pandora: reserve CMA area for c64_tools
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
63
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
66
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70         HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
74
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78                 "Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82         "Use 'simple mode' rather than 'performant mode'");
83
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334d},
110         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
111                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
112         {0,}
113 };
114
115 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
116
117 /*  board_id = Subsystem Device ID & Vendor ID
118  *  product = Marketing Name for the board
119  *  access = Address of the struct of function pointers
120  */
121 static struct board_type products[] = {
122         {0x3241103C, "Smart Array P212", &SA5_access},
123         {0x3243103C, "Smart Array P410", &SA5_access},
124         {0x3245103C, "Smart Array P410i", &SA5_access},
125         {0x3247103C, "Smart Array P411", &SA5_access},
126         {0x3249103C, "Smart Array P812", &SA5_access},
127         {0x324a103C, "Smart Array P712m", &SA5_access},
128         {0x324b103C, "Smart Array P711m", &SA5_access},
129         {0x3350103C, "Smart Array P222", &SA5_access},
130         {0x3351103C, "Smart Array P420", &SA5_access},
131         {0x3352103C, "Smart Array P421", &SA5_access},
132         {0x3353103C, "Smart Array P822", &SA5_access},
133         {0x3354103C, "Smart Array P420i", &SA5_access},
134         {0x3355103C, "Smart Array P220i", &SA5_access},
135         {0x3356103C, "Smart Array P721m", &SA5_access},
136         {0x1920103C, "Smart Array", &SA5_access},
137         {0x1921103C, "Smart Array", &SA5_access},
138         {0x1922103C, "Smart Array", &SA5_access},
139         {0x1923103C, "Smart Array", &SA5_access},
140         {0x1924103C, "Smart Array", &SA5_access},
141         {0x1925103C, "Smart Array", &SA5_access},
142         {0x1926103C, "Smart Array", &SA5_access},
143         {0x1928103C, "Smart Array", &SA5_access},
144         {0x334d103C, "Smart Array P822se", &SA5_access},
145         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
146 };
147
148 static int number_of_controllers;
149
150 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
151 static spinlock_t lockup_detector_lock;
152 static struct task_struct *hpsa_lockup_detector;
153
154 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
155 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
156 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
157 static void start_io(struct ctlr_info *h);
158
159 #ifdef CONFIG_COMPAT
160 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
161 #endif
162
163 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
164 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
165 static struct CommandList *cmd_alloc(struct ctlr_info *h);
166 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
167 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
168         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
169         int cmd_type);
170
171 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
172 static void hpsa_scan_start(struct Scsi_Host *);
173 static int hpsa_scan_finished(struct Scsi_Host *sh,
174         unsigned long elapsed_time);
175 static int hpsa_change_queue_depth(struct scsi_device *sdev,
176         int qdepth, int reason);
177
178 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
179 static int hpsa_slave_alloc(struct scsi_device *sdev);
180 static void hpsa_slave_destroy(struct scsi_device *sdev);
181
182 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
183 static int check_for_unit_attention(struct ctlr_info *h,
184         struct CommandList *c);
185 static void check_ioctl_unit_attention(struct ctlr_info *h,
186         struct CommandList *c);
187 /* performant mode helper functions */
188 static void calc_bucket_map(int *bucket, int num_buckets,
189         int nsgs, int *bucket_map);
190 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
191 static inline u32 next_command(struct ctlr_info *h);
192 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
193         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
194         u64 *cfg_offset);
195 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
196         unsigned long *memory_bar);
197 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
198 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
199         void __iomem *vaddr, int wait_for_ready);
200 #define BOARD_NOT_READY 0
201 #define BOARD_READY 1
202
203 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
204 {
205         unsigned long *priv = shost_priv(sdev->host);
206         return (struct ctlr_info *) *priv;
207 }
208
209 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
210 {
211         unsigned long *priv = shost_priv(sh);
212         return (struct ctlr_info *) *priv;
213 }
214
215 static int check_for_unit_attention(struct ctlr_info *h,
216         struct CommandList *c)
217 {
218         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
219                 return 0;
220
221         switch (c->err_info->SenseInfo[12]) {
222         case STATE_CHANGED:
223                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
224                         "detected, command retried\n", h->ctlr);
225                 break;
226         case LUN_FAILED:
227                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
228                         "detected, action required\n", h->ctlr);
229                 break;
230         case REPORT_LUNS_CHANGED:
231                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
232                         "changed, action required\n", h->ctlr);
233         /*
234          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
235          */
236                 break;
237         case POWER_OR_RESET:
238                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
239                         "or device reset detected\n", h->ctlr);
240                 break;
241         case UNIT_ATTENTION_CLEARED:
242                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
243                     "cleared by another initiator\n", h->ctlr);
244                 break;
245         default:
246                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
247                         "unit attention detected\n", h->ctlr);
248                 break;
249         }
250         return 1;
251 }
252
253 static ssize_t host_store_rescan(struct device *dev,
254                                  struct device_attribute *attr,
255                                  const char *buf, size_t count)
256 {
257         struct ctlr_info *h;
258         struct Scsi_Host *shost = class_to_shost(dev);
259         h = shost_to_hba(shost);
260         hpsa_scan_start(h->scsi_host);
261         return count;
262 }
263
264 static ssize_t host_show_firmware_revision(struct device *dev,
265              struct device_attribute *attr, char *buf)
266 {
267         struct ctlr_info *h;
268         struct Scsi_Host *shost = class_to_shost(dev);
269         unsigned char *fwrev;
270
271         h = shost_to_hba(shost);
272         if (!h->hba_inquiry_data)
273                 return 0;
274         fwrev = &h->hba_inquiry_data[32];
275         return snprintf(buf, 20, "%c%c%c%c\n",
276                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
277 }
278
279 static ssize_t host_show_commands_outstanding(struct device *dev,
280              struct device_attribute *attr, char *buf)
281 {
282         struct Scsi_Host *shost = class_to_shost(dev);
283         struct ctlr_info *h = shost_to_hba(shost);
284
285         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
286 }
287
288 static ssize_t host_show_transport_mode(struct device *dev,
289         struct device_attribute *attr, char *buf)
290 {
291         struct ctlr_info *h;
292         struct Scsi_Host *shost = class_to_shost(dev);
293
294         h = shost_to_hba(shost);
295         return snprintf(buf, 20, "%s\n",
296                 h->transMethod & CFGTBL_Trans_Performant ?
297                         "performant" : "simple");
298 }
299
300 /* List of controllers which cannot be hard reset on kexec with reset_devices */
301 static u32 unresettable_controller[] = {
302         0x324a103C, /* Smart Array P712m */
303         0x324b103C, /* SmartArray P711m */
304         0x3223103C, /* Smart Array P800 */
305         0x3234103C, /* Smart Array P400 */
306         0x3235103C, /* Smart Array P400i */
307         0x3211103C, /* Smart Array E200i */
308         0x3212103C, /* Smart Array E200 */
309         0x3213103C, /* Smart Array E200i */
310         0x3214103C, /* Smart Array E200i */
311         0x3215103C, /* Smart Array E200i */
312         0x3237103C, /* Smart Array E500 */
313         0x323D103C, /* Smart Array P700m */
314         0x409C0E11, /* Smart Array 6400 */
315         0x409D0E11, /* Smart Array 6400 EM */
316 };
317
318 /* List of controllers which cannot even be soft reset */
319 static u32 soft_unresettable_controller[] = {
320         /* Exclude 640x boards.  These are two pci devices in one slot
321          * which share a battery backed cache module.  One controls the
322          * cache, the other accesses the cache through the one that controls
323          * it.  If we reset the one controlling the cache, the other will
324          * likely not be happy.  Just forbid resetting this conjoined mess.
325          * The 640x isn't really supported by hpsa anyway.
326          */
327         0x409C0E11, /* Smart Array 6400 */
328         0x409D0E11, /* Smart Array 6400 EM */
329 };
330
331 static int ctlr_is_hard_resettable(u32 board_id)
332 {
333         int i;
334
335         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
336                 if (unresettable_controller[i] == board_id)
337                         return 0;
338         return 1;
339 }
340
341 static int ctlr_is_soft_resettable(u32 board_id)
342 {
343         int i;
344
345         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
346                 if (soft_unresettable_controller[i] == board_id)
347                         return 0;
348         return 1;
349 }
350
351 static int ctlr_is_resettable(u32 board_id)
352 {
353         return ctlr_is_hard_resettable(board_id) ||
354                 ctlr_is_soft_resettable(board_id);
355 }
356
357 static ssize_t host_show_resettable(struct device *dev,
358         struct device_attribute *attr, char *buf)
359 {
360         struct ctlr_info *h;
361         struct Scsi_Host *shost = class_to_shost(dev);
362
363         h = shost_to_hba(shost);
364         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
365 }
366
367 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
368 {
369         return (scsi3addr[3] & 0xC0) == 0x40;
370 }
371
372 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
373         "UNKNOWN"
374 };
375 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
376
377 static ssize_t raid_level_show(struct device *dev,
378              struct device_attribute *attr, char *buf)
379 {
380         ssize_t l = 0;
381         unsigned char rlevel;
382         struct ctlr_info *h;
383         struct scsi_device *sdev;
384         struct hpsa_scsi_dev_t *hdev;
385         unsigned long flags;
386
387         sdev = to_scsi_device(dev);
388         h = sdev_to_hba(sdev);
389         spin_lock_irqsave(&h->lock, flags);
390         hdev = sdev->hostdata;
391         if (!hdev) {
392                 spin_unlock_irqrestore(&h->lock, flags);
393                 return -ENODEV;
394         }
395
396         /* Is this even a logical drive? */
397         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
398                 spin_unlock_irqrestore(&h->lock, flags);
399                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
400                 return l;
401         }
402
403         rlevel = hdev->raid_level;
404         spin_unlock_irqrestore(&h->lock, flags);
405         if (rlevel > RAID_UNKNOWN)
406                 rlevel = RAID_UNKNOWN;
407         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
408         return l;
409 }
410
411 static ssize_t lunid_show(struct device *dev,
412              struct device_attribute *attr, char *buf)
413 {
414         struct ctlr_info *h;
415         struct scsi_device *sdev;
416         struct hpsa_scsi_dev_t *hdev;
417         unsigned long flags;
418         unsigned char lunid[8];
419
420         sdev = to_scsi_device(dev);
421         h = sdev_to_hba(sdev);
422         spin_lock_irqsave(&h->lock, flags);
423         hdev = sdev->hostdata;
424         if (!hdev) {
425                 spin_unlock_irqrestore(&h->lock, flags);
426                 return -ENODEV;
427         }
428         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
429         spin_unlock_irqrestore(&h->lock, flags);
430         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
431                 lunid[0], lunid[1], lunid[2], lunid[3],
432                 lunid[4], lunid[5], lunid[6], lunid[7]);
433 }
434
435 static ssize_t unique_id_show(struct device *dev,
436              struct device_attribute *attr, char *buf)
437 {
438         struct ctlr_info *h;
439         struct scsi_device *sdev;
440         struct hpsa_scsi_dev_t *hdev;
441         unsigned long flags;
442         unsigned char sn[16];
443
444         sdev = to_scsi_device(dev);
445         h = sdev_to_hba(sdev);
446         spin_lock_irqsave(&h->lock, flags);
447         hdev = sdev->hostdata;
448         if (!hdev) {
449                 spin_unlock_irqrestore(&h->lock, flags);
450                 return -ENODEV;
451         }
452         memcpy(sn, hdev->device_id, sizeof(sn));
453         spin_unlock_irqrestore(&h->lock, flags);
454         return snprintf(buf, 16 * 2 + 2,
455                         "%02X%02X%02X%02X%02X%02X%02X%02X"
456                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
457                         sn[0], sn[1], sn[2], sn[3],
458                         sn[4], sn[5], sn[6], sn[7],
459                         sn[8], sn[9], sn[10], sn[11],
460                         sn[12], sn[13], sn[14], sn[15]);
461 }
462
463 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
464 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
465 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
466 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
467 static DEVICE_ATTR(firmware_revision, S_IRUGO,
468         host_show_firmware_revision, NULL);
469 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
470         host_show_commands_outstanding, NULL);
471 static DEVICE_ATTR(transport_mode, S_IRUGO,
472         host_show_transport_mode, NULL);
473 static DEVICE_ATTR(resettable, S_IRUGO,
474         host_show_resettable, NULL);
475
476 static struct device_attribute *hpsa_sdev_attrs[] = {
477         &dev_attr_raid_level,
478         &dev_attr_lunid,
479         &dev_attr_unique_id,
480         NULL,
481 };
482
483 static struct device_attribute *hpsa_shost_attrs[] = {
484         &dev_attr_rescan,
485         &dev_attr_firmware_revision,
486         &dev_attr_commands_outstanding,
487         &dev_attr_transport_mode,
488         &dev_attr_resettable,
489         NULL,
490 };
491
492 static struct scsi_host_template hpsa_driver_template = {
493         .module                 = THIS_MODULE,
494         .name                   = "hpsa",
495         .proc_name              = "hpsa",
496         .queuecommand           = hpsa_scsi_queue_command,
497         .scan_start             = hpsa_scan_start,
498         .scan_finished          = hpsa_scan_finished,
499         .change_queue_depth     = hpsa_change_queue_depth,
500         .this_id                = -1,
501         .use_clustering         = ENABLE_CLUSTERING,
502         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
503         .ioctl                  = hpsa_ioctl,
504         .slave_alloc            = hpsa_slave_alloc,
505         .slave_destroy          = hpsa_slave_destroy,
506 #ifdef CONFIG_COMPAT
507         .compat_ioctl           = hpsa_compat_ioctl,
508 #endif
509         .sdev_attrs = hpsa_sdev_attrs,
510         .shost_attrs = hpsa_shost_attrs,
511         .max_sectors = 8192,
512 };
513
514
515 /* Enqueuing and dequeuing functions for cmdlists. */
516 static inline void addQ(struct list_head *list, struct CommandList *c)
517 {
518         list_add_tail(&c->list, list);
519 }
520
521 static inline u32 next_command(struct ctlr_info *h)
522 {
523         u32 a;
524
525         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
526                 return h->access.command_completed(h);
527
528         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
529                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
530                 (h->reply_pool_head)++;
531                 h->commands_outstanding--;
532         } else {
533                 a = FIFO_EMPTY;
534         }
535         /* Check for wraparound */
536         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
537                 h->reply_pool_head = h->reply_pool;
538                 h->reply_pool_wraparound ^= 1;
539         }
540         return a;
541 }
542
543 /* set_performant_mode: Modify the tag for cciss performant
544  * set bit 0 for pull model, bits 3-1 for block fetch
545  * register number
546  */
547 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
548 {
549         if (likely(h->transMethod & CFGTBL_Trans_Performant))
550                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
551 }
552
553 static int is_firmware_flash_cmd(u8 *cdb)
554 {
555         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
556 }
557
558 /*
559  * During firmware flash, the heartbeat register may not update as frequently
560  * as it should.  So we dial down lockup detection during firmware flash. and
561  * dial it back up when firmware flash completes.
562  */
563 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
564 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
565 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
566                 struct CommandList *c)
567 {
568         if (!is_firmware_flash_cmd(c->Request.CDB))
569                 return;
570         atomic_inc(&h->firmware_flash_in_progress);
571         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
572 }
573
574 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
575                 struct CommandList *c)
576 {
577         if (is_firmware_flash_cmd(c->Request.CDB) &&
578                 atomic_dec_and_test(&h->firmware_flash_in_progress))
579                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
580 }
581
582 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
583         struct CommandList *c)
584 {
585         unsigned long flags;
586
587         set_performant_mode(h, c);
588         dial_down_lockup_detection_during_fw_flash(h, c);
589         spin_lock_irqsave(&h->lock, flags);
590         addQ(&h->reqQ, c);
591         h->Qdepth++;
592         start_io(h);
593         spin_unlock_irqrestore(&h->lock, flags);
594 }
595
596 static inline void removeQ(struct CommandList *c)
597 {
598         if (WARN_ON(list_empty(&c->list)))
599                 return;
600         list_del_init(&c->list);
601 }
602
603 static inline int is_hba_lunid(unsigned char scsi3addr[])
604 {
605         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
606 }
607
608 static inline int is_scsi_rev_5(struct ctlr_info *h)
609 {
610         if (!h->hba_inquiry_data)
611                 return 0;
612         if ((h->hba_inquiry_data[2] & 0x07) == 5)
613                 return 1;
614         return 0;
615 }
616
617 static int hpsa_find_target_lun(struct ctlr_info *h,
618         unsigned char scsi3addr[], int bus, int *target, int *lun)
619 {
620         /* finds an unused bus, target, lun for a new physical device
621          * assumes h->devlock is held
622          */
623         int i, found = 0;
624         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
625
626         memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
627
628         for (i = 0; i < h->ndevices; i++) {
629                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
630                         set_bit(h->dev[i]->target, lun_taken);
631         }
632
633         for (i = 0; i < HPSA_MAX_DEVICES; i++) {
634                 if (!test_bit(i, lun_taken)) {
635                         /* *bus = 1; */
636                         *target = i;
637                         *lun = 0;
638                         found = 1;
639                         break;
640                 }
641         }
642         return !found;
643 }
644
645 /* Add an entry into h->dev[] array. */
646 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
647                 struct hpsa_scsi_dev_t *device,
648                 struct hpsa_scsi_dev_t *added[], int *nadded)
649 {
650         /* assumes h->devlock is held */
651         int n = h->ndevices;
652         int i;
653         unsigned char addr1[8], addr2[8];
654         struct hpsa_scsi_dev_t *sd;
655
656         if (n >= HPSA_MAX_DEVICES) {
657                 dev_err(&h->pdev->dev, "too many devices, some will be "
658                         "inaccessible.\n");
659                 return -1;
660         }
661
662         /* physical devices do not have lun or target assigned until now. */
663         if (device->lun != -1)
664                 /* Logical device, lun is already assigned. */
665                 goto lun_assigned;
666
667         /* If this device a non-zero lun of a multi-lun device
668          * byte 4 of the 8-byte LUN addr will contain the logical
669          * unit no, zero otherise.
670          */
671         if (device->scsi3addr[4] == 0) {
672                 /* This is not a non-zero lun of a multi-lun device */
673                 if (hpsa_find_target_lun(h, device->scsi3addr,
674                         device->bus, &device->target, &device->lun) != 0)
675                         return -1;
676                 goto lun_assigned;
677         }
678
679         /* This is a non-zero lun of a multi-lun device.
680          * Search through our list and find the device which
681          * has the same 8 byte LUN address, excepting byte 4.
682          * Assign the same bus and target for this new LUN.
683          * Use the logical unit number from the firmware.
684          */
685         memcpy(addr1, device->scsi3addr, 8);
686         addr1[4] = 0;
687         for (i = 0; i < n; i++) {
688                 sd = h->dev[i];
689                 memcpy(addr2, sd->scsi3addr, 8);
690                 addr2[4] = 0;
691                 /* differ only in byte 4? */
692                 if (memcmp(addr1, addr2, 8) == 0) {
693                         device->bus = sd->bus;
694                         device->target = sd->target;
695                         device->lun = device->scsi3addr[4];
696                         break;
697                 }
698         }
699         if (device->lun == -1) {
700                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
701                         " suspect firmware bug or unsupported hardware "
702                         "configuration.\n");
703                         return -1;
704         }
705
706 lun_assigned:
707
708         h->dev[n] = device;
709         h->ndevices++;
710         added[*nadded] = device;
711         (*nadded)++;
712
713         /* initially, (before registering with scsi layer) we don't
714          * know our hostno and we don't want to print anything first
715          * time anyway (the scsi layer's inquiries will show that info)
716          */
717         /* if (hostno != -1) */
718                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
719                         scsi_device_type(device->devtype), hostno,
720                         device->bus, device->target, device->lun);
721         return 0;
722 }
723
724 /* Replace an entry from h->dev[] array. */
725 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
726         int entry, struct hpsa_scsi_dev_t *new_entry,
727         struct hpsa_scsi_dev_t *added[], int *nadded,
728         struct hpsa_scsi_dev_t *removed[], int *nremoved)
729 {
730         /* assumes h->devlock is held */
731         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
732         removed[*nremoved] = h->dev[entry];
733         (*nremoved)++;
734
735         /*
736          * New physical devices won't have target/lun assigned yet
737          * so we need to preserve the values in the slot we are replacing.
738          */
739         if (new_entry->target == -1) {
740                 new_entry->target = h->dev[entry]->target;
741                 new_entry->lun = h->dev[entry]->lun;
742         }
743
744         h->dev[entry] = new_entry;
745         added[*nadded] = new_entry;
746         (*nadded)++;
747         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
748                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
749                         new_entry->target, new_entry->lun);
750 }
751
752 /* Remove an entry from h->dev[] array. */
753 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
754         struct hpsa_scsi_dev_t *removed[], int *nremoved)
755 {
756         /* assumes h->devlock is held */
757         int i;
758         struct hpsa_scsi_dev_t *sd;
759
760         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
761
762         sd = h->dev[entry];
763         removed[*nremoved] = h->dev[entry];
764         (*nremoved)++;
765
766         for (i = entry; i < h->ndevices-1; i++)
767                 h->dev[i] = h->dev[i+1];
768         h->ndevices--;
769         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
770                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
771                 sd->lun);
772 }
773
774 #define SCSI3ADDR_EQ(a, b) ( \
775         (a)[7] == (b)[7] && \
776         (a)[6] == (b)[6] && \
777         (a)[5] == (b)[5] && \
778         (a)[4] == (b)[4] && \
779         (a)[3] == (b)[3] && \
780         (a)[2] == (b)[2] && \
781         (a)[1] == (b)[1] && \
782         (a)[0] == (b)[0])
783
784 static void fixup_botched_add(struct ctlr_info *h,
785         struct hpsa_scsi_dev_t *added)
786 {
787         /* called when scsi_add_device fails in order to re-adjust
788          * h->dev[] to match the mid layer's view.
789          */
790         unsigned long flags;
791         int i, j;
792
793         spin_lock_irqsave(&h->lock, flags);
794         for (i = 0; i < h->ndevices; i++) {
795                 if (h->dev[i] == added) {
796                         for (j = i; j < h->ndevices-1; j++)
797                                 h->dev[j] = h->dev[j+1];
798                         h->ndevices--;
799                         break;
800                 }
801         }
802         spin_unlock_irqrestore(&h->lock, flags);
803         kfree(added);
804 }
805
806 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
807         struct hpsa_scsi_dev_t *dev2)
808 {
809         /* we compare everything except lun and target as these
810          * are not yet assigned.  Compare parts likely
811          * to differ first
812          */
813         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
814                 sizeof(dev1->scsi3addr)) != 0)
815                 return 0;
816         if (memcmp(dev1->device_id, dev2->device_id,
817                 sizeof(dev1->device_id)) != 0)
818                 return 0;
819         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
820                 return 0;
821         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
822                 return 0;
823         if (dev1->devtype != dev2->devtype)
824                 return 0;
825         if (dev1->bus != dev2->bus)
826                 return 0;
827         return 1;
828 }
829
830 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
831  * and return needle location in *index.  If scsi3addr matches, but not
832  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
833  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
834  */
835 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
836         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
837         int *index)
838 {
839         int i;
840 #define DEVICE_NOT_FOUND 0
841 #define DEVICE_CHANGED 1
842 #define DEVICE_SAME 2
843         for (i = 0; i < haystack_size; i++) {
844                 if (haystack[i] == NULL) /* previously removed. */
845                         continue;
846                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
847                         *index = i;
848                         if (device_is_the_same(needle, haystack[i]))
849                                 return DEVICE_SAME;
850                         else
851                                 return DEVICE_CHANGED;
852                 }
853         }
854         *index = -1;
855         return DEVICE_NOT_FOUND;
856 }
857
858 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
859         struct hpsa_scsi_dev_t *sd[], int nsds)
860 {
861         /* sd contains scsi3 addresses and devtypes, and inquiry
862          * data.  This function takes what's in sd to be the current
863          * reality and updates h->dev[] to reflect that reality.
864          */
865         int i, entry, device_change, changes = 0;
866         struct hpsa_scsi_dev_t *csd;
867         unsigned long flags;
868         struct hpsa_scsi_dev_t **added, **removed;
869         int nadded, nremoved;
870         struct Scsi_Host *sh = NULL;
871
872         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
873         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
874
875         if (!added || !removed) {
876                 dev_warn(&h->pdev->dev, "out of memory in "
877                         "adjust_hpsa_scsi_table\n");
878                 goto free_and_out;
879         }
880
881         spin_lock_irqsave(&h->devlock, flags);
882
883         /* find any devices in h->dev[] that are not in
884          * sd[] and remove them from h->dev[], and for any
885          * devices which have changed, remove the old device
886          * info and add the new device info.
887          */
888         i = 0;
889         nremoved = 0;
890         nadded = 0;
891         while (i < h->ndevices) {
892                 csd = h->dev[i];
893                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
894                 if (device_change == DEVICE_NOT_FOUND) {
895                         changes++;
896                         hpsa_scsi_remove_entry(h, hostno, i,
897                                 removed, &nremoved);
898                         continue; /* remove ^^^, hence i not incremented */
899                 } else if (device_change == DEVICE_CHANGED) {
900                         changes++;
901                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
902                                 added, &nadded, removed, &nremoved);
903                         /* Set it to NULL to prevent it from being freed
904                          * at the bottom of hpsa_update_scsi_devices()
905                          */
906                         sd[entry] = NULL;
907                 }
908                 i++;
909         }
910
911         /* Now, make sure every device listed in sd[] is also
912          * listed in h->dev[], adding them if they aren't found
913          */
914
915         for (i = 0; i < nsds; i++) {
916                 if (!sd[i]) /* if already added above. */
917                         continue;
918                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
919                                         h->ndevices, &entry);
920                 if (device_change == DEVICE_NOT_FOUND) {
921                         changes++;
922                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
923                                 added, &nadded) != 0)
924                                 break;
925                         sd[i] = NULL; /* prevent from being freed later. */
926                 } else if (device_change == DEVICE_CHANGED) {
927                         /* should never happen... */
928                         changes++;
929                         dev_warn(&h->pdev->dev,
930                                 "device unexpectedly changed.\n");
931                         /* but if it does happen, we just ignore that device */
932                 }
933         }
934         spin_unlock_irqrestore(&h->devlock, flags);
935
936         /* Don't notify scsi mid layer of any changes the first time through
937          * (or if there are no changes) scsi_scan_host will do it later the
938          * first time through.
939          */
940         if (hostno == -1 || !changes)
941                 goto free_and_out;
942
943         sh = h->scsi_host;
944         /* Notify scsi mid layer of any removed devices */
945         for (i = 0; i < nremoved; i++) {
946                 struct scsi_device *sdev =
947                         scsi_device_lookup(sh, removed[i]->bus,
948                                 removed[i]->target, removed[i]->lun);
949                 if (sdev != NULL) {
950                         scsi_remove_device(sdev);
951                         scsi_device_put(sdev);
952                 } else {
953                         /* We don't expect to get here.
954                          * future cmds to this device will get selection
955                          * timeout as if the device was gone.
956                          */
957                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
958                                 " for removal.", hostno, removed[i]->bus,
959                                 removed[i]->target, removed[i]->lun);
960                 }
961                 kfree(removed[i]);
962                 removed[i] = NULL;
963         }
964
965         /* Notify scsi mid layer of any added devices */
966         for (i = 0; i < nadded; i++) {
967                 if (scsi_add_device(sh, added[i]->bus,
968                         added[i]->target, added[i]->lun) == 0)
969                         continue;
970                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
971                         "device not added.\n", hostno, added[i]->bus,
972                         added[i]->target, added[i]->lun);
973                 /* now we have to remove it from h->dev,
974                  * since it didn't get added to scsi mid layer
975                  */
976                 fixup_botched_add(h, added[i]);
977         }
978
979 free_and_out:
980         kfree(added);
981         kfree(removed);
982 }
983
984 /*
985  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
986  * Assume's h->devlock is held.
987  */
988 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
989         int bus, int target, int lun)
990 {
991         int i;
992         struct hpsa_scsi_dev_t *sd;
993
994         for (i = 0; i < h->ndevices; i++) {
995                 sd = h->dev[i];
996                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
997                         return sd;
998         }
999         return NULL;
1000 }
1001
1002 /* link sdev->hostdata to our per-device structure. */
1003 static int hpsa_slave_alloc(struct scsi_device *sdev)
1004 {
1005         struct hpsa_scsi_dev_t *sd;
1006         unsigned long flags;
1007         struct ctlr_info *h;
1008
1009         h = sdev_to_hba(sdev);
1010         spin_lock_irqsave(&h->devlock, flags);
1011         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1012                 sdev_id(sdev), sdev->lun);
1013         if (sd != NULL)
1014                 sdev->hostdata = sd;
1015         spin_unlock_irqrestore(&h->devlock, flags);
1016         return 0;
1017 }
1018
1019 static void hpsa_slave_destroy(struct scsi_device *sdev)
1020 {
1021         /* nothing to do. */
1022 }
1023
1024 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1025 {
1026         int i;
1027
1028         if (!h->cmd_sg_list)
1029                 return;
1030         for (i = 0; i < h->nr_cmds; i++) {
1031                 kfree(h->cmd_sg_list[i]);
1032                 h->cmd_sg_list[i] = NULL;
1033         }
1034         kfree(h->cmd_sg_list);
1035         h->cmd_sg_list = NULL;
1036 }
1037
1038 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1039 {
1040         int i;
1041
1042         if (h->chainsize <= 0)
1043                 return 0;
1044
1045         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1046                                 GFP_KERNEL);
1047         if (!h->cmd_sg_list)
1048                 return -ENOMEM;
1049         for (i = 0; i < h->nr_cmds; i++) {
1050                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1051                                                 h->chainsize, GFP_KERNEL);
1052                 if (!h->cmd_sg_list[i])
1053                         goto clean;
1054         }
1055         return 0;
1056
1057 clean:
1058         hpsa_free_sg_chain_blocks(h);
1059         return -ENOMEM;
1060 }
1061
1062 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1063         struct CommandList *c)
1064 {
1065         struct SGDescriptor *chain_sg, *chain_block;
1066         u64 temp64;
1067
1068         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1069         chain_block = h->cmd_sg_list[c->cmdindex];
1070         chain_sg->Ext = HPSA_SG_CHAIN;
1071         chain_sg->Len = sizeof(*chain_sg) *
1072                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1073         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1074                                 PCI_DMA_TODEVICE);
1075         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1076         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1077 }
1078
1079 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1080         struct CommandList *c)
1081 {
1082         struct SGDescriptor *chain_sg;
1083         union u64bit temp64;
1084
1085         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1086                 return;
1087
1088         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1089         temp64.val32.lower = chain_sg->Addr.lower;
1090         temp64.val32.upper = chain_sg->Addr.upper;
1091         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1092 }
1093
1094 static void complete_scsi_command(struct CommandList *cp)
1095 {
1096         struct scsi_cmnd *cmd;
1097         struct ctlr_info *h;
1098         struct ErrorInfo *ei;
1099
1100         unsigned char sense_key;
1101         unsigned char asc;      /* additional sense code */
1102         unsigned char ascq;     /* additional sense code qualifier */
1103         unsigned long sense_data_size;
1104
1105         ei = cp->err_info;
1106         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1107         h = cp->h;
1108
1109         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1110         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1111                 hpsa_unmap_sg_chain_block(h, cp);
1112
1113         cmd->result = (DID_OK << 16);           /* host byte */
1114         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1115         cmd->result |= ei->ScsiStatus;
1116
1117         /* copy the sense data whether we need to or not. */
1118         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1119                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1120         else
1121                 sense_data_size = sizeof(ei->SenseInfo);
1122         if (ei->SenseLen < sense_data_size)
1123                 sense_data_size = ei->SenseLen;
1124
1125         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1126         scsi_set_resid(cmd, ei->ResidualCnt);
1127
1128         if (ei->CommandStatus == 0) {
1129                 cmd->scsi_done(cmd);
1130                 cmd_free(h, cp);
1131                 return;
1132         }
1133
1134         /* an error has occurred */
1135         switch (ei->CommandStatus) {
1136
1137         case CMD_TARGET_STATUS:
1138                 if (ei->ScsiStatus) {
1139                         /* Get sense key */
1140                         sense_key = 0xf & ei->SenseInfo[2];
1141                         /* Get additional sense code */
1142                         asc = ei->SenseInfo[12];
1143                         /* Get addition sense code qualifier */
1144                         ascq = ei->SenseInfo[13];
1145                 }
1146
1147                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1148                         if (check_for_unit_attention(h, cp)) {
1149                                 cmd->result = DID_SOFT_ERROR << 16;
1150                                 break;
1151                         }
1152                         if (sense_key == ILLEGAL_REQUEST) {
1153                                 /*
1154                                  * SCSI REPORT_LUNS is commonly unsupported on
1155                                  * Smart Array.  Suppress noisy complaint.
1156                                  */
1157                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1158                                         break;
1159
1160                                 /* If ASC/ASCQ indicate Logical Unit
1161                                  * Not Supported condition,
1162                                  */
1163                                 if ((asc == 0x25) && (ascq == 0x0)) {
1164                                         dev_warn(&h->pdev->dev, "cp %p "
1165                                                 "has check condition\n", cp);
1166                                         break;
1167                                 }
1168                         }
1169
1170                         if (sense_key == NOT_READY) {
1171                                 /* If Sense is Not Ready, Logical Unit
1172                                  * Not ready, Manual Intervention
1173                                  * required
1174                                  */
1175                                 if ((asc == 0x04) && (ascq == 0x03)) {
1176                                         dev_warn(&h->pdev->dev, "cp %p "
1177                                                 "has check condition: unit "
1178                                                 "not ready, manual "
1179                                                 "intervention required\n", cp);
1180                                         break;
1181                                 }
1182                         }
1183                         if (sense_key == ABORTED_COMMAND) {
1184                                 /* Aborted command is retryable */
1185                                 dev_warn(&h->pdev->dev, "cp %p "
1186                                         "has check condition: aborted command: "
1187                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1188                                         cp, asc, ascq);
1189                                 cmd->result = DID_SOFT_ERROR << 16;
1190                                 break;
1191                         }
1192                         /* Must be some other type of check condition */
1193                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1194                                         "unknown type: "
1195                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1196                                         "Returning result: 0x%x, "
1197                                         "cmd=[%02x %02x %02x %02x %02x "
1198                                         "%02x %02x %02x %02x %02x %02x "
1199                                         "%02x %02x %02x %02x %02x]\n",
1200                                         cp, sense_key, asc, ascq,
1201                                         cmd->result,
1202                                         cmd->cmnd[0], cmd->cmnd[1],
1203                                         cmd->cmnd[2], cmd->cmnd[3],
1204                                         cmd->cmnd[4], cmd->cmnd[5],
1205                                         cmd->cmnd[6], cmd->cmnd[7],
1206                                         cmd->cmnd[8], cmd->cmnd[9],
1207                                         cmd->cmnd[10], cmd->cmnd[11],
1208                                         cmd->cmnd[12], cmd->cmnd[13],
1209                                         cmd->cmnd[14], cmd->cmnd[15]);
1210                         break;
1211                 }
1212
1213
1214                 /* Problem was not a check condition
1215                  * Pass it up to the upper layers...
1216                  */
1217                 if (ei->ScsiStatus) {
1218                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1219                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1220                                 "Returning result: 0x%x\n",
1221                                 cp, ei->ScsiStatus,
1222                                 sense_key, asc, ascq,
1223                                 cmd->result);
1224                 } else {  /* scsi status is zero??? How??? */
1225                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1226                                 "Returning no connection.\n", cp),
1227
1228                         /* Ordinarily, this case should never happen,
1229                          * but there is a bug in some released firmware
1230                          * revisions that allows it to happen if, for
1231                          * example, a 4100 backplane loses power and
1232                          * the tape drive is in it.  We assume that
1233                          * it's a fatal error of some kind because we
1234                          * can't show that it wasn't. We will make it
1235                          * look like selection timeout since that is
1236                          * the most common reason for this to occur,
1237                          * and it's severe enough.
1238                          */
1239
1240                         cmd->result = DID_NO_CONNECT << 16;
1241                 }
1242                 break;
1243
1244         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1245                 break;
1246         case CMD_DATA_OVERRUN:
1247                 dev_warn(&h->pdev->dev, "cp %p has"
1248                         " completed with data overrun "
1249                         "reported\n", cp);
1250                 break;
1251         case CMD_INVALID: {
1252                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1253                 print_cmd(cp); */
1254                 /* We get CMD_INVALID if you address a non-existent device
1255                  * instead of a selection timeout (no response).  You will
1256                  * see this if you yank out a drive, then try to access it.
1257                  * This is kind of a shame because it means that any other
1258                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1259                  * missing target. */
1260                 cmd->result = DID_NO_CONNECT << 16;
1261         }
1262                 break;
1263         case CMD_PROTOCOL_ERR:
1264                 cmd->result = DID_ERROR << 16;
1265                 dev_warn(&h->pdev->dev, "cp %p has "
1266                         "protocol error\n", cp);
1267                 break;
1268         case CMD_HARDWARE_ERR:
1269                 cmd->result = DID_ERROR << 16;
1270                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1271                 break;
1272         case CMD_CONNECTION_LOST:
1273                 cmd->result = DID_ERROR << 16;
1274                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1275                 break;
1276         case CMD_ABORTED:
1277                 cmd->result = DID_ABORT << 16;
1278                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1279                                 cp, ei->ScsiStatus);
1280                 break;
1281         case CMD_ABORT_FAILED:
1282                 cmd->result = DID_ERROR << 16;
1283                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1284                 break;
1285         case CMD_UNSOLICITED_ABORT:
1286                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1287                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1288                         "abort\n", cp);
1289                 break;
1290         case CMD_TIMEOUT:
1291                 cmd->result = DID_TIME_OUT << 16;
1292                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1293                 break;
1294         case CMD_UNABORTABLE:
1295                 cmd->result = DID_ERROR << 16;
1296                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1297                 break;
1298         default:
1299                 cmd->result = DID_ERROR << 16;
1300                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1301                                 cp, ei->CommandStatus);
1302         }
1303         cmd->scsi_done(cmd);
1304         cmd_free(h, cp);
1305 }
1306
1307 static int hpsa_scsi_detect(struct ctlr_info *h)
1308 {
1309         struct Scsi_Host *sh;
1310         int error;
1311
1312         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1313         if (sh == NULL)
1314                 goto fail;
1315
1316         sh->io_port = 0;
1317         sh->n_io_port = 0;
1318         sh->this_id = -1;
1319         sh->max_channel = 3;
1320         sh->max_cmd_len = MAX_COMMAND_SIZE;
1321         sh->max_lun = HPSA_MAX_LUN;
1322         sh->max_id = HPSA_MAX_LUN;
1323         sh->can_queue = h->nr_cmds;
1324         sh->cmd_per_lun = h->nr_cmds;
1325         sh->sg_tablesize = h->maxsgentries;
1326         h->scsi_host = sh;
1327         sh->hostdata[0] = (unsigned long) h;
1328         sh->irq = h->intr[h->intr_mode];
1329         sh->unique_id = sh->irq;
1330         error = scsi_add_host(sh, &h->pdev->dev);
1331         if (error)
1332                 goto fail_host_put;
1333         scsi_scan_host(sh);
1334         return 0;
1335
1336  fail_host_put:
1337         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1338                 " failed for controller %d\n", h->ctlr);
1339         scsi_host_put(sh);
1340         return error;
1341  fail:
1342         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1343                 " failed for controller %d\n", h->ctlr);
1344         return -ENOMEM;
1345 }
1346
1347 static void hpsa_pci_unmap(struct pci_dev *pdev,
1348         struct CommandList *c, int sg_used, int data_direction)
1349 {
1350         int i;
1351         union u64bit addr64;
1352
1353         for (i = 0; i < sg_used; i++) {
1354                 addr64.val32.lower = c->SG[i].Addr.lower;
1355                 addr64.val32.upper = c->SG[i].Addr.upper;
1356                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1357                         data_direction);
1358         }
1359 }
1360
1361 static void hpsa_map_one(struct pci_dev *pdev,
1362                 struct CommandList *cp,
1363                 unsigned char *buf,
1364                 size_t buflen,
1365                 int data_direction)
1366 {
1367         u64 addr64;
1368
1369         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1370                 cp->Header.SGList = 0;
1371                 cp->Header.SGTotal = 0;
1372                 return;
1373         }
1374
1375         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1376         cp->SG[0].Addr.lower =
1377           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1378         cp->SG[0].Addr.upper =
1379           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1380         cp->SG[0].Len = buflen;
1381         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1382         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1383 }
1384
1385 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1386         struct CommandList *c)
1387 {
1388         DECLARE_COMPLETION_ONSTACK(wait);
1389
1390         c->waiting = &wait;
1391         enqueue_cmd_and_start_io(h, c);
1392         wait_for_completion(&wait);
1393 }
1394
1395 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1396         struct CommandList *c)
1397 {
1398         unsigned long flags;
1399
1400         /* If controller lockup detected, fake a hardware error. */
1401         spin_lock_irqsave(&h->lock, flags);
1402         if (unlikely(h->lockup_detected)) {
1403                 spin_unlock_irqrestore(&h->lock, flags);
1404                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1405         } else {
1406                 spin_unlock_irqrestore(&h->lock, flags);
1407                 hpsa_scsi_do_simple_cmd_core(h, c);
1408         }
1409 }
1410
1411 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1412         struct CommandList *c, int data_direction)
1413 {
1414         int retry_count = 0;
1415
1416         do {
1417                 memset(c->err_info, 0, sizeof(*c->err_info));
1418                 hpsa_scsi_do_simple_cmd_core(h, c);
1419                 retry_count++;
1420         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1421         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1422 }
1423
1424 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1425 {
1426         struct ErrorInfo *ei;
1427         struct device *d = &cp->h->pdev->dev;
1428
1429         ei = cp->err_info;
1430         switch (ei->CommandStatus) {
1431         case CMD_TARGET_STATUS:
1432                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1433                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1434                                 ei->ScsiStatus);
1435                 if (ei->ScsiStatus == 0)
1436                         dev_warn(d, "SCSI status is abnormally zero.  "
1437                         "(probably indicates selection timeout "
1438                         "reported incorrectly due to a known "
1439                         "firmware bug, circa July, 2001.)\n");
1440                 break;
1441         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1442                         dev_info(d, "UNDERRUN\n");
1443                 break;
1444         case CMD_DATA_OVERRUN:
1445                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1446                 break;
1447         case CMD_INVALID: {
1448                 /* controller unfortunately reports SCSI passthru's
1449                  * to non-existent targets as invalid commands.
1450                  */
1451                 dev_warn(d, "cp %p is reported invalid (probably means "
1452                         "target device no longer present)\n", cp);
1453                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1454                 print_cmd(cp);  */
1455                 }
1456                 break;
1457         case CMD_PROTOCOL_ERR:
1458                 dev_warn(d, "cp %p has protocol error \n", cp);
1459                 break;
1460         case CMD_HARDWARE_ERR:
1461                 /* cmd->result = DID_ERROR << 16; */
1462                 dev_warn(d, "cp %p had hardware error\n", cp);
1463                 break;
1464         case CMD_CONNECTION_LOST:
1465                 dev_warn(d, "cp %p had connection lost\n", cp);
1466                 break;
1467         case CMD_ABORTED:
1468                 dev_warn(d, "cp %p was aborted\n", cp);
1469                 break;
1470         case CMD_ABORT_FAILED:
1471                 dev_warn(d, "cp %p reports abort failed\n", cp);
1472                 break;
1473         case CMD_UNSOLICITED_ABORT:
1474                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1475                 break;
1476         case CMD_TIMEOUT:
1477                 dev_warn(d, "cp %p timed out\n", cp);
1478                 break;
1479         case CMD_UNABORTABLE:
1480                 dev_warn(d, "Command unabortable\n");
1481                 break;
1482         default:
1483                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1484                                 ei->CommandStatus);
1485         }
1486 }
1487
1488 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1489                         unsigned char page, unsigned char *buf,
1490                         unsigned char bufsize)
1491 {
1492         int rc = IO_OK;
1493         struct CommandList *c;
1494         struct ErrorInfo *ei;
1495
1496         c = cmd_special_alloc(h);
1497
1498         if (c == NULL) {                        /* trouble... */
1499                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1500                 return -ENOMEM;
1501         }
1502
1503         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1504         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1505         ei = c->err_info;
1506         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1507                 hpsa_scsi_interpret_error(c);
1508                 rc = -1;
1509         }
1510         cmd_special_free(h, c);
1511         return rc;
1512 }
1513
1514 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1515 {
1516         int rc = IO_OK;
1517         struct CommandList *c;
1518         struct ErrorInfo *ei;
1519
1520         c = cmd_special_alloc(h);
1521
1522         if (c == NULL) {                        /* trouble... */
1523                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1524                 return -ENOMEM;
1525         }
1526
1527         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1528         hpsa_scsi_do_simple_cmd_core(h, c);
1529         /* no unmap needed here because no data xfer. */
1530
1531         ei = c->err_info;
1532         if (ei->CommandStatus != 0) {
1533                 hpsa_scsi_interpret_error(c);
1534                 rc = -1;
1535         }
1536         cmd_special_free(h, c);
1537         return rc;
1538 }
1539
1540 static void hpsa_get_raid_level(struct ctlr_info *h,
1541         unsigned char *scsi3addr, unsigned char *raid_level)
1542 {
1543         int rc;
1544         unsigned char *buf;
1545
1546         *raid_level = RAID_UNKNOWN;
1547         buf = kzalloc(64, GFP_KERNEL);
1548         if (!buf)
1549                 return;
1550         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1551         if (rc == 0)
1552                 *raid_level = buf[8];
1553         if (*raid_level > RAID_UNKNOWN)
1554                 *raid_level = RAID_UNKNOWN;
1555         kfree(buf);
1556         return;
1557 }
1558
1559 /* Get the device id from inquiry page 0x83 */
1560 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1561         unsigned char *device_id, int buflen)
1562 {
1563         int rc;
1564         unsigned char *buf;
1565
1566         if (buflen > 16)
1567                 buflen = 16;
1568         buf = kzalloc(64, GFP_KERNEL);
1569         if (!buf)
1570                 return -1;
1571         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1572         if (rc == 0)
1573                 memcpy(device_id, &buf[8], buflen);
1574         kfree(buf);
1575         return rc != 0;
1576 }
1577
1578 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1579                 struct ReportLUNdata *buf, int bufsize,
1580                 int extended_response)
1581 {
1582         int rc = IO_OK;
1583         struct CommandList *c;
1584         unsigned char scsi3addr[8];
1585         struct ErrorInfo *ei;
1586
1587         c = cmd_special_alloc(h);
1588         if (c == NULL) {                        /* trouble... */
1589                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1590                 return -1;
1591         }
1592         /* address the controller */
1593         memset(scsi3addr, 0, sizeof(scsi3addr));
1594         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1595                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1596         if (extended_response)
1597                 c->Request.CDB[1] = extended_response;
1598         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1599         ei = c->err_info;
1600         if (ei->CommandStatus != 0 &&
1601             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1602                 hpsa_scsi_interpret_error(c);
1603                 rc = -1;
1604         }
1605         cmd_special_free(h, c);
1606         return rc;
1607 }
1608
1609 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1610                 struct ReportLUNdata *buf,
1611                 int bufsize, int extended_response)
1612 {
1613         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1614 }
1615
1616 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1617                 struct ReportLUNdata *buf, int bufsize)
1618 {
1619         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1620 }
1621
1622 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1623         int bus, int target, int lun)
1624 {
1625         device->bus = bus;
1626         device->target = target;
1627         device->lun = lun;
1628 }
1629
1630 static int hpsa_update_device_info(struct ctlr_info *h,
1631         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1632         unsigned char *is_OBDR_device)
1633 {
1634
1635 #define OBDR_SIG_OFFSET 43
1636 #define OBDR_TAPE_SIG "$DR-10"
1637 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1638 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1639
1640         unsigned char *inq_buff;
1641         unsigned char *obdr_sig;
1642
1643         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1644         if (!inq_buff)
1645                 goto bail_out;
1646
1647         /* Do an inquiry to the device to see what it is. */
1648         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1649                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1650                 /* Inquiry failed (msg printed already) */
1651                 dev_err(&h->pdev->dev,
1652                         "hpsa_update_device_info: inquiry failed\n");
1653                 goto bail_out;
1654         }
1655
1656         this_device->devtype = (inq_buff[0] & 0x1f);
1657         memcpy(this_device->scsi3addr, scsi3addr, 8);
1658         memcpy(this_device->vendor, &inq_buff[8],
1659                 sizeof(this_device->vendor));
1660         memcpy(this_device->model, &inq_buff[16],
1661                 sizeof(this_device->model));
1662         memset(this_device->device_id, 0,
1663                 sizeof(this_device->device_id));
1664         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1665                 sizeof(this_device->device_id));
1666
1667         if (this_device->devtype == TYPE_DISK &&
1668                 is_logical_dev_addr_mode(scsi3addr))
1669                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1670         else
1671                 this_device->raid_level = RAID_UNKNOWN;
1672
1673         if (is_OBDR_device) {
1674                 /* See if this is a One-Button-Disaster-Recovery device
1675                  * by looking for "$DR-10" at offset 43 in inquiry data.
1676                  */
1677                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1678                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1679                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1680                                                 OBDR_SIG_LEN) == 0);
1681         }
1682
1683         kfree(inq_buff);
1684         return 0;
1685
1686 bail_out:
1687         kfree(inq_buff);
1688         return 1;
1689 }
1690
1691 static unsigned char *msa2xxx_model[] = {
1692         "MSA2012",
1693         "MSA2024",
1694         "MSA2312",
1695         "MSA2324",
1696         "P2000 G3 SAS",
1697         NULL,
1698 };
1699
1700 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1701 {
1702         int i;
1703
1704         for (i = 0; msa2xxx_model[i]; i++)
1705                 if (strncmp(device->model, msa2xxx_model[i],
1706                         strlen(msa2xxx_model[i])) == 0)
1707                         return 1;
1708         return 0;
1709 }
1710
1711 /* Helper function to assign bus, target, lun mapping of devices.
1712  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1713  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1714  * Logical drive target and lun are assigned at this time, but
1715  * physical device lun and target assignment are deferred (assigned
1716  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1717  */
1718 static void figure_bus_target_lun(struct ctlr_info *h,
1719         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1720         struct hpsa_scsi_dev_t *device)
1721 {
1722         u32 lunid;
1723
1724         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1725                 /* logical device */
1726                 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1727                 if (is_msa2xxx(h, device)) {
1728                         /* msa2xxx way, put logicals on bus 1
1729                          * and match target/lun numbers box
1730                          * reports.
1731                          */
1732                         *bus = 1;
1733                         *target = (lunid >> 16) & 0x3fff;
1734                         *lun = lunid & 0x00ff;
1735                 } else {
1736                         if (likely(is_scsi_rev_5(h))) {
1737                                 /* All current smart arrays (circa 2011) */
1738                                 *bus = 0;
1739                                 *target = 0;
1740                                 *lun = (lunid & 0x3fff) + 1;
1741                         } else {
1742                                 /* Traditional old smart array way. */
1743                                 *bus = 0;
1744                                 *target = lunid & 0x3fff;
1745                                 *lun = 0;
1746                         }
1747                 }
1748         } else {
1749                 /* physical device */
1750                 if (is_hba_lunid(lunaddrbytes))
1751                         if (unlikely(is_scsi_rev_5(h))) {
1752                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1753                                 *target = 0;
1754                                 *lun = 0;
1755                                 return;
1756                         } else
1757                                 *bus = 3; /* traditional smartarray */
1758                 else
1759                         *bus = 2; /* physical disk */
1760                 *target = -1;
1761                 *lun = -1; /* we will fill these in later. */
1762         }
1763 }
1764
1765 /*
1766  * If there is no lun 0 on a target, linux won't find any devices.
1767  * For the MSA2xxx boxes, we have to manually detect the enclosure
1768  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1769  * it for some reason.  *tmpdevice is the target we're adding,
1770  * this_device is a pointer into the current element of currentsd[]
1771  * that we're building up in update_scsi_devices(), below.
1772  * lunzerobits is a bitmap that tracks which targets already have a
1773  * lun 0 assigned.
1774  * Returns 1 if an enclosure was added, 0 if not.
1775  */
1776 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1777         struct hpsa_scsi_dev_t *tmpdevice,
1778         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1779         int bus, int target, int lun, unsigned long lunzerobits[],
1780         int *nmsa2xxx_enclosures)
1781 {
1782         unsigned char scsi3addr[8];
1783
1784         if (test_bit(target, lunzerobits))
1785                 return 0; /* There is already a lun 0 on this target. */
1786
1787         if (!is_logical_dev_addr_mode(lunaddrbytes))
1788                 return 0; /* It's the logical targets that may lack lun 0. */
1789
1790         if (!is_msa2xxx(h, tmpdevice))
1791                 return 0; /* It's only the MSA2xxx that have this problem. */
1792
1793         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1794                 return 0;
1795
1796         memset(scsi3addr, 0, 8);
1797         scsi3addr[3] = target;
1798         if (is_hba_lunid(scsi3addr))
1799                 return 0; /* Don't add the RAID controller here. */
1800
1801         if (is_scsi_rev_5(h))
1802                 return 0; /* p1210m doesn't need to do this. */
1803
1804         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1805                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1806                         "enclosures exceeded.  Check your hardware "
1807                         "configuration.");
1808                 return 0;
1809         }
1810
1811         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1812                 return 0;
1813         (*nmsa2xxx_enclosures)++;
1814         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1815         set_bit(target, lunzerobits);
1816         return 1;
1817 }
1818
1819 /*
1820  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1821  * logdev.  The number of luns in physdev and logdev are returned in
1822  * *nphysicals and *nlogicals, respectively.
1823  * Returns 0 on success, -1 otherwise.
1824  */
1825 static int hpsa_gather_lun_info(struct ctlr_info *h,
1826         int reportlunsize,
1827         struct ReportLUNdata *physdev, u32 *nphysicals,
1828         struct ReportLUNdata *logdev, u32 *nlogicals)
1829 {
1830         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1831                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1832                 return -1;
1833         }
1834         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1835         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1836                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1837                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1838                         *nphysicals - HPSA_MAX_PHYS_LUN);
1839                 *nphysicals = HPSA_MAX_PHYS_LUN;
1840         }
1841         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1842                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1843                 return -1;
1844         }
1845         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1846         /* Reject Logicals in excess of our max capability. */
1847         if (*nlogicals > HPSA_MAX_LUN) {
1848                 dev_warn(&h->pdev->dev,
1849                         "maximum logical LUNs (%d) exceeded.  "
1850                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1851                         *nlogicals - HPSA_MAX_LUN);
1852                         *nlogicals = HPSA_MAX_LUN;
1853         }
1854         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1855                 dev_warn(&h->pdev->dev,
1856                         "maximum logical + physical LUNs (%d) exceeded. "
1857                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1858                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1859                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1860         }
1861         return 0;
1862 }
1863
1864 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1865         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1866         struct ReportLUNdata *logdev_list)
1867 {
1868         /* Helper function, figure out where the LUN ID info is coming from
1869          * given index i, lists of physical and logical devices, where in
1870          * the list the raid controller is supposed to appear (first or last)
1871          */
1872
1873         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1874         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1875
1876         if (i == raid_ctlr_position)
1877                 return RAID_CTLR_LUNID;
1878
1879         if (i < logicals_start)
1880                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1881
1882         if (i < last_device)
1883                 return &logdev_list->LUN[i - nphysicals -
1884                         (raid_ctlr_position == 0)][0];
1885         BUG();
1886         return NULL;
1887 }
1888
1889 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1890 {
1891         /* the idea here is we could get notified
1892          * that some devices have changed, so we do a report
1893          * physical luns and report logical luns cmd, and adjust
1894          * our list of devices accordingly.
1895          *
1896          * The scsi3addr's of devices won't change so long as the
1897          * adapter is not reset.  That means we can rescan and
1898          * tell which devices we already know about, vs. new
1899          * devices, vs.  disappearing devices.
1900          */
1901         struct ReportLUNdata *physdev_list = NULL;
1902         struct ReportLUNdata *logdev_list = NULL;
1903         u32 nphysicals = 0;
1904         u32 nlogicals = 0;
1905         u32 ndev_allocated = 0;
1906         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1907         int ncurrent = 0;
1908         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1909         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1910         int bus, target, lun;
1911         int raid_ctlr_position;
1912         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1913
1914         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1915         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1916         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1917         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1918
1919         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1920                 dev_err(&h->pdev->dev, "out of memory\n");
1921                 goto out;
1922         }
1923         memset(lunzerobits, 0, sizeof(lunzerobits));
1924
1925         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1926                         logdev_list, &nlogicals))
1927                 goto out;
1928
1929         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1930          * but each of them 4 times through different paths.  The plus 1
1931          * is for the RAID controller.
1932          */
1933         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1934
1935         /* Allocate the per device structures */
1936         for (i = 0; i < ndevs_to_allocate; i++) {
1937                 if (i >= HPSA_MAX_DEVICES) {
1938                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1939                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1940                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1941                         break;
1942                 }
1943
1944                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1945                 if (!currentsd[i]) {
1946                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1947                                 __FILE__, __LINE__);
1948                         goto out;
1949                 }
1950                 ndev_allocated++;
1951         }
1952
1953         if (unlikely(is_scsi_rev_5(h)))
1954                 raid_ctlr_position = 0;
1955         else
1956                 raid_ctlr_position = nphysicals + nlogicals;
1957
1958         /* adjust our table of devices */
1959         nmsa2xxx_enclosures = 0;
1960         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1961                 u8 *lunaddrbytes, is_OBDR = 0;
1962
1963                 /* Figure out where the LUN ID info is coming from */
1964                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1965                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1966                 /* skip masked physical devices. */
1967                 if (lunaddrbytes[3] & 0xC0 &&
1968                         i < nphysicals + (raid_ctlr_position == 0))
1969                         continue;
1970
1971                 /* Get device type, vendor, model, device id */
1972                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1973                                                         &is_OBDR))
1974                         continue; /* skip it if we can't talk to it. */
1975                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1976                         tmpdevice);
1977                 this_device = currentsd[ncurrent];
1978
1979                 /*
1980                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1981                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1982                  * is nonetheless an enclosure device there.  We have to
1983                  * present that otherwise linux won't find anything if
1984                  * there is no lun 0.
1985                  */
1986                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1987                                 lunaddrbytes, bus, target, lun, lunzerobits,
1988                                 &nmsa2xxx_enclosures)) {
1989                         ncurrent++;
1990                         this_device = currentsd[ncurrent];
1991                 }
1992
1993                 *this_device = *tmpdevice;
1994                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1995
1996                 switch (this_device->devtype) {
1997                 case TYPE_ROM:
1998                         /* We don't *really* support actual CD-ROM devices,
1999                          * just "One Button Disaster Recovery" tape drive
2000                          * which temporarily pretends to be a CD-ROM drive.
2001                          * So we check that the device is really an OBDR tape
2002                          * device by checking for "$DR-10" in bytes 43-48 of
2003                          * the inquiry data.
2004                          */
2005                         if (is_OBDR)
2006                                 ncurrent++;
2007                         break;
2008                 case TYPE_DISK:
2009                         if (i < nphysicals)
2010                                 break;
2011                         ncurrent++;
2012                         break;
2013                 case TYPE_TAPE:
2014                 case TYPE_MEDIUM_CHANGER:
2015                         ncurrent++;
2016                         break;
2017                 case TYPE_RAID:
2018                         /* Only present the Smartarray HBA as a RAID controller.
2019                          * If it's a RAID controller other than the HBA itself
2020                          * (an external RAID controller, MSA500 or similar)
2021                          * don't present it.
2022                          */
2023                         if (!is_hba_lunid(lunaddrbytes))
2024                                 break;
2025                         ncurrent++;
2026                         break;
2027                 default:
2028                         break;
2029                 }
2030                 if (ncurrent >= HPSA_MAX_DEVICES)
2031                         break;
2032         }
2033         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2034 out:
2035         kfree(tmpdevice);
2036         for (i = 0; i < ndev_allocated; i++)
2037                 kfree(currentsd[i]);
2038         kfree(currentsd);
2039         kfree(physdev_list);
2040         kfree(logdev_list);
2041 }
2042
2043 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2044  * dma mapping  and fills in the scatter gather entries of the
2045  * hpsa command, cp.
2046  */
2047 static int hpsa_scatter_gather(struct ctlr_info *h,
2048                 struct CommandList *cp,
2049                 struct scsi_cmnd *cmd)
2050 {
2051         unsigned int len;
2052         struct scatterlist *sg;
2053         u64 addr64;
2054         int use_sg, i, sg_index, chained;
2055         struct SGDescriptor *curr_sg;
2056
2057         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2058
2059         use_sg = scsi_dma_map(cmd);
2060         if (use_sg < 0)
2061                 return use_sg;
2062
2063         if (!use_sg)
2064                 goto sglist_finished;
2065
2066         curr_sg = cp->SG;
2067         chained = 0;
2068         sg_index = 0;
2069         scsi_for_each_sg(cmd, sg, use_sg, i) {
2070                 if (i == h->max_cmd_sg_entries - 1 &&
2071                         use_sg > h->max_cmd_sg_entries) {
2072                         chained = 1;
2073                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2074                         sg_index = 0;
2075                 }
2076                 addr64 = (u64) sg_dma_address(sg);
2077                 len  = sg_dma_len(sg);
2078                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2079                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2080                 curr_sg->Len = len;
2081                 curr_sg->Ext = 0;  /* we are not chaining */
2082                 curr_sg++;
2083         }
2084
2085         if (use_sg + chained > h->maxSG)
2086                 h->maxSG = use_sg + chained;
2087
2088         if (chained) {
2089                 cp->Header.SGList = h->max_cmd_sg_entries;
2090                 cp->Header.SGTotal = (u16) (use_sg + 1);
2091                 hpsa_map_sg_chain_block(h, cp);
2092                 return 0;
2093         }
2094
2095 sglist_finished:
2096
2097         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2098         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2099         return 0;
2100 }
2101
2102
2103 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2104         void (*done)(struct scsi_cmnd *))
2105 {
2106         struct ctlr_info *h;
2107         struct hpsa_scsi_dev_t *dev;
2108         unsigned char scsi3addr[8];
2109         struct CommandList *c;
2110         unsigned long flags;
2111
2112         /* Get the ptr to our adapter structure out of cmd->host. */
2113         h = sdev_to_hba(cmd->device);
2114         dev = cmd->device->hostdata;
2115         if (!dev) {
2116                 cmd->result = DID_NO_CONNECT << 16;
2117                 done(cmd);
2118                 return 0;
2119         }
2120         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2121
2122         spin_lock_irqsave(&h->lock, flags);
2123         if (unlikely(h->lockup_detected)) {
2124                 spin_unlock_irqrestore(&h->lock, flags);
2125                 cmd->result = DID_ERROR << 16;
2126                 done(cmd);
2127                 return 0;
2128         }
2129         /* Need a lock as this is being allocated from the pool */
2130         c = cmd_alloc(h);
2131         spin_unlock_irqrestore(&h->lock, flags);
2132         if (c == NULL) {                        /* trouble... */
2133                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2134                 return SCSI_MLQUEUE_HOST_BUSY;
2135         }
2136
2137         /* Fill in the command list header */
2138
2139         cmd->scsi_done = done;    /* save this for use by completion code */
2140
2141         /* save c in case we have to abort it  */
2142         cmd->host_scribble = (unsigned char *) c;
2143
2144         c->cmd_type = CMD_SCSI;
2145         c->scsi_cmd = cmd;
2146         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2147         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2148         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2149         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2150
2151         /* Fill in the request block... */
2152
2153         c->Request.Timeout = 0;
2154         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2155         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2156         c->Request.CDBLen = cmd->cmd_len;
2157         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2158         c->Request.Type.Type = TYPE_CMD;
2159         c->Request.Type.Attribute = ATTR_SIMPLE;
2160         switch (cmd->sc_data_direction) {
2161         case DMA_TO_DEVICE:
2162                 c->Request.Type.Direction = XFER_WRITE;
2163                 break;
2164         case DMA_FROM_DEVICE:
2165                 c->Request.Type.Direction = XFER_READ;
2166                 break;
2167         case DMA_NONE:
2168                 c->Request.Type.Direction = XFER_NONE;
2169                 break;
2170         case DMA_BIDIRECTIONAL:
2171                 /* This can happen if a buggy application does a scsi passthru
2172                  * and sets both inlen and outlen to non-zero. ( see
2173                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2174                  */
2175
2176                 c->Request.Type.Direction = XFER_RSVD;
2177                 /* This is technically wrong, and hpsa controllers should
2178                  * reject it with CMD_INVALID, which is the most correct
2179                  * response, but non-fibre backends appear to let it
2180                  * slide by, and give the same results as if this field
2181                  * were set correctly.  Either way is acceptable for
2182                  * our purposes here.
2183                  */
2184
2185                 break;
2186
2187         default:
2188                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2189                         cmd->sc_data_direction);
2190                 BUG();
2191                 break;
2192         }
2193
2194         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2195                 cmd_free(h, c);
2196                 return SCSI_MLQUEUE_HOST_BUSY;
2197         }
2198         enqueue_cmd_and_start_io(h, c);
2199         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2200         return 0;
2201 }
2202
2203 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2204
2205 static void hpsa_scan_start(struct Scsi_Host *sh)
2206 {
2207         struct ctlr_info *h = shost_to_hba(sh);
2208         unsigned long flags;
2209
2210         /* wait until any scan already in progress is finished. */
2211         while (1) {
2212                 spin_lock_irqsave(&h->scan_lock, flags);
2213                 if (h->scan_finished)
2214                         break;
2215                 spin_unlock_irqrestore(&h->scan_lock, flags);
2216                 wait_event(h->scan_wait_queue, h->scan_finished);
2217                 /* Note: We don't need to worry about a race between this
2218                  * thread and driver unload because the midlayer will
2219                  * have incremented the reference count, so unload won't
2220                  * happen if we're in here.
2221                  */
2222         }
2223         h->scan_finished = 0; /* mark scan as in progress */
2224         spin_unlock_irqrestore(&h->scan_lock, flags);
2225
2226         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2227
2228         spin_lock_irqsave(&h->scan_lock, flags);
2229         h->scan_finished = 1; /* mark scan as finished. */
2230         wake_up_all(&h->scan_wait_queue);
2231         spin_unlock_irqrestore(&h->scan_lock, flags);
2232 }
2233
2234 static int hpsa_scan_finished(struct Scsi_Host *sh,
2235         unsigned long elapsed_time)
2236 {
2237         struct ctlr_info *h = shost_to_hba(sh);
2238         unsigned long flags;
2239         int finished;
2240
2241         spin_lock_irqsave(&h->scan_lock, flags);
2242         finished = h->scan_finished;
2243         spin_unlock_irqrestore(&h->scan_lock, flags);
2244         return finished;
2245 }
2246
2247 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2248         int qdepth, int reason)
2249 {
2250         struct ctlr_info *h = sdev_to_hba(sdev);
2251
2252         if (reason != SCSI_QDEPTH_DEFAULT)
2253                 return -ENOTSUPP;
2254
2255         if (qdepth < 1)
2256                 qdepth = 1;
2257         else
2258                 if (qdepth > h->nr_cmds)
2259                         qdepth = h->nr_cmds;
2260         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2261         return sdev->queue_depth;
2262 }
2263
2264 static void hpsa_unregister_scsi(struct ctlr_info *h)
2265 {
2266         /* we are being forcibly unloaded, and may not refuse. */
2267         scsi_remove_host(h->scsi_host);
2268         scsi_host_put(h->scsi_host);
2269         h->scsi_host = NULL;
2270 }
2271
2272 static int hpsa_register_scsi(struct ctlr_info *h)
2273 {
2274         int rc;
2275
2276         rc = hpsa_scsi_detect(h);
2277         if (rc != 0)
2278                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2279                         " hpsa_scsi_detect(), rc is %d\n", rc);
2280         return rc;
2281 }
2282
2283 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2284         unsigned char lunaddr[])
2285 {
2286         int rc = 0;
2287         int count = 0;
2288         int waittime = 1; /* seconds */
2289         struct CommandList *c;
2290
2291         c = cmd_special_alloc(h);
2292         if (!c) {
2293                 dev_warn(&h->pdev->dev, "out of memory in "
2294                         "wait_for_device_to_become_ready.\n");
2295                 return IO_ERROR;
2296         }
2297
2298         /* Send test unit ready until device ready, or give up. */
2299         while (count < HPSA_TUR_RETRY_LIMIT) {
2300
2301                 /* Wait for a bit.  do this first, because if we send
2302                  * the TUR right away, the reset will just abort it.
2303                  */
2304                 msleep(1000 * waittime);
2305                 count++;
2306
2307                 /* Increase wait time with each try, up to a point. */
2308                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2309                         waittime = waittime * 2;
2310
2311                 /* Send the Test Unit Ready */
2312                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2313                 hpsa_scsi_do_simple_cmd_core(h, c);
2314                 /* no unmap needed here because no data xfer. */
2315
2316                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2317                         break;
2318
2319                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2320                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2321                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2322                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2323                         break;
2324
2325                 dev_warn(&h->pdev->dev, "waiting %d secs "
2326                         "for device to become ready.\n", waittime);
2327                 rc = 1; /* device not ready. */
2328         }
2329
2330         if (rc)
2331                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2332         else
2333                 dev_warn(&h->pdev->dev, "device is ready.\n");
2334
2335         cmd_special_free(h, c);
2336         return rc;
2337 }
2338
2339 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2340  * complaining.  Doing a host- or bus-reset can't do anything good here.
2341  */
2342 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2343 {
2344         int rc;
2345         struct ctlr_info *h;
2346         struct hpsa_scsi_dev_t *dev;
2347
2348         /* find the controller to which the command to be aborted was sent */
2349         h = sdev_to_hba(scsicmd->device);
2350         if (h == NULL) /* paranoia */
2351                 return FAILED;
2352         dev = scsicmd->device->hostdata;
2353         if (!dev) {
2354                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2355                         "device lookup failed.\n");
2356                 return FAILED;
2357         }
2358         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2359                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2360         /* send a reset to the SCSI LUN which the command was sent to */
2361         rc = hpsa_send_reset(h, dev->scsi3addr);
2362         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2363                 return SUCCESS;
2364
2365         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2366         return FAILED;
2367 }
2368
2369 /*
2370  * For operations that cannot sleep, a command block is allocated at init,
2371  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2372  * which ones are free or in use.  Lock must be held when calling this.
2373  * cmd_free() is the complement.
2374  */
2375 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2376 {
2377         struct CommandList *c;
2378         int i;
2379         union u64bit temp64;
2380         dma_addr_t cmd_dma_handle, err_dma_handle;
2381
2382         do {
2383                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2384                 if (i == h->nr_cmds)
2385                         return NULL;
2386         } while (test_and_set_bit
2387                  (i & (BITS_PER_LONG - 1),
2388                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2389         c = h->cmd_pool + i;
2390         memset(c, 0, sizeof(*c));
2391         cmd_dma_handle = h->cmd_pool_dhandle
2392             + i * sizeof(*c);
2393         c->err_info = h->errinfo_pool + i;
2394         memset(c->err_info, 0, sizeof(*c->err_info));
2395         err_dma_handle = h->errinfo_pool_dhandle
2396             + i * sizeof(*c->err_info);
2397         h->nr_allocs++;
2398
2399         c->cmdindex = i;
2400
2401         INIT_LIST_HEAD(&c->list);
2402         c->busaddr = (u32) cmd_dma_handle;
2403         temp64.val = (u64) err_dma_handle;
2404         c->ErrDesc.Addr.lower = temp64.val32.lower;
2405         c->ErrDesc.Addr.upper = temp64.val32.upper;
2406         c->ErrDesc.Len = sizeof(*c->err_info);
2407
2408         c->h = h;
2409         return c;
2410 }
2411
2412 /* For operations that can wait for kmalloc to possibly sleep,
2413  * this routine can be called. Lock need not be held to call
2414  * cmd_special_alloc. cmd_special_free() is the complement.
2415  */
2416 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2417 {
2418         struct CommandList *c;
2419         union u64bit temp64;
2420         dma_addr_t cmd_dma_handle, err_dma_handle;
2421
2422         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2423         if (c == NULL)
2424                 return NULL;
2425         memset(c, 0, sizeof(*c));
2426
2427         c->cmdindex = -1;
2428
2429         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2430                     &err_dma_handle);
2431
2432         if (c->err_info == NULL) {
2433                 pci_free_consistent(h->pdev,
2434                         sizeof(*c), c, cmd_dma_handle);
2435                 return NULL;
2436         }
2437         memset(c->err_info, 0, sizeof(*c->err_info));
2438
2439         INIT_LIST_HEAD(&c->list);
2440         c->busaddr = (u32) cmd_dma_handle;
2441         temp64.val = (u64) err_dma_handle;
2442         c->ErrDesc.Addr.lower = temp64.val32.lower;
2443         c->ErrDesc.Addr.upper = temp64.val32.upper;
2444         c->ErrDesc.Len = sizeof(*c->err_info);
2445
2446         c->h = h;
2447         return c;
2448 }
2449
2450 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2451 {
2452         int i;
2453
2454         i = c - h->cmd_pool;
2455         clear_bit(i & (BITS_PER_LONG - 1),
2456                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2457         h->nr_frees++;
2458 }
2459
2460 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2461 {
2462         union u64bit temp64;
2463
2464         temp64.val32.lower = c->ErrDesc.Addr.lower;
2465         temp64.val32.upper = c->ErrDesc.Addr.upper;
2466         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2467                             c->err_info, (dma_addr_t) temp64.val);
2468         pci_free_consistent(h->pdev, sizeof(*c),
2469                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2470 }
2471
2472 #ifdef CONFIG_COMPAT
2473
2474 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2475 {
2476         IOCTL32_Command_struct __user *arg32 =
2477             (IOCTL32_Command_struct __user *) arg;
2478         IOCTL_Command_struct arg64;
2479         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2480         int err;
2481         u32 cp;
2482
2483         memset(&arg64, 0, sizeof(arg64));
2484         err = 0;
2485         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2486                            sizeof(arg64.LUN_info));
2487         err |= copy_from_user(&arg64.Request, &arg32->Request,
2488                            sizeof(arg64.Request));
2489         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2490                            sizeof(arg64.error_info));
2491         err |= get_user(arg64.buf_size, &arg32->buf_size);
2492         err |= get_user(cp, &arg32->buf);
2493         arg64.buf = compat_ptr(cp);
2494         err |= copy_to_user(p, &arg64, sizeof(arg64));
2495
2496         if (err)
2497                 return -EFAULT;
2498
2499         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2500         if (err)
2501                 return err;
2502         err |= copy_in_user(&arg32->error_info, &p->error_info,
2503                          sizeof(arg32->error_info));
2504         if (err)
2505                 return -EFAULT;
2506         return err;
2507 }
2508
2509 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2510         int cmd, void *arg)
2511 {
2512         BIG_IOCTL32_Command_struct __user *arg32 =
2513             (BIG_IOCTL32_Command_struct __user *) arg;
2514         BIG_IOCTL_Command_struct arg64;
2515         BIG_IOCTL_Command_struct __user *p =
2516             compat_alloc_user_space(sizeof(arg64));
2517         int err;
2518         u32 cp;
2519
2520         memset(&arg64, 0, sizeof(arg64));
2521         err = 0;
2522         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2523                            sizeof(arg64.LUN_info));
2524         err |= copy_from_user(&arg64.Request, &arg32->Request,
2525                            sizeof(arg64.Request));
2526         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2527                            sizeof(arg64.error_info));
2528         err |= get_user(arg64.buf_size, &arg32->buf_size);
2529         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2530         err |= get_user(cp, &arg32->buf);
2531         arg64.buf = compat_ptr(cp);
2532         err |= copy_to_user(p, &arg64, sizeof(arg64));
2533
2534         if (err)
2535                 return -EFAULT;
2536
2537         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2538         if (err)
2539                 return err;
2540         err |= copy_in_user(&arg32->error_info, &p->error_info,
2541                          sizeof(arg32->error_info));
2542         if (err)
2543                 return -EFAULT;
2544         return err;
2545 }
2546
2547 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2548 {
2549         switch (cmd) {
2550         case CCISS_GETPCIINFO:
2551         case CCISS_GETINTINFO:
2552         case CCISS_SETINTINFO:
2553         case CCISS_GETNODENAME:
2554         case CCISS_SETNODENAME:
2555         case CCISS_GETHEARTBEAT:
2556         case CCISS_GETBUSTYPES:
2557         case CCISS_GETFIRMVER:
2558         case CCISS_GETDRIVVER:
2559         case CCISS_REVALIDVOLS:
2560         case CCISS_DEREGDISK:
2561         case CCISS_REGNEWDISK:
2562         case CCISS_REGNEWD:
2563         case CCISS_RESCANDISK:
2564         case CCISS_GETLUNINFO:
2565                 return hpsa_ioctl(dev, cmd, arg);
2566
2567         case CCISS_PASSTHRU32:
2568                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2569         case CCISS_BIG_PASSTHRU32:
2570                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2571
2572         default:
2573                 return -ENOIOCTLCMD;
2574         }
2575 }
2576 #endif
2577
2578 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2579 {
2580         struct hpsa_pci_info pciinfo;
2581
2582         if (!argp)
2583                 return -EINVAL;
2584         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2585         pciinfo.bus = h->pdev->bus->number;
2586         pciinfo.dev_fn = h->pdev->devfn;
2587         pciinfo.board_id = h->board_id;
2588         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2589                 return -EFAULT;
2590         return 0;
2591 }
2592
2593 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2594 {
2595         DriverVer_type DriverVer;
2596         unsigned char vmaj, vmin, vsubmin;
2597         int rc;
2598
2599         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2600                 &vmaj, &vmin, &vsubmin);
2601         if (rc != 3) {
2602                 dev_info(&h->pdev->dev, "driver version string '%s' "
2603                         "unrecognized.", HPSA_DRIVER_VERSION);
2604                 vmaj = 0;
2605                 vmin = 0;
2606                 vsubmin = 0;
2607         }
2608         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2609         if (!argp)
2610                 return -EINVAL;
2611         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2612                 return -EFAULT;
2613         return 0;
2614 }
2615
2616 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2617 {
2618         IOCTL_Command_struct iocommand;
2619         struct CommandList *c;
2620         char *buff = NULL;
2621         union u64bit temp64;
2622
2623         if (!argp)
2624                 return -EINVAL;
2625         if (!capable(CAP_SYS_RAWIO))
2626                 return -EPERM;
2627         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2628                 return -EFAULT;
2629         if ((iocommand.buf_size < 1) &&
2630             (iocommand.Request.Type.Direction != XFER_NONE)) {
2631                 return -EINVAL;
2632         }
2633         if (iocommand.buf_size > 0) {
2634                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2635                 if (buff == NULL)
2636                         return -EFAULT;
2637                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2638                         /* Copy the data into the buffer we created */
2639                         if (copy_from_user(buff, iocommand.buf,
2640                                 iocommand.buf_size)) {
2641                                 kfree(buff);
2642                                 return -EFAULT;
2643                         }
2644                 } else {
2645                         memset(buff, 0, iocommand.buf_size);
2646                 }
2647         }
2648         c = cmd_special_alloc(h);
2649         if (c == NULL) {
2650                 kfree(buff);
2651                 return -ENOMEM;
2652         }
2653         /* Fill in the command type */
2654         c->cmd_type = CMD_IOCTL_PEND;
2655         /* Fill in Command Header */
2656         c->Header.ReplyQueue = 0; /* unused in simple mode */
2657         if (iocommand.buf_size > 0) {   /* buffer to fill */
2658                 c->Header.SGList = 1;
2659                 c->Header.SGTotal = 1;
2660         } else  { /* no buffers to fill */
2661                 c->Header.SGList = 0;
2662                 c->Header.SGTotal = 0;
2663         }
2664         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2665         /* use the kernel address the cmd block for tag */
2666         c->Header.Tag.lower = c->busaddr;
2667
2668         /* Fill in Request block */
2669         memcpy(&c->Request, &iocommand.Request,
2670                 sizeof(c->Request));
2671
2672         /* Fill in the scatter gather information */
2673         if (iocommand.buf_size > 0) {
2674                 temp64.val = pci_map_single(h->pdev, buff,
2675                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2676                 c->SG[0].Addr.lower = temp64.val32.lower;
2677                 c->SG[0].Addr.upper = temp64.val32.upper;
2678                 c->SG[0].Len = iocommand.buf_size;
2679                 c->SG[0].Ext = 0; /* we are not chaining*/
2680         }
2681         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2682         if (iocommand.buf_size > 0)
2683                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2684         check_ioctl_unit_attention(h, c);
2685
2686         /* Copy the error information out */
2687         memcpy(&iocommand.error_info, c->err_info,
2688                 sizeof(iocommand.error_info));
2689         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2690                 kfree(buff);
2691                 cmd_special_free(h, c);
2692                 return -EFAULT;
2693         }
2694         if (iocommand.Request.Type.Direction == XFER_READ &&
2695                 iocommand.buf_size > 0) {
2696                 /* Copy the data out of the buffer we created */
2697                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2698                         kfree(buff);
2699                         cmd_special_free(h, c);
2700                         return -EFAULT;
2701                 }
2702         }
2703         kfree(buff);
2704         cmd_special_free(h, c);
2705         return 0;
2706 }
2707
2708 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2709 {
2710         BIG_IOCTL_Command_struct *ioc;
2711         struct CommandList *c;
2712         unsigned char **buff = NULL;
2713         int *buff_size = NULL;
2714         union u64bit temp64;
2715         BYTE sg_used = 0;
2716         int status = 0;
2717         int i;
2718         u32 left;
2719         u32 sz;
2720         BYTE __user *data_ptr;
2721
2722         if (!argp)
2723                 return -EINVAL;
2724         if (!capable(CAP_SYS_RAWIO))
2725                 return -EPERM;
2726         ioc = (BIG_IOCTL_Command_struct *)
2727             kmalloc(sizeof(*ioc), GFP_KERNEL);
2728         if (!ioc) {
2729                 status = -ENOMEM;
2730                 goto cleanup1;
2731         }
2732         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2733                 status = -EFAULT;
2734                 goto cleanup1;
2735         }
2736         if ((ioc->buf_size < 1) &&
2737             (ioc->Request.Type.Direction != XFER_NONE)) {
2738                 status = -EINVAL;
2739                 goto cleanup1;
2740         }
2741         /* Check kmalloc limits  using all SGs */
2742         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2743                 status = -EINVAL;
2744                 goto cleanup1;
2745         }
2746         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2747                 status = -EINVAL;
2748                 goto cleanup1;
2749         }
2750         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2751         if (!buff) {
2752                 status = -ENOMEM;
2753                 goto cleanup1;
2754         }
2755         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2756         if (!buff_size) {
2757                 status = -ENOMEM;
2758                 goto cleanup1;
2759         }
2760         left = ioc->buf_size;
2761         data_ptr = ioc->buf;
2762         while (left) {
2763                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2764                 buff_size[sg_used] = sz;
2765                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2766                 if (buff[sg_used] == NULL) {
2767                         status = -ENOMEM;
2768                         goto cleanup1;
2769                 }
2770                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2771                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2772                                 status = -ENOMEM;
2773                                 goto cleanup1;
2774                         }
2775                 } else
2776                         memset(buff[sg_used], 0, sz);
2777                 left -= sz;
2778                 data_ptr += sz;
2779                 sg_used++;
2780         }
2781         c = cmd_special_alloc(h);
2782         if (c == NULL) {
2783                 status = -ENOMEM;
2784                 goto cleanup1;
2785         }
2786         c->cmd_type = CMD_IOCTL_PEND;
2787         c->Header.ReplyQueue = 0;
2788         c->Header.SGList = c->Header.SGTotal = sg_used;
2789         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2790         c->Header.Tag.lower = c->busaddr;
2791         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2792         if (ioc->buf_size > 0) {
2793                 int i;
2794                 for (i = 0; i < sg_used; i++) {
2795                         temp64.val = pci_map_single(h->pdev, buff[i],
2796                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2797                         c->SG[i].Addr.lower = temp64.val32.lower;
2798                         c->SG[i].Addr.upper = temp64.val32.upper;
2799                         c->SG[i].Len = buff_size[i];
2800                         /* we are not chaining */
2801                         c->SG[i].Ext = 0;
2802                 }
2803         }
2804         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2805         if (sg_used)
2806                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2807         check_ioctl_unit_attention(h, c);
2808         /* Copy the error information out */
2809         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2810         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2811                 cmd_special_free(h, c);
2812                 status = -EFAULT;
2813                 goto cleanup1;
2814         }
2815         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2816                 /* Copy the data out of the buffer we created */
2817                 BYTE __user *ptr = ioc->buf;
2818                 for (i = 0; i < sg_used; i++) {
2819                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2820                                 cmd_special_free(h, c);
2821                                 status = -EFAULT;
2822                                 goto cleanup1;
2823                         }
2824                         ptr += buff_size[i];
2825                 }
2826         }
2827         cmd_special_free(h, c);
2828         status = 0;
2829 cleanup1:
2830         if (buff) {
2831                 for (i = 0; i < sg_used; i++)
2832                         kfree(buff[i]);
2833                 kfree(buff);
2834         }
2835         kfree(buff_size);
2836         kfree(ioc);
2837         return status;
2838 }
2839
2840 static void check_ioctl_unit_attention(struct ctlr_info *h,
2841         struct CommandList *c)
2842 {
2843         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2844                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2845                 (void) check_for_unit_attention(h, c);
2846 }
2847 /*
2848  * ioctl
2849  */
2850 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2851 {
2852         struct ctlr_info *h;
2853         void __user *argp = (void __user *)arg;
2854
2855         h = sdev_to_hba(dev);
2856
2857         switch (cmd) {
2858         case CCISS_DEREGDISK:
2859         case CCISS_REGNEWDISK:
2860         case CCISS_REGNEWD:
2861                 hpsa_scan_start(h->scsi_host);
2862                 return 0;
2863         case CCISS_GETPCIINFO:
2864                 return hpsa_getpciinfo_ioctl(h, argp);
2865         case CCISS_GETDRIVVER:
2866                 return hpsa_getdrivver_ioctl(h, argp);
2867         case CCISS_PASSTHRU:
2868                 return hpsa_passthru_ioctl(h, argp);
2869         case CCISS_BIG_PASSTHRU:
2870                 return hpsa_big_passthru_ioctl(h, argp);
2871         default:
2872                 return -ENOTTY;
2873         }
2874 }
2875
2876 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2877         unsigned char *scsi3addr, u8 reset_type)
2878 {
2879         struct CommandList *c;
2880
2881         c = cmd_alloc(h);
2882         if (!c)
2883                 return -ENOMEM;
2884         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2885                 RAID_CTLR_LUNID, TYPE_MSG);
2886         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2887         c->waiting = NULL;
2888         enqueue_cmd_and_start_io(h, c);
2889         /* Don't wait for completion, the reset won't complete.  Don't free
2890          * the command either.  This is the last command we will send before
2891          * re-initializing everything, so it doesn't matter and won't leak.
2892          */
2893         return 0;
2894 }
2895
2896 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2897         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2898         int cmd_type)
2899 {
2900         int pci_dir = XFER_NONE;
2901
2902         c->cmd_type = CMD_IOCTL_PEND;
2903         c->Header.ReplyQueue = 0;
2904         if (buff != NULL && size > 0) {
2905                 c->Header.SGList = 1;
2906                 c->Header.SGTotal = 1;
2907         } else {
2908                 c->Header.SGList = 0;
2909                 c->Header.SGTotal = 0;
2910         }
2911         c->Header.Tag.lower = c->busaddr;
2912         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2913
2914         c->Request.Type.Type = cmd_type;
2915         if (cmd_type == TYPE_CMD) {
2916                 switch (cmd) {
2917                 case HPSA_INQUIRY:
2918                         /* are we trying to read a vital product page */
2919                         if (page_code != 0) {
2920                                 c->Request.CDB[1] = 0x01;
2921                                 c->Request.CDB[2] = page_code;
2922                         }
2923                         c->Request.CDBLen = 6;
2924                         c->Request.Type.Attribute = ATTR_SIMPLE;
2925                         c->Request.Type.Direction = XFER_READ;
2926                         c->Request.Timeout = 0;
2927                         c->Request.CDB[0] = HPSA_INQUIRY;
2928                         c->Request.CDB[4] = size & 0xFF;
2929                         break;
2930                 case HPSA_REPORT_LOG:
2931                 case HPSA_REPORT_PHYS:
2932                         /* Talking to controller so It's a physical command
2933                            mode = 00 target = 0.  Nothing to write.
2934                          */
2935                         c->Request.CDBLen = 12;
2936                         c->Request.Type.Attribute = ATTR_SIMPLE;
2937                         c->Request.Type.Direction = XFER_READ;
2938                         c->Request.Timeout = 0;
2939                         c->Request.CDB[0] = cmd;
2940                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2941                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2942                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2943                         c->Request.CDB[9] = size & 0xFF;
2944                         break;
2945                 case HPSA_CACHE_FLUSH:
2946                         c->Request.CDBLen = 12;
2947                         c->Request.Type.Attribute = ATTR_SIMPLE;
2948                         c->Request.Type.Direction = XFER_WRITE;
2949                         c->Request.Timeout = 0;
2950                         c->Request.CDB[0] = BMIC_WRITE;
2951                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2952                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2953                         c->Request.CDB[8] = size & 0xFF;
2954                         break;
2955                 case TEST_UNIT_READY:
2956                         c->Request.CDBLen = 6;
2957                         c->Request.Type.Attribute = ATTR_SIMPLE;
2958                         c->Request.Type.Direction = XFER_NONE;
2959                         c->Request.Timeout = 0;
2960                         break;
2961                 default:
2962                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2963                         BUG();
2964                         return;
2965                 }
2966         } else if (cmd_type == TYPE_MSG) {
2967                 switch (cmd) {
2968
2969                 case  HPSA_DEVICE_RESET_MSG:
2970                         c->Request.CDBLen = 16;
2971                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2972                         c->Request.Type.Attribute = ATTR_SIMPLE;
2973                         c->Request.Type.Direction = XFER_NONE;
2974                         c->Request.Timeout = 0; /* Don't time out */
2975                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2976                         c->Request.CDB[0] =  cmd;
2977                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
2978                         /* If bytes 4-7 are zero, it means reset the */
2979                         /* LunID device */
2980                         c->Request.CDB[4] = 0x00;
2981                         c->Request.CDB[5] = 0x00;
2982                         c->Request.CDB[6] = 0x00;
2983                         c->Request.CDB[7] = 0x00;
2984                 break;
2985
2986                 default:
2987                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2988                                 cmd);
2989                         BUG();
2990                 }
2991         } else {
2992                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2993                 BUG();
2994         }
2995
2996         switch (c->Request.Type.Direction) {
2997         case XFER_READ:
2998                 pci_dir = PCI_DMA_FROMDEVICE;
2999                 break;
3000         case XFER_WRITE:
3001                 pci_dir = PCI_DMA_TODEVICE;
3002                 break;
3003         case XFER_NONE:
3004                 pci_dir = PCI_DMA_NONE;
3005                 break;
3006         default:
3007                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3008         }
3009
3010         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3011
3012         return;
3013 }
3014
3015 /*
3016  * Map (physical) PCI mem into (virtual) kernel space
3017  */
3018 static void __iomem *remap_pci_mem(ulong base, ulong size)
3019 {
3020         ulong page_base = ((ulong) base) & PAGE_MASK;
3021         ulong page_offs = ((ulong) base) - page_base;
3022         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3023
3024         return page_remapped ? (page_remapped + page_offs) : NULL;
3025 }
3026
3027 /* Takes cmds off the submission queue and sends them to the hardware,
3028  * then puts them on the queue of cmds waiting for completion.
3029  */
3030 static void start_io(struct ctlr_info *h)
3031 {
3032         struct CommandList *c;
3033
3034         while (!list_empty(&h->reqQ)) {
3035                 c = list_entry(h->reqQ.next, struct CommandList, list);
3036                 /* can't do anything if fifo is full */
3037                 if ((h->access.fifo_full(h))) {
3038                         dev_warn(&h->pdev->dev, "fifo full\n");
3039                         break;
3040                 }
3041
3042                 /* Get the first entry from the Request Q */
3043                 removeQ(c);
3044                 h->Qdepth--;
3045
3046                 /* Tell the controller execute command */
3047                 h->access.submit_command(h, c);
3048
3049                 /* Put job onto the completed Q */
3050                 addQ(&h->cmpQ, c);
3051         }
3052 }
3053
3054 static inline unsigned long get_next_completion(struct ctlr_info *h)
3055 {
3056         return h->access.command_completed(h);
3057 }
3058
3059 static inline bool interrupt_pending(struct ctlr_info *h)
3060 {
3061         return h->access.intr_pending(h);
3062 }
3063
3064 static inline long interrupt_not_for_us(struct ctlr_info *h)
3065 {
3066         return (h->access.intr_pending(h) == 0) ||
3067                 (h->interrupts_enabled == 0);
3068 }
3069
3070 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3071         u32 raw_tag)
3072 {
3073         if (unlikely(tag_index >= h->nr_cmds)) {
3074                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3075                 return 1;
3076         }
3077         return 0;
3078 }
3079
3080 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3081 {
3082         removeQ(c);
3083         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3084         if (likely(c->cmd_type == CMD_SCSI))
3085                 complete_scsi_command(c);
3086         else if (c->cmd_type == CMD_IOCTL_PEND)
3087                 complete(c->waiting);
3088 }
3089
3090 static inline u32 hpsa_tag_contains_index(u32 tag)
3091 {
3092         return tag & DIRECT_LOOKUP_BIT;
3093 }
3094
3095 static inline u32 hpsa_tag_to_index(u32 tag)
3096 {
3097         return tag >> DIRECT_LOOKUP_SHIFT;
3098 }
3099
3100
3101 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3102 {
3103 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3104 #define HPSA_SIMPLE_ERROR_BITS 0x03
3105         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3106                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3107         return tag & ~HPSA_PERF_ERROR_BITS;
3108 }
3109
3110 /* process completion of an indexed ("direct lookup") command */
3111 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3112         u32 raw_tag)
3113 {
3114         u32 tag_index;
3115         struct CommandList *c;
3116
3117         tag_index = hpsa_tag_to_index(raw_tag);
3118         if (bad_tag(h, tag_index, raw_tag))
3119                 return next_command(h);
3120         c = h->cmd_pool + tag_index;
3121         finish_cmd(c, raw_tag);
3122         return next_command(h);
3123 }
3124
3125 /* process completion of a non-indexed command */
3126 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3127         u32 raw_tag)
3128 {
3129         u32 tag;
3130         struct CommandList *c = NULL;
3131
3132         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3133         list_for_each_entry(c, &h->cmpQ, list) {
3134                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3135                         finish_cmd(c, raw_tag);
3136                         return next_command(h);
3137                 }
3138         }
3139         bad_tag(h, h->nr_cmds + 1, raw_tag);
3140         return next_command(h);
3141 }
3142
3143 /* Some controllers, like p400, will give us one interrupt
3144  * after a soft reset, even if we turned interrupts off.
3145  * Only need to check for this in the hpsa_xxx_discard_completions
3146  * functions.
3147  */
3148 static int ignore_bogus_interrupt(struct ctlr_info *h)
3149 {
3150         if (likely(!reset_devices))
3151                 return 0;
3152
3153         if (likely(h->interrupts_enabled))
3154                 return 0;
3155
3156         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3157                 "(known firmware bug.)  Ignoring.\n");
3158
3159         return 1;
3160 }
3161
3162 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3163 {
3164         struct ctlr_info *h = dev_id;
3165         unsigned long flags;
3166         u32 raw_tag;
3167
3168         if (ignore_bogus_interrupt(h))
3169                 return IRQ_NONE;
3170
3171         if (interrupt_not_for_us(h))
3172                 return IRQ_NONE;
3173         spin_lock_irqsave(&h->lock, flags);
3174         h->last_intr_timestamp = get_jiffies_64();
3175         while (interrupt_pending(h)) {
3176                 raw_tag = get_next_completion(h);
3177                 while (raw_tag != FIFO_EMPTY)
3178                         raw_tag = next_command(h);
3179         }
3180         spin_unlock_irqrestore(&h->lock, flags);
3181         return IRQ_HANDLED;
3182 }
3183
3184 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3185 {
3186         struct ctlr_info *h = dev_id;
3187         unsigned long flags;
3188         u32 raw_tag;
3189
3190         if (ignore_bogus_interrupt(h))
3191                 return IRQ_NONE;
3192
3193         spin_lock_irqsave(&h->lock, flags);
3194         h->last_intr_timestamp = get_jiffies_64();
3195         raw_tag = get_next_completion(h);
3196         while (raw_tag != FIFO_EMPTY)
3197                 raw_tag = next_command(h);
3198         spin_unlock_irqrestore(&h->lock, flags);
3199         return IRQ_HANDLED;
3200 }
3201
3202 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3203 {
3204         struct ctlr_info *h = dev_id;
3205         unsigned long flags;
3206         u32 raw_tag;
3207
3208         if (interrupt_not_for_us(h))
3209                 return IRQ_NONE;
3210         spin_lock_irqsave(&h->lock, flags);
3211         h->last_intr_timestamp = get_jiffies_64();
3212         while (interrupt_pending(h)) {
3213                 raw_tag = get_next_completion(h);
3214                 while (raw_tag != FIFO_EMPTY) {
3215                         if (hpsa_tag_contains_index(raw_tag))
3216                                 raw_tag = process_indexed_cmd(h, raw_tag);
3217                         else
3218                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3219                 }
3220         }
3221         spin_unlock_irqrestore(&h->lock, flags);
3222         return IRQ_HANDLED;
3223 }
3224
3225 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3226 {
3227         struct ctlr_info *h = dev_id;
3228         unsigned long flags;
3229         u32 raw_tag;
3230
3231         spin_lock_irqsave(&h->lock, flags);
3232         h->last_intr_timestamp = get_jiffies_64();
3233         raw_tag = get_next_completion(h);
3234         while (raw_tag != FIFO_EMPTY) {
3235                 if (hpsa_tag_contains_index(raw_tag))
3236                         raw_tag = process_indexed_cmd(h, raw_tag);
3237                 else
3238                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3239         }
3240         spin_unlock_irqrestore(&h->lock, flags);
3241         return IRQ_HANDLED;
3242 }
3243
3244 /* Send a message CDB to the firmware. Careful, this only works
3245  * in simple mode, not performant mode due to the tag lookup.
3246  * We only ever use this immediately after a controller reset.
3247  */
3248 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3249                                                 unsigned char type)
3250 {
3251         struct Command {
3252                 struct CommandListHeader CommandHeader;
3253                 struct RequestBlock Request;
3254                 struct ErrDescriptor ErrorDescriptor;
3255         };
3256         struct Command *cmd;
3257         static const size_t cmd_sz = sizeof(*cmd) +
3258                                         sizeof(cmd->ErrorDescriptor);
3259         dma_addr_t paddr64;
3260         uint32_t paddr32, tag;
3261         void __iomem *vaddr;
3262         int i, err;
3263
3264         vaddr = pci_ioremap_bar(pdev, 0);
3265         if (vaddr == NULL)
3266                 return -ENOMEM;
3267
3268         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3269          * CCISS commands, so they must be allocated from the lower 4GiB of
3270          * memory.
3271          */
3272         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3273         if (err) {
3274                 iounmap(vaddr);
3275                 return -ENOMEM;
3276         }
3277
3278         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3279         if (cmd == NULL) {
3280                 iounmap(vaddr);
3281                 return -ENOMEM;
3282         }
3283
3284         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3285          * although there's no guarantee, we assume that the address is at
3286          * least 4-byte aligned (most likely, it's page-aligned).
3287          */
3288         paddr32 = paddr64;
3289
3290         cmd->CommandHeader.ReplyQueue = 0;
3291         cmd->CommandHeader.SGList = 0;
3292         cmd->CommandHeader.SGTotal = 0;
3293         cmd->CommandHeader.Tag.lower = paddr32;
3294         cmd->CommandHeader.Tag.upper = 0;
3295         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3296
3297         cmd->Request.CDBLen = 16;
3298         cmd->Request.Type.Type = TYPE_MSG;
3299         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3300         cmd->Request.Type.Direction = XFER_NONE;
3301         cmd->Request.Timeout = 0; /* Don't time out */
3302         cmd->Request.CDB[0] = opcode;
3303         cmd->Request.CDB[1] = type;
3304         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3305         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3306         cmd->ErrorDescriptor.Addr.upper = 0;
3307         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3308
3309         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3310
3311         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3312                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3313                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3314                         break;
3315                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3316         }
3317
3318         iounmap(vaddr);
3319
3320         /* we leak the DMA buffer here ... no choice since the controller could
3321          *  still complete the command.
3322          */
3323         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3324                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3325                         opcode, type);
3326                 return -ETIMEDOUT;
3327         }
3328
3329         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3330
3331         if (tag & HPSA_ERROR_BIT) {
3332                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3333                         opcode, type);
3334                 return -EIO;
3335         }
3336
3337         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3338                 opcode, type);
3339         return 0;
3340 }
3341
3342 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3343
3344 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3345         void * __iomem vaddr, u32 use_doorbell)
3346 {
3347         u16 pmcsr;
3348         int pos;
3349
3350         if (use_doorbell) {
3351                 /* For everything after the P600, the PCI power state method
3352                  * of resetting the controller doesn't work, so we have this
3353                  * other way using the doorbell register.
3354                  */
3355                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3356                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3357         } else { /* Try to do it the PCI power state way */
3358
3359                 /* Quoting from the Open CISS Specification: "The Power
3360                  * Management Control/Status Register (CSR) controls the power
3361                  * state of the device.  The normal operating state is D0,
3362                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3363                  * the controller, place the interface device in D3 then to D0,
3364                  * this causes a secondary PCI reset which will reset the
3365                  * controller." */
3366
3367                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3368                 if (pos == 0) {
3369                         dev_err(&pdev->dev,
3370                                 "hpsa_reset_controller: "
3371                                 "PCI PM not supported\n");
3372                         return -ENODEV;
3373                 }
3374                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3375                 /* enter the D3hot power management state */
3376                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3377                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3378                 pmcsr |= PCI_D3hot;
3379                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3380
3381                 msleep(500);
3382
3383                 /* enter the D0 power management state */
3384                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3385                 pmcsr |= PCI_D0;
3386                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3387
3388                 /*
3389                  * The P600 requires a small delay when changing states.
3390                  * Otherwise we may think the board did not reset and we bail.
3391                  * This for kdump only and is particular to the P600.
3392                  */
3393                 msleep(500);
3394         }
3395         return 0;
3396 }
3397
3398 static __devinit void init_driver_version(char *driver_version, int len)
3399 {
3400         memset(driver_version, 0, len);
3401         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3402 }
3403
3404 static __devinit int write_driver_ver_to_cfgtable(
3405         struct CfgTable __iomem *cfgtable)
3406 {
3407         char *driver_version;
3408         int i, size = sizeof(cfgtable->driver_version);
3409
3410         driver_version = kmalloc(size, GFP_KERNEL);
3411         if (!driver_version)
3412                 return -ENOMEM;
3413
3414         init_driver_version(driver_version, size);
3415         for (i = 0; i < size; i++)
3416                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3417         kfree(driver_version);
3418         return 0;
3419 }
3420
3421 static __devinit void read_driver_ver_from_cfgtable(
3422         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3423 {
3424         int i;
3425
3426         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3427                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3428 }
3429
3430 static __devinit int controller_reset_failed(
3431         struct CfgTable __iomem *cfgtable)
3432 {
3433
3434         char *driver_ver, *old_driver_ver;
3435         int rc, size = sizeof(cfgtable->driver_version);
3436
3437         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3438         if (!old_driver_ver)
3439                 return -ENOMEM;
3440         driver_ver = old_driver_ver + size;
3441
3442         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3443          * should have been changed, otherwise we know the reset failed.
3444          */
3445         init_driver_version(old_driver_ver, size);
3446         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3447         rc = !memcmp(driver_ver, old_driver_ver, size);
3448         kfree(old_driver_ver);
3449         return rc;
3450 }
3451 /* This does a hard reset of the controller using PCI power management
3452  * states or the using the doorbell register.
3453  */
3454 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3455 {
3456         u64 cfg_offset;
3457         u32 cfg_base_addr;
3458         u64 cfg_base_addr_index;
3459         void __iomem *vaddr;
3460         unsigned long paddr;
3461         u32 misc_fw_support;
3462         int rc;
3463         struct CfgTable __iomem *cfgtable;
3464         u32 use_doorbell;
3465         u32 board_id;
3466         u16 command_register;
3467
3468         /* For controllers as old as the P600, this is very nearly
3469          * the same thing as
3470          *
3471          * pci_save_state(pci_dev);
3472          * pci_set_power_state(pci_dev, PCI_D3hot);
3473          * pci_set_power_state(pci_dev, PCI_D0);
3474          * pci_restore_state(pci_dev);
3475          *
3476          * For controllers newer than the P600, the pci power state
3477          * method of resetting doesn't work so we have another way
3478          * using the doorbell register.
3479          */
3480
3481         rc = hpsa_lookup_board_id(pdev, &board_id);
3482         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3483                 dev_warn(&pdev->dev, "Not resetting device.\n");
3484                 return -ENODEV;
3485         }
3486
3487         /* if controller is soft- but not hard resettable... */
3488         if (!ctlr_is_hard_resettable(board_id))
3489                 return -ENOTSUPP; /* try soft reset later. */
3490
3491         /* Save the PCI command register */
3492         pci_read_config_word(pdev, 4, &command_register);
3493         /* Turn the board off.  This is so that later pci_restore_state()
3494          * won't turn the board on before the rest of config space is ready.
3495          */
3496         pci_disable_device(pdev);
3497         pci_save_state(pdev);
3498
3499         /* find the first memory BAR, so we can find the cfg table */
3500         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3501         if (rc)
3502                 return rc;
3503         vaddr = remap_pci_mem(paddr, 0x250);
3504         if (!vaddr)
3505                 return -ENOMEM;
3506
3507         /* find cfgtable in order to check if reset via doorbell is supported */
3508         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3509                                         &cfg_base_addr_index, &cfg_offset);
3510         if (rc)
3511                 goto unmap_vaddr;
3512         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3513                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3514         if (!cfgtable) {
3515                 rc = -ENOMEM;
3516                 goto unmap_vaddr;
3517         }
3518         rc = write_driver_ver_to_cfgtable(cfgtable);
3519         if (rc)
3520                 goto unmap_vaddr;
3521
3522         /* If reset via doorbell register is supported, use that.
3523          * There are two such methods.  Favor the newest method.
3524          */
3525         misc_fw_support = readl(&cfgtable->misc_fw_support);
3526         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3527         if (use_doorbell) {
3528                 use_doorbell = DOORBELL_CTLR_RESET2;
3529         } else {
3530                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3531                 if (use_doorbell) {
3532                         dev_warn(&pdev->dev, "Soft reset not supported. "
3533                                 "Firmware update is required.\n");
3534                         rc = -ENOTSUPP; /* try soft reset */
3535                         goto unmap_cfgtable;
3536                 }
3537         }
3538
3539         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3540         if (rc)
3541                 goto unmap_cfgtable;
3542
3543         pci_restore_state(pdev);
3544         rc = pci_enable_device(pdev);
3545         if (rc) {
3546                 dev_warn(&pdev->dev, "failed to enable device.\n");
3547                 goto unmap_cfgtable;
3548         }
3549         pci_write_config_word(pdev, 4, command_register);
3550
3551         /* Some devices (notably the HP Smart Array 5i Controller)
3552            need a little pause here */
3553         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3554
3555         /* Wait for board to become not ready, then ready. */
3556         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3557         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3558         if (rc) {
3559                 dev_warn(&pdev->dev,
3560                         "failed waiting for board to reset."
3561                         " Will try soft reset.\n");
3562                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3563                 goto unmap_cfgtable;
3564         }
3565         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3566         if (rc) {
3567                 dev_warn(&pdev->dev,
3568                         "failed waiting for board to become ready "
3569                         "after hard reset\n");
3570                 goto unmap_cfgtable;
3571         }
3572
3573         rc = controller_reset_failed(vaddr);
3574         if (rc < 0)
3575                 goto unmap_cfgtable;
3576         if (rc) {
3577                 dev_warn(&pdev->dev, "Unable to successfully reset "
3578                         "controller. Will try soft reset.\n");
3579                 rc = -ENOTSUPP;
3580         } else {
3581                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3582         }
3583
3584 unmap_cfgtable:
3585         iounmap(cfgtable);
3586
3587 unmap_vaddr:
3588         iounmap(vaddr);
3589         return rc;
3590 }
3591
3592 /*
3593  *  We cannot read the structure directly, for portability we must use
3594  *   the io functions.
3595  *   This is for debug only.
3596  */
3597 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3598 {
3599 #ifdef HPSA_DEBUG
3600         int i;
3601         char temp_name[17];
3602
3603         dev_info(dev, "Controller Configuration information\n");
3604         dev_info(dev, "------------------------------------\n");
3605         for (i = 0; i < 4; i++)
3606                 temp_name[i] = readb(&(tb->Signature[i]));
3607         temp_name[4] = '\0';
3608         dev_info(dev, "   Signature = %s\n", temp_name);
3609         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3610         dev_info(dev, "   Transport methods supported = 0x%x\n",
3611                readl(&(tb->TransportSupport)));
3612         dev_info(dev, "   Transport methods active = 0x%x\n",
3613                readl(&(tb->TransportActive)));
3614         dev_info(dev, "   Requested transport Method = 0x%x\n",
3615                readl(&(tb->HostWrite.TransportRequest)));
3616         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3617                readl(&(tb->HostWrite.CoalIntDelay)));
3618         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3619                readl(&(tb->HostWrite.CoalIntCount)));
3620         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3621                readl(&(tb->CmdsOutMax)));
3622         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3623         for (i = 0; i < 16; i++)
3624                 temp_name[i] = readb(&(tb->ServerName[i]));
3625         temp_name[16] = '\0';
3626         dev_info(dev, "   Server Name = %s\n", temp_name);
3627         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3628                 readl(&(tb->HeartBeat)));
3629 #endif                          /* HPSA_DEBUG */
3630 }
3631
3632 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3633 {
3634         int i, offset, mem_type, bar_type;
3635
3636         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3637                 return 0;
3638         offset = 0;
3639         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3640                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3641                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3642                         offset += 4;
3643                 else {
3644                         mem_type = pci_resource_flags(pdev, i) &
3645                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3646                         switch (mem_type) {
3647                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3648                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3649                                 offset += 4;    /* 32 bit */
3650                                 break;
3651                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3652                                 offset += 8;
3653                                 break;
3654                         default:        /* reserved in PCI 2.2 */
3655                                 dev_warn(&pdev->dev,
3656                                        "base address is invalid\n");
3657                                 return -1;
3658                                 break;
3659                         }
3660                 }
3661                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3662                         return i + 1;
3663         }
3664         return -1;
3665 }
3666
3667 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3668  * controllers that are capable. If not, we use IO-APIC mode.
3669  */
3670
3671 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3672 {
3673 #ifdef CONFIG_PCI_MSI
3674         int err;
3675         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3676         {0, 2}, {0, 3}
3677         };
3678
3679         /* Some boards advertise MSI but don't really support it */
3680         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3681             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3682                 goto default_int_mode;
3683         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3684                 dev_info(&h->pdev->dev, "MSIX\n");
3685                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3686                 if (!err) {
3687                         h->intr[0] = hpsa_msix_entries[0].vector;
3688                         h->intr[1] = hpsa_msix_entries[1].vector;
3689                         h->intr[2] = hpsa_msix_entries[2].vector;
3690                         h->intr[3] = hpsa_msix_entries[3].vector;
3691                         h->msix_vector = 1;
3692                         return;
3693                 }
3694                 if (err > 0) {
3695                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3696                                "available\n", err);
3697                         goto default_int_mode;
3698                 } else {
3699                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3700                                err);
3701                         goto default_int_mode;
3702                 }
3703         }
3704         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3705                 dev_info(&h->pdev->dev, "MSI\n");
3706                 if (!pci_enable_msi(h->pdev))
3707                         h->msi_vector = 1;
3708                 else
3709                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3710         }
3711 default_int_mode:
3712 #endif                          /* CONFIG_PCI_MSI */
3713         /* if we get here we're going to use the default interrupt mode */
3714         h->intr[h->intr_mode] = h->pdev->irq;
3715 }
3716
3717 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3718 {
3719         int i;
3720         u32 subsystem_vendor_id, subsystem_device_id;
3721
3722         subsystem_vendor_id = pdev->subsystem_vendor;
3723         subsystem_device_id = pdev->subsystem_device;
3724         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3725                     subsystem_vendor_id;
3726
3727         for (i = 0; i < ARRAY_SIZE(products); i++)
3728                 if (*board_id == products[i].board_id)
3729                         return i;
3730
3731         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3732                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3733                 !hpsa_allow_any) {
3734                 dev_warn(&pdev->dev, "unrecognized board ID: "
3735                         "0x%08x, ignoring.\n", *board_id);
3736                         return -ENODEV;
3737         }
3738         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3739 }
3740
3741 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3742 {
3743         u16 command;
3744
3745         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3746         return ((command & PCI_COMMAND_MEMORY) == 0);
3747 }
3748
3749 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3750         unsigned long *memory_bar)
3751 {
3752         int i;
3753
3754         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3755                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3756                         /* addressing mode bits already removed */
3757                         *memory_bar = pci_resource_start(pdev, i);
3758                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3759                                 *memory_bar);
3760                         return 0;
3761                 }
3762         dev_warn(&pdev->dev, "no memory BAR found\n");
3763         return -ENODEV;
3764 }
3765
3766 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3767         void __iomem *vaddr, int wait_for_ready)
3768 {
3769         int i, iterations;
3770         u32 scratchpad;
3771         if (wait_for_ready)
3772                 iterations = HPSA_BOARD_READY_ITERATIONS;
3773         else
3774                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3775
3776         for (i = 0; i < iterations; i++) {
3777                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3778                 if (wait_for_ready) {
3779                         if (scratchpad == HPSA_FIRMWARE_READY)
3780                                 return 0;
3781                 } else {
3782                         if (scratchpad != HPSA_FIRMWARE_READY)
3783                                 return 0;
3784                 }
3785                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3786         }
3787         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3788         return -ENODEV;
3789 }
3790
3791 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3792         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3793         u64 *cfg_offset)
3794 {
3795         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3796         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3797         *cfg_base_addr &= (u32) 0x0000ffff;
3798         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3799         if (*cfg_base_addr_index == -1) {
3800                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3801                 return -ENODEV;
3802         }
3803         return 0;
3804 }
3805
3806 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3807 {
3808         u64 cfg_offset;
3809         u32 cfg_base_addr;
3810         u64 cfg_base_addr_index;
3811         u32 trans_offset;
3812         int rc;
3813
3814         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3815                 &cfg_base_addr_index, &cfg_offset);
3816         if (rc)
3817                 return rc;
3818         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3819                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3820         if (!h->cfgtable)
3821                 return -ENOMEM;
3822         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3823         if (rc)
3824                 return rc;
3825         /* Find performant mode table. */
3826         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3827         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3828                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3829                                 sizeof(*h->transtable));
3830         if (!h->transtable)
3831                 return -ENOMEM;
3832         return 0;
3833 }
3834
3835 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3836 {
3837         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3838
3839         /* Limit commands in memory limited kdump scenario. */
3840         if (reset_devices && h->max_commands > 32)
3841                 h->max_commands = 32;
3842
3843         if (h->max_commands < 16) {
3844                 dev_warn(&h->pdev->dev, "Controller reports "
3845                         "max supported commands of %d, an obvious lie. "
3846                         "Using 16.  Ensure that firmware is up to date.\n",
3847                         h->max_commands);
3848                 h->max_commands = 16;
3849         }
3850 }
3851
3852 /* Interrogate the hardware for some limits:
3853  * max commands, max SG elements without chaining, and with chaining,
3854  * SG chain block size, etc.
3855  */
3856 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3857 {
3858         hpsa_get_max_perf_mode_cmds(h);
3859         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3860         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3861         /*
3862          * Limit in-command s/g elements to 32 save dma'able memory.
3863          * Howvever spec says if 0, use 31
3864          */
3865         h->max_cmd_sg_entries = 31;
3866         if (h->maxsgentries > 512) {
3867                 h->max_cmd_sg_entries = 32;
3868                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3869                 h->maxsgentries--; /* save one for chain pointer */
3870         } else {
3871                 h->maxsgentries = 31; /* default to traditional values */
3872                 h->chainsize = 0;
3873         }
3874 }
3875
3876 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3877 {
3878         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3879             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3880             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3881             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3882                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3883                 return false;
3884         }
3885         return true;
3886 }
3887
3888 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3889 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3890 {
3891 #ifdef CONFIG_X86
3892         u32 prefetch;
3893
3894         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3895         prefetch |= 0x100;
3896         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3897 #endif
3898 }
3899
3900 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3901  * in a prefetch beyond physical memory.
3902  */
3903 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3904 {
3905         u32 dma_prefetch;
3906
3907         if (h->board_id != 0x3225103C)
3908                 return;
3909         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3910         dma_prefetch |= 0x8000;
3911         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3912 }
3913
3914 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3915 {
3916         int i;
3917         u32 doorbell_value;
3918         unsigned long flags;
3919
3920         /* under certain very rare conditions, this can take awhile.
3921          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3922          * as we enter this code.)
3923          */
3924         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3925                 spin_lock_irqsave(&h->lock, flags);
3926                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3927                 spin_unlock_irqrestore(&h->lock, flags);
3928                 if (!(doorbell_value & CFGTBL_ChangeReq))
3929                         break;
3930                 /* delay and try again */
3931                 usleep_range(10000, 20000);
3932         }
3933 }
3934
3935 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3936 {
3937         u32 trans_support;
3938
3939         trans_support = readl(&(h->cfgtable->TransportSupport));
3940         if (!(trans_support & SIMPLE_MODE))
3941                 return -ENOTSUPP;
3942
3943         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3944         /* Update the field, and then ring the doorbell */
3945         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3946         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3947         hpsa_wait_for_mode_change_ack(h);
3948         print_cfg_table(&h->pdev->dev, h->cfgtable);
3949         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3950                 dev_warn(&h->pdev->dev,
3951                         "unable to get board into simple mode\n");
3952                 return -ENODEV;
3953         }
3954         h->transMethod = CFGTBL_Trans_Simple;
3955         return 0;
3956 }
3957
3958 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3959 {
3960         int prod_index, err;
3961
3962         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3963         if (prod_index < 0)
3964                 return -ENODEV;
3965         h->product_name = products[prod_index].product_name;
3966         h->access = *(products[prod_index].access);
3967
3968         if (hpsa_board_disabled(h->pdev)) {
3969                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3970                 return -ENODEV;
3971         }
3972
3973         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3974                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3975
3976         err = pci_enable_device(h->pdev);
3977         if (err) {
3978                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3979                 return err;
3980         }
3981
3982         err = pci_request_regions(h->pdev, "hpsa");
3983         if (err) {
3984                 dev_err(&h->pdev->dev,
3985                         "cannot obtain PCI resources, aborting\n");
3986                 return err;
3987         }
3988         hpsa_interrupt_mode(h);
3989         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3990         if (err)
3991                 goto err_out_free_res;
3992         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3993         if (!h->vaddr) {
3994                 err = -ENOMEM;
3995                 goto err_out_free_res;
3996         }
3997         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3998         if (err)
3999                 goto err_out_free_res;
4000         err = hpsa_find_cfgtables(h);
4001         if (err)
4002                 goto err_out_free_res;
4003         hpsa_find_board_params(h);
4004
4005         if (!hpsa_CISS_signature_present(h)) {
4006                 err = -ENODEV;
4007                 goto err_out_free_res;
4008         }
4009         hpsa_enable_scsi_prefetch(h);
4010         hpsa_p600_dma_prefetch_quirk(h);
4011         err = hpsa_enter_simple_mode(h);
4012         if (err)
4013                 goto err_out_free_res;
4014         return 0;
4015
4016 err_out_free_res:
4017         if (h->transtable)
4018                 iounmap(h->transtable);
4019         if (h->cfgtable)
4020                 iounmap(h->cfgtable);
4021         if (h->vaddr)
4022                 iounmap(h->vaddr);
4023         /*
4024          * Deliberately omit pci_disable_device(): it does something nasty to
4025          * Smart Array controllers that pci_enable_device does not undo
4026          */
4027         pci_release_regions(h->pdev);
4028         return err;
4029 }
4030
4031 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4032 {
4033         int rc;
4034
4035 #define HBA_INQUIRY_BYTE_COUNT 64
4036         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4037         if (!h->hba_inquiry_data)
4038                 return;
4039         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4040                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4041         if (rc != 0) {
4042                 kfree(h->hba_inquiry_data);
4043                 h->hba_inquiry_data = NULL;
4044         }
4045 }
4046
4047 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4048 {
4049         int rc, i;
4050
4051         if (!reset_devices)
4052                 return 0;
4053
4054         /* Reset the controller with a PCI power-cycle or via doorbell */
4055         rc = hpsa_kdump_hard_reset_controller(pdev);
4056
4057         /* -ENOTSUPP here means we cannot reset the controller
4058          * but it's already (and still) up and running in
4059          * "performant mode".  Or, it might be 640x, which can't reset
4060          * due to concerns about shared bbwc between 6402/6404 pair.
4061          */
4062         if (rc == -ENOTSUPP)
4063                 return rc; /* just try to do the kdump anyhow. */
4064         if (rc)
4065                 return -ENODEV;
4066
4067         /* Now try to get the controller to respond to a no-op */
4068         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4069         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4070                 if (hpsa_noop(pdev) == 0)
4071                         break;
4072                 else
4073                         dev_warn(&pdev->dev, "no-op failed%s\n",
4074                                         (i < 11 ? "; re-trying" : ""));
4075         }
4076         return 0;
4077 }
4078
4079 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4080 {
4081         h->cmd_pool_bits = kzalloc(
4082                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4083                 sizeof(unsigned long), GFP_KERNEL);
4084         h->cmd_pool = pci_alloc_consistent(h->pdev,
4085                     h->nr_cmds * sizeof(*h->cmd_pool),
4086                     &(h->cmd_pool_dhandle));
4087         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4088                     h->nr_cmds * sizeof(*h->errinfo_pool),
4089                     &(h->errinfo_pool_dhandle));
4090         if ((h->cmd_pool_bits == NULL)
4091             || (h->cmd_pool == NULL)
4092             || (h->errinfo_pool == NULL)) {
4093                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4094                 return -ENOMEM;
4095         }
4096         return 0;
4097 }
4098
4099 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4100 {
4101         kfree(h->cmd_pool_bits);
4102         if (h->cmd_pool)
4103                 pci_free_consistent(h->pdev,
4104                             h->nr_cmds * sizeof(struct CommandList),
4105                             h->cmd_pool, h->cmd_pool_dhandle);
4106         if (h->errinfo_pool)
4107                 pci_free_consistent(h->pdev,
4108                             h->nr_cmds * sizeof(struct ErrorInfo),
4109                             h->errinfo_pool,
4110                             h->errinfo_pool_dhandle);
4111 }
4112
4113 static int hpsa_request_irq(struct ctlr_info *h,
4114         irqreturn_t (*msixhandler)(int, void *),
4115         irqreturn_t (*intxhandler)(int, void *))
4116 {
4117         int rc;
4118
4119         if (h->msix_vector || h->msi_vector)
4120                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4121                                 0, h->devname, h);
4122         else
4123                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4124                                 IRQF_SHARED, h->devname, h);
4125         if (rc) {
4126                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4127                        h->intr[h->intr_mode], h->devname);
4128                 return -ENODEV;
4129         }
4130         return 0;
4131 }
4132
4133 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4134 {
4135         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4136                 HPSA_RESET_TYPE_CONTROLLER)) {
4137                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4138                 return -EIO;
4139         }
4140
4141         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4142         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4143                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4144                 return -1;
4145         }
4146
4147         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4148         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4149                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4150                         "after soft reset.\n");
4151                 return -1;
4152         }
4153
4154         return 0;
4155 }
4156
4157 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4158 {
4159         free_irq(h->intr[h->intr_mode], h);
4160 #ifdef CONFIG_PCI_MSI
4161         if (h->msix_vector)
4162                 pci_disable_msix(h->pdev);
4163         else if (h->msi_vector)
4164                 pci_disable_msi(h->pdev);
4165 #endif /* CONFIG_PCI_MSI */
4166         hpsa_free_sg_chain_blocks(h);
4167         hpsa_free_cmd_pool(h);
4168         kfree(h->blockFetchTable);
4169         pci_free_consistent(h->pdev, h->reply_pool_size,
4170                 h->reply_pool, h->reply_pool_dhandle);
4171         if (h->vaddr)
4172                 iounmap(h->vaddr);
4173         if (h->transtable)
4174                 iounmap(h->transtable);
4175         if (h->cfgtable)
4176                 iounmap(h->cfgtable);
4177         pci_release_regions(h->pdev);
4178         kfree(h);
4179 }
4180
4181 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4182 {
4183         assert_spin_locked(&lockup_detector_lock);
4184         if (!hpsa_lockup_detector)
4185                 return;
4186         if (h->lockup_detected)
4187                 return; /* already stopped the lockup detector */
4188         list_del(&h->lockup_list);
4189 }
4190
4191 /* Called when controller lockup detected. */
4192 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4193 {
4194         struct CommandList *c = NULL;
4195
4196         assert_spin_locked(&h->lock);
4197         /* Mark all outstanding commands as failed and complete them. */
4198         while (!list_empty(list)) {
4199                 c = list_entry(list->next, struct CommandList, list);
4200                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4201                 finish_cmd(c, c->Header.Tag.lower);
4202         }
4203 }
4204
4205 static void controller_lockup_detected(struct ctlr_info *h)
4206 {
4207         unsigned long flags;
4208
4209         assert_spin_locked(&lockup_detector_lock);
4210         remove_ctlr_from_lockup_detector_list(h);
4211         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4212         spin_lock_irqsave(&h->lock, flags);
4213         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4214         spin_unlock_irqrestore(&h->lock, flags);
4215         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4216                         h->lockup_detected);
4217         pci_disable_device(h->pdev);
4218         spin_lock_irqsave(&h->lock, flags);
4219         fail_all_cmds_on_list(h, &h->cmpQ);
4220         fail_all_cmds_on_list(h, &h->reqQ);
4221         spin_unlock_irqrestore(&h->lock, flags);
4222 }
4223
4224 static void detect_controller_lockup(struct ctlr_info *h)
4225 {
4226         u64 now;
4227         u32 heartbeat;
4228         unsigned long flags;
4229
4230         assert_spin_locked(&lockup_detector_lock);
4231         now = get_jiffies_64();
4232         /* If we've received an interrupt recently, we're ok. */
4233         if (time_after64(h->last_intr_timestamp +
4234                                 (h->heartbeat_sample_interval), now))
4235                 return;
4236
4237         /*
4238          * If we've already checked the heartbeat recently, we're ok.
4239          * This could happen if someone sends us a signal. We
4240          * otherwise don't care about signals in this thread.
4241          */
4242         if (time_after64(h->last_heartbeat_timestamp +
4243                                 (h->heartbeat_sample_interval), now))
4244                 return;
4245
4246         /* If heartbeat has not changed since we last looked, we're not ok. */
4247         spin_lock_irqsave(&h->lock, flags);
4248         heartbeat = readl(&h->cfgtable->HeartBeat);
4249         spin_unlock_irqrestore(&h->lock, flags);
4250         if (h->last_heartbeat == heartbeat) {
4251                 controller_lockup_detected(h);
4252                 return;
4253         }
4254
4255         /* We're ok. */
4256         h->last_heartbeat = heartbeat;
4257         h->last_heartbeat_timestamp = now;
4258 }
4259
4260 static int detect_controller_lockup_thread(void *notused)
4261 {
4262         struct ctlr_info *h;
4263         unsigned long flags;
4264
4265         while (1) {
4266                 struct list_head *this, *tmp;
4267
4268                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4269                 if (kthread_should_stop())
4270                         break;
4271                 spin_lock_irqsave(&lockup_detector_lock, flags);
4272                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4273                         h = list_entry(this, struct ctlr_info, lockup_list);
4274                         detect_controller_lockup(h);
4275                 }
4276                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4277         }
4278         return 0;
4279 }
4280
4281 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4282 {
4283         unsigned long flags;
4284
4285         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4286         spin_lock_irqsave(&lockup_detector_lock, flags);
4287         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4288         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4289 }
4290
4291 static void start_controller_lockup_detector(struct ctlr_info *h)
4292 {
4293         /* Start the lockup detector thread if not already started */
4294         if (!hpsa_lockup_detector) {
4295                 spin_lock_init(&lockup_detector_lock);
4296                 hpsa_lockup_detector =
4297                         kthread_run(detect_controller_lockup_thread,
4298                                                 NULL, "hpsa");
4299         }
4300         if (!hpsa_lockup_detector) {
4301                 dev_warn(&h->pdev->dev,
4302                         "Could not start lockup detector thread\n");
4303                 return;
4304         }
4305         add_ctlr_to_lockup_detector_list(h);
4306 }
4307
4308 static void stop_controller_lockup_detector(struct ctlr_info *h)
4309 {
4310         unsigned long flags;
4311
4312         spin_lock_irqsave(&lockup_detector_lock, flags);
4313         remove_ctlr_from_lockup_detector_list(h);
4314         /* If the list of ctlr's to monitor is empty, stop the thread */
4315         if (list_empty(&hpsa_ctlr_list)) {
4316                 kthread_stop(hpsa_lockup_detector);
4317                 hpsa_lockup_detector = NULL;
4318         }
4319         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4320 }
4321
4322 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4323                                     const struct pci_device_id *ent)
4324 {
4325         int dac, rc;
4326         struct ctlr_info *h;
4327         int try_soft_reset = 0;
4328         unsigned long flags;
4329
4330         if (number_of_controllers == 0)
4331                 printk(KERN_INFO DRIVER_NAME "\n");
4332
4333         rc = hpsa_init_reset_devices(pdev);
4334         if (rc) {
4335                 if (rc != -ENOTSUPP)
4336                         return rc;
4337                 /* If the reset fails in a particular way (it has no way to do
4338                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4339                  * a soft reset once we get the controller configured up to the
4340                  * point that it can accept a command.
4341                  */
4342                 try_soft_reset = 1;
4343                 rc = 0;
4344         }
4345
4346 reinit_after_soft_reset:
4347
4348         /* Command structures must be aligned on a 32-byte boundary because
4349          * the 5 lower bits of the address are used by the hardware. and by
4350          * the driver.  See comments in hpsa.h for more info.
4351          */
4352 #define COMMANDLIST_ALIGNMENT 32
4353         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4354         h = kzalloc(sizeof(*h), GFP_KERNEL);
4355         if (!h)
4356                 return -ENOMEM;
4357
4358         h->pdev = pdev;
4359         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4360         INIT_LIST_HEAD(&h->cmpQ);
4361         INIT_LIST_HEAD(&h->reqQ);
4362         spin_lock_init(&h->lock);
4363         spin_lock_init(&h->scan_lock);
4364         rc = hpsa_pci_init(h);
4365         if (rc != 0)
4366                 goto clean1;
4367
4368         sprintf(h->devname, "hpsa%d", number_of_controllers);
4369         h->ctlr = number_of_controllers;
4370         number_of_controllers++;
4371
4372         /* configure PCI DMA stuff */
4373         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4374         if (rc == 0) {
4375                 dac = 1;
4376         } else {
4377                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4378                 if (rc == 0) {
4379                         dac = 0;
4380                 } else {
4381                         dev_err(&pdev->dev, "no suitable DMA available\n");
4382                         goto clean1;
4383                 }
4384         }
4385
4386         /* make sure the board interrupts are off */
4387         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4388
4389         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4390                 goto clean2;
4391         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4392                h->devname, pdev->device,
4393                h->intr[h->intr_mode], dac ? "" : " not");
4394         if (hpsa_allocate_cmd_pool(h))
4395                 goto clean4;
4396         if (hpsa_allocate_sg_chain_blocks(h))
4397                 goto clean4;
4398         init_waitqueue_head(&h->scan_wait_queue);
4399         h->scan_finished = 1; /* no scan currently in progress */
4400
4401         pci_set_drvdata(pdev, h);
4402         h->ndevices = 0;
4403         h->scsi_host = NULL;
4404         spin_lock_init(&h->devlock);
4405         hpsa_put_ctlr_into_performant_mode(h);
4406
4407         /* At this point, the controller is ready to take commands.
4408          * Now, if reset_devices and the hard reset didn't work, try
4409          * the soft reset and see if that works.
4410          */
4411         if (try_soft_reset) {
4412
4413                 /* This is kind of gross.  We may or may not get a completion
4414                  * from the soft reset command, and if we do, then the value
4415                  * from the fifo may or may not be valid.  So, we wait 10 secs
4416                  * after the reset throwing away any completions we get during
4417                  * that time.  Unregister the interrupt handler and register
4418                  * fake ones to scoop up any residual completions.
4419                  */
4420                 spin_lock_irqsave(&h->lock, flags);
4421                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4422                 spin_unlock_irqrestore(&h->lock, flags);
4423                 free_irq(h->intr[h->intr_mode], h);
4424                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4425                                         hpsa_intx_discard_completions);
4426                 if (rc) {
4427                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4428                                 "soft reset.\n");
4429                         goto clean4;
4430                 }
4431
4432                 rc = hpsa_kdump_soft_reset(h);
4433                 if (rc)
4434                         /* Neither hard nor soft reset worked, we're hosed. */
4435                         goto clean4;
4436
4437                 dev_info(&h->pdev->dev, "Board READY.\n");
4438                 dev_info(&h->pdev->dev,
4439                         "Waiting for stale completions to drain.\n");
4440                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4441                 msleep(10000);
4442                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4443
4444                 rc = controller_reset_failed(h->cfgtable);
4445                 if (rc)
4446                         dev_info(&h->pdev->dev,
4447                                 "Soft reset appears to have failed.\n");
4448
4449                 /* since the controller's reset, we have to go back and re-init
4450                  * everything.  Easiest to just forget what we've done and do it
4451                  * all over again.
4452                  */
4453                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4454                 try_soft_reset = 0;
4455                 if (rc)
4456                         /* don't go to clean4, we already unallocated */
4457                         return -ENODEV;
4458
4459                 goto reinit_after_soft_reset;
4460         }
4461
4462         /* Turn the interrupts on so we can service requests */
4463         h->access.set_intr_mask(h, HPSA_INTR_ON);
4464
4465         hpsa_hba_inquiry(h);
4466         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4467         start_controller_lockup_detector(h);
4468         return 1;
4469
4470 clean4:
4471         hpsa_free_sg_chain_blocks(h);
4472         hpsa_free_cmd_pool(h);
4473         free_irq(h->intr[h->intr_mode], h);
4474 clean2:
4475 clean1:
4476         kfree(h);
4477         return rc;
4478 }
4479
4480 static void hpsa_flush_cache(struct ctlr_info *h)
4481 {
4482         char *flush_buf;
4483         struct CommandList *c;
4484
4485         flush_buf = kzalloc(4, GFP_KERNEL);
4486         if (!flush_buf)
4487                 return;
4488
4489         c = cmd_special_alloc(h);
4490         if (!c) {
4491                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4492                 goto out_of_memory;
4493         }
4494         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4495                 RAID_CTLR_LUNID, TYPE_CMD);
4496         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4497         if (c->err_info->CommandStatus != 0)
4498                 dev_warn(&h->pdev->dev,
4499                         "error flushing cache on controller\n");
4500         cmd_special_free(h, c);
4501 out_of_memory:
4502         kfree(flush_buf);
4503 }
4504
4505 static void hpsa_shutdown(struct pci_dev *pdev)
4506 {
4507         struct ctlr_info *h;
4508
4509         h = pci_get_drvdata(pdev);
4510         /* Turn board interrupts off  and send the flush cache command
4511          * sendcmd will turn off interrupt, and send the flush...
4512          * To write all data in the battery backed cache to disks
4513          */
4514         hpsa_flush_cache(h);
4515         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4516         free_irq(h->intr[h->intr_mode], h);
4517 #ifdef CONFIG_PCI_MSI
4518         if (h->msix_vector)
4519                 pci_disable_msix(h->pdev);
4520         else if (h->msi_vector)
4521                 pci_disable_msi(h->pdev);
4522 #endif                          /* CONFIG_PCI_MSI */
4523 }
4524
4525 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4526 {
4527         struct ctlr_info *h;
4528
4529         if (pci_get_drvdata(pdev) == NULL) {
4530                 dev_err(&pdev->dev, "unable to remove device\n");
4531                 return;
4532         }
4533         h = pci_get_drvdata(pdev);
4534         stop_controller_lockup_detector(h);
4535         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4536         hpsa_shutdown(pdev);
4537         iounmap(h->vaddr);
4538         iounmap(h->transtable);
4539         iounmap(h->cfgtable);
4540         hpsa_free_sg_chain_blocks(h);
4541         pci_free_consistent(h->pdev,
4542                 h->nr_cmds * sizeof(struct CommandList),
4543                 h->cmd_pool, h->cmd_pool_dhandle);
4544         pci_free_consistent(h->pdev,
4545                 h->nr_cmds * sizeof(struct ErrorInfo),
4546                 h->errinfo_pool, h->errinfo_pool_dhandle);
4547         pci_free_consistent(h->pdev, h->reply_pool_size,
4548                 h->reply_pool, h->reply_pool_dhandle);
4549         kfree(h->cmd_pool_bits);
4550         kfree(h->blockFetchTable);
4551         kfree(h->hba_inquiry_data);
4552         /*
4553          * Deliberately omit pci_disable_device(): it does something nasty to
4554          * Smart Array controllers that pci_enable_device does not undo
4555          */
4556         pci_release_regions(pdev);
4557         pci_set_drvdata(pdev, NULL);
4558         kfree(h);
4559 }
4560
4561 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4562         __attribute__((unused)) pm_message_t state)
4563 {
4564         return -ENOSYS;
4565 }
4566
4567 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4568 {
4569         return -ENOSYS;
4570 }
4571
4572 static struct pci_driver hpsa_pci_driver = {
4573         .name = "hpsa",
4574         .probe = hpsa_init_one,
4575         .remove = __devexit_p(hpsa_remove_one),
4576         .id_table = hpsa_pci_device_id, /* id_table */
4577         .shutdown = hpsa_shutdown,
4578         .suspend = hpsa_suspend,
4579         .resume = hpsa_resume,
4580 };
4581
4582 /* Fill in bucket_map[], given nsgs (the max number of
4583  * scatter gather elements supported) and bucket[],
4584  * which is an array of 8 integers.  The bucket[] array
4585  * contains 8 different DMA transfer sizes (in 16
4586  * byte increments) which the controller uses to fetch
4587  * commands.  This function fills in bucket_map[], which
4588  * maps a given number of scatter gather elements to one of
4589  * the 8 DMA transfer sizes.  The point of it is to allow the
4590  * controller to only do as much DMA as needed to fetch the
4591  * command, with the DMA transfer size encoded in the lower
4592  * bits of the command address.
4593  */
4594 static void  calc_bucket_map(int bucket[], int num_buckets,
4595         int nsgs, int *bucket_map)
4596 {
4597         int i, j, b, size;
4598
4599         /* even a command with 0 SGs requires 4 blocks */
4600 #define MINIMUM_TRANSFER_BLOCKS 4
4601 #define NUM_BUCKETS 8
4602         /* Note, bucket_map must have nsgs+1 entries. */
4603         for (i = 0; i <= nsgs; i++) {
4604                 /* Compute size of a command with i SG entries */
4605                 size = i + MINIMUM_TRANSFER_BLOCKS;
4606                 b = num_buckets; /* Assume the biggest bucket */
4607                 /* Find the bucket that is just big enough */
4608                 for (j = 0; j < 8; j++) {
4609                         if (bucket[j] >= size) {
4610                                 b = j;
4611                                 break;
4612                         }
4613                 }
4614                 /* for a command with i SG entries, use bucket b. */
4615                 bucket_map[i] = b;
4616         }
4617 }
4618
4619 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4620         u32 use_short_tags)
4621 {
4622         int i;
4623         unsigned long register_value;
4624
4625         /* This is a bit complicated.  There are 8 registers on
4626          * the controller which we write to to tell it 8 different
4627          * sizes of commands which there may be.  It's a way of
4628          * reducing the DMA done to fetch each command.  Encoded into
4629          * each command's tag are 3 bits which communicate to the controller
4630          * which of the eight sizes that command fits within.  The size of
4631          * each command depends on how many scatter gather entries there are.
4632          * Each SG entry requires 16 bytes.  The eight registers are programmed
4633          * with the number of 16-byte blocks a command of that size requires.
4634          * The smallest command possible requires 5 such 16 byte blocks.
4635          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4636          * blocks.  Note, this only extends to the SG entries contained
4637          * within the command block, and does not extend to chained blocks
4638          * of SG elements.   bft[] contains the eight values we write to
4639          * the registers.  They are not evenly distributed, but have more
4640          * sizes for small commands, and fewer sizes for larger commands.
4641          */
4642         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4643         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4644         /*  5 = 1 s/g entry or 4k
4645          *  6 = 2 s/g entry or 8k
4646          *  8 = 4 s/g entry or 16k
4647          * 10 = 6 s/g entry or 24k
4648          */
4649
4650         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4651
4652         /* Controller spec: zero out this buffer. */
4653         memset(h->reply_pool, 0, h->reply_pool_size);
4654         h->reply_pool_head = h->reply_pool;
4655
4656         bft[7] = h->max_sg_entries + 4;
4657         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4658         for (i = 0; i < 8; i++)
4659                 writel(bft[i], &h->transtable->BlockFetch[i]);
4660
4661         /* size of controller ring buffer */
4662         writel(h->max_commands, &h->transtable->RepQSize);
4663         writel(1, &h->transtable->RepQCount);
4664         writel(0, &h->transtable->RepQCtrAddrLow32);
4665         writel(0, &h->transtable->RepQCtrAddrHigh32);
4666         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4667         writel(0, &h->transtable->RepQAddr0High32);
4668         writel(CFGTBL_Trans_Performant | use_short_tags,
4669                 &(h->cfgtable->HostWrite.TransportRequest));
4670         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4671         hpsa_wait_for_mode_change_ack(h);
4672         register_value = readl(&(h->cfgtable->TransportActive));
4673         if (!(register_value & CFGTBL_Trans_Performant)) {
4674                 dev_warn(&h->pdev->dev, "unable to get board into"
4675                                         " performant mode\n");
4676                 return;
4677         }
4678         /* Change the access methods to the performant access methods */
4679         h->access = SA5_performant_access;
4680         h->transMethod = CFGTBL_Trans_Performant;
4681 }
4682
4683 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4684 {
4685         u32 trans_support;
4686
4687         if (hpsa_simple_mode)
4688                 return;
4689
4690         trans_support = readl(&(h->cfgtable->TransportSupport));
4691         if (!(trans_support & PERFORMANT_MODE))
4692                 return;
4693
4694         hpsa_get_max_perf_mode_cmds(h);
4695         h->max_sg_entries = 32;
4696         /* Performant mode ring buffer and supporting data structures */
4697         h->reply_pool_size = h->max_commands * sizeof(u64);
4698         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4699                                 &(h->reply_pool_dhandle));
4700
4701         /* Need a block fetch table for performant mode */
4702         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4703                                 sizeof(u32)), GFP_KERNEL);
4704
4705         if ((h->reply_pool == NULL)
4706                 || (h->blockFetchTable == NULL))
4707                 goto clean_up;
4708
4709         hpsa_enter_performant_mode(h,
4710                 trans_support & CFGTBL_Trans_use_short_tags);
4711
4712         return;
4713
4714 clean_up:
4715         if (h->reply_pool)
4716                 pci_free_consistent(h->pdev, h->reply_pool_size,
4717                         h->reply_pool, h->reply_pool_dhandle);
4718         kfree(h->blockFetchTable);
4719 }
4720
4721 /*
4722  *  This is it.  Register the PCI driver information for the cards we control
4723  *  the OS will call our registered routines when it finds one of our cards.
4724  */
4725 static int __init hpsa_init(void)
4726 {
4727         return pci_register_driver(&hpsa_pci_driver);
4728 }
4729
4730 static void __exit hpsa_cleanup(void)
4731 {
4732         pci_unregister_driver(&hpsa_pci_driver);
4733 }
4734
4735 module_init(hpsa_init);
4736 module_exit(hpsa_cleanup);