
2006 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2007
2008 static void hpsa_scan_start(struct Scsi_Host *sh)
2009 {
2010         struct ctlr_info *h = shost_to_hba(sh);
2011         unsigned long flags;
2012
2013         /* wait until any scan already in progress is finished. */
2014         while (1) {
2015                 spin_lock_irqsave(&h->scan_lock, flags);
2016                 if (h->scan_finished)
2017                         break;
2018                 spin_unlock_irqrestore(&h->scan_lock, flags);
2019                 wait_event(h->scan_wait_queue, h->scan_finished);
2020                 /* Note: We don't need to worry about a race between this
2021                  * thread and driver unload because the midlayer will
2022                  * have incremented the reference count, so unload won't
2023                  * happen if we're in here.
2024                  */
2025         }
2026         h->scan_finished = 0; /* mark scan as in progress */
2027         spin_unlock_irqrestore(&h->scan_lock, flags);
2028
2029         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2030
2031         spin_lock_irqsave(&h->scan_lock, flags);
2032         h->scan_finished = 1; /* mark scan as finished. */
2033         wake_up_all(&h->scan_wait_queue);
2034         spin_unlock_irqrestore(&h->scan_lock, flags);
2035 }
2036
2037 static int hpsa_scan_finished(struct Scsi_Host *sh,
2038         unsigned long elapsed_time)
2039 {
2040         struct ctlr_info *h = shost_to_hba(sh);
2041         unsigned long flags;
2042         int finished;
2043
2044         spin_lock_irqsave(&h->scan_lock, flags);
2045         finished = h->scan_finished;
2046         spin_unlock_irqrestore(&h->scan_lock, flags);
2047         return finished;
2048 }
2049
2050 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2051         int qdepth, int reason)
2052 {
2053         struct ctlr_info *h = sdev_to_hba(sdev);
2054
2055         if (reason != SCSI_QDEPTH_DEFAULT)
2056                 return -ENOTSUPP;
2057
2058         if (qdepth < 1)
2059                 qdepth = 1;
2060         else
2061                 if (qdepth > h->nr_cmds)
2062                         qdepth = h->nr_cmds;
2063         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2064         return sdev->queue_depth;
2065 }
2066
2067 static void hpsa_unregister_scsi(struct ctlr_info *h)
2068 {
2069         /* we are being forcibly unloaded, and may not refuse. */
2070         scsi_remove_host(h->scsi_host);
2071         scsi_host_put(h->scsi_host);
2072         h->scsi_host = NULL;
2073 }
2074
2075 static int hpsa_register_scsi(struct ctlr_info *h)
2076 {
2077         int rc;
2078
2079         rc = hpsa_scsi_detect(h);
2080         if (rc != 0)
2081                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2082                         " hpsa_scsi_detect(), rc is %d\n", rc);
2083         return rc;
2084 }
2085
2086 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2087         unsigned char lunaddr[])
2088 {
2089         int rc = 0;
2090         int count = 0;
2091         int waittime = 1; /* seconds */
2092         struct CommandList *c;
2093
2094         c = cmd_special_alloc(h);
2095         if (!c) {
2096                 dev_warn(&h->pdev->dev, "out of memory in "
2097                         "wait_for_device_to_become_ready.\n");
2098                 return IO_ERROR;
2099         }
2100
2101         /* Send test unit ready until device ready, or give up. */
2102         while (count < HPSA_TUR_RETRY_LIMIT) {
2103
2104                 /* Wait for a bit.  do this first, because if we send
2105                  * the TUR right away, the reset will just abort it.
2106                  */
2107                 msleep(1000 * waittime);
2108                 count++;
2109
2110                 /* Increase wait time with each try, up to a point. */
2111                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2112                         waittime = waittime * 2;
2113
2114                 /* Send the Test Unit Ready */
2115                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2116                 hpsa_scsi_do_simple_cmd_core(h, c);
2117                 /* no unmap needed here because no data xfer. */
2118
2119                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2120                         break;
2121
2122                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2123                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2124                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2125                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2126                         break;
2127
2128                 dev_warn(&h->pdev->dev, "waiting %d secs "
2129                         "for device to become ready.\n", waittime);
2130                 rc = 1; /* device not ready. */
2131         }
2132
2133         if (rc)
2134                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2135         else
2136                 dev_warn(&h->pdev->dev, "device is ready.\n");
2137
2138         cmd_special_free(h, c);
2139         return rc;
2140 }
2141
2142 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2143  * complaining.  Doing a host- or bus-reset can't do anything good here.
2144  */
2145 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2146 {
2147         int rc;
2148         struct ctlr_info *h;
2149         struct hpsa_scsi_dev_t *dev;
2150
2151         /* find the controller to which the command to be aborted was sent */
2152         h = sdev_to_hba(scsicmd->device);
2153         if (h == NULL) /* paranoia */
2154                 return FAILED;
2155         dev = scsicmd->device->hostdata;
2156         if (!dev) {
2157                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2158                         "device lookup failed.\n");
2159                 return FAILED;
2160         }
2161         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2162                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2163         /* send a reset to the SCSI LUN which the command was sent to */
2164         rc = hpsa_send_reset(h, dev->scsi3addr);
2165         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2166                 return SUCCESS;
2167
2168         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2169         return FAILED;
2170 }
2171
2172 /*
2173  * For operations that cannot sleep, a command block is allocated at init,
2174  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2175  * which ones are free or in use.  Lock must be held when calling this.
2176  * cmd_free() is the complement.
2177  */
2178 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2179 {
2180         struct CommandList *c;
2181         int i;
2182         union u64bit temp64;
2183         dma_addr_t cmd_dma_handle, err_dma_handle;
2184
2185         do {
2186                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2187                 if (i == h->nr_cmds)
2188                         return NULL;
2189         } while (test_and_set_bit
2190                  (i & (BITS_PER_LONG - 1),
2191                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2192         c = h->cmd_pool + i;
2193         memset(c, 0, sizeof(*c));
2194         cmd_dma_handle = h->cmd_pool_dhandle
2195             + i * sizeof(*c);
2196         c->err_info = h->errinfo_pool + i;
2197         memset(c->err_info, 0, sizeof(*c->err_info));
2198         err_dma_handle = h->errinfo_pool_dhandle
2199             + i * sizeof(*c->err_info);
2200         h->nr_allocs++;
2201
2202         c->cmdindex = i;
2203
2204         INIT_HLIST_NODE(&c->list);
2205         c->busaddr = (u32) cmd_dma_handle;
2206         temp64.val = (u64) err_dma_handle;
2207         c->ErrDesc.Addr.lower = temp64.val32.lower;
2208         c->ErrDesc.Addr.upper = temp64.val32.upper;
2209         c->ErrDesc.Len = sizeof(*c->err_info);
2210
2211         c->h = h;
2212         return c;
2213 }
2214
2215 /* For operations that can wait for kmalloc to possibly sleep,
2216  * this routine can be called. Lock need not be held to call
2217  * cmd_special_alloc. cmd_special_free() is the complement.
2218  */
2219 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2220 {
2221         struct CommandList *c;
2222         union u64bit temp64;
2223         dma_addr_t cmd_dma_handle, err_dma_handle;
2224
2225         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2226         if (c == NULL)
2227                 return NULL;
2228         memset(c, 0, sizeof(*c));
2229
2230         c->cmdindex = -1;
2231
2232         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2233                     &err_dma_handle);
2234
2235         if (c->err_info == NULL) {
2236                 pci_free_consistent(h->pdev,
2237                         sizeof(*c), c, cmd_dma_handle);
2238                 return NULL;
2239         }
2240         memset(c->err_info, 0, sizeof(*c->err_info));
2241
2242         INIT_HLIST_NODE(&c->list);
2243         c->busaddr = (u32) cmd_dma_handle;
2244         temp64.val = (u64) err_dma_handle;
2245         c->ErrDesc.Addr.lower = temp64.val32.lower;
2246         c->ErrDesc.Addr.upper = temp64.val32.upper;
2247         c->ErrDesc.Len = sizeof(*c->err_info);
2248
2249         c->h = h;
2250         return c;
2251 }
2252
2253 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2254 {
2255         int i;
2256
2257         i = c - h->cmd_pool;
2258         clear_bit(i & (BITS_PER_LONG - 1),
2259                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2260         h->nr_frees++;
2261 }
2262
2263 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2264 {
2265         union u64bit temp64;
2266
2267         temp64.val32.lower = c->ErrDesc.Addr.lower;
2268         temp64.val32.upper = c->ErrDesc.Addr.upper;
2269         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2270                             c->err_info, (dma_addr_t) temp64.val);
2271         pci_free_consistent(h->pdev, sizeof(*c),
2272                             c, (dma_addr_t) c->busaddr);
2273 }
2274
2275 #ifdef CONFIG_COMPAT
2276
2277 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2278 {
2279         IOCTL32_Command_struct __user *arg32 =
2280             (IOCTL32_Command_struct __user *) arg;
2281         IOCTL_Command_struct arg64;
2282         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2283         int err;
2284         u32 cp;
2285
2286         err = 0;
2287         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2288                            sizeof(arg64.LUN_info));
2289         err |= copy_from_user(&arg64.Request, &arg32->Request,
2290                            sizeof(arg64.Request));
2291         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2292                            sizeof(arg64.error_info));
2293         err |= get_user(arg64.buf_size, &arg32->buf_size);
2294         err |= get_user(cp, &arg32->buf);
2295         arg64.buf = compat_ptr(cp);
2296         err |= copy_to_user(p, &arg64, sizeof(arg64));
2297
2298         if (err)
2299                 return -EFAULT;
2300
2301         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2302         if (err)
2303                 return err;
2304         err |= copy_in_user(&arg32->error_info, &p->error_info,
2305                          sizeof(arg32->error_info));
2306         if (err)
2307                 return -EFAULT;
2308         return err;
2309 }
2310
2311 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2312         int cmd, void *arg)
2313 {
2314         BIG_IOCTL32_Command_struct __user *arg32 =
2315             (BIG_IOCTL32_Command_struct __user *) arg;
2316         BIG_IOCTL_Command_struct arg64;
2317         BIG_IOCTL_Command_struct __user *p =
2318             compat_alloc_user_space(sizeof(arg64));
2319         int err;
2320         u32 cp;
2321
2322         err = 0;
2323         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2324                            sizeof(arg64.LUN_info));
2325         err |= copy_from_user(&arg64.Request, &arg32->Request,
2326                            sizeof(arg64.Request));
2327         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2328                            sizeof(arg64.error_info));
2329         err |= get_user(arg64.buf_size, &arg32->buf_size);
2330         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2331         err |= get_user(cp, &arg32->buf);
2332         arg64.buf = compat_ptr(cp);
2333         err |= copy_to_user(p, &arg64, sizeof(arg64));
2334
2335         if (err)
2336                 return -EFAULT;
2337
2338         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2339         if (err)
2340                 return err;
2341         err |= copy_in_user(&arg32->error_info, &p->error_info,
2342                          sizeof(arg32->error_info));
2343         if (err)
2344                 return -EFAULT;
2345         return err;
2346 }
2347
2348 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2349 {
2350         switch (cmd) {
2351         case CCISS_GETPCIINFO:
2352         case CCISS_GETINTINFO:
2353         case CCISS_SETINTINFO:
2354         case CCISS_GETNODENAME:
2355         case CCISS_SETNODENAME:
2356         case CCISS_GETHEARTBEAT:
2357         case CCISS_GETBUSTYPES:
2358         case CCISS_GETFIRMVER:
2359         case CCISS_GETDRIVVER:
2360         case CCISS_REVALIDVOLS:
2361         case CCISS_DEREGDISK:
2362         case CCISS_REGNEWDISK:
2363         case CCISS_REGNEWD:
2364         case CCISS_RESCANDISK:
2365         case CCISS_GETLUNINFO:
2366                 return hpsa_ioctl(dev, cmd, arg);
2367
2368         case CCISS_PASSTHRU32:
2369                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2370         case CCISS_BIG_PASSTHRU32:
2371                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2372
2373         default:
2374                 return -ENOIOCTLCMD;
2375         }
2376 }
2377 #endif
2378
2379 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2380 {
2381         struct hpsa_pci_info pciinfo;
2382
2383         if (!argp)
2384                 return -EINVAL;
2385         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2386         pciinfo.bus = h->pdev->bus->number;
2387         pciinfo.dev_fn = h->pdev->devfn;
2388         pciinfo.board_id = h->board_id;
2389         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2390                 return -EFAULT;
2391         return 0;
2392 }
2393
2394 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2395 {
2396         DriverVer_type DriverVer;
2397         unsigned char vmaj, vmin, vsubmin;
2398         int rc;
2399
2400         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2401                 &vmaj, &vmin, &vsubmin);
2402         if (rc != 3) {
2403                 dev_info(&h->pdev->dev, "driver version string '%s' "
2404                         "unrecognized.", HPSA_DRIVER_VERSION);
2405                 vmaj = 0;
2406                 vmin = 0;
2407                 vsubmin = 0;
2408         }
2409         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2410         if (!argp)
2411                 return -EINVAL;
2412         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2413                 return -EFAULT;
2414         return 0;
2415 }
2416
2417 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2418 {
2419         IOCTL_Command_struct iocommand;
2420         struct CommandList *c;
2421         char *buff = NULL;
2422         union u64bit temp64;
2423
2424         if (!argp)
2425                 return -EINVAL;
2426         if (!capable(CAP_SYS_RAWIO))
2427                 return -EPERM;
2428         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2429                 return -EFAULT;
2430         if ((iocommand.buf_size < 1) &&
2431             (iocommand.Request.Type.Direction != XFER_NONE)) {
2432                 return -EINVAL;
2433         }
2434         if (iocommand.buf_size > 0) {
2435                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2436                 if (buff == NULL)
2437                         return -EFAULT;
2438         }
2439         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2440                 /* Copy the data into the buffer we created */
2441                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2442                         kfree(buff);
2443                         return -EFAULT;
2444                 }
2445         } else
2446                 memset(buff, 0, iocommand.buf_size);
2447         c = cmd_special_alloc(h);
2448         if (c == NULL) {
2449                 kfree(buff);
2450                 return -ENOMEM;
2451         }
2452         /* Fill in the command type */
2453         c->cmd_type = CMD_IOCTL_PEND;
2454         /* Fill in Command Header */
2455         c->Header.ReplyQueue = 0; /* unused in simple mode */
2456         if (iocommand.buf_size > 0) {   /* buffer to fill */
2457                 c->Header.SGList = 1;
2458                 c->Header.SGTotal = 1;
2459         } else  { /* no buffers to fill */
2460                 c->Header.SGList = 0;
2461                 c->Header.SGTotal = 0;
2462         }
2463         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2464         /* use the kernel address the cmd block for tag */
2465         c->Header.Tag.lower = c->busaddr;
2466
2467         /* Fill in Request block */
2468         memcpy(&c->Request, &iocommand.Request,
2469                 sizeof(c->Request));
2470
2471         /* Fill in the scatter gather information */
2472         if (iocommand.buf_size > 0) {
2473                 temp64.val = pci_map_single(h->pdev, buff,
2474                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2475                 c->SG[0].Addr.lower = temp64.val32.lower;
2476                 c->SG[0].Addr.upper = temp64.val32.upper;
2477                 c->SG[0].Len = iocommand.buf_size;
2478                 c->SG[0].Ext = 0; /* we are not chaining*/
2479         }
2480         hpsa_scsi_do_simple_cmd_core(h, c);
2481         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2482         check_ioctl_unit_attention(h, c);
2483
2484         /* Copy the error information out */
2485         memcpy(&iocommand.error_info, c->err_info,
2486                 sizeof(iocommand.error_info));
2487         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2488                 kfree(buff);
2489                 cmd_special_free(h, c);
2490                 return -EFAULT;
2491         }
2492
2493         if (iocommand.Request.Type.Direction == XFER_READ) {
2494                 /* Copy the data out of the buffer we created */
2495                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2496                         kfree(buff);
2497                         cmd_special_free(h, c);
2498                         return -EFAULT;
2499                 }
2500         }
2501         kfree(buff);
2502         cmd_special_free(h, c);
2503         return 0;
2504 }
2505
2506 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2507 {
2508         BIG_IOCTL_Command_struct *ioc;
2509         struct CommandList *c;
2510         unsigned char **buff = NULL;
2511         int *buff_size = NULL;
2512         union u64bit temp64;
2513         BYTE sg_used = 0;
2514         int status = 0;
2515         int i;
2516         u32 left;
2517         u32 sz;
2518         BYTE __user *data_ptr;
2519
2520         if (!argp)
2521                 return -EINVAL;
2522         if (!capable(CAP_SYS_RAWIO))
2523                 return -EPERM;
2524         ioc = (BIG_IOCTL_Command_struct *)
2525             kmalloc(sizeof(*ioc), GFP_KERNEL);
2526         if (!ioc) {
2527                 status = -ENOMEM;
2528                 goto cleanup1;
2529         }
2530         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2531                 status = -EFAULT;
2532                 goto cleanup1;
2533         }
2534         if ((ioc->buf_size < 1) &&
2535             (ioc->Request.Type.Direction != XFER_NONE)) {
2536                 status = -EINVAL;
2537                 goto cleanup1;
2538         }
2539         /* Check kmalloc limits  using all SGs */
2540         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2541                 status = -EINVAL;
2542                 goto cleanup1;
2543         }
2544         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2545                 status = -EINVAL;
2546                 goto cleanup1;
2547         }
2548         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2549         if (!buff) {
2550                 status = -ENOMEM;
2551                 goto cleanup1;
2552         }
2553         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2554         if (!buff_size) {
2555                 status = -ENOMEM;
2556                 goto cleanup1;
2557         }
2558         left = ioc->buf_size;
2559         data_ptr = ioc->buf;
2560         while (left) {
2561                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2562                 buff_size[sg_used] = sz;
2563                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2564                 if (buff[sg_used] == NULL) {
2565                         status = -ENOMEM;
2566                         goto cleanup1;
2567                 }
2568                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2569                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2570                                 status = -ENOMEM;
2571                                 goto cleanup1;
2572                         }
2573                 } else
2574                         memset(buff[sg_used], 0, sz);
2575                 left -= sz;
2576                 data_ptr += sz;
2577                 sg_used++;
2578         }
2579         c = cmd_special_alloc(h);
2580         if (c == NULL) {
2581                 status = -ENOMEM;
2582                 goto cleanup1;
2583         }
2584         c->cmd_type = CMD_IOCTL_PEND;
2585         c->Header.ReplyQueue = 0;
2586
2587         if (ioc->buf_size > 0) {
2588                 c->Header.SGList = sg_used;
2589                 c->Header.SGTotal = sg_used;
2590         } else {
2591                 c->Header.SGList = 0;
2592                 c->Header.SGTotal = 0;
2593         }
2594         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2595         c->Header.Tag.lower = c->busaddr;
2596         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2597         if (ioc->buf_size > 0) {
2598                 int i;
2599                 for (i = 0; i < sg_used; i++) {
2600                         temp64.val = pci_map_single(h->pdev, buff[i],
2601                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2602                         c->SG[i].Addr.lower = temp64.val32.lower;
2603                         c->SG[i].Addr.upper = temp64.val32.upper;
2604                         c->SG[i].Len = buff_size[i];
2605                         /* we are not chaining */
2606                         c->SG[i].Ext = 0;
2607                 }
2608         }
2609         hpsa_scsi_do_simple_cmd_core(h, c);
2610         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2611         check_ioctl_unit_attention(h, c);
2612         /* Copy the error information out */
2613         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2614         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2615                 cmd_special_free(h, c);
2616                 status = -EFAULT;
2617                 goto cleanup1;
2618         }
2619         if (ioc->Request.Type.Direction == XFER_READ) {
2620                 /* Copy the data out of the buffer we created */
2621                 BYTE __user *ptr = ioc->buf;
2622                 for (i = 0; i < sg_used; i++) {
2623                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2624                                 cmd_special_free(h, c);
2625                                 status = -EFAULT;
2626                                 goto cleanup1;
2627                         }
2628                         ptr += buff_size[i];
2629                 }
2630         }
2631         cmd_special_free(h, c);
2632         status = 0;
2633 cleanup1:
2634         if (buff) {
2635                 for (i = 0; i < sg_used; i++)
2636                         kfree(buff[i]);
2637                 kfree(buff);
2638         }
2639         kfree(buff_size);
2640         kfree(ioc);
2641         return status;
2642 }
2643
2644 static void check_ioctl_unit_attention(struct ctlr_info *h,
2645         struct CommandList *c)
2646 {
2647         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2648                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2649                 (void) check_for_unit_attention(h, c);
2650 }
2651 /*
2652  * ioctl
2653  */
2654 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2655 {
2656         struct ctlr_info *h;
2657         void __user *argp = (void __user *)arg;
2658
2659         h = sdev_to_hba(dev);
2660
2661         switch (cmd) {
2662         case CCISS_DEREGDISK:
2663         case CCISS_REGNEWDISK:
2664         case CCISS_REGNEWD:
2665                 hpsa_scan_start(h->scsi_host);
2666                 return 0;
2667         case CCISS_GETPCIINFO:
2668                 return hpsa_getpciinfo_ioctl(h, argp);
2669         case CCISS_GETDRIVVER:
2670                 return hpsa_getdrivver_ioctl(h, argp);
2671         case CCISS_PASSTHRU:
2672                 return hpsa_passthru_ioctl(h, argp);
2673         case CCISS_BIG_PASSTHRU:
2674                 return hpsa_big_passthru_ioctl(h, argp);
2675         default:
2676                 return -ENOTTY;
2677         }
2678 }
2679
2680 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2681         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2682         int cmd_type)
2683 {
2684         int pci_dir = XFER_NONE;
2685
2686         c->cmd_type = CMD_IOCTL_PEND;
2687         c->Header.ReplyQueue = 0;
2688         if (buff != NULL && size > 0) {
2689                 c->Header.SGList = 1;
2690                 c->Header.SGTotal = 1;
2691         } else {
2692                 c->Header.SGList = 0;
2693                 c->Header.SGTotal = 0;
2694         }
2695         c->Header.Tag.lower = c->busaddr;
2696         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2697
2698         c->Request.Type.Type = cmd_type;
2699         if (cmd_type == TYPE_CMD) {
2700                 switch (cmd) {
2701                 case HPSA_INQUIRY:
2702                         /* are we trying to read a vital product page */
2703                         if (page_code != 0) {
2704                                 c->Request.CDB[1] = 0x01;
2705                                 c->Request.CDB[2] = page_code;
2706                         }
2707                         c->Request.CDBLen = 6;
2708                         c->Request.Type.Attribute = ATTR_SIMPLE;
2709                         c->Request.Type.Direction = XFER_READ;
2710                         c->Request.Timeout = 0;
2711                         c->Request.CDB[0] = HPSA_INQUIRY;
2712                         c->Request.CDB[4] = size & 0xFF;
2713                         break;
2714                 case HPSA_REPORT_LOG:
2715                 case HPSA_REPORT_PHYS:
2716                         /* Talking to controller so It's a physical command
2717                            mode = 00 target = 0.  Nothing to write.
2718                          */
2719                         c->Request.CDBLen = 12;
2720                         c->Request.Type.Attribute = ATTR_SIMPLE;
2721                         c->Request.Type.Direction = XFER_READ;
2722                         c->Request.Timeout = 0;
2723                         c->Request.CDB[0] = cmd;
2724                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2725                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2726                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2727                         c->Request.CDB[9] = size & 0xFF;
2728                         break;
2729                 case HPSA_CACHE_FLUSH:
2730                         c->Request.CDBLen = 12;
2731                         c->Request.Type.Attribute = ATTR_SIMPLE;
2732                         c->Request.Type.Direction = XFER_WRITE;
2733                         c->Request.Timeout = 0;
2734                         c->Request.CDB[0] = BMIC_WRITE;
2735                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2736                         break;
2737                 case TEST_UNIT_READY:
2738                         c->Request.CDBLen = 6;
2739                         c->Request.Type.Attribute = ATTR_SIMPLE;
2740                         c->Request.Type.Direction = XFER_NONE;
2741                         c->Request.Timeout = 0;
2742                         break;
2743                 default:
2744                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2745                         BUG();
2746                         return;
2747                 }
2748         } else if (cmd_type == TYPE_MSG) {
2749                 switch (cmd) {
2750
2751                 case  HPSA_DEVICE_RESET_MSG:
2752                         c->Request.CDBLen = 16;
2753                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2754                         c->Request.Type.Attribute = ATTR_SIMPLE;
2755                         c->Request.Type.Direction = XFER_NONE;
2756                         c->Request.Timeout = 0; /* Don't time out */
2757                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2758                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2759                         /* If bytes 4-7 are zero, it means reset the */
2760                         /* LunID device */
2761                         c->Request.CDB[4] = 0x00;
2762                         c->Request.CDB[5] = 0x00;
2763                         c->Request.CDB[6] = 0x00;
2764                         c->Request.CDB[7] = 0x00;
2765                 break;
2766
2767                 default:
2768                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2769                                 cmd);
2770                         BUG();
2771                 }
2772         } else {
2773                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2774                 BUG();
2775         }
2776
2777         switch (c->Request.Type.Direction) {
2778         case XFER_READ:
2779                 pci_dir = PCI_DMA_FROMDEVICE;
2780                 break;
2781         case XFER_WRITE:
2782                 pci_dir = PCI_DMA_TODEVICE;
2783                 break;
2784         case XFER_NONE:
2785                 pci_dir = PCI_DMA_NONE;
2786                 break;
2787         default:
2788                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2789         }
2790
2791         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2792
2793         return;
2794 }
2795
2796 /*
2797  * Map (physical) PCI mem into (virtual) kernel space
2798  */
2799 static void __iomem *remap_pci_mem(ulong base, ulong size)
2800 {
2801         ulong page_base = ((ulong) base) & PAGE_MASK;
2802         ulong page_offs = ((ulong) base) - page_base;
2803         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2804
2805         return page_remapped ? (page_remapped + page_offs) : NULL;
2806 }
2807
2808 /* Takes cmds off the submission queue and sends them to the hardware,
2809  * then puts them on the queue of cmds waiting for completion.
2810  */
2811 static void start_io(struct ctlr_info *h)
2812 {
2813         struct CommandList *c;
2814
2815         while (!hlist_empty(&h->reqQ)) {
2816                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2817                 /* can't do anything if fifo is full */
2818                 if ((h->access.fifo_full(h))) {
2819                         dev_warn(&h->pdev->dev, "fifo full\n");
2820                         break;
2821                 }
2822
2823                 /* Get the first entry from the Request Q */
2824                 removeQ(c);
2825                 h->Qdepth--;
2826
2827                 /* Tell the controller execute command */
2828                 h->access.submit_command(h, c);
2829
2830                 /* Put job onto the completed Q */
2831                 addQ(&h->cmpQ, c);
2832         }
2833 }
2834
2835 static inline unsigned long get_next_completion(struct ctlr_info *h)
2836 {
2837         return h->access.command_completed(h);
2838 }
2839
2840 static inline bool interrupt_pending(struct ctlr_info *h)
2841 {
2842         return h->access.intr_pending(h);
2843 }
2844
2845 static inline long interrupt_not_for_us(struct ctlr_info *h)
2846 {
2847         return (h->access.intr_pending(h) == 0) ||
2848                 (h->interrupts_enabled == 0);
2849 }
2850
2851 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2852         u32 raw_tag)
2853 {
2854         if (unlikely(tag_index >= h->nr_cmds)) {
2855                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2856                 return 1;
2857         }
2858         return 0;
2859 }
2860
2861 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2862 {
2863         removeQ(c);
2864         if (likely(c->cmd_type == CMD_SCSI))
2865                 complete_scsi_command(c, 0, raw_tag);
2866         else if (c->cmd_type == CMD_IOCTL_PEND)
2867                 complete(c->waiting);
2868 }
2869
2870 static inline u32 hpsa_tag_contains_index(u32 tag)
2871 {
2872 #define DIRECT_LOOKUP_BIT 0x10
2873         return tag & DIRECT_LOOKUP_BIT;
2874 }
2875
2876 static inline u32 hpsa_tag_to_index(u32 tag)
2877 {
2878 #define DIRECT_LOOKUP_SHIFT 5
2879         return tag >> DIRECT_LOOKUP_SHIFT;
2880 }
2881
2882 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2883 {
2884 #define HPSA_ERROR_BITS 0x03
2885         return tag & ~HPSA_ERROR_BITS;
2886 }
2887
2888 /* process completion of an indexed ("direct lookup") command */
2889 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2890         u32 raw_tag)
2891 {
2892         u32 tag_index;
2893         struct CommandList *c;
2894
2895         tag_index = hpsa_tag_to_index(raw_tag);
2896         if (bad_tag(h, tag_index, raw_tag))
2897                 return next_command(h);
2898         c = h->cmd_pool + tag_index;
2899         finish_cmd(c, raw_tag);
2900         return next_command(h);
2901 }
2902
2903 /* process completion of a non-indexed command */
2904 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2905         u32 raw_tag)
2906 {
2907         u32 tag;
2908         struct CommandList *c = NULL;
2909         struct hlist_node *tmp;
2910
2911         tag = hpsa_tag_discard_error_bits(raw_tag);
2912         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2913                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2914                         finish_cmd(c, raw_tag);
2915                         return next_command(h);
2916                 }
2917         }
2918         bad_tag(h, h->nr_cmds + 1, raw_tag);
2919         return next_command(h);
2920 }
2921
2922 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2923 {
2924         struct ctlr_info *h = dev_id;
2925         unsigned long flags;
2926         u32 raw_tag;
2927
2928         if (interrupt_not_for_us(h))
2929                 return IRQ_NONE;
2930         spin_lock_irqsave(&h->lock, flags);
2931         while (interrupt_pending(h)) {
2932                 raw_tag = get_next_completion(h);
2933                 while (raw_tag != FIFO_EMPTY) {
2934                         if (hpsa_tag_contains_index(raw_tag))
2935                                 raw_tag = process_indexed_cmd(h, raw_tag);
2936                         else
2937                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
2938                 }
2939         }
2940         spin_unlock_irqrestore(&h->lock, flags);
2941         return IRQ_HANDLED;
2942 }
2943
2944 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2945 {
2946         struct ctlr_info *h = dev_id;
2947         unsigned long flags;
2948         u32 raw_tag;
2949
2950         spin_lock_irqsave(&h->lock, flags);
2951         raw_tag = get_next_completion(h);
2952         while (raw_tag != FIFO_EMPTY) {
2953                 if (hpsa_tag_contains_index(raw_tag))
2954                         raw_tag = process_indexed_cmd(h, raw_tag);
2955                 else
2956                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2957         }
2958         spin_unlock_irqrestore(&h->lock, flags);
2959         return IRQ_HANDLED;
2960 }
2961
2962 /* Send a message CDB to the firmware. */
2963 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2964                                                 unsigned char type)
2965 {
2966         struct Command {
2967                 struct CommandListHeader CommandHeader;
2968                 struct RequestBlock Request;
2969                 struct ErrDescriptor ErrorDescriptor;
2970         };
2971         struct Command *cmd;
2972         static const size_t cmd_sz = sizeof(*cmd) +
2973                                         sizeof(cmd->ErrorDescriptor);
2974         dma_addr_t paddr64;
2975         uint32_t paddr32, tag;
2976         void __iomem *vaddr;
2977         int i, err;
2978
2979         vaddr = pci_ioremap_bar(pdev, 0);
2980         if (vaddr == NULL)
2981                 return -ENOMEM;
2982
2983         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2984          * CCISS commands, so they must be allocated from the lower 4GiB of
2985          * memory.
2986          */
2987         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2988         if (err) {
2989                 iounmap(vaddr);
2990                 return -ENOMEM;
2991         }
2992
2993         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2994         if (cmd == NULL) {
2995                 iounmap(vaddr);
2996                 return -ENOMEM;
2997         }
2998
2999         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3000          * although there's no guarantee, we assume that the address is at
3001          * least 4-byte aligned (most likely, it's page-aligned).
3002          */
3003         paddr32 = paddr64;
3004
3005         cmd->CommandHeader.ReplyQueue = 0;
3006         cmd->CommandHeader.SGList = 0;
3007         cmd->CommandHeader.SGTotal = 0;
3008         cmd->CommandHeader.Tag.lower = paddr32;
3009         cmd->CommandHeader.Tag.upper = 0;
3010         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3011
3012         cmd->Request.CDBLen = 16;
3013         cmd->Request.Type.Type = TYPE_MSG;
3014         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3015         cmd->Request.Type.Direction = XFER_NONE;
3016         cmd->Request.Timeout = 0; /* Don't time out */
3017         cmd->Request.CDB[0] = opcode;
3018         cmd->Request.CDB[1] = type;
3019         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3020         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3021         cmd->ErrorDescriptor.Addr.upper = 0;
3022         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3023
3024         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3025
3026         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3027                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3028                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3029                         break;
3030                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3031         }
3032
3033         iounmap(vaddr);
3034
3035         /* we leak the DMA buffer here ... no choice since the controller could
3036          *  still complete the command.
3037          */
3038         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3039                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3040                         opcode, type);
3041                 return -ETIMEDOUT;
3042         }
3043
3044         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3045
3046         if (tag & HPSA_ERROR_BIT) {
3047                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3048                         opcode, type);
3049                 return -EIO;
3050         }
3051
3052         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3053                 opcode, type);
3054         return 0;
3055 }
3056
3057 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3058 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3059
3060 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3061 {
3062 /* the #defines are stolen from drivers/pci/msi.h. */
3063 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3064 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3065
3066         int pos;
3067         u16 control = 0;
3068
3069         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3070         if (pos) {
3071                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3072                 if (control & PCI_MSI_FLAGS_ENABLE) {
3073                         dev_info(&pdev->dev, "resetting MSI\n");
3074                         pci_write_config_word(pdev, msi_control_reg(pos),
3075                                         control & ~PCI_MSI_FLAGS_ENABLE);
3076                 }
3077         }
3078
3079         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3080         if (pos) {
3081                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3082                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3083                         dev_info(&pdev->dev, "resetting MSI-X\n");
3084                         pci_write_config_word(pdev, msi_control_reg(pos),
3085                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3086                 }
3087         }
3088
3089         return 0;
3090 }
3091
3092 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3093         void * __iomem vaddr, bool use_doorbell)
3094 {
3095         u16 pmcsr;
3096         int pos;
3097
3098         if (use_doorbell) {
3099                 /* For everything after the P600, the PCI power state method
3100                  * of resetting the controller doesn't work, so we have this
3101                  * other way using the doorbell register.
3102                  */
3103                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3104                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3105                 msleep(1000);
3106         } else { /* Try to do it the PCI power state way */
3107
3108                 /* Quoting from the Open CISS Specification: "The Power
3109                  * Management Control/Status Register (CSR) controls the power
3110                  * state of the device.  The normal operating state is D0,
3111                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3112                  * the controller, place the interface device in D3 then to D0,
3113                  * this causes a secondary PCI reset which will reset the
3114                  * controller." */
3115
3116                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3117                 if (pos == 0) {
3118                         dev_err(&pdev->dev,
3119                                 "hpsa_reset_controller: "
3120                                 "PCI PM not supported\n");
3121                         return -ENODEV;
3122                 }
3123                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3124                 /* enter the D3hot power management state */
3125                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3126                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3127                 pmcsr |= PCI_D3hot;
3128                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3129
3130                 msleep(500);
3131
3132                 /* enter the D0 power management state */
3133                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3134                 pmcsr |= PCI_D0;
3135                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3136
3137                 msleep(500);
3138         }
3139         return 0;
3140 }
3141
3142 /* This does a hard reset of the controller using PCI power management
3143  * states or the using the doorbell register.
3144  */
3145 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3146 {
3147         u16 saved_config_space[32];
3148         u64 cfg_offset;
3149         u32 cfg_base_addr;
3150         u64 cfg_base_addr_index;
3151         void __iomem *vaddr;
3152         unsigned long paddr;
3153         u32 misc_fw_support, active_transport;
3154         int rc, i;
3155         struct CfgTable __iomem *cfgtable;
3156         bool use_doorbell;
3157         u32 board_id;
3158
3159         /* For controllers as old as the P600, this is very nearly
3160          * the same thing as
3161          *
3162          * pci_save_state(pci_dev);
3163          * pci_set_power_state(pci_dev, PCI_D3hot);
3164          * pci_set_power_state(pci_dev, PCI_D0);
3165          * pci_restore_state(pci_dev);
3166          *
3167          * but we can't use these nice canned kernel routines on
3168          * kexec, because they also check the MSI/MSI-X state in PCI
3169          * configuration space and do the wrong thing when it is
3170          * set/cleared.  Also, the pci_save/restore_state functions
3171          * violate the ordering requirements for restoring the
3172          * configuration space from the CCISS document (see the
3173          * comment below).  So we roll our own ....
3174          *
3175          * For controllers newer than the P600, the pci power state
3176          * method of resetting doesn't work so we have another way
3177          * using the doorbell register.
3178          */
3179
3180         /* Exclude 640x boards.  These are two pci devices in one slot
3181          * which share a battery backed cache module.  One controls the
3182          * cache, the other accesses the cache through the one that controls
3183          * it.  If we reset the one controlling the cache, the other will
3184          * likely not be happy.  Just forbid resetting this conjoined mess.
3185          * The 640x isn't really supported by hpsa anyway.
3186          */
3187         hpsa_lookup_board_id(pdev, &board_id);
3188         if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3189                 return -ENOTSUPP;
3190
3191         for (i = 0; i < 32; i++)
3192                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3193
3194
3195         /* find the first memory BAR, so we can find the cfg table */
3196         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3197         if (rc)
3198                 return rc;
3199         vaddr = remap_pci_mem(paddr, 0x250);
3200         if (!vaddr)
3201                 return -ENOMEM;
3202
3203         /* find cfgtable in order to check if reset via doorbell is supported */
3204         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3205                                         &cfg_base_addr_index, &cfg_offset);
3206         if (rc)
3207                 goto unmap_vaddr;
3208         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3209                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3210         if (!cfgtable) {
3211                 rc = -ENOMEM;
3212                 goto unmap_vaddr;
3213         }
3214
3215         /* If reset via doorbell register is supported, use that. */
3216         misc_fw_support = readl(&cfgtable->misc_fw_support);
3217         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3218
3219         /* The doorbell reset seems to cause lockups on some Smart
3220          * Arrays (e.g. P410, P410i, maybe others).  Until this is
3221          * fixed or at least isolated, avoid the doorbell reset.
3222          */
3223         use_doorbell = 0;
3224
3225         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3226         if (rc)
3227                 goto unmap_cfgtable;
3228
3229         /* Restore the PCI configuration space.  The Open CISS
3230          * Specification says, "Restore the PCI Configuration
3231          * Registers, offsets 00h through 60h. It is important to
3232          * restore the command register, 16-bits at offset 04h,
3233          * last. Do not restore the configuration status register,
3234          * 16-bits at offset 06h."  Note that the offset is 2*i.
3235          */
3236         for (i = 0; i < 32; i++) {
3237                 if (i == 2 || i == 3)
3238                         continue;
3239                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3240         }
3241         wmb();
3242         pci_write_config_word(pdev, 4, saved_config_space[2]);
3243
3244         /* Some devices (notably the HP Smart Array 5i Controller)
3245            need a little pause here */
3246         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3247
3248         /* Controller should be in simple mode at this point.  If it's not,
3249          * It means we're on one of those controllers which doesn't support
3250          * the doorbell reset method and on which the PCI power management reset
3251          * method doesn't work (P800, for example.)
3252          * In those cases, pretend the reset worked and hope for the best.
3253          */
3254         active_transport = readl(&cfgtable->TransportActive);
3255         if (active_transport & PERFORMANT_MODE) {
3256                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3257                         " proceeding anyway.\n");
3258                 rc = -ENOTSUPP;
3259         }
3260
3261 unmap_cfgtable:
3262         iounmap(cfgtable);
3263
3264 unmap_vaddr:
3265         iounmap(vaddr);
3266         return rc;
3267 }
3268
3269 /*
3270  *  We cannot read the structure directly, for portability we must use
3271  *   the io functions.
3272  *   This is for debug only.
3273  */
3274 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3275 {
3276 #ifdef HPSA_DEBUG
3277         int i;
3278         char temp_name[17];
3279
3280         dev_info(dev, "Controller Configuration information\n");
3281         dev_info(dev, "------------------------------------\n");
3282         for (i = 0; i < 4; i++)
3283                 temp_name[i] = readb(&(tb->Signature[i]));
3284         temp_name[4] = '\0';
3285         dev_info(dev, "   Signature = %s\n", temp_name);
3286         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3287         dev_info(dev, "   Transport methods supported = 0x%x\n",
3288                readl(&(tb->TransportSupport)));
3289         dev_info(dev, "   Transport methods active = 0x%x\n",
3290                readl(&(tb->TransportActive)));
3291         dev_info(dev, "   Requested transport Method = 0x%x\n",
3292                readl(&(tb->HostWrite.TransportRequest)));
3293         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3294                readl(&(tb->HostWrite.CoalIntDelay)));
3295         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3296                readl(&(tb->HostWrite.CoalIntCount)));
3297         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3298                readl(&(tb->CmdsOutMax)));
3299         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3300         for (i = 0; i < 16; i++)
3301                 temp_name[i] = readb(&(tb->ServerName[i]));
3302         temp_name[16] = '\0';
3303         dev_info(dev, "   Server Name = %s\n", temp_name);
3304         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3305                 readl(&(tb->HeartBeat)));
3306 #endif                          /* HPSA_DEBUG */
3307 }
3308
3309 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3310 {
3311         int i, offset, mem_type, bar_type;
3312
3313         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3314                 return 0;
3315         offset = 0;
3316         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3317                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3318                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3319                         offset += 4;
3320                 else {
3321                         mem_type = pci_resource_flags(pdev, i) &
3322                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3323                         switch (mem_type) {
3324                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3325                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3326                                 offset += 4;    /* 32 bit */
3327                                 break;
3328                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3329                                 offset += 8;
3330                                 break;
3331                         default:        /* reserved in PCI 2.2 */
3332                                 dev_warn(&pdev->dev,
3333                                        "base address is invalid\n");
3334                                 return -1;
3335                                 break;
3336                         }
3337                 }
3338                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3339                         return i + 1;
3340         }
3341         return -1;
3342 }
3343
3344 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3345  * controllers that are capable. If not, we use IO-APIC mode.
3346  */
3347
3348 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3349 {
3350 #ifdef CONFIG_PCI_MSI
3351         int err;
3352         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3353         {0, 2}, {0, 3}
3354         };
3355
3356         /* Some boards advertise MSI but don't really support it */
3357         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3358             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3359                 goto default_int_mode;
3360         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3361                 dev_info(&h->pdev->dev, "MSIX\n");
3362                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3363                 if (!err) {
3364                         h->intr[0] = hpsa_msix_entries[0].vector;
3365                         h->intr[1] = hpsa_msix_entries[1].vector;
3366                         h->intr[2] = hpsa_msix_entries[2].vector;
3367                         h->intr[3] = hpsa_msix_entries[3].vector;
3368                         h->msix_vector = 1;
3369                         return;
3370                 }
3371                 if (err > 0) {
3372                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3373                                "available\n", err);
3374                         goto default_int_mode;
3375                 } else {
3376                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3377                                err);
3378                         goto default_int_mode;
3379                 }
3380         }
3381         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3382                 dev_info(&h->pdev->dev, "MSI\n");
3383                 if (!pci_enable_msi(h->pdev))
3384                         h->msi_vector = 1;
3385                 else
3386                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3387         }
3388 default_int_mode:
3389 #endif                          /* CONFIG_PCI_MSI */
3390         /* if we get here we're going to use the default interrupt mode */
3391         h->intr[PERF_MODE_INT] = h->pdev->irq;
3392 }
3393
3394 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3395 {
3396         int i;
3397         u32 subsystem_vendor_id, subsystem_device_id;
3398
3399         subsystem_vendor_id = pdev->subsystem_vendor;
3400         subsystem_device_id = pdev->subsystem_device;
3401         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3402                     subsystem_vendor_id;
3403
3404         for (i = 0; i < ARRAY_SIZE(products); i++)
3405                 if (*board_id == products[i].board_id)
3406                         return i;
3407
3408         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3409                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3410                 !hpsa_allow_any) {
3411                 dev_warn(&pdev->dev, "unrecognized board ID: "
3412                         "0x%08x, ignoring.\n", *board_id);
3413                         return -ENODEV;
3414         }
3415         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3416 }
3417
3418 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3419 {
3420         u16 command;
3421
3422         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3423         return ((command & PCI_COMMAND_MEMORY) == 0);
3424 }
3425
3426 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3427         unsigned long *memory_bar)
3428 {
3429         int i;
3430
3431         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3432                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3433                         /* addressing mode bits already removed */
3434                         *memory_bar = pci_resource_start(pdev, i);
3435                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3436                                 *memory_bar);
3437                         return 0;
3438                 }
3439         dev_warn(&pdev->dev, "no memory BAR found\n");
3440         return -ENODEV;
3441 }
3442
3443 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3444 {
3445         int i;
3446         u32 scratchpad;
3447
3448         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3449                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3450                 if (scratchpad == HPSA_FIRMWARE_READY)
3451                         return 0;
3452                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3453         }
3454         dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3455         return -ENODEV;
3456 }
3457
3458 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3459         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3460         u64 *cfg_offset)
3461 {
3462         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3463         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3464         *cfg_base_addr &= (u32) 0x0000ffff;
3465         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3466         if (*cfg_base_addr_index == -1) {
3467                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3468                 return -ENODEV;
3469         }
3470         return 0;
3471 }
3472
3473 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3474 {
3475         u64 cfg_offset;
3476         u32 cfg_base_addr;
3477         u64 cfg_base_addr_index;
3478         u32 trans_offset;
3479         int rc;
3480
3481         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3482                 &cfg_base_addr_index, &cfg_offset);
3483         if (rc)
3484                 return rc;
3485         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3486                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3487         if (!h->cfgtable)
3488                 return -ENOMEM;
3489         /* Find performant mode table. */
3490         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3491         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3492                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3493                                 sizeof(*h->transtable));
3494         if (!h->transtable)
3495                 return -ENOMEM;
3496         return 0;
3497 }
3498
3499 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3500 {
3501         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3502         if (h->max_commands < 16) {
3503                 dev_warn(&h->pdev->dev, "Controller reports "
3504                         "max supported commands of %d, an obvious lie. "
3505                         "Using 16.  Ensure that firmware is up to date.\n",
3506                         h->max_commands);
3507                 h->max_commands = 16;
3508         }
3509 }
3510
3511 /* Interrogate the hardware for some limits:
3512  * max commands, max SG elements without chaining, and with chaining,
3513  * SG chain block size, etc.
3514  */
3515 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3516 {
3517         hpsa_get_max_perf_mode_cmds(h);
3518         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3519         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3520         /*
3521          * Limit in-command s/g elements to 32 save dma'able memory.
3522          * Howvever spec says if 0, use 31
3523          */
3524         h->max_cmd_sg_entries = 31;
3525         if (h->maxsgentries > 512) {
3526                 h->max_cmd_sg_entries = 32;
3527                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3528                 h->maxsgentries--; /* save one for chain pointer */
3529         } else {
3530                 h->maxsgentries = 31; /* default to traditional values */
3531                 h->chainsize = 0;
3532         }
3533 }
3534
3535 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3536 {
3537         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3538             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3539             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3540             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3541                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3542                 return false;
3543         }
3544         return true;
3545 }
3546
3547 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3548 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3549 {
3550 #ifdef CONFIG_X86
3551         u32 prefetch;
3552
3553         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3554         prefetch |= 0x100;
3555         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3556 #endif
3557 }
3558
3559 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3560  * in a prefetch beyond physical memory.
3561  */
3562 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3563 {
3564         u32 dma_prefetch;
3565
3566         if (h->board_id != 0x3225103C)
3567                 return;
3568         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3569         dma_prefetch |= 0x8000;
3570         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3571 }
3572
3573 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3574 {
3575         int i;
3576
3577         /* under certain very rare conditions, this can take awhile.
3578          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3579          * as we enter this code.)
3580          */
3581         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3582                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3583                         break;
3584                 /* delay and try again */
3585                 msleep(10);
3586         }
3587 }
3588
3589 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3590 {
3591         u32 trans_support;
3592
3593         trans_support = readl(&(h->cfgtable->TransportSupport));
3594         if (!(trans_support & SIMPLE_MODE))
3595                 return -ENOTSUPP;
3596
3597         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3598         /* Update the field, and then ring the doorbell */
3599         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3600         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3601         hpsa_wait_for_mode_change_ack(h);
3602         print_cfg_table(&h->pdev->dev, h->cfgtable);
3603         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3604                 dev_warn(&h->pdev->dev,
3605                         "unable to get board into simple mode\n");
3606                 return -ENODEV;
3607         }
3608         return 0;
3609 }
3610
3611 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3612 {
3613         int prod_index, err;
3614
3615         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3616         if (prod_index < 0)
3617                 return -ENODEV;
3618         h->product_name = products[prod_index].product_name;
3619         h->access = *(products[prod_index].access);
3620
3621         if (hpsa_board_disabled(h->pdev)) {
3622                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3623                 return -ENODEV;
3624         }
3625         err = pci_enable_device(h->pdev);
3626         if (err) {
3627                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3628                 return err;
3629         }
3630
3631         err = pci_request_regions(h->pdev, "hpsa");
3632         if (err) {
3633                 dev_err(&h->pdev->dev,
3634                         "cannot obtain PCI resources, aborting\n");
3635                 return err;
3636         }
3637         hpsa_interrupt_mode(h);
3638         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3639         if (err)
3640                 goto err_out_free_res;
3641         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3642         if (!h->vaddr) {
3643                 err = -ENOMEM;
3644                 goto err_out_free_res;
3645         }
3646         err = hpsa_wait_for_board_ready(h);
3647         if (err)
3648                 goto err_out_free_res;
3649         err = hpsa_find_cfgtables(h);
3650         if (err)
3651                 goto err_out_free_res;
3652         hpsa_find_board_params(h);
3653
3654         if (!hpsa_CISS_signature_present(h)) {
3655                 err = -ENODEV;
3656                 goto err_out_free_res;
3657         }
3658         hpsa_enable_scsi_prefetch(h);
3659         hpsa_p600_dma_prefetch_quirk(h);
3660         err = hpsa_enter_simple_mode(h);
3661         if (err)
3662                 goto err_out_free_res;
3663         return 0;
3664
3665 err_out_free_res:
3666         if (h->transtable)
3667                 iounmap(h->transtable);
3668         if (h->cfgtable)
3669                 iounmap(h->cfgtable);
3670         if (h->vaddr)
3671                 iounmap(h->vaddr);
3672         /*
3673          * Deliberately omit pci_disable_device(): it does something nasty to
3674          * Smart Array controllers that pci_enable_device does not undo
3675          */
3676         pci_release_regions(h->pdev);
3677         return err;
3678 }
3679
3680 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3681 {
3682         int rc;
3683
3684 #define HBA_INQUIRY_BYTE_COUNT 64
3685         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3686         if (!h->hba_inquiry_data)
3687                 return;
3688         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3689                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3690         if (rc != 0) {
3691                 kfree(h->hba_inquiry_data);
3692                 h->hba_inquiry_data = NULL;
3693         }
3694 }
3695
3696 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3697 {
3698         int rc, i;
3699
3700         if (!reset_devices)
3701                 return 0;
3702
3703         /* Reset the controller with a PCI power-cycle or via doorbell */
3704         rc = hpsa_kdump_hard_reset_controller(pdev);
3705
3706         /* -ENOTSUPP here means we cannot reset the controller
3707          * but it's already (and still) up and running in
3708          * "performant mode".  Or, it might be 640x, which can't reset
3709          * due to concerns about shared bbwc between 6402/6404 pair.
3710          */
3711         if (rc == -ENOTSUPP)
3712                 return 0; /* just try to do the kdump anyhow. */
3713         if (rc)
3714                 return -ENODEV;
3715         if (hpsa_reset_msi(pdev))
3716                 return -ENODEV;
3717
3718         /* Now try to get the controller to respond to a no-op */
3719         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3720                 if (hpsa_noop(pdev) == 0)
3721                         break;
3722                 else
3723                         dev_warn(&pdev->dev, "no-op failed%s\n",
3724                                         (i < 11 ? "; re-trying" : ""));
3725         }
3726         return 0;
3727 }
3728
3729 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3730                                     const struct pci_device_id *ent)
3731 {
3732         int dac, rc;
3733         struct ctlr_info *h;
3734
3735         if (number_of_controllers == 0)
3736                 printk(KERN_INFO DRIVER_NAME "\n");
3737
3738         rc = hpsa_init_reset_devices(pdev);
3739         if (rc)
3740                 return rc;
3741
3742         /* Command structures must be aligned on a 32-byte boundary because
3743          * the 5 lower bits of the address are used by the hardware. and by
3744          * the driver.  See comments in hpsa.h for more info.
3745          */
3746 #define COMMANDLIST_ALIGNMENT 32
3747         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3748         h = kzalloc(sizeof(*h), GFP_KERNEL);
3749         if (!h)
3750                 return -ENOMEM;
3751
3752         h->pdev = pdev;
3753         h->busy_initializing = 1;
3754         INIT_HLIST_HEAD(&h->cmpQ);
3755         INIT_HLIST_HEAD(&h->reqQ);
3756         rc = hpsa_pci_init(h);
3757         if (rc != 0)
3758                 goto clean1;
3759
3760         sprintf(h->devname, "hpsa%d", number_of_controllers);
3761         h->ctlr = number_of_controllers;
3762         number_of_controllers++;
3763
3764         /* configure PCI DMA stuff */
3765         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3766         if (rc == 0) {
3767                 dac = 1;
3768         } else {
3769                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3770                 if (rc == 0) {
3771                         dac = 0;
3772                 } else {
3773                         dev_err(&pdev->dev, "no suitable DMA available\n");
3774                         goto clean1;
3775                 }
3776         }
3777
3778         /* make sure the board interrupts are off */
3779         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3780
3781         if (h->msix_vector || h->msi_vector)
3782                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3783                                 IRQF_DISABLED, h->devname, h);
3784         else
3785                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3786                                 IRQF_DISABLED, h->devname, h);
3787         if (rc) {
3788                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3789                        h->intr[PERF_MODE_INT], h->devname);
3790                 goto clean2;
3791         }
3792
3793         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3794                h->devname, pdev->device,
3795                h->intr[PERF_MODE_INT], dac ? "" : " not");
3796
3797         h->cmd_pool_bits =
3798             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3799                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3800         h->cmd_pool = pci_alloc_consistent(h->pdev,
3801                     h->nr_cmds * sizeof(*h->cmd_pool),
3802                     &(h->cmd_pool_dhandle));
3803         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3804                     h->nr_cmds * sizeof(*h->errinfo_pool),
3805                     &(h->errinfo_pool_dhandle));
3806         if ((h->cmd_pool_bits == NULL)
3807             || (h->cmd_pool == NULL)
3808             || (h->errinfo_pool == NULL)) {
3809                 dev_err(&pdev->dev, "out of memory");
3810                 rc = -ENOMEM;
3811                 goto clean4;
3812         }
3813         if (hpsa_allocate_sg_chain_blocks(h))
3814                 goto clean4;
3815         spin_lock_init(&h->lock);
3816         spin_lock_init(&h->scan_lock);
3817         init_waitqueue_head(&h->scan_wait_queue);
3818         h->scan_finished = 1; /* no scan currently in progress */
3819
3820         pci_set_drvdata(pdev, h);
3821         memset(h->cmd_pool_bits, 0,
3822                ((h->nr_cmds + BITS_PER_LONG -
3823                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3824
3825         hpsa_scsi_setup(h);
3826
3827         /* Turn the interrupts on so we can service requests */
3828         h->access.set_intr_mask(h, HPSA_INTR_ON);
3829
3830         hpsa_put_ctlr_into_performant_mode(h);
3831         hpsa_hba_inquiry(h);
3832         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3833         h->busy_initializing = 0;
3834         return 1;
3835
3836 clean4:
3837         hpsa_free_sg_chain_blocks(h);
3838         kfree(h->cmd_pool_bits);
3839         if (h->cmd_pool)
3840                 pci_free_consistent(h->pdev,
3841                             h->nr_cmds * sizeof(struct CommandList),
3842                             h->cmd_pool, h->cmd_pool_dhandle);
3843         if (h->errinfo_pool)
3844                 pci_free_consistent(h->pdev,
3845                             h->nr_cmds * sizeof(struct ErrorInfo),
3846                             h->errinfo_pool,
3847                             h->errinfo_pool_dhandle);
3848         free_irq(h->intr[PERF_MODE_INT], h);
3849 clean2:
3850 clean1:
3851         h->busy_initializing = 0;
3852         kfree(h);
3853         return rc;
3854 }
3855
3856 static void hpsa_flush_cache(struct ctlr_info *h)
3857 {
3858         char *flush_buf;
3859         struct CommandList *c;
3860
3861         flush_buf = kzalloc(4, GFP_KERNEL);
3862         if (!flush_buf)
3863                 return;
3864
3865         c = cmd_special_alloc(h);
3866         if (!c) {
3867                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3868                 goto out_of_memory;
3869         }
3870         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3871                 RAID_CTLR_LUNID, TYPE_CMD);
3872         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3873         if (c->err_info->CommandStatus != 0)
3874                 dev_warn(&h->pdev->dev,
3875                         "error flushing cache on controller\n");
3876         cmd_special_free(h, c);
3877 out_of_memory:
3878         kfree(flush_buf);
3879 }
3880
3881 static void hpsa_shutdown(struct pci_dev *pdev)
3882 {
3883         struct ctlr_info *h;
3884
3885         h = pci_get_drvdata(pdev);
3886         /* Turn board interrupts off  and send the flush cache command
3887          * sendcmd will turn off interrupt, and send the flush...
3888          * To write all data in the battery backed cache to disks
3889          */
3890         hpsa_flush_cache(h);
3891         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3892         free_irq(h->intr[PERF_MODE_INT], h);
3893 #ifdef CONFIG_PCI_MSI
3894         if (h->msix_vector)
3895                 pci_disable_msix(h->pdev);
3896         else if (h->msi_vector)
3897                 pci_disable_msi(h->pdev);
3898 #endif                          /* CONFIG_PCI_MSI */
3899 }
3900
3901 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3902 {
3903         struct ctlr_info *h;
3904
3905         if (pci_get_drvdata(pdev) == NULL) {
3906                 dev_err(&pdev->dev, "unable to remove device \n");
3907                 return;
3908         }
3909         h = pci_get_drvdata(pdev);
3910         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3911         hpsa_shutdown(pdev);
3912         iounmap(h->vaddr);
3913         iounmap(h->transtable);
3914         iounmap(h->cfgtable);
3915         hpsa_free_sg_chain_blocks(h);
3916         pci_free_consistent(h->pdev,
3917                 h->nr_cmds * sizeof(struct CommandList),
3918                 h->cmd_pool, h->cmd_pool_dhandle);
3919         pci_free_consistent(h->pdev,
3920                 h->nr_cmds * sizeof(struct ErrorInfo),
3921                 h->errinfo_pool, h->errinfo_pool_dhandle);
3922         pci_free_consistent(h->pdev, h->reply_pool_size,
3923                 h->reply_pool, h->reply_pool_dhandle);
3924         kfree(h->cmd_pool_bits);
3925         kfree(h->blockFetchTable);
3926         kfree(h->hba_inquiry_data);
3927         /*
3928          * Deliberately omit pci_disable_device(): it does something nasty to
3929          * Smart Array controllers that pci_enable_device does not undo
3930          */
3931         pci_release_regions(pdev);
3932         pci_set_drvdata(pdev, NULL);
3933         kfree(h);
3934 }
3935
3936 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3937         __attribute__((unused)) pm_message_t state)
3938 {
3939         return -ENOSYS;
3940 }
3941
3942 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3943 {
3944         return -ENOSYS;
3945 }
3946
3947 static struct pci_driver hpsa_pci_driver = {
3948         .name = "hpsa",
3949         .probe = hpsa_init_one,
3950         .remove = __devexit_p(hpsa_remove_one),
3951         .id_table = hpsa_pci_device_id, /* id_table */
3952         .shutdown = hpsa_shutdown,
3953         .suspend = hpsa_suspend,
3954         .resume = hpsa_resume,
3955 };
3956
3957 /* Fill in bucket_map[], given nsgs (the max number of
3958  * scatter gather elements supported) and bucket[],
3959  * which is an array of 8 integers.  The bucket[] array
3960  * contains 8 different DMA transfer sizes (in 16
3961  * byte increments) which the controller uses to fetch
3962  * commands.  This function fills in bucket_map[], which
3963  * maps a given number of scatter gather elements to one of
3964  * the 8 DMA transfer sizes.  The point of it is to allow the
3965  * controller to only do as much DMA as needed to fetch the
3966  * command, with the DMA transfer size encoded in the lower
3967  * bits of the command address.
3968  */
3969 static void  calc_bucket_map(int bucket[], int num_buckets,
3970         int nsgs, int *bucket_map)
3971 {
3972         int i, j, b, size;
3973
3974         /* even a command with 0 SGs requires 4 blocks */
3975 #define MINIMUM_TRANSFER_BLOCKS 4
3976 #define NUM_BUCKETS 8
3977         /* Note, bucket_map must have nsgs+1 entries. */
3978         for (i = 0; i <= nsgs; i++) {
3979                 /* Compute size of a command with i SG entries */
3980                 size = i + MINIMUM_TRANSFER_BLOCKS;
3981                 b = num_buckets; /* Assume the biggest bucket */
3982                 /* Find the bucket that is just big enough */
3983                 for (j = 0; j < 8; j++) {
3984                         if (bucket[j] >= size) {
3985                                 b = j;
3986                                 break;
3987                         }
3988                 }
3989                 /* for a command with i SG entries, use bucket b. */
3990                 bucket_map[i] = b;
3991         }
3992 }
3993
3994 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
3995 {
3996         int i;
3997         unsigned long register_value;
3998
3999         /* This is a bit complicated.  There are 8 registers on
4000          * the controller which we write to to tell it 8 different
4001          * sizes of commands which there may be.  It's a way of
4002          * reducing the DMA done to fetch each command.  Encoded into
4003          * each command's tag are 3 bits which communicate to the controller
4004          * which of the eight sizes that command fits within.  The size of
4005          * each command depends on how many scatter gather entries there are.
4006          * Each SG entry requires 16 bytes.  The eight registers are programmed
4007          * with the number of 16-byte blocks a command of that size requires.
4008          * The smallest command possible requires 5 such 16 byte blocks.
4009          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4010          * blocks.  Note, this only extends to the SG entries contained
4011          * within the command block, and does not extend to chained blocks
4012          * of SG elements.   bft[] contains the eight values we write to
4013          * the registers.  They are not evenly distributed, but have more
4014          * sizes for small commands, and fewer sizes for larger commands.
4015          */
4016         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4017         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4018         /*  5 = 1 s/g entry or 4k
4019          *  6 = 2 s/g entry or 8k
4020          *  8 = 4 s/g entry or 16k
4021          * 10 = 6 s/g entry or 24k
4022          */
4023
4024         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4025
4026         /* Controller spec: zero out this buffer. */
4027         memset(h->reply_pool, 0, h->reply_pool_size);
4028         h->reply_pool_head = h->reply_pool;
4029
4030         bft[7] = h->max_sg_entries + 4;
4031         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4032         for (i = 0; i < 8; i++)
4033                 writel(bft[i], &h->transtable->BlockFetch[i]);
4034
4035         /* size of controller ring buffer */
4036         writel(h->max_commands, &h->transtable->RepQSize);
4037         writel(1, &h->transtable->RepQCount);
4038         writel(0, &h->transtable->RepQCtrAddrLow32);
4039         writel(0, &h->transtable->RepQCtrAddrHigh32);
4040         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4041         writel(0, &h->transtable->RepQAddr0High32);
4042         writel(CFGTBL_Trans_Performant,
4043                 &(h->cfgtable->HostWrite.TransportRequest));
4044         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4045         hpsa_wait_for_mode_change_ack(h);
4046         register_value = readl(&(h->cfgtable->TransportActive));
4047         if (!(register_value & CFGTBL_Trans_Performant)) {
4048                 dev_warn(&h->pdev->dev, "unable to get board into"
4049                                         " performant mode\n");
4050                 return;
4051         }
4052 }
4053
4054 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4055 {
4056         u32 trans_support;
4057
4058         trans_support = readl(&(h->cfgtable->TransportSupport));
4059         if (!(trans_support & PERFORMANT_MODE))
4060                 return;
4061
4062         hpsa_get_max_perf_mode_cmds(h);
4063         h->max_sg_entries = 32;
4064         /* Performant mode ring buffer and supporting data structures */
4065         h->reply_pool_size = h->max_commands * sizeof(u64);
4066         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4067                                 &(h->reply_pool_dhandle));
4068
4069         /* Need a block fetch table for performant mode */
4070         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4071                                 sizeof(u32)), GFP_KERNEL);
4072
4073         if ((h->reply_pool == NULL)
4074                 || (h->blockFetchTable == NULL))
4075                 goto clean_up;
4076
4077         hpsa_enter_performant_mode(h);
4078
4079         /* Change the access methods to the performant access methods */
4080         h->access = SA5_performant_access;
4081         h->transMethod = CFGTBL_Trans_Performant;
4082
4083         return;
4084
4085 clean_up:
4086         if (h->reply_pool)
4087                 pci_free_consistent(h->pdev, h->reply_pool_size,
4088                         h->reply_pool, h->reply_pool_dhandle);
4089         kfree(h->blockFetchTable);
4090 }
4091
4092 /*
4093  *  This is it.  Register the PCI driver information for the cards we control
4094  *  the OS will call our registered routines when it finds one of our cards.
4095  */
4096 static int __init hpsa_init(void)
4097 {
4098         return pci_register_driver(&hpsa_pci_driver);
4099 }
4100
4101 static void __exit hpsa_cleanup(void)
4102 {
4103         pci_unregister_driver(&hpsa_pci_driver);
4104 }
4105
4106 module_init(hpsa_init);
4107 module_exit(hpsa_cleanup);