Merge branch 'upstream-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[pandora-kernel.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27
28 #include "dummy.h"
29
30 #define REGULATOR_VERSION "0.5"
31
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36
37 /*
38  * struct regulator_map
39  *
40  * Used to provide symbolic supply names to devices.
41  */
42 struct regulator_map {
43         struct list_head list;
44         const char *dev_name;   /* The dev_name() for the consumer */
45         const char *supply;
46         struct regulator_dev *regulator;
47 };
48
49 /*
50  * struct regulator
51  *
52  * One for each consumer device.
53  */
54 struct regulator {
55         struct device *dev;
56         struct list_head list;
57         int uA_load;
58         int min_uV;
59         int max_uV;
60         char *supply_name;
61         struct device_attribute dev_attr;
62         struct regulator_dev *rdev;
63 };
64
65 static int _regulator_is_enabled(struct regulator_dev *rdev);
66 static int _regulator_disable(struct regulator_dev *rdev);
67 static int _regulator_get_voltage(struct regulator_dev *rdev);
68 static int _regulator_get_current_limit(struct regulator_dev *rdev);
69 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
70 static void _notifier_call_chain(struct regulator_dev *rdev,
71                                   unsigned long event, void *data);
72
73 static const char *rdev_get_name(struct regulator_dev *rdev)
74 {
75         if (rdev->constraints && rdev->constraints->name)
76                 return rdev->constraints->name;
77         else if (rdev->desc->name)
78                 return rdev->desc->name;
79         else
80                 return "";
81 }
82
83 /* gets the regulator for a given consumer device */
84 static struct regulator *get_device_regulator(struct device *dev)
85 {
86         struct regulator *regulator = NULL;
87         struct regulator_dev *rdev;
88
89         mutex_lock(&regulator_list_mutex);
90         list_for_each_entry(rdev, &regulator_list, list) {
91                 mutex_lock(&rdev->mutex);
92                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
93                         if (regulator->dev == dev) {
94                                 mutex_unlock(&rdev->mutex);
95                                 mutex_unlock(&regulator_list_mutex);
96                                 return regulator;
97                         }
98                 }
99                 mutex_unlock(&rdev->mutex);
100         }
101         mutex_unlock(&regulator_list_mutex);
102         return NULL;
103 }
104
105 /* Platform voltage constraint check */
106 static int regulator_check_voltage(struct regulator_dev *rdev,
107                                    int *min_uV, int *max_uV)
108 {
109         BUG_ON(*min_uV > *max_uV);
110
111         if (!rdev->constraints) {
112                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
113                        rdev_get_name(rdev));
114                 return -ENODEV;
115         }
116         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
117                 printk(KERN_ERR "%s: operation not allowed for %s\n",
118                        __func__, rdev_get_name(rdev));
119                 return -EPERM;
120         }
121
122         if (*max_uV > rdev->constraints->max_uV)
123                 *max_uV = rdev->constraints->max_uV;
124         if (*min_uV < rdev->constraints->min_uV)
125                 *min_uV = rdev->constraints->min_uV;
126
127         if (*min_uV > *max_uV)
128                 return -EINVAL;
129
130         return 0;
131 }
132
133 /* current constraint check */
134 static int regulator_check_current_limit(struct regulator_dev *rdev,
135                                         int *min_uA, int *max_uA)
136 {
137         BUG_ON(*min_uA > *max_uA);
138
139         if (!rdev->constraints) {
140                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
141                        rdev_get_name(rdev));
142                 return -ENODEV;
143         }
144         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
145                 printk(KERN_ERR "%s: operation not allowed for %s\n",
146                        __func__, rdev_get_name(rdev));
147                 return -EPERM;
148         }
149
150         if (*max_uA > rdev->constraints->max_uA)
151                 *max_uA = rdev->constraints->max_uA;
152         if (*min_uA < rdev->constraints->min_uA)
153                 *min_uA = rdev->constraints->min_uA;
154
155         if (*min_uA > *max_uA)
156                 return -EINVAL;
157
158         return 0;
159 }
160
161 /* operating mode constraint check */
162 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
163 {
164         switch (mode) {
165         case REGULATOR_MODE_FAST:
166         case REGULATOR_MODE_NORMAL:
167         case REGULATOR_MODE_IDLE:
168         case REGULATOR_MODE_STANDBY:
169                 break;
170         default:
171                 return -EINVAL;
172         }
173
174         if (!rdev->constraints) {
175                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
176                        rdev_get_name(rdev));
177                 return -ENODEV;
178         }
179         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
180                 printk(KERN_ERR "%s: operation not allowed for %s\n",
181                        __func__, rdev_get_name(rdev));
182                 return -EPERM;
183         }
184         if (!(rdev->constraints->valid_modes_mask & mode)) {
185                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
186                        __func__, mode, rdev_get_name(rdev));
187                 return -EINVAL;
188         }
189         return 0;
190 }
191
192 /* dynamic regulator mode switching constraint check */
193 static int regulator_check_drms(struct regulator_dev *rdev)
194 {
195         if (!rdev->constraints) {
196                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
197                        rdev_get_name(rdev));
198                 return -ENODEV;
199         }
200         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
201                 printk(KERN_ERR "%s: operation not allowed for %s\n",
202                        __func__, rdev_get_name(rdev));
203                 return -EPERM;
204         }
205         return 0;
206 }
207
208 static ssize_t device_requested_uA_show(struct device *dev,
209                              struct device_attribute *attr, char *buf)
210 {
211         struct regulator *regulator;
212
213         regulator = get_device_regulator(dev);
214         if (regulator == NULL)
215                 return 0;
216
217         return sprintf(buf, "%d\n", regulator->uA_load);
218 }
219
220 static ssize_t regulator_uV_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224         ssize_t ret;
225
226         mutex_lock(&rdev->mutex);
227         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
228         mutex_unlock(&rdev->mutex);
229
230         return ret;
231 }
232 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
233
234 static ssize_t regulator_uA_show(struct device *dev,
235                                 struct device_attribute *attr, char *buf)
236 {
237         struct regulator_dev *rdev = dev_get_drvdata(dev);
238
239         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
240 }
241 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
242
243 static ssize_t regulator_name_show(struct device *dev,
244                              struct device_attribute *attr, char *buf)
245 {
246         struct regulator_dev *rdev = dev_get_drvdata(dev);
247
248         return sprintf(buf, "%s\n", rdev_get_name(rdev));
249 }
250
251 static ssize_t regulator_print_opmode(char *buf, int mode)
252 {
253         switch (mode) {
254         case REGULATOR_MODE_FAST:
255                 return sprintf(buf, "fast\n");
256         case REGULATOR_MODE_NORMAL:
257                 return sprintf(buf, "normal\n");
258         case REGULATOR_MODE_IDLE:
259                 return sprintf(buf, "idle\n");
260         case REGULATOR_MODE_STANDBY:
261                 return sprintf(buf, "standby\n");
262         }
263         return sprintf(buf, "unknown\n");
264 }
265
266 static ssize_t regulator_opmode_show(struct device *dev,
267                                     struct device_attribute *attr, char *buf)
268 {
269         struct regulator_dev *rdev = dev_get_drvdata(dev);
270
271         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
272 }
273 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
274
275 static ssize_t regulator_print_state(char *buf, int state)
276 {
277         if (state > 0)
278                 return sprintf(buf, "enabled\n");
279         else if (state == 0)
280                 return sprintf(buf, "disabled\n");
281         else
282                 return sprintf(buf, "unknown\n");
283 }
284
285 static ssize_t regulator_state_show(struct device *dev,
286                                    struct device_attribute *attr, char *buf)
287 {
288         struct regulator_dev *rdev = dev_get_drvdata(dev);
289         ssize_t ret;
290
291         mutex_lock(&rdev->mutex);
292         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
293         mutex_unlock(&rdev->mutex);
294
295         return ret;
296 }
297 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
298
299 static ssize_t regulator_status_show(struct device *dev,
300                                    struct device_attribute *attr, char *buf)
301 {
302         struct regulator_dev *rdev = dev_get_drvdata(dev);
303         int status;
304         char *label;
305
306         status = rdev->desc->ops->get_status(rdev);
307         if (status < 0)
308                 return status;
309
310         switch (status) {
311         case REGULATOR_STATUS_OFF:
312                 label = "off";
313                 break;
314         case REGULATOR_STATUS_ON:
315                 label = "on";
316                 break;
317         case REGULATOR_STATUS_ERROR:
318                 label = "error";
319                 break;
320         case REGULATOR_STATUS_FAST:
321                 label = "fast";
322                 break;
323         case REGULATOR_STATUS_NORMAL:
324                 label = "normal";
325                 break;
326         case REGULATOR_STATUS_IDLE:
327                 label = "idle";
328                 break;
329         case REGULATOR_STATUS_STANDBY:
330                 label = "standby";
331                 break;
332         default:
333                 return -ERANGE;
334         }
335
336         return sprintf(buf, "%s\n", label);
337 }
338 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
339
340 static ssize_t regulator_min_uA_show(struct device *dev,
341                                     struct device_attribute *attr, char *buf)
342 {
343         struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345         if (!rdev->constraints)
346                 return sprintf(buf, "constraint not defined\n");
347
348         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
349 }
350 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
351
352 static ssize_t regulator_max_uA_show(struct device *dev,
353                                     struct device_attribute *attr, char *buf)
354 {
355         struct regulator_dev *rdev = dev_get_drvdata(dev);
356
357         if (!rdev->constraints)
358                 return sprintf(buf, "constraint not defined\n");
359
360         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
361 }
362 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
363
364 static ssize_t regulator_min_uV_show(struct device *dev,
365                                     struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         if (!rdev->constraints)
370                 return sprintf(buf, "constraint not defined\n");
371
372         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
373 }
374 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
375
376 static ssize_t regulator_max_uV_show(struct device *dev,
377                                     struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380
381         if (!rdev->constraints)
382                 return sprintf(buf, "constraint not defined\n");
383
384         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
385 }
386 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
387
388 static ssize_t regulator_total_uA_show(struct device *dev,
389                                       struct device_attribute *attr, char *buf)
390 {
391         struct regulator_dev *rdev = dev_get_drvdata(dev);
392         struct regulator *regulator;
393         int uA = 0;
394
395         mutex_lock(&rdev->mutex);
396         list_for_each_entry(regulator, &rdev->consumer_list, list)
397                 uA += regulator->uA_load;
398         mutex_unlock(&rdev->mutex);
399         return sprintf(buf, "%d\n", uA);
400 }
401 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
402
403 static ssize_t regulator_num_users_show(struct device *dev,
404                                       struct device_attribute *attr, char *buf)
405 {
406         struct regulator_dev *rdev = dev_get_drvdata(dev);
407         return sprintf(buf, "%d\n", rdev->use_count);
408 }
409
410 static ssize_t regulator_type_show(struct device *dev,
411                                   struct device_attribute *attr, char *buf)
412 {
413         struct regulator_dev *rdev = dev_get_drvdata(dev);
414
415         switch (rdev->desc->type) {
416         case REGULATOR_VOLTAGE:
417                 return sprintf(buf, "voltage\n");
418         case REGULATOR_CURRENT:
419                 return sprintf(buf, "current\n");
420         }
421         return sprintf(buf, "unknown\n");
422 }
423
424 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
425                                 struct device_attribute *attr, char *buf)
426 {
427         struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
430 }
431 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
432                 regulator_suspend_mem_uV_show, NULL);
433
434 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
435                                 struct device_attribute *attr, char *buf)
436 {
437         struct regulator_dev *rdev = dev_get_drvdata(dev);
438
439         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
440 }
441 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
442                 regulator_suspend_disk_uV_show, NULL);
443
444 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
445                                 struct device_attribute *attr, char *buf)
446 {
447         struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
450 }
451 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
452                 regulator_suspend_standby_uV_show, NULL);
453
454 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_mem.mode);
461 }
462 static DEVICE_ATTR(suspend_mem_mode, 0444,
463                 regulator_suspend_mem_mode_show, NULL);
464
465 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_disk.mode);
472 }
473 static DEVICE_ATTR(suspend_disk_mode, 0444,
474                 regulator_suspend_disk_mode_show, NULL);
475
476 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
477                                 struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_opmode(buf,
482                 rdev->constraints->state_standby.mode);
483 }
484 static DEVICE_ATTR(suspend_standby_mode, 0444,
485                 regulator_suspend_standby_mode_show, NULL);
486
487 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_mem.enabled);
494 }
495 static DEVICE_ATTR(suspend_mem_state, 0444,
496                 regulator_suspend_mem_state_show, NULL);
497
498 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_disk.enabled);
505 }
506 static DEVICE_ATTR(suspend_disk_state, 0444,
507                 regulator_suspend_disk_state_show, NULL);
508
509 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
510                                    struct device_attribute *attr, char *buf)
511 {
512         struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514         return regulator_print_state(buf,
515                         rdev->constraints->state_standby.enabled);
516 }
517 static DEVICE_ATTR(suspend_standby_state, 0444,
518                 regulator_suspend_standby_state_show, NULL);
519
520
521 /*
522  * These are the only attributes are present for all regulators.
523  * Other attributes are a function of regulator functionality.
524  */
525 static struct device_attribute regulator_dev_attrs[] = {
526         __ATTR(name, 0444, regulator_name_show, NULL),
527         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
528         __ATTR(type, 0444, regulator_type_show, NULL),
529         __ATTR_NULL,
530 };
531
532 static void regulator_dev_release(struct device *dev)
533 {
534         struct regulator_dev *rdev = dev_get_drvdata(dev);
535         kfree(rdev);
536 }
537
538 static struct class regulator_class = {
539         .name = "regulator",
540         .dev_release = regulator_dev_release,
541         .dev_attrs = regulator_dev_attrs,
542 };
543
544 /* Calculate the new optimum regulator operating mode based on the new total
545  * consumer load. All locks held by caller */
546 static void drms_uA_update(struct regulator_dev *rdev)
547 {
548         struct regulator *sibling;
549         int current_uA = 0, output_uV, input_uV, err;
550         unsigned int mode;
551
552         err = regulator_check_drms(rdev);
553         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
554             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
555                 return;
556
557         /* get output voltage */
558         output_uV = rdev->desc->ops->get_voltage(rdev);
559         if (output_uV <= 0)
560                 return;
561
562         /* get input voltage */
563         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
564                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
565         else
566                 input_uV = rdev->constraints->input_uV;
567         if (input_uV <= 0)
568                 return;
569
570         /* calc total requested load */
571         list_for_each_entry(sibling, &rdev->consumer_list, list)
572                 current_uA += sibling->uA_load;
573
574         /* now get the optimum mode for our new total regulator load */
575         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
576                                                   output_uV, current_uA);
577
578         /* check the new mode is allowed */
579         err = regulator_check_mode(rdev, mode);
580         if (err == 0)
581                 rdev->desc->ops->set_mode(rdev, mode);
582 }
583
584 static int suspend_set_state(struct regulator_dev *rdev,
585         struct regulator_state *rstate)
586 {
587         int ret = 0;
588         bool can_set_state;
589
590         can_set_state = rdev->desc->ops->set_suspend_enable &&
591                 rdev->desc->ops->set_suspend_disable;
592
593         /* If we have no suspend mode configration don't set anything;
594          * only warn if the driver actually makes the suspend mode
595          * configurable.
596          */
597         if (!rstate->enabled && !rstate->disabled) {
598                 if (can_set_state)
599                         printk(KERN_WARNING "%s: No configuration for %s\n",
600                                __func__, rdev_get_name(rdev));
601                 return 0;
602         }
603
604         if (rstate->enabled && rstate->disabled) {
605                 printk(KERN_ERR "%s: invalid configuration for %s\n",
606                        __func__, rdev_get_name(rdev));
607                 return -EINVAL;
608         }
609
610         if (!can_set_state) {
611                 printk(KERN_ERR "%s: no way to set suspend state\n",
612                         __func__);
613                 return -EINVAL;
614         }
615
616         if (rstate->enabled)
617                 ret = rdev->desc->ops->set_suspend_enable(rdev);
618         else
619                 ret = rdev->desc->ops->set_suspend_disable(rdev);
620         if (ret < 0) {
621                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
622                 return ret;
623         }
624
625         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
626                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
627                 if (ret < 0) {
628                         printk(KERN_ERR "%s: failed to set voltage\n",
629                                 __func__);
630                         return ret;
631                 }
632         }
633
634         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
635                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
636                 if (ret < 0) {
637                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
638                         return ret;
639                 }
640         }
641         return ret;
642 }
643
644 /* locks held by caller */
645 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
646 {
647         if (!rdev->constraints)
648                 return -EINVAL;
649
650         switch (state) {
651         case PM_SUSPEND_STANDBY:
652                 return suspend_set_state(rdev,
653                         &rdev->constraints->state_standby);
654         case PM_SUSPEND_MEM:
655                 return suspend_set_state(rdev,
656                         &rdev->constraints->state_mem);
657         case PM_SUSPEND_MAX:
658                 return suspend_set_state(rdev,
659                         &rdev->constraints->state_disk);
660         default:
661                 return -EINVAL;
662         }
663 }
664
665 static void print_constraints(struct regulator_dev *rdev)
666 {
667         struct regulation_constraints *constraints = rdev->constraints;
668         char buf[80] = "";
669         int count = 0;
670         int ret;
671
672         if (constraints->min_uV && constraints->max_uV) {
673                 if (constraints->min_uV == constraints->max_uV)
674                         count += sprintf(buf + count, "%d mV ",
675                                          constraints->min_uV / 1000);
676                 else
677                         count += sprintf(buf + count, "%d <--> %d mV ",
678                                          constraints->min_uV / 1000,
679                                          constraints->max_uV / 1000);
680         }
681
682         if (!constraints->min_uV ||
683             constraints->min_uV != constraints->max_uV) {
684                 ret = _regulator_get_voltage(rdev);
685                 if (ret > 0)
686                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
687         }
688
689         if (constraints->min_uA && constraints->max_uA) {
690                 if (constraints->min_uA == constraints->max_uA)
691                         count += sprintf(buf + count, "%d mA ",
692                                          constraints->min_uA / 1000);
693                 else
694                         count += sprintf(buf + count, "%d <--> %d mA ",
695                                          constraints->min_uA / 1000,
696                                          constraints->max_uA / 1000);
697         }
698
699         if (!constraints->min_uA ||
700             constraints->min_uA != constraints->max_uA) {
701                 ret = _regulator_get_current_limit(rdev);
702                 if (ret > 0)
703                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
704         }
705
706         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
707                 count += sprintf(buf + count, "fast ");
708         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
709                 count += sprintf(buf + count, "normal ");
710         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
711                 count += sprintf(buf + count, "idle ");
712         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
713                 count += sprintf(buf + count, "standby");
714
715         printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
716 }
717
718 static int machine_constraints_voltage(struct regulator_dev *rdev,
719         struct regulation_constraints *constraints)
720 {
721         struct regulator_ops *ops = rdev->desc->ops;
722         const char *name = rdev_get_name(rdev);
723         int ret;
724
725         /* do we need to apply the constraint voltage */
726         if (rdev->constraints->apply_uV &&
727                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
728                 ops->set_voltage) {
729                 ret = ops->set_voltage(rdev,
730                         rdev->constraints->min_uV, rdev->constraints->max_uV);
731                         if (ret < 0) {
732                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
733                                        __func__,
734                                        rdev->constraints->min_uV, name);
735                                 rdev->constraints = NULL;
736                                 return ret;
737                         }
738         }
739
740         /* constrain machine-level voltage specs to fit
741          * the actual range supported by this regulator.
742          */
743         if (ops->list_voltage && rdev->desc->n_voltages) {
744                 int     count = rdev->desc->n_voltages;
745                 int     i;
746                 int     min_uV = INT_MAX;
747                 int     max_uV = INT_MIN;
748                 int     cmin = constraints->min_uV;
749                 int     cmax = constraints->max_uV;
750
751                 /* it's safe to autoconfigure fixed-voltage supplies
752                    and the constraints are used by list_voltage. */
753                 if (count == 1 && !cmin) {
754                         cmin = 1;
755                         cmax = INT_MAX;
756                         constraints->min_uV = cmin;
757                         constraints->max_uV = cmax;
758                 }
759
760                 /* voltage constraints are optional */
761                 if ((cmin == 0) && (cmax == 0))
762                         return 0;
763
764                 /* else require explicit machine-level constraints */
765                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
766                         pr_err("%s: %s '%s' voltage constraints\n",
767                                        __func__, "invalid", name);
768                         return -EINVAL;
769                 }
770
771                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
772                 for (i = 0; i < count; i++) {
773                         int     value;
774
775                         value = ops->list_voltage(rdev, i);
776                         if (value <= 0)
777                                 continue;
778
779                         /* maybe adjust [min_uV..max_uV] */
780                         if (value >= cmin && value < min_uV)
781                                 min_uV = value;
782                         if (value <= cmax && value > max_uV)
783                                 max_uV = value;
784                 }
785
786                 /* final: [min_uV..max_uV] valid iff constraints valid */
787                 if (max_uV < min_uV) {
788                         pr_err("%s: %s '%s' voltage constraints\n",
789                                        __func__, "unsupportable", name);
790                         return -EINVAL;
791                 }
792
793                 /* use regulator's subset of machine constraints */
794                 if (constraints->min_uV < min_uV) {
795                         pr_debug("%s: override '%s' %s, %d -> %d\n",
796                                        __func__, name, "min_uV",
797                                         constraints->min_uV, min_uV);
798                         constraints->min_uV = min_uV;
799                 }
800                 if (constraints->max_uV > max_uV) {
801                         pr_debug("%s: override '%s' %s, %d -> %d\n",
802                                        __func__, name, "max_uV",
803                                         constraints->max_uV, max_uV);
804                         constraints->max_uV = max_uV;
805                 }
806         }
807
808         return 0;
809 }
810
811 /**
812  * set_machine_constraints - sets regulator constraints
813  * @rdev: regulator source
814  * @constraints: constraints to apply
815  *
816  * Allows platform initialisation code to define and constrain
817  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
818  * Constraints *must* be set by platform code in order for some
819  * regulator operations to proceed i.e. set_voltage, set_current_limit,
820  * set_mode.
821  */
822 static int set_machine_constraints(struct regulator_dev *rdev,
823         struct regulation_constraints *constraints)
824 {
825         int ret = 0;
826         const char *name;
827         struct regulator_ops *ops = rdev->desc->ops;
828
829         rdev->constraints = constraints;
830
831         name = rdev_get_name(rdev);
832
833         ret = machine_constraints_voltage(rdev, constraints);
834         if (ret != 0)
835                 goto out;
836
837         /* do we need to setup our suspend state */
838         if (constraints->initial_state) {
839                 ret = suspend_prepare(rdev, constraints->initial_state);
840                 if (ret < 0) {
841                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
842                                __func__, name);
843                         rdev->constraints = NULL;
844                         goto out;
845                 }
846         }
847
848         if (constraints->initial_mode) {
849                 if (!ops->set_mode) {
850                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
851                                __func__, name);
852                         ret = -EINVAL;
853                         goto out;
854                 }
855
856                 ret = ops->set_mode(rdev, constraints->initial_mode);
857                 if (ret < 0) {
858                         printk(KERN_ERR
859                                "%s: failed to set initial mode for %s: %d\n",
860                                __func__, name, ret);
861                         goto out;
862                 }
863         }
864
865         /* If the constraints say the regulator should be on at this point
866          * and we have control then make sure it is enabled.
867          */
868         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
869                 ret = ops->enable(rdev);
870                 if (ret < 0) {
871                         printk(KERN_ERR "%s: failed to enable %s\n",
872                                __func__, name);
873                         rdev->constraints = NULL;
874                         goto out;
875                 }
876         }
877
878         print_constraints(rdev);
879 out:
880         return ret;
881 }
882
883 /**
884  * set_supply - set regulator supply regulator
885  * @rdev: regulator name
886  * @supply_rdev: supply regulator name
887  *
888  * Called by platform initialisation code to set the supply regulator for this
889  * regulator. This ensures that a regulators supply will also be enabled by the
890  * core if it's child is enabled.
891  */
892 static int set_supply(struct regulator_dev *rdev,
893         struct regulator_dev *supply_rdev)
894 {
895         int err;
896
897         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
898                                 "supply");
899         if (err) {
900                 printk(KERN_ERR
901                        "%s: could not add device link %s err %d\n",
902                        __func__, supply_rdev->dev.kobj.name, err);
903                        goto out;
904         }
905         rdev->supply = supply_rdev;
906         list_add(&rdev->slist, &supply_rdev->supply_list);
907 out:
908         return err;
909 }
910
911 /**
912  * set_consumer_device_supply: Bind a regulator to a symbolic supply
913  * @rdev:         regulator source
914  * @consumer_dev: device the supply applies to
915  * @consumer_dev_name: dev_name() string for device supply applies to
916  * @supply:       symbolic name for supply
917  *
918  * Allows platform initialisation code to map physical regulator
919  * sources to symbolic names for supplies for use by devices.  Devices
920  * should use these symbolic names to request regulators, avoiding the
921  * need to provide board-specific regulator names as platform data.
922  *
923  * Only one of consumer_dev and consumer_dev_name may be specified.
924  */
925 static int set_consumer_device_supply(struct regulator_dev *rdev,
926         struct device *consumer_dev, const char *consumer_dev_name,
927         const char *supply)
928 {
929         struct regulator_map *node;
930         int has_dev;
931
932         if (consumer_dev && consumer_dev_name)
933                 return -EINVAL;
934
935         if (!consumer_dev_name && consumer_dev)
936                 consumer_dev_name = dev_name(consumer_dev);
937
938         if (supply == NULL)
939                 return -EINVAL;
940
941         if (consumer_dev_name != NULL)
942                 has_dev = 1;
943         else
944                 has_dev = 0;
945
946         list_for_each_entry(node, &regulator_map_list, list) {
947                 if (node->dev_name && consumer_dev_name) {
948                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
949                                 continue;
950                 } else if (node->dev_name || consumer_dev_name) {
951                         continue;
952                 }
953
954                 if (strcmp(node->supply, supply) != 0)
955                         continue;
956
957                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
958                                 dev_name(&node->regulator->dev),
959                                 node->regulator->desc->name,
960                                 supply,
961                                 dev_name(&rdev->dev), rdev_get_name(rdev));
962                 return -EBUSY;
963         }
964
965         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
966         if (node == NULL)
967                 return -ENOMEM;
968
969         node->regulator = rdev;
970         node->supply = supply;
971
972         if (has_dev) {
973                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
974                 if (node->dev_name == NULL) {
975                         kfree(node);
976                         return -ENOMEM;
977                 }
978         }
979
980         list_add(&node->list, &regulator_map_list);
981         return 0;
982 }
983
984 static void unset_regulator_supplies(struct regulator_dev *rdev)
985 {
986         struct regulator_map *node, *n;
987
988         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
989                 if (rdev == node->regulator) {
990                         list_del(&node->list);
991                         kfree(node->dev_name);
992                         kfree(node);
993                 }
994         }
995 }
996
997 #define REG_STR_SIZE    32
998
999 static struct regulator *create_regulator(struct regulator_dev *rdev,
1000                                           struct device *dev,
1001                                           const char *supply_name)
1002 {
1003         struct regulator *regulator;
1004         char buf[REG_STR_SIZE];
1005         int err, size;
1006
1007         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1008         if (regulator == NULL)
1009                 return NULL;
1010
1011         mutex_lock(&rdev->mutex);
1012         regulator->rdev = rdev;
1013         list_add(&regulator->list, &rdev->consumer_list);
1014
1015         if (dev) {
1016                 /* create a 'requested_microamps_name' sysfs entry */
1017                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1018                         supply_name);
1019                 if (size >= REG_STR_SIZE)
1020                         goto overflow_err;
1021
1022                 regulator->dev = dev;
1023                 sysfs_attr_init(&regulator->dev_attr.attr);
1024                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1025                 if (regulator->dev_attr.attr.name == NULL)
1026                         goto attr_name_err;
1027
1028                 regulator->dev_attr.attr.mode = 0444;
1029                 regulator->dev_attr.show = device_requested_uA_show;
1030                 err = device_create_file(dev, &regulator->dev_attr);
1031                 if (err < 0) {
1032                         printk(KERN_WARNING "%s: could not add regulator_dev"
1033                                 " load sysfs\n", __func__);
1034                         goto attr_name_err;
1035                 }
1036
1037                 /* also add a link to the device sysfs entry */
1038                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1039                                  dev->kobj.name, supply_name);
1040                 if (size >= REG_STR_SIZE)
1041                         goto attr_err;
1042
1043                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1044                 if (regulator->supply_name == NULL)
1045                         goto attr_err;
1046
1047                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1048                                         buf);
1049                 if (err) {
1050                         printk(KERN_WARNING
1051                                "%s: could not add device link %s err %d\n",
1052                                __func__, dev->kobj.name, err);
1053                         device_remove_file(dev, &regulator->dev_attr);
1054                         goto link_name_err;
1055                 }
1056         }
1057         mutex_unlock(&rdev->mutex);
1058         return regulator;
1059 link_name_err:
1060         kfree(regulator->supply_name);
1061 attr_err:
1062         device_remove_file(regulator->dev, &regulator->dev_attr);
1063 attr_name_err:
1064         kfree(regulator->dev_attr.attr.name);
1065 overflow_err:
1066         list_del(&regulator->list);
1067         kfree(regulator);
1068         mutex_unlock(&rdev->mutex);
1069         return NULL;
1070 }
1071
1072 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1073 {
1074         if (!rdev->desc->ops->enable_time)
1075                 return 0;
1076         return rdev->desc->ops->enable_time(rdev);
1077 }
1078
1079 /* Internal regulator request function */
1080 static struct regulator *_regulator_get(struct device *dev, const char *id,
1081                                         int exclusive)
1082 {
1083         struct regulator_dev *rdev;
1084         struct regulator_map *map;
1085         struct regulator *regulator = ERR_PTR(-ENODEV);
1086         const char *devname = NULL;
1087         int ret;
1088
1089         if (id == NULL) {
1090                 printk(KERN_ERR "regulator: get() with no identifier\n");
1091                 return regulator;
1092         }
1093
1094         if (dev)
1095                 devname = dev_name(dev);
1096
1097         mutex_lock(&regulator_list_mutex);
1098
1099         list_for_each_entry(map, &regulator_map_list, list) {
1100                 /* If the mapping has a device set up it must match */
1101                 if (map->dev_name &&
1102                     (!devname || strcmp(map->dev_name, devname)))
1103                         continue;
1104
1105                 if (strcmp(map->supply, id) == 0) {
1106                         rdev = map->regulator;
1107                         goto found;
1108                 }
1109         }
1110
1111 #ifdef CONFIG_REGULATOR_DUMMY
1112         if (!devname)
1113                 devname = "deviceless";
1114
1115         /* If the board didn't flag that it was fully constrained then
1116          * substitute in a dummy regulator so consumers can continue.
1117          */
1118         if (!has_full_constraints) {
1119                 pr_warning("%s supply %s not found, using dummy regulator\n",
1120                            devname, id);
1121                 rdev = dummy_regulator_rdev;
1122                 goto found;
1123         }
1124 #endif
1125
1126         mutex_unlock(&regulator_list_mutex);
1127         return regulator;
1128
1129 found:
1130         if (rdev->exclusive) {
1131                 regulator = ERR_PTR(-EPERM);
1132                 goto out;
1133         }
1134
1135         if (exclusive && rdev->open_count) {
1136                 regulator = ERR_PTR(-EBUSY);
1137                 goto out;
1138         }
1139
1140         if (!try_module_get(rdev->owner))
1141                 goto out;
1142
1143         regulator = create_regulator(rdev, dev, id);
1144         if (regulator == NULL) {
1145                 regulator = ERR_PTR(-ENOMEM);
1146                 module_put(rdev->owner);
1147         }
1148
1149         rdev->open_count++;
1150         if (exclusive) {
1151                 rdev->exclusive = 1;
1152
1153                 ret = _regulator_is_enabled(rdev);
1154                 if (ret > 0)
1155                         rdev->use_count = 1;
1156                 else
1157                         rdev->use_count = 0;
1158         }
1159
1160 out:
1161         mutex_unlock(&regulator_list_mutex);
1162
1163         return regulator;
1164 }
1165
1166 /**
1167  * regulator_get - lookup and obtain a reference to a regulator.
1168  * @dev: device for regulator "consumer"
1169  * @id: Supply name or regulator ID.
1170  *
1171  * Returns a struct regulator corresponding to the regulator producer,
1172  * or IS_ERR() condition containing errno.
1173  *
1174  * Use of supply names configured via regulator_set_device_supply() is
1175  * strongly encouraged.  It is recommended that the supply name used
1176  * should match the name used for the supply and/or the relevant
1177  * device pins in the datasheet.
1178  */
1179 struct regulator *regulator_get(struct device *dev, const char *id)
1180 {
1181         return _regulator_get(dev, id, 0);
1182 }
1183 EXPORT_SYMBOL_GPL(regulator_get);
1184
1185 /**
1186  * regulator_get_exclusive - obtain exclusive access to a regulator.
1187  * @dev: device for regulator "consumer"
1188  * @id: Supply name or regulator ID.
1189  *
1190  * Returns a struct regulator corresponding to the regulator producer,
1191  * or IS_ERR() condition containing errno.  Other consumers will be
1192  * unable to obtain this reference is held and the use count for the
1193  * regulator will be initialised to reflect the current state of the
1194  * regulator.
1195  *
1196  * This is intended for use by consumers which cannot tolerate shared
1197  * use of the regulator such as those which need to force the
1198  * regulator off for correct operation of the hardware they are
1199  * controlling.
1200  *
1201  * Use of supply names configured via regulator_set_device_supply() is
1202  * strongly encouraged.  It is recommended that the supply name used
1203  * should match the name used for the supply and/or the relevant
1204  * device pins in the datasheet.
1205  */
1206 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1207 {
1208         return _regulator_get(dev, id, 1);
1209 }
1210 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1211
1212 /**
1213  * regulator_put - "free" the regulator source
1214  * @regulator: regulator source
1215  *
1216  * Note: drivers must ensure that all regulator_enable calls made on this
1217  * regulator source are balanced by regulator_disable calls prior to calling
1218  * this function.
1219  */
1220 void regulator_put(struct regulator *regulator)
1221 {
1222         struct regulator_dev *rdev;
1223
1224         if (regulator == NULL || IS_ERR(regulator))
1225                 return;
1226
1227         mutex_lock(&regulator_list_mutex);
1228         rdev = regulator->rdev;
1229
1230         /* remove any sysfs entries */
1231         if (regulator->dev) {
1232                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1233                 kfree(regulator->supply_name);
1234                 device_remove_file(regulator->dev, &regulator->dev_attr);
1235                 kfree(regulator->dev_attr.attr.name);
1236         }
1237         list_del(&regulator->list);
1238         kfree(regulator);
1239
1240         rdev->open_count--;
1241         rdev->exclusive = 0;
1242
1243         module_put(rdev->owner);
1244         mutex_unlock(&regulator_list_mutex);
1245 }
1246 EXPORT_SYMBOL_GPL(regulator_put);
1247
1248 static int _regulator_can_change_status(struct regulator_dev *rdev)
1249 {
1250         if (!rdev->constraints)
1251                 return 0;
1252
1253         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1254                 return 1;
1255         else
1256                 return 0;
1257 }
1258
1259 /* locks held by regulator_enable() */
1260 static int _regulator_enable(struct regulator_dev *rdev)
1261 {
1262         int ret, delay;
1263
1264         /* do we need to enable the supply regulator first */
1265         if (rdev->supply) {
1266                 ret = _regulator_enable(rdev->supply);
1267                 if (ret < 0) {
1268                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1269                                __func__, rdev_get_name(rdev), ret);
1270                         return ret;
1271                 }
1272         }
1273
1274         /* check voltage and requested load before enabling */
1275         if (rdev->constraints &&
1276             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1277                 drms_uA_update(rdev);
1278
1279         if (rdev->use_count == 0) {
1280                 /* The regulator may on if it's not switchable or left on */
1281                 ret = _regulator_is_enabled(rdev);
1282                 if (ret == -EINVAL || ret == 0) {
1283                         if (!_regulator_can_change_status(rdev))
1284                                 return -EPERM;
1285
1286                         if (!rdev->desc->ops->enable)
1287                                 return -EINVAL;
1288
1289                         /* Query before enabling in case configuration
1290                          * dependant.  */
1291                         ret = _regulator_get_enable_time(rdev);
1292                         if (ret >= 0) {
1293                                 delay = ret;
1294                         } else {
1295                                 printk(KERN_WARNING
1296                                         "%s: enable_time() failed for %s: %d\n",
1297                                         __func__, rdev_get_name(rdev),
1298                                         ret);
1299                                 delay = 0;
1300                         }
1301
1302                         /* Allow the regulator to ramp; it would be useful
1303                          * to extend this for bulk operations so that the
1304                          * regulators can ramp together.  */
1305                         ret = rdev->desc->ops->enable(rdev);
1306                         if (ret < 0)
1307                                 return ret;
1308
1309                         if (delay >= 1000)
1310                                 mdelay(delay / 1000);
1311                         else if (delay)
1312                                 udelay(delay);
1313
1314                 } else if (ret < 0) {
1315                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1316                                __func__, rdev_get_name(rdev), ret);
1317                         return ret;
1318                 }
1319                 /* Fallthrough on positive return values - already enabled */
1320         }
1321
1322         rdev->use_count++;
1323
1324         return 0;
1325 }
1326
1327 /**
1328  * regulator_enable - enable regulator output
1329  * @regulator: regulator source
1330  *
1331  * Request that the regulator be enabled with the regulator output at
1332  * the predefined voltage or current value.  Calls to regulator_enable()
1333  * must be balanced with calls to regulator_disable().
1334  *
1335  * NOTE: the output value can be set by other drivers, boot loader or may be
1336  * hardwired in the regulator.
1337  */
1338 int regulator_enable(struct regulator *regulator)
1339 {
1340         struct regulator_dev *rdev = regulator->rdev;
1341         int ret = 0;
1342
1343         mutex_lock(&rdev->mutex);
1344         ret = _regulator_enable(rdev);
1345         mutex_unlock(&rdev->mutex);
1346         return ret;
1347 }
1348 EXPORT_SYMBOL_GPL(regulator_enable);
1349
1350 /* locks held by regulator_disable() */
1351 static int _regulator_disable(struct regulator_dev *rdev)
1352 {
1353         int ret = 0;
1354
1355         if (WARN(rdev->use_count <= 0,
1356                         "unbalanced disables for %s\n",
1357                         rdev_get_name(rdev)))
1358                 return -EIO;
1359
1360         /* are we the last user and permitted to disable ? */
1361         if (rdev->use_count == 1 &&
1362             (rdev->constraints && !rdev->constraints->always_on)) {
1363
1364                 /* we are last user */
1365                 if (_regulator_can_change_status(rdev) &&
1366                     rdev->desc->ops->disable) {
1367                         ret = rdev->desc->ops->disable(rdev);
1368                         if (ret < 0) {
1369                                 printk(KERN_ERR "%s: failed to disable %s\n",
1370                                        __func__, rdev_get_name(rdev));
1371                                 return ret;
1372                         }
1373
1374                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1375                                              NULL);
1376                 }
1377
1378                 /* decrease our supplies ref count and disable if required */
1379                 if (rdev->supply)
1380                         _regulator_disable(rdev->supply);
1381
1382                 rdev->use_count = 0;
1383         } else if (rdev->use_count > 1) {
1384
1385                 if (rdev->constraints &&
1386                         (rdev->constraints->valid_ops_mask &
1387                         REGULATOR_CHANGE_DRMS))
1388                         drms_uA_update(rdev);
1389
1390                 rdev->use_count--;
1391         }
1392         return ret;
1393 }
1394
1395 /**
1396  * regulator_disable - disable regulator output
1397  * @regulator: regulator source
1398  *
1399  * Disable the regulator output voltage or current.  Calls to
1400  * regulator_enable() must be balanced with calls to
1401  * regulator_disable().
1402  *
1403  * NOTE: this will only disable the regulator output if no other consumer
1404  * devices have it enabled, the regulator device supports disabling and
1405  * machine constraints permit this operation.
1406  */
1407 int regulator_disable(struct regulator *regulator)
1408 {
1409         struct regulator_dev *rdev = regulator->rdev;
1410         int ret = 0;
1411
1412         mutex_lock(&rdev->mutex);
1413         ret = _regulator_disable(rdev);
1414         mutex_unlock(&rdev->mutex);
1415         return ret;
1416 }
1417 EXPORT_SYMBOL_GPL(regulator_disable);
1418
1419 /* locks held by regulator_force_disable() */
1420 static int _regulator_force_disable(struct regulator_dev *rdev)
1421 {
1422         int ret = 0;
1423
1424         /* force disable */
1425         if (rdev->desc->ops->disable) {
1426                 /* ah well, who wants to live forever... */
1427                 ret = rdev->desc->ops->disable(rdev);
1428                 if (ret < 0) {
1429                         printk(KERN_ERR "%s: failed to force disable %s\n",
1430                                __func__, rdev_get_name(rdev));
1431                         return ret;
1432                 }
1433                 /* notify other consumers that power has been forced off */
1434                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1435                         REGULATOR_EVENT_DISABLE, NULL);
1436         }
1437
1438         /* decrease our supplies ref count and disable if required */
1439         if (rdev->supply)
1440                 _regulator_disable(rdev->supply);
1441
1442         rdev->use_count = 0;
1443         return ret;
1444 }
1445
1446 /**
1447  * regulator_force_disable - force disable regulator output
1448  * @regulator: regulator source
1449  *
1450  * Forcibly disable the regulator output voltage or current.
1451  * NOTE: this *will* disable the regulator output even if other consumer
1452  * devices have it enabled. This should be used for situations when device
1453  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1454  */
1455 int regulator_force_disable(struct regulator *regulator)
1456 {
1457         int ret;
1458
1459         mutex_lock(&regulator->rdev->mutex);
1460         regulator->uA_load = 0;
1461         ret = _regulator_force_disable(regulator->rdev);
1462         mutex_unlock(&regulator->rdev->mutex);
1463         return ret;
1464 }
1465 EXPORT_SYMBOL_GPL(regulator_force_disable);
1466
1467 static int _regulator_is_enabled(struct regulator_dev *rdev)
1468 {
1469         /* If we don't know then assume that the regulator is always on */
1470         if (!rdev->desc->ops->is_enabled)
1471                 return 1;
1472
1473         return rdev->desc->ops->is_enabled(rdev);
1474 }
1475
1476 /**
1477  * regulator_is_enabled - is the regulator output enabled
1478  * @regulator: regulator source
1479  *
1480  * Returns positive if the regulator driver backing the source/client
1481  * has requested that the device be enabled, zero if it hasn't, else a
1482  * negative errno code.
1483  *
1484  * Note that the device backing this regulator handle can have multiple
1485  * users, so it might be enabled even if regulator_enable() was never
1486  * called for this particular source.
1487  */
1488 int regulator_is_enabled(struct regulator *regulator)
1489 {
1490         int ret;
1491
1492         mutex_lock(&regulator->rdev->mutex);
1493         ret = _regulator_is_enabled(regulator->rdev);
1494         mutex_unlock(&regulator->rdev->mutex);
1495
1496         return ret;
1497 }
1498 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1499
1500 /**
1501  * regulator_count_voltages - count regulator_list_voltage() selectors
1502  * @regulator: regulator source
1503  *
1504  * Returns number of selectors, or negative errno.  Selectors are
1505  * numbered starting at zero, and typically correspond to bitfields
1506  * in hardware registers.
1507  */
1508 int regulator_count_voltages(struct regulator *regulator)
1509 {
1510         struct regulator_dev    *rdev = regulator->rdev;
1511
1512         return rdev->desc->n_voltages ? : -EINVAL;
1513 }
1514 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1515
1516 /**
1517  * regulator_list_voltage - enumerate supported voltages
1518  * @regulator: regulator source
1519  * @selector: identify voltage to list
1520  * Context: can sleep
1521  *
1522  * Returns a voltage that can be passed to @regulator_set_voltage(),
1523  * zero if this selector code can't be used on this system, or a
1524  * negative errno.
1525  */
1526 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1527 {
1528         struct regulator_dev    *rdev = regulator->rdev;
1529         struct regulator_ops    *ops = rdev->desc->ops;
1530         int                     ret;
1531
1532         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1533                 return -EINVAL;
1534
1535         mutex_lock(&rdev->mutex);
1536         ret = ops->list_voltage(rdev, selector);
1537         mutex_unlock(&rdev->mutex);
1538
1539         if (ret > 0) {
1540                 if (ret < rdev->constraints->min_uV)
1541                         ret = 0;
1542                 else if (ret > rdev->constraints->max_uV)
1543                         ret = 0;
1544         }
1545
1546         return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1549
1550 /**
1551  * regulator_is_supported_voltage - check if a voltage range can be supported
1552  *
1553  * @regulator: Regulator to check.
1554  * @min_uV: Minimum required voltage in uV.
1555  * @max_uV: Maximum required voltage in uV.
1556  *
1557  * Returns a boolean or a negative error code.
1558  */
1559 int regulator_is_supported_voltage(struct regulator *regulator,
1560                                    int min_uV, int max_uV)
1561 {
1562         int i, voltages, ret;
1563
1564         ret = regulator_count_voltages(regulator);
1565         if (ret < 0)
1566                 return ret;
1567         voltages = ret;
1568
1569         for (i = 0; i < voltages; i++) {
1570                 ret = regulator_list_voltage(regulator, i);
1571
1572                 if (ret >= min_uV && ret <= max_uV)
1573                         return 1;
1574         }
1575
1576         return 0;
1577 }
1578
1579 /**
1580  * regulator_set_voltage - set regulator output voltage
1581  * @regulator: regulator source
1582  * @min_uV: Minimum required voltage in uV
1583  * @max_uV: Maximum acceptable voltage in uV
1584  *
1585  * Sets a voltage regulator to the desired output voltage. This can be set
1586  * during any regulator state. IOW, regulator can be disabled or enabled.
1587  *
1588  * If the regulator is enabled then the voltage will change to the new value
1589  * immediately otherwise if the regulator is disabled the regulator will
1590  * output at the new voltage when enabled.
1591  *
1592  * NOTE: If the regulator is shared between several devices then the lowest
1593  * request voltage that meets the system constraints will be used.
1594  * Regulator system constraints must be set for this regulator before
1595  * calling this function otherwise this call will fail.
1596  */
1597 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1598 {
1599         struct regulator_dev *rdev = regulator->rdev;
1600         int ret;
1601
1602         mutex_lock(&rdev->mutex);
1603
1604         /* sanity check */
1605         if (!rdev->desc->ops->set_voltage) {
1606                 ret = -EINVAL;
1607                 goto out;
1608         }
1609
1610         /* constraints check */
1611         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1612         if (ret < 0)
1613                 goto out;
1614         regulator->min_uV = min_uV;
1615         regulator->max_uV = max_uV;
1616         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1617
1618 out:
1619         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1620         mutex_unlock(&rdev->mutex);
1621         return ret;
1622 }
1623 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1624
1625 static int _regulator_get_voltage(struct regulator_dev *rdev)
1626 {
1627         /* sanity check */
1628         if (rdev->desc->ops->get_voltage)
1629                 return rdev->desc->ops->get_voltage(rdev);
1630         else
1631                 return -EINVAL;
1632 }
1633
1634 /**
1635  * regulator_get_voltage - get regulator output voltage
1636  * @regulator: regulator source
1637  *
1638  * This returns the current regulator voltage in uV.
1639  *
1640  * NOTE: If the regulator is disabled it will return the voltage value. This
1641  * function should not be used to determine regulator state.
1642  */
1643 int regulator_get_voltage(struct regulator *regulator)
1644 {
1645         int ret;
1646
1647         mutex_lock(&regulator->rdev->mutex);
1648
1649         ret = _regulator_get_voltage(regulator->rdev);
1650
1651         mutex_unlock(&regulator->rdev->mutex);
1652
1653         return ret;
1654 }
1655 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1656
1657 /**
1658  * regulator_set_current_limit - set regulator output current limit
1659  * @regulator: regulator source
1660  * @min_uA: Minimuum supported current in uA
1661  * @max_uA: Maximum supported current in uA
1662  *
1663  * Sets current sink to the desired output current. This can be set during
1664  * any regulator state. IOW, regulator can be disabled or enabled.
1665  *
1666  * If the regulator is enabled then the current will change to the new value
1667  * immediately otherwise if the regulator is disabled the regulator will
1668  * output at the new current when enabled.
1669  *
1670  * NOTE: Regulator system constraints must be set for this regulator before
1671  * calling this function otherwise this call will fail.
1672  */
1673 int regulator_set_current_limit(struct regulator *regulator,
1674                                int min_uA, int max_uA)
1675 {
1676         struct regulator_dev *rdev = regulator->rdev;
1677         int ret;
1678
1679         mutex_lock(&rdev->mutex);
1680
1681         /* sanity check */
1682         if (!rdev->desc->ops->set_current_limit) {
1683                 ret = -EINVAL;
1684                 goto out;
1685         }
1686
1687         /* constraints check */
1688         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1689         if (ret < 0)
1690                 goto out;
1691
1692         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1693 out:
1694         mutex_unlock(&rdev->mutex);
1695         return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1698
1699 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1700 {
1701         int ret;
1702
1703         mutex_lock(&rdev->mutex);
1704
1705         /* sanity check */
1706         if (!rdev->desc->ops->get_current_limit) {
1707                 ret = -EINVAL;
1708                 goto out;
1709         }
1710
1711         ret = rdev->desc->ops->get_current_limit(rdev);
1712 out:
1713         mutex_unlock(&rdev->mutex);
1714         return ret;
1715 }
1716
1717 /**
1718  * regulator_get_current_limit - get regulator output current
1719  * @regulator: regulator source
1720  *
1721  * This returns the current supplied by the specified current sink in uA.
1722  *
1723  * NOTE: If the regulator is disabled it will return the current value. This
1724  * function should not be used to determine regulator state.
1725  */
1726 int regulator_get_current_limit(struct regulator *regulator)
1727 {
1728         return _regulator_get_current_limit(regulator->rdev);
1729 }
1730 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1731
1732 /**
1733  * regulator_set_mode - set regulator operating mode
1734  * @regulator: regulator source
1735  * @mode: operating mode - one of the REGULATOR_MODE constants
1736  *
1737  * Set regulator operating mode to increase regulator efficiency or improve
1738  * regulation performance.
1739  *
1740  * NOTE: Regulator system constraints must be set for this regulator before
1741  * calling this function otherwise this call will fail.
1742  */
1743 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1744 {
1745         struct regulator_dev *rdev = regulator->rdev;
1746         int ret;
1747         int regulator_curr_mode;
1748
1749         mutex_lock(&rdev->mutex);
1750
1751         /* sanity check */
1752         if (!rdev->desc->ops->set_mode) {
1753                 ret = -EINVAL;
1754                 goto out;
1755         }
1756
1757         /* return if the same mode is requested */
1758         if (rdev->desc->ops->get_mode) {
1759                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1760                 if (regulator_curr_mode == mode) {
1761                         ret = 0;
1762                         goto out;
1763                 }
1764         }
1765
1766         /* constraints check */
1767         ret = regulator_check_mode(rdev, mode);
1768         if (ret < 0)
1769                 goto out;
1770
1771         ret = rdev->desc->ops->set_mode(rdev, mode);
1772 out:
1773         mutex_unlock(&rdev->mutex);
1774         return ret;
1775 }
1776 EXPORT_SYMBOL_GPL(regulator_set_mode);
1777
1778 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1779 {
1780         int ret;
1781
1782         mutex_lock(&rdev->mutex);
1783
1784         /* sanity check */
1785         if (!rdev->desc->ops->get_mode) {
1786                 ret = -EINVAL;
1787                 goto out;
1788         }
1789
1790         ret = rdev->desc->ops->get_mode(rdev);
1791 out:
1792         mutex_unlock(&rdev->mutex);
1793         return ret;
1794 }
1795
1796 /**
1797  * regulator_get_mode - get regulator operating mode
1798  * @regulator: regulator source
1799  *
1800  * Get the current regulator operating mode.
1801  */
1802 unsigned int regulator_get_mode(struct regulator *regulator)
1803 {
1804         return _regulator_get_mode(regulator->rdev);
1805 }
1806 EXPORT_SYMBOL_GPL(regulator_get_mode);
1807
1808 /**
1809  * regulator_set_optimum_mode - set regulator optimum operating mode
1810  * @regulator: regulator source
1811  * @uA_load: load current
1812  *
1813  * Notifies the regulator core of a new device load. This is then used by
1814  * DRMS (if enabled by constraints) to set the most efficient regulator
1815  * operating mode for the new regulator loading.
1816  *
1817  * Consumer devices notify their supply regulator of the maximum power
1818  * they will require (can be taken from device datasheet in the power
1819  * consumption tables) when they change operational status and hence power
1820  * state. Examples of operational state changes that can affect power
1821  * consumption are :-
1822  *
1823  *    o Device is opened / closed.
1824  *    o Device I/O is about to begin or has just finished.
1825  *    o Device is idling in between work.
1826  *
1827  * This information is also exported via sysfs to userspace.
1828  *
1829  * DRMS will sum the total requested load on the regulator and change
1830  * to the most efficient operating mode if platform constraints allow.
1831  *
1832  * Returns the new regulator mode or error.
1833  */
1834 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1835 {
1836         struct regulator_dev *rdev = regulator->rdev;
1837         struct regulator *consumer;
1838         int ret, output_uV, input_uV, total_uA_load = 0;
1839         unsigned int mode;
1840
1841         mutex_lock(&rdev->mutex);
1842
1843         regulator->uA_load = uA_load;
1844         ret = regulator_check_drms(rdev);
1845         if (ret < 0)
1846                 goto out;
1847         ret = -EINVAL;
1848
1849         /* sanity check */
1850         if (!rdev->desc->ops->get_optimum_mode)
1851                 goto out;
1852
1853         /* get output voltage */
1854         output_uV = rdev->desc->ops->get_voltage(rdev);
1855         if (output_uV <= 0) {
1856                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1857                         __func__, rdev_get_name(rdev));
1858                 goto out;
1859         }
1860
1861         /* get input voltage */
1862         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1863                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1864         else
1865                 input_uV = rdev->constraints->input_uV;
1866         if (input_uV <= 0) {
1867                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1868                         __func__, rdev_get_name(rdev));
1869                 goto out;
1870         }
1871
1872         /* calc total requested load for this regulator */
1873         list_for_each_entry(consumer, &rdev->consumer_list, list)
1874                 total_uA_load += consumer->uA_load;
1875
1876         mode = rdev->desc->ops->get_optimum_mode(rdev,
1877                                                  input_uV, output_uV,
1878                                                  total_uA_load);
1879         ret = regulator_check_mode(rdev, mode);
1880         if (ret < 0) {
1881                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1882                         " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1883                         total_uA_load, input_uV, output_uV);
1884                 goto out;
1885         }
1886
1887         ret = rdev->desc->ops->set_mode(rdev, mode);
1888         if (ret < 0) {
1889                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1890                         __func__, mode, rdev_get_name(rdev));
1891                 goto out;
1892         }
1893         ret = mode;
1894 out:
1895         mutex_unlock(&rdev->mutex);
1896         return ret;
1897 }
1898 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1899
1900 /**
1901  * regulator_register_notifier - register regulator event notifier
1902  * @regulator: regulator source
1903  * @nb: notifier block
1904  *
1905  * Register notifier block to receive regulator events.
1906  */
1907 int regulator_register_notifier(struct regulator *regulator,
1908                               struct notifier_block *nb)
1909 {
1910         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1911                                                 nb);
1912 }
1913 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1914
1915 /**
1916  * regulator_unregister_notifier - unregister regulator event notifier
1917  * @regulator: regulator source
1918  * @nb: notifier block
1919  *
1920  * Unregister regulator event notifier block.
1921  */
1922 int regulator_unregister_notifier(struct regulator *regulator,
1923                                 struct notifier_block *nb)
1924 {
1925         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1926                                                   nb);
1927 }
1928 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1929
1930 /* notify regulator consumers and downstream regulator consumers.
1931  * Note mutex must be held by caller.
1932  */
1933 static void _notifier_call_chain(struct regulator_dev *rdev,
1934                                   unsigned long event, void *data)
1935 {
1936         struct regulator_dev *_rdev;
1937
1938         /* call rdev chain first */
1939         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1940
1941         /* now notify regulator we supply */
1942         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1943                 mutex_lock(&_rdev->mutex);
1944                 _notifier_call_chain(_rdev, event, data);
1945                 mutex_unlock(&_rdev->mutex);
1946         }
1947 }
1948
1949 /**
1950  * regulator_bulk_get - get multiple regulator consumers
1951  *
1952  * @dev:           Device to supply
1953  * @num_consumers: Number of consumers to register
1954  * @consumers:     Configuration of consumers; clients are stored here.
1955  *
1956  * @return 0 on success, an errno on failure.
1957  *
1958  * This helper function allows drivers to get several regulator
1959  * consumers in one operation.  If any of the regulators cannot be
1960  * acquired then any regulators that were allocated will be freed
1961  * before returning to the caller.
1962  */
1963 int regulator_bulk_get(struct device *dev, int num_consumers,
1964                        struct regulator_bulk_data *consumers)
1965 {
1966         int i;
1967         int ret;
1968
1969         for (i = 0; i < num_consumers; i++)
1970                 consumers[i].consumer = NULL;
1971
1972         for (i = 0; i < num_consumers; i++) {
1973                 consumers[i].consumer = regulator_get(dev,
1974                                                       consumers[i].supply);
1975                 if (IS_ERR(consumers[i].consumer)) {
1976                         ret = PTR_ERR(consumers[i].consumer);
1977                         dev_err(dev, "Failed to get supply '%s': %d\n",
1978                                 consumers[i].supply, ret);
1979                         consumers[i].consumer = NULL;
1980                         goto err;
1981                 }
1982         }
1983
1984         return 0;
1985
1986 err:
1987         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1988                 regulator_put(consumers[i].consumer);
1989
1990         return ret;
1991 }
1992 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1993
1994 /**
1995  * regulator_bulk_enable - enable multiple regulator consumers
1996  *
1997  * @num_consumers: Number of consumers
1998  * @consumers:     Consumer data; clients are stored here.
1999  * @return         0 on success, an errno on failure
2000  *
2001  * This convenience API allows consumers to enable multiple regulator
2002  * clients in a single API call.  If any consumers cannot be enabled
2003  * then any others that were enabled will be disabled again prior to
2004  * return.
2005  */
2006 int regulator_bulk_enable(int num_consumers,
2007                           struct regulator_bulk_data *consumers)
2008 {
2009         int i;
2010         int ret;
2011
2012         for (i = 0; i < num_consumers; i++) {
2013                 ret = regulator_enable(consumers[i].consumer);
2014                 if (ret != 0)
2015                         goto err;
2016         }
2017
2018         return 0;
2019
2020 err:
2021         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2022         for (--i; i >= 0; --i)
2023                 regulator_disable(consumers[i].consumer);
2024
2025         return ret;
2026 }
2027 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2028
2029 /**
2030  * regulator_bulk_disable - disable multiple regulator consumers
2031  *
2032  * @num_consumers: Number of consumers
2033  * @consumers:     Consumer data; clients are stored here.
2034  * @return         0 on success, an errno on failure
2035  *
2036  * This convenience API allows consumers to disable multiple regulator
2037  * clients in a single API call.  If any consumers cannot be enabled
2038  * then any others that were disabled will be disabled again prior to
2039  * return.
2040  */
2041 int regulator_bulk_disable(int num_consumers,
2042                            struct regulator_bulk_data *consumers)
2043 {
2044         int i;
2045         int ret;
2046
2047         for (i = 0; i < num_consumers; i++) {
2048                 ret = regulator_disable(consumers[i].consumer);
2049                 if (ret != 0)
2050                         goto err;
2051         }
2052
2053         return 0;
2054
2055 err:
2056         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2057                ret);
2058         for (--i; i >= 0; --i)
2059                 regulator_enable(consumers[i].consumer);
2060
2061         return ret;
2062 }
2063 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2064
2065 /**
2066  * regulator_bulk_free - free multiple regulator consumers
2067  *
2068  * @num_consumers: Number of consumers
2069  * @consumers:     Consumer data; clients are stored here.
2070  *
2071  * This convenience API allows consumers to free multiple regulator
2072  * clients in a single API call.
2073  */
2074 void regulator_bulk_free(int num_consumers,
2075                          struct regulator_bulk_data *consumers)
2076 {
2077         int i;
2078
2079         for (i = 0; i < num_consumers; i++) {
2080                 regulator_put(consumers[i].consumer);
2081                 consumers[i].consumer = NULL;
2082         }
2083 }
2084 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2085
2086 /**
2087  * regulator_notifier_call_chain - call regulator event notifier
2088  * @rdev: regulator source
2089  * @event: notifier block
2090  * @data: callback-specific data.
2091  *
2092  * Called by regulator drivers to notify clients a regulator event has
2093  * occurred. We also notify regulator clients downstream.
2094  * Note lock must be held by caller.
2095  */
2096 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2097                                   unsigned long event, void *data)
2098 {
2099         _notifier_call_chain(rdev, event, data);
2100         return NOTIFY_DONE;
2101
2102 }
2103 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2104
2105 /**
2106  * regulator_mode_to_status - convert a regulator mode into a status
2107  *
2108  * @mode: Mode to convert
2109  *
2110  * Convert a regulator mode into a status.
2111  */
2112 int regulator_mode_to_status(unsigned int mode)
2113 {
2114         switch (mode) {
2115         case REGULATOR_MODE_FAST:
2116                 return REGULATOR_STATUS_FAST;
2117         case REGULATOR_MODE_NORMAL:
2118                 return REGULATOR_STATUS_NORMAL;
2119         case REGULATOR_MODE_IDLE:
2120                 return REGULATOR_STATUS_IDLE;
2121         case REGULATOR_STATUS_STANDBY:
2122                 return REGULATOR_STATUS_STANDBY;
2123         default:
2124                 return 0;
2125         }
2126 }
2127 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2128
2129 /*
2130  * To avoid cluttering sysfs (and memory) with useless state, only
2131  * create attributes that can be meaningfully displayed.
2132  */
2133 static int add_regulator_attributes(struct regulator_dev *rdev)
2134 {
2135         struct device           *dev = &rdev->dev;
2136         struct regulator_ops    *ops = rdev->desc->ops;
2137         int                     status = 0;
2138
2139         /* some attributes need specific methods to be displayed */
2140         if (ops->get_voltage) {
2141                 status = device_create_file(dev, &dev_attr_microvolts);
2142                 if (status < 0)
2143                         return status;
2144         }
2145         if (ops->get_current_limit) {
2146                 status = device_create_file(dev, &dev_attr_microamps);
2147                 if (status < 0)
2148                         return status;
2149         }
2150         if (ops->get_mode) {
2151                 status = device_create_file(dev, &dev_attr_opmode);
2152                 if (status < 0)
2153                         return status;
2154         }
2155         if (ops->is_enabled) {
2156                 status = device_create_file(dev, &dev_attr_state);
2157                 if (status < 0)
2158                         return status;
2159         }
2160         if (ops->get_status) {
2161                 status = device_create_file(dev, &dev_attr_status);
2162                 if (status < 0)
2163                         return status;
2164         }
2165
2166         /* some attributes are type-specific */
2167         if (rdev->desc->type == REGULATOR_CURRENT) {
2168                 status = device_create_file(dev, &dev_attr_requested_microamps);
2169                 if (status < 0)
2170                         return status;
2171         }
2172
2173         /* all the other attributes exist to support constraints;
2174          * don't show them if there are no constraints, or if the
2175          * relevant supporting methods are missing.
2176          */
2177         if (!rdev->constraints)
2178                 return status;
2179
2180         /* constraints need specific supporting methods */
2181         if (ops->set_voltage) {
2182                 status = device_create_file(dev, &dev_attr_min_microvolts);
2183                 if (status < 0)
2184                         return status;
2185                 status = device_create_file(dev, &dev_attr_max_microvolts);
2186                 if (status < 0)
2187                         return status;
2188         }
2189         if (ops->set_current_limit) {
2190                 status = device_create_file(dev, &dev_attr_min_microamps);
2191                 if (status < 0)
2192                         return status;
2193                 status = device_create_file(dev, &dev_attr_max_microamps);
2194                 if (status < 0)
2195                         return status;
2196         }
2197
2198         /* suspend mode constraints need multiple supporting methods */
2199         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2200                 return status;
2201
2202         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2203         if (status < 0)
2204                 return status;
2205         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2206         if (status < 0)
2207                 return status;
2208         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2209         if (status < 0)
2210                 return status;
2211
2212         if (ops->set_suspend_voltage) {
2213                 status = device_create_file(dev,
2214                                 &dev_attr_suspend_standby_microvolts);
2215                 if (status < 0)
2216                         return status;
2217                 status = device_create_file(dev,
2218                                 &dev_attr_suspend_mem_microvolts);
2219                 if (status < 0)
2220                         return status;
2221                 status = device_create_file(dev,
2222                                 &dev_attr_suspend_disk_microvolts);
2223                 if (status < 0)
2224                         return status;
2225         }
2226
2227         if (ops->set_suspend_mode) {
2228                 status = device_create_file(dev,
2229                                 &dev_attr_suspend_standby_mode);
2230                 if (status < 0)
2231                         return status;
2232                 status = device_create_file(dev,
2233                                 &dev_attr_suspend_mem_mode);
2234                 if (status < 0)
2235                         return status;
2236                 status = device_create_file(dev,
2237                                 &dev_attr_suspend_disk_mode);
2238                 if (status < 0)
2239                         return status;
2240         }
2241
2242         return status;
2243 }
2244
2245 /**
2246  * regulator_register - register regulator
2247  * @regulator_desc: regulator to register
2248  * @dev: struct device for the regulator
2249  * @init_data: platform provided init data, passed through by driver
2250  * @driver_data: private regulator data
2251  *
2252  * Called by regulator drivers to register a regulator.
2253  * Returns 0 on success.
2254  */
2255 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2256         struct device *dev, struct regulator_init_data *init_data,
2257         void *driver_data)
2258 {
2259         static atomic_t regulator_no = ATOMIC_INIT(0);
2260         struct regulator_dev *rdev;
2261         int ret, i;
2262
2263         if (regulator_desc == NULL)
2264                 return ERR_PTR(-EINVAL);
2265
2266         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2267                 return ERR_PTR(-EINVAL);
2268
2269         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2270             regulator_desc->type != REGULATOR_CURRENT)
2271                 return ERR_PTR(-EINVAL);
2272
2273         if (!init_data)
2274                 return ERR_PTR(-EINVAL);
2275
2276         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2277         if (rdev == NULL)
2278                 return ERR_PTR(-ENOMEM);
2279
2280         mutex_lock(&regulator_list_mutex);
2281
2282         mutex_init(&rdev->mutex);
2283         rdev->reg_data = driver_data;
2284         rdev->owner = regulator_desc->owner;
2285         rdev->desc = regulator_desc;
2286         INIT_LIST_HEAD(&rdev->consumer_list);
2287         INIT_LIST_HEAD(&rdev->supply_list);
2288         INIT_LIST_HEAD(&rdev->list);
2289         INIT_LIST_HEAD(&rdev->slist);
2290         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2291
2292         /* preform any regulator specific init */
2293         if (init_data->regulator_init) {
2294                 ret = init_data->regulator_init(rdev->reg_data);
2295                 if (ret < 0)
2296                         goto clean;
2297         }
2298
2299         /* register with sysfs */
2300         rdev->dev.class = &regulator_class;
2301         rdev->dev.parent = dev;
2302         dev_set_name(&rdev->dev, "regulator.%d",
2303                      atomic_inc_return(&regulator_no) - 1);
2304         ret = device_register(&rdev->dev);
2305         if (ret != 0) {
2306                 put_device(&rdev->dev);
2307                 goto clean;
2308         }
2309
2310         dev_set_drvdata(&rdev->dev, rdev);
2311
2312         /* set regulator constraints */
2313         ret = set_machine_constraints(rdev, &init_data->constraints);
2314         if (ret < 0)
2315                 goto scrub;
2316
2317         /* add attributes supported by this regulator */
2318         ret = add_regulator_attributes(rdev);
2319         if (ret < 0)
2320                 goto scrub;
2321
2322         /* set supply regulator if it exists */
2323         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2324                 dev_err(dev,
2325                         "Supply regulator specified by both name and dev\n");
2326                 goto scrub;
2327         }
2328
2329         if (init_data->supply_regulator) {
2330                 struct regulator_dev *r;
2331                 int found = 0;
2332
2333                 list_for_each_entry(r, &regulator_list, list) {
2334                         if (strcmp(rdev_get_name(r),
2335                                    init_data->supply_regulator) == 0) {
2336                                 found = 1;
2337                                 break;
2338                         }
2339                 }
2340
2341                 if (!found) {
2342                         dev_err(dev, "Failed to find supply %s\n",
2343                                 init_data->supply_regulator);
2344                         goto scrub;
2345                 }
2346
2347                 ret = set_supply(rdev, r);
2348                 if (ret < 0)
2349                         goto scrub;
2350         }
2351
2352         if (init_data->supply_regulator_dev) {
2353                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2354                 ret = set_supply(rdev,
2355                         dev_get_drvdata(init_data->supply_regulator_dev));
2356                 if (ret < 0)
2357                         goto scrub;
2358         }
2359
2360         /* add consumers devices */
2361         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2362                 ret = set_consumer_device_supply(rdev,
2363                         init_data->consumer_supplies[i].dev,
2364                         init_data->consumer_supplies[i].dev_name,
2365                         init_data->consumer_supplies[i].supply);
2366                 if (ret < 0)
2367                         goto unset_supplies;
2368         }
2369
2370         list_add(&rdev->list, &regulator_list);
2371 out:
2372         mutex_unlock(&regulator_list_mutex);
2373         return rdev;
2374
2375 unset_supplies:
2376         unset_regulator_supplies(rdev);
2377
2378 scrub:
2379         device_unregister(&rdev->dev);
2380         /* device core frees rdev */
2381         rdev = ERR_PTR(ret);
2382         goto out;
2383
2384 clean:
2385         kfree(rdev);
2386         rdev = ERR_PTR(ret);
2387         goto out;
2388 }
2389 EXPORT_SYMBOL_GPL(regulator_register);
2390
2391 /**
2392  * regulator_unregister - unregister regulator
2393  * @rdev: regulator to unregister
2394  *
2395  * Called by regulator drivers to unregister a regulator.
2396  */
2397 void regulator_unregister(struct regulator_dev *rdev)
2398 {
2399         if (rdev == NULL)
2400                 return;
2401
2402         mutex_lock(&regulator_list_mutex);
2403         WARN_ON(rdev->open_count);
2404         unset_regulator_supplies(rdev);
2405         list_del(&rdev->list);
2406         if (rdev->supply)
2407                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2408         device_unregister(&rdev->dev);
2409         mutex_unlock(&regulator_list_mutex);
2410 }
2411 EXPORT_SYMBOL_GPL(regulator_unregister);
2412
2413 /**
2414  * regulator_suspend_prepare - prepare regulators for system wide suspend
2415  * @state: system suspend state
2416  *
2417  * Configure each regulator with it's suspend operating parameters for state.
2418  * This will usually be called by machine suspend code prior to supending.
2419  */
2420 int regulator_suspend_prepare(suspend_state_t state)
2421 {
2422         struct regulator_dev *rdev;
2423         int ret = 0;
2424
2425         /* ON is handled by regulator active state */
2426         if (state == PM_SUSPEND_ON)
2427                 return -EINVAL;
2428
2429         mutex_lock(&regulator_list_mutex);
2430         list_for_each_entry(rdev, &regulator_list, list) {
2431
2432                 mutex_lock(&rdev->mutex);
2433                 ret = suspend_prepare(rdev, state);
2434                 mutex_unlock(&rdev->mutex);
2435
2436                 if (ret < 0) {
2437                         printk(KERN_ERR "%s: failed to prepare %s\n",
2438                                 __func__, rdev_get_name(rdev));
2439                         goto out;
2440                 }
2441         }
2442 out:
2443         mutex_unlock(&regulator_list_mutex);
2444         return ret;
2445 }
2446 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2447
2448 /**
2449  * regulator_has_full_constraints - the system has fully specified constraints
2450  *
2451  * Calling this function will cause the regulator API to disable all
2452  * regulators which have a zero use count and don't have an always_on
2453  * constraint in a late_initcall.
2454  *
2455  * The intention is that this will become the default behaviour in a
2456  * future kernel release so users are encouraged to use this facility
2457  * now.
2458  */
2459 void regulator_has_full_constraints(void)
2460 {
2461         has_full_constraints = 1;
2462 }
2463 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2464
2465 /**
2466  * rdev_get_drvdata - get rdev regulator driver data
2467  * @rdev: regulator
2468  *
2469  * Get rdev regulator driver private data. This call can be used in the
2470  * regulator driver context.
2471  */
2472 void *rdev_get_drvdata(struct regulator_dev *rdev)
2473 {
2474         return rdev->reg_data;
2475 }
2476 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2477
2478 /**
2479  * regulator_get_drvdata - get regulator driver data
2480  * @regulator: regulator
2481  *
2482  * Get regulator driver private data. This call can be used in the consumer
2483  * driver context when non API regulator specific functions need to be called.
2484  */
2485 void *regulator_get_drvdata(struct regulator *regulator)
2486 {
2487         return regulator->rdev->reg_data;
2488 }
2489 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2490
2491 /**
2492  * regulator_set_drvdata - set regulator driver data
2493  * @regulator: regulator
2494  * @data: data
2495  */
2496 void regulator_set_drvdata(struct regulator *regulator, void *data)
2497 {
2498         regulator->rdev->reg_data = data;
2499 }
2500 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2501
2502 /**
2503  * regulator_get_id - get regulator ID
2504  * @rdev: regulator
2505  */
2506 int rdev_get_id(struct regulator_dev *rdev)
2507 {
2508         return rdev->desc->id;
2509 }
2510 EXPORT_SYMBOL_GPL(rdev_get_id);
2511
2512 struct device *rdev_get_dev(struct regulator_dev *rdev)
2513 {
2514         return &rdev->dev;
2515 }
2516 EXPORT_SYMBOL_GPL(rdev_get_dev);
2517
2518 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2519 {
2520         return reg_init_data->driver_data;
2521 }
2522 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2523
2524 static int __init regulator_init(void)
2525 {
2526         int ret;
2527
2528         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2529
2530         ret = class_register(&regulator_class);
2531
2532         regulator_dummy_init();
2533
2534         return ret;
2535 }
2536
2537 /* init early to allow our consumers to complete system booting */
2538 core_initcall(regulator_init);
2539
2540 static int __init regulator_init_complete(void)
2541 {
2542         struct regulator_dev *rdev;
2543         struct regulator_ops *ops;
2544         struct regulation_constraints *c;
2545         int enabled, ret;
2546         const char *name;
2547
2548         mutex_lock(&regulator_list_mutex);
2549
2550         /* If we have a full configuration then disable any regulators
2551          * which are not in use or always_on.  This will become the
2552          * default behaviour in the future.
2553          */
2554         list_for_each_entry(rdev, &regulator_list, list) {
2555                 ops = rdev->desc->ops;
2556                 c = rdev->constraints;
2557
2558                 name = rdev_get_name(rdev);
2559
2560                 if (!ops->disable || (c && c->always_on))
2561                         continue;
2562
2563                 mutex_lock(&rdev->mutex);
2564
2565                 if (rdev->use_count)
2566                         goto unlock;
2567
2568                 /* If we can't read the status assume it's on. */
2569                 if (ops->is_enabled)
2570                         enabled = ops->is_enabled(rdev);
2571                 else
2572                         enabled = 1;
2573
2574                 if (!enabled)
2575                         goto unlock;
2576
2577                 if (has_full_constraints) {
2578                         /* We log since this may kill the system if it
2579                          * goes wrong. */
2580                         printk(KERN_INFO "%s: disabling %s\n",
2581                                __func__, name);
2582                         ret = ops->disable(rdev);
2583                         if (ret != 0) {
2584                                 printk(KERN_ERR
2585                                        "%s: couldn't disable %s: %d\n",
2586                                        __func__, name, ret);
2587                         }
2588                 } else {
2589                         /* The intention is that in future we will
2590                          * assume that full constraints are provided
2591                          * so warn even if we aren't going to do
2592                          * anything here.
2593                          */
2594                         printk(KERN_WARNING
2595                                "%s: incomplete constraints, leaving %s on\n",
2596                                __func__, name);
2597                 }
2598
2599 unlock:
2600                 mutex_unlock(&rdev->mutex);
2601         }
2602
2603         mutex_unlock(&regulator_list_mutex);
2604
2605         return 0;
2606 }
2607 late_initcall(regulator_init_complete);