Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[pandora-kernel.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33
34 #include "dummy.h"
35
36 #define rdev_err(rdev, fmt, ...)                                        \
37         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...)                                       \
39         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...)                                       \
41         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...)                                        \
43         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44
45 static DEFINE_MUTEX(regulator_list_mutex);
46 static LIST_HEAD(regulator_list);
47 static LIST_HEAD(regulator_map_list);
48 static bool has_full_constraints;
49 static bool board_wants_dummy_regulator;
50
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry *debugfs_root;
53 #endif
54
55 /*
56  * struct regulator_map
57  *
58  * Used to provide symbolic supply names to devices.
59  */
60 struct regulator_map {
61         struct list_head list;
62         const char *dev_name;   /* The dev_name() for the consumer */
63         const char *supply;
64         struct regulator_dev *regulator;
65 };
66
67 /*
68  * struct regulator
69  *
70  * One for each consumer device.
71  */
72 struct regulator {
73         struct device *dev;
74         struct list_head list;
75         int uA_load;
76         int min_uV;
77         int max_uV;
78         char *supply_name;
79         struct device_attribute dev_attr;
80         struct regulator_dev *rdev;
81 };
82
83 static int _regulator_is_enabled(struct regulator_dev *rdev);
84 static int _regulator_disable(struct regulator_dev *rdev,
85                 struct regulator_dev **supply_rdev_ptr);
86 static int _regulator_get_voltage(struct regulator_dev *rdev);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static void _notifier_call_chain(struct regulator_dev *rdev,
90                                   unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92                                      int min_uV, int max_uV);
93
94 static const char *rdev_get_name(struct regulator_dev *rdev)
95 {
96         if (rdev->constraints && rdev->constraints->name)
97                 return rdev->constraints->name;
98         else if (rdev->desc->name)
99                 return rdev->desc->name;
100         else
101                 return "";
102 }
103
104 /* gets the regulator for a given consumer device */
105 static struct regulator *get_device_regulator(struct device *dev)
106 {
107         struct regulator *regulator = NULL;
108         struct regulator_dev *rdev;
109
110         mutex_lock(&regulator_list_mutex);
111         list_for_each_entry(rdev, &regulator_list, list) {
112                 mutex_lock(&rdev->mutex);
113                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
114                         if (regulator->dev == dev) {
115                                 mutex_unlock(&rdev->mutex);
116                                 mutex_unlock(&regulator_list_mutex);
117                                 return regulator;
118                         }
119                 }
120                 mutex_unlock(&rdev->mutex);
121         }
122         mutex_unlock(&regulator_list_mutex);
123         return NULL;
124 }
125
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev *rdev,
128                                    int *min_uV, int *max_uV)
129 {
130         BUG_ON(*min_uV > *max_uV);
131
132         if (!rdev->constraints) {
133                 rdev_err(rdev, "no constraints\n");
134                 return -ENODEV;
135         }
136         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137                 rdev_err(rdev, "operation not allowed\n");
138                 return -EPERM;
139         }
140
141         if (*max_uV > rdev->constraints->max_uV)
142                 *max_uV = rdev->constraints->max_uV;
143         if (*min_uV < rdev->constraints->min_uV)
144                 *min_uV = rdev->constraints->min_uV;
145
146         if (*min_uV > *max_uV)
147                 return -EINVAL;
148
149         return 0;
150 }
151
152 /* Make sure we select a voltage that suits the needs of all
153  * regulator consumers
154  */
155 static int regulator_check_consumers(struct regulator_dev *rdev,
156                                      int *min_uV, int *max_uV)
157 {
158         struct regulator *regulator;
159
160         list_for_each_entry(regulator, &rdev->consumer_list, list) {
161                 /*
162                  * Assume consumers that didn't say anything are OK
163                  * with anything in the constraint range.
164                  */
165                 if (!regulator->min_uV && !regulator->max_uV)
166                         continue;
167
168                 if (*max_uV > regulator->max_uV)
169                         *max_uV = regulator->max_uV;
170                 if (*min_uV < regulator->min_uV)
171                         *min_uV = regulator->min_uV;
172         }
173
174         if (*min_uV > *max_uV)
175                 return -EINVAL;
176
177         return 0;
178 }
179
180 /* current constraint check */
181 static int regulator_check_current_limit(struct regulator_dev *rdev,
182                                         int *min_uA, int *max_uA)
183 {
184         BUG_ON(*min_uA > *max_uA);
185
186         if (!rdev->constraints) {
187                 rdev_err(rdev, "no constraints\n");
188                 return -ENODEV;
189         }
190         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
191                 rdev_err(rdev, "operation not allowed\n");
192                 return -EPERM;
193         }
194
195         if (*max_uA > rdev->constraints->max_uA)
196                 *max_uA = rdev->constraints->max_uA;
197         if (*min_uA < rdev->constraints->min_uA)
198                 *min_uA = rdev->constraints->min_uA;
199
200         if (*min_uA > *max_uA)
201                 return -EINVAL;
202
203         return 0;
204 }
205
206 /* operating mode constraint check */
207 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
208 {
209         switch (*mode) {
210         case REGULATOR_MODE_FAST:
211         case REGULATOR_MODE_NORMAL:
212         case REGULATOR_MODE_IDLE:
213         case REGULATOR_MODE_STANDBY:
214                 break;
215         default:
216                 return -EINVAL;
217         }
218
219         if (!rdev->constraints) {
220                 rdev_err(rdev, "no constraints\n");
221                 return -ENODEV;
222         }
223         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
224                 rdev_err(rdev, "operation not allowed\n");
225                 return -EPERM;
226         }
227
228         /* The modes are bitmasks, the most power hungry modes having
229          * the lowest values. If the requested mode isn't supported
230          * try higher modes. */
231         while (*mode) {
232                 if (rdev->constraints->valid_modes_mask & *mode)
233                         return 0;
234                 *mode /= 2;
235         }
236
237         return -EINVAL;
238 }
239
240 /* dynamic regulator mode switching constraint check */
241 static int regulator_check_drms(struct regulator_dev *rdev)
242 {
243         if (!rdev->constraints) {
244                 rdev_err(rdev, "no constraints\n");
245                 return -ENODEV;
246         }
247         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
248                 rdev_err(rdev, "operation not allowed\n");
249                 return -EPERM;
250         }
251         return 0;
252 }
253
254 static ssize_t device_requested_uA_show(struct device *dev,
255                              struct device_attribute *attr, char *buf)
256 {
257         struct regulator *regulator;
258
259         regulator = get_device_regulator(dev);
260         if (regulator == NULL)
261                 return 0;
262
263         return sprintf(buf, "%d\n", regulator->uA_load);
264 }
265
266 static ssize_t regulator_uV_show(struct device *dev,
267                                 struct device_attribute *attr, char *buf)
268 {
269         struct regulator_dev *rdev = dev_get_drvdata(dev);
270         ssize_t ret;
271
272         mutex_lock(&rdev->mutex);
273         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
274         mutex_unlock(&rdev->mutex);
275
276         return ret;
277 }
278 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
279
280 static ssize_t regulator_uA_show(struct device *dev,
281                                 struct device_attribute *attr, char *buf)
282 {
283         struct regulator_dev *rdev = dev_get_drvdata(dev);
284
285         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
286 }
287 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
288
289 static ssize_t regulator_name_show(struct device *dev,
290                              struct device_attribute *attr, char *buf)
291 {
292         struct regulator_dev *rdev = dev_get_drvdata(dev);
293
294         return sprintf(buf, "%s\n", rdev_get_name(rdev));
295 }
296
297 static ssize_t regulator_print_opmode(char *buf, int mode)
298 {
299         switch (mode) {
300         case REGULATOR_MODE_FAST:
301                 return sprintf(buf, "fast\n");
302         case REGULATOR_MODE_NORMAL:
303                 return sprintf(buf, "normal\n");
304         case REGULATOR_MODE_IDLE:
305                 return sprintf(buf, "idle\n");
306         case REGULATOR_MODE_STANDBY:
307                 return sprintf(buf, "standby\n");
308         }
309         return sprintf(buf, "unknown\n");
310 }
311
312 static ssize_t regulator_opmode_show(struct device *dev,
313                                     struct device_attribute *attr, char *buf)
314 {
315         struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
318 }
319 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
320
321 static ssize_t regulator_print_state(char *buf, int state)
322 {
323         if (state > 0)
324                 return sprintf(buf, "enabled\n");
325         else if (state == 0)
326                 return sprintf(buf, "disabled\n");
327         else
328                 return sprintf(buf, "unknown\n");
329 }
330
331 static ssize_t regulator_state_show(struct device *dev,
332                                    struct device_attribute *attr, char *buf)
333 {
334         struct regulator_dev *rdev = dev_get_drvdata(dev);
335         ssize_t ret;
336
337         mutex_lock(&rdev->mutex);
338         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
339         mutex_unlock(&rdev->mutex);
340
341         return ret;
342 }
343 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
344
345 static ssize_t regulator_status_show(struct device *dev,
346                                    struct device_attribute *attr, char *buf)
347 {
348         struct regulator_dev *rdev = dev_get_drvdata(dev);
349         int status;
350         char *label;
351
352         status = rdev->desc->ops->get_status(rdev);
353         if (status < 0)
354                 return status;
355
356         switch (status) {
357         case REGULATOR_STATUS_OFF:
358                 label = "off";
359                 break;
360         case REGULATOR_STATUS_ON:
361                 label = "on";
362                 break;
363         case REGULATOR_STATUS_ERROR:
364                 label = "error";
365                 break;
366         case REGULATOR_STATUS_FAST:
367                 label = "fast";
368                 break;
369         case REGULATOR_STATUS_NORMAL:
370                 label = "normal";
371                 break;
372         case REGULATOR_STATUS_IDLE:
373                 label = "idle";
374                 break;
375         case REGULATOR_STATUS_STANDBY:
376                 label = "standby";
377                 break;
378         default:
379                 return -ERANGE;
380         }
381
382         return sprintf(buf, "%s\n", label);
383 }
384 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
385
386 static ssize_t regulator_min_uA_show(struct device *dev,
387                                     struct device_attribute *attr, char *buf)
388 {
389         struct regulator_dev *rdev = dev_get_drvdata(dev);
390
391         if (!rdev->constraints)
392                 return sprintf(buf, "constraint not defined\n");
393
394         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
395 }
396 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
397
398 static ssize_t regulator_max_uA_show(struct device *dev,
399                                     struct device_attribute *attr, char *buf)
400 {
401         struct regulator_dev *rdev = dev_get_drvdata(dev);
402
403         if (!rdev->constraints)
404                 return sprintf(buf, "constraint not defined\n");
405
406         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
407 }
408 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
409
410 static ssize_t regulator_min_uV_show(struct device *dev,
411                                     struct device_attribute *attr, char *buf)
412 {
413         struct regulator_dev *rdev = dev_get_drvdata(dev);
414
415         if (!rdev->constraints)
416                 return sprintf(buf, "constraint not defined\n");
417
418         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
419 }
420 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
421
422 static ssize_t regulator_max_uV_show(struct device *dev,
423                                     struct device_attribute *attr, char *buf)
424 {
425         struct regulator_dev *rdev = dev_get_drvdata(dev);
426
427         if (!rdev->constraints)
428                 return sprintf(buf, "constraint not defined\n");
429
430         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
431 }
432 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
433
434 static ssize_t regulator_total_uA_show(struct device *dev,
435                                       struct device_attribute *attr, char *buf)
436 {
437         struct regulator_dev *rdev = dev_get_drvdata(dev);
438         struct regulator *regulator;
439         int uA = 0;
440
441         mutex_lock(&rdev->mutex);
442         list_for_each_entry(regulator, &rdev->consumer_list, list)
443                 uA += regulator->uA_load;
444         mutex_unlock(&rdev->mutex);
445         return sprintf(buf, "%d\n", uA);
446 }
447 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
448
449 static ssize_t regulator_num_users_show(struct device *dev,
450                                       struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453         return sprintf(buf, "%d\n", rdev->use_count);
454 }
455
456 static ssize_t regulator_type_show(struct device *dev,
457                                   struct device_attribute *attr, char *buf)
458 {
459         struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461         switch (rdev->desc->type) {
462         case REGULATOR_VOLTAGE:
463                 return sprintf(buf, "voltage\n");
464         case REGULATOR_CURRENT:
465                 return sprintf(buf, "current\n");
466         }
467         return sprintf(buf, "unknown\n");
468 }
469
470 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
476 }
477 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
478                 regulator_suspend_mem_uV_show, NULL);
479
480 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
481                                 struct device_attribute *attr, char *buf)
482 {
483         struct regulator_dev *rdev = dev_get_drvdata(dev);
484
485         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
486 }
487 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
488                 regulator_suspend_disk_uV_show, NULL);
489
490 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
491                                 struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
496 }
497 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
498                 regulator_suspend_standby_uV_show, NULL);
499
500 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
501                                 struct device_attribute *attr, char *buf)
502 {
503         struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505         return regulator_print_opmode(buf,
506                 rdev->constraints->state_mem.mode);
507 }
508 static DEVICE_ATTR(suspend_mem_mode, 0444,
509                 regulator_suspend_mem_mode_show, NULL);
510
511 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
512                                 struct device_attribute *attr, char *buf)
513 {
514         struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516         return regulator_print_opmode(buf,
517                 rdev->constraints->state_disk.mode);
518 }
519 static DEVICE_ATTR(suspend_disk_mode, 0444,
520                 regulator_suspend_disk_mode_show, NULL);
521
522 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
523                                 struct device_attribute *attr, char *buf)
524 {
525         struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527         return regulator_print_opmode(buf,
528                 rdev->constraints->state_standby.mode);
529 }
530 static DEVICE_ATTR(suspend_standby_mode, 0444,
531                 regulator_suspend_standby_mode_show, NULL);
532
533 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
534                                    struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return regulator_print_state(buf,
539                         rdev->constraints->state_mem.enabled);
540 }
541 static DEVICE_ATTR(suspend_mem_state, 0444,
542                 regulator_suspend_mem_state_show, NULL);
543
544 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
545                                    struct device_attribute *attr, char *buf)
546 {
547         struct regulator_dev *rdev = dev_get_drvdata(dev);
548
549         return regulator_print_state(buf,
550                         rdev->constraints->state_disk.enabled);
551 }
552 static DEVICE_ATTR(suspend_disk_state, 0444,
553                 regulator_suspend_disk_state_show, NULL);
554
555 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
556                                    struct device_attribute *attr, char *buf)
557 {
558         struct regulator_dev *rdev = dev_get_drvdata(dev);
559
560         return regulator_print_state(buf,
561                         rdev->constraints->state_standby.enabled);
562 }
563 static DEVICE_ATTR(suspend_standby_state, 0444,
564                 regulator_suspend_standby_state_show, NULL);
565
566
567 /*
568  * These are the only attributes are present for all regulators.
569  * Other attributes are a function of regulator functionality.
570  */
571 static struct device_attribute regulator_dev_attrs[] = {
572         __ATTR(name, 0444, regulator_name_show, NULL),
573         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
574         __ATTR(type, 0444, regulator_type_show, NULL),
575         __ATTR_NULL,
576 };
577
578 static void regulator_dev_release(struct device *dev)
579 {
580         struct regulator_dev *rdev = dev_get_drvdata(dev);
581         kfree(rdev);
582 }
583
584 static struct class regulator_class = {
585         .name = "regulator",
586         .dev_release = regulator_dev_release,
587         .dev_attrs = regulator_dev_attrs,
588 };
589
590 /* Calculate the new optimum regulator operating mode based on the new total
591  * consumer load. All locks held by caller */
592 static void drms_uA_update(struct regulator_dev *rdev)
593 {
594         struct regulator *sibling;
595         int current_uA = 0, output_uV, input_uV, err;
596         unsigned int mode;
597
598         err = regulator_check_drms(rdev);
599         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
600             (!rdev->desc->ops->get_voltage &&
601              !rdev->desc->ops->get_voltage_sel) ||
602             !rdev->desc->ops->set_mode)
603                 return;
604
605         /* get output voltage */
606         output_uV = _regulator_get_voltage(rdev);
607         if (output_uV <= 0)
608                 return;
609
610         /* get input voltage */
611         input_uV = 0;
612         if (rdev->supply)
613                 input_uV = _regulator_get_voltage(rdev);
614         if (input_uV <= 0)
615                 input_uV = rdev->constraints->input_uV;
616         if (input_uV <= 0)
617                 return;
618
619         /* calc total requested load */
620         list_for_each_entry(sibling, &rdev->consumer_list, list)
621                 current_uA += sibling->uA_load;
622
623         /* now get the optimum mode for our new total regulator load */
624         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
625                                                   output_uV, current_uA);
626
627         /* check the new mode is allowed */
628         err = regulator_mode_constrain(rdev, &mode);
629         if (err == 0)
630                 rdev->desc->ops->set_mode(rdev, mode);
631 }
632
633 static int suspend_set_state(struct regulator_dev *rdev,
634         struct regulator_state *rstate)
635 {
636         int ret = 0;
637         bool can_set_state;
638
639         can_set_state = rdev->desc->ops->set_suspend_enable &&
640                 rdev->desc->ops->set_suspend_disable;
641
642         /* If we have no suspend mode configration don't set anything;
643          * only warn if the driver actually makes the suspend mode
644          * configurable.
645          */
646         if (!rstate->enabled && !rstate->disabled) {
647                 if (can_set_state)
648                         rdev_warn(rdev, "No configuration\n");
649                 return 0;
650         }
651
652         if (rstate->enabled && rstate->disabled) {
653                 rdev_err(rdev, "invalid configuration\n");
654                 return -EINVAL;
655         }
656
657         if (!can_set_state) {
658                 rdev_err(rdev, "no way to set suspend state\n");
659                 return -EINVAL;
660         }
661
662         if (rstate->enabled)
663                 ret = rdev->desc->ops->set_suspend_enable(rdev);
664         else
665                 ret = rdev->desc->ops->set_suspend_disable(rdev);
666         if (ret < 0) {
667                 rdev_err(rdev, "failed to enabled/disable\n");
668                 return ret;
669         }
670
671         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
672                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
673                 if (ret < 0) {
674                         rdev_err(rdev, "failed to set voltage\n");
675                         return ret;
676                 }
677         }
678
679         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
680                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
681                 if (ret < 0) {
682                         rdev_err(rdev, "failed to set mode\n");
683                         return ret;
684                 }
685         }
686         return ret;
687 }
688
689 /* locks held by caller */
690 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
691 {
692         if (!rdev->constraints)
693                 return -EINVAL;
694
695         switch (state) {
696         case PM_SUSPEND_STANDBY:
697                 return suspend_set_state(rdev,
698                         &rdev->constraints->state_standby);
699         case PM_SUSPEND_MEM:
700                 return suspend_set_state(rdev,
701                         &rdev->constraints->state_mem);
702         case PM_SUSPEND_MAX:
703                 return suspend_set_state(rdev,
704                         &rdev->constraints->state_disk);
705         default:
706                 return -EINVAL;
707         }
708 }
709
710 static void print_constraints(struct regulator_dev *rdev)
711 {
712         struct regulation_constraints *constraints = rdev->constraints;
713         char buf[80] = "";
714         int count = 0;
715         int ret;
716
717         if (constraints->min_uV && constraints->max_uV) {
718                 if (constraints->min_uV == constraints->max_uV)
719                         count += sprintf(buf + count, "%d mV ",
720                                          constraints->min_uV / 1000);
721                 else
722                         count += sprintf(buf + count, "%d <--> %d mV ",
723                                          constraints->min_uV / 1000,
724                                          constraints->max_uV / 1000);
725         }
726
727         if (!constraints->min_uV ||
728             constraints->min_uV != constraints->max_uV) {
729                 ret = _regulator_get_voltage(rdev);
730                 if (ret > 0)
731                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
732         }
733
734         if (constraints->uV_offset)
735                 count += sprintf(buf, "%dmV offset ",
736                                  constraints->uV_offset / 1000);
737
738         if (constraints->min_uA && constraints->max_uA) {
739                 if (constraints->min_uA == constraints->max_uA)
740                         count += sprintf(buf + count, "%d mA ",
741                                          constraints->min_uA / 1000);
742                 else
743                         count += sprintf(buf + count, "%d <--> %d mA ",
744                                          constraints->min_uA / 1000,
745                                          constraints->max_uA / 1000);
746         }
747
748         if (!constraints->min_uA ||
749             constraints->min_uA != constraints->max_uA) {
750                 ret = _regulator_get_current_limit(rdev);
751                 if (ret > 0)
752                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
753         }
754
755         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
756                 count += sprintf(buf + count, "fast ");
757         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
758                 count += sprintf(buf + count, "normal ");
759         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
760                 count += sprintf(buf + count, "idle ");
761         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
762                 count += sprintf(buf + count, "standby");
763
764         rdev_info(rdev, "%s\n", buf);
765 }
766
767 static int machine_constraints_voltage(struct regulator_dev *rdev,
768         struct regulation_constraints *constraints)
769 {
770         struct regulator_ops *ops = rdev->desc->ops;
771         int ret;
772
773         /* do we need to apply the constraint voltage */
774         if (rdev->constraints->apply_uV &&
775             rdev->constraints->min_uV == rdev->constraints->max_uV) {
776                 ret = _regulator_do_set_voltage(rdev,
777                                                 rdev->constraints->min_uV,
778                                                 rdev->constraints->max_uV);
779                 if (ret < 0) {
780                         rdev_err(rdev, "failed to apply %duV constraint\n",
781                                  rdev->constraints->min_uV);
782                         rdev->constraints = NULL;
783                         return ret;
784                 }
785         }
786
787         /* constrain machine-level voltage specs to fit
788          * the actual range supported by this regulator.
789          */
790         if (ops->list_voltage && rdev->desc->n_voltages) {
791                 int     count = rdev->desc->n_voltages;
792                 int     i;
793                 int     min_uV = INT_MAX;
794                 int     max_uV = INT_MIN;
795                 int     cmin = constraints->min_uV;
796                 int     cmax = constraints->max_uV;
797
798                 /* it's safe to autoconfigure fixed-voltage supplies
799                    and the constraints are used by list_voltage. */
800                 if (count == 1 && !cmin) {
801                         cmin = 1;
802                         cmax = INT_MAX;
803                         constraints->min_uV = cmin;
804                         constraints->max_uV = cmax;
805                 }
806
807                 /* voltage constraints are optional */
808                 if ((cmin == 0) && (cmax == 0))
809                         return 0;
810
811                 /* else require explicit machine-level constraints */
812                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
813                         rdev_err(rdev, "invalid voltage constraints\n");
814                         return -EINVAL;
815                 }
816
817                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
818                 for (i = 0; i < count; i++) {
819                         int     value;
820
821                         value = ops->list_voltage(rdev, i);
822                         if (value <= 0)
823                                 continue;
824
825                         /* maybe adjust [min_uV..max_uV] */
826                         if (value >= cmin && value < min_uV)
827                                 min_uV = value;
828                         if (value <= cmax && value > max_uV)
829                                 max_uV = value;
830                 }
831
832                 /* final: [min_uV..max_uV] valid iff constraints valid */
833                 if (max_uV < min_uV) {
834                         rdev_err(rdev, "unsupportable voltage constraints\n");
835                         return -EINVAL;
836                 }
837
838                 /* use regulator's subset of machine constraints */
839                 if (constraints->min_uV < min_uV) {
840                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
841                                  constraints->min_uV, min_uV);
842                         constraints->min_uV = min_uV;
843                 }
844                 if (constraints->max_uV > max_uV) {
845                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
846                                  constraints->max_uV, max_uV);
847                         constraints->max_uV = max_uV;
848                 }
849         }
850
851         return 0;
852 }
853
854 /**
855  * set_machine_constraints - sets regulator constraints
856  * @rdev: regulator source
857  * @constraints: constraints to apply
858  *
859  * Allows platform initialisation code to define and constrain
860  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
861  * Constraints *must* be set by platform code in order for some
862  * regulator operations to proceed i.e. set_voltage, set_current_limit,
863  * set_mode.
864  */
865 static int set_machine_constraints(struct regulator_dev *rdev,
866         const struct regulation_constraints *constraints)
867 {
868         int ret = 0;
869         struct regulator_ops *ops = rdev->desc->ops;
870
871         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
872                                     GFP_KERNEL);
873         if (!rdev->constraints)
874                 return -ENOMEM;
875
876         ret = machine_constraints_voltage(rdev, rdev->constraints);
877         if (ret != 0)
878                 goto out;
879
880         /* do we need to setup our suspend state */
881         if (constraints->initial_state) {
882                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
883                 if (ret < 0) {
884                         rdev_err(rdev, "failed to set suspend state\n");
885                         rdev->constraints = NULL;
886                         goto out;
887                 }
888         }
889
890         if (constraints->initial_mode) {
891                 if (!ops->set_mode) {
892                         rdev_err(rdev, "no set_mode operation\n");
893                         ret = -EINVAL;
894                         goto out;
895                 }
896
897                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
898                 if (ret < 0) {
899                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
900                         goto out;
901                 }
902         }
903
904         /* If the constraints say the regulator should be on at this point
905          * and we have control then make sure it is enabled.
906          */
907         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
908             ops->enable) {
909                 ret = ops->enable(rdev);
910                 if (ret < 0) {
911                         rdev_err(rdev, "failed to enable\n");
912                         rdev->constraints = NULL;
913                         goto out;
914                 }
915         }
916
917         print_constraints(rdev);
918 out:
919         return ret;
920 }
921
922 /**
923  * set_supply - set regulator supply regulator
924  * @rdev: regulator name
925  * @supply_rdev: supply regulator name
926  *
927  * Called by platform initialisation code to set the supply regulator for this
928  * regulator. This ensures that a regulators supply will also be enabled by the
929  * core if it's child is enabled.
930  */
931 static int set_supply(struct regulator_dev *rdev,
932         struct regulator_dev *supply_rdev)
933 {
934         int err;
935
936         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
937                                 "supply");
938         if (err) {
939                 rdev_err(rdev, "could not add device link %s err %d\n",
940                          supply_rdev->dev.kobj.name, err);
941                        goto out;
942         }
943         rdev->supply = supply_rdev;
944         list_add(&rdev->slist, &supply_rdev->supply_list);
945 out:
946         return err;
947 }
948
949 /**
950  * set_consumer_device_supply - Bind a regulator to a symbolic supply
951  * @rdev:         regulator source
952  * @consumer_dev: device the supply applies to
953  * @consumer_dev_name: dev_name() string for device supply applies to
954  * @supply:       symbolic name for supply
955  *
956  * Allows platform initialisation code to map physical regulator
957  * sources to symbolic names for supplies for use by devices.  Devices
958  * should use these symbolic names to request regulators, avoiding the
959  * need to provide board-specific regulator names as platform data.
960  *
961  * Only one of consumer_dev and consumer_dev_name may be specified.
962  */
963 static int set_consumer_device_supply(struct regulator_dev *rdev,
964         struct device *consumer_dev, const char *consumer_dev_name,
965         const char *supply)
966 {
967         struct regulator_map *node;
968         int has_dev;
969
970         if (consumer_dev && consumer_dev_name)
971                 return -EINVAL;
972
973         if (!consumer_dev_name && consumer_dev)
974                 consumer_dev_name = dev_name(consumer_dev);
975
976         if (supply == NULL)
977                 return -EINVAL;
978
979         if (consumer_dev_name != NULL)
980                 has_dev = 1;
981         else
982                 has_dev = 0;
983
984         list_for_each_entry(node, &regulator_map_list, list) {
985                 if (node->dev_name && consumer_dev_name) {
986                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
987                                 continue;
988                 } else if (node->dev_name || consumer_dev_name) {
989                         continue;
990                 }
991
992                 if (strcmp(node->supply, supply) != 0)
993                         continue;
994
995                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
996                         dev_name(&node->regulator->dev),
997                         node->regulator->desc->name,
998                         supply,
999                         dev_name(&rdev->dev), rdev_get_name(rdev));
1000                 return -EBUSY;
1001         }
1002
1003         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1004         if (node == NULL)
1005                 return -ENOMEM;
1006
1007         node->regulator = rdev;
1008         node->supply = supply;
1009
1010         if (has_dev) {
1011                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1012                 if (node->dev_name == NULL) {
1013                         kfree(node);
1014                         return -ENOMEM;
1015                 }
1016         }
1017
1018         list_add(&node->list, &regulator_map_list);
1019         return 0;
1020 }
1021
1022 static void unset_regulator_supplies(struct regulator_dev *rdev)
1023 {
1024         struct regulator_map *node, *n;
1025
1026         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1027                 if (rdev == node->regulator) {
1028                         list_del(&node->list);
1029                         kfree(node->dev_name);
1030                         kfree(node);
1031                 }
1032         }
1033 }
1034
1035 #define REG_STR_SIZE    32
1036
1037 static struct regulator *create_regulator(struct regulator_dev *rdev,
1038                                           struct device *dev,
1039                                           const char *supply_name)
1040 {
1041         struct regulator *regulator;
1042         char buf[REG_STR_SIZE];
1043         int err, size;
1044
1045         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1046         if (regulator == NULL)
1047                 return NULL;
1048
1049         mutex_lock(&rdev->mutex);
1050         regulator->rdev = rdev;
1051         list_add(&regulator->list, &rdev->consumer_list);
1052
1053         if (dev) {
1054                 /* create a 'requested_microamps_name' sysfs entry */
1055                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1056                         supply_name);
1057                 if (size >= REG_STR_SIZE)
1058                         goto overflow_err;
1059
1060                 regulator->dev = dev;
1061                 sysfs_attr_init(&regulator->dev_attr.attr);
1062                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1063                 if (regulator->dev_attr.attr.name == NULL)
1064                         goto attr_name_err;
1065
1066                 regulator->dev_attr.attr.mode = 0444;
1067                 regulator->dev_attr.show = device_requested_uA_show;
1068                 err = device_create_file(dev, &regulator->dev_attr);
1069                 if (err < 0) {
1070                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1071                         goto attr_name_err;
1072                 }
1073
1074                 /* also add a link to the device sysfs entry */
1075                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1076                                  dev->kobj.name, supply_name);
1077                 if (size >= REG_STR_SIZE)
1078                         goto attr_err;
1079
1080                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1081                 if (regulator->supply_name == NULL)
1082                         goto attr_err;
1083
1084                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1085                                         buf);
1086                 if (err) {
1087                         rdev_warn(rdev, "could not add device link %s err %d\n",
1088                                   dev->kobj.name, err);
1089                         goto link_name_err;
1090                 }
1091         }
1092         mutex_unlock(&rdev->mutex);
1093         return regulator;
1094 link_name_err:
1095         kfree(regulator->supply_name);
1096 attr_err:
1097         device_remove_file(regulator->dev, &regulator->dev_attr);
1098 attr_name_err:
1099         kfree(regulator->dev_attr.attr.name);
1100 overflow_err:
1101         list_del(&regulator->list);
1102         kfree(regulator);
1103         mutex_unlock(&rdev->mutex);
1104         return NULL;
1105 }
1106
1107 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1108 {
1109         if (!rdev->desc->ops->enable_time)
1110                 return 0;
1111         return rdev->desc->ops->enable_time(rdev);
1112 }
1113
1114 /* Internal regulator request function */
1115 static struct regulator *_regulator_get(struct device *dev, const char *id,
1116                                         int exclusive)
1117 {
1118         struct regulator_dev *rdev;
1119         struct regulator_map *map;
1120         struct regulator *regulator = ERR_PTR(-ENODEV);
1121         const char *devname = NULL;
1122         int ret;
1123
1124         if (id == NULL) {
1125                 pr_err("get() with no identifier\n");
1126                 return regulator;
1127         }
1128
1129         if (dev)
1130                 devname = dev_name(dev);
1131
1132         mutex_lock(&regulator_list_mutex);
1133
1134         list_for_each_entry(map, &regulator_map_list, list) {
1135                 /* If the mapping has a device set up it must match */
1136                 if (map->dev_name &&
1137                     (!devname || strcmp(map->dev_name, devname)))
1138                         continue;
1139
1140                 if (strcmp(map->supply, id) == 0) {
1141                         rdev = map->regulator;
1142                         goto found;
1143                 }
1144         }
1145
1146         if (board_wants_dummy_regulator) {
1147                 rdev = dummy_regulator_rdev;
1148                 goto found;
1149         }
1150
1151 #ifdef CONFIG_REGULATOR_DUMMY
1152         if (!devname)
1153                 devname = "deviceless";
1154
1155         /* If the board didn't flag that it was fully constrained then
1156          * substitute in a dummy regulator so consumers can continue.
1157          */
1158         if (!has_full_constraints) {
1159                 pr_warn("%s supply %s not found, using dummy regulator\n",
1160                         devname, id);
1161                 rdev = dummy_regulator_rdev;
1162                 goto found;
1163         }
1164 #endif
1165
1166         mutex_unlock(&regulator_list_mutex);
1167         return regulator;
1168
1169 found:
1170         if (rdev->exclusive) {
1171                 regulator = ERR_PTR(-EPERM);
1172                 goto out;
1173         }
1174
1175         if (exclusive && rdev->open_count) {
1176                 regulator = ERR_PTR(-EBUSY);
1177                 goto out;
1178         }
1179
1180         if (!try_module_get(rdev->owner))
1181                 goto out;
1182
1183         regulator = create_regulator(rdev, dev, id);
1184         if (regulator == NULL) {
1185                 regulator = ERR_PTR(-ENOMEM);
1186                 module_put(rdev->owner);
1187         }
1188
1189         rdev->open_count++;
1190         if (exclusive) {
1191                 rdev->exclusive = 1;
1192
1193                 ret = _regulator_is_enabled(rdev);
1194                 if (ret > 0)
1195                         rdev->use_count = 1;
1196                 else
1197                         rdev->use_count = 0;
1198         }
1199
1200 out:
1201         mutex_unlock(&regulator_list_mutex);
1202
1203         return regulator;
1204 }
1205
1206 /**
1207  * regulator_get - lookup and obtain a reference to a regulator.
1208  * @dev: device for regulator "consumer"
1209  * @id: Supply name or regulator ID.
1210  *
1211  * Returns a struct regulator corresponding to the regulator producer,
1212  * or IS_ERR() condition containing errno.
1213  *
1214  * Use of supply names configured via regulator_set_device_supply() is
1215  * strongly encouraged.  It is recommended that the supply name used
1216  * should match the name used for the supply and/or the relevant
1217  * device pins in the datasheet.
1218  */
1219 struct regulator *regulator_get(struct device *dev, const char *id)
1220 {
1221         return _regulator_get(dev, id, 0);
1222 }
1223 EXPORT_SYMBOL_GPL(regulator_get);
1224
1225 /**
1226  * regulator_get_exclusive - obtain exclusive access to a regulator.
1227  * @dev: device for regulator "consumer"
1228  * @id: Supply name or regulator ID.
1229  *
1230  * Returns a struct regulator corresponding to the regulator producer,
1231  * or IS_ERR() condition containing errno.  Other consumers will be
1232  * unable to obtain this reference is held and the use count for the
1233  * regulator will be initialised to reflect the current state of the
1234  * regulator.
1235  *
1236  * This is intended for use by consumers which cannot tolerate shared
1237  * use of the regulator such as those which need to force the
1238  * regulator off for correct operation of the hardware they are
1239  * controlling.
1240  *
1241  * Use of supply names configured via regulator_set_device_supply() is
1242  * strongly encouraged.  It is recommended that the supply name used
1243  * should match the name used for the supply and/or the relevant
1244  * device pins in the datasheet.
1245  */
1246 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1247 {
1248         return _regulator_get(dev, id, 1);
1249 }
1250 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1251
1252 /**
1253  * regulator_put - "free" the regulator source
1254  * @regulator: regulator source
1255  *
1256  * Note: drivers must ensure that all regulator_enable calls made on this
1257  * regulator source are balanced by regulator_disable calls prior to calling
1258  * this function.
1259  */
1260 void regulator_put(struct regulator *regulator)
1261 {
1262         struct regulator_dev *rdev;
1263
1264         if (regulator == NULL || IS_ERR(regulator))
1265                 return;
1266
1267         mutex_lock(&regulator_list_mutex);
1268         rdev = regulator->rdev;
1269
1270         /* remove any sysfs entries */
1271         if (regulator->dev) {
1272                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1273                 kfree(regulator->supply_name);
1274                 device_remove_file(regulator->dev, &regulator->dev_attr);
1275                 kfree(regulator->dev_attr.attr.name);
1276         }
1277         list_del(&regulator->list);
1278         kfree(regulator);
1279
1280         rdev->open_count--;
1281         rdev->exclusive = 0;
1282
1283         module_put(rdev->owner);
1284         mutex_unlock(&regulator_list_mutex);
1285 }
1286 EXPORT_SYMBOL_GPL(regulator_put);
1287
1288 static int _regulator_can_change_status(struct regulator_dev *rdev)
1289 {
1290         if (!rdev->constraints)
1291                 return 0;
1292
1293         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1294                 return 1;
1295         else
1296                 return 0;
1297 }
1298
1299 /* locks held by regulator_enable() */
1300 static int _regulator_enable(struct regulator_dev *rdev)
1301 {
1302         int ret, delay;
1303
1304         if (rdev->use_count == 0) {
1305                 /* do we need to enable the supply regulator first */
1306                 if (rdev->supply) {
1307                         mutex_lock(&rdev->supply->mutex);
1308                         ret = _regulator_enable(rdev->supply);
1309                         mutex_unlock(&rdev->supply->mutex);
1310                         if (ret < 0) {
1311                                 rdev_err(rdev, "failed to enable: %d\n", ret);
1312                                 return ret;
1313                         }
1314                 }
1315         }
1316
1317         /* check voltage and requested load before enabling */
1318         if (rdev->constraints &&
1319             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1320                 drms_uA_update(rdev);
1321
1322         if (rdev->use_count == 0) {
1323                 /* The regulator may on if it's not switchable or left on */
1324                 ret = _regulator_is_enabled(rdev);
1325                 if (ret == -EINVAL || ret == 0) {
1326                         if (!_regulator_can_change_status(rdev))
1327                                 return -EPERM;
1328
1329                         if (!rdev->desc->ops->enable)
1330                                 return -EINVAL;
1331
1332                         /* Query before enabling in case configuration
1333                          * dependent.  */
1334                         ret = _regulator_get_enable_time(rdev);
1335                         if (ret >= 0) {
1336                                 delay = ret;
1337                         } else {
1338                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1339                                            ret);
1340                                 delay = 0;
1341                         }
1342
1343                         trace_regulator_enable(rdev_get_name(rdev));
1344
1345                         /* Allow the regulator to ramp; it would be useful
1346                          * to extend this for bulk operations so that the
1347                          * regulators can ramp together.  */
1348                         ret = rdev->desc->ops->enable(rdev);
1349                         if (ret < 0)
1350                                 return ret;
1351
1352                         trace_regulator_enable_delay(rdev_get_name(rdev));
1353
1354                         if (delay >= 1000) {
1355                                 mdelay(delay / 1000);
1356                                 udelay(delay % 1000);
1357                         } else if (delay) {
1358                                 udelay(delay);
1359                         }
1360
1361                         trace_regulator_enable_complete(rdev_get_name(rdev));
1362
1363                 } else if (ret < 0) {
1364                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1365                         return ret;
1366                 }
1367                 /* Fallthrough on positive return values - already enabled */
1368         }
1369
1370         rdev->use_count++;
1371
1372         return 0;
1373 }
1374
1375 /**
1376  * regulator_enable - enable regulator output
1377  * @regulator: regulator source
1378  *
1379  * Request that the regulator be enabled with the regulator output at
1380  * the predefined voltage or current value.  Calls to regulator_enable()
1381  * must be balanced with calls to regulator_disable().
1382  *
1383  * NOTE: the output value can be set by other drivers, boot loader or may be
1384  * hardwired in the regulator.
1385  */
1386 int regulator_enable(struct regulator *regulator)
1387 {
1388         struct regulator_dev *rdev = regulator->rdev;
1389         int ret = 0;
1390
1391         mutex_lock(&rdev->mutex);
1392         ret = _regulator_enable(rdev);
1393         mutex_unlock(&rdev->mutex);
1394         return ret;
1395 }
1396 EXPORT_SYMBOL_GPL(regulator_enable);
1397
1398 /* locks held by regulator_disable() */
1399 static int _regulator_disable(struct regulator_dev *rdev,
1400                 struct regulator_dev **supply_rdev_ptr)
1401 {
1402         int ret = 0;
1403         *supply_rdev_ptr = NULL;
1404
1405         if (WARN(rdev->use_count <= 0,
1406                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1407                 return -EIO;
1408
1409         /* are we the last user and permitted to disable ? */
1410         if (rdev->use_count == 1 &&
1411             (rdev->constraints && !rdev->constraints->always_on)) {
1412
1413                 /* we are last user */
1414                 if (_regulator_can_change_status(rdev) &&
1415                     rdev->desc->ops->disable) {
1416                         trace_regulator_disable(rdev_get_name(rdev));
1417
1418                         ret = rdev->desc->ops->disable(rdev);
1419                         if (ret < 0) {
1420                                 rdev_err(rdev, "failed to disable\n");
1421                                 return ret;
1422                         }
1423
1424                         trace_regulator_disable_complete(rdev_get_name(rdev));
1425
1426                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1427                                              NULL);
1428                 }
1429
1430                 /* decrease our supplies ref count and disable if required */
1431                 *supply_rdev_ptr = rdev->supply;
1432
1433                 rdev->use_count = 0;
1434         } else if (rdev->use_count > 1) {
1435
1436                 if (rdev->constraints &&
1437                         (rdev->constraints->valid_ops_mask &
1438                         REGULATOR_CHANGE_DRMS))
1439                         drms_uA_update(rdev);
1440
1441                 rdev->use_count--;
1442         }
1443         return ret;
1444 }
1445
1446 /**
1447  * regulator_disable - disable regulator output
1448  * @regulator: regulator source
1449  *
1450  * Disable the regulator output voltage or current.  Calls to
1451  * regulator_enable() must be balanced with calls to
1452  * regulator_disable().
1453  *
1454  * NOTE: this will only disable the regulator output if no other consumer
1455  * devices have it enabled, the regulator device supports disabling and
1456  * machine constraints permit this operation.
1457  */
1458 int regulator_disable(struct regulator *regulator)
1459 {
1460         struct regulator_dev *rdev = regulator->rdev;
1461         struct regulator_dev *supply_rdev = NULL;
1462         int ret = 0;
1463
1464         mutex_lock(&rdev->mutex);
1465         ret = _regulator_disable(rdev, &supply_rdev);
1466         mutex_unlock(&rdev->mutex);
1467
1468         /* decrease our supplies ref count and disable if required */
1469         while (supply_rdev != NULL) {
1470                 rdev = supply_rdev;
1471
1472                 mutex_lock(&rdev->mutex);
1473                 _regulator_disable(rdev, &supply_rdev);
1474                 mutex_unlock(&rdev->mutex);
1475         }
1476
1477         return ret;
1478 }
1479 EXPORT_SYMBOL_GPL(regulator_disable);
1480
1481 /* locks held by regulator_force_disable() */
1482 static int _regulator_force_disable(struct regulator_dev *rdev,
1483                 struct regulator_dev **supply_rdev_ptr)
1484 {
1485         int ret = 0;
1486
1487         /* force disable */
1488         if (rdev->desc->ops->disable) {
1489                 /* ah well, who wants to live forever... */
1490                 ret = rdev->desc->ops->disable(rdev);
1491                 if (ret < 0) {
1492                         rdev_err(rdev, "failed to force disable\n");
1493                         return ret;
1494                 }
1495                 /* notify other consumers that power has been forced off */
1496                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1497                         REGULATOR_EVENT_DISABLE, NULL);
1498         }
1499
1500         /* decrease our supplies ref count and disable if required */
1501         *supply_rdev_ptr = rdev->supply;
1502
1503         rdev->use_count = 0;
1504         return ret;
1505 }
1506
1507 /**
1508  * regulator_force_disable - force disable regulator output
1509  * @regulator: regulator source
1510  *
1511  * Forcibly disable the regulator output voltage or current.
1512  * NOTE: this *will* disable the regulator output even if other consumer
1513  * devices have it enabled. This should be used for situations when device
1514  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1515  */
1516 int regulator_force_disable(struct regulator *regulator)
1517 {
1518         struct regulator_dev *rdev = regulator->rdev;
1519         struct regulator_dev *supply_rdev = NULL;
1520         int ret;
1521
1522         mutex_lock(&rdev->mutex);
1523         regulator->uA_load = 0;
1524         ret = _regulator_force_disable(rdev, &supply_rdev);
1525         mutex_unlock(&rdev->mutex);
1526
1527         if (supply_rdev)
1528                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1529
1530         return ret;
1531 }
1532 EXPORT_SYMBOL_GPL(regulator_force_disable);
1533
1534 static int _regulator_is_enabled(struct regulator_dev *rdev)
1535 {
1536         /* If we don't know then assume that the regulator is always on */
1537         if (!rdev->desc->ops->is_enabled)
1538                 return 1;
1539
1540         return rdev->desc->ops->is_enabled(rdev);
1541 }
1542
1543 /**
1544  * regulator_is_enabled - is the regulator output enabled
1545  * @regulator: regulator source
1546  *
1547  * Returns positive if the regulator driver backing the source/client
1548  * has requested that the device be enabled, zero if it hasn't, else a
1549  * negative errno code.
1550  *
1551  * Note that the device backing this regulator handle can have multiple
1552  * users, so it might be enabled even if regulator_enable() was never
1553  * called for this particular source.
1554  */
1555 int regulator_is_enabled(struct regulator *regulator)
1556 {
1557         int ret;
1558
1559         mutex_lock(&regulator->rdev->mutex);
1560         ret = _regulator_is_enabled(regulator->rdev);
1561         mutex_unlock(&regulator->rdev->mutex);
1562
1563         return ret;
1564 }
1565 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1566
1567 /**
1568  * regulator_count_voltages - count regulator_list_voltage() selectors
1569  * @regulator: regulator source
1570  *
1571  * Returns number of selectors, or negative errno.  Selectors are
1572  * numbered starting at zero, and typically correspond to bitfields
1573  * in hardware registers.
1574  */
1575 int regulator_count_voltages(struct regulator *regulator)
1576 {
1577         struct regulator_dev    *rdev = regulator->rdev;
1578
1579         return rdev->desc->n_voltages ? : -EINVAL;
1580 }
1581 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1582
1583 /**
1584  * regulator_list_voltage - enumerate supported voltages
1585  * @regulator: regulator source
1586  * @selector: identify voltage to list
1587  * Context: can sleep
1588  *
1589  * Returns a voltage that can be passed to @regulator_set_voltage(),
1590  * zero if this selector code can't be used on this system, or a
1591  * negative errno.
1592  */
1593 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1594 {
1595         struct regulator_dev    *rdev = regulator->rdev;
1596         struct regulator_ops    *ops = rdev->desc->ops;
1597         int                     ret;
1598
1599         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1600                 return -EINVAL;
1601
1602         mutex_lock(&rdev->mutex);
1603         ret = ops->list_voltage(rdev, selector);
1604         mutex_unlock(&rdev->mutex);
1605
1606         if (ret > 0) {
1607                 if (ret < rdev->constraints->min_uV)
1608                         ret = 0;
1609                 else if (ret > rdev->constraints->max_uV)
1610                         ret = 0;
1611         }
1612
1613         return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1616
1617 /**
1618  * regulator_is_supported_voltage - check if a voltage range can be supported
1619  *
1620  * @regulator: Regulator to check.
1621  * @min_uV: Minimum required voltage in uV.
1622  * @max_uV: Maximum required voltage in uV.
1623  *
1624  * Returns a boolean or a negative error code.
1625  */
1626 int regulator_is_supported_voltage(struct regulator *regulator,
1627                                    int min_uV, int max_uV)
1628 {
1629         int i, voltages, ret;
1630
1631         ret = regulator_count_voltages(regulator);
1632         if (ret < 0)
1633                 return ret;
1634         voltages = ret;
1635
1636         for (i = 0; i < voltages; i++) {
1637                 ret = regulator_list_voltage(regulator, i);
1638
1639                 if (ret >= min_uV && ret <= max_uV)
1640                         return 1;
1641         }
1642
1643         return 0;
1644 }
1645
1646 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1647                                      int min_uV, int max_uV)
1648 {
1649         int ret;
1650         int delay = 0;
1651         unsigned int selector;
1652
1653         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1654
1655         min_uV += rdev->constraints->uV_offset;
1656         max_uV += rdev->constraints->uV_offset;
1657
1658         if (rdev->desc->ops->set_voltage) {
1659                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1660                                                    &selector);
1661
1662                 if (rdev->desc->ops->list_voltage)
1663                         selector = rdev->desc->ops->list_voltage(rdev,
1664                                                                  selector);
1665                 else
1666                         selector = -1;
1667         } else if (rdev->desc->ops->set_voltage_sel) {
1668                 int best_val = INT_MAX;
1669                 int i;
1670
1671                 selector = 0;
1672
1673                 /* Find the smallest voltage that falls within the specified
1674                  * range.
1675                  */
1676                 for (i = 0; i < rdev->desc->n_voltages; i++) {
1677                         ret = rdev->desc->ops->list_voltage(rdev, i);
1678                         if (ret < 0)
1679                                 continue;
1680
1681                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1682                                 best_val = ret;
1683                                 selector = i;
1684                         }
1685                 }
1686
1687                 /*
1688                  * If we can't obtain the old selector there is not enough
1689                  * info to call set_voltage_time_sel().
1690                  */
1691                 if (rdev->desc->ops->set_voltage_time_sel &&
1692                     rdev->desc->ops->get_voltage_sel) {
1693                         unsigned int old_selector = 0;
1694
1695                         ret = rdev->desc->ops->get_voltage_sel(rdev);
1696                         if (ret < 0)
1697                                 return ret;
1698                         old_selector = ret;
1699                         delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1700                                                 old_selector, selector);
1701                 }
1702
1703                 if (best_val != INT_MAX) {
1704                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1705                         selector = best_val;
1706                 } else {
1707                         ret = -EINVAL;
1708                 }
1709         } else {
1710                 ret = -EINVAL;
1711         }
1712
1713         /* Insert any necessary delays */
1714         if (delay >= 1000) {
1715                 mdelay(delay / 1000);
1716                 udelay(delay % 1000);
1717         } else if (delay) {
1718                 udelay(delay);
1719         }
1720
1721         if (ret == 0)
1722                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1723                                      NULL);
1724
1725         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1726
1727         return ret;
1728 }
1729
1730 /**
1731  * regulator_set_voltage - set regulator output voltage
1732  * @regulator: regulator source
1733  * @min_uV: Minimum required voltage in uV
1734  * @max_uV: Maximum acceptable voltage in uV
1735  *
1736  * Sets a voltage regulator to the desired output voltage. This can be set
1737  * during any regulator state. IOW, regulator can be disabled or enabled.
1738  *
1739  * If the regulator is enabled then the voltage will change to the new value
1740  * immediately otherwise if the regulator is disabled the regulator will
1741  * output at the new voltage when enabled.
1742  *
1743  * NOTE: If the regulator is shared between several devices then the lowest
1744  * request voltage that meets the system constraints will be used.
1745  * Regulator system constraints must be set for this regulator before
1746  * calling this function otherwise this call will fail.
1747  */
1748 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1749 {
1750         struct regulator_dev *rdev = regulator->rdev;
1751         int ret = 0;
1752
1753         mutex_lock(&rdev->mutex);
1754
1755         /* If we're setting the same range as last time the change
1756          * should be a noop (some cpufreq implementations use the same
1757          * voltage for multiple frequencies, for example).
1758          */
1759         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1760                 goto out;
1761
1762         /* sanity check */
1763         if (!rdev->desc->ops->set_voltage &&
1764             !rdev->desc->ops->set_voltage_sel) {
1765                 ret = -EINVAL;
1766                 goto out;
1767         }
1768
1769         /* constraints check */
1770         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1771         if (ret < 0)
1772                 goto out;
1773         regulator->min_uV = min_uV;
1774         regulator->max_uV = max_uV;
1775
1776         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1777         if (ret < 0)
1778                 goto out;
1779
1780         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1781
1782 out:
1783         mutex_unlock(&rdev->mutex);
1784         return ret;
1785 }
1786 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1787
1788 /**
1789  * regulator_set_voltage_time - get raise/fall time
1790  * @regulator: regulator source
1791  * @old_uV: starting voltage in microvolts
1792  * @new_uV: target voltage in microvolts
1793  *
1794  * Provided with the starting and ending voltage, this function attempts to
1795  * calculate the time in microseconds required to rise or fall to this new
1796  * voltage.
1797  */
1798 int regulator_set_voltage_time(struct regulator *regulator,
1799                                int old_uV, int new_uV)
1800 {
1801         struct regulator_dev    *rdev = regulator->rdev;
1802         struct regulator_ops    *ops = rdev->desc->ops;
1803         int old_sel = -1;
1804         int new_sel = -1;
1805         int voltage;
1806         int i;
1807
1808         /* Currently requires operations to do this */
1809         if (!ops->list_voltage || !ops->set_voltage_time_sel
1810             || !rdev->desc->n_voltages)
1811                 return -EINVAL;
1812
1813         for (i = 0; i < rdev->desc->n_voltages; i++) {
1814                 /* We only look for exact voltage matches here */
1815                 voltage = regulator_list_voltage(regulator, i);
1816                 if (voltage < 0)
1817                         return -EINVAL;
1818                 if (voltage == 0)
1819                         continue;
1820                 if (voltage == old_uV)
1821                         old_sel = i;
1822                 if (voltage == new_uV)
1823                         new_sel = i;
1824         }
1825
1826         if (old_sel < 0 || new_sel < 0)
1827                 return -EINVAL;
1828
1829         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1830 }
1831 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1832
1833 /**
1834  * regulator_sync_voltage - re-apply last regulator output voltage
1835  * @regulator: regulator source
1836  *
1837  * Re-apply the last configured voltage.  This is intended to be used
1838  * where some external control source the consumer is cooperating with
1839  * has caused the configured voltage to change.
1840  */
1841 int regulator_sync_voltage(struct regulator *regulator)
1842 {
1843         struct regulator_dev *rdev = regulator->rdev;
1844         int ret, min_uV, max_uV;
1845
1846         mutex_lock(&rdev->mutex);
1847
1848         if (!rdev->desc->ops->set_voltage &&
1849             !rdev->desc->ops->set_voltage_sel) {
1850                 ret = -EINVAL;
1851                 goto out;
1852         }
1853
1854         /* This is only going to work if we've had a voltage configured. */
1855         if (!regulator->min_uV && !regulator->max_uV) {
1856                 ret = -EINVAL;
1857                 goto out;
1858         }
1859
1860         min_uV = regulator->min_uV;
1861         max_uV = regulator->max_uV;
1862
1863         /* This should be a paranoia check... */
1864         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1865         if (ret < 0)
1866                 goto out;
1867
1868         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1869         if (ret < 0)
1870                 goto out;
1871
1872         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1873
1874 out:
1875         mutex_unlock(&rdev->mutex);
1876         return ret;
1877 }
1878 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1879
1880 static int _regulator_get_voltage(struct regulator_dev *rdev)
1881 {
1882         int sel, ret;
1883
1884         if (rdev->desc->ops->get_voltage_sel) {
1885                 sel = rdev->desc->ops->get_voltage_sel(rdev);
1886                 if (sel < 0)
1887                         return sel;
1888                 ret = rdev->desc->ops->list_voltage(rdev, sel);
1889         } else if (rdev->desc->ops->get_voltage) {
1890                 ret = rdev->desc->ops->get_voltage(rdev);
1891         } else {
1892                 return -EINVAL;
1893         }
1894
1895         if (ret < 0)
1896                 return ret;
1897         return ret - rdev->constraints->uV_offset;
1898 }
1899
1900 /**
1901  * regulator_get_voltage - get regulator output voltage
1902  * @regulator: regulator source
1903  *
1904  * This returns the current regulator voltage in uV.
1905  *
1906  * NOTE: If the regulator is disabled it will return the voltage value. This
1907  * function should not be used to determine regulator state.
1908  */
1909 int regulator_get_voltage(struct regulator *regulator)
1910 {
1911         int ret;
1912
1913         mutex_lock(&regulator->rdev->mutex);
1914
1915         ret = _regulator_get_voltage(regulator->rdev);
1916
1917         mutex_unlock(&regulator->rdev->mutex);
1918
1919         return ret;
1920 }
1921 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1922
1923 /**
1924  * regulator_set_current_limit - set regulator output current limit
1925  * @regulator: regulator source
1926  * @min_uA: Minimuum supported current in uA
1927  * @max_uA: Maximum supported current in uA
1928  *
1929  * Sets current sink to the desired output current. This can be set during
1930  * any regulator state. IOW, regulator can be disabled or enabled.
1931  *
1932  * If the regulator is enabled then the current will change to the new value
1933  * immediately otherwise if the regulator is disabled the regulator will
1934  * output at the new current when enabled.
1935  *
1936  * NOTE: Regulator system constraints must be set for this regulator before
1937  * calling this function otherwise this call will fail.
1938  */
1939 int regulator_set_current_limit(struct regulator *regulator,
1940                                int min_uA, int max_uA)
1941 {
1942         struct regulator_dev *rdev = regulator->rdev;
1943         int ret;
1944
1945         mutex_lock(&rdev->mutex);
1946
1947         /* sanity check */
1948         if (!rdev->desc->ops->set_current_limit) {
1949                 ret = -EINVAL;
1950                 goto out;
1951         }
1952
1953         /* constraints check */
1954         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1955         if (ret < 0)
1956                 goto out;
1957
1958         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1959 out:
1960         mutex_unlock(&rdev->mutex);
1961         return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1964
1965 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1966 {
1967         int ret;
1968
1969         mutex_lock(&rdev->mutex);
1970
1971         /* sanity check */
1972         if (!rdev->desc->ops->get_current_limit) {
1973                 ret = -EINVAL;
1974                 goto out;
1975         }
1976
1977         ret = rdev->desc->ops->get_current_limit(rdev);
1978 out:
1979         mutex_unlock(&rdev->mutex);
1980         return ret;
1981 }
1982
1983 /**
1984  * regulator_get_current_limit - get regulator output current
1985  * @regulator: regulator source
1986  *
1987  * This returns the current supplied by the specified current sink in uA.
1988  *
1989  * NOTE: If the regulator is disabled it will return the current value. This
1990  * function should not be used to determine regulator state.
1991  */
1992 int regulator_get_current_limit(struct regulator *regulator)
1993 {
1994         return _regulator_get_current_limit(regulator->rdev);
1995 }
1996 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1997
1998 /**
1999  * regulator_set_mode - set regulator operating mode
2000  * @regulator: regulator source
2001  * @mode: operating mode - one of the REGULATOR_MODE constants
2002  *
2003  * Set regulator operating mode to increase regulator efficiency or improve
2004  * regulation performance.
2005  *
2006  * NOTE: Regulator system constraints must be set for this regulator before
2007  * calling this function otherwise this call will fail.
2008  */
2009 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2010 {
2011         struct regulator_dev *rdev = regulator->rdev;
2012         int ret;
2013         int regulator_curr_mode;
2014
2015         mutex_lock(&rdev->mutex);
2016
2017         /* sanity check */
2018         if (!rdev->desc->ops->set_mode) {
2019                 ret = -EINVAL;
2020                 goto out;
2021         }
2022
2023         /* return if the same mode is requested */
2024         if (rdev->desc->ops->get_mode) {
2025                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2026                 if (regulator_curr_mode == mode) {
2027                         ret = 0;
2028                         goto out;
2029                 }
2030         }
2031
2032         /* constraints check */
2033         ret = regulator_mode_constrain(rdev, &mode);
2034         if (ret < 0)
2035                 goto out;
2036
2037         ret = rdev->desc->ops->set_mode(rdev, mode);
2038 out:
2039         mutex_unlock(&rdev->mutex);
2040         return ret;
2041 }
2042 EXPORT_SYMBOL_GPL(regulator_set_mode);
2043
2044 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2045 {
2046         int ret;
2047
2048         mutex_lock(&rdev->mutex);
2049
2050         /* sanity check */
2051         if (!rdev->desc->ops->get_mode) {
2052                 ret = -EINVAL;
2053                 goto out;
2054         }
2055
2056         ret = rdev->desc->ops->get_mode(rdev);
2057 out:
2058         mutex_unlock(&rdev->mutex);
2059         return ret;
2060 }
2061
2062 /**
2063  * regulator_get_mode - get regulator operating mode
2064  * @regulator: regulator source
2065  *
2066  * Get the current regulator operating mode.
2067  */
2068 unsigned int regulator_get_mode(struct regulator *regulator)
2069 {
2070         return _regulator_get_mode(regulator->rdev);
2071 }
2072 EXPORT_SYMBOL_GPL(regulator_get_mode);
2073
2074 /**
2075  * regulator_set_optimum_mode - set regulator optimum operating mode
2076  * @regulator: regulator source
2077  * @uA_load: load current
2078  *
2079  * Notifies the regulator core of a new device load. This is then used by
2080  * DRMS (if enabled by constraints) to set the most efficient regulator
2081  * operating mode for the new regulator loading.
2082  *
2083  * Consumer devices notify their supply regulator of the maximum power
2084  * they will require (can be taken from device datasheet in the power
2085  * consumption tables) when they change operational status and hence power
2086  * state. Examples of operational state changes that can affect power
2087  * consumption are :-
2088  *
2089  *    o Device is opened / closed.
2090  *    o Device I/O is about to begin or has just finished.
2091  *    o Device is idling in between work.
2092  *
2093  * This information is also exported via sysfs to userspace.
2094  *
2095  * DRMS will sum the total requested load on the regulator and change
2096  * to the most efficient operating mode if platform constraints allow.
2097  *
2098  * Returns the new regulator mode or error.
2099  */
2100 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2101 {
2102         struct regulator_dev *rdev = regulator->rdev;
2103         struct regulator *consumer;
2104         int ret, output_uV, input_uV, total_uA_load = 0;
2105         unsigned int mode;
2106
2107         mutex_lock(&rdev->mutex);
2108
2109         /*
2110          * first check to see if we can set modes at all, otherwise just
2111          * tell the consumer everything is OK.
2112          */
2113         regulator->uA_load = uA_load;
2114         ret = regulator_check_drms(rdev);
2115         if (ret < 0) {
2116                 ret = 0;
2117                 goto out;
2118         }
2119
2120         if (!rdev->desc->ops->get_optimum_mode)
2121                 goto out;
2122
2123         /*
2124          * we can actually do this so any errors are indicators of
2125          * potential real failure.
2126          */
2127         ret = -EINVAL;
2128
2129         /* get output voltage */
2130         output_uV = _regulator_get_voltage(rdev);
2131         if (output_uV <= 0) {
2132                 rdev_err(rdev, "invalid output voltage found\n");
2133                 goto out;
2134         }
2135
2136         /* get input voltage */
2137         input_uV = 0;
2138         if (rdev->supply)
2139                 input_uV = _regulator_get_voltage(rdev->supply);
2140         if (input_uV <= 0)
2141                 input_uV = rdev->constraints->input_uV;
2142         if (input_uV <= 0) {
2143                 rdev_err(rdev, "invalid input voltage found\n");
2144                 goto out;
2145         }
2146
2147         /* calc total requested load for this regulator */
2148         list_for_each_entry(consumer, &rdev->consumer_list, list)
2149                 total_uA_load += consumer->uA_load;
2150
2151         mode = rdev->desc->ops->get_optimum_mode(rdev,
2152                                                  input_uV, output_uV,
2153                                                  total_uA_load);
2154         ret = regulator_mode_constrain(rdev, &mode);
2155         if (ret < 0) {
2156                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2157                          total_uA_load, input_uV, output_uV);
2158                 goto out;
2159         }
2160
2161         ret = rdev->desc->ops->set_mode(rdev, mode);
2162         if (ret < 0) {
2163                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2164                 goto out;
2165         }
2166         ret = mode;
2167 out:
2168         mutex_unlock(&rdev->mutex);
2169         return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2172
2173 /**
2174  * regulator_register_notifier - register regulator event notifier
2175  * @regulator: regulator source
2176  * @nb: notifier block
2177  *
2178  * Register notifier block to receive regulator events.
2179  */
2180 int regulator_register_notifier(struct regulator *regulator,
2181                               struct notifier_block *nb)
2182 {
2183         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2184                                                 nb);
2185 }
2186 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2187
2188 /**
2189  * regulator_unregister_notifier - unregister regulator event notifier
2190  * @regulator: regulator source
2191  * @nb: notifier block
2192  *
2193  * Unregister regulator event notifier block.
2194  */
2195 int regulator_unregister_notifier(struct regulator *regulator,
2196                                 struct notifier_block *nb)
2197 {
2198         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2199                                                   nb);
2200 }
2201 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2202
2203 /* notify regulator consumers and downstream regulator consumers.
2204  * Note mutex must be held by caller.
2205  */
2206 static void _notifier_call_chain(struct regulator_dev *rdev,
2207                                   unsigned long event, void *data)
2208 {
2209         struct regulator_dev *_rdev;
2210
2211         /* call rdev chain first */
2212         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2213
2214         /* now notify regulator we supply */
2215         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2216                 mutex_lock(&_rdev->mutex);
2217                 _notifier_call_chain(_rdev, event, data);
2218                 mutex_unlock(&_rdev->mutex);
2219         }
2220 }
2221
2222 /**
2223  * regulator_bulk_get - get multiple regulator consumers
2224  *
2225  * @dev:           Device to supply
2226  * @num_consumers: Number of consumers to register
2227  * @consumers:     Configuration of consumers; clients are stored here.
2228  *
2229  * @return 0 on success, an errno on failure.
2230  *
2231  * This helper function allows drivers to get several regulator
2232  * consumers in one operation.  If any of the regulators cannot be
2233  * acquired then any regulators that were allocated will be freed
2234  * before returning to the caller.
2235  */
2236 int regulator_bulk_get(struct device *dev, int num_consumers,
2237                        struct regulator_bulk_data *consumers)
2238 {
2239         int i;
2240         int ret;
2241
2242         for (i = 0; i < num_consumers; i++)
2243                 consumers[i].consumer = NULL;
2244
2245         for (i = 0; i < num_consumers; i++) {
2246                 consumers[i].consumer = regulator_get(dev,
2247                                                       consumers[i].supply);
2248                 if (IS_ERR(consumers[i].consumer)) {
2249                         ret = PTR_ERR(consumers[i].consumer);
2250                         dev_err(dev, "Failed to get supply '%s': %d\n",
2251                                 consumers[i].supply, ret);
2252                         consumers[i].consumer = NULL;
2253                         goto err;
2254                 }
2255         }
2256
2257         return 0;
2258
2259 err:
2260         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2261                 regulator_put(consumers[i].consumer);
2262
2263         return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2266
2267 /**
2268  * regulator_bulk_enable - enable multiple regulator consumers
2269  *
2270  * @num_consumers: Number of consumers
2271  * @consumers:     Consumer data; clients are stored here.
2272  * @return         0 on success, an errno on failure
2273  *
2274  * This convenience API allows consumers to enable multiple regulator
2275  * clients in a single API call.  If any consumers cannot be enabled
2276  * then any others that were enabled will be disabled again prior to
2277  * return.
2278  */
2279 int regulator_bulk_enable(int num_consumers,
2280                           struct regulator_bulk_data *consumers)
2281 {
2282         int i;
2283         int ret;
2284
2285         for (i = 0; i < num_consumers; i++) {
2286                 ret = regulator_enable(consumers[i].consumer);
2287                 if (ret != 0)
2288                         goto err;
2289         }
2290
2291         return 0;
2292
2293 err:
2294         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2295         for (--i; i >= 0; --i)
2296                 regulator_disable(consumers[i].consumer);
2297
2298         return ret;
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2301
2302 /**
2303  * regulator_bulk_disable - disable multiple regulator consumers
2304  *
2305  * @num_consumers: Number of consumers
2306  * @consumers:     Consumer data; clients are stored here.
2307  * @return         0 on success, an errno on failure
2308  *
2309  * This convenience API allows consumers to disable multiple regulator
2310  * clients in a single API call.  If any consumers cannot be enabled
2311  * then any others that were disabled will be disabled again prior to
2312  * return.
2313  */
2314 int regulator_bulk_disable(int num_consumers,
2315                            struct regulator_bulk_data *consumers)
2316 {
2317         int i;
2318         int ret;
2319
2320         for (i = 0; i < num_consumers; i++) {
2321                 ret = regulator_disable(consumers[i].consumer);
2322                 if (ret != 0)
2323                         goto err;
2324         }
2325
2326         return 0;
2327
2328 err:
2329         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2330         for (--i; i >= 0; --i)
2331                 regulator_enable(consumers[i].consumer);
2332
2333         return ret;
2334 }
2335 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2336
2337 /**
2338  * regulator_bulk_free - free multiple regulator consumers
2339  *
2340  * @num_consumers: Number of consumers
2341  * @consumers:     Consumer data; clients are stored here.
2342  *
2343  * This convenience API allows consumers to free multiple regulator
2344  * clients in a single API call.
2345  */
2346 void regulator_bulk_free(int num_consumers,
2347                          struct regulator_bulk_data *consumers)
2348 {
2349         int i;
2350
2351         for (i = 0; i < num_consumers; i++) {
2352                 regulator_put(consumers[i].consumer);
2353                 consumers[i].consumer = NULL;
2354         }
2355 }
2356 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2357
2358 /**
2359  * regulator_notifier_call_chain - call regulator event notifier
2360  * @rdev: regulator source
2361  * @event: notifier block
2362  * @data: callback-specific data.
2363  *
2364  * Called by regulator drivers to notify clients a regulator event has
2365  * occurred. We also notify regulator clients downstream.
2366  * Note lock must be held by caller.
2367  */
2368 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2369                                   unsigned long event, void *data)
2370 {
2371         _notifier_call_chain(rdev, event, data);
2372         return NOTIFY_DONE;
2373
2374 }
2375 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2376
2377 /**
2378  * regulator_mode_to_status - convert a regulator mode into a status
2379  *
2380  * @mode: Mode to convert
2381  *
2382  * Convert a regulator mode into a status.
2383  */
2384 int regulator_mode_to_status(unsigned int mode)
2385 {
2386         switch (mode) {
2387         case REGULATOR_MODE_FAST:
2388                 return REGULATOR_STATUS_FAST;
2389         case REGULATOR_MODE_NORMAL:
2390                 return REGULATOR_STATUS_NORMAL;
2391         case REGULATOR_MODE_IDLE:
2392                 return REGULATOR_STATUS_IDLE;
2393         case REGULATOR_STATUS_STANDBY:
2394                 return REGULATOR_STATUS_STANDBY;
2395         default:
2396                 return 0;
2397         }
2398 }
2399 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2400
2401 /*
2402  * To avoid cluttering sysfs (and memory) with useless state, only
2403  * create attributes that can be meaningfully displayed.
2404  */
2405 static int add_regulator_attributes(struct regulator_dev *rdev)
2406 {
2407         struct device           *dev = &rdev->dev;
2408         struct regulator_ops    *ops = rdev->desc->ops;
2409         int                     status = 0;
2410
2411         /* some attributes need specific methods to be displayed */
2412         if (ops->get_voltage || ops->get_voltage_sel) {
2413                 status = device_create_file(dev, &dev_attr_microvolts);
2414                 if (status < 0)
2415                         return status;
2416         }
2417         if (ops->get_current_limit) {
2418                 status = device_create_file(dev, &dev_attr_microamps);
2419                 if (status < 0)
2420                         return status;
2421         }
2422         if (ops->get_mode) {
2423                 status = device_create_file(dev, &dev_attr_opmode);
2424                 if (status < 0)
2425                         return status;
2426         }
2427         if (ops->is_enabled) {
2428                 status = device_create_file(dev, &dev_attr_state);
2429                 if (status < 0)
2430                         return status;
2431         }
2432         if (ops->get_status) {
2433                 status = device_create_file(dev, &dev_attr_status);
2434                 if (status < 0)
2435                         return status;
2436         }
2437
2438         /* some attributes are type-specific */
2439         if (rdev->desc->type == REGULATOR_CURRENT) {
2440                 status = device_create_file(dev, &dev_attr_requested_microamps);
2441                 if (status < 0)
2442                         return status;
2443         }
2444
2445         /* all the other attributes exist to support constraints;
2446          * don't show them if there are no constraints, or if the
2447          * relevant supporting methods are missing.
2448          */
2449         if (!rdev->constraints)
2450                 return status;
2451
2452         /* constraints need specific supporting methods */
2453         if (ops->set_voltage || ops->set_voltage_sel) {
2454                 status = device_create_file(dev, &dev_attr_min_microvolts);
2455                 if (status < 0)
2456                         return status;
2457                 status = device_create_file(dev, &dev_attr_max_microvolts);
2458                 if (status < 0)
2459                         return status;
2460         }
2461         if (ops->set_current_limit) {
2462                 status = device_create_file(dev, &dev_attr_min_microamps);
2463                 if (status < 0)
2464                         return status;
2465                 status = device_create_file(dev, &dev_attr_max_microamps);
2466                 if (status < 0)
2467                         return status;
2468         }
2469
2470         /* suspend mode constraints need multiple supporting methods */
2471         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2472                 return status;
2473
2474         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2475         if (status < 0)
2476                 return status;
2477         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2478         if (status < 0)
2479                 return status;
2480         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2481         if (status < 0)
2482                 return status;
2483
2484         if (ops->set_suspend_voltage) {
2485                 status = device_create_file(dev,
2486                                 &dev_attr_suspend_standby_microvolts);
2487                 if (status < 0)
2488                         return status;
2489                 status = device_create_file(dev,
2490                                 &dev_attr_suspend_mem_microvolts);
2491                 if (status < 0)
2492                         return status;
2493                 status = device_create_file(dev,
2494                                 &dev_attr_suspend_disk_microvolts);
2495                 if (status < 0)
2496                         return status;
2497         }
2498
2499         if (ops->set_suspend_mode) {
2500                 status = device_create_file(dev,
2501                                 &dev_attr_suspend_standby_mode);
2502                 if (status < 0)
2503                         return status;
2504                 status = device_create_file(dev,
2505                                 &dev_attr_suspend_mem_mode);
2506                 if (status < 0)
2507                         return status;
2508                 status = device_create_file(dev,
2509                                 &dev_attr_suspend_disk_mode);
2510                 if (status < 0)
2511                         return status;
2512         }
2513
2514         return status;
2515 }
2516
2517 static void rdev_init_debugfs(struct regulator_dev *rdev)
2518 {
2519 #ifdef CONFIG_DEBUG_FS
2520         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2521         if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2522                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2523                 rdev->debugfs = NULL;
2524                 return;
2525         }
2526
2527         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2528                            &rdev->use_count);
2529         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2530                            &rdev->open_count);
2531 #endif
2532 }
2533
2534 /**
2535  * regulator_register - register regulator
2536  * @regulator_desc: regulator to register
2537  * @dev: struct device for the regulator
2538  * @init_data: platform provided init data, passed through by driver
2539  * @driver_data: private regulator data
2540  *
2541  * Called by regulator drivers to register a regulator.
2542  * Returns 0 on success.
2543  */
2544 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2545         struct device *dev, const struct regulator_init_data *init_data,
2546         void *driver_data)
2547 {
2548         static atomic_t regulator_no = ATOMIC_INIT(0);
2549         struct regulator_dev *rdev;
2550         int ret, i;
2551
2552         if (regulator_desc == NULL)
2553                 return ERR_PTR(-EINVAL);
2554
2555         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2556                 return ERR_PTR(-EINVAL);
2557
2558         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2559             regulator_desc->type != REGULATOR_CURRENT)
2560                 return ERR_PTR(-EINVAL);
2561
2562         if (!init_data)
2563                 return ERR_PTR(-EINVAL);
2564
2565         /* Only one of each should be implemented */
2566         WARN_ON(regulator_desc->ops->get_voltage &&
2567                 regulator_desc->ops->get_voltage_sel);
2568         WARN_ON(regulator_desc->ops->set_voltage &&
2569                 regulator_desc->ops->set_voltage_sel);
2570
2571         /* If we're using selectors we must implement list_voltage. */
2572         if (regulator_desc->ops->get_voltage_sel &&
2573             !regulator_desc->ops->list_voltage) {
2574                 return ERR_PTR(-EINVAL);
2575         }
2576         if (regulator_desc->ops->set_voltage_sel &&
2577             !regulator_desc->ops->list_voltage) {
2578                 return ERR_PTR(-EINVAL);
2579         }
2580
2581         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2582         if (rdev == NULL)
2583                 return ERR_PTR(-ENOMEM);
2584
2585         mutex_lock(&regulator_list_mutex);
2586
2587         mutex_init(&rdev->mutex);
2588         rdev->reg_data = driver_data;
2589         rdev->owner = regulator_desc->owner;
2590         rdev->desc = regulator_desc;
2591         INIT_LIST_HEAD(&rdev->consumer_list);
2592         INIT_LIST_HEAD(&rdev->supply_list);
2593         INIT_LIST_HEAD(&rdev->list);
2594         INIT_LIST_HEAD(&rdev->slist);
2595         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2596
2597         /* preform any regulator specific init */
2598         if (init_data->regulator_init) {
2599                 ret = init_data->regulator_init(rdev->reg_data);
2600                 if (ret < 0)
2601                         goto clean;
2602         }
2603
2604         /* register with sysfs */
2605         rdev->dev.class = &regulator_class;
2606         rdev->dev.parent = dev;
2607         dev_set_name(&rdev->dev, "regulator.%d",
2608                      atomic_inc_return(&regulator_no) - 1);
2609         ret = device_register(&rdev->dev);
2610         if (ret != 0) {
2611                 put_device(&rdev->dev);
2612                 goto clean;
2613         }
2614
2615         dev_set_drvdata(&rdev->dev, rdev);
2616
2617         /* set regulator constraints */
2618         ret = set_machine_constraints(rdev, &init_data->constraints);
2619         if (ret < 0)
2620                 goto scrub;
2621
2622         /* add attributes supported by this regulator */
2623         ret = add_regulator_attributes(rdev);
2624         if (ret < 0)
2625                 goto scrub;
2626
2627         if (init_data->supply_regulator) {
2628                 struct regulator_dev *r;
2629                 int found = 0;
2630
2631                 list_for_each_entry(r, &regulator_list, list) {
2632                         if (strcmp(rdev_get_name(r),
2633                                    init_data->supply_regulator) == 0) {
2634                                 found = 1;
2635                                 break;
2636                         }
2637                 }
2638
2639                 if (!found) {
2640                         dev_err(dev, "Failed to find supply %s\n",
2641                                 init_data->supply_regulator);
2642                         ret = -ENODEV;
2643                         goto scrub;
2644                 }
2645
2646                 ret = set_supply(rdev, r);
2647                 if (ret < 0)
2648                         goto scrub;
2649         }
2650
2651         /* add consumers devices */
2652         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2653                 ret = set_consumer_device_supply(rdev,
2654                         init_data->consumer_supplies[i].dev,
2655                         init_data->consumer_supplies[i].dev_name,
2656                         init_data->consumer_supplies[i].supply);
2657                 if (ret < 0) {
2658                         dev_err(dev, "Failed to set supply %s\n",
2659                                 init_data->consumer_supplies[i].supply);
2660                         goto unset_supplies;
2661                 }
2662         }
2663
2664         list_add(&rdev->list, &regulator_list);
2665
2666         rdev_init_debugfs(rdev);
2667 out:
2668         mutex_unlock(&regulator_list_mutex);
2669         return rdev;
2670
2671 unset_supplies:
2672         unset_regulator_supplies(rdev);
2673
2674 scrub:
2675         device_unregister(&rdev->dev);
2676         /* device core frees rdev */
2677         rdev = ERR_PTR(ret);
2678         goto out;
2679
2680 clean:
2681         kfree(rdev);
2682         rdev = ERR_PTR(ret);
2683         goto out;
2684 }
2685 EXPORT_SYMBOL_GPL(regulator_register);
2686
2687 /**
2688  * regulator_unregister - unregister regulator
2689  * @rdev: regulator to unregister
2690  *
2691  * Called by regulator drivers to unregister a regulator.
2692  */
2693 void regulator_unregister(struct regulator_dev *rdev)
2694 {
2695         if (rdev == NULL)
2696                 return;
2697
2698         mutex_lock(&regulator_list_mutex);
2699 #ifdef CONFIG_DEBUG_FS
2700         debugfs_remove_recursive(rdev->debugfs);
2701 #endif
2702         WARN_ON(rdev->open_count);
2703         unset_regulator_supplies(rdev);
2704         list_del(&rdev->list);
2705         if (rdev->supply)
2706                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2707         device_unregister(&rdev->dev);
2708         kfree(rdev->constraints);
2709         mutex_unlock(&regulator_list_mutex);
2710 }
2711 EXPORT_SYMBOL_GPL(regulator_unregister);
2712
2713 /**
2714  * regulator_suspend_prepare - prepare regulators for system wide suspend
2715  * @state: system suspend state
2716  *
2717  * Configure each regulator with it's suspend operating parameters for state.
2718  * This will usually be called by machine suspend code prior to supending.
2719  */
2720 int regulator_suspend_prepare(suspend_state_t state)
2721 {
2722         struct regulator_dev *rdev;
2723         int ret = 0;
2724
2725         /* ON is handled by regulator active state */
2726         if (state == PM_SUSPEND_ON)
2727                 return -EINVAL;
2728
2729         mutex_lock(&regulator_list_mutex);
2730         list_for_each_entry(rdev, &regulator_list, list) {
2731
2732                 mutex_lock(&rdev->mutex);
2733                 ret = suspend_prepare(rdev, state);
2734                 mutex_unlock(&rdev->mutex);
2735
2736                 if (ret < 0) {
2737                         rdev_err(rdev, "failed to prepare\n");
2738                         goto out;
2739                 }
2740         }
2741 out:
2742         mutex_unlock(&regulator_list_mutex);
2743         return ret;
2744 }
2745 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2746
2747 /**
2748  * regulator_suspend_finish - resume regulators from system wide suspend
2749  *
2750  * Turn on regulators that might be turned off by regulator_suspend_prepare
2751  * and that should be turned on according to the regulators properties.
2752  */
2753 int regulator_suspend_finish(void)
2754 {
2755         struct regulator_dev *rdev;
2756         int ret = 0, error;
2757
2758         mutex_lock(&regulator_list_mutex);
2759         list_for_each_entry(rdev, &regulator_list, list) {
2760                 struct regulator_ops *ops = rdev->desc->ops;
2761
2762                 mutex_lock(&rdev->mutex);
2763                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2764                                 ops->enable) {
2765                         error = ops->enable(rdev);
2766                         if (error)
2767                                 ret = error;
2768                 } else {
2769                         if (!has_full_constraints)
2770                                 goto unlock;
2771                         if (!ops->disable)
2772                                 goto unlock;
2773                         if (ops->is_enabled && !ops->is_enabled(rdev))
2774                                 goto unlock;
2775
2776                         error = ops->disable(rdev);
2777                         if (error)
2778                                 ret = error;
2779                 }
2780 unlock:
2781                 mutex_unlock(&rdev->mutex);
2782         }
2783         mutex_unlock(&regulator_list_mutex);
2784         return ret;
2785 }
2786 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2787
2788 /**
2789  * regulator_has_full_constraints - the system has fully specified constraints
2790  *
2791  * Calling this function will cause the regulator API to disable all
2792  * regulators which have a zero use count and don't have an always_on
2793  * constraint in a late_initcall.
2794  *
2795  * The intention is that this will become the default behaviour in a
2796  * future kernel release so users are encouraged to use this facility
2797  * now.
2798  */
2799 void regulator_has_full_constraints(void)
2800 {
2801         has_full_constraints = 1;
2802 }
2803 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2804
2805 /**
2806  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2807  *
2808  * Calling this function will cause the regulator API to provide a
2809  * dummy regulator to consumers if no physical regulator is found,
2810  * allowing most consumers to proceed as though a regulator were
2811  * configured.  This allows systems such as those with software
2812  * controllable regulators for the CPU core only to be brought up more
2813  * readily.
2814  */
2815 void regulator_use_dummy_regulator(void)
2816 {
2817         board_wants_dummy_regulator = true;
2818 }
2819 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2820
2821 /**
2822  * rdev_get_drvdata - get rdev regulator driver data
2823  * @rdev: regulator
2824  *
2825  * Get rdev regulator driver private data. This call can be used in the
2826  * regulator driver context.
2827  */
2828 void *rdev_get_drvdata(struct regulator_dev *rdev)
2829 {
2830         return rdev->reg_data;
2831 }
2832 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2833
2834 /**
2835  * regulator_get_drvdata - get regulator driver data
2836  * @regulator: regulator
2837  *
2838  * Get regulator driver private data. This call can be used in the consumer
2839  * driver context when non API regulator specific functions need to be called.
2840  */
2841 void *regulator_get_drvdata(struct regulator *regulator)
2842 {
2843         return regulator->rdev->reg_data;
2844 }
2845 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2846
2847 /**
2848  * regulator_set_drvdata - set regulator driver data
2849  * @regulator: regulator
2850  * @data: data
2851  */
2852 void regulator_set_drvdata(struct regulator *regulator, void *data)
2853 {
2854         regulator->rdev->reg_data = data;
2855 }
2856 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2857
2858 /**
2859  * regulator_get_id - get regulator ID
2860  * @rdev: regulator
2861  */
2862 int rdev_get_id(struct regulator_dev *rdev)
2863 {
2864         return rdev->desc->id;
2865 }
2866 EXPORT_SYMBOL_GPL(rdev_get_id);
2867
2868 struct device *rdev_get_dev(struct regulator_dev *rdev)
2869 {
2870         return &rdev->dev;
2871 }
2872 EXPORT_SYMBOL_GPL(rdev_get_dev);
2873
2874 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2875 {
2876         return reg_init_data->driver_data;
2877 }
2878 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2879
2880 static int __init regulator_init(void)
2881 {
2882         int ret;
2883
2884         ret = class_register(&regulator_class);
2885
2886 #ifdef CONFIG_DEBUG_FS
2887         debugfs_root = debugfs_create_dir("regulator", NULL);
2888         if (IS_ERR(debugfs_root) || !debugfs_root) {
2889                 pr_warn("regulator: Failed to create debugfs directory\n");
2890                 debugfs_root = NULL;
2891         }
2892 #endif
2893
2894         regulator_dummy_init();
2895
2896         return ret;
2897 }
2898
2899 /* init early to allow our consumers to complete system booting */
2900 core_initcall(regulator_init);
2901
2902 static int __init regulator_init_complete(void)
2903 {
2904         struct regulator_dev *rdev;
2905         struct regulator_ops *ops;
2906         struct regulation_constraints *c;
2907         int enabled, ret;
2908
2909         mutex_lock(&regulator_list_mutex);
2910
2911         /* If we have a full configuration then disable any regulators
2912          * which are not in use or always_on.  This will become the
2913          * default behaviour in the future.
2914          */
2915         list_for_each_entry(rdev, &regulator_list, list) {
2916                 ops = rdev->desc->ops;
2917                 c = rdev->constraints;
2918
2919                 if (!ops->disable || (c && c->always_on))
2920                         continue;
2921
2922                 mutex_lock(&rdev->mutex);
2923
2924                 if (rdev->use_count)
2925                         goto unlock;
2926
2927                 /* If we can't read the status assume it's on. */
2928                 if (ops->is_enabled)
2929                         enabled = ops->is_enabled(rdev);
2930                 else
2931                         enabled = 1;
2932
2933                 if (!enabled)
2934                         goto unlock;
2935
2936                 if (has_full_constraints) {
2937                         /* We log since this may kill the system if it
2938                          * goes wrong. */
2939                         rdev_info(rdev, "disabling\n");
2940                         ret = ops->disable(rdev);
2941                         if (ret != 0) {
2942                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
2943                         }
2944                 } else {
2945                         /* The intention is that in future we will
2946                          * assume that full constraints are provided
2947                          * so warn even if we aren't going to do
2948                          * anything here.
2949                          */
2950                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
2951                 }
2952
2953 unlock:
2954                 mutex_unlock(&rdev->mutex);
2955         }
2956
2957         mutex_unlock(&regulator_list_mutex);
2958
2959         return 0;
2960 }
2961 late_initcall(regulator_init_complete);